人教版七年级下册数学期中测试卷

合集下载

【人教版】七年级下册数学《期中考试题》附答案解析

【人教版】七年级下册数学《期中考试题》附答案解析

人教版七年级下册数学期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列方程组中,属于二元一次方程组的是( )A. 31x y x z +=-⎧⎨+=-⎩B. 32x y y +=⎧⎨=⎩ C. 233x y x y +=⎧⎨-=-⎩ D. 32x y xy +=⎧⎨=-⎩2. 若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是( )A. x 2≤B. x 1>C. 1x 2≤<D. 1x 2<≤ 3. 下面四个图形中,线段BD 是△ABC 的高的是( ) A. B. C. D.4. 如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A. 高B. 角平分线C. 中线D. 不能确定 5. 如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=76°,∠C=64°,则∠DAE 的度数是()A. 10°B. 12°C. 15°D. 18°6. 如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是( )A . ∠BCA=∠F;B. ∠B=∠E;C. BC∥EF ;D. ∠A=∠EDF 7. 如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A. △ABC≌△CDEB. CE =ACC. AB⊥CDD. E 为BC 的中点 8. 如图,在三角形模板ABC 中,∠A=60°,D 、E 分别为AB 、AC 上的点,则∠1+∠2的度数为( ) A . 180°B. 200°C. 220°D. 240° 9. 若从一多边形的一个顶点出发,最多可引10条对角线,则它是( )A 十三边形 B. 十二边形 C. 十一边形 D. 十边形10. 如图,BE 和CE 分别为△ABC 的内角平分线和外角平分线,BE ⊥AC 于点H ,CF 平分∠ACB 交BE 于点F 连接AE .则下列结论:①∠ECF=90°;②AE=CE ;③1902BFC BAC ∠=︒+∠;④∠BAC=2∠BEC ;⑤∠AEH=∠BCF ,正确的个数为( )A 2个 B. 3个 C. 4个 D. 5个二、填空题11. 已知12xy=⎧⎨=⎩是关于x、y的二元一次方程3210mx y--=的解,则m=__________.12. 不等式2x﹣1>3的解集为_____.13. A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时__________千米.14. 把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.15. 如图,在△ABC中,点D在AC上,点E在BD上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC 的度数为__________.16. 一个多边形的内角和是1440°,则这个多边形是__________边形.17. 如图,在Rt三角形ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,若AD=8cm,BE=3cm,则DE=__________cm.18. 如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,若△ABC的面积为21cm2,AB=8cm,AC=6cm,则DE的长为__________cm.19. 已知△ABC中,∠B=40°,AD是△ABC的高,且∠CAD=10°,则∠BAC的度数为__________.20. 如图,在Rt△ABC中,∠ACB=90°,AC=BC,CH为△ABC斜边上的中线,点F为CH上一点,连接BF并延长交AC于点D,过点A作AE⊥AC,连接CE和DE,若∠ACE=2∠ABF,CE=13,CD=8,则△CDE 的面积为__________.三、解答题21. 解方程组及不等式组(1)25 437 x yx y+=-⎧⎨+=-⎩(2)211841x xx x->+⎧⎨+<-⎩22. 正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt⊿ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.23. 四川雅安发生地震后,某校学生会向全校1900名学生发起了”心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24. 如图,在△ABC中,BD,CE分别是AC,AB边上的高,在BD上截取BF=AC,延长CE至点G使CG=AB,连接AF,AG.(1)如图1,求证:AG=AF;(2)如图2,若BD恰好平分∠ABC,过点G作GH⊥AC交CA的延长线于点H,请直接写出图中所有的全等三角形并用全等符号连接.25. “双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.(1)求A、B两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?26. 如图,△ABC中,点E和点F在边BC上,连接AE,AF,使得∠EAC=∠ECA,∠BAE=2∠CAF.(1)如图1,求证:∠BAF=∠BFA;(2)如图2,在过点C且与AE平行的射线上取一点D,连接DE,若∠AED=∠B,求证:BE=CD;27. 如图,在平面直角坐标系中,点A 在第一象限,点B(a ,0),点C(0,b)分别在x 轴,y 轴上,其中a ,b 是二元一次方程534a b -=的解,且a 为不等式312133a a -+≤的最大整数解. (1)证明:OB=OC ;(2)如图1,连接AB ,过点A 作AD ⊥AB 交y 轴于点D ,在射线AD 上截取AE=AB ,连接CE ,取CE 的中点F ,连接AF 并延长至点G ,使FG=AF ,连接CG ,OA .当点A 在第一象限内运动(AD 不经过点C )时,证明:∠OAF 的大小不变;答案与解析一、选择题1. 下列方程组中,属于二元一次方程组的是( )A. 31x y x z +=-⎧⎨+=-⎩B. 32x y y +=⎧⎨=⎩C. 233x y x y +=⎧⎨-=-⎩D. 32x y xy +=⎧⎨=-⎩【答案】B【解析】【分析】 根据二元一次方程组的定义判断即可.【详解】A.31x y x z ,方程组中有三个未知数,不是二元一次方程组; B. 32x y y ,是二元一次方程组;C.233x y x y ,方程组中未知数的最高次是2,不是二元一次方程组;D. 32x y xy ,方程组中2xy =-不是二元一次方程,所以原方程组不是二元一次方程组;故选:B .【点睛】本题考查的是二元一次方程组的判别,熟悉二元一次方程的定义是解题的关键.2. 若关于x 的不等式组的解在数轴上如图所示,则这个不等式组的解是( )A. x 2≤B. x 1>C. 1x 2≤<D. 1x 2<≤【答案】D【解析】【分析】不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.【详解】解:在表示解集时”≥”,”≤”要用实心圆点表示;”<”,”>”要用空心圆点表示.因此,这个不等式<≤.组的解是1x2故选D.3. 下面四个图形中,线段BD是△ABC的高的是()A. B.C. D.【答案】D【解析】【分析】根据三角形高的定义,过点B向AC边作垂线,点B和垂足D之间的线段是△ABC的高,逐项判断即可.【详解】∵由三角形的高线定义可知:过点B作BD⊥AC,垂足为D,则线段BD为△ABC的高;∴选项A、B、C图形中垂足不正确,都不符合题意,只有选项D符合题意.故选:D.【点睛】本题考查三角形的高线,正确理解三角形的高线是解题关键.4. 如图,三角形ABC中,D为BC上的一点,且S△ABD=S△ADC,则AD为()A. 高B. 角平分线C. 中线D. 不能确定【答案】C【解析】试题分析:三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD ,即AD 是中线.故选C .考点:三角形的面积;三角形的角平分线、中线和高.5. 如图,AE 是△ABC 的角平分线,AD ⊥BC 于点D ,若∠BAC=76°,∠C=64°,则∠DAE 的度数是( )A. 10°B. 12°C. 15°D. 18°【答案】B【解析】【分析】 根据直角三角形两锐角互余求出CAD ∠,再根据角平分线定义求出CAE ∠,然后根据DAE CAE CAD ∠=∠-∠,代入数据进行计算即可得解.【详解】解:AD BC ⊥,64C ∠=︒, 906426CAD ,AE ∵是ABC ∆的角平分线,76BAC, 11763822CAE BAC ,382612DAE CAE CAD .故选:B .【点睛】本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.6. 如图,已知点A 、D 、C 、F 在同一条直线上,AB=DE ,BC=EF ,要使△ABC≌△DEF,还需要添加一个条件是( )A. ∠BCA=∠F;B. ∠B=∠E;C. BC∥EF ;D. ∠A=∠EDF【答案】B【解析】全等三角形的判定方法SAS 是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE ,BC=EF ,其两边的夹角是∠B 和∠E,只要求出∠B=∠E 即可.解:A 、根据AB=DE ,BC=EF 和∠BCA=∠F 不能推出△ABC≌△DEF,故本选项错误;B 、∵在△ABC 和△DEF 中,AB=DE ,∠B=∠E,BC=EF ,∴△ABC≌△DEF(SAS ),故本选项正确;C 、∵BC∥EF,∴∠F=∠BCA,根据AB=DE ,BC=EF 和∠F=∠BCA 不能推出△ABC≌△DEF,故本选项错误;D 、根据AB=DE ,BC=EF 和∠A=∠EDF 不能推出△ABC≌△DEF,故本选项错误.故选B .7. 如图,在△ABC 和△CDE 中,若∠ACB=∠CED=90°,AB =CD ,BC =DE ,则下列结论中不正确的是( )A. △ABC≌△CDEB. CE =ACC. AB⊥CDD. E 为BC 的中点【答案】D【解析】【分析】 首先证明△ABC ≌△CDE ,推出CE=AC ,∠D=∠B ,由∠D+∠DCE=90°,推出∠B+∠DCE=90°,推出CD ⊥AB ,即可一一判断.【详解】在Rt △ABC 和Rt △CDE 中,AB CD BC DE =⎧⎨=⎩, ∴△ABC ≌△CDE ,∴CE =AC ,∠D =∠B ,90D DCE ∠+∠=,90B DCE ∴∠+∠=,∴CD ⊥AB ,D :E 为BC 的中点无法证明故A 、B 、C.正确,故选. D【点睛】本题考查全等三角形的判定和性质、解题的关键是熟练掌握全等三角形的判定和性质,属于基础题.8. 如图,在三角形模板ABC 中,∠A=60°,D 、E 分别为AB 、AC 上的点,则∠1+∠2的度数为( )A. 180°B. 200°C. 220°D. 240°【答案】D 【解析】 【分析】根据三角形内角和定理求出B C ∠+∠,根据多边形内角和定理求出即可. 【详解】解:60A ∠=︒,180120B C A , 12360360120240BC,故选:D .【点睛】本题考查了三角形内角和定理和多边形内角和定理,能熟记知识点的内容是解此题的关键,注意:三角形的内角和等于180︒,四边形的内角和等于360︒.9. 若从一多边形的一个顶点出发,最多可引10条对角线,则它是( ) A. 十三边形 B. 十二边形C. 十一边形D. 十边形【答案】A 【解析】试题分析:根据多边形的对角线的定义可知,从n 边形的一个顶点出发,可以引(n ﹣3)条对角线,由此可得到答案.解:设这个多边形是n 边形.依题意,得n ﹣3=10, ∴n=13.故这个多边形是13边形. 故选A .考点:多边形的对角线.10. 如图,BE 和CE 分别为△ABC 的内角平分线和外角平分线,BE ⊥AC 于点H ,CF 平分∠ACB 交BE 于点F 连接AE .则下列结论:①∠ECF=90°;②AE=CE ;③1902BFC BAC ∠=︒+∠;④∠BAC=2∠BEC ;⑤∠AEH=∠BCF ,正确的个数为( )A. 2个B. 3个C. 4个D. 5个【答案】D 【解析】 【分析】根据AE 平分ACD ∠,CF 平分ACB ∠,可得12ACEECDACD ,12ACF BCFACB 则易证90ECF ∠=,可判断①正确;根据BE 平分ABC ∠,BE AC ⊥于点H ,可证()ABHHBC ASA ,得到AH CH =,可证()AHE CHE SAS ,则有AE CE =,可判断②正确;根据BE 平分ABC ∠,CF 平分ACB∠,得到12ABHHBCABC ,12ACF BCFACB ,则利用BFCFHCACFABH BAC ACF 可以判断③;根据90FCHHCE,90HECHCE,得到FCHHEC ,利用ABHHBC ,CF 平分ACB ∠,得22BAC BCA FCH HEC ,可以判断④正确;根据AHECHE ,CF 平分ACB ∠,得到AHEHEC ,BCF FCH ,FCHHEC ,AEHBCF ,故可以判断⑤正确;【详解】解:∵AE 平分ACD ∠,CF 平分ACB ∠,∴12ACE ECD ACD ,12ACF BCF ACB ∴1111180902222ECF ACFACEACB ACD ACBACD,故①正确;∵BE 平分ABC ∠,BE AC ⊥于点H , ∴ABH HBC ,90AHB CHB,∴()ABHHBC ASA ,∴AH CH =, ∵90AHE CHE,HEHE ,∴()AHECHE SAS ,∴AE CE =,故②正确;∵BE 平分ABC ∠,CF 平分ACB ∠, ∴12ABH HBCABC ,12ACF BCFACB 又∵BFC FHCACFABH BAC ACF即有:1122BFCABC BAC ACB 12ABCACB BAC 11802BACBAC1902BAC ,故③正确; ∵90FCH HCE,90HECHCE∴FCH HEC ,又∵ABHHBC ,CF 平分ACB ∠,∴AB BC =, ∴22BAC BCAFCHHEC即:2BAC BEC ,故④正确;∵AHE CHE,CF平分ACB∠,∴AHE HEC,BCF FCH,FCH HEC,∴AEH BCF,故⑤正确;综上所述,正确的有:①②③④⑤,共5个,故选:D.【点睛】本题主要考查了全等三角形、角平分线的性质,能熟练应用相关性质是解题的关键.二、填空题11. 已知12xy=⎧⎨=⎩是关于x、y的二元一次方程3210mx y--=的解,则m=__________.【答案】5 3【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把12xy=⎧⎨=⎩代入二元一次方程3210mx y--=,得:32210m,解得:53 m=.故答案为:5 3【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12. 不等式2x﹣1>3的解集为_____.【答案】x>2 【解析】【分析】【详解】解:移项得:2x>3+1,合并同类项得:2x>4,不等式的两边都除以2得x>2,∴不等式2x﹣1>3的解集为x>2.13. A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,则这艘轮船在静水中的速度是每小时__________千米.【答案】17【解析】【分析】设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,由于A、B两个码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,由此即可方程组解决问题.【详解】解:设这艘船在静水中的速度和水流速度分别为x千米/小时,y千米/小时,依题意得771401010140x yx y,解之得:173xy=⎧⎨=⎩,∴这艘船在静水中的速度和水流速度分别为17千米/小时,3千米/小时,故答案为:17.【点睛】此题是一个行程问题,关键是知道如何求顺流和逆流的速度,如何根据速度、路程、时间即可列出方程组解决问题.14. 把一些书分给几名同学,如果每人分3本,那么余8本,如果前面的每名同学分5本,那么最后一人分不到3本,那么这些书共有____本.【答案】26【解析】【分析】设共有x名学生,根据每人分3本,那么余8本,可得图书共有(3x+8)本,再由每名同学分5本,那么最后一人就分不到3本,可得出不等式,解出即可.【详解】解:设共有x名学生,则图书共有(3x+8)本,由题意得,0<3x+8−5(x−1)<3,解得:5<x<6.5,∵x为非负整数,∴x=6.∴书的数量为:3×6+8=26.故答案为26.【点睛】本题考查了列一元一次不等式组解实际问题的运用,一元一次不等式组的解法的运用,解答时根据题意中的不相等关系建立不等式组是关键.15. 如图,在△ABC 中,点D 在AC 上,点E 在BD 上,若∠A=70°,∠ABD=22°,∠DCE=25°,则∠BEC 的度数为__________.【答案】117︒ 【解析】 【分析】两次利用三角形的一个外角等于与它不相邻的两个内角的和,列式进行计算即可得解. 【详解】解:在ABD ∆中,70A ∠=︒,22ABD ∠=︒,702292CDE A ABD, 2592117BECDCECDE.故答案为:117︒.【点睛】本题主要考查了三角形的外角性质,三角形的一个外角等于与它不相邻的两个内角的和,两次利用性质是解题的关键.16. 一个多边形的内角和是 1440°,则这个多边形是__________边形. 【答案】十 【解析】 【分析】利用多边形的内角和定理:n 边形的内角和为()2180n -⨯︒ 便可得. 【详解】∵n 边形的内角和为()2180n -⨯︒ ∴()21801440n -⨯︒=,28,10n n -==. 故答案为:十边形.【点睛】本题考查多边形的内角和公式,掌握n 边形内角和定理为本题的关键.17. 如图,在Rt 三角形ABC 中,∠ACB=90°,AC=BC ,BE ⊥CE 于点E ,AD ⊥CE 于点D ,若AD=8cm ,BE=3cm ,则DE=__________cm .【答案】4 【解析】 【分析】易证CAD BCE ∠=∠,即可证明CDA BEC ,可得CD BE =,CE AD =,根据DE CE CD =-,即可解题. 【详解】解:90ACB ∠=︒,BE CE ⊥于点E ,AD CE ⊥于点D ,90ACD BCE ∴∠+∠=︒,90ACD CAD ∠+∠=︒, CAD BCE ∴∠=∠,在CDA ∆和BEC ∆中, 90CDA BEC CAD BCEACBC,()CDA BEC AAS ,CD BE ∴=,AD CE =,DECE CD ,DE AD BE ∴=-,7AD cm ,3BE cm =, 734DEcm cmcm .故答案为:4.【点睛】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法和性质(全等三角形的对应边、对应角相等)是解题的关键.18. 如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,若△ABC 的面积为21cm 2,AB=8cm ,AC=6cm ,则DE 的长为__________cm .【答案】3 【解析】 【分析】根据角平分线上的点到角的两边的距离相等可得DE DF =,再根据三角形的面积公式列式计算即可得解. 【详解】解:AD 为BAC ∠的平分线,DE AB ⊥,DF AC ⊥,DE DF ∴=,ABC ∆面积112122AB DEAC DF,即11862122DE DE ,解得3DE =. 故答案为:3.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,根据三角形的面积公式列出方程是解题的关键.19. 已知△ABC 中,∠B=40°,AD 是△ABC 的高,且∠CAD=10°,则∠BAC 的度数为__________. 【答案】40︒或60︒. 【解析】 【分析】在Rt ABD ∆中,B 与BAD ∠互余,而20CAD ∠=︒,故有BAC BADCAD .【详解】解:90D ∠=︒,40B ∠=︒,50BAD ∴∠=︒,10CAD ,当△ABC 如图一所示时:501060BAC BAD CAD ,当△ABC 如图二所示时:501040BAC BAD CAD ,故答案为:40︒或60︒.【点睛】本题考查了直角三角形的性质和三角形的内角和,熟悉相关性质是解题的关键.20. 如图,在Rt △ABC 中,∠ACB=90°,AC=BC ,CH 为△ABC 斜边上的中线,点F 为CH 上一点,连接BF 并延长交AC 于点D ,过点A 作AE ⊥AC ,连接CE 和DE ,若∠ACE=2∠ABF ,CE=13,CD=8,则△CDE 的面积为__________.【答案】20 【解析】 【分析】延长BD 交CE 于G 点,作AKGD 交CE 于K ,交GD 于O ,设ABF α∠=,则2ACE,根据90ACB ∠=︒,AC BC =,可得45CBG ,902BCG ,可证CBG CGB ∠=∠,则CGCBCA,根据ASA 易证明CAKCGD,利用CK CD ,9045135CKACDG DCB CBD ,可证EK EA ,可得5EA =,再利用三角形的面积公式即可求解.【详解】解:如图示:延长BD 交CE 于G 点,作AKGD 交CE 于K ,交GD 于O ,设ABF α∠=,则2ACE,∵90ACB ∠=︒,AC BC =, ∴45ABC ∠=︒, ∴45CBG CBA ABF , 902BCGACB ACE ∴1801809024545CGB BCGCBG,∴CBG CGB ∠=∠ ∴CGCBCA在Rt△ADO 和Rt△BDC 中, ADOBDC ,90AODBCD,∴DAO DBC ,则有CAK CGD在△CAK 和△CGD 中, CAKCGD ,CA CG =,ACK GCD∴()CAK CGD ASA∴CK CD ,9045135CKACDG DCB CBD∴18018013545EKACKA又∵904545EAKEAC CAK 即有EK EA , ∴1385EAEK CE CK CE CD ∴11852022CDE S CD EA , 故答案为:20.【点睛】本题考查等腰直角三角形的性质,全等三角形的判定,解题的关键是正确寻找全等三角形解决问题.三、解答题21. 解方程组及不等式组(1)25437x y x y +=-⎧⎨+=-⎩ (2)211841x x x x ->+⎧⎨+<-⎩【答案】(1)43x y =-⎧⎨=⎩;(2)3x >. 【解析】【分析】(1)把第一个方程乘以2然后和第二个方程进行计算,利用加减消元法求解即可;(2)先求出两个不等式的解集,再求其公共解.【详解】解:(1)25437x y x y ①②, 将2①得:4210x y③,将②-③得:3y = 把3y =代入①得,235x +=-,解之得:4x =-所以,方程组的解是43x y =-⎧⎨=⎩;(2)211841x xx x①②,由①得,2x>,由②得,3x>,所以,不等式组的解集是3x>.【点睛】本题考查的是二元一次方程组的解法,一元一次不等式组解集的解集,熟悉相关解法是解题得关键.22. 正方形网格中,小格的顶点叫做格点.小华按下列要求作图:①在正方形网格的三条不同的实线上各取一个格点,使其中任意两点不在同一条实线上;②连结三个格点,使之构成直角三角形.小华在左边的正方形网格中作出了Rt⊿ABC.请你按照同样的要求,在右边的两个正方形网格中各画出一个直角三角形,并使三个网格中的直角三角形互不全等.【答案】可以是:【解析】【分析】画的直角三角形的三边应符合两直角边的平方和等于斜边的平方.第一个图形和第二个图形的面积可让两条直角边的积÷2即可.【详解】解:画图如下:易得图1三边长为10、10、20=25,符合两边和的平方等于第三边的平方,图2中三边长分别为2、18=32、20=25符合两边和的平方等于第三边的平方,第三个图中,三边长分别为8=22、8=22、16=4符合两边和的平方等于第三边的平方,【点睛】本题考查直角三角形的格点画法需满足的条件;直角三角形的三边应符合两直角边的平方和等于斜边的平方.23. 四川雅安发生地震后,某校学生会向全校1900名学生发起了”心系雅安”捐款活动,为了解捐款情况,学会生随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②,请根据相关信息,解答下列是问题:(1)本次接受随机抽样调查的学生人数为,图①中m的值是;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.【答案】(1)50;32;(2)16;10;15;(3)608人.【解析】【分析】(1)根据条形统计图即可得出样本容量:4+16+12+10+8=50(人);根据扇形统计图得出m的=----=;值:m100202416832(2)利用平均数、中位数、众数的定义分别求出即可.(3)根据样本中捐款10元的百分比,从而得出该校本次活动捐款金额为10元的学生人数.【详解】解:(1)根据条形图4+16+12+10+8=50(人),m=100-20-24-16-8=32;故答案为:50; 32.(2)∵1x 541016151220103081650=⨯+⨯+⨯+⨯+⨯=(), ∴这组数据的平均数为:16.∵在这组样本数据中,10出现次数最多为16次,∴这组数据的众数为:10.∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,∴这组数据的中位数为:()11515152+=, (3)∵在50名学生中,捐款金额为10元的学生人数比例为32%,∴由样本数据,估计该校1900名学生中捐款金额为10元的学生人数有1900×32%=608人.∴该校本次活动捐款金额为10元的学生约有608人.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.24. 如图,在△ABC 中,BD ,CE 分别是AC ,AB 边上的高,在BD 上截取BF=AC ,延长CE 至点G 使CG=AB ,连接AF ,AG .(1)如图1,求证:AG=AF ;(2)如图2,若BD 恰好平分∠ABC ,过点G 作GH ⊥AC 交CA 的延长线于点H ,请直接写出图中所有的全等三角形并用全等符号连接.【答案】(1)证明见解析;(2)ABD CBD ∆≅∆,AGC FAB ∆≅∆,HGA DAF ∆≅∆.【解析】【分析】(1)根据BD 、CE 分别是AC 、AB 两条边上的高,BF=AC ,CG=AB ,利用SAS 可证AGC FAB ∆≅∆,则可证AG AF =;(2)利用等腰三角形的对称性,可得ABD CBD ∆≅∆;根据AGC FAB ∆≅∆易证90GAF ∠=︒,则可得90HAG FAD ,即有HGA DAF ,利用AAS 可证HGA DAF ∆≅∆.【详解】(1)证明:∵BD 、CE 分别是AC 、AB 两条边上的高,90ADB AEC ∴∠=∠=︒,90ABDBAD ACE CAE ,ABD ACG , 在AGC ∆与FAB ∆中,CABF GCAABF GC AB , ()AGC FAB SAS ,∴AG AF =;(2)∵BD 平分∠ABC ,BD 是AC 边上的高,则BD 为△ABC 中三线合一的线,即△ABC 为等腰三角形,BD 为△ABC 的对称轴,根据对称性,有ABD CBD ∆≅∆AGC FAB ;AG AF ∴=,G BAF ∠=∠,90G GAE , 90BAF GAE ,90GAF ∴∠=︒,∴90HAG FAD∵GH AC ⊥,∴90HAG HGA∴HGA DAF 在HGA 与DAF ∆中,90GHAADF HGADAFGA AF ,()HGA DAF AAS ,综上所述,全等三角形有ABD CBD ∆≅∆,AGC FAB ∆≅∆,HGA DAF ∆≅∆.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质和判定和对称的性质,正确的识别图形是解题的关键.25. “双11”期间,某个体户在淘宝网上购买某品牌A 、B 两款羽绒服来销售,若购买3件A ,4件B 需支付2400元,若购买2件A ,2件B ,则需支付1400元.(1)求A 、B 两款羽绒服在网上的售价分别是多少元?(2)若个体户从淘宝网上购买A 、B 两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?【答案】最多让利5件.【解析】【分析】(1)设设A 款a 元,B 款b 元,根据题意列方程组求解;(2)设让利的羽绒服有x 件,总获利不低于3800元,列不等式,求出最大整数解.【详解】解:(1)设A 款a 元,B 款b 元,可得:342400221400a b a b +=⎧⎨+=⎩, 解得:400300a b =⎧⎨=⎩, 答:A 款400元,B 款300元.(2)设让利的羽绒服有x 件,则已售出的有(20﹣x )件600 (20﹣x )+600×60% x ﹣400×10﹣30×10≥3800,解得x≤5,答:最多让利5件.考点:一元一次不等式的应用;二元一次方程组的应用.26. 如图,在△ABC 中,点E 和点F 在边BC 上,连接AE ,AF ,使得∠EAC=∠ECA ,∠BAE=2∠CAF . (1)如图1,求证:∠BAF=∠BFA ;(2)如图2,在过点C 且与AE 平行的射线上取一点D ,连接DE ,若∠AED=∠B ,求证:BE=CD ;【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)设CAF α∠=,则2BAE α∠=,可得EAF EAC ,EFA EAC ,易证BAF BFA ∠=∠; (2)根据//AE CD ,EAC ECA ∠=∠,则有AED D ,AEB DCE ,AE EC =,利用AAS 可证AEB ECD ,则有BE DC =. 【详解】解:(1)设CAF α∠=,则2BAE α∠=,∴EAF EAC ,EFA ECA EAC , 22BAF EAF EAC EAC∴BAF BFA ∠=∠;(2)//AE CD ,EAC ECA ∠=∠∴AED D ,AEB DCE ,AE EC =又∵AED B ∠=∠,∴D B ∠=∠,∴()AEB ECD AAS ,∴BE DC =;【点睛】本题考查了三角形的外角,平行线的性质和三角形全等的证明,熟悉相关性质是解题的关键. 27. 如图,在平面直角坐标系中,点A 在第一象限,点B(a ,0),点C(0,b)分别在x 轴,y 轴上,其中a ,b 是二元一次方程534a b -=的解,且a 为不等式312133a a -+≤的最大整数解. (1)证明:OB=OC ;(2)如图1,连接AB ,过点A 作AD ⊥AB 交y 轴于点D ,在射线AD 上截取AE=AB ,连接CE ,取CE 的中点F ,连接AF 并延长至点G ,使FG=AF ,连接CG ,OA .当点A 在第一象限内运动(AD 不经过点C )时,证明:∠OAF 的大小不变;【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据a 为不等式312133a a -+≤的最大整数解,求解不等式,利用534ab -=推出a b =即可; (2)求出TAO 为等腰直角三角形即可;【详解】(1)解:解不等式312133a a -+≤得2a ≤ ∵a 为不等式312133a a -+≤的最大整数解 2a ∴=,将2a =代入方程534a b -=得2b =, a b ∴=,OB OC ∴=;(2)证明:连接GO ,F 为CE 中点,CF EF ∴=,在GCF ∆和AEF ∆中CF EFCFG FEAFG FAGCF AEF SAS,()CG EA,GCF AEF,GC AD,//GCD CDA,=,AB AEGC AB,⊥,⊥,OB OCAD ABCOB BAD,90ABO ADO,180ADO ADC,180ADC ABO,GCD CDA,GCD ABO,∆中在GCO和ABOGC ABGCO ABOOC OBGCO ABO SAS,()GO AO,GOC AOB,AOB AOC,90GOC AOC,90GAO为等腰直角三角形,∠的大小不变;OAF,即OAF45【点睛】本题是三角形综合题,主要考查了解不等式,全等三角形判定和性质,等腰三角形的判定和性质,添加恰当的辅助线构造全等三角形是本题的关键.。

人教版数学七年级下册《期中测试卷》(含答案)

人教版数学七年级下册《期中测试卷》(含答案)

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定3.如图,已知:∠1=∠2,那么下列结论正确的是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠44.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C 20° D. 15°5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( )A. 1B. 2C. 3D. 46.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间7.下列从左到右的变形中,正确的是( ) A. 81=9± B. 3.60.6-=- C. 21010-=-() D. 3355-=- 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)9.既是方程1x y -=,又是方程25x y +=解是( )A. 12x y =-⎧⎨=⎩B. 21x y =⎧⎨=-⎩C. 12x y =⎧⎨=⎩D. 21x y =⎧⎨=⎩ 10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为( )A. 4.512x y y x +=⎧⎪⎨+=⎪⎩B. 4.512x y y x =+⎧⎪⎨+=⎪⎩C. 4.512x y x y =+⎧⎪⎨=+⎪⎩D. 4.512x y y x +=⎧⎪⎨=-⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.12.如图所示,OA ⊥OC 于点O ,∠1=∠2,则∠BOD 的度数是_____.32-的相反数是__________.14.16的算术平方根是____,﹣8的立方根是____.15.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +=_____.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm ,则每一个小长方形的面积为_____.20.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是_______.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-22.解方程组(1)5293411x y x y +=⎧⎨+=⎩; (2)2431y x x y =-⎧⎨+=⎩. 23.如图,直角坐标系中,△ABC 的顶点都在网格点上,其中,C 点坐标为(1,2).(1)写出点A 、B 的坐标:A ( , )、B ( , );(2)求△ABC 的面积;(3)将△ABC 先向左平移2个单位长度,再向上平移1个单位长度,得到△A ′B ′C ′,画出△A ′B ′C ′,写出A′、B′、C′三个点坐标.24.完成下面证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.26.已知射线AB∥射线CD,P为一动点,AE平分∠PAB,CE平分∠PCD,且AE与CE相交于点E.(1)在图1中,当点P运动到线段AC上时,∠APC=180°.①直接写出∠AEC度数;②求证:∠AEC=∠EAB+∠ECD;(2)当点P运动到图2的位置时,猜想∠AEC与∠APC之间的关系,并加以说明;(3)当点P运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC与∠APC之间的关系,并加以证明.答案与解析一.选择题(共10小题)1.下列图形中,不能通过其中一个四边形平移得到的是()A. B. C. D.[答案]D[解析][详解]解:A、能通过其中一个四边形平移得到,不符合题意;B、能通过其中一个四边形平移得到,不符合题意;C、能通过其中一个四边形平移得到,不符合题意;D、不能通过其中一个四边形平移得到,需要一个四边形旋转得到,符合题意.故选D.2.如图是某同学在体育课上跳远后留下的脚印,那么他的跳远成绩可以用图中哪条线段的长度表示()A. 线段AMB. 线段BNC. 线段CND. 无法确定[答案]B[解析]点到直线的距离,所以他的跳远成绩是BN,故选B.3.如图,已知:∠1=∠2,那么下列结论正确是( )A. ∠C=∠DB. AB∥CDC. AD∥BCD. ∠3=∠4[答案]B[解析][分析]∠1和∠2是直线AB、CD被直线DB所截的内错角,若∠1=∠2,则AB∥CD.[详解]解:∵∠1=∠2,∴AB ∥CD .(内错角相等,两直线平行)故选B .[点睛]正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.4. 如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A. 30°B. 25°C. 20°D. 15°[答案]B[解析] 根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,5.在实数﹣23838﹣0.518,3π,37-|2,无理数的个数为( ) A. 1B. 2C. 3D. 4 [答案]D[解析][分析]根据无理数的定义,可得到无理数的个数.[详解]﹣23是分数,8=2238=2是有理数,﹣0.518是有理数;3π是无理数;37-|2是无理数 83π,37-|,2是无理数 故选:D[点睛]本题考查了无理数的定义,无限不循环小数叫做无理数.无理数是实数中不能精确地表示为两个整数之比的数,2等开不尽方的数都是无理数.6.30( )A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间 [答案]C[解析][分析]<<5<<6,即可解出.[详解]<<∴5<<6,故选C.[点睛]此题主要考查了无理数的估算,掌握无理数的估算是解题的关键.7.下列从左到右的变形中,正确的是( )A. 9±B. 0.6=-C. 10=-D. =[答案]D[解析]选项A ,原式=9;选项B ,原式 ;选项C ,原式=10;选项D ,原式=故选D. 8.若点P 是第三象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P 的坐标是( )A. (﹣4,-3)B. (4,﹣3)C. (﹣3,-4)D. (3,﹣4)[答案]C[解析]因点P 在第三象限,可得P 点的横坐标为负,纵坐标为负,又因到x 轴的距离是4,所以纵坐标为-4,再由到y 轴的距离是3,可得横坐标为-3,即可得P(-3,-4),故选C.9.既是方程1x y -=,又是方程25x y +=的解是( ) A. 12x y =-⎧⎨=⎩ B. 21x y =⎧⎨=-⎩ C. 12x y =⎧⎨=⎩ D. 21x y =⎧⎨=⎩ [答案]D[解析]两方程的解相同,可联立两个方程,形成一个二元一次方程组,解方程组即可求得.解:根据题意,得:()()11252x y x y ⎧-=⎪⎨+=⎪⎩,①+②,得:3x=6,解得:x=2,x=2代入②,得:4+y=5,解得:y=1,∴21x y =⎧⎨=⎩,故选D.10.(数学文化)《孙子算经》中有一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长为尺,绳子长为尺,根据题意可列方程组为()A.4.512x yyx+=⎧⎪⎨+=⎪⎩B.4.512x yyx=+⎧⎪⎨+=⎪⎩C.4.512x yxy=+⎧⎪⎨=+⎪⎩D.4.512x yyx+=⎧⎪⎨=-⎪⎩[答案]A [解析][详解]4.512x yyx+=⎧⎪⎨+=⎪⎩二.填空题(共10小题)11.图是对顶角量角器,用它测量角度的原理是___________.[答案]对顶角相等[解析]试题分析:由题意得,扇形零件的圆心角与其两边的反向延长线组的角是对顶角.因为对顶角相等,所以利用图中的量角器可以量出这个扇形零件的圆心角的度数.故答案为对顶角相等.考点:对顶角、邻补角.12.如图所示,OA⊥OC于点O,∠1=∠2,则∠BOD的度数是_____.[答案]90°.[解析][分析]根据垂直求出∠AOC =90°,根据∠1=∠2求出∠BOD =∠AOC ,即可得出答案.[详解]∵OA ⊥OC ,∴∠AOC =90°,∵∠1=∠2,∴∠BOD =∠2+∠BOC =∠1+∠BOC =∠AOC =90°,故答案为:90°.[点睛]此题考查垂直定义和角的计算,能求出∠BOD=∠AOC 是解题的关键.-的相反数是__________.[答案[解析][分析]根据只有符号不同的两个数叫做互为相反数进行解答.[详解[点睛]此题考查相反数,解题关键在于掌握其定义.14.16的算术平方根是____,﹣8的立方根是____.[答案]4,-2[解析]试题分析:164=,-82=-.考点:1.算术平方根;2. 立方根.15.已知,a 、b 互为倒数,c 、d 互为相反数,求1=_____.[答案]0.[解析][分析]根据a 、b 互为倒数,c 、d 互为相反数求出ab =1,c +d =0,然后代入求值即可.[详解]∵a 、b 互为倒数,∴ab =1,∵c 、d 互为相反数,∴c +d =0,∴31ab c d -+++=﹣1+0+1=0.故答案为:0.[点睛]此题考查倒数以及相反数的定义,正确把握相关定义是解题关键.16.如果点P (m +3,m ﹣2)在x 轴上,那么m =_____.[答案]2.[解析][分析]根据x 轴上的点的纵坐标等于0列式计算即可得解.[详解]∵点P (m +3,m ﹣2)x 轴上,∴m ﹣2=0,解得m =2.故答案为:2.[点睛]此题考查点的坐标,熟记x 轴上的点的纵坐标等于0是解题的关键.17.如图,象棋盘上,若“将”位于点(0,0),“车”位于点(—4,0),则“马”位于点______.[答案](3,3)[解析][分析]根据已知两点的坐标建立坐标系,然后确定其它点的坐标.[详解]由图示知;“将”为(0,0)而“马”位于“将”上第三个格,右第三个格中,所以,“马”为(3,3)故答案:(3,3).18.若|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,则3x +4y =_____.[答案]11.[解析][分析]利用相反数的性质及非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出所求.[详解]∵|x +y ﹣3|与(2x +3y ﹣8)2互为相反数,∴|x +y ﹣3|+(2x +3y ﹣8)2=0,∴=323=8x yx y+⎧⎨+⎩①②,①×3﹣②得:x=1,把x=1代入①得:y=2,则3x+4y=3+8=11.故答案为:11.[点睛]此题考查解二元一次方程组,非负数的性质,熟练掌握方程组的解法是解题的关键.19.如图,8个一样大小的长方形恰好拼成一个大的长方形(如图),若大长方形的宽为12cm,则每一个小长方形的面积为_____.[答案]27cm2.[解析][分析]设小长方形的长为xcm,宽为ycm,观察大长方形,由大长方形的对边相等及大长方形的宽为12cm,即可得出关于x,y的二元一次方程组,解之即可得出x,y的值,再将其代入xy中即可求出结论.[详解]解:设小长方形的长为xcm,宽为ycm,依题意,得:2312x x yx y=+⎧⎨+=⎩,解得:93 xy=⎧⎨=⎩,∴27xy=.故答案为:27cm2.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P的坐标是_______.[答案](2019,2)[解析][分析]分析点P 的运动规律,找到循环次数即可.[详解]分析图象可以发现,点P 的运动每4次位置循环一次.每循环一次向右移动四个单位.∴2019=4×504+3 当第504循环结束时,点P 位置在(2016,0),在此基础之上运动三次到(2019,2)故答案为(2019,2).[点睛]本题是规律探究题,解题关键是找到动点运动过程中,每运动多少次形成一个循环.三.解答题(共6小题)21.计算(1238(5)-﹣32|;(2381+27-[答案](1)3(2)6.[解析][分析](1)直接利用立方根以及二次根式的性质、绝对值的性质分别化简得出答案;(2)直接利用二次根式的性质以及立方根分别化简再合并得出答案.[详解]解:(1)原式=2+5﹣(23=2+5﹣3=3(2)原式=9﹣3=6.[点睛]本题考查了实数的运算,涉及到的知识有,立方根、二次根式的性质、绝对值的性质等知识,熟练掌握运算法则是解题的关键.22.解方程组(1)529 3411 x yx y+=⎧⎨+=⎩;(2)24 31y xx y=-⎧⎨+=⎩.[答案](1)12xy=⎧⎨=⎩;(2)12xy=⎧⎨=-⎩.[解析]分析](1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.[详解]解:(1)529 3411x yx y+=⎧⎨+=⎩①②,①×2﹣②得:7x=7,解得:x=1,把x=1代入①得:y=2,则方程组的解为12 xy=⎧⎨=⎩;(2)2431y xx y=-⎧⎨+=⎩①②,把①代入②得:3x+2x﹣4=1, 解得:x=1,把x=1代入①得:y=﹣2,则方程组的解为12 xy=⎧⎨=-⎩.[点睛]此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A( , )、B( , );(2)求△ABC的面积;(3)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,画出△A′B′C′,写出A′、B′、C′三个点坐标.[答案](1)A(2,﹣1)、B(4,3);(2)5;(3)图详见解析,A′(0,0)、B′(2,4)、C′(﹣1,3).[解析][分析](1)根据直角坐标系的特点写出对应点的坐标;(2)用△ABC所在矩形面积减去三个小三角形的面积即可求解;(3)分别将点A、B、C先向左平移2个单位长度,再向上平移1个单位长度,得到点A′、B′、C′,然后顺次连接并写出坐标.[详解]解:(1)A(2,﹣1),B(4,3);(2)S△ABC=3×4﹣12×2×4﹣12×1×3﹣12×3×1=5,故△ABC的面积为5;(3)所作图形如图所示:A′(0,0)、B′(2,4)、C′(﹣1,3).[点睛]本题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.24.完成下面的证明.(在括号中注明理由)已知:如图,BE∥CD,∠A=∠1,求证:∠C=∠E.证明:∵BE∥CD,(已知)∴∠2=∠C,( )又∵∠A=∠1,(已知)∴AC∥,( )∴∠2=,( )∴∠C=∠E(等量代换)[答案]两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等[解析][分析]首先根据平行线的性质求出∠2=∠C,进而求出AC∥DE,即可得到∠2=∠E,利用等量代换得到结论.[详解]证明:∵BE∥CD,(已知)∴∠2=∠C,(两直线平行,同位角相等)又∵∠A=∠1,(已知)∴AC∥DE,(内错角相等,两直线平行)∴∠2=∠E,(两直线平行,内错角相等)∴∠C=∠E(等量代换).故答案为两直线平行,同位角相等;DE;内错角相等,两直线平行;∠E;两直线平行,内错角相等.[点睛]此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.25.某高校共有5个大餐厅和2个小餐厅.经过测试:同时开放1个大餐厅、2个小餐厅,可供1680名学生就餐;同时开放2个大餐厅、1个小餐厅,可供2280名学生就餐.(1)求1个大餐厅、1个小餐厅分别可供多少名学生就餐;(2)若7个餐厅同时开放,能否供全校的5300名学生就餐?请说明理由.[答案](1)一间大餐厅可供960名学生就餐,一间小餐厅可供360名学生就餐;(2)能,理由见解析.[解析][分析](1)根据题意可知本题的等量关系有,1个大餐厅容纳的学生人数+2个小餐厅容纳的学生人数=1680,2个大餐厅容纳的学生人数+1个小餐厅容纳的学生人数=2280.根据这两个等量关系,可列出方程组.(2)根据题(1)得到1个大餐厅和1个小餐厅分别可容纳学生的人数,可以求出5个大餐厅和2个小餐厅一共可容纳学生的人数,再和5300比较.[详解](1)设1个大餐厅可供x 名学生就餐,1个小餐厅可供y 名学生就餐,根据题意,得2168022280x y x y ==+⎧⎨+⎩ 解得:960360x y ⎧⎨⎩==, 答:1个大餐厅可供960名学生就餐,1个小餐厅可供360名学生就餐.(2)因为960×5+360×2=5520>5300, 所以如果同时开放7个餐厅,能够供全校的5300名学生就餐.[点睛]考查二元一次方程的应用,属于比较基本的应用问题.注意根据题目给出的已知条件,找出合适的等量关系,列出方程组,再求解.26.已知射线AB ∥射线CD ,P 为一动点,AE 平分∠PAB ,CE 平分∠PCD ,且AE 与CE 相交于点 E.(1)在图1中,当点P 运动到线段AC 上时,∠APC=180°.①直接写出∠AEC 的度数;②求证:∠AEC=∠EAB+∠ECD ;(2)当点P 运动到图2的位置时,猜想∠AEC 与∠APC 之间的关系,并加以说明;(3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由;若不成立,请写出∠AEC 与∠APC 之间的关系,并加以证明.[答案](1))①∠AEC=90°②见解析;(2)∠AEC=12∠APC , 理由见解析;(3)不成立,∠AEC=180∘−12∠APC ,理由见解析[解析][分析](1)①由平行线的性质可得出∠PAB+∠PCD=180°,进而可得出∠AEC 的度数;②在图1中,过E 作EF ∥AB ,根据平行线的性质可得出∠AEF=∠EAB 、∠CEF=∠ECD ,进而即可证出∠AEC=∠AEF+∠CEF=∠EAB+∠ECD ;(2)猜想:∠AEC=12∠APC,由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,由(1)可知∠AEC=∠EAB+∠ECD、∠APC=∠PAB+∠PCD,进而即可得出∠AEC=12(∠PAB+∠PCD)=12∠APC;(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180°-12∠APC,过P作PQ∥AB,由平行线的性质可得出∠PAB+∠APQ=180°、∠CPQ+∠PCD=180°,进而可得出∠PAB+∠PCD=360°-∠APC,再由角平分线的定义可得出∠EAB=12∠PAB、∠ECD=12∠PCD,结合(1)的结论即可证出∠AEC=180°-12∠APC.[详解](1)①∵AB∥CD,∴∠PAB+∠PCD=180°,∴∠AEC=90°;②证明:在图1中,过E作EF∥AB,则∠AEF=∠EAB. ∵AB∥CD,∴EF∥CD,∴∠CEF=∠ECD.∴∠AEC=∠AEF+∠CEF=∠EAB+∠ECD.(2)猜想:∠AEC=12∠APC,理由如下:∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∠APC=∠PAB+∠PCD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)=12∠APC.(3)在图3中,(2)中的结论不成立,而是满足∠AEC=180∘−12∠APC,其证明过程是:过P作PQ∥AB,则∠PAB+∠APQ=180°. ∵AB∥CD,∴PQ∥CD,∴∠CPQ+∠PCD=180∘.∴∠PAB+∠APQ+∠CPQ+∠PCD=360°,即∠PAB+∠PCD=360°−∠APC. ∵AE、CE分别平分∠PAB和∠PCD,∴∠EAB=12∠PAB,∠ECD=12∠PCD.由(1)知∠AEC=∠EAB+∠ECD,∴∠AEC=12∠PAB+12∠PCD=12(∠PAB+∠PCD)= 180°-12∠APC.[点睛]此题考查平行线的判定与性质,解题关键在于作辅助线。

人教版数学七年级下册《期中检测卷》(含答案)

人教版数学七年级下册《期中检测卷》(含答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 32.在平面直角坐标系中,点A (﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A 30° B. 40° C. 50° D. 60°4.如图,AB ∥CD ,∠AGE=126°,HM 平分∠EHD ,则∠MHD 的度数是( )A. 44°B. 25°C. 26°D. 27° 5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°6.点()1,3-向右平移个单位后的坐标为( )A ()4,3- B. ()1,6- C. ()2,3 D. ()1,0- 7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( )A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩ 8.下列说法正确的是( )A. 的平方根是B. 的平方根C. 的平方根D. 的平方根9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,,25,3,0.2020020002...72π-+-(两个非零数之间依次多一个0),其中无理数有_______个12.16的平方根是.13.若25.36=5.036,253.6=15.906,则253600=__________.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________15.319127-=_____.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC∥AE;③如果∠1=∠2=∠3,则有BC∥AE;④如果∠2=45°,必有∠4=∠E.其中正确的有_____(填序号).18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA 2B 2变换成△OA 3B 3,…,将△OAB 进行n 次变换,得到△OA n B n ,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A 2020的坐标是__三、解答题(第19-26题,共64分)19.计算 (1)231981416⎛⎫-+-+ ⎪⎝⎭(2)3232--20.解方程组:(1)23321x y x y -=⎧⎨+=⎩. (2)222529x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.25.如图1,点A、B直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm的小正方形,你能计算出每个长方形的长和宽吗?答案与解析一、选择题(共10道题,每题2分,共20分)1. 9的算术平方根是( )A. ﹣3B. ±3C. 3D. 3[答案]C[解析]试题分析:9的算术平方根是3.故选C.考点:算术平方根.2.在平面直角坐标系中,点A(﹣2,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]根据第二象限内点的横坐标小于零,纵坐标大于零,可得答案.[详解]解:由﹣2<0,4>0得点A(﹣2,4)位于第二象限,故选:B.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).3.将一直角三角板与两边平行的纸条如图放置.若∠1=50°,则∠2的度数为( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]先根据∠1=50°,∠FEG=90°,求得∠3的度数,再根据平行线的性质,求得∠2的度数即可.[详解]解:如图,∵∠1=50°,∠FEG=90°,∴∠3=40°,∵AB∥CD,∴∠2=∠3=40°.故选:B.[点睛]本题主要考查的是平行线的性质,解决问题的关键是掌握:两直线平行,同位角相等.4.如图,AB∥CD,∠AGE=126°,HM平分∠EHD,则∠MHD的度数是()A. 44°B. 25°C. 26°D. 27°[答案]D[解析][分析]由题意可由平行线的性质,求出∠EHD的度数,再由HM平分∠EHD,即可求出∠MHD的度数.[详解]解:由题意得:∠AGE=∠BGF=126°,∵AB∥CD,∴∠EHD=180°−∠BGF=54°,又∵HM平分∠EHD,∴∠MHD=12∠EHD=27°.故选D.[点睛]本题主要考查了平行线的性质,掌握平行线的性质是解题的关键.5.下列说法正确的是( )A. 相等的角是对顶角B. 一个角的补角必是钝角C. 同位角相等D. 一个角的补角比它的余角大90°[答案]D[解析][分析]根据对顶角的定义,余角与补角的关系,对各选项分析判断后利用排除法求解.[详解]解:A 、对顶角相等,相等的角不一定是对顶角,故本选项错误;B 、锐角的补角是钝角,直角的补角是直角,钝角的补角是锐角,故本选项错误;C 、只有两直线平行,同位角才相等,故本选项错误;D 、一个角α的补角为180°﹣α,它的余角为90°﹣α,(180°﹣α)﹣(90°﹣α)=90°,故本选项正确. 故选D .[点睛]本题综合考查了余角、补角、对顶角,是基本概念题,熟记概念与性质是解题的关键.6.点()1,3-向右平移个单位后坐标为( )A ()4,3-B. ()1,6-C. ()2,3D. ()1,0-[答案]C[解析][分析]直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.[详解]解:把点(−1,3)向右平移3个单位后所得的点的坐标为:(−1+3,3),即(2,3),故选C .[点睛]本题主要考查了坐标与图形变化−平移,平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.7.《九章算术》中记载:“今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?”意思是:现有一些人共同买一个物品,每人出8元,还余3元;每人出7元,还差4元.问共有多少人?这个物品价格是多少元?设共有个人,这个物品价格是元.则可列方程组为( ) A. 83,74x y x y =+⎧⎨=-⎩B. 83,74x y x y =-⎧⎨=+⎩C. 84,73x y x y =+⎧⎨=-⎩D. 84,73x y x y =-⎧⎨=+⎩[答案]A[解析][分析] 根据等量关系:每人出8元,还余3元;每人出7元,还差4元即可列出方程组.[详解]根据题意有83,74x y x y =+⎧⎨=-⎩故选:A.[点睛]本题主要考查二元一次方程组的应用,读懂题意,找到等量关系是解题的关键.8.下列说法正确的是()A. 的平方根是B. 的平方根C. 的平方根D. 的平方根[答案]A[解析]分析]根据平方根性质,逐一判定即可.[详解]A选项,的平方根是,正确;B选项,的平方根是,错误;C选项,的平方根是,错误;D选项,没有平方根,错误;故选:A.[点睛]此题主要考查对平方根的理解,熟练掌握,即可解题.9.过A(4,-2)和B(-2,-2)两点的直线一定()A. 垂直于x轴B. 与y轴相交但不平行于x轴C. 平行于x轴D. 与x轴,y轴平行[答案]C[解析][分析]根据平行于x轴的直线上两点的坐标特点解答.[详解]∵A,B两点的纵坐标相等,∴过这两点的直线一定平行于x轴.故选C.[点睛]解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.10.二元一次方程2x+y=8的正整数解有( )个.A. 1B. 2C. 3D. 4[答案]C[解析][分析]由于二元一次方程2x+y=8中y的系数是1,可先用含x的代数式表示y,然后根据此方程的解是正整数,那么把最小的正整数x=1代入,算出对应的y的值,再把x=2代入,再算出对应的y的值,依此可以求出结果.[详解]解:∵2x +y =8,∴y =8﹣2x ,∵x 、y 都是正整数,∴x =1时,y =6;x =2时,y =4;x =3时,y =2.∴二元一次方程2x +y =8的正整数解共有3对.故选:C .[点睛]由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的正整数解,即此方程中两个未知数的值都是正整数,这是解答本题的关键.注意最小的正整数是1.二、填空题(共8道题,每题2分,共16分)11.在22,0, 3.141592,2.95,0.2020020002 (72)π-+-(两个非零数之间依次多一个0),其中无理数有_______个[答案]3[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]解:无理数有2π−0.2020020002…(两个非零数之间依次多一个0),共3个, 故答案为3.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.2020020002…(相邻两个2之间0的个数逐次加1)等有这样规律的数.的平方根是 .[答案]±2.[解析][详解]±2. 故答案为±2.13.=5.036,=15.906,__________.[答案]503.6[解析][分析]根据平方根的计算方法和规律计算即可[详解]解:253600=25.3610000⨯=5.036×100=503.6.故答案为503.6.14.如图,将一副三角板和一张对边平行的纸条按下列方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是________[答案]15°[解析][分析]如下图,过点E作EF∥BC,然后利用平行线的性质结合已知条件进行分析解答即可.[详解]由题意可得AD∥BC,∠DAE=∠1+45°,∠AEB=90°,∠EBC=30°,过点E作EF∥BC,则AD∥EF∥BC,∴∠AEF=∠DAE=∠1+45°,∠FEB=∠EBC=30°,又∵∠AEF=∠AEB-∠FEB,∴∠AEF=90°-30°=60°,∴∠1+45°=60°,∴∠1=60°-45°=15°.故答案为:15°.319127-_____.[答案]2 3[解析][分析]根据是实数的性质即可化简.[详解]解:原式=331982127273-==. 故答案为23. [点睛]此题主要考查二次根式的化简,解题的关键是熟知实数的性质.16.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.17.如图,将一副三角板按如图放置,则下列结论:①∠1=∠3;②如果∠2=30°,则有BC ∥AE ;③如果∠1=∠2=∠3,则有BC ∥AE ;④如果∠2=45°,必有∠4=∠E .其中正确的有_____(填序号).[答案]①③[解析][分析]根据平行线的判定和性质解答即可.[详解]解:∵∠EAD=∠CAB=90°,∴∠1=∠3,故①正确,当∠2=30°时,∠3=60°,∠4=45°,∴∠3≠∠4,故AE与BC不平行,故②错误,当∠1=∠2=∠3时,可得∠3=∠4=45°,∴BC∥AE,故③正确,∵∠E=60°,∠4=45°,∴∠E≠∠4,故④错误,故答案为:①③.[点睛]此题考查了平行线的判定和性质,熟练掌握平行线的判定和性质是解决本题的关键.18.如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3,…,将△OAB进行n次变换,得到△OA n B n,观察每次变换中三角形顶点坐标有何变化,找出规律,推测A2020的坐标是__[答案](22020,3)[解析][分析]根据图形写出点A系列的坐标与点B系列的坐标,根据具体数值找到规律即可.[详解]∵A(1,3),A1(2,3),A2(4,3),A3(8,3)…纵坐标不变为3,横坐标都和2有关,为2n,∴An(2n,3);∴A2020(22020,3)故答案为:(22020,3)[点睛]依次观察各点的横纵坐标,得到规律是解决本题的关键.三、解答题(第19-26题,共64分)19.计算(1(2)[答案](1)12-;(2).[解析][分析](1)直接利用立方根以及平方根的性质分别化简得出答案;(2)直接利用绝对值的定义化简得出答案;[详解](11512442 =-+=-(2)==[点睛]考查了实数的混合运算以及二次根式的加减混合运算,正确化简各数是解题关键.20.解方程组:(1)23321x yx y-=⎧⎨+=⎩.(2)222529x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩[答案](1)11xy=⎧⎨=-⎩;(2)521xyz=⎧⎪=-⎨⎪=⎩.[解析][分析](1)首先由①×2+②,消去y,然后解关于x的方程即可求解.(2)由①+②+③得到x+y+z=4④,再由①-④得到y的值,②-④得到z的值,③-④得到x的值.[详解](1)23 321 x yx y①②-=⎧⎨+=⎩由①×2+②,得7x=7,解得x=1,把x=1 代入①式,得2﹣y=3,解得y=﹣1所以原方程组的解为11 xy=⎧⎨=-⎩.(2)2 2....2 5....29.... x y zx y zx y z++=⎧⎪++=⎨⎪++=⎩①②③①+②+③ 得4x+4y+4z=16 即 x+y+z=4 ④①-④ 得y= -2②-④ 得z= 1③-④ 得x= 5所以原方程组的解为521x y z =⎧⎪=-⎨⎪=⎩[点评]考查了解二元一次方程组和解三元一次方程组,解方程组的基本思想是消元,基本方法是代入消元和加减消元.21.如图,在平面直角坐标系中,三角形ABC 的顶点坐标分别为()2,4A -,B(51)--,,(01)C ,,把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.(1)画出三角形ABC 和平移后’’’A B C 的图形;(2)写出三个顶点,,的坐标;(3)求三角形ABC 的面积.[答案](1)图见解析(2)点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3)(3)192[解析][分析](1)依据所得点的坐标,描点后首尾顺次连接即可求解;(2)根据点的坐标的平移规律即可求解;(3)根据割补法及三角形的面积公式可得答案.[详解](1)如图,△ABC 和△’’’A B C 为所求; (2)∵把三角形ABC 向右平移2个单位长度,再向下平移4个单位长度后得到三角形A B C '''.∴点A ′的坐标为(0,0)、B'的坐标为(-3,−5)、C ′的坐标为(2,−3);(3)三角形ABC 的面积=5×5-12×3×5-12×3×2-12×2×5=25-152-3-5=192.[点睛]本题主要考查作图−平移变换,解题的关键是掌握平移变换的定义和性质,并根据平移变换的定义和性质得出变换后的对应点位置.22.在某体育用品商店,购买50根跳绳和80个毽子共用1120元,购买30根跳绳和50个毽子共用680元.(1)跳绳、毽子的单价各是多少元?(2)该店在“元旦”节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买100根跳绳和100个毽子只需1700元,该店的商品按原价的几折销售?[答案](1)跳绳的单价为16元,毽子的单价为4元;(2)商品按原价的八五折销售.[解析][分析](1)可设跳绳的单价为x 元,毽子的单价为y 元,根据题意列出关于x,y 的二元一次方程组,解方程组即可;(2)设商品按原价的z 折销售,根据第(1)问求出来的跳绳和毽子的单价,根据题意列出方程,解方程即可.[详解](1)设跳绳的单价为x 元,毽子的单价为y 元,根据题意有508011203050680x y x y +=⎧⎨+=⎩ ,解得164x y =⎧⎨=⎩所以跳绳的单价为16元,毽子的单价为4元;(2)设商品按原价的z 折销售,根据题意得(164)100170010z +⨯⨯= 解得8.5z = 所以商品按原价的八五折销售.[点睛]本题主要考查一元一次方程及二元一次方程组的应用,读懂题意,列出方程及方程组是解题的关键. 23.如图,AB∥CD.∠1=∠2,∠3=∠4,试说明AD∥BE,请你将下面解答过程填写完整.解:∵AB∥CD,∴∠4= ()∵∠3=∠4∴∠3= (等量代换)∵∠1=∠2∴∠1+∠CAF=∠2+∠CAE 即∠BAE= .∴∠3= ()∴AD∥BE().[答案]∠BAE;两直线平行,同位角相等;∠BAE;∠CAD;∠CAD;等量代换;内错角相等,两直线平行.[解析][分析]根据平行线的性质得出∠4=∠BAE,由此∠3=∠BAE,根据∠2=∠1可得∠BAE=∠CAD,从而得出∠3=∠CAD,根据平行线的判定定理得出即可.[详解]解:∵AB∥CD,∴∠4=∠BAE( 两直线平行,同位角相等),∵∠3=∠4,∴∠3=∠BAE(等量代换),∵∠1=∠2,∴∠1+∠CAF=∠2+∠CAE,即∠BAE=∠CAD,∴∠3=∠CAD( 等量代换),∴AD∥BE( 内错角相等,两直线平行).[点睛]本题考查平行线的性质和判定.熟记平行线的性质和判定定理,并能正确识图完成角度之间的转换是解决此题的关键.24.已知,如图,AD∥BC,∠A=∠C.求证:∠1=∠2.[答案]见解析.[解析][分析]根据两直线平行,同旁内角互补得到∠A+∠ABC=180°,再根据∠A=∠C得到∠C+∠ABC=180°,根据同旁内角互补,两直线平行得到DC∥AB,再利用两直线平行,内错角相等得到∠1=∠2.[详解]∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=∠C,∴∠C+∠ABC=180°,∴DC∥AB,∴∠1=∠2.[点睛]考查了直线平行的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.25.如图1,点A、B在直线1l上,点C、D在直线2l上,AE平分∠BAC,CE平分∠ACD,∠EAC+∠ACE=90°.(1)请判断1l与2l的位置关系并说明理由;(2)如图2,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(不与点C重合)∠CPQ+∠CQP与∠BAC有何数量关系?请说明理由.[答案](1)1l∥2l;(2)①当Q在C点左侧时,∠BAC=∠CQP +∠CPQ,②当Q在C点右侧时,∠CPQ+∠CQP+∠BAC=180°.[解析]分析](1)先根据CE 平分∠ACD ,AE 平分∠BAC 得出∠BAC=2∠1,∠ACD=2∠2,再由∠1+∠2=90°可知∠BAC+∠ACD=180,故可得出结论;(2)分两种情况讨论:①当Q 在C 点左侧时;②当Q 在C 点右侧时.[详解]解:(1)1l ∥2l .理由如下:∵AE 平分∠BAC ,CE 平分∠ACD(已知),∴∠BAC=2∠1,∠ACD=2∠2(角平分线的定义);又∵∠1+∠2=90°(已知), ∴∠BAC+∠ACD=2∠1+2∠2=2(∠1+∠2)=180°(等量代换)∴1l ∥2l (同旁内角互补,两直线平行)(2)①当Q 在C 点左侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,(两直线平行,内错角相等),∠BAC=∠EPC ,(两直线平行,同位角相等),又∵∠EPC=∠1+∠CPQ ,∴∠BAC=∠CQP +∠CPQ (等量代换)②当Q 在C 点右侧时,过点P 作PE ∥1l .∵1l ∥2l (已证),∴PE ∥2l (同平行于一条直线的两直线互相平行),∴∠1=∠2,∠BAC=∠APE ,(两直线平行,内错角相等),又∵∠EPC=∠1+∠CPQ ,∠APE+∠EPC=180°(平角定义)∴∠CPQ+∠CQP+∠BAC=180°.[点睛]本题考查了平行线的性质,根据题意作出平行线是解答此题的关键.26.小明在拼图时,发现8个一样大小的长方形恰好可以拼成一个大的长方形,如图(1),小红看见了,说:“我来试一试”结果小红七拼八凑,拼成了如图(2)的正方形,中间还留下一个洞,恰好边长是2mm 的小正方形,你能计算出每个长方形的长和宽吗?[答案]小长方形的长为10mm ,宽为6mm .[解析][分析]设每个小长方形的长为xmm ,宽为 ymm ,根据图形给出的信息可知,长方形的5个宽与其3个长相等,两个长加2的和等于一个长与两个宽的和,于是得方程组,解出即可.[详解]设每个长方形的长为xmm ,宽为 ymm ,由题意得35222x yx x y=⎧⎨+=+⎩,解得:106xy=⎧⎨=⎩.答:小长方形的长为10mm,宽为6mm.[点睛]考查了列二元一次方程组解实际问题的运用,二元一次方程组的解法的运用,解答时根据矩形和正方形的长与宽的关系建立方程组是关键.。

人教版数学七年级下册《期中检测试卷》及答案解析

人教版数学七年级下册《期中检测试卷》及答案解析

人教版数学七年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 82.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 834.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a85.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D x2+y2=(x+y)2﹣2xy6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 18.如图,△ABC沿BC所在的直线平移到△DEF的位置,且C点是线段BE的中点,若AB=5,BC=2,AC=4,则AD的长是()A. 5B. 4C. 3D. 29.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确说法是()A. ①④B. ①③④C. ②③D. ①②二、填空题(共6小题)11.因式分解:a2﹣4=_____.12.当x=____时,分式321xx--的值为0.13.已知x2+1,则代数式x2﹣2x+1的值为____.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.15.已知∠A 与∠B 的两边分别平行,其中∠A 为x °,∠B 的为(210﹣2x )°,则∠A =____度. 16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.三、解答题(共7小题)17.计算与化简: (1)02000(21)(1)-+-; (2)(10a 2﹣5a )÷(5a ). 18.解方程或方程组: (1)24342x y x y +=⎧⎨-=⎩;(2)33233x x x-=--. 19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题: (1)这次共抽取了 名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是 ,频率是 ;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.20.(1)分解因式:2mx2﹣4mxy+2my2.(2)先化简,再求值:211122-⎛⎫-÷⎪++⎝⎭xx x,其中x=2020.21.(1)已知x2+y2=34,x﹣y=2,求(x+y)2的值.(2)设y=kx(x≠0),是否存在实数k,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2?若能,请求出满足条件的k 的值;若不能,请说明理由.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)销售时段销售数量销售收入A种型号B种型号第一周 6 5 2100元第二周 4 10 3400元(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB∥CD,则∠AEC=∠BAE+∠DCE成立吗?请说明理由.(2)如图2,已知AB∥CD,BE平分∠ABC,DE平分∠ADC.BE、DE所在直线交于点E,若∠F AD=50°,∠ABC=40°,求∠BED的度数.(3)将图2中的线段BC沿DC所在的直线平移,使得点B在点A的右侧,若∠F AD=m°,∠ABC=n°,其他条件不变,得到图3,请你求出∠BED的度数(用含m,n的式子表示).答案与解析一、选择题(共10小题)1.2﹣1的值是()A. 12B. 2C. 4D. 8[答案]A[解析][分析]根据负整数指数幂的运算法则解答即可.[详解]解:1122-=.故选:A.[点睛]本题考查了负整数指数幂的运算法则,属于基础题型,熟练掌握运算法则是解题关键.2.下列调查中,适宜采用全面调查的是()A. 对某班学生制作校服前的身高调查B. 对某品牌灯管寿命的调查C. 对浙江省居民去年阅读量的调查D. 对现代大学生零用钱使用情况的调查[答案]A[解析][分析]由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.[详解]A.对某班学生制作校服前的身高调查,适宜采用全面调查,故此选项符合题意;B.对某品牌灯管寿命的调查,具有破坏性,应采用抽样调查,故此选项不合题意;C.对浙江省居民去年阅读量的调查,工作量大,应采用抽样调查,故此选项不合题意D.对现代大学生零用钱使用情况的调查,人数众多,应采用抽样调查,故此选项不合题意.故选:A.[点睛]本题考查了抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.812﹣81肯定能被()整除.A. 79B. 80C. 82D. 83[答案]B[解析][分析]原式提取公因式分解因式后,判断即可.[详解]解:原式=81×(81﹣1)=81×80,则812﹣81肯定能被80整除.故选:B.[点睛]本题考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解题的关键.4.下列计算正确的是()A. a2+a2=a4B. a2•a3=a6C. a6÷a2=a3D. (a4)2=a8[答案]D[解析][分析]直接利用幂指数的运算法则和合并同类项法则即可得到答案.[详解]A.a2+a2=2a2,故本选项不合题意;B.a2•a3=a5,故本选项不合题意;C.a6÷a2=a4,故本选项不合题意;D.(a4)2=a8,故本选项符合题意.故选:D.[点睛]考查了同底数幂的乘法、同底数幂的除法、幂的乘方与积的乘方以及合并同类项.准确掌握法则是解题的关键.5.下列等式从左到右的变形,属于因式分解是()A. a(4﹣y2)=4a﹣ay2B. ﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2C. x2+3x﹣1=x(x+3)﹣1D. x2+y2=(x+y)2﹣2xy[答案]B[解析][分析]根据因式分解的意义,可得答案.[详解]解:A.属于整式乘法运算,不属于因式分解;B.﹣4x2+12xy﹣9y2=﹣(2x﹣3y)2,属于因式分解;C.右边不是几个整式积的形式,不属于因式分解;D.右边不是几个整式积的形式,不属于因式分解.故选:B.[点睛]本题考查了因式分解的意义,利用因式分解的意义是解题关键.6.如图,AB∥CD,EF⊥CD,∠1=60°,则∠2等于()A. 60°B. 40°C. 30°D. 35°[答案]C[解析][分析]先根据平行线的性质,可得∠AEG的度数,根据EF⊥CD可得EF⊥AB,再根据垂直和平角的定义可得到∠2的度数.[详解]解:∵AB∥CD,∠1=60°,∴∠AEG=60°.∵EF⊥CD,∴EF⊥AB,∴∠2=180°﹣60°﹣90°=30°.故选:C.[点睛]本题主要考查了平行线的性质的运用,解题时注意:两条平行线被第三条直线所截,同位角相等.7.若二元一次方程组45ax bybx ay+=⎧⎨+=⎩的解为21xy=⎧⎨=⎩,则a+b的值是()A. 9B. 6C. 3D. 1 [答案]C[解析]分析]根据二元一次方程组的解及解二元一次方程组即可解答. [详解]解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得2425a b b a +=⎧⎨+=⎩解得:12a b =⎧⎨=⎩∴a +b =1+2=3. 故选:C .[点睛]此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.8.如图,△ABC 沿BC 所在的直线平移到△DEF 的位置,且C 点是线段BE 的中点,若AB =5,BC =2,AC =4,则AD 的长是( )A. 5B. 4C. 3D. 2[答案]B [解析] [分析]利用平移的性质解决问题即可. [详解]解:由平移的性质可知,AD=BE . ∵BC=CE ,BC=2, ∴BE=4, ∴AD=4. 故选:B .[点睛]本题考查平移的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.9.某厂准备加工500个零件,在加工了100个零件后,引进了新机器,使每天的工作效率是原来的2倍,结果共用6天完成了任务.若设该厂原来每天加工x 个零件,则由题意可列出方程()A. 10050062x x+= B.10050062x x+=C. 10040062x x+= D.10040062x x+=[答案]D[解析]分析]根据共用6天完成任务,等量关系为:用老机器加工100个零件用的时间+用新机器加工400个用的时间=6,即可列出方程.[详解]解:设该厂原来每天加工x个零件,根据题意得:10040062x x+=.故选D.[点睛]此题考查了由实际问题抽象出分式方程,分析题意,根据关键描述语,找到合适的等量关系是解决问题的关键.10.有下列说法:①在同一平面内,过直线外一点有且只有一条直线与已知直线平行;②无论k取任何实数,多项式x2﹣ky2总能分解成两个一次因式积的形式;③若(t﹣3)3﹣2t=1,则t可以取的值有3个;④关于x,y的方程组为252ax yx ay a+=-⎧⎨-+=⎩,将此方程组的两个方程左右两边分别对应相加,得到一个新的方程,当a每取一个值时,就有一个确定的方程,而这些方程总有一个公共解,则这个公共解是31 xy=⎧⎨=-⎩.其中正确的说法是()A. ①④B. ①③④C. ②③D. ①②[答案]A[解析][分析]利用平行公理对①判断,利用平方差公式的特点对②分析,③通过0指数、底数为1,底数为-1对代数式进行分类讨论得结果,④抓住a取每一个值方程的解都相同,求出x、y的值.[详解]①按照平行公理可判断在同一平面内,过直线外一点有且只有一条直线与已知直线平行,故本选项正确;②当k为负值时,多项式x2﹣ky2不能分解成两个一次因式积的形式,故本选项不正确;③当t=4、32时,(t ﹣3)3﹣2t =1,故本选项不正确; ④新方程(a ﹣1)x+(a+2)y=2a ﹣5.∵a 每取一个值时,就有一个方程,而这些方程总有一个公共解,∴当a=1时,y=﹣1,当a=﹣2时,x=3,∴公共解是31x y =⎧⎨=-⎩.综上正确的说法是①④. 故选:A .[点睛]本题考查了平行公理、因式分解、零指数幂和二元一次方程组的解等知识点,熟练掌握相关性质定理及运算法则是解题的关键.二、填空题(共6小题)11.因式分解:a 2﹣4=_____. [答案](a+2)(a ﹣2). [解析]试题分析:直接利用平方差公式分解因式a 2﹣4=(a+2)(a ﹣2).故答案为(a+2)(a ﹣2). [考点]因式分解-运用公式法. 12.当x =____时,分式321x x --的值为0. [答案]3 [解析] [分析]根据分式的值为0可得30x -=,由此可得出x 的值,再代入分式的分母进行检验即可. [详解]由题意得:30x -=, 解得3x =,当3x =时,2123150x -=⨯-=≠, 则当3x =时,分式321x x --的值为0, 故答案为:3.[点睛]本题考查了分式的值为0、分式有意义的条件,掌握分式的值为0的求值方法是解题关键.13.已知x +1,则代数式x 2﹣2x +1的值为____. [答案]2. [解析]利用完全平方公式将所求的代数式进行变形,然后代入求值即可.[详解]解:原式为:2x-2x+12=(x-1),将x=21代入上式,=(x-1)=(2+1-1)=2原式22故答案为:2.[点睛]此题考察了完全平方公式的计算,二次根式的性质.利用完全平方公式将所求代数式进行变形是解答此题的关键.14.某学校在“你最喜爱的课外活动项目”调查中,随机调查了若干名学生(每名学生只选一个活动项目),并根据调查结果绘制了如图所示的扇形统计图.已知选最喜爱“体操”的学生是9人,则最喜爱“3D打印”学生数为____.[答案]24.[解析][分析]先根据最喜爱体操的学生所占百分比及其对应的人数求出总人数,然后用总人数乘以最喜爱“3D打印”的学生所占百分比即得答案.[详解]解:∵选最爱体操的学生所占百分比为1﹣(10%+35%+40%)=15%,其对应人数为9人,∴被调查的总人数为9÷15%=60(人),∴最喜爱“3D打印”学生数为60×40%=24(人).故答案为:24.[点睛]本题考查了扇形统计图的相关知识,属于基本题型,读懂统计图提供的信息、掌握求解的方法是关键.15.已知∠A与∠B的两边分别平行,其中∠A为x°,∠B的为(210﹣2x)°,则∠A=____度.[答案]70或30.[解析]分∠A=∠B 与∠A+∠B=180°两种情况进行讨论即可求解.详解]解:根据题意,有两种情况:(1)当∠A=∠B ,可得:x=210﹣2x ,解得:x=70;(2)当∠A+∠B=180°时,可得:x+210﹣2x=180,解得:x=30.故答案为:70或30.[点睛]本题考查的是平行线的性质,在解答此题时要注意分类讨论.16.现有1角、5角、1元硬币共16枚,总值8元.则5角的硬币是____枚.[答案]7.[解析][分析]设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16-x-y )枚,根据这些硬币的总值为8元(即80角),即可得出关于x ,y 的二元一次方程,结合x ,y 均为正整数即可得出结论.[详解]解:设1角的硬币有x 枚,5角的硬币有y 枚,则1元的硬币有(16﹣x ﹣y )枚,依题意,得:x +5y +10(16﹣x ﹣y )=80,∴y =16﹣95x . ∵x ,y 均为正整数,∴x =5,y =7.故答案为:7.[点睛]本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.三、解答题(共7小题)17.计算与化简:(1)020001)(1)-+-;(2)(10a 2﹣5a )÷(5a ).[答案](1)2;(2)2a ﹣1.[解析](1)分别根据0指数幂的意义和﹣1的偶次幂计算每一项,再合并即可;(2)根据多项式除以单项式的法则解答即可.[详解]解:(1)020001)(1)+-=1+1=2;(2)(10a2﹣5a)÷(5a)=2a﹣1.[点睛]本题考查了0指数幂、实数的混合运算以及多项式除以单项式等知识,属于常见题型,熟练掌握上述基础知识是解题的关键.18.解方程或方程组:(1)24 342 x yx y+=⎧⎨-=⎩;(2)33233xx x-=--.[答案](1)21xy=⎧⎨=⎩;(2)x=﹣9.[解析][分析](1)方程组利用加减消元法求出解即可;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解..[详解](1)24342x yx y+=⎧⎨-=⎩①②,①×2+②得:5x=10,解得:x=2,把x=2代入①得:y=1,则方程组的解为21 xy=⎧⎨=⎩;(2)分式方程整理得:33xx-﹣2=﹣33x-,去分母得:3x﹣2(x﹣3)=﹣3, 去括号得:3x﹣2x+6=﹣3,解得:x=﹣9,经检验x=﹣9是分式方程的解.[点睛]本题考查了解分式方程,以及解二元一次方程组,熟练掌握各自的解法是解题的关键.19.某市在今年三月份启动实施“明眸皓齿”工程.根据安排,某校对于学生使用电子产品的一周用时情况进行了抽样调查,绘制成以下频数分布直方图.请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查.(2)用时在2.45﹣3.45小时这组的频数是,频率是;(3)如果该校有1200名学生,请估计一周电子产品用时在0.45﹣3.45小时的学生人数.[答案](1)400;(2)108,0.27;(3)678人.[解析][分析](1)将频数直方图内所有的频数求和,即可算得参加调查的总人数;(2)由频数直方图可查用时在2.45-3.45小时的频数是108,频率=频数总人数;(3)在400人中,求出用时在0.45-3.45小时频率,再乘以1200,即可求得全校电子产品用时在0.45-3.45小时的人数.[详解]解:(1)这次共抽取了50+68+108+82+52+40=400(人),故答案为:400;(2)由直方图可得:用时在2.45-3.45小时这组的频数是108,频率是108÷400=0.27;故答案为:108,0.27;(3)用时在0.45-3.45小时频率是(50+68+108)÷400=0.565,(人),1200人中用时在0.45-3.45小时的人数为:12000.565=678答:一周电子产品用时在0.45﹣3.45小时的学生有678人.[点睛]本题考察了频数与频率之间的关系以及用样本的某种“率”推测总体的“率”,解题的关键在于掌握频率=频数总人数.20.(1)分解因式:2mx 2﹣4mxy +2my 2.(2)先化简,再求值:211122-⎛⎫-÷ ⎪++⎝⎭x x x ,其中x =2020. [答案](1)2m (x ﹣y )2;(2)11x -,12009. [解析][分析](1)原式先提取公因式,再运用完全平方公式分解;(2)括号内先通分化简,再计算除法,然后把x 的值代入化简后的式子计算即可.[详解]解:(1)2mx 2﹣4mxy +2my 2=2m (x 2﹣2xy +y 2)=2m (x ﹣y )2; (2)211122-⎛⎫-÷ ⎪++⎝⎭x x x =()()112122x x x x x +-+-÷++ =()()12211x x x x x ++⋅++- =11x -, 当x =2020时,原式=11202012019=-. [点睛]本题考查了多项式的因式分解和分式的化简求值,属于常考题型,熟练掌握分解因式的方法和分式的混合运算法则是解题的关键.21.(1)已知x 2+y 2=34,x ﹣y =2,求(x +y )2的值.(2)设y =kx (x ≠0),是否存在实数k ,使得(3x ﹣y )2﹣(x ﹣2y )(x +2y )+6xy 化简为28x 2?若能,请求出满足条件的k 的值;若不能,请说明理由.[答案](1)64;(2)k =2或﹣2[解析][分析](1)先利用完全平方公式求得2xy的值,再根据(x+y)2=x2+y2+2xy即可求得;(2)先根据完全平方公式和平方差公式将多项式进行化简,再将y=kx代入,整理,根据结果为28x2即可求得k 的值.[详解]解:(1)把x﹣y=2两边平方得:(x﹣y)2=4,即x2﹣2xy+y2=4.∵x2+y2=34,∴2xy=30,则(x+y)2=x2+y2+2xy=34+30=64;(2)原式=9x2﹣6xy+y2﹣x2+4y2+6xy=8x2+5y2,把y=kx代入得:原式=8x2+5k2x2=(5k2+8)x2=28x2,∴5k2+8=28,即k2=4,开方得:k=2或﹣2,则存在实数k=2或﹣2,使得(3x﹣y)2﹣(x﹣2y)(x+2y)+6xy化简为28x2.[点睛]本题考查平方差公式和完全平方公式.熟记公式,并能灵活运用对公式进行变形解题关键.22.某电器超市销售每台进价为80元、200元的A,B两种型号的电风扇,如表所示是六月份前2周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A、B两种型号的电风扇的销售单价.(2)若超市一共采购这两种型号的电风扇共120台,售完后该超市能否实现利润为8000元的目标?若能,请给出相应的采购方案;若不能,请说明理由.[答案](1)A种型号的电风扇的销售单价为100元,B种型号的电风扇的销售单价为300元;(2)能实现利润为8000元的目标,可采购A种型号的电风扇50台,B种型号的电风扇70台.[解析][分析](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,根据前两周的销售数量及销售收入,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,根据该超市一共采购这两种型号的电风扇共120台且销售完毕后可获得8000元利润,即可得出关于m ,n 的二元一次方程组,解之即可得出结论.[详解](1)设A 种型号的电风扇的销售单价为x 元,B 种型号的电风扇的销售单价为y 元,依题意,得:6521004103400x y x y +=⎧⎨+=⎩, 解得:100300x y =⎧⎨=⎩. 答:A 种型号的电风扇的销售单价为100元,B 种型号的电风扇的销售单价为300元.(2)设采购A 种型号的电风扇m 台,B 种型号的电风扇n 台,依题意,得:()()120100803002008000m n m n +=⎧⎨-+-=⎩, 解得:5070m n =⎧⎨=⎩. 答:能实现利润为8000元的目标,可采购A 种型号的电风扇50台,B 种型号的电风扇70台.[点睛]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键. 23.小明同学在完成七年级下册数学第1章的线上学习后,遇到了一些问题,请你帮他解决一下.(1)如图1,已知AB ∥CD ,则∠AEC =∠BAE +∠DCE 成立吗?请说明理由.(2)如图2,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .BE 、DE 所在直线交于点E ,若∠F AD =50°,∠ABC =40°,求∠BED 的度数.(3)将图2中的线段BC 沿DC 所在的直线平移,使得点B 在点A 的右侧,若∠F AD =m °,∠ABC =n °,其他条件不变,得到图3,请你求出∠BED 的度数(用含m ,n 的式子表示).[答案](1)成立,理由见解析;(2)45°;(3)∠BED 的度数改变,∠BED =180°﹣12n °+12m °. [解析][分析](1)根据平行线的性质即可得到结论;(2)先过点E作EH∥AB,根据平行线的性质和角平分线的定义,即可得到结论;(3)过E作EG∥AB,根据平行线的性质和角平分线的定义,即可得到结论.[详解]解:(1)如图1中,作EF∥AB,则有EF∥CD,∴∠1=∠BAE,∠2=∠DCE,∴∠AEC=∠1+∠2=∠BAE+∠DCE.(2)如图2,过点E作EH∥AB,∵AB∥CD,∠F AD=50°,∴∠F AD=∠ADC=50°.∵DE平分∠ADC,∠ADC=50°,∴∠EDC=12∠ADC=25°.∵BE平分∠ABC,∠ABC=40°,∴∠ABE=12∠ABC=20°.∵AB∥CD,∴AB∥CD∥EH,∴∠ABE=∠BEH=20°,∠CDE=∠DEH=25°, ∴∠BED=∠BEH+∠DEH=45°.(3)∠BED的度数改变.过点E作EG∥AB.∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=∠GAD=m°,∴∠ABE=12∠ABC=12n°,∠CDE=12∠ADC=12m°∵AB∥CD,∴AB∥CD∥EG,∴∠BEG=180°﹣∠ABE=180°﹣12n°,∠CDE=∠DEG=12m°,∴∠BED=∠BEG+∠DEG=180°﹣12n°+12m°.故答案为:180°﹣12n°+12m°.[点睛]本题主要考查了平移的性质,平行线的性质以及角平分线的定义的运用,解决问题的关键是正确的作出辅助线.。

人教版七年级数学下册期中测试卷(及答案)

人教版七年级数学下册期中测试卷(及答案)

人教版七年级数学下册期中测试卷(及答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.如果y =2x -+2x -+3,那么y x 的算术平方根是( ) A .2 B .3 C .9 D .±3 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 5.如图所示,点P 到直线l 的距离是( )A .线段PA 的长度B .线段PB 的长度C .线段PC 的长度D .线段PD 的长度6.如图,∠1=70°,直线a 平移后得到直线b ,则∠2-∠3( )A .70°B .180°C .110°D .80°7.把1a a -根号外的因式移入根号内的结果是( ) A .a - B .a -- C .a D .a -8.设[x]表示最接近x 的整数(x ≠n+0.5,n 为整数),则[1]+[2]+[3]+…+[36]=( )A .132B .146C .161D .6669.若|abc |=-abc ,且abc ≠0,则||||b a c a b c ++=( ) A .1或-3B .-1或-3C .±1或±3D .无法判断 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a 1-,4.则a 的取值范围是________.2.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A ′的位置,则点A ′表示的数是_______.3.在关于x 、y 的方程组2728x y m x y m +=+⎧⎨+=-⎩中,未知数满足x ≥0,y >0,那么m 的取值范围是_________________.4.如图,直线a ∥b ,且∠1=28°,∠2=50°,则∠ABC =_______.5.若方程组x y 73x 5y 3+=⎧⎨-=-⎩,则()()3x y 3x 5y +--的值是________.6.近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为________.三、解答题(本大题共6小题,共72分)1.解下列方程组(1)257320x y x y -=⎧⎨-=⎩ (2)33255(2)4x y x y +⎧=⎪⎨⎪-=-⎩2.在解方程组2628mx y x ny +=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n ,得解为7323x y ⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m ,得解为24x y =-⎧⎨=⎩ (1)则m ,n 的值分别是多少?(2)正确的解应该是怎样的?3.如图,在四边形OBCA 中,OA ∥BC ,∠B=90°,OA=3,OB=4.(1)若S 四边形AOBC =18,求BC 的长;(2)如图1,设D 为边OB 上一个动点,当AD ⊥AC 时,过点A 的直线PF 与∠ODA 的角平分线交于点P ,∠APD=90°,问AF 平分∠CAE 吗?并说明理由;(3)如图2,当点D 在线段OB 上运动时,∠ADM=100°,M 在线段BC 上,∠DAO 和∠BMD 的平分线交于H 点,则点D 在运动过程中,∠H 的大小是否变化?若不变,求出其值;若变化,说明理由.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.某软件科技公司20人负责研发与维护游戏、网购、视频和送餐共4款软件.投入市场后,游戏软件的利润占这4款软件总利润的40%.如图是这4款软件研发与维护人数的扇形统计图和利润的条形统计图.根据以上信息,网答下列问题(1)直接写出图中a,m的值;(2)分别求网购与视频软件的人均利润;(3)在总人数和各款软件人均利润都保持不变的情况下,能否只调整网购与视频软件的研发与维护人数,使总利润增加60万元?如果能,写出调整方案;如果不能,请说明理由.6.江海化工厂计划生产甲、乙两种季节性产品,在春季中,甲种产品售价50千元/件,乙种产品售价30千元/件,生产这两种产品需要A、B两种原料,生产甲产品需要A种原料4吨/件,B种原料2吨/件,生产乙产品需要A种原料3吨/件,B种原料1吨/件,每个季节该厂能获得A种原料120吨,B种原料50吨.(1)如何安排生产,才能恰好使两种原料全部用完?此时总产值是多少万元?(2)在夏季中甲种产品售价上涨10%,而乙种产品下降10%,并且要求甲种产品比乙种产品多生产25件,问如何安排甲、乙两种产品,使总产值是1375千元,A,B两种原料还剩下多少吨?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、B6、C7、B8、B9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1a4<<2、-4π3、-2≤m<34、78°5、24.6、76.510⨯三、解答题(本大题共6小题,共72分)1、(1)55xy⎧=⎨=⎩;(2)25xy⎧=⎪⎨=⎪⎩2、(1) m=2;n=3;(2)方程组正确的解为12. xy=⎧⎨=⎩3、(1)6;(2)略;(3)略.4、(1)证明略;(2)证明略.5、(1)a=20,m=960;(2)网购软件的人均利润为160元/人,视频软件的人均利润为140元/人;(3)安排9人负责网购、安排1人负责视频可以使总利润增加60万元.6、(1)生产甲种产品15件,生产乙种产品20件才能恰好使两种原料全部用完,此时总产值是135万元;(2)安排生产甲种产品25件,使总产值是1375千元,A种原料还剩下20吨,B种原料正好用完,还剩下0吨.。

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案)

人教版七年级数学下册期中考试卷(附答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( ) A .65a -≤<- B .65a -<≤- C .65a -<<- D .65a -≤≤-2.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.实数a 、b 、c 在数轴上的位置如图所示,化简:||||+||a b c a b c a -----的结果是( )A .a –2cB .–aC .aD .2b –a4.如图,直线a ,b 被直线c 所截,下列条件中,不能判定a ∥b ( )A .∠2=∠4B .∠1+∠4=180°C .∠5=∠4D .∠1=∠35.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10116.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是( )A .2B .4C .6D .87.下列各组线段不能组成三角形的是 ( )A.4cm、4cm、5cm B.4cm、6cm、11cmC.4cm、5cm、6cm D.5cm、12cm、13cm8.已知多项式2x2+bx+c分解因式为2(x-3)(x+1),则b,c的值为().A.b=3,c=-1 B.b=-6,c=2C.b=-6,c=-4 D.b=-4,c=-69.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA10.如图,已知直线a∥b,则∠1、∠2、∠3的关系是()A.∠1+∠2+∠3=360°B.∠1+∠2﹣∠3=180°C.∠1﹣∠2+∠3=180°D.∠1+∠2+∠3=180°二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x的不等式组531xa x-≥-⎧⎨-<⎩无解,则a的取值范围是________.2.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD 上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且'ED在A EF∠'内部,如图2,设∠A′ED'=n°,则∠FE D′的度数为___________(用含n的代数式表示).3.若点P (2x ,x-3)到两坐标轴的距离之和为5,则x 的值为____________.4.如果一个数的平方根是a +6和2a ﹣15,则这个数为________.5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方向平移到△DEF 的位置,AB =10,DH =4,平移距离为6,则阴影部分面积是________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)(1)2(1)13x x x +--=-;(2)30564x x --=; (3)3 1.4570.50.46x x x --=.2.已知关于x 的不等式组523(1)138222x x x x a +>-⎧⎪⎨≤-+⎪⎩有四个整数解,求实数a 的取值范围.3.如图是一个长为a ,宽为b 的矩形,两个阴影图形都是一对底边长为1,且底边在矩形对边上的平行四边形.(1)用含字母a ,b 的代数式表示矩形中空白部分的面积;(2)当a =3,b =2时,求矩形中空白部分的面积.4.如图,已知直线AB∥CD,直线EF分别与AB,CD相交于点O,M,射线OP在∠AOE的内部,且OP⊥EF,垂足为点O.若∠AOP=30°,求∠EMD的度数.5.随着科技的进步和网络资源的丰富,在线学习已成为更多人的自主学习选择.某校计划为学生提供以下四类在线学习方式:在线阅读、在线听课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“你对哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)求本次调查的学生总人数,并补全条形统计图;(2)求扇形统计图中“在线讨论”对应的扇形圆心角的度数;(3)该校共有学生2100人,请你估计该校对在线阅读最感兴趣的学生人数. 6.杭州地铁5号线全长48.18公里,投资315.9亿元,规划建设预期2014-2019年,杭州工程地铁队负责建设,分两个班组分别从杭州南站外香樟路站和余杭科技岛站同时开工掘进.已知甲组比乙组平均每天多掘进2.4米,经过5天施工,两组共掘进了110米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进1.7米,乙组平均每天能比原来多掘进1.3米.按此施工进度,能够比原来少用多少天完成任务?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、C6、C7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、a ≥22、1804n ︒-︒3、2或2-34、815、两6、48三、解答题(本大题共6小题,共72分)1、(1)1x =-;(2)30x =;(3)0.7x =-.2、-3≤a <-23、(1)S =ab ﹣a ﹣b +1;(2)矩形中空白部分的面积为2;4、60°5、(1)90人,补全条形统计图见解析;.(2)48︒;(3)560人.6、(1)甲班组平均每天掘进12.2米,乙班组平均每天掘进9.8米.(2)少用262.2天完成任务.。

人教版数学七年级下册《期中检测试卷》含答案解析

人教版数学七年级下册《期中检测试卷》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.9的算术平方根是( )A. 3B. 3C. ±3D. ±3 2.-2,4,2,3.14,327-,5π,这6个数中,无理数共有( ) A. 4个 B. 3个C. 2个D. 1个 3.平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限 D. 第四象限 4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D. 5.如图,直线a ,b 相交于点O ,若∠1等于45°,则∠2等于( )A. 45°B. 135°C. 115°D. 55°6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为( )A. 10°B. 15°C. 25°D. 35°7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)9.如图,直线a ,b 被直线c 所截,下列说法正确的是( )A. 当∠1=∠2时,a ∥bB. 当a ∥b 时,∠1=∠2C. 当a ∥b 时,∠1+∠2=90°D. 当a ∥b 时,∠1+∠2=180°10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣112.下列命题中正确的有( )①相等的角是对顶角; ②在同一平面内,若a ∥b ,b ∥c ,则a ∥c ;③同旁内角互补; ④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个13.已知A (a ,0)和B 点(0,10)两点,且AB 与坐标轴围成的三角形的面积等于20,则a 的值为( )A. 2B. 4C. 0或4D. 4或﹣414.如图,在平面直角坐标系中A (3,0),B (0,4),AB =5,P 是线段AB 上一个动点,则OP 的最小值是()A. 245B. 125C. 4D. 3 二、填空题 15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.17.实数,在数轴上的位置如图所示,请化简:222()a b a b ---18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.三、解答题19.计算:(1)239118()162+--;(2)122332----+-. 20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 是20的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.22.完成下列推理说明:如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( )∴∠B = ( )又∵∠B=∠D( 已知),∴∠=∠( 等量代换)∴AD∥BE( )∴∠E=∠DFE( )23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动时间.答案与解析一、选择题1.9的算术平方根是( )A. 3B.C. ±3 [答案]A[解析][分析]根据算术平方根定义即可得到结果.[详解]解:∵32=9∴9的算术平方根是3,故选:A.[点睛]本题考查了算术平方根的定义,掌握算术平方根的定义是解题的关键.2.在-2,3.14,5π,这6个数中,无理数共有( ) A. 4个B. 3个C. 2个D. 1个 [答案]C[解析]-22=, 3.14, 3=-是有理数;,5π是无理数; 故选C.点睛:本题考查了无理数的识别,无限不循环小数叫无理数,无理数通常有以下三种形式,①开方开不尽的数,等;②圆周率π;③构造的无限不循环小数,如2.01001000100001⋅⋅⋅ (0的个数一次多一个). 3.在平面直角坐标中,点M(-2,3)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 [答案]B[解析]∵−2<0,3>0,∴(−2,3)在第二象限,故选B.4.如图所示的车标,可以看作由“基本图案”经过平移得到的是( )A. B. C. D.[答案]B[解析][分析]根据平移的概念:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,简称平移,即可选出答案.[详解]解:根据平移概念,观察图形可知图案B通过平移后可以得到.故选B.[点睛]本题主要考查了图形的平移,在平面内,把一个图形整体沿某一的方向移动,学生混淆图形的平移与旋转或翻转,而误选.5.如图,直线a,b相交于点O,若∠1等于45°,则∠2等于()A 45° B. 135° C. 115° D. 55°[答案]B[解析][分析]根据互为邻补角的两个角的和等于180°列式计算即可得解.[详解]解:由图可知,∠1与∠2互为邻补角,∴∠2=180°-∠1=180°-45°=135°.故选:B.[点睛]本题考查了邻补角的定义,是基础题,熟记概念并准确识图是解题的关键6.如图,将三角板的直角顶点放在直尺的一边上,若∠1=65°,则∠2的度数为()A. 10°B. 15°C. 25°D. 35°[答案]C[解析][分析]由两直线平行,同位角相等,可求得∠3的度数,然后求得∠2的度数.[详解]如图,∵∠1=65°∴∠3=∠1=65°,∴∠2=90°−65°=25°.故选:C.[点睛]考查平行线的性质,掌握两直线平行,同位角相等是解题的关键.7.课间操时,小华、小军和小刚的位置如图所示,如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,那么小刚的位置可以表示为( )A. (5,4)B. (4,5)C. (3,4)D. (4,3)[答案]D[解析][分析]根据已知两点的坐标确定平面直角坐标系,然后确定其它各点的坐标即可解答.[详解]如果小华的位置用(0,0)表示,小军的位置用(2,1)表示,如图所示就是以小华为原点的平面直角坐标系的第一象限,所以小刚的位置为(4,3).故选D.[点睛]本题利用平面直角坐标系表示点的位置,关键是由已知条件正确确定坐标轴的位置.8.将点A(1,﹣1)向上平移2个单位后,再向左平移3个单位,得到点B,则点B的坐标为( )A. (2,1)B. (﹣2,﹣1)C. (﹣2,1)D. (2,﹣1)[答案]C[解析]分析:让A点的横坐标减3,纵坐标加2即为点B的坐标.详解:由题中平移规律可知:点B的横坐标为1-3=-2;纵坐标为-1+2=1,∴点B的坐标是(-2,1).故选C点睛:本题考查了坐标与图形变化-平移,平移变换是中考的常考点,平移中点的变化规律是:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.9.如图,直线a,b被直线c所截,下列说法正确的是( )A. 当∠1=∠2时,a∥bB. 当a∥b时,∠1=∠2C. 当a∥b时,∠1+∠2=90°D. 当a∥b时,∠1+∠2=180°[答案]D[解析][分析]根据平行线的性质,两直线平行,同旁内角互补以及对顶角的性质即可判断.[详解]解:∠1=∠2时,∠2=∠3,同旁内角相等,a∥b不一定成立,选项A错误;当a ∥b 时,∠2+∠3=180°,而∠1=∠3,则∠1+∠2=180°,故D 正确.故选D .[点睛]此题考查平行线的性质,解题关键在于掌握其性质定义.10.如图,已知直线AB CD ,相交于点,OE AB ⊥,28EOC ∠=︒,则∠BOD 的度数为( )A. 28°B. 52°C. 62°D. 118°[答案]D[解析] 分析:利用互余和互补的概念,可求得∠BOD 的大小.详解:因为OE AB ⊥,28EOC ∠=︒,所以∠COB =62°,所以∠BOD=180°-62°=118°. 故选D.点睛:辨析互余互补:(1)相加等于90°的两角称作互为余角.(2)相加等于180°的两个角互为补角.11.若|x |=3,y 是4的算术平方根,且|y ﹣x |=x ﹣y ,则x +y 的值是( )A. 5B. ﹣5C. 1D. ﹣1 [答案]A[解析]分析]由|y ﹣x |=x ﹣y 知x ≥y ,再根据|x |=3,y 是4的算术平方根得出x 、y 的值,代入计算可得[详解]解:因为|y ﹣x |≥0,所以x ﹣y ≥0,即x ≥y .由|x |=3,y 是4的算术平方根可知x =3、y =2.则x+y=5,故选A.[点睛]此题考查算术平方根,解题关键在于掌握运算法则.12.下列命题中正确的有()①相等的角是对顶角;②在同一平面内,若a∥b,b∥c,则a∥c;③同旁内角互补;④互为邻补角的两角的角平分线互相垂直.A. 4个B. 1个C. 2个D. 3个[答案]C[解析][分析]根据对顶角的性质、平行公理、平行线的判定定理和垂直的定义对各个选项进行判断即可.[详解]解:相等的角不一定是对顶角,①错误;在同一平面内,若a∥b,b∥c,则a∥c,②正确;同旁内角不一定互补,③错误;互为邻补角的两角的角平分线互相垂直,④正确,故选:C.[点睛]本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.13.已知A(a,0)和B点(0,10)两点,且AB与坐标轴围成的三角形的面积等于20,则a的值为( )A. 2B. 4C. 0或4D. 4或﹣4[答案]D[解析][分析]根据点A、B的坐标可找出OA、OB的长度,再根据三角形的面积公式即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.[详解]∵A(a,0),B(0,10),∴OA=|a|,OB=10,∴S△AOB=12OA•OB=12•10|a|=20,解得:a=±4.故选D.[点睛]本题考查了坐标与图形性质,根据三角形的面积公式列出关于a的含绝对值符号的一元一次方程是解题的关键.14.如图,在平面直角坐标系中A(3,0),B(0,4),AB=5,P是线段AB上的一个动点,则OP的最小值是( )A. 245B.125C. 4D. 3[答案]B[解析][分析]利用等面积法求得OP的最小值.[详解]解:当OP⊥AB时,OP的值最小.∵A(3,0),B(0,4),∴OB=4,OA=3.∴12OA•OB=12AB•OP.∴OP=341255 OA OBAB⨯==.故选B.[点睛]此题考查坐标与图形,解题关键在于利用三角形面积公式进行计算.二、填空题15.将“对顶角相等”改写为“如果...那么...”的形式,可写为__________.[答案]如果两个角互为对顶角,那么这两个角相等[解析][分析]根据命题的形式解答即可.[详解]将“对顶角相等”改写为“如果...那么...”的形式,可写为如果两个角互为对顶角,那么这两个角相等,故答案为:如果两个角互为对顶角,那么这两个角相等.[点睛]此题考查命题的形式,可写成用关联词“如果...那么...”连接的形式,准确确定命题中的题设和结论是解题的关键.16.已知x ,y 为实数,且3x -+(y +2)2=0,则y x =___.[答案]-8[解析][分析]直接利用非负数的性质得出x ,y 的值,进而得出答案.[详解]解:∵3x -+(y+2)2=0,∴x-3=0,y+2=0,解得x=3,y=-2,故y x =(-2)3=-8.故答案为:-8.[点睛]此题主要考查了非负数的性质,根据几个非负数的和等于0,则每一个式子都等于0进行列式是解题的关键.17.实数,在数轴上的位置如图所示,请化简:222()a b a b -[答案]0[解析][分析]先判断a ,b ,a-b 的符号,再根据二次根式的性质化简即可.[详解]解:由数轴可知0a <,0b >,∴0a b -<,222()a b a b -||||||a b a b =---()0a b a b =--+-=.[点睛]本题考查了利用数轴比较实数的大小,二次根式的性质与化简,熟练掌握二次根式的性质是解答本题的关键.18.点P (2a ,2﹣3a )是第二象限内的一个点,且点P 到两坐标轴的距离之和为12,则点P 的坐标是__.[答案](-4,8)[解析][分析]根据第二象限内点的横坐标是负数,纵坐标是正数列出方程求出a ,即可得解.[详解]解:∵点P (2a ,2-3a )是第二象限内的一个点,且P 到两坐标轴的距离之和为12,∴-2a+2-3a=12,解得a=-2,∴2a=-4,2-3a=8,∴点P 的坐标为(-4,8).故答案为:(-4,8).[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题19.计算:(121()2;(2)1-+[答案](1)-1;(2[解析][分析](1)首先化简二次根式,再计算加减即可;(2)首先根据绝对值的性质计算,再计算加减即可.[详解]解:(121()2+124- 51=244-- =-1(2)1-[点睛]此题主要考查了二次根式的加减和绝对值的性质,关键是掌握二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变,对于含有绝对值的运算先去掉绝对值符号再运算.20.解方程:(1)2(1)9x -=;(2)32(1)54x -+=.[答案](1)4x =或2x =-;(2)4x =-[解析][分析](1)根据平方形式开方运算,即可解答;(2)根据等式的性质,可化成立方的形式,根据开方运算,可得答案.[详解]解:(1)2(1)9x -=则:13x -=±当13x -=时,4x =当13x -=-时,2x =-综上所述,4x =或2x =-(2)32(1)54x -+= 3(1)-27x +=13x +=-4x =-[点睛]本题考查了平方根和立方根,能够先化成平方和立方的形式,再进行开方运算是解题的关键.21.已知4a-11的平方根是,3a+b-1的算木平方根是1,c 的整数部分.(1)求a ,b ,c 的値;(2)求2a-b+c 的立方根.[答案](1)a=5,b=-13,c=4;(2)3.[解析][分析](1)根据题意可得:4a-1l=9,3a+b-1=1,c=4,求解即可;(2)代入数值,根据立方根的性质求解.[详解]解:(1)∵4a-1l 的平方根是.∴4a-1l=9∴a=5∵3a+b-1的算木平方根是1∴3a+b-1=l∴b=-13;∵c 是20的整数部分,4<20<5∴c=4(2)333225(13)4273a b c -+=⨯--+==[点睛]本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.22.完成下列推理说明: 如图,已知∠B +∠BCD =180°,∠B =∠D .求证:∠E =∠DFE .证明:∵∠B +∠BCD =180°( ),∴AB ∥CD ( ) ∴∠B = ( )又∵∠B =∠D ( 已知 ),∴ ∠ = ∠ ( 等量代换 )∴AD ∥BE ( )∴∠E =∠DFE ( )[答案]详见解析[解析][分析]根据平行线的判定得出AB ∥CD ,根据平行线的性质得出∠B=∠DCE ,求出∠DCE=∠D ,根据平行线的判定得出AD ∥BE ,根据平行线的性质得出即可.[详解]证明:∵∠B+∠BCD=180°( 已知 ),∴AB ∥CD (同旁内角互补,两直线平行),∴∠B= ∠DCE (两直线平行,同位角相等 ),又∵∠B=∠D( 已知),∴∠ DCE = ∠ D ( 等量代换),∴AD∥BE(内错角相等,两直线平行),∴∠E=∠DFE(两直线平行,内错角相等),故答案为同旁内角互补,两直线平行,∠DCE,两直线平行,同位角相等;∴∠DCE;∠D;内错角相等,两直线平行;两直线平行,内错角相等.[点睛]本题考查了平行线的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然. 23.如图,已知∠ABC=∠ADC,BF,DE分别平分∠ABC与∠ADC,∠1=∠3,试说明:AB∥DC.[答案]证明见解析[解析]试题分析:先根据角平分线定义可证明∠1=∠2,进而利用平行线的判定方法得出答案.试题解析:证明:∵BF平分∠ABC,∴∠1=∠FBC.∵DE平分∠ADC,∴∠2=∠ADE.∵∠ABC=∠ADC,∴∠1+∠FBC=∠2+∠ADE,∴2∠1=2∠2,即∠1=∠2.又∵∠1=∠3,∴∠2=∠3,∴AB∥DC.24.如图,AD∥BC,∠EAD=∠C.(1)试判断AE与CD的位置关系,并说明理由;(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度数.[答案](1)AE∥CD,理由见解析;(2)50°[解析][分析](1)根据平行线的性质得出∠D+∠C=180°,求出∠EAD+∠D=180°,根据平行线的判定得出即可;(2)根据平行线的性质和三角形的外角性质求出即可.[详解]解:(1)AE∥CD,理由是:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AE∥CD,∠EFC=50°,∴∠AEF=∠EFC=50°,∵∠AEC=∠B+∠BAE=∠AEF+∠FEC,又∵∠FEC=∠BAE,∴∠B=∠AEF=50°.[点睛]此题考查平行线的判定与性质,三角形的外角性质,解题关键在于掌握判定定理.25.在正方形网格中,每个小正方形的边长都为1个单位长度,△ABC的三个顶点的位置如图所示,现将△ABC 平移后得△DEF,使点A的对应点为点D,点B的对应点为点E.(1)画出△DEF;(2)连接AD、BE,则线段AD与BE的关系是;(3)求△DEF的面积.[答案]⑴如图所示见解析;⑵平行且相等;⑶7 2[解析][分析](1)将点B、C均向右平移4格、向上平移1格,再顺次连接可得;(2)根据平移的性质可得;(3)割补法求解即可.[详解](1)如图所示,△DEF即为所求;(2)由图可知,线段AD与BE的关系是:平行且相等,(3)S△DEF=3×3-12×2×3-12×1×2-12×1×3=72.[点睛]本题考查了利用平移变换作图,平移的性质,熟练掌握网格结构,准确找出对应点的位置是解题的关键.26.如图,长方形OABC中,O为平面直角坐标系的原点,A点的坐标为(4,0),C点的坐标为(0,6),点B在第一象限内,点P从原点O出发,以每秒2个单位长度的速度沿着O﹣A﹣B﹣C﹣O的路线移动(即沿长方形移动一周).(1)写出B点的坐标;(2)当点P移动3秒时,求三角形OAP的面积;(3)在移动过程中,当点P到x轴距离为4个单位长度时,求点P移动的时间.[答案](1)(4,6);(2)4;(3)4秒或8秒[解析][分析](1)根据长方形的性质,易得B得坐标;(2)根据题意,P的运动速度与移动的时间,进而结合三角形的面积公式可得答案;(3)根据题意,当点P到x轴距离为5个单位长度时,有P在AB与OC上两种情况,分别求解可得答案.[详解]解:(1)根据长方形的性质,可得AB与y轴平行,BC与x轴平行;故B的坐标为(4,6);(2)∵A(4,0)、C(0,6),∴OA=4,OC=6.∵3×2=6>4,∴点P在线段AB上.∴P A=2.∴S△OAP=12OA×P A=12×4×2=4.(3)∵OC=AB=6>4,∴点P在AB上或OC上.当点P在AB上时,P A=4,此时点P移动路程为4+4=8,时间为12×8=4.当点P在OC上时,OP=4,此时点P移动路程为2(4+6)﹣4=16,时间为12×16=8.∴点P移动的时间为4秒或8秒.[点睛]此题考查长方形的性质,坐标与图形变化-平移,解题关键在于掌握平移的性质.。

人教版数学七年级下册《期中考试题》及答案解析

人教版数学七年级下册《期中考试题》及答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2 2. 下列方程变形中属于移项的是( ) A 由2x =﹣1得x =﹣12 B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣b D. 由4﹣3x =0得﹣3x +4=03. 由132x y -=,可以得到用表示的式子( ) A 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- 4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x 5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x =2是不等式4x >15的一个解D. 不等式x ﹣2<6的两边都减去3,则此不等式仍成立6. 把方程0.10.20.510.30.4x x ---=的分母化成整数后,可得方程( ) A. 0.10.20.5134x x ---= B. 12510134x x ---= C. 125101034x x ---= D.120.5134x x ---= 7. 不等式325132x x ++≤-的解集表示在数轴上是( )A. B. C. D.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=9. 如图,射线OC 的端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩ 10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A. B. C. D.二、填空题(每小题3分,共15分)11. 若2x ﹣3与1互为相反数,则x =_____.12. 在公式S =12n (a +b )中,已知S =5,n =2,a =3,那么b 的值是_____. 13. 一个两位数,两个数位上数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. 15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x﹣1)﹣2(1﹣x)=0.17. 解不等式52x+﹣1<322x+,小兵的解答过程是这样的.解:去分母,得x+5﹣1<3x+2①.移项,得x﹣3x<2﹣5+1②.合并同类项,得﹣2x<﹣2③.系数化1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.20. 如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.21. 小明在解方程21134x x m-+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x=3,请你帮助小明求出m的值和原方程正确的解.22. 阅读以下例题:解方程:|3x|=1,解:①当3x≥0时,原方程可化为一元一次方程3x=1,解这个方程得x=13;②当3x<0时,原方程可化一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)答案与解析一、选择题(共10小题)1. 方程3x ﹣1=5的解是( ) A. 43x = B. 53x = C. x =18 D. x =2[答案]D[解析][分析]先移项,再合并同类项,最后系数化为1即可得出答案.[详解]3x -1=5,移项得,3x =5+1,合并同类项得,3x =6,系数化为1得,x =2.故选D.[点睛]本题考查了一元一次方程的解法.熟练掌握解一元一次方程的步骤是解题的关键.2. 下列方程变形中属于移项的是( )A. 由2x =﹣1得x =﹣12B. 由2x =2得x =4 C. 由5x +b =0得5x =﹣bD. 由4﹣3x =0得﹣3x +4=0 [答案]C[解析][分析]根据一元一次方程的解法直接进行排除选项即可.[详解]A 、由2x =﹣1得:x =12-,不符合题意; B 、由2x =2得:x =4,不符合题意; C 、由5x +b =0得5x =﹣b ,符合题意;D 、由4﹣3x =0得﹣3x +4=0,不符合题意.故选:C .[点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.3. 由132x y -=,可以得到用表示的式子( ) A. 223x y =- B. 2133x y =- C. 223x y -= D. 223x y =- [答案]A[解析][分析] 只需把含有y 的项移到方程的左边,其它的项移到另一边,然后合并同类项、系数化为1就可用含x 的式子表示y .[详解]解:移项,得123y x =-, 系数化为1,得223x y =-. 故选:A .[点睛]本题考查的是方程的基本运算技能,移项、合并同类项、系数化为1等.4. 解方程2x =3x 时,两边都除以x ,得2=3,其错误原因是( )A. 方程本身是错的B. 方程无解C. 两边都除以了0D. 2x 小于3x[答案]C[解析][分析]出错的地方为:方程两边除以x ,没有考虑x 为0的情况,据此判断即可.[详解]解:错误的地方为:方程两边都除以x ,没有考虑x 是否为0,正确解法为:移项得:2x ﹣3x =0,合并得:﹣x =0,系数化为1得:x =0.故选:C .[点睛]本题考查了解一元一次方程,熟练掌握运算法则是解题的关键.5. 下列说法正确的是( )A. 方程4+x =8和不等式4+x >8的解是一样的B. x =2不是不等式4x >5的解C. x=2是不等式4x>15的一个解D. 不等式x﹣2<6的两边都减去3,则此不等式仍成立[答案]D[解析][分析]根据不等式的解法及不等式解集的概念直接进行排除选项即可.[详解]A、方程的解只有一个,而不等式的解有无数个;故本选项不合题意.B、不等式4x>5的解集是x>54,故本选项不合题意.C、不等式4x>15的解集是x>154不包括2,故本选项不合题意.D、不等式x﹣2<6的两边都减去3,则此不等式仍成立,正确,依据是不等式的基本性质.故选:D.[点睛]本题主要考查一元一次不等式的解集及解法,熟练掌握一元一次不等式的解集及解法是解题的关键.6. 把方程0.10.20.510.30.4x x---=的分母化成整数后,可得方程( )A. 0.10.20.5134x x---= B.12510134x x---=C. 125101034x x---= D.120.5134x x---=[答案]B[解析][分析]本题方程两边都含有分数系数,在变形的过程中,利用分数的性质将分数的分子、分母同时扩大或缩小相同的倍数,将小数方程变为整数方程,把含分母的项的分子与分母都扩大原来的10倍.[详解]解:把原方程的分母化为整数得,12510134x x ---=故选B.[点睛]分母化成整数的过程的依据是分数的性质,掌握相关知识是解题的关键.7. 不等式325132x x++≤-的解集表示在数轴上是( )A. B.C.D.[答案]B[解析][分析] 根据一元一次不等式的解法,去分母,去括号,移项,合并同类项,系数化为1即可得解.[详解]解:去分母,得,2(3x +2)≤3(x +5)﹣6,去括号,得6x +4≤3x +15﹣6,移项、合并同类项,得3x ≤5,系数化为1,得,x ≤53, 在数轴上表示为:故选:B .[点睛]本题考查了解一元一次不等式,以及在数轴上表示不等式的解集,>向右画,<向左画,≤与≥用实心圆点,<与>用空心圆圈.8. 每瓶A 种饮料比每瓶B 种饮料少元,小峰买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,如果设每瓶A 种饮料为x 元,那么下面所列方程正确的是( )A. ()21313x x -+=B. ()21313x x ++=C. ()23113x x ++=D. ()23113x x +-=[答案]C[解析][分析]设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,由买了2瓶A 种饮料和3瓶B 种饮料,一共花了13元,列方程即可得到答案.[详解]解:设每瓶A 种饮料为x 元,则每瓶B 种饮料为()1x +元,所以:()23113x x ++=,故选C .[点睛]本题考查的是一元一次方程的应用,掌握利用相等关系列一元一次方程是解题的关键.9. 如图,射线OC 端点O 在直线AB 上,∠AOC 的度数比∠BOC 的2倍多10度.设∠AOC 和∠BOC 的度数分别为x ,y ,则下列正确的方程组为( )A. 18010x y x y +=⎧⎨=+⎩B. 180210x y x y +=⎧⎨=+⎩C. 180102x y x y +=⎧⎨=-⎩D. 180210x y y x +=⎧⎨=-⎩[答案]B[解析][分析]根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;然后由平角可建立方程组,则问题得解.[详解]解:根据∠AOC 的度数比∠BOC 的2倍多10°,得方程x =2y +10;根据∠AOC 和∠BOC 组成了平角,得方程x +y =180.列方程组为180210x y x y +=⎧⎨=+⎩. 故选:B .[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.10. 小华在某月的日历上圈出相邻的四个数,算出这四个数的和是36,那么这个数阵的形式可能是( ) A.B. C. D. [答案]C[解析][分析]可设第一个数为x ,根据已知对每个选项计算讨论得出.[详解]设第一个数为x,根据已知:A:得x+x+6+x+7+x+8=36,则x=6.25不是整数,故本选项不可能.B:得x+x+1+x+8+x+9=36,则x=4.5不是整数,故本选项不可能.C:得x+x+1+x+7+x+8=36,则x=5,为正数符合题意.D:得x+x+1+x+6+x+7=36,则x=5.5不是整数,故本选项不可能.故选C.[点睛]此题考查的是一元一次方程的应用,关键是根据题意对每个选项列出方程求解论证.二、填空题(每小题3分,共15分)11. 若2x﹣3与1互为相反数,则x=_____.[答案]1.[解析][分析]根据互为相反数的关系直接进行求解即可.[详解]解:根据题意得:2x﹣3+1=0,移项合并得:2x=2,解得:x=1.故答案:1.[点睛]本题主要考查相反数的定义,熟练掌握相反数的定义是解题的关键.12. 在公式S=12n(a+b)中,已知S=5,n=2,a=3,那么b的值是_____.[答案]2.[解析][分析]求公式中的一个字母b的值,把已知其它字母的值代入,转化为关于b大的方程,解之即可.[详解]∵S=12n(a+b)中,且S=5,n=2,a=3,∴5=12×2×(3+b),解得:b=2.故答案为:2.[点睛]本题考查从公式中求某个字母值问题,关键是把给的已知字母的值代入,转化为某字母为未知数的方程.13. 一个两位数,两个数位上的数字一个是另一个的2倍,若把此两位数的两个数字对调,所得新数比原数大27,则此两位数是_____.[答案]36[解析][分析]设十位数字为x ,个位数字为y ,由题意可进行列方程组进行求解即可.[详解]解:设十位数字为x ,个位数字为y ,由题意得:2101027y x y x x y =⎧⎨+=++⎩, 解得:36x y =⎧⎨=⎩, 原两位数是36,即:原两位数是36.故答案是:36.[点睛]本题主要考查二元一次方程组的应用,熟练掌握二元一次方程组的应用是解题的关键.14. 对有理数a ,b 规定运算“*”的意义为a *b =a +2b ,比如:5*7=5+2×7,则方程3x *14=2﹣x 的解为_____. [答案]38. [解析][分析]已知等式利用题中的新定义化简,计算即可求出解.[详解]解:根据题中的新定义化简得:3x +12=2﹣x , 去分母得:6x +1=4﹣2x ,解得:x =38. 故答案为:38. [点睛]本题考查了解一元一次方程,以及有理数的混合运算,弄清题中的新定义是解题的关键.15. 如图,足球的表面是有一些黑颜色五边形和白颜色六边形的皮块缝合而成的,共计有32块,请观察图形,根据黑块五边形和白块六边形的边数之间的关系计算黑颜色五边形和白颜色六边形的皮块数分别是_____.[答案]12和20[解析][分析]足球缝合规律:五边形的5条边都与六边形缝合,六边形只有3条边与五边形缝合,所以五边形的个数乘以5应该等于六边形的个数乘以3,据此设足球有黑色五边形皮块x 个,列方程求解即可[详解]设足球有黑色五边形皮块x 个,则有白色六边形皮块(32-x)个,由题意得,5x=3(32-x)解得:x=12所以白色皮块数为20,黑色皮块数为12.故答案为:12和20.[点睛]本题主要考查一元一次方程应用,熟练掌握一元一次方程的应用是解题的关键.三、解答题(本大题有8个小题,满分55分)16. 解方程:3(2x ﹣1)﹣2(1﹣x )=0.[答案]x =58 [解析][分析]先去括号合并同类项,然后直接解一元一次方程即可.[详解]解:()()321210x x ---=去括号,得6x ﹣3﹣2+2x =0,移项,得6x +2x =3+2,合并同类项,得8x =5,系数化为1,得x =58. [点睛]本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.17. 解不等式52x +﹣1<322x +,小兵的解答过程是这样的. 解:去分母,得x +5﹣1<3x +2①.移项,得x ﹣3x <2﹣5+1②.合并同类项,得﹣2x <﹣2③.系数化为1,得x<1④.(1)请问:小兵同学的解答是否正确?如果错误,请指出错误步骤的标号,简述原因?(2)给出正确的解答过程.[答案](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答过程见解析,x>12.[解析][分析](1)根据解一元一次不等式的步骤,逐一判断即可得出结论;(2)根据解一元一次不等式的步骤,解不等式即可.[详解](1)解法错误,①去分母时,漏乘了没有分母的项,④系数化为1时不等号的方向没有改变,(2)正确的解答是:去分母得(x+5)﹣2<3x+2,移项,得x﹣3x<2+2﹣5,合并同类项,得﹣2x<﹣1,系数化为1,得x>12.[点睛]此题考查的是解一元一次不等式,掌握解一元一次不等式的步骤是解题关键.18. 用加减消元法解方程组:433 3215x yx y+=⎧⎨-=⎩.[答案]33 xy=⎧⎨=-⎩.[解析][分析]先把方程组标号①②,把两个方程同一未知数的系数变绝对值相等的数,同号两式相减,异号两式相加,消去一个未知数,转化为一元一次方程,得解后再代入①或②,求另一未知数,把两个解联立起来即可.[详解]433 3315x yx y+=⎧⎨-=⎩①②,①×2得:8x+6y=6③,②×3得:9x﹣6y=45④,③+④得:17x=51,解得:x=3,把x=3代入①,得4×3+3y=3, 解得:y=﹣3,所以原方程组的解是33 xy=⎧⎨=-⎩.[点睛]本题考查加减消元法解方程组,关键是要变方程一未知数系数绝对值相等,同号两式相减,异号两式相加.19. 已知关于x的方程a﹣5x=﹣6与方程3x﹣6=4x﹣5有相同的解,求a的值.[答案]a=﹣11.[解析][分析]两个方程中,有一个只有一个未知数,先解这个方程,求出后,代入第二个方程解之即可.[详解]解方程.3x﹣6=4x﹣5,移项,得3x﹣4x=﹣5+6,合并同类项,得﹣x=1,系数化为1得:x=﹣1,把x=﹣1代入方程a﹣5x=﹣6,得a﹣5×(﹣1)=﹣6.解得a=﹣11.[点睛]本题考查用方程确定参数问题,关键是观察两个方程中有一个方程直接求解.20. 如图1,在边长为a大正方形中剪去一个边长为b的小正方形,再将图中的阴影剪拼成一个长方形,如图2,这个拼成的长方形的长为30,宽为20.求图2中第Ⅱ部分的面积.[答案]图2中第Ⅱ部分的面积为100.[解析][分析]根据在边长为a的大正方形中剪去一个边长为b的小正方形,以及长方形的长为30,宽为20,得出a+b=30,a-b=20,进而得出答案.[详解]解:根据题意得出:3020b a a b +=⎧⎨-=⎩, 解得:255a b =⎧⎨=⎩, 故图2中Ⅱ部分的面积是:5×20=100, 答:第Ⅱ部分的面积为100.[点睛]本题考查了正方形的性质以及二元一次方程组的应用,根据已知得出a+b=30,a-b=20是解题的关键. 21. 小明在解方程21134x x m -+=-,方程两边都乘以各分母的最小公倍数去分母时,漏乘了不含分母的项﹣1,得到方程的解是x =3,请你帮助小明求出m 的值和原方程正确的解.[答案]m =4,x =45 [解析][分析]根据题意进行“将错就错”,即把方程的解是x =3代入()()42131x x m -=+-中求解m 的值,最后代入原方程进行求解即可.[详解]解:根据题意,x =3是方程()()42131x x m -=+-的解,将x =3代入得4×(2×3﹣1)=3(3+m )﹣1,解得m =4, 所以原方程为214134x x -+=-, 解方程得x =45. [点睛]本题主要考查分式方程的解及分式方程的解法,熟练掌握分式方程的解及分式方程的解法是解题的关键.22. 阅读以下例题:解方程:|3x |=1,解:①当3x ≥0时,原方程可化一元一次方程3x =1,解这个方程得x =13;②当3x<0时,原方程可化为一元一次方程﹣3x=1,解这个方程得x=﹣13.所以原方程的解是x=13或x=﹣13.(1)仿照例题解方程:|2x+1|=3.(2)探究:当b为何值时,方程|x﹣2|=b+1满足:①无解;②只有一个解;③有两个解.[答案](1)x=1或x=﹣2;(2)当b<﹣1时,方程无解;当b=﹣1时,方程只有一个解;当b>﹣1时,方程有两个解.[解析][分析](1)仿照例题分情况讨论:①当2x+1≥0时,②当2x+1<0时,化简绝对值,解关于x的一元一次方程即可求解;(2)|x﹣2|≥0恒成立,①若无解,则b+1<0,解不等式即可求解;②若只有一个解,则b+1=0,求解即可;③若有两个解,则b+1>0,解不等式即可求解.[详解]解:(1)①当2x+1≥0时,原方程可化为一元一次方程2x+1=3,解这个方程得x=1;②当2x+1<0时,原方程可化为一元一次方程﹣2x﹣1=3,解这个方程得x=﹣2;所以原方程的解是x=1或x=﹣2;(2)因为|x﹣2|≥0,所以①当b+1<0,即b<﹣1时,方程无解;②当b+1=0,即b=﹣1时,方程只有一个解;③当b+1>0,即b>﹣1时,方程有两个解.[点睛]本题考查解绝对值方程,理解题意是解题的关键.23. 某家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲组单独完成需12天,乙组单独完成需24天,单独请哪个组,商店所付费用较少?(3)在(2)的条件下,现有三种施工方案:①单独请甲组装修;②单独请乙组装修;③请甲、乙两组合做.若装修过程中,商店不但要支付装修费用,而且每天因装修损失收入200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)[答案](1)甲组工作一天商店应付300元,乙组工作一天商店应付140元;(2)单独请乙组,商店所付费用较少;(3)安排甲、乙两个装修组同时施工更有利于商店.[解析][分析](1)设甲组工作一天商店应付元,乙组工作一天商店应付元,根据“若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙单独做12天可以完成,需付费用3480元”,即可得出关于,的二元一次方程组,解之即可得出结论;(2)根据总费用每天需支付的费用工作时间,可分别求出单独请甲组和单独请乙组施工所需费用,比较后即可得出结论;(3)分单独请甲组施工、单独请乙组施工和请甲、乙两组合做施工三种情况考虑,利用损失的总钱数施工费用因装修损失收入,分别求出三种情况下损失的钱数,比较后即可得出结论.[详解](1)设甲组工作一天商店应付x元,乙组工作一天商店应付y元,依题意,得:883520 6123480x yx y+=⎧⎨+=⎩,解得:300140xy=⎧⎨=⎩.答:甲组工作一天商店应付300元,乙组工作一天商店应付140元.(2)单独请甲组需要的费用为300×12=3600(元);单独请乙组需要的费用为140×24=3360(元).∵3600>3360,∴单独请乙组,商店所付费用较少.(3)单独请甲组施工,需费用3600元,少盈利200×12=2400(元),相当于损失6000元;单独请乙组施工,需费用3360元,少盈利200×24=4800(元),相当于损失8160元;请甲、乙两组合做施工,需费用3520元,少盈利200×8=1600(元),相当于损失5120元.∵5120<6000<8160,∴甲、乙合做损失费用最少.答:安排甲、乙两个装修组同时施工更有利于商店.[点睛]本题考查了二元一次方程组的应用,解题的关键是找准等量关系,正确列出二元一次方程组.。

人教版数学七年级下册《期中测试题》及答案

人教版数学七年级下册《期中测试题》及答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列各题中计算错误的是( )A. [(-m 3)2(-n 2)3]3= -m 18n 18B. (-m 3n)2(-mn 2)3= -m 9n 8C. [(-m)2(-n 2)3]3= - m 6n 6D. (-m 2n)3(-mn 2)3= m 9n 9 2. 化简x(y-x)-y(x-y)得( )A. x 2-y 2B. y 2-x 2C. 2xyD. -2xy 3. 若25a=,23b =,则232a b -等于( ) A. 2725 B. 109 C. 35 D. 25274. 2216x ax ++是一个完全平方式,则a 的值为( )A. 4B. 8C. 4或-4D. 8或-8 5. -234⎛⎫ ⎪⎝⎭、265⎛⎫ ⎪⎝⎭、076⎛⎫ ⎪⎝⎭三个数中,最大的是( ) A. -234⎛⎫ ⎪⎝⎭ B. 265⎛⎫ ⎪⎝⎭ C. 076⎛⎫ ⎪⎝⎭ D. 无法确定 6. 如果两条平行线被第三条直线所截,那么一组同位角的平分线( )A. 互相平行B. 互相垂直C. 交角是锐角D. 交角是钝角 7. 如图是赛车跑道一段示意图,其中AB ∥DE ,测得∠B=140°,∠D=120°,则∠C 度数为( )A. 120°B. 100°C. 140°D. 90°8. 已知∠α和∠β互补,且∠α>∠β,下列表示角的式子:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).其中能表示∠β的余角的有( )个. A. 1个B. 2个C. 3个D. 4个 9. 已知△ABC 的底边BC 上的高为8 cm ,当底边BC 从16 cm 变化到5 cm 时,△ABC 的面积 ( )A. 从20 cm 2变化到64 cm 2B. 从40 cm 2变化到128 cm 2C. 从128 cm 2变化到40 cm 2D. 从64 cm 2变化到20 cm 210. “龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了 一觉. 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终 点……. 用 s 1 、s2 分别表示乌龟和兔子所行的路程, t 为时间,则下列图像中与故事情节相吻合的是( ) A B. C. D.二、填空题11. 已知:(x 3n-2)2x 2n+4÷x n =x 2n-5,则n=______.12. 已知x +y =-5,xy =6,则x 2+y 2=________.13. 如图,若∠A=110°,AB ∥CD ,AD ∥BC ,则∠ECD=_________.14. 已知6x =5,6y =2,则62x+ y =__________.三、解答题15. (1)计算:[(4b+3a )(3a ﹣4b )﹣(b ﹣3a )2]÷4b(2)先化简,再求值.(2x ﹣1)(2x+1)﹣(x ﹣2)2﹣(x+2)2,其中133x =-.16. 如图,一个四边形纸片ABCD ,90B D ∠=∠=︒,把纸片按如图所示折叠,使点B 落在AD 边上的点,AE 是折痕.(1)判断'B E 与DC 的位置关系,并说明理由;(2)如果130C ∠=︒,求AEB ∠的度数.17. 有一边长为x cm 的正方形,若边长变化,则其面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)写出正方形面积y (cm 2)关于正方形的边长x (cm)的关系式.18. 某生物兴趣小组在四天的试验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成如图所示的图象,请根据图象完成下列问题:(1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多长时间?(2)第三天12时这头骆驼的体温是多少?19. (1)若a+b=3,ab=2,求a 4+b 4的值.(2)已知a n =2,求(2a 3n )2-3(a 2)2n ÷a 2n 的值.20. 已知:如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,∠D =∠3+60°,∠CBD =70°.(1)求证:AB ∥CD ;(2)求∠C 的度数.四、填空题21. 已知长方形面积是223a 3b -,如果它的一边长是a b +,则它的周长是________.22. 若一个角的余角是它的补角的14,这个角的度数_____. 23. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为_____________厘米,挂物体质量x(千克)与弹簧长度y(厘米)的关系式为________________24. 已知35a b b c -=-=,2221a b c ++=,则ab bc ac ++的值等于_____. 25. 已知a 1=2112-,a 2=2113-,a 3=2114-,…,a n =()2111n -+,S n =a 1•a 2…a n ,则S 2015=__. 五、解答题26. 某机动车出发前油箱内有油42L,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q()与行驶时间()之间的函数关系如图所示,根据图回答问题:(1)机动车行驶5h后加油,途中加油升:(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?(3)如果加油站距目地还有400km,车速为60/km h,要到达目的地,油箱中的油是否够用?请说明理由.27. 你能求(x一1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形人手,分别计算下列各式的值.(1)(x-1)(x+1) =_____________;(2)(x—1)( x2+x+1) =_____________;(3)(x-1)(x3+ x2+x+1) =____________;…由此我们可以得到:(4)(x一1)( x99+x98+x97+…+x+1) =___________,请你利用上面的结论,完成下列的计算:(5)299+298+297+…+2+1;28. 若(x2+3mx﹣13)(x2﹣3x+n)的积中不含x和x3项,(1)求m2﹣mn+14n2的值;(2)求代数式(﹣18m2n)2+(9mn)﹣2+(3m)2014n2016的值.答案与解析一、选择题1. 下列各题中计算错误的是( )A. [(-m 3)2(-n 2)3]3= -m 18n 18B. (-m 3n)2(-mn 2)3= -m 9n 8C. [(-m)2(-n 2)3]3= - m 6n 6D. (-m 2n)3(-mn 2)3= m 9n 9[答案]C[解析][分析]根据幂的乘方和积的乘方运算法则分别进行计算即可.[详解]A .322336631818[()()]=[()]m n m n m n ---=-,选项A 正确,故不能选;B .3223623698()()()m n mn m n m n m n --=-=-,选项B 正确,故不能选;C .[(-m)2(-n 2)3]3=2233263618[()()][()]m n m n m n --=-=-,选项C 错误,故选C ;D .2323633699()()()()m n mn m n m n m n --=--=,选项D 正确,故不能选,故选:C .[点睛]本题考查了幂的乘方,积的乘方,幂的乘方:底数不变,指数相乘;积的乘方:把积的每一个因式分别乘方,再把所得的幂相乘,掌握好这些运算法则是解决本题的关键.2. 化简x(y-x)-y(x-y)得( )A. x 2-y 2B. y 2-x 2C. 2xyD. -2xy [答案]B[解析]试题解析:x (y -x )-y (x -y )=xy -x 2-xy +y 2= y 2-x 2故选B .3. 若25a=,23b =,则232a b -等于( ) A. 2725 B. 109 C. 35 D. 2527[答案]D[解析][分析]根据同底数幂的除法的逆运算法则及幂的乘方运算法则,进行代数式的运算即可求解.[详解]222233332(2)5252=2(2)327a a ab b b -=== 故选:D[点睛]本题考查了同底数幂的除法的逆运算法,一般地,(0mm n n a a a a-=≠,m,n 都是正整数,并且m >n),还考查了幂的乘方运算法则,(a m )n =a mn (m,n 都是正整数). 4. 2216x ax ++是一个完全平方式,则a 的值为( )A. 4B. 8C. 4或-4D. 8或-8[答案]C[解析]试题解析:∵x 2+2ax +16=x 2+2ax +42是完全平方式,∴2ax =±2×x ×4, 解得a =±4.故选C .[点睛]本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要. 5. -234⎛⎫ ⎪⎝⎭、265⎛⎫ ⎪⎝⎭、076⎛⎫ ⎪⎝⎭三个数中,最大的是( ) A. -234⎛⎫ ⎪⎝⎭B. 265⎛⎫ ⎪⎝⎭C. 076⎛⎫ ⎪⎝⎭D. 无法确定[答案]A[解析][分析]分别计算负整数指数幂,平方,零次幂,通分以后比较大小即可. [详解]解:-223116400,4922534⎛⎫=== ⎪⎝⎭⎛⎫ ⎪⎝⎭ 2636324,525225⎛⎫== ⎪⎝⎭071,6⎛⎫= ⎪⎝⎭由4003241225225>>, 22361,45-⎛⎫⎛⎫∴ ⎪ ⎪⎝⎭⎝⎭>> 所以最大的数是:-234⎛⎫ ⎪⎝⎭. 故选A .[点睛]本题考查的是有理数的大小比较,同时考查了负整数指数幂,乘方,零次幂的运算,掌握以上知识是解题的关键.6. 如果两条平行线被第三条直线所截,那么一组同位角的平分线( )A. 互相平行B. 互相垂直C. 交角是锐角D. 交角是钝角 [答案]A[解析][分析]根据平行的性质和判定进行判断即可.[详解]根据题意,作图如下:∵//CD EF∴AGD AHF ∠=∠∵平分AGD ∠,HJ 平分AHF ∠∴12AGI AGD ∠=∠,12AHJ AHF ∠=∠ ∴AGI AHJ ∠=∠∴//GI HJ故选:A .[点睛]本题考查了平行线的性质与判定,角平分线的性质,熟知以上知识是解题的关键.7. 如图是赛车跑道的一段示意图,其中AB ∥DE ,测得∠B=140°,∠D=120°,则∠C 度数为( )A. 120°B. 100°C. 140°D. 90°[答案]B[解析][分析][详解]解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠B+∠1=180°,∠D+∠2=180°;故∠B+∠1+∠D+∠2=360°,即∠B+∠BCD+∠D=360°,故∠BCD=360°﹣140°﹣120°=100°.故选B.[点睛]注意此类题要作出辅助线,运用平行线的性质探求三个角的关系.8. 已知∠α和∠β互补,且∠α>∠β,下列表示角的式子:①90°-∠β;②∠α-90°;③12(∠α+∠β);④12(∠α-∠β).其中能表示∠β的余角的有()个.A. 1个B. 2个C. 3个D. 4个[答案]C[解析][分析]互补即两角的和为180°,互余即两角的和为90°,根据这一条件判断即可.[详解]解:已知∠β的余角为:90°−∠β,故①正确;∵∠α和∠β互补,且∠α>∠β,∴∠α+∠β=180°,∠α>90°,∴∠β=180°−∠α,∴∠β的余角为:90°−(180°−∠α)=∠α−90°,故②正确;∵∠α+∠β=180°,∴12(∠α+∠β)=90°,故③错误,∴∠β的余角为:90°−∠β=12(∠α+∠β)−∠β=12(∠α−∠β),故④正确.所以①②④能表示∠β的余角,故答案为:C.[点睛]本题考查了余角和补角的定义,牢记定义是关键.9. 已知△ABC的底边BC上的高为8 cm,当底边BC从16 cm变化到5 cm时,△ABC的面积( )A. 从20 cm2变化到64 cm2B. 从40 cm2变化到128 cm2C. 从128 cm2变化到40 cm2D. 从64 cm2变化到20 cm2[答案]D[解析][分析]根据S=12(底×高)计算分别计算得出最值即可.[详解]当△ABC的底边BC上的高为8cm,底边BC=16cm时,S1=(8×16)÷2=64cm2;底边BC=5cm时,S2=(5×8)÷2=20cm2.故选D.[点睛]此题主要考查了函数关系,利用极值法得出△ABC的最大值和最小值是解题关键.10. “龟兔赛跑”讲述了这样的故事:领先的兔子看着缓慢爬行的乌龟,骄傲起来,睡了一觉. 当它醒来时,发现乌龟快到终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点……. 用s1 、s2分别表示乌龟和兔子所行的路程, t 为时间,则下列图像中与故事情节相吻合的是()A. B. C. D.[答案]A[解析][分析]根据题意,兔子的路程随时间的变化分为3个阶段,由此即可求出答案.[详解]解:根据题意:s1一直增加;s2有三个阶段,第一阶段:s2增加;第二阶段,由于睡了一觉,所以s2不变;第三阶段,当它醒来时,发现乌龟快到终点了,于是急忙追赶,s2增加;∵乌龟先到达终点,即s1在s2的上方.故选:A.[点睛]本题考查变量之间的关系.能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题11. 已知:(x3n-2)2x2n+4÷x n=x2n-5,则n=______.[答案]-1[解析][分析][详解]因为(x3n-2)2x2n+4÷x n=x2n-5,x6n-4x2n+4÷x n=x8n÷x n=x7n=x2n-5,所以7n=2n-5,解得n=-1.故答案为:-1.12. 已知x+y=-5,xy=6,则x2+y2=________.[答案]13[解析][分析]把x+y=-5两边平方,根据完全平方公式和已知条件即可求出x2+y2的值.[详解]解:∵x+y=-5,∴(x+y)2=25,∴x2+2xy+y2=25,∵xy=6,∴x2+y2=25-2xy=25-12=13,故答案为:13.[点睛]本题考查了完全平方公式,熟练掌握完全平方公式是解题的关键.13. 如图,若∠A=110°,AB∥CD,AD∥BC,则∠ECD=_________.[答案]70°[解析][分析]先根据AD ∥BC ,∠A=110°,由两直线平行,同旁内角互补得出∠B 的度数,再根据AB ∥CD ,由两直线平行,同位角相等得出∠ECD=∠B 即可.[详解]解:∵AD ∥BC ,∠A=110°,∴∠B=180°-110°=70°,又∵AB ∥CD ,∴∠ECD=∠B=70°. 故答案:70°. [点睛]本题考查平行线的性质,熟练掌握平行线的性质是解题的关键.14. 已知6x =5,6y =2,则62x+ y =__________.[答案]50[解析][分析]利用同底数幂的乘法与幂的乘方的逆运算把26x y +变形,然后直接代入求值即可.详解]解: 6x =5,6y =2,()22266666x y x y x y +∴=⨯=• 25250.=⨯=故答案为:50.[点睛]本题考查的是同底数幂的乘法与幂的乘方的逆运算,掌握以上知识是解题的关键.三、解答题15. (1)计算:[(4b+3a )(3a ﹣4b )﹣(b ﹣3a )2]÷4b(2)先化简,再求值.(2x ﹣1)(2x+1)﹣(x ﹣2)2﹣(x+2)2,其中133x =-.[答案](1)17342b a -+;(2)2x 2﹣9,1199[解析][分析](1)先在括号内,用平方差公式,完全平方公式进行化简,之后再整式除法进行化简;(2)用平方差公式,完全平方公式进行化简,再代入求值即可.[详解](1)原式=(9a 2﹣16b 2﹣b 2+6ab ﹣9a 2)÷4b=(﹣17b 2+6ab )÷4b=17342b a -+; (2)原式=4x 2﹣1﹣x 2+4x ﹣4﹣x 2﹣4x ﹣4=2x 2﹣9,当133x =-时,原式=100811192999⨯-=. [点睛]本题考查了用平方差公式,完全平方公式进行整式化简求值,注意括号前“-”的处理是解题的关键. 16. 如图,一个四边形纸片ABCD ,90B D ∠=∠=︒,把纸片按如图所示折叠,使点B 落在AD 边上的点,AE 是折痕.(1)判断'B E 与DC 的位置关系,并说明理由;(2)如果130C ∠=︒,求AEB ∠的度数.[答案](1)B′E ∥DC ,理由见解析;(2)65°[解析][分析](1)由于AB '是AB 的折叠后形成的,可得90AB E B D ∠'=∠=∠=︒,可得B′E ∥DC ;(2)利用平行线的性质和全等三角形求解.[详解]解:(1)由于AB '是AB 的折叠后形成的,90AB E B D ∠'=∠=∠=︒,//B E DC ∴';(2)折叠,ABE ∴∆≅△AB E ',AEB AEB ∴∠'=∠,即12AEB BEB ∠=∠',//B E DC ', 130BEB C ∴∠'=∠=︒,1652AEB BEB ∴∠=∠'=︒. [点睛]本题考查了三角形全等的判定及性质;把纸片按如图所示折叠,使点落在AD 边上的点,则∆≅△AB E',利用全等三角形的性质和平行线的性质及判定求解.ABE17. 有一边长为x cm的正方形,若边长变化,则其面积也随之变化.(1)在这个变化过程中,自变量和因变量各是什么?(2)写出正方形的面积y(cm2)关于正方形的边长x(cm)的关系式.[答案](1)自变量是边长,正方形的面积是因变量;(2)y=x2.[解析]试题分析:(1)由题意可知:在正方形的面积随边长的变化而变化的过程中,“自变量”是边长;“因变量”是面积;y x.(2)由正方形的面积公式可知:与间的函数关系是为:2试题解析:(1)正方形的边长变化,则其面积也随之变化,在这个变化过程中,自变量是边长,正方形的面积是因变量;(2)正方形的面积y(cm2)关于正方形的边长x(cm)的关系式为y=x2.18. 某生物兴趣小组在四天的试验研究中发现:骆驼的体温会随外部环境温度的变化而变化,而且在这四天中每昼夜的体温变化情况相同.他们将一头骆驼前两昼夜的体温变化情况绘制成如图所示的图象,请根据图象完成下列问题:(1)第一天中,在什么时间范围内这头骆驼的体温是上升的?它的体温从最低上升到最高需要多长时间?(2)第三天12时这头骆驼的体温是多少?[答案](1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时;(2) 39 ℃.[解析][分析](1)根据函数图象找出0~24小时图象随时间增大而增大部分,然后求出从体温开始上升到上升结束的时间差即可;(2)根据函数图象找出前两天12时对应的体温值即可.[详解]解:(1)第一天中,从4时到16时这头骆驼的体温是上升的,它的体温从最低上升到最高需要12小时.(2)第三天12时这头骆驼的体温是39 ℃.[点睛]本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,准确识图是解题的关键.19. (1)若a+b=3,ab=2,求a 4+b 4值.(2)已知a n =2,求(2a 3n )2-3(a 2)2n ÷a 2n 的值. [答案](1)17;(2)244[解析][分析]根据完全平方公式运算法则,将求解代数式化为完全平方公式性质,使代数式中包含a+b 和ab 两个因式,将已知代入即可求解;根据幂的乘方及同底数幂除法的运算法则,对求解的代数式化简再求值.[详解](1)∵()()()2222442222222a b a b a b a b ab ab ⎡⎤+=+-=+--⎣⎦ ∵a+b=3,ab=2,∴原式=()2942417--⨯=故答案为:17(2a 3n )2-3(a 2)2n ÷a 2n =4a 6n -3a 2n =4(a n )6-3(a n )2∵a n =2∴原式=4×26-3×22=244 故答案为:244[点睛]本题考查了代数式的求值,考查了完全平方公式的运算法则,将代数式构造出完全平方公式,将已知的两个数的和的值,两个数的积的值代入即可求解;本题还考查了幂的乘方及同底数幂除法的运算法则. 20. 已知:如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,∠D =∠3+60°,∠CBD =70°.(1)求证:AB ∥CD ;(2)求∠C 的度数.[答案](1)见解析;(2)25°[解析][分析](1)求出AE ∥GF ,求出∠2=∠A =∠1,根据平行线的判定推出即可;(2)根据平行线的性质得出∠D +∠CBD +∠3=180°,求出∠3,根据平行线的性质求出∠C 即可.[详解](1)证明:∵AE ⊥BC ,FG ⊥BC ,∴AE ∥GF ,∴∠2=∠A ,∵∠1=∠2,∴∠1=∠A ,∴AB ∥CD ;(2)解:∵AB ∥CD ,∴∠D +∠CBD +∠3=180°,∵∠D =∠3+60°,∠CBD =70°,∴∠3=25°,∵AB ∥CD ,∴∠C =∠3=25°.[点睛]本题考查了平行线的性质和判定的应用,牢记:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦成立.四、填空题21. 已知长方形的面积是223a 3b -,如果它的一边长是a b +,则它的周长是________.[答案]8a-4b[解析][分析]先根据长方形面积求出另一边长,然后利用周长公式进行求解即可.[详解]根据长方形的面积=长×宽,可知另一边长为(223a 3b -)÷(a+b )=3(a+b )(a-b )÷(a+b )=3(a-b ),因此其周长为2(a+b )+2×3(a-b )=2a+2b+6a-6b=8a-4b , 故答案为:8a-4b .22. 若一个角的余角是它的补角的14,这个角的度数_____. [答案]60°[解析][分析]设这个角为x °,则它的余角的度数是(90﹣x )°,它的补角的度数是(180﹣x )°,得90﹣x =14(180﹣x ). [详解]解:设这个角为x °,则它的余角的度数是(90﹣x )°,它的补角的度数是(180﹣x )°, ∵一个角的余角是它的补角的14, ∴90﹣x =14(180﹣x ) x =60,故答案60°.[点睛]考核知识点 :根据余角和补角计算.23. 一根弹簧原长13厘米,挂物体质量不得超过16千克,并且每挂1千克就伸长0.5厘米,则当挂物体质量为10千克,弹簧长度为_____________厘米,挂物体质量x(千克)与弹簧长度y(厘米)的关系式为________________[答案] (1). 18 (2). y=13+0.5x (0≤x≤16)[解析][分析]根据题意每挂1kg 的物体,弹簧就伸长0.5cm,则挂xkg 的物体后,弹簧伸长0.5x ,弹簧的原长是13cm,挂上x 千克重物后,弹簧的长度y 应该是弹簧的原长+伸长量,接下来将x=10代入函数解析式中即可求得挂物体质量为10kg 时弹簧的长度.[详解]∵每挂1千克重物伸长0.5厘米∴当挂物体质量为10千克,弹簧长度=13+0.5×10=18厘米∴挂x 千克重物伸长0.5x 厘米,则挂物体x(千克)与弹簧长度y(厘米)的函数关系式是y=13+0.5x(0⩽x ⩽16) 故答案为:18,y=13+0.5x(0⩽x ⩽16)[点睛]本题考查了一次函数的应用,先设自变量,根据题中等量关系构造一次函数,确定自变量的范围,即可将一次函数解析式表达出来.24. 已知35a b b c -=-=,2221a b c ++=,则ab bc ac ++的值等于_____. [答案]225-[解析] 试题解析:33,55a b b c -=-=, 两式相加得:6.5a c -= ()()()()22222212,2ab bc ca a b b c a c a b c ⎡⎤++=--+-+--++⎣⎦22213362,2555⎡⎤⎛⎫⎛⎫⎛⎫=-++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦2.25=- 故答案为2.25- 25. 已知a 1=2112-,a 2=2113-,a 3=2114-,…,a n =()2111n -+,S n =a 1•a 2…a n ,则S 2015=__. [答案]20174032 [解析][分析]先利用平方差公式把12,a a •••变形,利用约分可得结果.[详解]解:1211131111,22222a ⎛⎫⎛⎫=-=+-=⨯ ⎪⎪⎝⎭⎝⎭ 2211142111,33333a ⎛⎫⎛⎫=-=+-=⨯ ⎪⎪⎝⎭⎝⎭ 3211153111,44444a ⎛⎫⎛⎫=-=+-=⨯ ⎪⎪⎝⎭⎝⎭ …2014211120162014111,20152015201520152015a ⎛⎫⎛⎫=-=+-=• ⎪⎪⎝⎭⎝⎭ 2015211120172015111,20162016201620162016a ⎛⎫⎛⎫=-=+-=• ⎪⎪⎝⎭⎝⎭ 20151232015S a a a a ∴=•••••••3142532016201420172015,2233442015201520162016=⨯⨯⨯⨯⨯⨯•••⨯⨯⨯⨯ 120172017.220164032=⨯= 故答案为:20174032[点睛]本题考查的是利用平方差公式进行简便运算,掌握平方差公式是解题的关键.五、解答题26. 某机动车出发前油箱内有油42L ,行驶若干小时后,途中在加油站加油若干升.油箱中余油量Q ()与行驶时间()之间的函数关系如图所示,根据图回答问题:(1)机动车行驶5h后加油,途中加油升:(2)根据图形计算,机动车在加油前的行驶中每小时耗油多少升?km h,要到达目的地,油箱中的油是否够用?请说明理由.(3)如果加油站距目的地还有400km,车速为60/[答案](1)24;(2)每小时耗油量为6L;(3)油箱中的油不够用,理由见解析[解析][分析](1)图象上x=5时,对应着两个点,油量一多一少,可知此时加油多少;(2)因为x=0时,Q=42,x=5时,Q=12,所以出发前油箱内余油量42L,行驶5h后余油量为12L,共用去30L,因此每小时耗油量为6L;(3)由图象知,加油后还可行驶6小时,即可行驶60×6千米,然后同400千米做比较,即可求出答案.[详解]解:(1)由图可得,机动车行驶5小时后加油为36−12=24;故答案为:24;(2)∵出发前油箱内余油量42L,行驶5h后余油量为12L,共用去30L,因此每小时耗油量为6L,(3)由图可知,加油后可行驶6h,故加油后行驶60×6=360km,∵400>360,∴油箱中的油不够用.[点睛]此题考查函数图象的实际应用,解答本题的关键是仔细观察图象,寻找题目中所给的信息,进而解决问题,难度一般.27. 你能求(x一1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形人手,分别计算下列各式的值.(1)(x-1)(x+1) =_____________;(2)(x —1)( x 2+x+1) =_____________;(3)(x -1)(x 3+ x 2+x+1) =____________;…由此我们可以得到:(4)(x 一1)( x 99+x 98+x 97+…+x+1) =___________,请你利用上面的结论,完成下列的计算:(5)299+298+297+…+2+1;[答案](1)21x - ; (2)31x -; (3)41x -;(4)1001x -;(5)10021-.[解析][分析](1)直接运用平方差公式计算即可;(2)(3)利用多项式乘多项式的运算法则进行计算即可;(4)根据(1)(2)(3)总结规律,运算规律即可解答;(5)将299+298+297+…+2+1写成(2-1)(299+298+297+…+2+1),再利用规律解答即可.[详解]解:(1)(x -1)(x+1) =21x - ;(2)(x —1)( x 2+x+1) =31x -;(3)(x -1)(x 3+ x 2+x+1) =41x -;(4) (x 一1)( x 99+x 98+x 97+…+x+1)=1001x -(5) 299+298+297+…+2+1=(2-1)(299+298+297+…+2+1)=10021-.[点睛]本题考查整式的混合运算能力以及分析、总结和归纳能力,掌握多项式乘多项式运算法则并总结出代数式的规律是解答本题的关键.28. 若(x 2+3mx ﹣13)(x 2﹣3x+n )的积中不含x 和x 3项, (1)求m 2﹣mn+14n 2的值; (2)求代数式(﹣18m 2n )2+(9mn )﹣2+(3m )2014n 2016的值.[答案](1)4936 (2)3629 [解析][分析]原式利用多项式乘以多项式法则计算,整理后根据积中不含x 和x 3项,求出m 与n 的值,(1)利用完全平方公式变形后,将m 与n 的值代入计算即可求出值;(2)利用幂的乘方与积的乘方,负整数指数幂法则变形,将各自的值代入计算即可求出值.[详解](x 2+3mx ﹣13)(x 2﹣3x+n )=x 4+nx 2+(3m ﹣3)x 3﹣9mx 2+(3mn+1)x ﹣13x 2﹣13n , 由积中不含x 和x 3项,得到3m ﹣3=0,3mn+1=0, 解得:m=1,n=﹣13, (1)原式=(m ﹣12n )2=(76)2=4936; (2)原式=324m 4n 2+22181m n +(3mn )2014•n 2=36+19+19=3629. [点睛]此题考查了多项式乘以多项式,以及整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.。

人教版数学七年级下册《期中考试题》附答案

人教版数学七年级下册《期中考试题》附答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共15小题)1. 下列等式:①24x y +=;②3xy=7;③220x y +=;④12y x-=,二元一次方程的个数是( ) A. 1B. 2C. 3D. 42. 下列事件中,必然事件是( ) A 掷一枚硬币,反面朝上B. 掷一枚质地均匀的骰子,掷得的点数是偶数C. 任意三条线段可以组成一个三角形D. 366人中至少有两个人的生日相同3. 如图,下列给出条件中,能判定ACDE 的是( )A. ∠A +∠2=180°B. ∠1=∠AC. ∠1=∠4D. ∠A =∠34. 已知直线y=x+b 和y=ax -3交于点P(2,1),则关于x ,y 的方程组3x y b ax y -=-⎧⎨-=⎩的解是( )A. 1?2x y =-⎧⎨=-⎩B. 21x y =⎧⎨=⎩C. 12x y =⎧⎨=⎩D. 21? x y =-⎧⎨=⎩5. 如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°6. 如图,△ABC 中,∠BAC =60°,∠C =80°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A. 20°B. 30°C. 40°D. 70°7. 如图,周长为68cm 的长方形ABCD 被分成7个形状大小完全相同的小长方形,则长方形ABCD 的面积为( )A. 40cm 2B. 128cm 2C. 280cm 2D. 140cm 28. 关于x ,y 的二元一次方程组234x y x y k+=⎧⎨-=⎩的解满足2x y -=-,则k 的值是( )A. 3B. -2C. -3D. 59. 如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是( )A.613B.513C.413D.31310. 如图,△ABC 中,AB =AC ,腰AB 的垂直平分线DE 交AB 于点E ,交AC 于点D ,且∠DBC =15°,则∠A 的度数是 ( )A. 50°B. 36°C. 40°D. 45°11. 某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( ) A. 90元B. 72元C. 120元D. 80元12. 如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A. 540°B. 180°nC. 180°(n-1)D. 180°(n+1) 13. 方程组34372x y y x -=-⎧⎨=+⎩解( )A. 312x y =⎧⎪⎨=⎪⎩B. 313x y =-⎧⎪⎨=⎪⎩C. 313x y =-⎧⎪⎨=⎪⎩D. 71x y =⎧⎨=⎩14. 方程组11233210x y x y +⎧-=⎪⎨⎪+=⎩的解为( ) A. 312x y =⎧⎪⎨=⎪⎩B. 313x y =-⎧⎪⎨=⎪⎩C. 313x y =-⎧⎪⎨=⎪⎩D. 71x y =⎧⎨=⎩15. 如果方程组24x y ax y a+=⎧⎨-=⎩的解是方程3x ﹣5y ﹣28=0的一个解,则a=( )A. 2B. 3C. 7D. 6二.填空题16. 若23(2)0mm x y --+=是关于x ,y 二元一次方程,则m 的值是________.17. 在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球共20只.其中,黑球6只试估算口袋中再加入黑球______只,才能使摸出黑球的概率是13? 18. 把一张长方形纸条按如图方式折叠,若∠1=40°,则∠2的度数是______.19. 已知21m n =-⎧⎨=⎩是关于m,n 的方程组3423am b n m bn a +=⎧⎨+=+⎩的解,则a+b= ________.20. 一副含有30°和45°直角三角尺叠放如图,则图中∠α的度数是______.21. 在一个不透明的口袋中,有大小、形状完全相同的红、绿两种颜色的球共15个,从中摸出红球的概率为1 3 ,则袋中绿球的个数为__________个.22. 定义一种关于非零常数a,b的新运算“*”,规定a*b=ax+by,例如3*2=3x+2y.若2*1=8,4*(-1)=10,则x-y的值是__________.23. 如图,△ABC和△CDE都是等边三角形,且∠EBD=72°,则∠AEB的度数是______.三、解答题24. 如图,△ABC中,CD⊥AB于点D,DE∥BC交AC于点E,EF⊥CD于点G,交BC于点F.(1)求证:∠ADE=∠EFC;(2)若∠ACB=72°,∠A=60°,求∠DCB的度数.25. 如图,过点A(0,2),B(3,0)的直线AB与直线CD:y=13x-3 交于D,C为直线CD与y轴的交点.求:(1)直线AB对应的函数表达式;(2)求△ADC的面积.26. 光明中学准备购买一批笔袋奖励优秀同学.现文具店有A、B两种笔袋供选择,已知2个A笔袋和3个B笔袋的价格相同;而购买1个A笔袋和2个B笔袋共需35元.(1)求A.B两种笔袋的单价;(2)根据需要,学校共需购买40个笔袋,该文具店为了支持学校工作,给出了如下两种大幅优惠方案:方案一:A种笔袋六折、B种笔袋四折;方案二:A、B两种笔袋都五折.设购买A种笔袋个数为a(a≥0)个,购买这40个笔袋所需费用为w元.①分别表示出两种优惠方案的情况下w与a之间的函数关系式;②求出购买A种笔袋多少个时,两种方案所需费用一样多.答案与解析一.选择题(共15小题)1. 下列等式:①24x y +=;②3xy=7;③220x y +=;④12y x-=,二元一次方程的个数是( ) A. 1 B. 2C. 3D. 4[答案]A [解析] [分析]根据二元一次方程的定义解答,即可得到答案. [详解]解:24x y +=是二元一次方程,故①正确; 3xy=7,1x ,12y x-=不是二元一次方程,故②③④错误; 故选:A .[点睛]本题考查了二元一次方程的定义,解题的关键是熟练掌握定义,分别进行判断. 2. 下列事件中,必然事件是( ) A. 掷一枚硬币,反面朝上B. 掷一枚质地均匀的骰子,掷得的点数是偶数C. 任意三条线段可以组成一个三角形D. 366人中至少有两个人的生日相同 [答案]D [解析] [分析]根据题意,找到一定会发生的事件,即可得到答案. [详解]解:掷一枚硬币,反面朝上是随机事件,故A 错误;掷一枚质地均匀的骰子,掷得的点数是偶数是随机事件,故B 错误; 任意三条线段可以组成一个三角形是随机事件,故C 错误; 366人中至少有两个人的生日相同是必然事件,故D 正确; 故选:D .[点睛]解决本题需要正确理解必然事件、不可能事件、随机事件概念.必然事件指在一定条件下一定发生的事件.3. 如图,下列给出的条件中,能判定ACDE 的是( )A. ∠A +∠2=180°B. ∠1=∠AC. ∠1=∠4D. ∠A =∠3[答案]B [解析] [分析]根据平行线的判定定理对各选项进行逐一判断即可.[详解]解:A 选项:∵∠A+∠2=180°,同旁内角互补,两直线平行,∴ABDF ,不符合题意; B 选项:∵∠1=∠A ,同位角相等,两直线平行,∴ACDE ,符合题意; C 选项:∵∠1=∠4,内错角相等,两直线平行,∴ABDF ,不符合题意; D 选项:∵∠A =∠3,同位角相等,两直线平行,∴ABDF ,不符合题意, 故选:B .[点睛]本题考查的是平行线的判定,熟知平行线的判定定理是解答此题的关键,①同位角相等,两直线平行;②内错角相等,两直线平行;③同旁内角互补,两直线平行. 4. 已知直线y=x+b 和y=ax -3交于点P(2,1),则关于x ,y 的方程组3x y bax y -=-⎧⎨-=⎩的解是( )A. 1?2x y =-⎧⎨=-⎩B. 21x y =⎧⎨=⎩C. 12x y =⎧⎨=⎩D. 21? x y =-⎧⎨=⎩[答案]B [解析] [分析]根据二元一次方程组的解的定义知,该方程组的解就是组成方程组的两个二元一次方程的图象的交点. [详解]解:已知直线y=x+b 和y=ax -3交于点P(2,1), ∴关于x ,y 的方程组3x y b ax y -=-⎧⎨-=⎩的解是21x y =⎧⎨=⎩;故选:B .[点睛]本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 5. 如图,已知a ∥b ,∠1=50°,∠3=10°,则∠2等于( )A. 30°B. 40°C. 50°D. 60°[答案]B[解析][分析]由平行线的性质,得到∠4=∠1=50°,由三角形的外角性质,即可求出∠2的度数.[详解]解:如图:∵a∥b,∴∠4=∠1=50°,∵∠4=∠2+∠3,∠3=10°,∴∠2=50°10°=40°;故选:B.[点睛]本题考查了平行线的性质,三角形的外角性质,解题的关键是熟练掌握平行线的性质,正确得到∠4=∠1=50°.6. 如图,△ABC中,∠BAC=60°,∠C=80°,∠BAC的平分线AD交BC于点D,点E是AC上一点,且∠ADE =∠B,则∠CDE的度数是()A. 20°B. 30°C. 40°D. 70°[答案]B[解析][分析]由三角形的内角和定理,得到∠ADE=∠B=40°,由角平分线的性质,得∠DAE=30°,则∠ADC=70°,即可求出∠CDE的度数.[详解]解:∵△ABC 中,∠BAC =60°,∠C =80°, ∴∠ADE =∠B=40°, ∵AD 平分∠BAC , ∴∠DAE=30°, ∴∠ADC=70°,∴∠CDE=70°40°=30°; 故选:B .[点睛]本题考查了三角形的内角和定理,角平分线的性质,解题的关键是熟练掌握内角和定理和角平分线的性质进行解题.7. 如图,周长为68cm 的长方形ABCD 被分成7个形状大小完全相同的小长方形,则长方形ABCD 的面积为( )A. 40cm 2B. 128cm 2C. 280cm 2D. 140cm 2[答案]C [解析] [分析]根据2x=5y 结合长方形的周长为68cm ,即可得出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,再利用长方形的面积公式即可求出长方形ABCD 的面积. [详解]解:根据题意:有255268x y y x y x x y =⎧⎨+++++=⎩, 解得:104x y =⎧⎨=⎩,∴S=2x •(x+y )=2×10×(10+4)=280. ∴长方形ABCD 的面积为280平方厘米. 故选:C .[点睛]本题考查了二元一次方程组的应用,解题的关键是:根据长方形的对边相等找出2x=5y ;找准等量关系,正确列出二元一次方程组.8. 关于x ,y 的二元一次方程组234x y x y k+=⎧⎨-=⎩的解满足2x y -=-,则k 的值是( )A. 3B. -2C. -3D. 5[答案]C [解析] [分析]根据题意,直接由②①,得到333x y k -=-,结合2x y -=-,即可求出k 的值.[详解]解:∵234x y x y k +=⎧⎨-=⎩①②由②①,得到333x y k -=-, ∴323k x y --==-, 解得:3k =-; 故选:C .[点睛]本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组,正确得到323k x y --==-. 9. 如图,在4×4的正方形网格中,黑色部分的图形构成了一个轴对称图形,现在任意取一个白色小正方形涂黑,使黑色部分仍然是一个轴对称图形的概率是( )A.613B.513C.413D.313[答案]B [解析] [分析]由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有16种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.[详解]解:∵由题意,共16-3=13种等可能情况,其中构成轴对称图形的有如下5个图所示的5种情况,∴概率为:513P ;故选:B.[点睛]本题考查了求概率的方法:先列表展示所有等可能的结果数n,再找出某事件发生的结果数m,然后根据概率的定义计算出这个事件的概率=mn.10. 如图,△ABC中,AB=AC,腰AB的垂直平分线DE交AB于点E,交AC于点D,且∠DBC=15°,则∠A 的度数是()A. 50°B. 36°C. 40°D. 45°[答案]A[解析][分析]根据线段垂直平分线上的点到线段两端点的距离相等可得AD=BD,再根据等边对等角可得∠A=∠ABD,∠ABC=∠C,然后根据三角形的内角和等于180°方程求解即可.[详解]解:∵AB的垂直平分线DE交AC于D,∴AD=BD,∴∠A=∠ABD,∵AB=AC,∴∠ABC=∠C,∵∠DBC=15°,∴∠ABC=∠C=∠A+15°,在△ABC中,∠A+∠ABC+∠C=180°,∴∠A+∠A+15°+∠A+15°=180°,解得∠A=50°.故选:A .[点睛]本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,熟记性质与定理并列出方程是解题的关键.11. 某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( ) A. 90元 B. 72元C. 120元D. 80元[答案]C [解析] [分析]设乙商品的成本价格为x 元,则根据甲、乙两件商品以同样的价格卖出,列出方程,即可求出答案. [详解]解:设乙商品的成本价格为x ,则80(120%)(120%)x ⨯+=•-,解得:120x =;∴乙商品的成本价是120元. 故选:C .[点睛]本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确列出一元一次方程进行解题. 12. 如图1n //AB CB ,则∠1+∠2+∠3+…+∠n=( )A. 540°B. 180°nC. 180°(n-1)D. 180°(n+1) [答案]C [解析] [分析]根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,由两直线平行,同旁内角互补,即可求出答案. [详解]解:根据题意,作21//DB AB ,31//EB AB ,41//FB AB ,∵1n //AB CB ,∴121180B B D ∠+∠=︒,2323180DB B B B E ∠+∠=︒,3434180EB B B B F ∠+∠=︒,…… ∴122323343411803B B D DB B B B E EB B B B F ∠+∠+∠+∠+∠+∠=︒⨯,…… ∴123180(1)n n ∠+∠+∠++∠=︒⨯-;故选:C .[点睛]本题考查了平行线的性质,解题的关键是正确作出辅助线,熟练运用两直线平行同旁内角互补进行证明.13. 方程组34372x y y x -=-⎧⎨=+⎩的解( )A. 312x y =⎧⎪⎨=⎪⎩B. 313x y =-⎧⎪⎨=⎪⎩C. 313x y =-⎧⎪⎨=⎪⎩D. 71x y =⎧⎨=⎩[答案]B [解析] [分析]先整理方程组,然后利用代入消元法进行解题,即可得到答案. [详解]解:34372x y y x -=-⎧⎨=+⎩,整理得:34372x y y x =-⎧⎨=+⎩①②,把①代入②,得:13y =, 把13y =代入①,得:3x =-, ∴方程组的解为:313x y =-⎧⎪⎨=⎪⎩;故选:B .[点睛]本题考查了解二元一次方程组,解题关键是熟练掌握代入消元法解二元一次方程组进行解题.14. 方程组11233210x y x y +⎧-=⎪⎨⎪+=⎩的解为( ) A 312x y =⎧⎪⎨=⎪⎩B. 313x y =-⎧⎪⎨=⎪⎩C. 313x y =-⎧⎪⎨=⎪⎩D. 71x y =⎧⎨=⎩[答案]A [解析] [分析]先整理方程组,然后利用加减消元法进行解题,即可得到答案.[详解]解:11233210x y x y +⎧-=⎪⎨⎪+=⎩, 整理得:3283210x y x y -=⎧⎨+=⎩①②,由①+②,得3x =, 把3x =代入①,得12y =, ∴方程组的解为:312x y =⎧⎪⎨=⎪⎩;故选:A .[点睛]本题考查了解二元一次方程组,解题的关键是熟练掌握加减消元法解二元一次方程组进行解题. 15. 如果方程组24x y ax y a+=⎧⎨-=⎩的解是方程3x ﹣5y ﹣28=0的一个解,则a=( )A. 2B. 3C. 7D. 6[答案]A [解析][详解]解:解方程组24x y a x y a +=⎧⎨-=⎩ 得3x ay a=⎧⎨=-⎩代入方程3x −5y −28=0得95280a a +-= 解得2a =故选A二.填空题16. 若23(2)0m m x y --+=是关于x ,y 的二元一次方程,则m 的值是________.[答案] [解析] [分析]根据二元一次方程的定义,得到关于m 的方程,即可求出m 的值. [详解]解:∵23(2)0mm x y --+=是关于x ,y 的二元一次方程,∴23120m m ⎧-=⎨-≠⎩,解得:2m =-; 故答案为:.[点睛]本题考查了二元一次方程的定义,解题的关键是掌握定义,正确得到关于m 的方程,解方程即可. 17. 在一个不透明的口袋里装有仅颜色不同的黑、白两种颜色球共20只.其中,黑球6只试估算口袋中再加入黑球______只,才能使摸出黑球的概率是13? [答案]1 [解析] [分析]设再加入x 只黑球,利用求概率的公式,列出方程,即可求出答案. [详解]解:设再加入x 只黑球,则61203x x +=+,解得:1x =;∴再加入黑球1只,才能使摸出黑球的概率是13; 故答案为:1.[点睛]本题考查了分式方程的应用,以及概率公式,解题的关键是熟练掌握题意,正确列出方程,从而进行解题.18. 把一张长方形纸条按如图方式折叠,若∠1=40°,则∠2的度数是______.[答案]70° [解析] [分析]由平行线的性质得到∠1=∠3=40°,由折叠的性质得∠2+∠3=∠ABC ,结合∠2+∠ABC=180°,即可求出∠2的度数. [详解]解:如图,由平行线的性质,得∠1=∠3=40°, 由折叠的性质得∠2+∠3=∠ABC , ∵∠2+∠ABC=180°, ∴2∠2=180°40°, ∴∠2=70°; 故答案为:70°.[点睛]本题考查了矩形和折叠问题,解题的关键是掌握平行线的性质和折叠的性质进行解题.19. 已知21m n =-⎧⎨=⎩是关于m,n 的方程组3423am b n m bn a +=⎧⎨+=+⎩的解,则a+b= ________.[答案]-13 [解析] 试题分析:因为{21m n =-=是关于m,n的方程组{3423am b nm bn a +=+=+的解,所以将m=﹣2,n=1代入方程组得:{231211a b a b -+=-=-①②, ①+②得:2b=﹣10,即b=﹣5,将b=﹣5代入①得:a=﹣8,则a+b=﹣13,考点:二元一次方程组的解.20. 一副含有30°和45°的直角三角尺叠放如图,则图中∠α的度数是______.[答案]105°[解析][分析]由直角三角形的性质,得到∠EBC=45°,∠ECB=30°,由三角形的内角和定理,得到∠BEC=105°,即可得到∠α的度数.[详解]解:如图:∵∠EBC=45°,∠ECB=30°,∴∠BEC=180°45°30°=105°;∴∠=105°;故答案为:105°.[点睛]本题考查了三角形的内角和定理,以及直角三角形的性质,解题的关键是掌握三角形的内角和定李进行解题.21. 在一个不透明的口袋中,有大小、形状完全相同的红、绿两种颜色的球共15个,从中摸出红球的概率为1 3 ,则袋中绿球的个数为__________个.[答案]10[解析][分析]根据红球概率公式列出方程,求解即可.[详解]解:设共有x 个绿球,由题意得:151153x -=, 解得:x=10. 故答案为:10.[点睛]本题考查的是随机事件概率的应用,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=mn. 22. 定义一种关于非零常数a ,b 的新运算“*”,规定a *b=ax+by ,例如3*2=3x+2y .若2*1=8,4*(-1)=10,则x -y 的值是__________. [答案]1 [解析] [分析]根据a*b=ax+by ,可得方程组,根据加减消元法,可得答案. [详解]解:∵2*1=8,4* (-1)=10,∴28410x y x y +=⎧⎨-=⎩,解得:32x y =⎧⎨=⎩,∴321x y -=-=; 故答案:1.[点睛]本题考查了新定义的运算法则,以及解二元一次方程组,解题的关键是熟练掌握新定义,正确求出二元一次方程组的解.23. 如图,△ABC 和△CDE 都是等边三角形,且∠EBD=72°,则∠AEB 的度数是______.[答案]132° [解析] [分析]由已知条件推导出△ACE ≌△BCD ,从而∠DBC=∠CAE ,再通过角之间的转化,利用三角形内角和定理能求出∠AEB 的度数.[详解]解:∵△ABC和△CDE都是等边三角形,且∠EBD=72°,∴AC=BC,CE=CD,∠ACB=∠ECD=60°,又∵∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,∴∠BCD=∠ACE,∴△ACE≌△BCD,∴∠DBC=∠CAE,∴72°∠EBC=60°∠BAE,∴72°(60°∠ABE)=60°∠BAE,∴∠ABE+∠BAE=48°,∴∠AEB=180°(∠ABE+∠BAE)=180°48°=132°.故答案为:132°.[点睛]本题考查角的大小的求法,是基础题,解题时要注意等边三角形的性质、三角形全等的性质和三角形内角和定理的合理运用.三、解答题24. 如图,△ABC中,CD⊥AB于点D,DE∥BC交AC于点E,EF⊥CD于点G,交BC于点F.(1)求证:∠ADE=∠EFC;(2)若∠ACB=72°,∠A=60°,求∠DCB的度数.[答案](1)证明见详解;(2)42°[解析][分析](1)由DE∥BC,得∠ADE=∠B,然后证明∠B=∠EFC,即可得到结论;(2)由三角形内角和定理,先求出∠B的度数,然后由余角的性质,即可求出∠DCB的度数.[详解](1)证明:∵DE∥BC,∴∠ADE=∠B,∵CD⊥AB,EF⊥CD,∴AB∥EF,∴∠B=∠EFC , ∴∠ADE =∠EFC ;(2)解:∵∠ACB =72°,∠A =60°, ∴∠B=180°72°60°=48°, ∵CD ⊥AB , ∴∠BDC=90°,∴∠DCB=90°48°=42°.[点睛]本题考查了三角形的内角和定理,平行线的性质,以及余角的性质,解题的关键是熟练掌握所学的知识,正确求出所需角的度数.25. 如图,过点A(0,2),B(3,0)的直线AB 与直线CD :y=13x-3 交于D ,C 为直线CD 与y 轴的交点. 求:(1)直线AB 对应的函数表达式; (2)求△ADC 的面积.[答案](1)223y x =-+;(2)252[解析] [分析](1)由点A 、B 的坐标,直接利用待定系数法,即可求出直线AB 的函数解析式; (2)先求出点C 和点D 的坐标,然后求出AC 的长度,再利用面积公式,即可得到答案. [详解]解:(1)设直线AB 的解析式为y kx b =+, 把点A 和点B 坐标代入得:230b k b =⎧⎨+=⎩,解得:232k b ⎧=-⎪⎨⎪=⎩,∴直线AB 的解析式为:223y x =-+; (2)∵直线CD 的解析式为133y x =-, 令0x =,则3y =-,∴点C 的坐标为(0,3-);结合直线AB 与直线CD ,则 223133y x y x ⎧=-+⎪⎪⎨⎪=-⎪⎩, 解得:543x y =⎧⎪⎨=-⎪⎩, ∴点D 的坐标为:(5,43-); ∴AC=5,∴△ADC 的面积为:1255522S =⨯⨯=; [点睛]本题考查了一次函数的图像和性质,三角形的面积公式,解题的关键是熟练掌握一次函数的性质,利用待定系数法求出一次函数的解析式.26. 光明中学准备购买一批笔袋奖励优秀同学.现文具店有A 、B 两种笔袋供选择,已知2个A 笔袋和3个B 笔袋的价格相同;而购买1个A 笔袋和2个B 笔袋共需35元.(1)求A .B 两种笔袋的单价;(2)根据需要,学校共需购买40个笔袋,该文具店为了支持学校工作,给出了如下两种大幅优惠方案:方案一:A 种笔袋六折、B 种笔袋四折;方案二:A 、B 两种笔袋都五折.设购买A 种笔袋个数为a (a≥0)个,购买这40个笔袋所需费用为w 元.①分别表示出两种优惠方案的情况下w 与a 之间的函数关系式;②求出购买A 种笔袋多少个时,两种方案所需费用一样多.[答案](1)A 种笔袋的单价为15元,B 种笔袋的单价为10元;(2)①方案一:5160w a =+;方案二:52002w a =+;②当购买A 种笔袋16个时,两种方案所需费用一样多. [解析][分析](1)根据题意,找出题目的等量关系,列出方程组,求出方程组的解,即可得到答案;(2)①根据题意,分别列出方案一和方案二的关系式,即可得到答案;②令两种方案的费用相等,列出方程,解方程即可得到答案.[详解]解:(1)根据题意,设A 种笔袋的单价为x 元,B 种笔袋的单价为y 元,则23235x y x y =⎧⎨+=⎩, 解得:1510x y =⎧⎨=⎩, ∴A 种笔袋的单价为15元,B 种笔袋的单价为10元;(2)①设购买A 种笔袋个数为a (a ≥0)个,则B 种笔袋个数为(40-a )个,则方案一:1560%10(40)40%w a a =⨯+-⨯,∴5160w a =+;方案二:[1510(40)]50%w a a =+-⨯, ∴52002w a =+; ②当两种方案所需费用一样多时,有; 551602002a a +=+, 解得:16a =,∴当购买A 种笔袋16个时,两种方案所需费用一样多.[点睛]本题考查了一元一次方程的应用——方案问题,以及二元一次方程组的应用,解题的关键是正确掌握题意,正确列出方程,从而进行解题.。

人教版数学七年级下册《期中检测试题》(带答案)

人教版数学七年级下册《期中检测试题》(带答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.填空题1.一个数的平方根等于它本身,这个数是_______;一个数的算术平方根等于它本身,这个数是_______;一个数的立方根等于它本身,这个数是___________.2.如果一个数的两个平方根分别是a+3与2a-15,那么这个数是_______.3.25的算术平方根是_________;(-14)2 的算术平方根是_________. 4.若3x +是4的平方根,的立方根是1y -,则x y +=_________.5.把命题“对顶角相等”改写成“如果…那么…”形式是__________________.6.如图,直线a ∥b ,点B 在直线b 上,AB BC ⊥,若255∠=︒,则1∠=___度.7.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x 为____.8.如图,已知直线a ∥b ,c ∥d ,∠1=115°,则∠2=__________,∠3=__________.9.实数120的整数部分是_____, 小数部分是_____.10.把下列各数分别填入相应的集合内:32,34,9, -5,-38,0有理数集合:_______________;无理数集合: _______________; 正数集合:__________________;负数集合:_________________.二.选择题11.与数轴上的点成一一对应关系的数是( )A. 有理数B. 整数C. 无理数D. 实数12.在下列四个图中,∠1与∠2是同位角的图是( )A. ①②B. ①③C. ②③D. ③④13.下列运算中,正确的是( )55-= B. 3.60.6-=- 2(13)13-= 366=±14.坐标平面上,在第三象限内有一点P ,且点P 到X 轴的距离是4,到Y 轴的距离是5,则点P 的坐标为() A. (-5,-4) B. (-4 ,5) C. (4,5) D. (5,-4)15.若点P(m+3,m+1) 在y 轴上,则点P 的坐标为( )A. (0,2)B. (2,0)C. (0,4)D. (0,-2)16.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A. 向右平移了3个单位B. 向左平移了3个单位C. 向上平移了3个单位D. 向下平移了3个单位17.下列命题中,是假命题的是( )A 两点之间,线段最短 B. 同旁内角互补C. 直角的补角仍然是直角D. 对顶角相等18.如图,在下列条件中:①12∠=∠:②BAD BCD ∠=∠;③ABC ADC ∠=∠且34∠=∠;④180BAD ABC ∠+∠=︒,能判定AB CD ∥的有( )A. 3个B. 2个C. 1个D. 0个19.把一张对面互相平行的纸条折成如图所示那样,EF 是折痕,若∠EFB=32°则下列结论正确的有( )(1)∠C ′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A. 1个B. 2个C. 3个D. 4个20.一个数的立方根是 4,这个数的平方根是 ( )A. 8B. -8C. 8 或 -8D. 4 或 -421.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A -3 B. -1 C. 1 D. -3或122.16平方根与-8的立方根的和是( )A. -4或6B. -6或2C. -2或6D. 4或623.下列各对数值中不是二元一次方程x +2y=2的解是( )A. 20x y =⎧⎨=⎩B. 22x y =-⎧⎨=⎩C. 01x y =⎧⎨=⎩D. 10x y =-⎧⎨=⎩ 24.已知a<b<0 , 则点A(a-b ,b )在第( )象限A. 一B. 二C. 三D. 四三.解答题25.求下列各式中的值(1)252x =36(2)-3=3826.解方程组25{437x y x y +=+=. 27.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?28.如图,三条直线AB,CD,EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF.求∠DOG的度数.29.根据下列证明过程填空:如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C证明:∵BD⊥AC,EF⊥AC∴∠2=∠3=90°( )∴BD∥EF ( )∴∠4=_____( )∵∠1=∠4∴∠1=_____( )∴DG∥BC( )∴∠ADG=∠C( )答案与解析一.填空题1.一个数的平方根等于它本身,这个数是_______;一个数的算术平方根等于它本身,这个数是_______;一个数的立方根等于它本身,这个数是___________.[答案](1). 0 (2). 0,1 (3). 0,1,-1[解析][分析]利用平方根,算术平方根,以及立方根定义判断即可.[详解]解:一个数的平方根等于它本身,这个数是0;一个数算术平方根等于它本身,这个数是0,1;一个数的立方根等于它本身,这个数是0,1,−1;故答案为:0;0,1;0,1,-1.[点睛]此题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解本题的关键.2.如果一个数的两个平方根分别是a+3与2a-15,那么这个数是_______.[答案]49[解析][分析]根据一个数的平方根互为相反数,可得这个数的平方根,再根据互为相反数的和等于0,可得平方根,再根据平方,可得这个数.[详解]解:∵一个数的两个平方根分别是a+3与2a-15,∴(a+3)+(2a﹣15)=0,a=4,a+3=4+3=7,7的平方是49,∴这个数是49,故答案为:49.[点睛]此题考查平方根,解题关键在于求出a的值._________;(-14)2 的算术平方根是_________.[答案](1). (2). 1 4[解析] [分析]21()4-的值,再分别计算它们的算术平方根即可得解.[详解5=,5211()416-=,116的算术平方根是14,14.[点睛]本题主要考查了求一个数的平方及算术平方根,熟练掌握相关计算方法是解决本题的关键.4.若3x+是4的平方根,的立方根是1y-,则x y+=_________.[答案]-2或-6[解析]32x+==±,可得x=-1或-5;12y-==-,可得y=-1.所以x+y=-2或-6.5.把命题“对顶角相等”改写成“如果…那么…”的形式是__________________.[答案]如果两个角是对顶角,那么这两个角相等[解析][分析]命题中的条件是两个角是对顶角,放在“如果”的后面,结论是这两个角相等,应放在“那么”的后面.[详解]解:题设为:两个角是对顶角,结论为:这两个角相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么这两个角相等,故答案为:如果两个角是对顶角,那么这两个角相等.[点睛]本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.6.如图,直线a∥b,点B在直线b上,AB BC⊥,若255∠=︒,则1∠=___度.[答案]35[解析]⊥[详解]试题分析:因为直线a∥b,根据同位角的知识可知,∠2等于∠3,因为AB BC ∠+∠=︒⇒∠=︒所以1390135点评:本题综合考查了对顶角,同旁内角互补等基本知识的运用7.把一副三角板按如图所示的方式摆放,则两条斜边所成的钝角x为____.[答案]165°[解析][分析]根据三角形的一个外角等于与它不相邻的两个内角的和求解即可.[详解]解:∵∠x为下边小三角形外角,∴∠x=30°+(180°-45°)=165°,故答案为:165°.[点睛]本题考查了三角形外角定理,通过三角板拼装来求角度数,将问题实际化.8.如图,已知直线a∥b,c∥d,∠1=115°,则∠2=__________,∠3=__________.[答案](1). 115°(2). 115°[解析]∵a∥b,∠1=115°,∴∠2=∠1=115°.∵c∥d,∴∠3=∠2=115°.点睛:本题考查了平行线的性质,①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补.根据平行线的性质解答即可.9.120_____,小数部分是_____.[答案](1). 10 (2). 120[解析][分析]利用二次根式的估算,先找出离被开方数最近的两个完全平方数,得出二次根式所在的范围即可.[详解]100120121,∴120,12010,120,故答案为:10120.[点睛]本题主要考查的是二次根式的估算,掌握二次根式的估算方法是解题的关键.10.,34,,0 有理数集合:_______________;无理数集合: _______________;正数集合:__________________;负数集合:_________________.[答案] (1).34,0 (2). , (3). ,34 , [解析][分析]根据有理数、无理数、正负数的定义判断即可.[详解]解:有理数:340;,34负数:故答案为:有理数集合:340 ,34[点睛]本题考查实数的分类,其中0是有理数,但不是正数也不是负数.二.选择题11.与数轴上的点成一一对应关系的数是( )A. 有理数B. 整数C. 无理数D. 实数[答案]D[解析][分析]根据数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示进行回答.[详解]解:因为数轴上的点都表示一个实数,一个实数都可以用数轴上的点来表示,所以实数与数轴上的点成一一对应.故选:D .[点睛]此题考查实数与数轴,解题关键在于掌握其定义.12.在下列四个图中,∠1与∠2是同位角的图是( )A. ①②B. ①③C. ②③D. ③④[答案]B[解析][分析] 根据同位角的定义判断即可.[详解]由图可知①③中的∠1与∠2有公共边,为同位角,故选B.[点睛]此题主要考察同位角的定义.13.下列运算中,正确的是( ) A. 55-=- B. 3.60.6-=- C. 2(13)13-= D. 366=± [答案]C[解析][分析]根据二次根式的性质,结合算术平方根的概念对每个选项进行分析,然后做出选择.[详解]因为-5<0,故A 项的表达式无意义,故A 项错误;-0.36=-0.6,故B 2(13)-169,故C 366=,故D 项错误.故答案为C.[点睛]本题主要考查了二次根式的性质和二次根式的化简,熟练掌握运算和性质是解题的关键.14.坐标平面上,在第三象限内有一点P ,且点P 到X 轴的距离是4,到Y 轴的距离是5,则点P 的坐标为( )A. (-5,-4)B. (-4 ,5)C. (4,5)D. (5,-4) [答案]A[解析][分析]根据各象限内点的坐标特征,可得答案.[详解]解:由题意,得|y|=4,|x|=5,又∵在第三象限内有一点P,∴x=−5,y=−4,∴点P的坐标为(−5,−4),故选:A.[点睛]本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).15.若点P(m+3,m+1) 在y轴上,则点P的坐标为()A. (0,2)B. (2,0)C. (0,4)D. (0,-2)[答案]D[解析][分析]根据点P在y轴上,即x=0,可得出m的值,从而得出点P的坐标.[详解]解:∵点P(m+3,m+1)在y轴上,∴x=0,∴m+3=0,解得m=−3,∴m+1=−3+1=-2,∴点P的坐标为(0,-2).故选:D.[点睛]本题考查平面直角坐标系中,坐标轴上的点的坐标的有关性质,解题关键在于得出m的值.16.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比( )A. 向右平移了3个单位B. 向左平移了3个单位C. 向上平移了3个单位D. 向下平移了3个单位[答案]D[解析]分析]根据向下平移,纵坐标相减,横坐标不变解答.[详解]∵将三角形各点的纵坐标都减去3,横坐标保持不变,∴所得图形与原图形相比向下平移了3个单位.故选D.[点睛]本题考查了坐标与图形的变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.下列命题中,是假命题的是( )A. 两点之间,线段最短B. 同旁内角互补C. 直角的补角仍然是直角D. 对顶角相等[答案]B[解析][分析]根据线段、对顶角、补角、平行线的性质判断即可.[详解]A. 两点之间,线段最短是真命题;B. 如果两直线不平行,同旁内角不互补,所以同旁内角互补是假命题;C. 直角的补角仍然是直角是真命题;D. 对顶角相等是真命题;故选B[点睛]掌握线段、对顶角、补角、平行线的性质是解题的关键.18.如图,在下列条件中:①12∠=∠:②BAD BCD ∠=∠;③ABC ADC ∠=∠且34∠=∠;④180BAD ABC ∠+∠=︒,能判定AB CD ∥的有( )A. 3个B. 2个C. 1个D. 0个[答案]C[解析] ①由∠1=∠2,得到AD ∥BC ,不合题意;②由∠BAD=∠BCD ,不能判定出平行,不合题意;③由∠ABC=∠ADC 且∠3=∠4,得到∠ABC-∠4=∠ADC-∠3,即∠ABD=∠CDB ,得到AB ∥CD,符合题意;④由∠BAD+∠ABC=180°,得到AD ∥BC ,不合题意,则符合题意的只有1个,[点睛]本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.19.把一张对面互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=32°则下列结论正确的有( ) (1)∠C′EF=32°(2)∠AEC=116°(3)∠BGE=64°(4)∠BFD=116°.A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]根据平行线的性质及翻折变换的性质对各小题进行逐一分析即可.[详解]解:(1)∵AE∥BG,∠EFB=32°,∴∠C′EF=∠EFB=32°,故本小题正确;(2)∵AE∥BG,∠EFB=32°,∴∠GEF=∠C′EF=32°,∴∠AEC=180°-32°-32°=116°,故本小题正确;(3)∵∠C′EF=32°,∴∠GEF=∠C′EF=32°,∴∠C′EG=∠C′EF+∠GEF=32°+32°=64°,∵AC′∥BD′,∴∠BGE=∠C′EG=64°,故本小题正确;(4)∵∠BGE=64°,∴∠CGF=∠BGE=64°,∵DF∥CG,∴∠BFD=180°-∠CGF=180°-64°=116°,故本小题正确.故选D.[点睛]本题考查的是平行线的性质及翻折变换的性质,熟知图形翻折不变性的性质是解答此题的关键.20.一个数的立方根是4,这个数的平方根是 ( )A. 8B. -8C. 8 或-8D. 4 或-4[答案]C因一个数的立方根是 4,可得这个数为64,64的平方根是±8,故选C. 21.若2m -4与3m -1是同一个数的平方根,则m 的值是( )A. -3B. -1C. 1D. -3或1 [答案]D[解析][分析]根据平方根的性质列方程求解即可;[详解]当24=31m m --时,3m =-;当24310m m +=--时,1m =;故选:D.[点睛]本题主要考查平方根的性质,易错点是容易忽略相等的情况,做好分类讨论是解决本题的关键.22.16的平方根与-8的立方根的和是( )A. -4或6B. -6或2C. -2或6D. 4或6 [答案]B[解析][分析]先求16的平方根,再求−8的立方根,然后求和.[详解]4,∴它们的和是−6或2,故选:B .[点睛]本题主要考查了平方根和立方根的定义,掌握知识点是解题关键.23.下列各对数值中不是二元一次方程x +2y=2的解是( )A. 20x y =⎧⎨=⎩B. 22x y =-⎧⎨=⎩C. 01x y =⎧⎨=⎩D. 10x y =-⎧⎨=⎩ [答案]D[解析][分析]将四个选项中的x 与y 的值代入已知方程检验,即可得到正确的选项.[详解]解:A、将x=2,y=0代入方程左边得:x+2y=2+2×0=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;B、将x=-2,y=2代入方程左边得:x+2y=-2+2×2=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;C、将x=0,y=1代入方程左边得:x+2y=0+1×2=2,右边为2,故本选项是方程的解,不符合题意,本选项错误;D、将x=-1,y=0代入方程左边得:x+2y=-1+2×0=-1,右边为2,故本选项不是方程的解,符合题意,本选项正确;故选:D.[点睛]此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.24.已知a<b<0 ,则点A(a-b,b )在第( )象限A. 一B. 二C. 三D. 四[答案]C[解析][分析]根据a<b<0,判断出a−b和b的取值范围,再根据点的坐标特点判断其所在象限.[详解]解:∵a<b<0,∴a−b<0,b<0,∴点A(a−b,b)第三象限,故选:C.[点睛]本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,−);第二象限(−,+);第三象限(−,−);第四象限(+,−).三.解答题25.求下列各式中的值(1)252x=36(2)-3=3 8[答案](1)x=65;(2)x=32[解析][分析](1)先将方程进行变形,再利用平方根的定义进行求解即可;(2)先将方程进行变形,再利用立方根的定义进行求解即可.[详解]解:(1)25x 2=36x 2=3625∴x=56±; (2)x 3−3=38x 3=278∴x=32. [点睛]本题考查了平方根与立方根的定义,理解相关定义是解决本题的关键,注意一个正数的平方根有两个,它们互为相反数,不要漏解.26.解方程组25{437x y x y +=+=. [答案]4{3x y ==-,;[解析] 解:①×3﹣②得,28x =,解得4x =.把4x =代入①得,85y +=,解得3y =-所以原方程组的解为4{ 3.x y ==-, 27.甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,两人的平均速度各是多少?[答案]甲的速度是4千米/时,乙的速度是2千米/时.[解析][分析]设甲的速度是x 千米/时,乙的速度是y 千米/时,根据甲乙两人相距6千米,两人同时出发相向而行,1小时相遇;同时出发同向而行甲3小时可追上乙,可列方程组求解.[详解]设甲的速度是x 千米/小时,乙的速度是y 千米/小时,由题意,得6336x y x y +=⎧⎨-=⎩,解得:42 xy=⎧⎨=⎩.故甲的速度是4千米/时,乙的速度是2千米/时.[点睛]本题考查理解题意的能力,有两种情景,一种是相遇,一种是追及,根据两种情况列出方程组求解.28.如图,三条直线AB,CD,EF相交于O,且CD⊥EF,∠AOE=70°,若OG平分∠BOF.求∠DOG的度数.[答案]55︒[解析][分析]根据题意求出∠DOB,OG平分∠BOF,得∠BOG=∠FOG,等量代换即可求解.[详解]由题意知:CD⊥EF,∠AOE=70︒∵∠AOE+∠EOD+∠DOB= 180︒,∴∠DOB=20︒.又∵∠BOF和∠AOE是对顶角∴∠BOF=∠AOE=70︒.∵OG平分∠BOF,∠BOF=70︒∴∠BOG=∠FOG=35︒.∠DOG=∠DOB+∠BOG=55︒.[点睛]本题主要考查了角平分线的性质和对顶角相等,正确掌握角平分线的性质和对顶角相等是解题的关键.29.根据下列证明过程填空:如图,已知BD⊥AC,EF⊥AC,D、F分别为垂足,且∠1=∠4,求证:∠ADG=∠C证明:∵BD⊥AC,EF⊥AC∴∠2=∠3=90°( )∴BD∥EF ( )∴∠4=_____( )∵∠1=∠4∴∠1=_____( )∴DG∥BC( )∴∠ADG=∠C( )[答案]答案见解析[解析][详解]解:∵BD⊥AC,EF⊥AC(已知),∴∠2=∠3=90°,∴BD∥EF(同位角相等,两直线平行),∴∠4=∠5(两直线平行,同位角相等);∵∠1=∠4(已知),∴∠1=∠5(等量代换),∴DG∥BC(内错角相等,两直线平行),∴∠ADG=∠C(两直线平行,同位角相等).[点睛]本题考查平行线的性质与判定,解决问题要熟悉平行线的性质和判定,能正确运用语言叙述理由,还要注意平行线的性质和判定的综合运用.。

人教版七年级下册数学《期中考试试题》含答案解析

人教版七年级下册数学《期中考试试题》含答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1. 下列各项中,是一元一次方程的是( )A. x ﹣2y=4B. xy=4C. 3y ﹣1=4D. 144x - 2. 已知x y >,则下列不等式成立的是( ) A. 11x y -<- B. 33x y < C. x y -<- D.22x y < 3. 用“加减法”将方程组325353x y x y -=⎧⎨+=-⎩中的x 消去后得到的方程是() A. 32y = B. 78y = C. 72y -= D. 78y -= 4. 不等式组12x ≤<的解集在数轴上可表示为() A.B. C. D.5. 不等式组 26x m x x >⎧⎨-+<-⎩的解集是x 4>,那么m 的取值范围是 A. m 4≤B. m 4≥C. m 4<D. m 4= 6. 方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A. 1、2 B. 1、5 C. 5、1 D. 2、47. 下列变形正确的是( )A 若m >n ,则mc >ncB. 若m >n ,则mc 2>nc 2C. 若m >b ,b <c ,则m >cD. 若m+c 2>n+c 2,则m >n8. 不等式组211112x x -≤⎧⎪⎨-<⎪⎩的整数解的个数为( ) A 0个 B. 2个 C. 3个 D. 无数个 9. 一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元. 若设这件羽绒服的成本是x 元,根据题意,可得到的方程是A x(1+50%) 80%=x-250B. x(1+50%) 80%=x+250C. (1+50%x) 80%=x-250D. (1+50%x) 80%=250-x10. 某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑( )A. 3分钟B. 4分钟C. 4.5分钟D. 5分钟二 填空题( 每小题3分,共15分)11. 把二元一次方程2x+y —3=0化成用x 表示y 的形式,则y=_____.12. x 3倍与5的和大于8,用不等式表示为________________ .13. 已知:237x y y z x z +=⎧⎪+=⎨⎪+=⎩,则x y z ++=__________.14. 不等式1﹣2x <6的负整数解是___________.15. 如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是_____.三.解答题(共8小题,共75分)16. 解下列方程:(1)2(x +3)=5(x -3)2123x -()=435x --x 17. 解二元一次方程组:27{320x y x y -=+=. 18. 解不等式223x x -≤+,并把它的解集表示在数轴上. 19. 解不等式组:{3(x 2)x 42x 13>x 1-≥-+-①②并写出它的所有的整数解.20. 已知23x y =-⎧⎨=-⎩和41x y =⎧⎨=⎩是二元一次方程35mx ny -=的两个解. (1)求、的值;(2)若x<-2,求的取值范围.21. 已知方程组331x y ax y a+=+⎧⎨-=-⎩的解是一对正数,求的取值范围.22. 一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天后两队合作.()1求甲、乙合作多少天才能把该工程完成.()2在()1条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.23. 某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.答案与解析一、选择题(每小题3分,共30分)1. 下列各项中,是一元一次方程的是( )A. x ﹣2y=4B. xy=4C. 3y ﹣1=4D. 144x - [答案]C[解析][分析]根据一元一次方程的定义进行分析判断即可.[详解]A 选项中的方程24x y -=中有两个未知数,所以不是一元一次方程;B 选项中的方程4xy =中有两个未知数,所以不是一元一次方程;C 选项中的方程314y -=是一元一次方程,所以可以选C ;D 选项中的式子144x -不是方程,所以不能选D. 故选C.[点睛]熟知“一元一次方程的定义:含有一个未知数,且含未知数的项的次数都是1的整式方程叫做一元一次方程”是解答本题的关键.2. 已知x y >,则下列不等式成立的是( )A. 11x y -<-B. 33x y <C. x y -<-D. 22x y < [答案]C[解析][分析]根据不等式的性质逐项分析.[详解]A 在不等式的两边同时减去1,不等号的方向不变11x y ->-,故A 错误;B 在不等式的两边同时乘以3,不等号的方向不变33x y >,故B 错误;C 在不等式的两边同时乘以-1,不等号的方向改变,故C 正确;D 在不等式的两边同时乘以12,不等号的方向不变22x y >,故D 错误. [点睛]本题主要考查不等式的性质,(1)在不等式的两边同时加上或减去同一个数,不等号的方向不变;(2)在不等式的两边同时乘以或除以(不为零的数)同一个正数,不等号的方向不变;(3)在不等式的两边同时乘以或除以(不为零的数)同一个负数,不等号的方向改变.3. 用“加减法”将方程组325353x y x y -=⎧⎨+=-⎩中的x 消去后得到的方程是() A. 32y =B. 78y =C. 72y -=D. 78y -= [答案]D[解析][分析]根据方程组中每一个方程中未知数x 的系数可知,两方程相减即可消去x ,据此即可得.[详解]325353x y x y -=⎧⎨+=-⎩①②, ①-②,得:-7y=8,故选D.[点睛]本题考查了二元一次方程组的解法——加减法,根据方程组的特点灵活选用加减法或代入法进行求解是关键.4. 不等式组12x ≤<的解集在数轴上可表示为() A.B. C.D.[答案]C[解析] [分析]先在数轴上表示出不等式组的解集,然后再根据选项选出即可.[详解]不等式组1≤x<2的解集在数轴上可表示为:,故选C.[点睛]本题考查了在数轴上表示不等式的解集,能把不等式组的解集要数轴上表示出来是解此题的关键.5. 不等式组 26x m x x >⎧⎨-+<-⎩的解集是x 4>,那么m 的取值范围是 A. m 4≤B. m 4≥C. m 4<D. m 4=[答案]A[解析][分析]先求出不等式的解集,再根据不等式组的解集得出答案即可.[详解]解:26x m x x >⎧⎨-+<-⎩①②,解不等式②,得:x 4>,∵不等式组 26x m x x >⎧⎨-+<-⎩的解集是x 4>, ∴m 4≤故选择:A[点睛]本题考查了解一元一次不等式组,能根据不等式的解集和不等式组的解集得出关于m 的不等式是解此题的关键.6. 方程组23x y x y +=⎧⎨+=⎩■的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A. 1、2B. 1、5C. 5、1D. 2、4 [答案]C[解析][分析]把x =2代入x+y=3求出y,再将x,y 代入2x+y 即可求解.[详解]根据 {x 2y ==,把x=2代入x+y=3.解得y=1.把x=2,y=1代入二元一次方程组中2x+y=5故被遮盖的两个数分别为5和1.故选C .[点睛]主要考查学生对二元一次方程组知识点的掌握.将已知解代入其中x+y=3求出y 值为解题关键. 7. 下列变形正确的是( )A. 若m >n ,则mc >ncB. 若m >n ,则mc 2>nc 2C. 若m >b ,b <c ,则m >cD. 若m+c 2>n+c 2,则m >n[答案]D[解析][分析]直接利用不等式的基本性质分别判断得出答案.[详解]A 、若m >n ,则mc >nc ,只有c 为正数时成立,故此选项错误;B 、若m >n ,则mc ²>nc ²,只有c 不等于0时成立,故此选项错误;C 、若m >b ,b <c ,则m >c ,不一定成立,故此选项错误;D 、若m +c ²>n +c ²,则m >n ,故此选项正确.故选:D .[点睛]此题主要考查了命题与定理,正确把握不等式的基本性质是解题关键.8. 不等式组211112x x -≤⎧⎪⎨-<⎪⎩的整数解的个数为( ) A. 0个B. 2个C. 3个D. 无数个[答案]C[解析][详解]可把不等式组化为 211112x x -≤⎧⎪⎨-<⎪⎩,即21x -<≤,整数为:-1,0,1, 故答案选C.考点:不等式组的整数解.9. 一件羽绒服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利250元. 若设这件羽绒服的成本是x 元,根据题意,可得到的方程是A. x(1+50%) 80%=x-250B. x(1+50%) 80%=x+250C. (1+50%x) 80%=x-250D. (1+50%x) 80%=250-x[答案]B[解析]标价为:x(1+50%),八折出售的价格为:(1+50%)x×80%, 则可列方程为:(1+50%)x×80%=x+250, 故选B .10. 某人要完成2.1千米的路程,并要在不超过18分钟的时间内到达,已知他每分钟走90米.若跑步每分钟可跑210米,问这人完成这段路程,至少要跑( )A. 3分钟B. 4分钟C. 4.5分钟D. 5分钟[答案]B[解析][分析]设这人跑了x分钟,则走了(18-x)分钟,根据速度×时间=路程结合要在18分钟内到达,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其中的最小值即可得出结论.[详解]解:设这人跑了x分钟,则走了(18-x)分钟,根据题意得:210x+90(18-x)≥2100,解得:x≥4,答:这人完成这段路程,至少要跑4分钟.故选:B.[点睛]本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.二填空题( 每小题3分,共15分)11. 把二元一次方程2x+y—3=0化成用x表示y的形式,则y=_____.[答案]3-2x.[解析][分析]题意得将原式表示成y=ax+b的形式.[详解]∵2x+y=3,∴y=3-2x,故答案为:y=3-2x.[点睛]此题考查了解二元一次方程,解题的关键是将x看做已知数,y看做未知数.12. x的3倍与5的和大于8,用不等式表示为________________ .x+>[答案]358[解析][分析]先表示出x的3倍,再表示出与5的和,最后根据大于8即可得不等式.[详解]x的3倍为3x,x的3倍与5的和为3x+5,所以x的3倍与5的和大于8为:3x+5>8,故答案为3x+5>8.[点睛]本题考查由实际问题抽象出一元一次不等式,根据关键语句,弄清运算的先后顺序和不等关系,从而得出不等式是关键.13. 已知:237x yy zx z+=⎧⎪+=⎨⎪+=⎩,则x y z++=__________.[答案]6[解析][分析]根据方程组的特点,三个方程相加即可求出x+y+z的值.[详解]237x yy zx z+=⎧⎪+=⎨⎪+=⎩①②③,(①+②+③)÷2,得x+y+z=6,故答案为6.[点睛]本题考查了三元一次方程组的特殊解法,根据方程组中每一个方程的系数特点确定合适的解法是关键.14. 不等式1﹣2x<6的负整数解是___________.[答案]﹣2,﹣1[解析]试题分析:根据不等式的性质求出不等式的解集,找出不等式的整数解即可.解:1﹣2x<6,移项得:﹣2x<6﹣1,合并同类项得:﹣2x<5,不等式的两边都除以﹣2得:x >﹣,∴不等式的负整数解是﹣2,﹣1,故答案为﹣2,﹣1.点评:本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.15. 如图,由八块相同的长方形地砖拼成一个大长方形,则每块小长方形地砖的面积是_____.[答案]675cm 2[解析][分析]假设小长方形的长、宽分别为a 、b ,通过图形中大长方形的边长关系,可列出二元一次方程组,求得a 、b 的值,进而求得面积.[详解]设小长方形的长、宽分别为acm 、bcm.由题意可列方程组:a+b=602a=a+3b ⎧⎨⎩, 解得:a=45b=15⎧⎨⎩, 每块小长方形地砖的面积:45×15=675(cm 2), 故填:675cm 2.[点睛]本题考查二元一次方程组在几何问题中的应用,结合图形找到两组等量关系是关键.三.解答题(共8小题,共75分)16. 解下列方程:(1)2(x +3)=5(x -3)2123x -()=435x --x [答案](1)x=7;(2)x=12. [解析][分析]按:去分母,去括号,移项,合并同类项,系数化为1等步骤解方程.[详解]解:(1)去括号,得 2x+6=5x-15移项,得2x-5x=-6-15合并同类项,得-3x=-21系数化为1,得x=7(2)去分母,得 5(2x-1) =3(4-3x) – 15x去括号,得10x – 5=12-9x-15x移项,合并同类项,得34x=17 ,系数化为1,得 x=12[点睛]本题考核知识点:解一元一次方程.解题关键点:理解解方程的一般步骤.17. 解二元一次方程组:27{320x y x y -=+=. [答案]2{3x y ==-.[解析][分析] 解此方程组利用加减消元法求出解即可.详解]解:27{320x y x y -=+=①②①×2+②得:7x=14,即x=2,把x=2代入①得:y=-3,则方程组的解为2{3x y ==-.[点睛]本题考查解二元一次方程组.18. 解不等式223x x -≤+,并把它的解集表示在数轴上. [答案]1x ≥-,数轴见解析[解析][分析]按照去分母,去括号,移项,合并同类项,系数化为1的步骤解不等式即可,然后按照大于向右画,小于向左画,有等号是实心圆点,没有等号是空心圆点即可在数轴上表示出解集.[详解]去分母得,23(2)x x -≤+,去括号得,263x x -≤+,移项得,362x x --≤-,合并同类项得,44x -≤,系数化为1得,1x≥-,数轴如图:[点睛]本题主要考查解一元一次不等式,掌握不等式的解法及用数轴表示不等式解集的方法是解题的关键.19. 解不等式组:{3(x2)x42x13>x1-≥-+-①②并写出它的所有的整数解.[答案]1、2、3[解析][分析]解一元一次不等式组,先求出不等式组中每一个不等式的解集,再利用口诀求出这些解集的公共部分:同大取大,同小取小,大小小大中间找,大大小小解不了(无解).最后求出整数解即可.[详解]解:解不等式①得,x≥1,解不等式②得,x<4,∴不等式组的解集是1≤x<4.∴不等式组的所有整数解是1、2、3.[点睛]解一元一次不等式组,一元一次不等式组的整数解.20. 已知23xy=-⎧⎨=-⎩和41xy=⎧⎨=⎩是二元一次方程35mx ny-=的两个解.(1)求、的值;(2)若x<-2,求的取值范围.[答案](1)21mn=⎧⎨=⎩(2)y<-3[解析]分析:(1)把x与y的两对值代入方程计算求出m与n的值即可;(2)由方程求出x的表达式,解不等式即可.详解:(1)把23xy=-⎧⎨=-⎩和41xy=⎧⎨=⎩代入方程得:295435m nm n-+=⎧⎨-=⎩,解得:21mn=⎧⎨=⎩;(2)当21m n =⎧⎨=⎩时,原方程变为:2x -3y =5,解得:x =532y +. ∵x <-2,∴532y +<-2,解得:y <-3. 点睛:本题考查了二元一次方程组的解,以及解一元一次不等式,熟练掌握运算法则是解答本题的关键.21. 已知方程组331x y a x y a +=+⎧⎨-=-⎩的解是一对正数,求的取值范围. [答案]1 2.2a -<<[解析][分析]先解方程组,再由题意列不等式组可得答案.详解]解:331x y a x y a +=+⎧⎨-=-⎩①② ①+②得:242,x a =+21,x a ∴=+把21x a =+代入①得:2,y a =-+21,2x a y a =+⎧∴⎨=-+⎩0,0x y ⎧⎨⎩>> 21020a a +⎧∴⎨-+⎩>> ③④ 解③得:1,2a -> 解④得:2,a <不等式组的解是12.2a -<< a ∴的取值范围是1 2.2a -<<. [点睛]本题考查的是二元一次方程组与一元一次不等式组联系,掌握其解法是解题关键.22. 一项工程,甲队单独完成需40天,乙队单独完成需50天,现甲队单独做4天后两队合作.()1求甲、乙合作多少天才能把该工程完成.()2在()1的条件下,甲队每天的施工费用为2500元,乙队每天的施工费用为3000元,求完成此项工程需付给甲、乙两队共多少元.[答案](1)甲、乙合作20天才能把该工程完成;(2)完成此项工程需付给甲、乙两队共120000元.[解析][分析](1)设甲、乙合作x天才能把该工程完成,由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的140,乙每天做整个工程的150,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1,根据等量关系列出方程,然后求解即可;(2)根据甲、乙两队工作天数以及每个队每天的施工费用,每天的施工费用×施工天数即可求得. [详解]()1设甲、乙合作x天才能把该工程完成,根据题意得:1114x1 404050⎛⎫⨯++=⎪⎝⎭,解得:x20=.答:甲、乙合作20天才能把该工程完成;()2甲队的费用为()250020460000(⨯+=元),乙队的费用为30002060000(⨯=元),6000060000120000(+=元).答:完成此项工程需付给甲、乙两队共120000元.[点睛]本题考查了一元一次方程的应用,弄清题意,找到等量关系是解题的关键.23. 某商店需要购进甲、乙两种商品共160件,其进价和售价如下表:(注:获利=售价-进价)(1)若商店计划销售完这批商品后能获利1100元,问甲、乙两种商品应分别购进多少件?(2)若商店计划投入资金少于4300元,且销售完这批商品后获利多于1260元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.[答案](1)甲种商品购进100件,乙种商品购进60件.(2)有两种购货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.[解析][分析](1)设甲种商品购进x件,乙种商品购进y件,根据题意列出二元一次方程组即可求解;(2)设甲种商品购进a件,则乙种商品购进(160-a)件,根据题意列出不等式组,再根据实际情况进行求解.[详解]解:(1)设甲种商品购进x件,乙种商品购进y件.根据题意,得1605101100x yx y+=⎧⎨+=⎩解得100,60.xy=⎧⎨=⎩答:甲种商品购进100件,乙种商品购进60件. (2)设甲种商品购进a件,则乙种商品购进(160-a)件.根据题意,得1535(160-)4?300, 510(160-)1?260.a aa a+<⎧⎨+>⎩解不等式组,得65<a<68.∵a为非负整数,∴a取66,67.∴ 160-a相应取94,93.所以有两种购货方案,方案一:甲种商品购进66件,乙种商品购进94件;方案二:甲种商品购进67件,乙种商品购进93件.其中获利最大的是方案一.[点睛]此题主要考查不等式组的应用,解题的关键是根据题意列出方程组或不等式组进行求解.。

人教版数学七年级下册《期中考试题》附答案解析

人教版数学七年级下册《期中考试题》附答案解析

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共12个小题1.在实数2π, 无理数有( )个 A. 1 B. 2 C. 3 D. 42. 在平面直角坐标系中,将点()2,6P 向下平移3个单位长度,得到点的坐标为( )A ()2,3 B. ()2,9 C. ()1,6- D. ()5,6 3. 下列等式:① 2x + y = 4;② 3xy = 7;③220x y +=;④12y x -=;⑤ 2x + y + z = 1二元一次方程的个数是( )A. 1B. 2C. 3D. 44. 点P 是第二象限的点且到x 轴的距离为3、到y 轴的距离为4,则点P 的坐标是( )A. (﹣3,4)B. ( 3,﹣4)C. (﹣4,3)D. ( 4,﹣3) 5. 不等式组31027x x +>⎧⎨<⎩的整数解的个数是( ) A. 1个 B. 2个 C. 3个 D. 4个6. 在下列条件中:①∠A+∠B=∠C ,②∠A ∶∠B ∶∠C=1∶5∶6,③∠A=90°-∠B ,④∠A=∠B=12∠C 中,能确定△ABC 是直角三角形的条件有 ( )A. 1个B. 2个C. 3个D. 4个 7. 我国古代《四元玉鉴》中记载“二果问价”问题,其内容如下:九百九十九文钱,甜果苦果买一千,甜果九个十一文,苦果七个四文钱,试问甜苦果几个,又问各该几个钱?若设买甜果x 个,买苦果y 个,则下列关于x ,y 的二元一次方程组中符合题意的是( ) A. 999114100097x y x y +=⎧⎪⎨+=⎪⎩ B. 100097999114x y x y +=⎧⎪⎨+=⎪⎩ C. 10009928999,x y x y +=⎧⎨+=⎩ D. 100011499997x y x y +=⎧⎪⎨+=⎪⎩8. 下列说法不一定成立的是( )A. 若a b >,则a c b c +>+B. 若a c b c +>+,则a b >C. 若a b >,则22ac bc >D. 若22ac bc >,则a b >9. 为了解中学生获取资讯的主要渠道,随机抽取50名中学生进行问卷调查,调查问卷设置了“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(五项中必选且只能选一项),根据调查结果绘制了如下的条形图.该调查的调查方式及图中a 的值分别是( )A. 全面调查;26B. 全面调查;24C. 抽样调查;26D. 抽样调查;2410. 若一个多边形的内角和与外角和之和是1800°,则此多边形是( )边形.A. 八B. 十C. 十二D. 十四11. 根据下列已知条件,不能唯一画出ABC 的是( )A. AB = 5, BC = 3, AC = 6B. AB = 4, BC = 3, ∠A = 50︒C. ∠A = 50︒, ∠B = 60︒, AB = 4D. AB = 10, BC = 20, ∠B = 80︒12. 如图,ABC 中, ∠A = 20︒,沿 BE 将此三角形对折,又沿BA '再一次对折,点C 落在BE 上的处,此时74C DB '∠=︒,则原三角形的∠C 的度数为( )A. 74︒B. 76︒ X. 79︒ ∆. 83︒二、填空题(本大题共6个小题) 13. 16 ⎽⎽⎽⎽⎽.14. 已知关于x ,y 的二元一次方程组2321x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是_________. 15. 若一个三角形的两边长分别为5和8,则下列长度:①14;②10;③3;④2.其中,可以作为第三边长的是_____(填序号)16. 某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但要保证利润率不低于20%,则至多可以打_______折.17. 已知点(1,0)A 、(0,2)B ,点P 在轴上,且PAB △的面积为5,则点P 的坐标为__________. 18. 如图,已知 CB ⊥AD ,AE ⊥CD ,垂足分别为 B 、E ,AE 、BC 相交于点 F ,AB=BC ,若 AB=8,CF=2,则 BD=______.三、解答题:本大题共8个小题.19. 计算:23(2)9813---. 20. (1)解方程组:217126x y x y x y -=⎧⎪+-⎨+=⎪⎩; (2)解不等式组:2(2)3321123x x x x +≥+⎧⎪+-⎨->⎪⎩; 21. 由于新型冠状病毒的袭击,2020 春季各个学校不得不推迟开学,但停课不停学.各地都展开了网络学习,我校为了解七年级学生上网课的情况,开学后从该年级学生中随机抽取了部分学生进行数学科目的测试(把测试结果分为四个等级: A 级:优秀; B 级:良好; C 级:合格; D 级:不合格),并将测试记录绘成如下两幅完全不同的统计图,请根据统计图中的信息解答下列问题:(1)参加本次抽样测试的学生数是多少?(2)求图1 中A级扇形的圆心角∠a的度数,并把图2 中的条形统计图补充完整;(3)我校七年级共有1700 名学生,如果全部参加这次数学科目测试,请估计不合格的人数.22. 如图,△ADC中,DB是高,点E是DB上一点,AB=DB,EB=CB,M,N分别是AE,CD上点,且AM=DN.(1)求证:△ABE≌△DBC.(2)探索BM和BN的关系,并证明你的结论.23. 某市环保局决定购买A、B两种型号的扫地车共40辆,对城区所有公路地面进行清扫.已知1辆A型扫地车和2辆B型扫地车每周可以处理地面垃圾100吨,2辆A型扫地车和1辆B型扫地车每周可以处理垃圾110吨.(1)求A、B两种型号的扫地车每辆每周分别可以处理垃圾多少吨?(2)已知A型扫地车每辆价格为25万元,B型扫地车每辆价格为20万元,要想使环保局购买扫地车的资金不超过910万元,但每周处理垃圾的量又不低于1400吨,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少资金是多少?24. 如图,AD为ABC的高,AE,BF为ABC的角平分线,若∠CBF = 32︒,∠AFB = 72︒.(1)∠BAD =︒;(2)求∠DAE的度数;(3)若点G为线段BC上任意一点,当GFC为直角三角形时,则求∠BFG的度数.25. (1)在关于x,y的二元一次方程组中2x yx y a-=⎧⎨+=⎩中,x >1,y < 0,求a的取值范围.(2)已知x - 2 y = 4,且x > 8,y < 4,求3x + 2 y的取值范围.(3)已知a -b =m,在关于x,y二元一次方程组21258x yx y a-=-⎧⎨+=-⎩中,x < 0,y > 0,化简含有绝对值的式子2334a b m m a b+-++-++(结果用含的式子表示)26. 同学们应该都见过光线照射在平面镜上出现反射光线的现象。

人教版数学七年级下册《期中考试试题》及答案

人教版数学七年级下册《期中考试试题》及答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题:(每小题3分,共30分)1.有理数223-的倒数是( ). A. 43 B. 94- C. 34- D. 942.在有理数:23,0.25,27--,12⎛⎫-- ⎪⎝⎭中,是正分数的有( )个. A. 1 B. 2 C. 3 D. 43.从金花中学驾车到天府广场大约有13千米的路程,如果用科学记数法来表示13千米则可以表示成( )米.A. 31310⨯B. 41.310⨯C. 21310⨯D. 31.310⨯ 4.下列说法中,正确的是( ).A. 有理数可分为:正整数、负整数、正分数以及负分数.B. 绝对值最小的数与任何有理数相加答案都不变.C. 两个有理数相加,和一定大于或等于这两个加数.D. 两个有理数相乘的积为正数,说明这两个数同号.5.下列计算正确是( ). A. 12()33m n m n m n ⎛⎫---=+ ⎪⎝⎭ B. 32a a -= C. 235x y xy += D.()a b c a b c --=--6.有一款服装原价元,悦悦百货商店先按原价上涨20%后标价,再按标价降价20%售出,那么最终商店卖出一件这样的服装( ).A. 赚了125a 元B. 亏了125a 元 C. 既不赚也不亏D. 无法判断是赚钱还是亏损,这和值有关 7.下列式子中,和3232x yz -次数相同的是( ).A. 64abB. 328a b π-C. 25367a b ab -+-D.8.如图是一个正方体的表面展开图,如果原正方体的相对两个面上的数和相等,那么m n +=( ).A. 4B. 3C. 2D. 19.在一次考试中,某班17名男生的平均分为分,19名女生的平均分为分,那么这个班的全体同学的平均分为( ). A. 2a b + B. 36a b + C. 17192a b + D. 171936a b + 10.根据如图所示的流程图中的程序,当输入数据为3-时,输出数值为( ).A. 0B. 2C. 4D. 6二、填空题:(每小题4分,共20分)11.若22a a -=-,且29a =,则a =__________.12.一个棱柱有12个面,它有__________个顶点,___________条棱.13.若在数轴上对应点到表示的点的距离为3,则x =__________.14.如果关于,的单项式23m n x y -与2axy -可合并为单项式0,则a m n -+的值为 _________.15.如图,正方形ABCD 的边长为2,以B 为圆心,AB 为半径在正方形内作14圆,再以CD 为直径在正方形内作半圆,得图中阴影部分,面积分别表示为1S 、2S ,则12S S -=__________.三、解答题:(共50分)16.计算(1)24111341323⎡⎤⎛⎫-+-+⨯-÷⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (2)225(2)3(0.2)013317---⨯-+÷⨯ 17.化简(1)()()332332223234x y x y x y x y -----(2)22()()3()()a b a b b a b a ---+-+-18.已知:有理数,,在数轴上的位置如图,化简:|||||||3|a c b a b c a a +---+-+.19.下图是一个由若干棱长都为2cm 的小立方块搭成的几何体,求这个几何体的表面积.20.已知2333A x xy y =--+,2343B x xy y =+-,且112x =-,537y =,求:4(2)(23)A A B A B -+--的值.21.用简便方法计算下列各式的值:(1)()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭(2)12345678979899100--++--+++--+…22.在数轴上有点,,,它们表示的数分别为,,,且满足:()24980a b c -+-++=;,,三点同时出发沿数轴向右运动,它们的速度分别为:1A V =(单位/秒),2B V =(单位/秒),3C V =(单位/秒).(1)求,,的值;(2)运动时间等于多少时,点与点、点距离相等?23.成都市的水费实行下表的收费方式:每月用水量单价 不超出310m (包括310m )2元/3m 超出310m 但不超出320m (包括320m )的部分 3元/3m(1)周老师家九月份用了316m 的水,应付多少水费? (2)如果李老师家九月份的用水量为3xm ,那么应付的水费为多少元?(3)如果曹老师家九月和十月一共用了328m 的水,且已知九月比十月少,设九月用水量为3xm ,那么曹老师这两个月一共要交多少钱的水费?(可用含的代数式表示)答案与解析一、选择题:(每小题3分,共30分)1.有理数223-的倒数是().A. 43B.94- C.34- D.94[答案]C[解析][分析]先计算原式的值,再根据倒数的定义解答即可.[详解]解:22433-=-,43-的倒数是34-.故选:C.[点睛]本题考查了有理数的乘方运算和倒数的定义,属于基础题型,熟练掌握基本知识是关键.2.在有理数:23,0.25,27--,12⎛⎫-- ⎪⎝⎭中,是正分数的有()个.A. 1B. 2C. 3D. 4 [答案]B[解析][分析]先化简27--与12⎛⎫-- ⎪⎝⎭,再找出其中的正分数即可.[详解]解:2277=---,11=22,所以在有理数:23,0.25,27--,12⎛⎫-- ⎪⎝⎭中,是正分数的有:0.25,12⎛⎫-- ⎪⎝⎭共2个.故选:B.[点睛]本题考查了有理数的分类以及有理数的绝对值等知识,属于应知应会题型,熟练掌握有理数的概念是关键.3.从金花中学驾车到天府广场大约有13千米的路程,如果用科学记数法来表示13千米则可以表示成()米.A. 31310⨯B. 41.310⨯C. 21310⨯D. 31.310⨯[答案]B[解析][分析] 先换算单位,再根据科学记数法的表示方法解答即可.[详解]解:13千米=13000米=41.310⨯米.故选:B .[点睛]此题考查了科学记数法的表示方法,科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法中,正确的是( ).A. 有理数可分为:正整数、负整数、正分数以及负分数.B. 绝对值最小的数与任何有理数相加答案都不变.C. 两个有理数相加,和一定大于或等于这两个加数.D. 两个有理数相乘的积为正数,说明这两个数同号.[答案]D[解析][分析]分别根据有理数的定义、绝对值的意义、有理数的加法法则和有理数的乘法法则逐项判断即可.[详解]解:A 、有理数可分为:正整数、负整数、0、正分数以及负分数,所以本选项说法错误,不符合题意; B 、绝对值最小的数是0,0与任何有理数相加都得这个数,所以本选项说法错误,不符合题意;C 、两个有理数相加,和不一定大于或等于这两个加数,所以本选项说法错误,不符合题意;D 、两个有理数相乘的积为正数,说明这两个数同号,所以本选项说法正确,符合题意.故选:D .[点睛]本题考查了有理数的定义、有理数绝对值的意义、有理数的加法法则和有理数的乘法法则等知识,属于基础题目,熟练掌握基本知识是解题关键.5.下列计算正确的是( ). A. 12()33m n m n m n ⎛⎫---=+ ⎪⎝⎭ B. 32a a -= C. 235x y xy += D.()a b c a b c --=--[答案]A根据整式的加减运算法则计算可判断A ,根据合并同类项的法则可判断B ,根据同类项的定义可判断C ,根据去括号法则可判断D ,进而可得答案.[详解]解:A 、12()32233m n m n m n m n m n ⎛⎫---=--+=+ ⎪⎝⎭,所以本选项计算正确;B 、32a a a -=,所以本选项计算错误;C 、2x 与3y 不是同类项,不能合并,所以本选项计算错误;D 、()a b c a b c --=-+,所以本选项计算错误.故选:A .[点睛]本题考查了整式的加减运算,属于基础题型,熟练掌握去括号的法则和合并同类项的法则是解题关键. 6.有一款服装原价元,悦悦百货商店先按原价上涨20%后标价,再按标价降价20%售出,那么最终商店卖出一件这样的服装( ).A. 赚了125a 元B. 亏了125a 元 C. 既不赚也不亏D. 无法判断是赚钱还是亏损,这和的值有关[答案]B[解析][分析] 先用含a 的代数式表示出最终该服装的售价,再减去原价a 即可进行判断.[详解]解:根据题意可得:该服装的标价为()120%a +元,降价20%后售价为()()120%120%a +-元, 所以该商店卖出一件这样的服装盈利为()()1120%120%0.960.0425a a a a a a +--=-=-=-元. 即最终该商店卖出一件这样的服装亏了125a 元. 故选:B .[点睛]本题考查了列代数式的知识和整式的加减运算,解题的关键是明确题意、正确表示出该服装的最终售价.7.下列式子中,和3232x yz -次数相同的是( ).A. 64abB. 328a b π-C. 25367a b ab -+-D. [答案]C先根据单项式次数的定义判断已知单项式的次数,再逐项判断即可.[详解]解:单项式3232x yz -的次数是6次.A 、64ab 的次数是7次,与已知式子的次数不相同,所以本选项不符合题意;B 、328a b π-的次数是5次,与已知式子的次数不相同,所以本选项不符合题意;C 、多项式25367a b ab -+-的次数是6次,与已知式子的次数相同,所以本选项符合题意;D 、的次数是0次,与已知式子的次数不相同,所以本选项不符合题意.故选:C .[点睛]本题考查了单项式和多项式的次数,属于基础概念题型,熟练掌握二者的概念是关键.8.如图是一个正方体的表面展开图,如果原正方体的相对两个面上的数和相等,那么m n +=( ).A. 4B. 3C. 2D. 1[答案]A[解析][分析] 先根据原正方体的相对两个面上的数之和相等求出m 、n 的值,再代入所求式子计算即可.[详解]解:由题意,得:()()13743m n +-=+=+-=,所以m =4,n =0,所以404m n +=+=.故选:A .[点睛]本题考查了正方体的表面展开图和有理数的加减运算,属于基本题型,解题的关键是根据题意正确确定m 、n 的值.9.在一次考试中,某班的17名男生的平均分为分,19名女生的平均分为分,那么这个班的全体同学的平均分为( ). A. 2a b + B. 36a b + C. 17192a b + D. 171936a b + [答案]D根据平均数的定义解答即可.[详解]解:由题意得:这个班的全体同学的平均分=17191719171936a b a b +++=. 故选:D .[点睛]本题考查了平均数的定义,属于基础题型,熟练掌握平均数的计算方法是解题关键.10.根据如图所示的流程图中的程序,当输入数据为3-时,输出数值为( ).A. 0B. 2C. 4D. 6[答案]A[解析][分析] 把x =﹣3代入所给出的流程图,按照程序计算即可.[详解]解:当x =﹣3时,﹣3+2=﹣1,﹣1×2=﹣2,﹣2<0; 当x =﹣2时,﹣2+2=0,0×2=0,0=0;所以输出的数值y =0.故选:A .[点睛]本题主要考查了代数式求值,属于常见题型,弄懂所给出的流程图、按照程序准确计算是解题关键.二、填空题:(每小题4分,共20分)11.若22a a -=-,且29a =,则a =__________.[答案]﹣3[解析][分析]由29a =可确定a 的值,再根据绝对值的意义确定a -2的取值范围,进而可得答案.[详解]解:因为29a =,所以3a =±, 因为22a a -=-,所以20a -≤,所以3a =-.故答案为:﹣3.[点睛]本题考查了有理数的乘方和有理数的绝对值,属于常考题型,熟练掌握基本知识是关键.12.一个棱柱有12个面,它有__________个顶点,___________条棱.[答案] (1). 20 (2). 30[解析][详解]解:一个棱柱有12个面,除上下两个底面后还有10个侧面,所以这个棱柱为10棱柱,它有20个顶点,30条棱故答案:20;30.[点睛]本题考查立体图形的认识..13.若在数轴上对应的点到表示的点的距离为3,则x =__________.[答案]﹣5或1[解析][分析]分表示数x 点在表示的点的左边和右边两种情况解答即可.[详解]解:当表示数x 的点在的点的左边时,x =﹣2-3=﹣5,当表示数x 的点在的点的右边时,x =﹣2+3=1,所以x =﹣5或1.故答案为:﹣5或1.[点睛]本题考查了数轴的有关知识,属于基本题型,正确理解数轴上两点间的距离是解题关键.14.如果关于,的单项式23m n x y -与2axy -可合并为单项式0,则a m n -+的值为 _________.[答案]2[解析][分析]由题意可得题目所给出的两项是同类项,再根据同类项的定义可得关于a 和m -n 的等式,然后把求得的a 的值和m -n 的值整体代入所求式子计算即可.[详解]解:根据题意,得:30a -=,1m n -=,所以a =3,所以()312a m n a m n -+=--=-=.故答案为:2.[点睛]本题考查了同类项的定义和合并同类项的法则,属于基础题目,熟练掌握基本知识是解题关键. 15.如图,正方形ABCD 的边长为2,以B 为圆心,AB 为半径在正方形内作14圆,再以CD 为直径在正方形内作半圆,得图中阴影部分,面积分别表示为1S 、2S ,则12S S -=__________.[答案]342π-[解析][分析]如图,可先计算13S S +,即为半圆CD 的面积,再计算23S S +,即为正方形的面积减去以AB 为半径的14圆的面积,然后再计算()13S S +与()23S S +的差即可.[详解]解:如图,记右边的空白部分的面积为S 3,则由题意得:21311112222CD S S πππ⎛⎫+=⋅=⨯= ⎪⎝⎭,2222311242444S S AB πππ+=-⋅=-⨯=-; 所以()()()121323134422S S S S S S πππ-=+-+=--=-. 故答案为:342π-.[点睛]本题考查了列代数式和阴影面积的计算等知识,弄清题意、明确()()121323S S S S S S -=+-+是解题关键.三、解答题:(共50分)16.计算(1)24111341323⎡⎤⎛⎫-+-+⨯-÷⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (2)225(2)3(0.2)013317---⨯-+÷⨯[答案](1)13-;(2)1.[解析][分析](1)先计算乘方,同时把除法转化为乘法,再计算乘法,最后计算加减;(2)前一项绝对值内先计算乘方,同时后一项计算乘除,再计算乘法即可.[详解]解:(1)24111341323⎡⎤⎛⎫-+-+⨯-÷⨯⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ =911134433⎛⎫-+-+⨯⨯⨯ ⎪⎝⎭ =()11399-+-+⨯=1169-+⨯=213-+ =13-;(2)原式=49(0.2)0--⨯-+=5(0.2)-⨯-=1.[点睛]本题考查了有理数的混合运算,属于基本题型,熟练掌握有理数的混合运算法则是解题关键. 17.化简(1)()()332332223234x y x y x y x y -----(2)22()()3()()a b a b b a b a ---+-+-[答案](1)322y x y --;(2)()()242a b a b ---.[解析][分析](1)先去括号,再合并同类项即可;(2)把a -b 看作一个整体,然后根据合并同类项的法则化简即可.[详解]解:(1)原式=332332246234x y x y x y x y ---++=322y x y --;(2)原式=()()()()223a b a b a b a b -+-----=()()242a b a b ---.[点睛]本题考查了整式的加减运算,属于基本题型,熟练掌握整式的加减运算法则是解题关键.18.已知:有理数,,在数轴上的位置如图,化简:|||||||3|a c b a b c a a +---+-+.[答案]2b .[解析][分析]先由a 、b 、c 在数轴上的位置可确定a >0,c <b <0,b a c <<,进而可确定,,,3a c b a b c a a +-+-的符号,再根据绝对值的性质去掉绝对值符号,然后根据整式的加减运算法则计算即可.[详解]解:由题意得:a >0,c <b <0,b a c <<,所以0,0,0,30a c b a b c a a +<-<+-<>,所以原式=()()()3a c b a b c a a -+-----+-+⎡⎤⎡⎤⎣⎦⎣⎦=3a c b a b c a a --+-++-+=2b .[点睛]本题主要考查了数轴、有理数的绝对值和整式的加减运算等知识,属于常考题型,根据点在数轴上的位置确定相关式子的符号、熟练进行绝对值的化简和整式的加减运算是解题的关键.19.下图是一个由若干棱长都为2cm 的小立方块搭成的几何体,求这个几何体的表面积.[答案]120cm 2.[解析][分析]先计算需要求的正方形的个数:可看作三个方向(正面、左面、上面)上的正方形的个数之和乘以2再加上挡住的2个正方形,所求得的结果再乘以一个正方形的面积即可.[详解]解:几何体的表面积=()425632=120⨯⨯+++⎡⎤⎣⎦cm 2.答:这个几何体的表面积是120cm 2.[点睛]本题考查了几何体的视图和表面积的计算,属于常见题型,掌握求解的方法是关键.20.已知2333A x xy y =--+,2343B x xy y =+-,且112x =-,537y =,求:4(2)(23)A A B A B -+--的值.[答案]94. [解析][分析] 先根据整式的加减运算法则化简原式,再把x 、y 的值代入化简后的式子计算即可.[详解]解:原式=4223A A B A B ---+=A B +()()23233343x xy y x xy y +=--++-23233343x xy y x xy y +=--++-2x =; 当112x =-,537y =,原式=219124⎛⎫-= ⎪⎝⎭. [点睛]本题考查了整式的加减运算与代数式求值,属于常考题型,熟练掌握整式的加减运算法则是解题的关键.21.用简便方法计算下列各式值:(1)()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯- ⎪⎝⎭(2)12345678979899100--++--+++--+…[答案](1)-15;(2)0.[解析][分析](1)可把原式变形为()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯,再逆用乘法分配律计算;(2)可将原式变形为()()()12345678979899100--++--+++--+…,进一步即可求出结果.[详解]解:()151 2.7 1.5 4.8 1.522⎛⎫-⨯+-⨯+⨯-⎪⎝⎭=()()1.5 2.7 1.5 4.8 1.5 2.5-⨯+-⨯+-⨯=()1.5 2.7 4.8 2.5-⨯++= 1.510-⨯=-15;(2)12345678979899100--++--+++--+…=()()()12345678979899100--++--+++--+…=000+++=0.[点睛]本题考查了有理数的加法和乘法运算律,属于常见题型,熟练掌握有理数的运算律和混合运算法则是解题关键.22.在数轴上有点,,,它们表示的数分别为,,,且满足:()24980a b c -+-++=;,,三点同时出发沿数轴向右运动,它们的速度分别为:1A V =(单位/秒),2B V =(单位/秒),3C V =(单位/秒).(1)求,,的值;(2)运动时间等于多少时,点与点、点的距离相等?[答案](1)a =4,b =9,c =﹣8;(2)6t =.[解析][分析](1)根据非负数的性质可得关于a 、b 、c 的方程,解方程即得答案;(2)先根据数轴上两点间的距离的表示方法得出点与点、点的距离,进而可得关于t 的方程,解方程即可求出结果.[详解]解:(1)根据题意,得:a -4=0,b -9=0,c +8=0,解得a =4,b =9,c =﹣8;(2)运动t 秒时,A 、B 、C 三点运动的路程分别为:t 、2t 、3t ,此时,点与点距离为:2945t t t -+-=+,点与C 点的距离为:()239817t t t -+--=-,由题意,得:517t t +=-,所以517t t +=-,解得:6t =;或()517t t +=--,此时t 的值不存在.所以当6t =时,点与点、点的距离相等.[点睛]本题主要考查了数轴上两点间的距离和一元一次方程的知识,属于常考题型,正确理解题意、准确用含t 的关系式表示点与点、点的距离是解题的关键.23.成都市的水费实行下表的收费方式:(1)周老师家九月份用了316m 的水,应付多少水费?(2)如果李老师家九月份的用水量为3xm ,那么应付的水费为多少元?(3)如果曹老师家九月和十月一共用了328m 的水,且已知九月比十月少,设九月用水量为3xm ,那么曹老师这两个月一共要交多少钱的水费?(可用含的代数式表示)[答案](1)38元;(2)当010x <≤时,应付水费10x 元;当1020x <≤时,应付水费310x -(元);当20x >时,应付水费为430x -(元);(3)若08x <<,要交水费822x -(元);若810x ≤≤,要交水费为74x -(元);若1014x <<,要交水费为64元.[解析][分析](1)根据不超310m 的按照2元/3m 计算,超出310m 的63m 按照3元/3m 计算,据此解答即可;(2)分用水量不超出310m (包括310m )、超出310m 但不超出320m (包括320m )、超出320m 三种情况,按照应付水费的计算方法解答即可;(3)先根据九月比十月用水量少确定x 的范围是014x <<,然后分08x <<、810x ≤≤、1014x <<三种情况,再根据(2)题中的结论和计费方法解答即可.[详解]解:(1)10263=38⨯+⨯元,答:周老师家九月份应付水费38元;(2)当用水量不超出310m (包括310m )即010x <≤时,应付水费为10x 元;当用水量超出310m 但不超出320m (包括320m )即1020x <≤时,应付水费为()102310310x x ⨯+⨯-=-(元);当用水量超出320m 即20x >时,应付水费为()102103420430x x ⨯+⨯+⨯-=-(元);答:当010x <≤时,应付水费10x 元;当1020x <≤时,应付水费310x -(元);当20x >时,应付水费430x -(元);(3)因为九月比十月用水量少,所以014x <<,若08x <<,则202828x <-<,所以曹老师这两个月一共要交水费为()242830822x x x +--=-(元);若810x ≤≤,则182820x ≤-≤,所以曹老师这两个月一共要交水费为()23281074x x x +--=-(元); 若1014x <<,则142818x <-<,所以曹老师这两个月一共要交水费为()3103281064x x -+--=元. 答:若08x <<,要交水费822x -(元);若810x ≤≤,要交水费为74x -(元);若1014x <<,要交水费为64元.[点睛]本题考查的是列出实际问题中的代数式,属于常考题型,正确理解题意、灵活应用分类思想是解题的关键.。

人教版数学七年级下册《期中检测题》(带答案)

人教版数学七年级下册《期中检测题》(带答案)

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 如图,∠1与∠2构成对顶角的是( ) A. B. C. D.2. 如图,直线a ,b 被直线c 所截,a ∥b ,若∠2=45°,则∠1等于( )A. 125°B. 130°C. 135°D. 145°3. 在1,052--,,这四个数中,最大的数是( )A. B. C. 5 D.4. 下列实数为无理数的是( )A. -5B. 227C. 0D. 25. 实数﹣8的倒数是( )A. ﹣18B. 18C. 8D. ﹣86. 在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为( )A. (2,15)B. (2,5)C. (5,9)D. (9,5)7. 在平面直角坐标系中,将点(﹣2,﹣4)向下平移3个单位长度后得到的点的坐标是( )A. (﹣2,﹣1)B. (﹣5,﹣4)C. (1,﹣4)D. (﹣2,﹣7) 8. 二元一次方程21x y -=有无数多个解,下列四组值中是该方程的解的是( )A. 00.5x y =⎧⎨=⎩B. 53x y =⎧⎨=-⎩C. 11x y =⎧⎨=-⎩D. 47x y =⎧⎨=⎩9. 下列方程是二元一次方程的是( )A. 2y xy -+=B. 3115x x -=C. 32x y =+D. 2612x y -= 10. 已知两数x ,y 之和是10,且x 比y 的2倍大3,则下列所列方程组正确的值是( )A. 1023x y y x +=⎧⎨=+⎩B. 1023x y y x +=⎧⎨=-⎩C. 1023x y x y +=⎧⎨=+⎩D. 1023x y x y +=⎧⎨=-⎩二.填空题(共10小题)11. 把命题“在同一平面内,垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式为____________________________________________________.12. 如图,AB ∥CD ,DE ∥CB ,∠B =35°,则∠D =_____°.13. 925的算术平方根是_______. 14. 计算:143⎛⎫-- ⎪⎝⎭=_____.15. 如果某数的一个平方根是﹣2,那么这个数是_____.16. 已知点A 在第三象限,且到x 轴,y 轴的距离分别为4、5,则A 点的坐标为_____.17. 若点P (m ﹣2,2m +1)在x 轴上,则m 的值是___.18. 若21x y =⎧⎨=⎩是关于,的二元一次方程21x ay -+=-的一个解,则a =__________. 19. 已知二元一次方程y ﹣2x =1,用含x 代数式表示y ,则y =_____.20. 如图,CD ⊥AB ,点D 为垂足,DE 平分∠CDB ,则∠ADE 是_____度.三.解答题(共7小题)21. (1)求式中x 的值:2(1)16x -=;(2)计算:2020312527--22. 如图,△ABC 中.(1)画△ABC 向右平移4个单位,再向下平移3个单位得到△A 'B 'C ';(2)写出平移后A '、B '、C '三点的坐标.(3)求三角形ABC 的面积.23. 如图,点,,A O B 在同一条直线上,OE 平分BOC ∠,OD OE ⊥于点,如果66COD ∠=︒,求AOE ∠度数.24. 已知2x +是27的立方根,31x y +-的算术平方根是4,求73x y +平方根.25. 解方程组:(1)12232x y x y =-⎧⎨+=-⎩(2)321121x y x y +=⎧⎨-=⎩26. 在元旦节来临之际,小明准备给好朋友赠送一些钢笔和笔记本作为元旦礼物,经调查发现,支钢笔和个笔记本要元;支钢笔和个笔记本要元.(1)求一支钢笔和一个笔记本分别要多少元?(2)小明购买了支钢笔和个笔记本,恰好用完元钱.若两种物品都要购买,请你帮他设计购买方案.答案与解析一.选择题(共10小题)1. 如图,∠1与∠2构成对顶角的是( )A. B.C. D.[答案]C[解析][分析]根据对顶角的定义,可得答案.[详解]A、∠1与∠2有一条边在同一条直线上,另一条边不在同一条直线上,不是对顶角,故A选项错误;B、∠1与∠2没有公共顶点,不是对顶角,故B选项错误;C、∠1与∠2的两边互为反向延长线,是对顶角,故C选项正确;D、∠1与∠2的两边不是互为反向延长线,不是对顶角,故D选项错误.故选:C.[点睛]本题考查了对顶角,利用∠1的两边与∠2的两边互为反向延长线是解题的关键.2. 如图,直线a,b被直线c所截,a∥b,若∠2=45°,则∠1等于( )A. 125°B. 130°C. 135°D. 145°[答案]C[解析][分析]根据两直线平行,同位角相等可得∠3=∠2,再根据邻补角的定义解答.[详解]如图,∵a∥b,∠2=45°,∴∠3=∠2=45°,∴∠1=180°−∠3=135°,故选:C .[点睛]本题考查了平行线的性质,解题的关键是掌握平行线性质定理定理1:两条平行线被第三条直线所截,同位角相等. 简单说成:两直线平行,同位角相等.定理2:两条平行线被地三条直线所截,同旁内角互补..简单说成:两直线平行,同旁内角互补. 定理3:两条平行线被第三条直线所截,内错角相等. 简单说成:两直线平行,内错角相等.3. 在1,02--,这四个数中,最大数是( )A.B. C. D. [答案]B[解析][分析]根据有理数的大小比较法则比较即可.[详解]解:4个数中,-1,,2为正数,正数大于0,0大于负数,∴最大的数是2.故选B.[点睛]本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键. 4. 下列实数为无理数的是( )A. -5B. 227C. 0 [答案]D[解析][分析]无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.[详解]A 、−5是整数,是有理数,选项错误;B 、227是分数,是有理数,选项错误; C 、0是整数,是有理数,选项错误;D 是无理数,选项正确;故选:D.[点睛]此题主要考查了无理数的定义,其中初中范围内学习的无理数有:,2等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.5. 实数﹣8的倒数是( )A. ﹣18B.18C. 8D. ﹣8[答案]A[解析][分析]根据倒数的知识直接回答即可.[详解]解:实数﹣8的倒数是﹣18,故选:A.[点睛]本题是对倒数知识的考查,熟练掌握倒数知识是解决本题的关键.6. 在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为()A. (2,15)B. (2,5)C. (5,9)D. (9,5)[答案]C[解析][分析]根据用(2,15)表示2排15号可知第一个数表示排,第二个数表示号,进而可得答案.[详解]∵(2,15)表示2排15号可知第一个数表示排,第二个数表示号∴5排9号可以表示为(5,9),故选:C.[点睛]本题是有序数对的考查,解题关键是弄清楚有序数对中的数字分别对应的是行还是列7. 在平面直角坐标系中,将点(﹣2,﹣4)向下平移3个单位长度后得到的点的坐标是( )A. (﹣2,﹣1)B. (﹣5,﹣4)C. (1,﹣4)D. (﹣2,﹣7) [答案]D[解析][分析]根据横坐标,右移加,左移减;纵坐标,上移加,下移减解答即可.[详解]解:将点(﹣2,﹣4)向下平移3个单位长度,所得到的点的坐标是(﹣2,﹣7),故选:D.[点睛]此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律.8. 二元一次方程21x y -=有无数多个解,下列四组值中是该方程的解的是( )A. 00.5x y =⎧⎨=⎩B. 53x y =⎧⎨=-⎩C. 11x y =⎧⎨=-⎩D. 47x y =⎧⎨=⎩ [答案]D[解析][分析]将选项中的,x y 的值代入方程中,若方程等号两边相等则是方程的解,否则就不是方程的解.[详解]解:选项A ,将0,0.5==x y 代入,方程左边200.5=0.5-=--≠x y 右边,故不是方程解; 选项B ,将5,3x y ==-代入,方程左边210+3=13-=≠x y 右边,故不是方程的解;选项C ,将1,1x y ==-代入,方程左边21+1=2-=≠x y 右边,故不是方程的解;选项D ,将4,7x y ==代入,方程左边287=1=-=-x y 右边,是方程的解;故答案为:D.[点睛]本题考查二元一次方程的解,是方程的解就是将未知数代入方程中,等号左边等于等号右边. 9. 下列方程是二元一次方程的是( )A. 2y xy -+=B. 3115x x -=C. 32x y =+D. 2612x y -= [答案]C[解析][分析]根据二元一次方程的定义对各选项分析判断后利用排除法求解.[详解]解:A 、2y xy -+=是二元二次方程,故本选项错误;B 、3115x x -=是一元一次方程,故本选项错误;C 、32x y =+是二元一次方程,故本选项正确;D 、不是整式方程,故本选项错误.故选C .[点睛]本题主要考查二元一次方程的概念,要求熟悉二元一次方程的形式及其特点:含有2个未知数,未知数的项的次数是1的整式方程.10. 已知两数x ,y 之和是10,且x 比y 的2倍大3,则下列所列方程组正确的值是( )A. 1023x y y x +=⎧⎨=+⎩B. 1023x y y x +=⎧⎨=-⎩C. 1023x y x y +=⎧⎨=+⎩D. 1023x y x y +=⎧⎨=-⎩ [答案]C[解析][分析] 根据x ,y 之和是10,列出方程10x y +=,再由x 比y 的2倍大3,列出方程23x y =+,最后写成方程组形式即可解题.[详解]根据题意列出方程组,得:1023x y x y +=⎧⎨=+⎩故选C .[点睛]本题考查由实际问题抽象出二元一次方程组的知识,是重要考点,找到等量关系,掌握相关知识是解题关键.二.填空题(共10小题)11. 把命题“在同一平面内,垂直于同一条直线的两条直线平行”改写成“如果……那么……”的形式为____________________________________________________.[答案]“在同一平面内,如果两条直线都垂直于同一直线,那么这两直线互相平行”[解析][分析]命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行.[详解]“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果−−−,那么−−−”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.故答案为在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行.12. 如图,AB ∥CD ,DE ∥CB ,∠B =35°,则∠D =_____°.[答案]145根据平行线的性质可得∠B=∠C=35°,再根据BC∥DE可根据两直线平行,同旁内角互补可得答案.[详解]解:∵AB∥CD,∴∠C=∠B=35°.∵DE∥CB,∴∠D=180°﹣∠C=145°.故答案为:145.[点睛]此题考查了平行线的性质,解答关键是掌握两直线平行,同旁内角互补.两直线平行,内错角相等.13. 925的算术平方根是_______.[答案]3 5[解析][分析]根据算术平方根的定义即可解答.[详解]解:925的算术平方根是35,故答案为:35.[点睛]本题考查了算术平方根的概念,解题的关键是熟知算术平方根的概念.14.13⎛⎫-⎪⎝⎭=_____.[答案]7 3[解析][分析]根据实数的运算法则即可求解.[详解13⎛⎫-⎪⎝⎭=2+1733=故答案为:73.[点睛]此题主要考查实数的运算,解题的关键是熟知其运算法则.15. 如果某数的一个平方根是﹣2,那么这个数是_____.[答案]4.计算﹣2的平方为4,可解答.[详解]解:∵某数的一个平方根是﹣2,∴这个数4.故答案为:4.[点睛]此题考查的是已知一个数的平方根,求这个数,掌握平方根的定义是解决此题的关键. 16. 已知点A 在第三象限,且到x 轴,y 轴的距离分别为4、5,则A 点的坐标为_____.[答案](54)A --,[解析][分析]根据坐标系中第三象限点的坐标特征:横坐标为负数,纵坐标为负数解题即可.[详解]点A 在第三象限,设坐标为(,)x y00,x y ∴<<A 到x 轴,y 轴的距离分别为4、5,54x y ∴=-=-,(54)A ∴--,故答案为:(54)A --,[点睛]本题考查各象限点坐标的特征,是重要考点,难度容易,掌握相关知识是解题关键. 17. 若点P (m ﹣2,2m +1)在x 轴上,则m 的值是___.[答案]﹣12. [解析][分析]直接利用x 轴上点的坐标特点得出2m +1=0,进而得出答案.[详解]∵点P (m ﹣2,2m +1)在x 轴上,∴2m +1=0, 解得:m =﹣12, 故答案为:﹣12.[点睛]此题主要考查了点的坐标,正确掌握x轴上点的纵坐标为0是解题关键.18. 若21xy=⎧⎨=⎩是关于,的二元一次方程21x ay-+=-的一个解,则a=__________.[答案]3[解析][分析]根据二元一次方程的解定义,将x和y的值代入求解即可.[详解]由题意,将21xy=⎧⎨=⎩代入二元一次方程21x ay-+=-得:221a-⨯+=-解得3a=故答案为:3.[点睛]本题考查了二元一次方程的解定义,掌握解的定义是解题关键.19. 已知二元一次方程y﹣2x=1,用含x的代数式表示y,则y=_____.[答案]2x+1[解析][分析]把x看作已知数,解关于y的方程即可.[详解]解:由y﹣2x=1,得到y=2x+1.故答案为:2x+1[点睛]此题考查了二元一次方程,一般表示谁,就把谁看作未知数,解方程即可.20. 如图,CD⊥AB,点D为垂足,DE平分∠CDB,则∠ADE是_____度.[答案]135[解析][分析]根据CD⊥AB,可得∠ADC=∠BDC=90°,再根据角平分线的性质可得∠CDE=12∠BDC=12×90°=45°,利用角的和差关系即可求出∠ADE的度数.[详解]∵CD⊥AB,∴∠ADC =∠BDC =90°,∵DE 平分∠CDB ,∴∠CDE =12∠BDC =12×90°=45°, ∴∠ADE =∠ADC+∠CDE =90°+45°=135°.故答案:135.[点睛]本题考查了角的度数问题,掌握垂线的性质、角平分线的性质、角的和差关系是解题的关键.三.解答题(共7小题)21. (1)求式中x 的值:2(1)16x -=;(2)计算:20201-[答案](1)x =5或﹣3;(2)﹣9.[解析][分析](1)直接利用平方根的定义化简得出答案;(2)直接利用立方根以及算术平方根的定义化简得出答案.[详解](1)(x ﹣1)2=16,x ﹣1=±4,解得:x =5或﹣3;(2)20201-=﹣1﹣5﹣3=﹣9.[点睛]此题主要考查了实数运算,正确化简各数是解题关键.22. 如图,在△ABC 中.(1)画△ABC 向右平移4个单位,再向下平移3个单位得到的△A 'B 'C ';(2)写出平移后A '、B '、C '三点的坐标.(3)求三角形ABC 的面积.[答案](1)答案见解析;(2)A '(3,1)、B '(0,﹣4)、C '(5,﹣2);(3)9.5.[解析][分析](1)分别画出△ABC 各个顶点的对应点,顺次连接起来,即可;(2)根据网格的特点以及A '、B '、C '三点的位置,直接写出坐标即可;(3)根据网格的特点,利用割补法,即可求解.[详解](1)如图所示,△A 'B 'C '即为所求;(2)由图可知,A '(3,1)、B '(0,﹣4)、C '(5,﹣2);(3)5×5-3×5÷2-2×3÷2-2×5÷2=9.5.[点睛]本题主要考查图形与坐标以及平移变换,掌握图形的平移变换以及割补法求三角形的面积,是解题的关键.23. 如图,点,,A O B 在同一条直线上,OE 平分BOC ∠,OD OE ⊥于点,如果66COD ∠=︒,求AOE ∠的度数.[答案]156°[解析][分析]根据垂直的意义和性质,判断出∠DOE 的度数,根据∠COE 与∠COD 的关系,求出∠COE 的度数,然后利用角平分线的性质得出∠BOE ,再根据互补角的意义,即可求出∠AOE 的度数.[详解]解:∵OD ⊥OE 于O ,∴∠DOE =90°,又∵因为∠COD =66°,∴∠COE =∠DOE -∠COD =90°-66°=24°, ∵OE 平分∠BOC ,∴∠BOE =∠COE =24°,又∵点A ,O ,B 在同一条直线上,∴∠AOB =180°,∴∠AOE =∠AOB -∠BOE =180°-24°=156°.[点睛]本题考查了垂直的意义,角平分线的性质,解决本题关键是正确理解题意,能够根据题意找到角与角之间的关系.24. 已知2x +是27的立方根,31x y +-的算术平方根是4,求73x y +平方根.[答案]7±[解析][分析]根据立方根的定义和算术平方根的定义,可得二元一次方程组,根据解方程组,可得x 、y 的值,再计算73x y +的值,根据平方根的定义,可得答案.[详解]由题意得:24x ⎧+=⎪=,解得:114x y =⎧⎨=⎩, ∴7374249x y +=+=,∵49平方根为±7,∴73x y +的算术平方根为±7.[点睛]本题考查了立方根,平方根和算术平方根,根据题意得出二元一次方程组是解题的关键.25. 解方程组:(1)12 232 x yx y=-⎧⎨+=-⎩(2)321121 x yx y+=⎧⎨-=⎩[答案](1)74xy=-⎧⎨=⎩(2)31xy=⎧⎨=⎩[解析][分析](1)根据代入消元法即可求解;(2)根据加减消元法即可求解.[详解](1)12232 x yx y=-⎧⎨+=-⎩①②把①代入②得2(1-2y)+3y=-2 解得y=4把y=4代入①得x=1-8=-7∴原方程组的解为74 xy=-⎧⎨=⎩(2)321121x yx y+=⎧⎨-=⎩①②①+②得4x=12解得x=3把x=3代入②得3-2y=1 解得y=1∴原方程组的解为31 xy=⎧⎨=⎩.[点睛]此题主要考查二元一次方程组的求解,解题的关键是熟知其解法.26. 在元旦节来临之际,小明准备给好朋友赠送一些钢笔和笔记本作为元旦礼物,经调查发现,支钢笔和个笔记本要元;支钢笔和个笔记本要元.(1)求一支钢笔和一个笔记本分别要多少元?(2)小明购买了支钢笔和个笔记本,恰好用完元钱.若两种物品都要购买,请你帮他设计购买方案.[答案](1)一支钢笔需15元,一个笔记本需10元;(2)有两种购买方案,方案一:购买2支钢笔,5个笔记本;方案二:购买4支钢笔,2个笔记本.[解析][分析](1)设一支钢笔需x元,一个笔记本需y元,,然后根据关键语“支钢笔和个笔记本要元;支钢笔和个笔记本要元”,列方程组求解即可;(2)可列出关于a、b的二元一次方程,根据a、b均为非负整数,求出方程的正整数解即可得到结果.[详解]解:(1)设一支钢笔需x元,一个笔记本需y元,由题意得:235355x yx y+=⎧⎨+=⎩,解得:1510xy=⎧⎨=⎩.答:一支钢笔需15元,一个笔记本需10元.(2)由题意得,15a+10b=80,化简得3a+2b=16,因为a,b都是正整数,所以符合条件的解为:24,52a ab b==⎧⎧⎨⎨==⎩⎩.则有两种购买方案,方案一:购买2支钢笔,5个笔记本;方案二:购买4支钢笔,2个笔记本.[点睛]此题主要考查了二元一次方程组和二元一次方程的应用,关键是正确理解题意,找出等量关系,列出二元一次方程组以及二元一次方程.。

人教版七年级数学下册期中考试卷(加答案)

人教版七年级数学下册期中考试卷(加答案)

人教版七年级数学下册期中考试卷(加答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°3.如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2 B.∠2,∠6 C.∠5,∠4 D.∠2,∠4 4.已知a=b,下列变形正确的有()个.①a+c=b+c;②a﹣c=b﹣c;③3a=3b;④ac=bc;⑤a bc c =.A.5 B.4 C.3 D.25.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5y/cm 10 10.5 11 11.5 12 12.5下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm7.下列各组数中,能作为一个三角形三边边长的是()A.1,1,2 B.1,2,4 C.2,3,4 D.2,3,5 8.一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.若x﹣m与x+3的乘积中不含x的一次项,则m的值为()A.3 B.1 C.0 D.﹣3 二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简a c b abc a b c abc +++结果是________. 2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.已知AB//y 轴,A 点的坐标为(3,2),并且AB=5,则B 的坐标为________. 4.若()2320m n -++=,则m+2n 的值是________.5.A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车的速度为120千米/时,乙车的速度为80千米/时,t 时后两车相距50千米,则t 的值为____________.5.如图,长方体的底面边长分别为1cm 和3cm ,高为6cm .如果用一根细线从点A 开始经过4个侧面缠绕一圈到达点B ,那么所用细线最短需要______cm .三、解答题(本大题共6小题,共72分)1.解方程组x 3y 1{3x 2y 8+=--=2.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求a b m cd m+++的值.3.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.4.如图,在△ABC和△ADE中,AB=AC,AD=AE,且∠BAC=∠DAE,点E在BC 上.过点D作DF∥BC,连接DB.求证:(1)△ABD≌△ACE;(2)DF=CE.5.为丰富学生的课余生活,陶冶学生的情趣,促进学生全面发展,其中七年级开展了学生社团活动.学校为了解学生参加情况,进行了抽样调查,制作如下的统计图:请根据上述统计图,完成以下问题:(1)这次共调查了______名学生;扇形统计图中,表示“书法类”所在扇形的圆心角是______度;(2)请把统计图1补充完整;(3)若七年级共有学生1100名,请估算有多少名学生参加文学类社团?6.某商场用36万元购进A、B两种商品,销售完后共获利6万元,其进价和售价如下表:(注:获利=售价-进价)(1) 该商场购进A、B两种商品各多少件?(2) 商场第二次以原进价购进A、B两种商品.购进B种商品的件数不变,而购进A种商品的件数是第一次的2倍,A种商品按原价出售,而B种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于81600元,B种商品最低售价为每件多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、B4、B5、C6、B7、C8、A9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、40°3、(3,7)或(3,-3)4、-15、2或2.56、10三、解答题(本大题共6小题,共72分)1、x2 y1⎧⎨⎩==-2、(1)a+b=0,cd=1,m=±2;(2)3或-13、24°.4、(1)证明略;(2)证明略.5、(1)50;72;(2)详见解析;(3)330.6、(1)该商场购进A、B两种商品分别为200件和120件.(2)B种商品最低售价为每件1080元.。

人教版数学七年级下学期《期中测试卷》带答案

人教版数学七年级下学期《期中测试卷》带答案

人 教 版 数 学 七 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每小题3分,共30分)1.下列各数中,属于无理数的是( ) A. 13 B. 1.414 C. 2 D. 42.如图所示,1,2∠∠不是同位角的是( )A. B.C. D.3.如图,点E 在CD 延长线上,下列条件中不能判定AB ∥CD 的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC =180° 4.平面直角坐标系中,点P (-3,4)位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限 5.已知点(1,6)A m m -+在轴上,则m =( )A. 6-B. 6C.D. 16.下列生活现象中,属于平移的是( )A. 足球在草地上滚动B. 拉开抽屉C. 投影片的文字经投影转换到屏幕上D. 钟摆的摆动7.下列四个命题:①过一点有且只有一条直线与已知直线垂直;②过直线外一点有且只有一条直线与已知直线平行;③两条直线被第三条直线所截,同旁内角互补;④从直线外一点作直线的垂线段叫做点到直线的距离.其中假命题的是( )A. 0个B. 1个C. 2个D. 3个8.如图,已知AB ∥DE,∠ABC=70°,∠CDE=140°,则∠BCD 值为( )A. 20°B. 30°C. 40°D. 70°9.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是( )A. 35°B. 45°C. 55°D. 65°10.如图,在平面直角坐标系中,点A 1.A 2.A 3.A 4.A 5.A 6的坐标依次为A 1(0,1),A 2(1,1),A 3(1,0),A 4(2,0),A 5(2,1),A 6(3,1),…按此规律排列,则点A 2019的坐标是()A. (1009,1)B. (1009,0)C. (1010,1)D. (1010.0)二、填空题(每小题3分,共15分) 11.81的平方根是____.12.把命题“平行于同一直线的两直线平行”改写成:如果__________,那么__________.13.将一个矩形纸片折叠成如图所示的图形,若25ABC ︒∠=,则ACD ∠=_____.14.规定用符号表示一个实数的整数部分,如[3.65]3,31⎡==⎣,按此规定113⎡=⎣_____.15.如图,△OAB 的顶点A 的坐标为(3,3),B 的坐标为(4,0);把△OAB 沿x 轴向右平移得到△CDE ,如果D 的坐标为(6,3),那么OE 的长为_____.三、解答题(满分75分)16.(1)计算:239(0.5)81|32|16-+--+- (2)已知51|2|0a b ++-=,求20192019()a a b ++的值. 17.如图,AOB 为一条在O 处拐弯的河,要修一条从村庄P 通向这条河的道路,现在有两种设计方案:一是沿PM 修路,二是沿PO 修路,如果不考虑其他因素,这两种方案哪个更经济些?它是不是最佳方案?如果不是,请你帮助设计出最佳方案,并简要说明理由.18.已知//,70AB DE B ︒∠=,且CM 平分,DCB CM CN ∠⊥,求NCE ∠的度数.19.已知:如图把ABC ∆向上平移3个单位长度,再向右平移2个单位长度,得到A B C '''∆.(1)在图中画出A B C '''∆;(2)写出点,,A B C '''的坐标:的坐标为______,的坐标为 _________; 的坐标为________.(3)在轴上是否存在一点P ,使得,BCP ABC ∆∆的面积相等?若存在,请求出点P 的坐标;若不存在,说明理由.20.已知,如图12,A C ∠=∠∠=∠,求证://AE BC21.如图,已知,AD BC EF BC ⊥⊥,垂足分别为D,F ,试说明:GDC B ∠=∠请补充说明过程,并在括号内填上理由解:,AD BC EF BC ⊥⊥(已知)90ADB EFB ︒∴∠=∠=( )//EF AD ∴( )_________2180︒∴+∠=( )32180︒∠+∠=(已知)//_____AB ∴( )GDC B ∴∠=∠( )22.你能找出规律吗?(1)计算:49___________⨯=;49__________⨯=;1625___________⨯=;1625___________⨯=(2)由(1)结果猜想:a ___________(0,0)b a b ⨯=≥≥(3)请按照此规律计算:①510⨯ ②221235⨯ (4)已知2,10a b ==,则40_________=(用含,a b 式子表示)23.已知直线AB CD ∥.(1)如图1,直接写出ABE ∠,CDE ∠和BED ∠之间的数量关系.(2)如图2,BF ,DF 分别平分ABE ∠,CDE ∠,那么BFD ∠和BED ∠有怎样的数量关系?请说明理由.(3)若点E 的位置如图3所示,BF ,DF 仍分别平分ABE ∠,CDE ∠,请直接写出BFD ∠和BED ∠的数量关系.答案与解析一、选择题(每小题3分,共30分)1.下列各数中,属于无理数的是( )A. 13B. 1.414C. 2D. 4[答案]C[解析][分析]根据无理数的定义:无限不循环小数是无理数即可求解;[详解]A.·10.33=,是无限循环小数,是有理数,B.1.414是有限小数,是有理数,C.2是开方开不尽的数,是无理数;D.42=,是有理数;故选C.[点睛]本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.2.如图所示,1,2∠∠不是同位角的是()A. B.C. D.[答案]D[解析][分析]同位角的定义:在截线的同侧,并且在被截线的同一方的两个角是同位角.[详解]A、∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;B、∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;C、∠1与∠2有一边在同一条直线上,另一条边在被截线的同一方,是同位角,不符合题意;D、∠1与∠2的两条边都不在同一条直线上,不是同位角,符合题意;故选:D.[点睛]本题主要考查了同位角的知识,判断是否是同位角,必须符合三线八角中,在截线的同侧,并且在被截线的同一方的两个角是同位角.3.如图,点E在CD的延长线上,下列条件中不能判定AB∥CD的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B +∠BDC=180°[答案]A[解析][分析]运用平行线的判定方法进行判定即可.[详解]解:选项A中,∠1=∠2,只可以判定AC//BD(内错角相等,两直线平行),所以A错误;选项B中,∠3=∠4,可以判定AB//CD(内错角相等,两直线平行),所以正确;选项C中,∠5=∠B,AB//CD(内错角相等,两直线平行),所以正确;选项D中,∠B +∠BDC=180°,可以判定AB//CD(同旁内角互补,两直线平行),所以正确;故答案为A.[点睛]本题考查平行的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.4.在平面直角坐标系中,点P(-3,4)位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限[答案]B[解析][分析]由题意根据点的横纵坐标特点,判断其所在象限即可.[详解]解:∵点(-3,4)的横纵坐标符号分别为:-,+,∴点P (-3,4)位于第二象限.故选:B .[点睛]本题考查各象限内点的坐标的符号,注意掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.已知点(1,6)A m m -+在轴上,则m =( )A. 6-B. 6C.D. 1[答案]D[解析][分析]直接利用轴上点的坐标特点得出的值,即可得出答案.[详解]∵点A (1m -,6m +)在y 轴上,∴点的横坐标是0,∴10m -=,解得1m =,故选:D .[点睛]本题考查了坐标轴上的点的坐标的特征,解决本题的关键是记住轴上点的特点为横坐标为0.6.下列生活现象中,属于平移的是( )A. 足球在草地上滚动B. 拉开抽屉C. 投影片的文字经投影转换到屏幕上D. 钟摆的摆动 [答案]B[解析]试题分析:根据基平移的定义,对选项进行一一分析,排除错误答案.解:A .足球在草地上滚动方向变化,不符合平移的定义,不属于平移B .拉开抽屉符合平移的定义,属于平移;C .投影片的文字经投影转换到屏幕上,大小发生了变化,不符合平移的定义,不属于平移;D .钟摆的摆动是旋转运动,不属于平移;故选B .7.下列四个命题:①过一点有且只有一条直线与已知直线垂直;②过直线外一点有且只有一条直线与已知直线平行;③两条直线被第三条直线所截,同旁内角互补;④从直线外一点作直线的垂线段叫做点到直线的距离.其中假命题的是( )A. 0个B. 1个C. 2个D. 3个分析]分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.[详解]解:①过同一平面内一点有且只有一条直线与已知直线垂直,故原命题是假命题;②过直线外一点有且只有一条直线与已知直线平行,是真命题;③两条平行的直线被第三条直线所截,同旁内角互补,故原命题是假命题;④从直线外一点作这条直线的垂线段的长度叫点到直线的距离,故原命题是假命题;故选:D.[点睛]此题考查了命题与定理,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.8.如图,已知AB∥DE,∠ABC=70°,∠CDE=140°,则∠BCD的值为( )A. 20°B. 30°C. 40°D. 70°[答案]B[解析]试题分析:延长ED交BC于F,∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°,故选B.考点:平行线的性质.9.如图,三角板的直角顶点落在矩形纸片的一边上.若∠1=35°,则∠2的度数是( )A. 35°B. 45°C. 55°D. 65°分析:求出∠3即可解决问题;详解:如图,∵∠1+∠3=90°,∠1=35°,∴∠3=55°,∴∠2=∠3=55°,故选C.点睛:此题考查了平行线的性质.两直线平行,同位角相等的应用是解此题的关键.10.如图,在平面直角坐标系中,点A1.A2.A3.A4.A5.A6的坐标依次为A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…按此规律排列,则点A2019的坐标是( )A. (1009,1)B. (1009,0)C. (1010,1)D. (1010.0)[答案]B[解析][分析]根据图象可得移动4次图象完成一个循环,从而可得出点A2019的坐标.[详解]解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2019÷4=504…3,所以点A2019的坐标为(504×2+1,0),则点A2019的坐标是(1009,0).故选B.[点睛]本题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,难度一般.二、填空题(每小题3分,共15分)81____.[答案]±3[解析][详解]∵81=9,±.∴9的平方根是3故答案为3.12.把命题“平行于同一直线的两直线平行”改写成:如果__________,那么__________.[答案](1). 两条直线平行于同一条直线(2). 这两条直线平行[解析][分析]命题由题设和结论两部分组成,通常写成“如果…那么…”形式.“如果”后面接题设,“那么”后面接结论.[详解]命题可以改写为:“如果两条直线平行于同一条直线,那么这两条直线平行”.故答案为:两条直线平行于同一条直线,这两条直线平行[点睛]本题考查了命题的定义及组成,命题由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.∠=_____.13.将一个矩形纸片折叠成如图所示的图形,若25ABC︒∠=,则ACD[答案]130°[解析][分析]直接利用翻折变换的性质以及平行线的性质分析得出答案.[详解]解:如图,延长DC到E,根据折叠可知,∠ACB=∠BCE,∵AB∥CD,∴∠BCE=∠ABC=25°,∴∠ACE=50°,∵∠ACE+∠ACD=180°,∴∠ACD=130°,故答案为130°.[点睛]本题主要考查了翻折变换的性质以及平行线的性质,正确应用相关性质是解题关键.14.规定用符号表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____. [答案]-3[解析][分析]先确定13的范围,再确定113⎡⎤-⎣⎦的范围,然后根据题意解答即可.[详解]解:∵3<13<4∴-3<113-<-2∴113⎡⎤-=⎣⎦-3 故答案为-3.[点睛]本题考查了无理数整数部分的有关计算,确定13的范围是解答本题的关键.15.如图,△OAB 的顶点A 的坐标为(3,3),B 的坐标为(4,0);把△OAB 沿x 轴向右平移得到△CDE ,如果D 的坐标为(6,3),那么OE 的长为_____.[答案]7[解析][分析]根据平移的性质得到AD =BE =6﹣3=3,由B 的坐标为(4,0),得到OB =4,根据OE=OB+BE 即可得答案.[详解]∵点A 的坐标为(33点D 的坐标为(63),把△OAB 沿x 轴向右平移得到△CDE ,∴AD =BE =6﹣3=3,∵B 的坐标为(4,0),∴OE =OB+BE =7,故答案为:7[点睛]本题考查图形平移的性质,平移不改变图形的形状和大小;图形经过平移,对应线段相等,对应角相等,对应点所连的线段相等.三、解答题(满分75分)16.(1)|2|(2)已知|2|0b -=,求20192019()a a b ++的值.[答案](1)34-(2)0 [解析][分析](1)根据二次根式的运算法则和开立方的法则分别计算,再做加减运算;(2)根据非负数的性质列出算式,求得、的值代入计算即可.[详解](12|0.522)=- 152224=--+34=--(2)∵|2|0b -=,∴10a +=,20b -=,∴1a =-,2b =,∴20192019()a a b ++20192019(1)(12)=-+-+11=-+0=.[点睛]本题考查了二次根式的混合运算、有理数乘方的运算以及非负数的性质,注意正确使用运算法则以及17.如图,AOB 为一条在O 处拐弯的河,要修一条从村庄P 通向这条河的道路,现在有两种设计方案:一是沿PM 修路,二是沿PO 修路,如果不考虑其他因素,这两种方案哪个更经济些?它是不是最佳方案?如果不是,请你帮助设计出最佳方案,并简要说明理由.[答案]这两种方案沿PO 修路更经济些,不是最佳方案,最佳方案见解析.[解析][分析]根据点到直线的距离定义垂线段最短,进而分析得出即可.[详解]∵在Rt △POM 中,PM >PO ,∴这两种方案沿PO 修路更经济些,它不是最佳方案,过点P 作PN ⊥OB 于点N ,∵OP >PN ,PN 是点P 到OB 上的最短路线,∴此方案是最佳方案.18.已知//,70AB DE B ︒∠=,且CM 平分,DCB CM CN ∠⊥,求NCE ∠的度数.[答案]35°[解析][分析]先根据AB ∥DE ,∠B=70°,CM 平分∠DCB 可求出∠BCM 及∠BCE 的度数,再根据CM ⊥CN 可求出∠BCN 的度数,再由∠NCE=∠BCE-∠BCN 即可解答.[详解]∵AB ∥DE ,∠B=70°,∴∠DCB=180°-∠B=180°-70°=110°,∠BCE=∠B=70°,∵CM 平分∠DCB ,∴∠BCM=12∠DCB=12×110°=55°, ∵CM ⊥CN ,垂足为C ,∴∠BCN=90°-∠BCM=90°-55°=35°,∴∠NCE=∠BCE-∠BCN=70°-35°=35°.[点睛]本题考查了平行线、角平分线及两角互余的性质,用到的知识点为:两直线平行,同旁内角互补;两直线平行,内错角相等.19.已知:如图把ABC ∆向上平移3个单位长度,再向右平移2个单位长度,得到A B C '''∆.(1)在图中画出A B C '''∆;(2)写出点,,A B C '''坐标:的坐标为______,的坐标为 _________; 的坐标为________.(3)在轴上是否存在一点P ,使得,BCP ABC ∆∆的面积相等?若存在,请求出点P 的坐标;若不存在,说明理由.[答案](1)见解析;(2)(0,4),(−1,1),(3,1);(3)P(0,1)或(0,−5),理由见解析[解析][分析](1)根据图形平移的性质画出△A′B′C′即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据同底等高的三角形面积相等即可得出结论.详解](1)A ,B ,C 向上平移3个单位长度,再向右平移2个单位长度得到,,,连接,,,即可得到A B C '''∆(2)由图可知,A′(0,4),B′(−1,1),C′(3,1)故答案为:(0,4),(−1,1),(3,1)(3)设P(0,y)∵△BCP 与△ABC 同底等高∴|y+2|=3,即y+2=3或y+2=−3解得y 1=1,y 2=−5∴P(0,1)或(0,−5)故答案为:P(0,1)或(0,−5),理由见解析[点睛]本题考查了作平移图形,一般步骤为:确定平移的方向和平移的距离;确定图形的关键点,如三角形、四边形等图形所有的顶点,圆的圆心等;过这些关键点作与平移的方向平行的射线,在射线上截取与平移的距离相等的线段,得到关键点的对应点;通过关键点作出平移后的图形.20.已知,如图12,A C ∠=∠∠=∠,求证://AE BC[答案]证明见解析[解析][分析]已知12∠=∠,同位角相等,两直线平行,即DC ∥AB ,两直线平行可推得同旁内角互补,可得∠ADC+∠A=180°,又∵A C ∠=∠,得到∠ADC+∠C=180°,同旁内角互补,两直线平行即可得到AE ∥BC .[详解]∵12∠=∠∴DC ∥AB∴∠ADC+∠A=180°∵A C ∠=∠∴∠ADC+∠C=180°∴AE ∥BC[点睛]本题考查了平行线的判定和性质定理,同位角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,同旁内角互补.21.如图,已知,AD BC EF BC ⊥⊥,垂足分别为D,F ,试说明:GDC B ∠=∠请补充说明过程,并在括号内填上理由解:,AD BC EF BC ⊥⊥(已知)90ADB EFB ︒∴∠=∠=( )//EF AD ∴( )_________2180︒∴+∠=( )32180︒∠+∠=(已知)//_____AB ∴( )GDC B ∴∠=∠( )[答案]垂直的定义,同位角相等两直线平行,∠1,两直线平行同旁内角互补,同角的补角相等,DG ,内错角相等两直线平行,两直线平行同位角相等.[解析][分析]根据平行线的判定和性质,垂直的定义,同角的补角相等知识一一判断即可.[详解]解:∵AD ⊥BC ,EF ⊥BC (已知)∴∠ADB=∠EFB=90°(垂直的定义),∴EF ∥AD (同位角相等两直线平行),∴∠1+∠2=180°(两直线平行同旁内角互补),又∵∠2+∠3=180°(已知),∴∠1=∠3 (同角的补角相等),∴AB ∥DG (内错角相等两直线平行),∴∠GDC=∠B (两直线平行同位角相等).故答案为:垂直的定义,同位角相等两直线平行,∠1,两直线平行同旁内角互补,同角的补角相等,DG ,内错角相等两直线平行,两直线平行同位角相等.[点睛]本题考查了平行线的判定和性质,解题的关键是熟练掌握基本知识.22.你能找出规律吗?(1)___________=__________=;___________=;___________=(2)由(1)___________(0,0)a b =≥≥(3)请按照此规律计算:(4)已知a b ==则_________=(用含,a b 的式子表示)[答案](1);;20;20;(2;(3)①②;(4)2a b[解析][分析](1)根据二次根式的运算法则计算即可;(2)由(1)=0a ≥,0b ≥);(3)根据(2)的结论即可求解;(4)利用(2)的结论的逆运算即可求解.[详解](1236=⨯=6==;4520=⨯=20==;故答案为:;;20;20;(2)由(1)得:4949⨯=⨯;16251625⨯=⨯; 猜想:a b ab ⨯=(0a ≥,0b ≥);故答案为:ab ; (3)①5105105052⨯=⨯==;②225125121242353535⨯=⨯=⨯==; (4)∵2a =,10b =,∴()22240410210210a b =⨯=⨯=⨯=;故答案为:2a b .[点睛]本题考查了二次根式的乘除混合运算,弄清题中的规律是解本题的关键.23.已知直线AB CD ∥.(1)如图1,直接写出ABE ∠,CDE ∠和BED ∠之间的数量关系.(2)如图2,BF ,DF 分别平分ABE ∠,CDE ∠,那么BFD ∠和BED ∠有怎样的数量关系?请说明理由.(3)若点E 的位置如图3所示,BF ,DF 仍分别平分ABE ∠,CDE ∠,请直接写出BFD ∠和BED ∠的数量关系.[答案](1)ABE CDE BED ∠+∠=∠;(2)12BFD BED ∠=∠,理由见解析;(3)2360BFD BED ∠+∠=︒,理由见解析[解析][分析](1)过点E 作EF AB ∥,根据平行线的性质得1ABE ∠=∠,2CDE ∠=∠,进而即可得到结论;(2)由角平分线的定义得12ABF ABE ∠=∠,12CDF CDE ∠=∠,结合第(1)题的结论,即可求证; (3)过点作//EG CD ,由平行线的性质得360ABE CDE BED ∠+∠+∠=︒,结合第(1)题的结论与角平分线的定义得1()2BFD ABE CDE ∠=∠+∠,进而即可得到结论. 详解](1)ABE CDE BED ∠+∠=∠,理由如下:如图1,过点E 作EF AB ∥,∵AB CD ∥,∴EF CD ∥,∴1ABE ∠=∠,2CDE ∠=∠,∴12ABE CDE BED ∠+∠=∠+∠=∠,即ABE CDE BED ∠+∠=∠;(2)12BFD BED ∠=∠.理由如下: ∵BF ,DF 分别平分ABE ∠,CDE ∠, ∴12ABF ABE ∠=∠,12CDF CDE ∠=∠, ∴111()222ABF CDF ABE CDE ABE CDE ∠+∠=∠+∠=∠+∠, 由(1)得,1()2BFD ABF CDF ABE CDE ∠=∠+∠=∠+∠, 又∵BED ABE CDE ∠=∠+∠, ∴12BFD BED ∠=∠; (3)2360BFD BED ∠+∠=︒,理由如下:如图3,过点作//EG CD ,∵//AB CD ,//EG CD ,∴////AB CD EG ,∴180ABE BEG ∠+∠=︒,180CDE DEG ∠+∠=︒,∴360ABE CDE BED ∠+∠+∠=︒,由(1)知,BFD ABF CDF ∠=∠+∠,又∵BF ,DF 分别平分ABE ∠,CDE ∠, ∴12ABF ABE ∠=∠,12CDF CDE ∠=∠, ∴1()2BFD ABE CDE ∠=∠+∠, ∴2360BFD BED ∠+∠=︒.[点睛]本题主要考查平行线的性质定理与角平分线的定义,添加辅助线,掌握平行线的性质定理,是解题的关键.。

人教版七年级数学下册期中测试卷【及答案】

人教版七年级数学下册期中测试卷【及答案】

人教版七年级数学下册期中测试卷【及答案】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.已知m ,n 为常数,代数式2x 4y +mx |5-n|y +xy 化简之后为单项式,则m n 的值共有( )A .1个B .2个C .3个D .4个2.如图,将矩形ABCD 沿GH 折叠,点C 落在点Q 处,点D 落在AB 边上的点E 处,若∠AGE=32°,则∠GHC 等于( )A .112°B .110°C .108°D .106° 3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.如图,在△ABC 和△DEC 中,已知AB=DE ,还需添加两个条件才能使△ABC ≌△DEC ,不能添加的一组条件是( )A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A.5个B.4个C.3个D.2个7.若关于x的一元一次不等式组11(42)423122x axx⎧--≤⎪⎪⎨-⎪<+⎪⎩的解集是x≤a,且关于y的分式方程24111y a yy y---=--有非负整数解,则符合条件的所有整数a的和为()A.0 B.1 C.4 D.68.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.20{3210x yx y+-=--=,B.210{3210x yx y--=--=,C.210{3250x yx y--=+-=,D.20{210x yx y+-=--=,9.若|abc|=-abc,且abc≠0,则||||ba ca b c++=()A.1或-3 B.-1或-3 C.±1或±3 D.无法判断10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.33 C.26 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)的立方根是________.1.272.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.已知直线AB∥x轴,点A的坐标为(1,2),并且线段AB=3,则点B的坐标为________.5.有三个互不相等的整数a,b,c,如果abc=4,那么a+b+c=__________6.如图,AB∥CD,直线EF分别交AB、CD于E、F,EG平分∠BEF,若∠1=72°,•则∠2=________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x+7=12x﹣5 (2)4y﹣3(5﹣y)=6(3)3157146x x---=(4)20.30.40.50.3a a-+-=12.已知关于x的方程(m+3)x|m+4|+18=0是一元一次方程,试求:(1)m的值;(2)2(3m+2)-3(4m-1)的值.3.如图,AD平分∠BAC交BC于点D,点F在BA的延长线上,点E在线段CD 上,EF 与AC相交于点G,∠BDA+∠CEG=180°.(1)AD与EF平行吗?请说明理由;(2)若点H在FE的延长线上,且∠EDH=∠C,则∠F与∠H相等吗,请说明理由.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A项目的人数所占的百分比为________ ,其所在扇形统计图中对应的圆心角度数是 ______度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?6.我校组织一批学生开展社会实践活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满.已知45座客车租金为每辆220元,60座客车租金为每辆300元.(1)这批学生的人数是多少?原计划租用45座客车多少辆?(2)若租用同一种客车,要使每位学生都有座位,应该怎样租用合算?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、A4、B5、C6、B7、B8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、203、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、(4,2)或(﹣2,2).5、-1或-46、54°三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、(1)m=-5 (2)373、略4、(1)略;(2)略.5、(1)40% , 144;(2)补图见解析;(3)估计全校最喜欢踢毽子的学生人数约100人.6、(1)240人,原计划租用45座客车5辆;(2)租4辆60座客车划算.。

人教版七年级数学下册期中考试卷及答案【完整版】

人教版七年级数学下册期中考试卷及答案【完整版】

人教版七年级数学下册期中考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知直角三角形两边的长为3和4,则此三角形的周长为( ) A .12B .7+7C .12或7+7D .以上都不对2.如图,函数y=2x 和y=ax+4的图象相交于A(m ,3),则不等式2x ax+4<的解集为( )A .3x 2>B .x 3>C .3x 2<D .x 3<3.关于x 的一元一次方程224a x m -+=的解为1x =,则a m +的值为( ) A .9B .8C .5D .44.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( ) A .120元B .100元C .80元D .60元5.如图,过A 点的一次函数的图象与正比例函数y=2x 的图象相交于点B ,则这个一次函数的解析式是( )A .y=2x+3B .y=x ﹣3C .y=2x ﹣3D .y=﹣x+36.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x /kg 0 1 2 3 4 5 y /cm 1010.51111.51212.5下列说法不正确的是( )A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm 7.把1a a-根号外的因式移入根号内的结果是( ) A .a -B .a --C .aD .a -8.248162(31)(31)(31)(31)(31)⨯+++++的计算结果的个位数字是( ) A .8B .6C .2D .09.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对10.如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°二、填空题(本大题共6小题,每小题3分,共18分)1.三角形三边长分别为3,2a1-,4.则a的取值范围是________.2.如图,将长方形纸片ABCD的∠C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部的点E处,若FH平分∠BFE,则∠GFH的度数是________.3.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________4.如果关于x的不等式组232x ax a>+⎧⎨<-⎩无解,则a的取值范围是_________.5.已知点A(a,0)和点B(0,5)两点,且直线AB与坐标轴围成的三角形的面积等于10,则a的值是______________.6.将一副三角板如图放置,若20AOD∠=,则BOC∠的大小为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x﹣1)=15 (2)711 32x x-+-=2.已知关于x的不等式组5x13(x-1),13x8-x2a22+>⎧⎪⎨≤+⎪⎩恰有两个整数解,求实数a的取值范围.3.如图①,已知AD∥BC,∠B=∠D=120°.(1)请问:AB与CD平行吗?为什么?(2)若点E、F在线段CD上,且满足AC平分∠BAE,AF平分∠DAE,如图②,求∠FAC的度数.(3)若点E在直线CD上,且满足∠EAC=12∠BAC,求∠ACD:∠AED的值(请自己画出正确图形,并解答).4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;求证:(1)DBC ECB∆≅∆(2)OB OC=5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:(1)他们的对话内容,求小明和爸爸的骑行速度,(2)一次追上小明后,在第二次相遇前,再经过多少分钟,小明和爸爸相距50m?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、C5、D6、B7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)<<1、1a42、90°3、135°4、a≤2.5、±46、160°三、解答题(本大题共6小题,共72分)1、(1)x=3;(2)x=-23.2、-4≤a<-3.3、(1)平行,理由略;(2)∠FAC =30°;(3)∠ACD:∠AED=2:3或2:1.4、(1)略;(2)略.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)小明骑行速度为200m/分钟,爸爸骑行速度为400m/分钟;(2)爸爸第一次追上小明后,在第二次相遇前,再经过14分或74钟,小明和爸爸相距50m.。

人教版七年级数学下册期中考试卷附答案

人教版七年级数学下册期中考试卷附答案

人教版七年级数学下册期中考试卷附答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知两个有理数a,b,如果ab<0且a+b>0,那么()A.a>0,b>0 B.a<0,b>0C.a、b同号D.a、b异号,且正数的绝对值较大2.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A. B.C. D.3.关于x的方程32211x mx x-=+++无解,则m的值为()A.﹣5 B.﹣8 C.﹣2 D.54.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有()A.9天B.11天C.13天D.22天5.若x取整数,则使分式6321xx+-的值为整数的x值有()A.3个B.4个C.6个D.8个6.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l的有()A .5个B .4个C .3个D .2个7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .13208.在平面直角坐标系中,点P(-2,2x +1)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.已知2,1=⎧⎨=⎩x y 是二元一次方程组7,{1ax by ax by +=-=的解,则a b -的值为 A .-1 B .1 C .2 D .3二、填空题(本大题共6小题,每小题3分,共18分)1.若0abc >,化简ac b abc a b c abc+++结果是________. 2.如图,AB ∥CD ,FE ⊥DB ,垂足为E ,∠1=50°,则∠2的度数是_____.3.如图,有两个正方形夹在AB 与CD 中,且AB//CD,若∠FEC=10°,两个正方形临边夹角为150°,则∠1的度数为________度(正方形的每个内角为90°)4.27的立方根为________.5.一只小蚂蚁停在数轴上表示﹣3的点上,后来它沿数轴爬行5个单位长度,则此时小蚂蚁所处的点表示的数为________.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.(1)用代入法解方程组:3 759 x yx y-=⎧⎨+=-⎩(2)用加减法解方程组:2232(3)31 x yx y⎧+=⎪⎨⎪+-=⎩2.解不等式组并求出它所有的非负整数解.3.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.4.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如果∠A=80°,求∠BPC的度数;(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A 之间的数量关系.(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.5.为使中华传统文化教育更具有实效性,军宁中学开展以“我最喜爱的传统文化种类”为主题的调查活动,围绕“在诗词、国画、对联、书法、戏曲五种传统文化中,你最喜爱哪一种?(必选且只选一种)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)通过计算补全条形统计图;(3)若军宁中学共有960名学生,请你估计该中学最喜爱国画的学生有多少名?6.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.(1)A、B两种奖品每件各多少元?(2)现要购买A、B两种奖品共100件,总费用不超过900元,那么A种奖品最多购买多少件?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、A3、A4、B5、B6、B7、B8、B9、B10、A二、填空题(本大题共6小题,每小题3分,共18分)1、4或02、40°3、70.4、35、2或﹣8.6、±3三、解答题(本大题共6小题,共72分)1、(1)1x=21y=22⎧⎪⎪⎨⎪-⎪⎩;(2)x=2y=3⎧⎨⎩.2、0,1,2.3、4.4、(1)130°.(2)∠Q==90°﹣12∠A;(3)∠A的度数是90°或60°或120°.5、(1)本次调查共抽取了120名学生;(2)补图见解析;(3)估计该中学最喜爱国画的学生有320名.6、(1)A种奖品每件16元,B种奖品每件4元.(2)A种奖品最多购买41件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

H 1
F
E
D C
B A G
2014-2015第二学期七年级下数学期中测试卷
班别 姓名 得分
一、选择题(每小题3分,共30分) 1.下列语句中正确的是( )
A .两个角互为补角,则一定有一个角是锐角,另一个角是钝角
B .两条平行线被第三条直线所截,同旁内角相等
C .过一点有且只有一条直线与这条直线平行
D .两个角互为补角,和两个角所在位置没有关系
2.已知x 轴上的点P 到y 轴的距离为3,则点P 的坐标为 ( ) A .(3,0) B .(0,3)或(0,-3) C .(0,3) D .(3,0)或(-3,0) 3.下列各式中,正确的是( )
±4 B.
=-4 4.将点P (-4,3)先向左平移2个单位,再向下平移1个单位后,则得到点 P ´的坐标为( )
A .(-6,2)
B .(-2,2)
C .(-6,4)
D .(-2,4)
5. 某正数的平方根为3a 和3
9
2-a ,则这个数为( ).
A. 1
B. 2
C. 4
D. 9
6..如图,已知EF ∥BC,EH ∥AC,则图中与∠1互补的角有( )
A.3个
B.4个
C.5个
D.6个
7. 如图,以数轴的单位长线段为边做一个正方形,以数轴的原点为圆心,正方形对角线长为半径画弧,交数轴正半轴于点A ,则点A 表示的数是( ) A 、1.5 B 、1.4 C 、
D 、
8.如图,把一个长方形纸片沿EF 折叠后,点C D 、分别落在C D ''、的位置,其中D '在BC 上,则下列结论错误..的是( ) A .︒=''∠='∠90E D C C B .︒=∠+∠+∠180421
C .
D C F C CF ''='= D .
E D B '∠=∠=∠=∠21
321
( 6 ) (7) (8) 9.若点A(x,3)与点B(2,y)关于x 轴对称,则
( )
A.x=-2,y=-3;
B.x=2,y=3;
C.x=-2,y=3;
D.x=2,y=-3
10、中国2010年上海世博会吉祥物的名字叫“海宝”,意即“四海之宝”。


过平移图中的吉祥物“海宝”得到的图形是()
(海宝) A B C D
二、填空题:(每题3分,共24分)
11.49的平方根是________,算术平方根是______,-8的立方根是_____.
12.点P(-2,3)关于X轴对称点的坐标是。

关于原点对称点的坐标是。

13.若点M(a+5,a-3)在y轴上,则点M的坐标为。

14.若P(X,Y)的坐标满足XY>0,且X+Y<0,则点P在第___象限。

15.若│x²-25│
则x=_______,y=_______.
16.
大于
的所有整数的和是.
17.一个正数x的平方根是2a-3与5-a,则x= .
18.如图,甲、乙两岸之间要架一座桥梁,从甲岸测得桥梁的走向是北偏东50•°,如果甲、乙两岸同时开工.要使桥梁准确连接,那么在乙岸施工时,应按β为_________度的方向动工.
三、解答题:(共66分)
19(6分)化简:
20. (8分)已知
,求代数式的值

βα

乙甲
21. (10分)如图,ABC ∆各顶点的坐标分别为
)41()35()11(,、,、,C B A --.
(1)若将ABC ∆平移,使A 移动到)23(,
-'A ,请在坐标系中画出平移后的图形,并写出点C B 、移动后的坐标; (2)求ABC ∆的面积ABC S ∆.
22.(8分)如图,已知直线AB 、CD 被直线EF 所截,如果∠BMN =∠D NF ,∠1=∠2,那么MQ ∥NP ,试写出推理过程
23.(8分)如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,
//DG BA 交CA 于G 。

.求证12∠=∠.
P
Q
M N 2
1
F
E
D
C
B
A
24.(8分)如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE ,∠AOD ∶∠BOE =4∶1,求∠AOF 的度数.
25.(8分)如图,AB ∥CD,分别探讨下面两个图形中∠APC 与∠PAB,∠PCD 的关系,请你从所得的关系中任意选取一个加以说明.
26.(10分)如图,在ABC ∆中,
若CF BE 、分别是ACB ABC ∠∠、的平分线,求证:
A BPC ∠+︒=∠21
90;
_( 1 )
_P
_D
_C _B
_A
_( 2 )
_P
_D
_C _B
_A。

相关文档
最新文档