2018考研数:学总分及分值是如何分配的?
考研一共多少分
考研一共多少分
考研一共总分为800分,包括两个部分:基础知识部分和专业知识部分。
每个部分的分数比例不完全相同,具体分配情况见下文。
基础知识部分分为英语、政治、数学三个科目,其中英语分为阅读理解和翻译两个部分。
基础知识部分的总分为300分。
具体分配情况为:英语占120分,政治占100分,数学占80分。
其中英语的阅读理解占70分,翻译占50分。
专业知识部分分为两个科目,即专业课一和专业课二。
专业课一分为数学一、物理一、化学一、生物一、计算机一五个科目;专业课二分为数学二、物理二、化学二、生物二、计算机二五个科目。
每个科目的分数比例不完全相同,具体分配情况见下文。
专业课一总分为240分,具体分配情况为:数学一占60分,物理一占60分,化学一占60分,生物一占40分,计算机一占20分。
专业课二总分为260分,具体分配情况为:数学二占50分,物理二占50分,化学二占70分,生物二占50分,计算机二占40分。
总体而言,考研一共总分为800分,其中基础知识部分总分为300分,专业知识部分总分为500分。
考生在备考时需要重视基础知识的学习和掌握,同时也需要针对自己的专业课进行有针对性的复习和准备,以获得尽可能高的分数。
考研成
绩将会对考生的研究生入学申请产生重要影响,因此考生需认真备考,努力争取理想的成绩。
2018考研专业课:管理类联考题型分布及分值比例
2018考研专业课:管理类联考题型分布及分值比例考研对么每个考生都是一个重要的转折点,经历长期的复习,最终我们会在战场上决一胜负。
对于2018考研备考,我们需要掌握的不仅仅是书本上的知识,我们还需要了解对于每门学科的题型,每部分的题型分布以及比例,下面文都网校小编整理了考研专业课管理类联考的题型分布以及题型的分值比例。
希望小伙伴们能及时的了解这些!计划报考工商管理硕士、公共管理硕士、工程硕士、旅游管理硕士、图书情报硕士、审计硕士、会计硕士的考生相信大家已经了解初试科目,管理类联考综合和英语二。
这里呢,我们详细了解一下管理类联考综合这个科目。
管理类联考综合总分200分,包含三部分,数学、逻辑和写作。
其中数学75分,知识点范围是从小学到高中的数学,包括两个题型,问题求解和条件充分性判断。
问题求解15小题,每题3分,全部都是选择题,跟我们过去考试的选择题题型相同,不同之处在于由四个选项变成五个选项。
条件充分性判断题是管理类联考的独有题型,在过去的考试中从未见过,无论是平时练习还是最后考试,这个题型得分率均较低。
原因主要在于条件充分性判断题目无形中增加了题量和做题难度,在考场时间紧张的情况下会给考生带来极大的压力。
来感受一下条件充分性判断这个题型(2015年1月第21题)几个朋友外出游玩,购买了一些瓶装水,则能确定购买的瓶装水数量C(1)若每人分三瓶,则剩余30瓶(2)若每人分10瓶,则只有1人不够条件充分性判断题的题目要求:条件充分性判断:第16-25小题,每小题3分,共30分,要求判断每题给出得条件(1)和(2)能否充分支持题干所陈述的结论.A、B、C、D、E五个选项为判断结果,请选择一项符合试题要求得判断,在答题卡上将所选项得字母涂黑.(A)条件(1)充分,但条件(2)不充分(B)条件(2)充分,但条件(1)不充分(C)条件(1)和条件(2)单独都不充分,但条件(1)和条件(2)联合起来充分(D)条件(1)充分,条件(2)也充分(E)条件(1)和条件(2)单独都不充分,条件(1)和条件(2)联合起来也不充分综合能力考试中的逻辑推理部分主要考查考生对各种信息的理解、分析和综合,以及相应的判断、推理、论证等逻辑思维能力,不考查逻辑学的专业知识。
[实用参考]2018年考研数学一考试大纲及其解读
2017-09-18考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等教学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分1高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.函数——对任意自变量,只有唯一因变量与之对应(知道就行)2.了解函数的有界性、单调性、周期性和奇偶性.一般性了解(知道就行),有界性(连续函数必有界),单调性、周期性、奇偶性后面几章会用到3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.会求分段函数的复合函数,知道反函数的基本性质(与原函数对应关系相反),隐函数了解概念即可(非显函数)4.掌握基本初等函数的性质及其图形,了解初等函数的概念.要求同考纲,初等函数在定义域内均连续5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.了解(知道)极限定义,相关证明没有要求,左右极限需要掌握6.掌握极限的性质及四则运算法则.唯一性和保号性(重要),熟练掌握四则运算法则7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.掌握用夹逼定理(适用于函数和数列)和单调有界定理(适用于数列)求极限8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.知道什么是无穷小量(趋于0)、无穷大量(趋于正负无穷),掌握无穷小量的比较方法(作比,理解低阶、同阶、等价和高阶无穷小),熟练掌握用等价无穷小求极限(只适用于因式)9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.掌握连续判断、间断点类型及其判断10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.熟练掌握并会使用有界性(闭区间连续函数必有界)、最值定理、零点定理和介值定理解题2二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.导数定义式必须熟练掌握并会使用,其他要求同上(会计算)2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.尽可能掌握一阶微分形式不变性并会用其解题,其他要求同上3.了解高阶导数的概念,会求简单函数的高阶导数.知道什么是高阶导数,会用莱布尼茨公式求高阶导数4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.要求同上,特别注意分段点的导数(用定义式)5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(TaPlor)定理,了解并会用柯西(CauchP)中值定理.熟练掌握并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理、柯西中值定理和泰勒(TaPlor)定理,前三个定理证明也需要掌握6.掌握用洛必达法则求未定式极限的方法.要求同上,牢记洛必达法则使用的三个条件7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.以上内容需全部掌握,还需要分清极值与最值,极值与导数为零的点的关系8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.函数形态、拐点、渐近线重点掌握9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.会计算曲率和曲率半径(两个公式),曲率圆一般性了解3三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.非常清晰的理解原函数和可积的关系,弄清不定积分(函数)和定积分(常数)的本质2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.不定积分和定积分计算是重点内容,近年不定积分解答题出题频率变小,定积分出解答题频率变大,两块都不能掉以轻心3.会求有理函数、三角函数有理式和简单无理函数的积分.必须掌握,可能以填空题形式出现4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.重要考点,常与极限洛必达法则联用,必须掌握5.了解反常积分的概念,会计算反常积分.掌握反常积分和其计算(重点是计算)6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.积分的实际应用必须掌握,大概率解答题内容4四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.1~9加粗部分为本章必须掌握的重点,其余内容一般性了解5五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.知道是什么东西就行2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.2.3会求二重极限和判断连续、可微、可偏导等、理解偏导数和全微分及其表达形式,会用全微分形式不变性求偏导4.理解方向导数与梯度的概念,并掌握其计算方法.掌握方向导数与梯度意义和公式并计算5.掌握多元复合函数一阶、二阶偏导数的求法.多元函数微分学重点——会求偏导数6.了解隐函数存在定理,会求多元隐函数的偏导数.会用多种方法求隐函数的偏导数(树形图、全微分等)7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.掌握空间曲线的切线和法平面及曲面的切平面和法线的求法以及应用8.了解二元函数的二阶泰勒公式.知道就行9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.掌握二元函数极值存在条件并会用公式判断,会用拉格朗日乘数法求条件极值并解决简单的应用题6六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).1~8条加粗的部分是本章必须掌握的重点内容7七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在上的傅里叶级数函数在上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握...及麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在上的函数展开为傅里叶级数,会将定义在上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.1~11加粗部分为本章必须掌握的重点部分,其余部分一般性了解,计算是重点8八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.非常清楚解、通解、初始条件和特解概念2.掌握变量可分离的微分方程及一阶线性微分方程的解法.重点掌握内容3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:和.2.3.4要求同上5.理解线性微分方程解的性质及解的结构.掌握齐次方程与非齐次方程通解的性质和结构6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.6.7掌握常见二阶常系数齐次线性微分方程解的形式,并会分析解的结构,组合自由项即将微分方程拆为若干项再按一般方法分别求解(重要)8.会解欧拉方程.要求同上9.会用微分方程解决一些简单的应用问题.能解决微分方程相关的实际应用题(重点是把实际问题转换为数学问题)9线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.知道什么是行列式,熟练掌握行列式的性质(计算)2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.掌握求行列式方法(重要)二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.知道什么是单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,并掌握它们的性质用于解题2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.有关矩阵的运算性质及方阵与行列式之间的关系必须熟练掌握并会解题3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.逆矩阵和伴随矩阵是线代中两个非常重要的概念,相关性质以及应用需要熟练掌握4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.掌握常见分块矩阵的运算三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.1.2.3.4需要全部熟练掌握5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.5.6.7.8施密特正交化和正交矩阵概念、性质是掌握重点,其他了解即可四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求1.会用克拉默法则.克拉默法则必会2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.2.3.4.5关于齐次和非齐次线性方程组的求解必须熟练掌握,这是线代大题必考的步骤(结合五六章)五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.1.2.3所列内容均需全部掌握,有关特征值、特征向量必考大题六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.二次型概念及其矩阵、合同矩阵、标准型、规范性及惯性定理需要掌握(等价、合同、相似要清晰分辨)2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.配方法了解即可,出题概率非常小,正交变换法化二次型为标准型是重点3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考点之一,可能以选择题或填空题方式考察概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.有关随机事件关系及运算需要掌握,相关题目会做2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(BaPes)公式.这五大公式特别重要,后续章节涉及相关计算性的问题有可能会用到。
考研分数怎么算
考研分数怎么算考研分数的计算方法是根据考生在考试中所获得的分数来决定的。
考研分数计算涉及多个因素,包括总分、单科分数以及专业综合测试成绩,下面我将对考研分数的计算方法进行详细说明。
一、总分计算考研总分计算包括两个部分:英语和政治。
英语满分分值为150分,政治满分为100分。
英语分数计算方法为:总分= (你的英语得分÷满分) × 150分;政治分数计算方法为:总分 = (你的政治得分÷满分) × 100分。
二、单科分数计算除了英语和政治,考生在自己报考的专业课中也有单科分数,不同院校和专业的考试科目和满分值可能会有所不同,具体可以自行查阅相关信息。
单科分数计算方法为:总分 = (你的单科得分÷满分) × 该科目满分分值。
三、专业综合测试成绩计算部分高校还会进行专业综合测试,该测试包括专业课、英语和政治。
专业综合测试成绩计算公式为:总分 = (专业课成绩× 50% + 英语成绩× 25% + 政治成绩× 25%)。
四、总分加权计算根据不同院校和专业的要求,总分还需进行相应的加权计算。
加权计算方法为:总分 = (总分× 该院校/专业的加权系数)。
加权系数通常在0.8至1.2之间。
需要注意的是,以上计算方法仅供参考,具体计算方法可能会因不同院校和专业的要求而有所不同。
考生在填报志愿时需要查阅相关院校和专业的招生简章,了解详细的分数计算方法。
综上所述,考研分数计算涉及总分、单科分数以及专业综合测试成绩的计算。
考生在备考过程中应结合自己的实际情况,制定合理的备考计划,并在考试中努力取得高分,以提高自己的考研录取机会。
2018考研各科目考试答题时间分配建议
凯程考研集训营,为学生引路,为学员服务!
第 1 页 共 1 页 2018考研各科目考试答题时间分配建议 2018考研将举行。
在这里,考试大考研为大家提供一份专家建议的考试时间分配方式,供大家参考。
除了专业课二外,英语、政治、数学三科统考考试的总时间都是3小时。
英语答题时间分配
分值分配:完型填空10分,阅读理解40分,填句子或者是排顺序10分,英译汉10分,小作文10分,大作文20分。
时间分配大致是完型填空10分钟,阅读理解加新题型控制在80分钟以内,英译汉20-30分钟,大小作文60分钟。
可以根据自己的情况合理分配时间。
每年最难的是英译汉,平均分大概只要3-4分。
政治答题时间分配
政治选择题一般为30分钟以内,最多最多用40分钟,其余的全部用来写主观题,平均20分每题,最多不超过30分钟。
数学答题时间分配
数学选择题加填空题的时间最多不超过45分钟,其他全部用于解答题部分。
2011考研时间安排
考试日期 1月15日 (星期六) 1月16日 (星期日)
考试时间 8:30—11:30 14:00—17:00 8:30—11:30 14:00—17:00
考试科目 政治理论 外国语 专业课一 基础课二。
2018考研数一评分标准
2018考研数一评分标准
根据《2018年普通高等学校招生全国统一考试数学科目考试
评分标准》规定,数一考试评分标准如下:
一、选择题部分:
1. 正确答案加4分,错误答案不计分,未答不得分。
2. 若存在多余选项,每选一个错误的选项扣1分。
3. 若某题未答或未填答给多个答案,该题都不得分。
二、填空题部分:
1. 每小题5分,每题答对1个或多个空格得分。
2. 每个空格只填一个完整的数值或者符号。
3. 若填入其他不完整或不符合要求的数值或符号,则不得分。
4. 若题目中有小数部分并未明确指定要求,可填写小数、分数或浮点数等多种形式,但需要标明其近似值或保留位数。
三、解答题部分:
1. 每小题分值根据具体要求而定,一般为10分或15分。
2. 题目要求作出具体步骤和思路,遗漏重要工作或思路仅得部分得分。
3. 如果解答中的错误不影响后续解答,后续解答得分独立计算,前面错误不扣分。
四、总分计算:
总分 = 选择题得分 + 填空题得分 + 解答题得分。
以上为2018考研数一评分标准的基本规定,具体评分还可能会根据具体题目的要求进行调整。
2018考研数学考试大纲
2018考研数学考试大纲一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构微积分约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单项选择题选题8小题,每小题4分,共32分填空题6小题,每小题4分,共24分解答题(包括证明题)9小题,共94分微积分一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.了解数列极限和函数极限(包括左极限与右极限)的概念.6.了解极限的性质与极限存在的两个准则,掌握极限的四则运算法则,掌握利用两个重要极限求极限的方法.7.理解无穷小量的概念和基本性质,掌握无穷小量的比较方法.了解无穷大量的概念及其与无穷小量的关系.8.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.9.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和经济意义函数的可导性与连续性之间的关系平面曲线的切线与法线导数和微分的四则运算基本初等函数的导数复合函数、反函数和隐函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值考试要求1.理解导数的概念及可导性与连续性之间的关系,了解导数的几何意义与经济意义(含边际与弹性的概念),会求平面曲线的切线方程和法线方程.2.掌握基本初等函数的导数公式、导数的四则运算法则及复合函数的求导法则,会求分段函数的导数,会求反函数与隐函数的导数.3.了解高阶导数的概念,会求简单函数的高阶导数.4.了解微分的概念、导数与微分之间的关系以及一阶微分形式不变性,会求函数的微分.5.理解罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理,了解泰勒(Taylor)定理、柯西(Cauchy)中值定理,掌握这四个定理的简单应用.6.会用洛达法则求极限.7.掌握函数单调性的判别方法,了解函数极值的概念,掌握函数极值、最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间内,设函数具有二阶导数.当时,的图形是凹的当时,的图形是凸的),会求函数图形的拐点和渐近线.9.会描述简单函数的图形.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法反常(广义)积分定积分的应用考试要求1.理解原函数与不定积分的概念,掌握不定积分的基本性质和基本积分公式,掌握不定积分的换元积分法与分部积分法.2.了解定积分的概念和基本性质,了解定积分中值定理,理解积分上限的函数并会求它的导数,掌握牛顿-莱布尼茨公式以及定积分的换元积分法和分部积分法.3.会利用定积分计算平面图形的面积、旋转体的体积和函数的平均值,会利用定积分求解简单的经济应用问题.4.了解反常积分的概念,会计算反常积分.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数偏导数的概念与计算多元复合函数的求导法与隐函数求导法二阶偏导数全微分多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算无界区域上简单的反常二重积分考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标),了解无界区域上较简单的反常二重积分并会计算.五、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的要条件几何级数与级数及其收敛性正项级数收敛性的判别法任意项级数的绝对收敛与条件收敛交错级数与莱布尼茨定理幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式考试要求1.了解级数的收敛与发散、收敛级数的和的概念.2.了解级数的基本性质及级数收敛的要条件,掌握几何级数及级数的收敛与发散的条件,掌握正项级数收敛性的比较判别法和比值判别法.3.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系,了解交错级数的莱布尼茨判别法.4.会求幂级数的收敛半径、收敛区间及收敛域.5.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求简单幂级数在其收敛区间内的和函数.6.了解麦克劳林(Maclaurin)展开式.六、常微分方程与差分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程及简单的非齐次线性微分方程差分与差分方程的概念差分方程的通解与特解一阶常系数线性差分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程、齐次微分方程和一阶线性微分方程的求解方法.3.会解二阶常系数齐次线性微分方程.4.了解线性微分方程解的性质及解的结构定理,会解自由项为多项式、指数函数、正弦函数、余弦函数的二阶常系数非齐次线性微分方程.5.了解差分与差分方程及其通解与特解等概念.6.了解一阶常系数线性差分方程的求解方法.7.会用微分方程求解简单的经济应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.5.了解分块矩阵的概念,掌握分块矩阵的运算法则.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.了解向量的概念,掌握向量的加法和数乘运算法则.2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.。
2018考研初试科目、考卷结构
2018考研初试科目、考卷结构
及分数
新东方在线推荐:2018年考研一次顺利提分课程!!一科不过,全科免费考研科目
共四门:两门公共课、一门基础课(数学或专业基础)、一门专业课
两门公共课:政治、英语;
一门基础课:数学或专业基础;
一门专业课(分为13大类):哲学、经济学、法学、教育学、文学、历史学、理学、工学、农学、医学、军事学、管理学、艺术学等。
其中:法硕、西医综合、教育学、历史学、心理学、计算机、农学等属统考专业课;其他非统考专业课都是各高校自主命题。
考研分数(总分500分)
政治:100分
英语:100分
数学或专业基础:150分
专业课:150分
其中:管理类联考分数是300分(包括英语二100分,管理类综合200分)。
试卷结构
政治:(马原24分,毛特30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分)
英语:(完型10分,阅读A40分,阅读B(即新题型)10分,翻译10分,大作文20分,小作文10分)
数学:理工类(数一、数二)经济类(数三)
数一:高数56%、线性代数22%、概率统计22%
数二:高数78%、线性代数22%、不考概率统计
数三:高数56%、线性代数22%、概率统计22% 一般情况下,工科类的为数学一和数学二:。
2018年考研数学考试大纲(原文)
2018年考研数学(二)考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试试卷试卷满分为150分,考试试卷为180分钟二、答题方式答题方式为闭卷、笔试。
三、试卷内容结构高等数学约78%线性代数约22%四、试卷题型结构单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限于右极限无穷小量和无穷大量的概念及其关系无穷小量及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质. 二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a,b)内,设函数具有二阶导数.当时,的图形是凹的;当时,的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上连续函数的性质.3.了解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全积分,了解隐函数的存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元一次函数极值存在的充分条件,会求二元函数的极值,会有拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直接坐标、极坐标).八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:和4理解线性微分方程解的性质及解的结构.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.会用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性百度文库- 让每个人平等地提升自我考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.11。
2018年在职考研总分及各科目分值
2018年在职考研总分及各科目分值
考研总分多少?各个科目多少分?一般来说考研考试科目和分值有下面几种情况,下面详细给大家介绍下:
2018年在职考研总分及各科目分值
先来看下单科分数
政治:100分
英语:100分
数学:150分
专业课1:150分
专业课2:150分
综合类:200分(管综)
第一种情况:总分500分
政治(100)+英语(100)+专业课1(150)+专业课2(150)
或政治(100)+英语(100)+数学(150)+专业课(150)
第二种情况总分300分
管理类联考综合(200)+英语二(100)
或经济类联综合(150)+数学(150)
以上就是2018年在职考研总分及各科目分值的介绍,希望对想要报考的在职人员有所帮助!
另,本文系中国在职教育网原创,如需转载,请注明出处!中国在职教育网是一个综合性较强在职研究生资讯平台,如果您想了解最新最全面的在职研究生报考信息,请点击收藏我们网站。
附:在职研究生热门招生院校推荐表
在职研究生信息查询入口。
研究生 各科分数 比例汇总
研究生各科分数比例汇总
研究生考试的总分因专业和考试科目的不同而有所区别。
一般来说,研究生考试包括四个科目:政治、英语、数学或专业基础、专业课。
对于数学科目,根据专业和考试科目的不同,分数比例也不同。
一般来说,数学一、数学二和数学三的分数比例分别为100分、150分和150分。
政治和英语的分数均为100分。
至于专业课的分数,则因专业而异。
另外,综合素质考试成绩占总分的40%,其中“思想政治”考试分值为考生所选考试类别中政治科目的成绩,外语口语考试占综合素质考试总成绩的10分。
考研分数计算方法为:考生的研究生考试总分=学科基础知识考试成绩的加权分数(取60分)+综合素质考试成绩的加权分数(取40分)。
每个研究生招生单位的具体录取标准可能存在差异,但研究生入学考试总分一般在70分以上者可以胜任一般要求的学术型研究生。
以上内容仅供参考,具体分数比例请参考所报考学校和专业的要求。
考研题型与试卷结构
2018考研题型与试卷结构2018西医综合考研题型与试卷结构一、试卷分布本试卷满分300分,考试时间180分钟,总题量180道小题,分ABX三种题型。
在试卷内容结构上分为基础医学和临床医学,各占50%。
若按考试比重,一次排序如下:内科学、生理学、外科学、生物化学、病理学,数据表示依次为:30%、20%、20%、15%和15%。
在题型方面,A题型(120道选择题,其中90道每题5分的题、30道每题2分的题),B题型(30道每题1.5分的题),X题型(30道每题2分的题)。
二、考查内容1、生理学——20%细胞的基本功能、血液、血液循环、呼吸、消化和吸收、能量代谢和体温、尿的生成和排出、感觉器官、神经系统内分泌和生殖。
2、生物化学——15%生物大分子的结构和功能、物质代谢及其调节、基因信息的传递和生化专题。
3、病理学——15%细胞与组织损伤、修复代偿与适应、局部血液及体液循环障碍、炎症、肿瘤、免疫病理、心血管系统疾病、呼吸系统疾病、消化系统疾病、造血系统疾病、泌尿系统疾病、生殖系统疾病、传染病及寄生虫病和其他。
4、内科学——30%诊断学、消化系统疾病和中毒、循环系统疾病、呼吸系统疾病、泌尿系统疾病、血液系统疾病、内分泌系统和代谢疾病和结缔组织病和风湿性疾病。
5、外科学——20%外科总论、胸部外科疾病、普通外科、泌尿男生殖系统外科疾病、骨科。
2018教育学考研题型与试卷结构1、试卷满分及考试时间本试卷满分为300分,考试时间为180分钟。
2、答题方式答题方式为闭卷、笔试。
3、试卷内容结构(1)必答题为270分,各部分内容所占分值为:教育学原理约100分中外教育史约100分教育心理学约40分教育研究方法约30分(2)必选题为30分,考生必须在两道试题中选取一道作答。
第I道题考查教育心理学的内容,第Ⅱ道题考查教育研究方法的内容。
考生若两题都回答,只按第I道题的成绩计入总分。
(3)试卷题型结构单项选择题45小题,每小题2分,共90分辨析题3小题,每小题15分,共45分简答题5小题,每小题15分,共75分分析论述题3小题,每小题30分,共90分。
考研科目分数分布
考研科目分数分布
政治100分,英语100分,数学(专业课一)150分,专业课二150分,总分500分。
扩展资料
①公共课:政治、英语一、英语二、俄语、日语、数学一、数学
二、数学三,由国家教育部统一命题。
各科的考试时间均为3小时。
政治理论课(马原22分、毛中特30分、史纲14分、思修18分、形势与政策16分)、
英语满分各为100分(完型10分、阅读理解60分、小作文10分、大作文20分)、
数学(其中理工科考数一、工科考数二、经管类考数三)满分为150分。
数一的考试内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分);数二的.内容分布:高数78%(117分)、线代22%(33分);数三的内容分布:高数56%(84分)、线代22%(33分)、概率22%(33分)。
这些科目的考试知识点和考试范围在各科考试大纲上有详细规定,一般变动不大,因此可以参照前一年的大纲,对一些变动较大的科目,必须以新大纲为准进行复习。
②专业课统考专业课:由国家教育部考试中心统一命题,科目包括:西医综合、中医综合、计算机、法硕、历史学、心理学、教育学、农学。
其中报考教育学、历史学、医学门类者,考专业基础综合(满分为300分);报考农学门类者,考农学门类公共基础(满分150分)。
非统考专业课:由各个院校自主命题,分为专业课一和专业课二。
各科考试时间为3个小时,每科的分值满分为150分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018考研数:学总分及分值是如何分配的?
2018考研数学总分满分150分,数学分为数学一、数学二和数学三,都是150分满分,具体到各个科目题型的分值,考生还得根据大纲来了解。
关于考研数学总分及各部分分值占比的信息,方便2018考生了解。
1. 试卷结构
选择题:8题(每题4分);
填空题:6题(每题4分);
解答题:9题(每题10分左右);
满分150分,考试时间3小时。
2. 考试科目及分值
高等数学:84分,占56%(4道选择题,4道填空题,5道大题);
线性代数:33分,占22%(2道选择题,1道填空题,2道大题);
概率论与数理统计:33分,占22%(2道选择题,1道填空题,2道大题)。
注意:数学二不考概率论与数理统计,这一科的分值和试题全加到高等数学中。
3. 考试特点
①总分150分,在公共课中所占分值大,全国平均分在70左右,分数之间差距较大;
②注重基础,遵循考试大纲出题,考查公式定理,凯程固定;
③注重高质量的考点训练与题型总结。
其实看看凯程考研怎么样,最简单的一个办法,看看他们有没有成功的学生,最直观的办法是到凯程网站,上面有大量学员经验谈视频,这些都是凯程扎扎实实的辅导案例,其他机构网站几乎没有考上学生的视频,这就是凯程和其他机构的优势,凯程是扎实辅导、严格管理、规范教学取得如此优秀的成绩。
辨别凯程和其他机构谁靠谱的办法。
第一招:看经验谈视频,凯程网站有经验谈视频,其他机构没有。
第二招:看有没有讲义。
凯程有课程讲义,其他机构几乎没有,或者没有现成的讲义,说明他们没有辅导历史。
第三招:问问该专业今年辅导多少人。
如果就招1-2个学生,那就无法请最好的老师,凯程大多数专业都是小班授课,招生人数多,自然请的老师质量高,授课量大,学习更加扎实。
并且凯程和这些学校的老师联系更加紧密。
第四招:看集训营场地正规不正规。
有些机构找个写字楼,临时租个宾馆,学习没有气氛,必须是正规教学楼、宿舍楼、操场、食堂,凯程就是正规教学楼、宿舍楼、食堂、操场等,配备空调、暖气、热水器、独立卫浴等。
在凯程网站有大量集训营环境的照片,每个学员对我们的集训营学习气氛满意度超高。
其他机构很多遮遮掩掩不提供,那就是集训营环境不行。
第五招:实地考察看看。
凯程在金融硕士、会计硕士、法硕、中传、教育学、教育硕士、财科所等名校名专业考研取得的成绩。
对该专业有辅导历史:必须对该专业深刻理解,才能深入辅导学员考取该校。
在考研辅导班中,从来见过如此辉煌的成绩:凯程在2016年考研中,清华五道口金融学院考取13人(前五名都是凯程学员),清华经管6人,北大经院金融硕士8人,人大和贸大各15人,中财金融硕士10人,复旦上交上财等名校18人,法学方面,凯程在人大、北大、贸大、政法、武汉大学、公安大学等院校斩获多个法学和法硕状元,会计硕士、中传、中戏、经济学等专业更是成绩突出,更多专业成绩请查看凯程网站。
在凯程官方网站的光荣榜,成功学员经验谈视频特别多,都是凯程战绩的最好证明。
对于如此高的成绩,凯程集训营班主任邢老师说,凯程如此优异的成绩,是与我们凯程严格的管理,全方位的辅导是分不开的,很多学生本科都不是名校,某些学生来自二本三本甚至不知名的院校,还有很多是工作了多年才回来考的,大多数是跨专业考研,他们的难度大,竞争激烈,没有严格的训练和同学们的刻苦学习,是很难达到优异的成绩。
最好的办法是直接和凯程老师详细沟通一下就清楚了。