龙门吊基础设计计算书
龙门吊基础计算书
龙门吊基础计算书一、工程概况和16T龙门吊共用同一轨道。
二、龙门吊检算1、设计依据①龙门吊使用以及受力要求②施工场地布置要求③地铁施工规范2、设计参数:①从安全角度出发,按g=10N/kg计算。
② 16吨龙门吊自重:59吨, G1=59×1000×10=590KN;16吨龙门吊载重:16吨, G2=16×1000×10=160KN;16吨龙门吊4个轮子每个轮子的最大承重:G3=(590000/2+160000)/2=227.5KN③ 45吨龙门吊自重:133吨, G4=13.3×1000×10=1330KN;45吨龙门吊载重:45吨, G5=45×1000×10=450KN;45吨龙门吊8个轮子每个轮子的最大承重:G6=(1330000/2+450000)/4=278.75KN④混凝土强度:普通混凝土强度C30,C=2×1000=2000KPa⑤钢板垫块面积:0.20×0.25=0.05 m2⑥ 16吨龙门吊边轮间距:L1:7.5m⑦ 45吨龙门吊边轮间距:L2:8.892m3、受力分析与强度验算:只用45吨龙门吊进行受力分析,因为其单个轮子的荷载大于16吨龙门吊的单个轮子荷载,一旦其受力分析和强度验算能够满足,16吨龙门吊的也能满足。
45吨龙门吊受力图如下:龙门吊受力分析图3.1、按照规范要求,全部使用16吨龙门吊和45吨龙门吊使用说明推荐的P43大车钢轨。
3.2、根据受力图,两条钢轨完全作用于其下面的混凝土结构上的钢块,钢块镶嵌在混凝土上,故而进行混凝土强度验证:假设:(1)整个钢轨及其基础结构完全刚性(安装完成后的钢轨及其结构是不可随便移动的)。
(2)每台龙门吊完全作用在它的边轮间距内(事实上由于整个钢轨极其基础是刚性的,所以单个龙门吊作用的长度应该长于龙门吊边轮间距)。
即:龙门吊作用在钢轨上的距离是:L1=7.5m ,L2=8.892m根据压力压强计算公式:压强=压力/面积,转换得:面积=压力/压强要使得龙门吊对地基混凝土的压强小于2MPa才能达到安全要求。
龙门吊计算书
计算书目录第1章计算书 (1)1.1 龙门吊轨道基础、车挡设计验算 (1)1.1.1 龙门吊走行轨钢轨型号选择计算 (1)1.1.2 龙门吊轨道基础承载力验算 (2)1.1.3 龙门吊轨道基础地基承载力验算 (2)1.2 吊装设备及吊具验算 (3)1.2.1 汽车吊选型思路 (3)1.2.2 汽车吊负荷计算 (4)1.2.3 汽车吊选型 (4)1.2.4 钢丝绳选择校核 (5)1.2.5 卸扣的选择校核 (5)1.2.6 绳卡的选择校核 (6)1.3 汽车吊抗倾覆验算 (7)1.4 地基承载力验算 (7)第1章计算书1.1 龙门吊轨道基础、车挡设计验算MG85-39-11龙门吊,龙门吊跨径改装修整为37m,每台最大起吊能力为85T。
上纵梁为三角桁架,整机运行速度6m/min,小车运行速度5m/min,整机重量60T。
1#梁场最大梁重137T,设置两台MG85龙门吊,最大起吊能力170T,可以满足使用要求。
本方案地基基础梁总计受力:M=137+60×2=257TF=M*g=257T×9.8N/kg=2519kN2台龙门吊共计有8个支点,则每个支点受力:P=F/8=315kN85T满负荷运转(吊装170T)时,Pmax=(85+60)T×9.8N/kg/4=355kN。
1.1.1 龙门吊走行轨钢轨型号选择计算确定龙门吊走行轨上的钢轨,计算方式有两种,二者取较大值:方式一:根据《路桥施工计算手册》计算:g1=2P+v/8=2×315+(6×60/1000/8)=630kN/m方式二:根据《吊车轨道联结及车挡(适用于混凝土结构)》中“总说明4.3公式(1)”计算:P d=1.05×1.4×1.15×315=533kN/m;满负荷运转时:g1max=2×355+(20×60/1000/8)=710kN/m;P d max=1.05×1.4×1.15×355=600kN。
龙门吊计算书
龙门吊计算书-CAL-FENGHAI.-(YICAI)-Company One1计算书目录第1章计算书................................................................ 错误!未定义书签。
龙门吊轨道基础、车挡设计验算......................... 错误!未定义书签。
龙门吊走行轨钢轨型号选择计算..................... 错误!未定义书签。
龙门吊轨道基础承载力验算......................... 错误!未定义书签。
龙门吊轨道基础地基承载力验算..................... 错误!未定义书签。
吊装设备及吊具验算................................... 错误!未定义书签。
汽车吊选型思路................................... 错误!未定义书签。
汽车吊负荷计算................................... 错误!未定义书签。
汽车吊选型....................................... 错误!未定义书签。
钢丝绳选择校核................................... 错误!未定义书签。
卸扣的选择校核................................... 错误!未定义书签。
绳卡的选择校核................................... 错误!未定义书签。
汽车吊抗倾覆验算..................................... 错误!未定义书签。
地基承载力验算....................................... 错误!未定义书签。
第1章计算书1.1 龙门吊轨道基础、车挡设计验算MG85-39-11龙门吊,龙门吊跨径改装修整为37m,每台最大起吊能力为85T。
龙门吊基础计算书(最终)
广东省龙川至怀集公路TJ31标钢筋加工厂龙门吊基础计算书1、龙门吊基础设计方案我项目钢筋加工厂龙门吊为24m宽,有效起重重量为10T,龙门吊为MH-10-24型,该龙门吊起吊能力为10T的门吊,门吊自重按12T计算。
基础采用条形基础,每隔10m设置一道2cm宽的沉降缝,宽100cm,高50cm,基础采用C20砼,纵向受力钢筋采用两层共六根Φ12mm带肋钢筋,箍筋采用Φ10mm光圆钢筋,箍筋间距为200mm,具体尺寸如图1-1,1-2所示。
图1-2 龙门吊轨道基础断面图2、基底地质情况基底为较软弱的红粘土,经实测地基承载力为160~180Kpa ,采用换填的方法提高地基承载力,基底换填0.3m 厚的碎石渣,未压实,按松散考虑,地基基本承载力为σ0为180kPa ,在承载力计算时取最小值160Kp 。
查《路桥施工计算手册》中碎石渣的变形模量E 0=29~65MPa ,红粘土的变形模量E 016~39MPa,为安全起见,取碎石渣的变形模量E 0=29 MPa ,红粘粘土16MPa 。
3、建模计算3.1、力学模型简化基础内力计算按弹性地基梁计算,用有限元软件Midas Civil2010进行模拟计算。
即把钢筋砼梁看成梁单元,将地基看成弹性支承。
龙门吊自重按12T 计算,总重22T ,两个受力点,单点受集中力11T ,基础梁按10m 长计算。
具体见图3-3。
图3-1 力学简化模型3.2、弹性支撑刚度推导根据《路桥施工计算手册》可知,荷载板下应力P 与沉降量S 存在如下关系:230(1)10cr P b E s ωυ-=-⨯其中:E0-----------地基土的变形模量,MPa ;ω-----------沉降量系数,刚性正方形板荷载板ω=0.88;刚性圆形荷载板ω=0.79;ν-----------地基土的泊松比,为有侧涨竖向压缩土的侧向应变与竖向压缩应变的比值;Pcr-----------p-s 曲线直线终点所对应的应力,MPa ;s-------------与直线段终点所对应的沉降量,mm ;b-------------承压板宽度或直径,mm ;不妨假定地基的变形一直处在直线段,这样考虑是比较保守也是可行的。
龙门吊基础计算书003
龙门吊基础计算书00350t 龙门吊基础计算书1、荷载咨询龙门吊生产产家,50t 龙门吊一侧2组小车,一组小车2个轮子,轮子间距1.5m ,两小车中心距9.5~10m (未确定),计算时取9.5m ,最大轮压291kN ,荷载如下图所示:图一荷载示意图2、基础相关参数(见混凝土结构设计规范)基础梁采用C25混凝土,截面如下图所示:图二基础梁截面示意图基础梁底宽b=1.3m ,高h=0.7m ,面积S=0.665m 2,截面矩I x =0.02439m 4,弹性模量E=2.8×107kN/m 2,抗压强度设计值f c =11.9×103kN/m 2。
钢筋为Ⅱ级钢筋,f y =3×105kN/m 2。
291kN 291kN291kN 291kN 单位以cm计3、计算(1)地基承载力计算轮压按45°扩散到基础底部,L=2*0.7tan45°=1.4m,可不考虑轮压的应力叠加,考虑钢轨的扩散作用:基底净反力P净=2*291/[1.4*(1.5+1.4)]=143.35kPa基础埋深0.7m,则地基承载力特征值:(见扩展条形基础设计:二、基础底面积计算)据公式:A>F/(f-vd)f ak≥143.35+20*0.7=157.35kPa故要求地基强夯后承载力达到180kPa才能满足要求,安全系数K=180/157.35=1.144。
(2)配筋计算内力计算按倒梁法计算,以轮子作用点为支座,地基反力作为荷载,跨度取轮子长度加 1.4m,既0.7+1.5+0.7=2.9m,荷载q=143.35*1.4=200.7kN/m,如图所示:利用结构力学求解器求得,在q1=159.89*1.3=208kN/m作用下:M max=49.17kN·mQ max=150.53kN由于倒梁法计算内力只考虑支座间的局部弯曲,忽略了基础的整体弯曲,所得的不利截面上的弯矩绝对值一般较小。
龙门吊基础计算书
龙门吊基础计算书
龙门吊基础计算书
工程概况:
福州市轨道交通6号线2标3工区盾构始发井场地,需要
安装1台MG50门式起重机,以供盾构施工时器材的垂直运输。
因盾构区间较短,暂定安装1台50t龙门吊进行作业。
龙门吊检算:
1、设计依据:龙门吊使用以及受力要求、施工场地布置
要求、地铁施工规范。
2、设计参数:
2.1、材料性能指标:C30砼、f=1
3.8MPa、轴心抗压强度:c=4、弹性模量:Ec=3.0×10^7 MPa;R235钢筋:fsd=195MPa;HRB335钢筋:fsd=280MPa。
2.2、基础截面的拟定及钢筋的配置:基础截面采用倒T 形,钢筋布置如图
3.3-1所示,下侧受拉钢采用10根B16钢筋,上侧受压钢筋采用3根B16钢筋。
根据基础抗冲剪破坏公式进行计算,考虑到钢轨的作用,龙门吊轮压荷载P应简化成一段均布荷载作用在倒T型轨道基础上。
最大轮压为382KN,每两个轮为一组。
根据侧立面图,进行冲切验算。
龙门吊基础设计设计计算书.
龙门吊基础设计1、设计依据1.1、《基础工程》(清华大学出版社);1.2、地质勘探资料;1.3、龙门吊生产厂家提所供有关资料;1.4、《建筑地基基础设计规范》(GB50007-2002);1.5、《砼结构设计规范》(GB50010-2002)。
2、设计说明勘探资料显示:场地内 1.3m深度地基的承载力为150KPa,故选取基础埋深h0.1。
龙门吊行走轨道基础采用钢筋砼条形基础,为减少砼方量,基础采用倒T形m截面,混凝土强度等级为C20。
龙门吊行走轨道根据龙门吊厂家设计要求采用P43型起重钢轨,基础设计中不考虑轨道与基础的共同受力作用,忽略钢轨承载能力不计;基础按弹性地基梁进行分析设计。
图2-1 基础横截面配筋图(单位:mm)通过计算及构造的要求,基础底面配置30φ12;箍筋选取φ8@350;考基础顶面配置9φ12与箍筋共同构成顶面钢筋网片,以提高基础的承载能力及抗裂性;其他按构造要求配置架立筋,具体见图2-1 横截面配筋图。
基础顶面预埋钢板用于焊接固定轨道钢扣片或预埋φ12钢筋用于固定钢轨。
为保证基础可自由伸缩,根据台座布置情况,每44m设置一道20mm宽的伸缩缝,两侧支腿基础间距38m,基础位置根据制梁台座位置确定。
3、设计参数选定 3.1、设计荷载根据龙门吊厂家提供资料显示,65t 龙门吊行走台车最大轮压:KN P 253max =,现场实际情况,龙门吊最大负重仅40t ,故取计算轮压:KN P 200=;砼自重按26.0KN/m3 计,土体容重按2.7KN/m3计。
根据探勘资料取地基承载力特征值: fa=150KPa 地基压缩模量:MPa E s 91.3=截面惯性矩:Ι=0.07344m 4 3.2、材料性能 (1)、C30砼轴心抗压强度:MPa f c 3.14= 轴心抗拉强度:MPa f t 43.1= 弹性模量:MPaE c 4100.3⨯=(2)、钢筋Ⅰ级钢筋:MPa f y 210=,MPa f y 210'=Ⅱ级钢筋:MPa f y 300=,MPa f y 300'=(3)、地基根据探勘资料取地基承载力特征值: 150fa KPa = 地基压缩模量:MPa E s 91.3= 4、地基验算4.1、基础形式的选择考虑到地基对基础的弹性作用及方便施工,故基础采用图4-1形式。
龙门吊基础计算书.
龙门吊基础计算书.⽬录⼀、⼯程概况 (2)⼆、设计依据 (2)三、轨排井龙门吊轨道梁布置⽅案 (2)四、龙门吊轨道基础设计计算 (3)五、计算结论 (8)龙门吊基础设计⽅案⼀、⼯程概况根据集团公司项⽬部任务分劈,我⼆分部承揽了7号线农车区间。
其中7号线区间隧道左线全部采⽤盾构掘进,右线中间570延⽶隧道(含⼀座施⼯竖井)先采⽤矿⼭法施⼯,后盾构空推拼装管⽚,其余地段采⽤盾构掘进。
右线进车公庙站前有570m矿⼭法盾构空推拼管⽚隧道,矿⼭法即利⽤明挖2#联络通道作为施⼯竖井,通过竖井与左线隧道间设施⼯横通道连接。
门式起重机安装在施⼯竖井上,作为施⼯过程中材料及机具的吊运使⽤,7号线左线全长1365.403m,右线全长1369.999m。
见农车区间总平⾯⼆、设计依据①龙门吊使⽤以及受⼒要求②施⼯场地布置要求③地铁施⼯规范三、轨排井龙门吊轨道梁布置⽅案3.1、平⾯位置门式起重机轨道基础,共2条,布置于施⼯竖井的南北两侧。
以施⼯竖井中⼼线作为基准线像两侧均分门式起重机跨距。
两条门式起重机基础中⼼线相距12.5m。
经现场测量和放线确定轨道基础位置。
见附图<门式起重机轨道基础平⾯布置图>。
3.2、⽴⾯布置门式起重机轨道基础顶⾯与场地地⾯基本齐平。
距竖井西端向的竖井东端位置开始,设2.5‰下坡,以利排⽔。
变坡点处设R-3000m的竖曲线。
3.3、轨道梁施⼯3.3.1、门式起重机基础在冠梁外边距离27.1m段,以围护冠梁作为轨道梁基础,在基础结构(冠梁上)等冠梁钢筋捆绑结束后,测量组放中线进⾏轨道预埋件的铺设捆绑,预埋件完成后⽀模浇筑混凝⼟,在冠梁外边距离24.1m段轨道梁处于冠梁外侧,需要将轨道梁位置地基加固处理,换填100cm⽯粉,并分层夯实后再施⼯轨道梁,以防⽌过量沉降。
在两种地梁的接头处应专门处理,避免出现轨⾯顶部形成错台。
3.3.2、轨道梁结构施⼯轨道梁采⽤钢筋混凝⼟结构,砼标号C35。
四、龙门吊轨道基础设计计算1、设计参数:①从安全⾓度出发,按g=10N/kg计算。
龙门吊计算书
龙门吊计算书假定计算参数:1、龙门用万能杆件拼装。
2、龙门净高16m,净宽42m,计算荷载1988KN。
3、龙门采用双层横梁拼装。
4、截面弹性模量E取2.1x105MPa。
一、求解截面特性现拟定横梁与立柱截面形式如下:由万能杆件标准图得:A=559.2cm2I y=I y1+A1d2+I y2+A2d2=2×(7896+279.6×1002)=5607792cm4W y=I y/z0=56077.92cm3I z=I z0+I z1+A1d2+I z2+A2d2=5264+2×(5264+186.4×2002)=14927792cm4 W z=I z/y0=74638.96cm3②立柱截面形式A=372.8cm2I x=I x1+A1d2+I x2+A2d2=2×(5264+186.4×1002)=3738528cm4W x=I x/z0=37385.28cm3I z=I z1+A1d2+I z2+A2d2=2×(5264+186.4×1002)=3738528cm4W z=I z/x0=37385.28cm3二、求解钢构内力与挠度根据龙门受力情况,可把龙门简化为钢构模型进行计算,荷载值P=1988KN(钢构件重)+420KN(横梁自重)=2408KN,考虑到单龙门受力将力分配如下图所示:VSES3.2 译码文件窗口界限尺寸(X,Y):60.000 35.116计算类型(静力1,模态2,动力响应3,屈曲4):1节点总数:6单元类型(桁架元1,刚架元2,三角形平面元3,四边形平面元4,空间元5,矩形板元6,板壳元7,梁-板壳组合8,杆-实体组合):2是否计入剪切变形(仅对梁单元):中间铰个数(仅对梁单元):虚拟单元数(仅对梁单元):单元总数:5单元特性种类:2材料种类:1有约束的节点数:6有支座位移的节点数:加荷载的节点数:2加荷载的单元数:是否计入重力:False重力因子(GX,GY,GZ):0 0 0节点号及节点坐标(X,Y,Z):1 2.000000e+00 2.000000e+00 0.000000e+002 2.000000e+00 1.800000e+01 0.000000e+003 1.600000e+01 1.800000e+01 0.000000e+004 3.000000e+01 1.800000e+01 0.000000e+005 4.400000e+01 1.800000e+01 0.000000e+006 4.400000e+01 2.000000e+00 0.000000e+00单元特性号及特性值:1 5.600000e-02 1.000000e+02 1.000000e+02 1.490000e-01 1.000000e+001.000000e+002 3.730000e-02 1.000000e+02 1.000000e+02 3.740000e-02 1.000000e+00 1.000000e+00材料特性号及特性值:1 7.800000e+04 2.100000e+11 3.000000e-01单元号及节点号,单元特性号,材料特性号:1 12 002 0012 23 001 0013 5 6 002 0014 3 4 001 0015 4 5 001 001约束节点号及约束值:1 1 1 1 0 0 02 0 0 1 1 1 03 0 0 1 1 1 04 0 0 1 1 1 05 0 0 1 1 1 06 1 1 1 0 0 0节点荷载所在的节点号及荷载分量值(PX,PY,PZ,MX,MY,MZ):3 0.000000e+00 -1.240000e+06 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+004 0.000000e+00 -1.240000e+06 0.000000e+00 0.000000e+00 0.000000e+00 0.000000e+00弹簧单元数:集中质量节点数:VSES3.2计算结果文件计算类型:1节点号及节点位移 (m):1 0.00000e+00 0.00000e+00 0.00000e+002 6.38744e-04 -2.53287e-03 0.00000e+003 2.12913e-04 -5.73020e-02 0.00000e+004 -2.12917e-04 -5.73020e-02 0.00000e+005 -6.38748e-04 -2.53287e-03 0.00000e+006 0.00000e+00 0.00000e+00 0.00000e+00单元号及单元内力(局部坐标下的N1,MY1,MZ1,N2,MY2,MZ2):1 1.24000e+06 0.00000e+00 -2.50000e-01 -1.24000e+06 0.00000e+00 5.72316e+062 3.57698e+05 0.00000e+00 5.72316e+06 -3.57698e+05 0.00000e+00 1.16368e+073 1.24000e+06 0.00000e+00 5.72316e+06 -1.24000e+06 0.00000e+00 -2.50000e-014 3.57698e+05 0.00000e+00 -1.16368e+07 -3.57698e+05 0.00000e+00 1.16368e+075 3.57698e+05 0.00000e+00 -1.16368e+07 -3.57698e+05 0.00000e+00 -5.72316e+06单元号及单元剪力(局部坐标下的QY1,QZ1,QY2,QZ2):1 3.57698e+05 0.00000e+00 -3.57698e+05 0.00000e+002 1.24000e+06 0.00000e+00 -1.24000e+06 0.00000e+003 3.57698e+05 0.00000e+00 -3.57698e+05 0.00000e+004 -2.50000e-01 0.00000e+00 2.50000e-01 0.00000e+005 -1.24000e+06 0.00000e+00 1.24000e+06 0.00000e+00单元号及单元应力 (局部坐标下的max1,min1,max2,min2):1 -3.32440e+07 -3.32440e+07 -2.75208e+07 -3.89671e+072 -6.64297e+05 -1.21106e+07 5.24938e+06 -1.80243e+073 -2.75208e+07 -3.89671e+07 -3.32440e+07 -3.32440e+074 5.24938e+06 -1.80243e+07 5.24938e+06 -1.80243e+075 5.24938e+06 -1.80243e+07 -6.64296e+05 -1.21106e+07综合上面分析跨中最大挠度Δd=5.7302e-02m(钢构模型)<44/600=7.33333e-2满足钢结构设计规范要求。
龙门吊设计计算书(sap2000).
目录1、设计依据 (2)2、龙门吊总体结构 (2)3、计算荷载 (2)3.1 计算荷载 (2)3.2 荷载组合 (4)4、龙门吊结构计算 (5)4.1 吊具计算 (5)4.2 起吊平车吊梁计算 (5)4.3 门吊主梁、支腿结构计算 (6)4.4 门吊行走平车支座反力及抗倾覆稳定性计算 (11)5、结论 (12)1、设计依据(1)《XX 长江公路大桥跨江大桥工程施工图设计》 (2)《XX 长江公路大桥E06合同段60T 龙门吊设计图》 (3)《钢结构设计规范》(GB50017-2003)(4)《装配式公路钢桥多用途使作手册》(人民交通出版社) (5)《起重机设计规范》(GB/T 3811-2008) (6)《机械设计手册》 (7)《钢结构设计手册》2、龙门吊总体结构60T 龙门吊采用轨道行走式,轨道间距27m ,净高约13.5m 。
门吊主梁采用贝雷组拼桁架,每个主梁采用4排200型贝雷,门吊支腿采用钢管结构,支腿内立柱采用φ325×10钢管、外立柱采用Φ273×7钢管,支腿平联及斜撑采用φ159×5钢管。
起吊设备采用1台8t 卷扬机,80t 滑车组绕12线。
龙门吊总体构造见图1。
图1 60T 龙门吊总体构造图3、计算荷载3.1 计算荷载(1) 结构自重荷载:KN P G 630 (不包括起吊小车重量),由计算程序自动加入。
(2) 起升荷载:吊重荷载600kN ,吊具30kN ,起吊小车80kN 合计:N P Q k 77380)30600(1.1=++⨯= (3) 起吊小车行走制动荷载:按起升荷载10%取值,KN P P Q T 3.77%10773%10=⨯=⨯= (4) 龙门吊行走制动荷载:按结构自重和起升荷载的10%取值,门吊行走时起升荷载产生的制动荷载:KN P P Q MQ 3.77%10773%10=⨯=⨯= 门吊行走时结构自重产生的制动荷载:KN P P G MG 63%10630%10=⨯=⨯= (5) 风荷载: ① 工作状态风荷载风荷载的计算按《起重机设计规范》(GB3811-2008)进行,工作状态计算风速15.5m/s ,对应计算风压150N/m 2。
龙门吊基础计算书
龙门吊基础计算书一、示意图基础类型:刚性基础计算形式:验算截面尺寸剖面:二、基本参数1.依据规范《建筑地基基础设计规范》(GB 50007-2002)《混凝土结构设计规范》(GB 50010-2002)《简明高层钢筋混凝土结构设计手册(第二版)》2.几何参数:自动计算所得尺寸:B1 = 300 mm, B = 114 mmH1 = 250 mm基础埋深d = 0.40 m3.荷载值:(1)作用在基础顶部的基本组合荷载( l = 1m 范围内的荷载)F = 100.00 kNM y = 0.00 kN·mV x = 0.00 kN折减系数K s = 1.35(2)作用在基础底部的弯矩设计值绕Y轴弯矩: M0y = M y+V x·H1 = 0.00+0.00×0.25 = 0.00 kN·m(3)作用在基础底部的弯矩标准值绕Y轴弯矩: M0yk = M0y/K s = 0.00/1.35 = 0.00 kN·m 4.基础几何特性:底面积:S =(B1+B2)×l = 0.60×1.0 = 0.60 m2绕Y轴抵抗矩:W y = (1/6)·l·(B1+B2)2 = (1/6)×1.0×0.602 = 0.06 m3三、计算过程1.修正地基承载力计算公式:按《建筑地基基础设计规范》(GB 50007-2002)下列公式验算:f a = f ak+ηb·γ·(b-3)+ηd·γm·(d-0.5) (式5.2.4)式中:f ak = 150.00 kPaηb = 0.00,ηd = 1.00γ = 20.00 kN/m3γm = 20.00 kN/m3b = 0.60 m,d = 0.40 m如果b <3m,按b = 3m, 如果b > 6m,按b = 6m如果d <0.5m,按d = 0.5mf a = f ak+ηb·γ·(b-3)+ηd·γm·(d-0.5)= 150.00+0.00×20.00×(3.00-3.00)+1.00×20.00×(0.50-0.50)= 150.00 kPa修正后的地基承载力特征值f a = 150.00 kPa2.轴心荷载作用下地基承载力验算计算公式:按《建筑地基基础设计规范》(GB 50007-2002)下列公式验算:p k = (F k+G k)/A (5.2.4-1)F k = F/K s = 100.00/1.35 = 74.07 kNG k = 20S·d = 20×0.60×0.40 = 4.80 kNp k = (F k+G k)/S = (74.07+4.80)/0.60 = 131.46 kPa ≤ f a,满足要求。
2:龙门吊基础设计计算正文
目录1、10T龙门吊基础设计计算书 (2)1.1、设计依据 (2)1.2、设计说明 (2)1.3、设计参数选定 (2)1.3.1、设计荷载 (2)1.3.2、材料性能指标 (3)1.4、地基验算 (3)1.4.1、地基承载力验算 (4)2、85T龙门吊基础设计计算书 (5)2.1、设计依据 (5)2.2、设计说明 (5)2.3、设计参数选定 (5)2.3.1、设计荷载 (5)2.3.2、材料性能指标 (6)2.4.基础混凝土结构计算 (6)2.5、地基验算 (6)2.5、钢筋配置 (9)***********************龙门吊基础设计计算书1、10T龙门吊基础设计计算书1.1、设计依据1.1.1、龙门吊生产厂家提所供有关资料;1.1.2、《建筑地基基础设计规范》(GBJ7-89);1.1.3、《混凝土结构设计规范》(GB50010-2002)。
1.2、设计说明梁场位于低丘山地,地质资料显示,土层为红黏土,基本地基承载力σ0=120KPa。
存梁区大部分位于挖方区,极少部分位于填方区。
根据试验检测,填方区和挖方区承载力在140~180KPa之间,选取基础埋深h=0.3m。
龙门吊行走轨道基础采用无筋混凝土扩展条形基础,为减少混凝土方量,基础采用倒T形截面,混凝土强度等级为C35。
龙门吊行走轨道采用P50型起重钢轨,基础设计中不考虑轨道与基础的共同受力作用,忽略钢轨承载能力不计。
10t龙门吊跨度18米,跨制梁台座和钢筋绑扎台座,两侧基础间距18m。
支腿轮距7.0m,每个龙门吊4个轮子。
轨道为50钢轨(高152mm,底宽132mm)。
1.3、设计参数选定1.3.1、设计荷载根据龙门吊厂家提供资料显示,10t龙门吊行走台车最大轮压:P6.KN117。
max最不利工况:现场实际情况,龙门吊最大负重仅5t,自重18t,故单轮上荷载为:N=(5+18)/4=5.75t;混凝土自重按24.0KN/m3 计,土体容重按17KN/m3计。
龙门吊基础设计计算书(新)
65t 龙门吊基础设计1、设计依据1.1、《基础工程》; 1.2、地质勘探资料;1.3、龙门吊生产厂家提所供有关资料;1.4、《建筑地基基础设计规范》(GB50007-2002); 1.5、《砼结构设计规范》(GB50010-2002)。
2、设计说明勘探资料显示:场地内2.3m 深度地基的承载力为125KPa ,冻深0.8m ,故选取基础埋深m h 0.1 。
龙门吊行走轨道基础采用钢筋砼条形基础,为减少砼方量,基础采用倒T 形截面,混凝土强度等级为C20。
龙门吊行走轨道根据龙门吊厂家设计要求采用P43型起重钢轨,基础设计中不考虑轨道与基础的共同受力作用,忽略钢轨承载能力不计;基础按弹性地基梁进行分析设计。
4022022025120040403035353535930N3φ8@350N2φ10N4φ8@350N1φ12N2φ10N1φ12N5φ8@350基础钢筋布置图1:10图-2.1 基础横截面配筋图(单位:mm )通过计算及构造的要求,基础底面配置24φ12;箍筋选取φ8@350;考基础顶面配置5φ12与箍筋共同构成顶面钢筋网片,以提高基础的承载能力及抗裂性;其他按构造要求配置架立筋,具体见图-2.1 横截面配筋图。
基础顶面预埋钢板用于焊接固定轨道钢扣片或预埋φ12钢筋用于固定钢轨。
为保证基础可自由伸缩,根据台座布置情况,每46m 设置一道20mm 宽的伸缩缝,两侧支腿基础间距38m ,基础位置根据制梁台座位置确定,具体见龙门吊基础图。
3、设计参数选定 3.1、设计荷载根据龙门吊厂家提供资料显示,65t 龙门吊行走台车最大轮压:KN P 253max =,现场实际情况,龙门吊最大负重仅40t ,故取计算轮压:KN P 200=; 砼自重按26.0KN/m 3 计,土体容重按2.7KN/m 3计。
3.2、材料性能指标 (1)、C20砼轴心抗压强度:MPa f c 6.9= 轴心抗拉强度:MPa f t 10.1= 弹性模量:MPa E c 41055.2⨯=(2)、钢筋I 级钢筋:MPa f y 210=,MPa f y 210'=II 级钢筋:MPa f y 300=,MPa f y 300'=(3)、地基根据探勘资料取地基承载力特征值:KPa f a 125= 地基压缩模量:MPa E s 91.3= 3.3、基础梁几何特性截面惯性矩:40417.0m I =4、地基验算 4.1基础形式的选择考虑到地基对基础的弹性作用及方便施工,故基础采用图-4.1形式。
龙门吊基础计算书
龙门吊基础计算书一、 工程概况二、 龙门吊检算1、设计依据龙门吊主要部件尺寸及重量序号 部件名称 尺寸单件重量(t)备注总重/t1主梁21450*1120*150012.082件24.16 2端梁3950*1012*1100 1.422件 2.84 3马鞍8190*1000*1030 2.142件 4.28 4支腿9818*1712*2166 4.4318件35.448 5地梁11300*920*800 3.632件7.266台车(移动部件)1900*1465*1500 2.54件107小车(移动部件)4290*5236*2437 19.621件19.628司机室2250*1300*2300 1.21件1.2 9电气室3000*1600*22002.21件 2.2 10配重 6.25件3111渣土罐(移动部件)401件40合计178.12、设计参数:1、从安全角度出发,按g=10N/kg计算。
2、45吨龙门吊自重: G4=108.4×1000×10=1084KN;3、45吨龙门吊载重: G5=(10+19.62+40)×1000×10=696.20KN;4、根据结构力学影响线原理:当起重机移至悬臂梁端头处,吊车支腿承受荷载最大。
即移动荷载下支座反力FR’=(1+9.306/11.6)×696.2=1254.72KN自重荷载下支座反力FR’’=1084/2=542KN故,吊车一侧支腿传递至轮子最大反力FR=1254.72+542=1796.42KN 考虑安全系数1.2,故最大反力设计值为2155.70KN。
45吨龙门吊4个支腿,每个支腿下1个轮子,每个轮子的最大承重标准值:G6=1794.42/2=898.21KN5、混凝土强度:普通混凝土强度C30,C=14.3MPa6、钢板垫块面积:0.40×0.15=0.06 m27、5吨龙门吊边轮间距:L:9.36m3、受力分析与强度验算:45吨龙门吊受力图如下:龙门吊受力分析图冠梁配筋图 门吊基础梁预埋螺栓位置图3.1、根据受力图,两条钢轨完全作用于其下面的混凝土结构上的钢块,钢块镶嵌在混凝土上,故而进行混凝土强度验证:假设:(1)整个钢轨及其基础结构完全刚性(安装完成后的钢轨及其结构是不可随便移动的)。
10t龙门吊基础承载力计算书
①基础砼:g1=1.28×0.2m2×25kN/m3=6.4kN
②钢轨:g2=1.28×43×10N/kg=0.55kN
③龙门吊轮压:g3=(14+10)÷4×10KN/T=60kN
作用在基础底部的基本组合荷载
Fk=g2+g2+g3=66.95KN
4.材料信息:
混凝土:C30钢筋:HPB300
5.基础几何特性:
底面积:A=1.28×0.6=0.76验算
按《建筑地基基础设计规范》(GB50007-2002)下列公式验算:
pk=Fk/A=66.95/0.768=87.2KPa
结论:本地地表往下0.5~3米均为粉质黏土,承载力可达130KPa,满足承载力要求。
10T龙门吊基础底承载力计算书
一、计算说明
1、根据“10t龙门吊基础图”典型断面图计算。
2、采用双层C30钢筋混凝土基础。
二、示意图
基础类型:条基计算形式:验算截面尺寸
剖面:
三、基本参数
1.依据规范
《建筑地基基础设计规范》(GB50007-2011)
2.几何参数:
已知尺寸:
B1=400mm,
H1=400mm
龙门吊基础计算说明书
龙门吊混凝土基础计算说明书混凝土基础下采用含有大小碎石的山皮土1. 计算承载力1)安装钢箱梁最不利位置考虑龙门吊自重110t(计算取120t),运梁小车自重8t(计算取10t),两小车间距为60cm,梁最重一端72t按荷载最不利位置考虑,考虑受力最大支腿P1=(10+72×1.1)×(44-10)/44+60=128.927t 取130吨考虑平均分布到四个轮上,轮压P=130÷4=32.5t2)安装钢拱最不利位置考虑P1=(10+45×1.1)×(44-3)/44+60=115.443t 取120吨考虑平均分布到四个轮上,轮压P=120÷4=30t安装钢箱梁轮压最大,为最不利条件,下面按照安装这种情况考虑混凝土基础。
2.基础截面设计1)采用截面1000×500mm现初拟弹性地基梁矩形截面尺寸为1000×500mm,长为240m。
A、受力分析采用河卵石和砂砾土组合地基,按弹性半无限理论进行计算现取河卵石和砂皮土地基E0=30MP a混凝土采用C25 E h=28.5GPa2l=240m l=120m 集中力P=32.5t=325kNC25 E=0.8E h=0.8*28.5=22.85GP a=22.8*103MP a计算柔度系数 t≈10 E0(l/h)3/E=10*30/(22.8*103)*(120/0.5)3=181894.737>10为长梁L≈l*(π/2t)1/3=120*[3.1416/(2*181894.737)]1/3=2.4622L=4.924m因为在集中力作用下,t >10时,所以按长梁计算集中荷载距梁端采用5m>2L=4.924m 采用无限长梁计算 所以按无限长梁受集中荷载计算查表在荷载作用点x=0m 处时 M=38 p=38 Q=50 在x=0.6m 处 ξ=x/L=0.6/2.462=0.244查表用插入法得 M=15 p=30 Q=29在9.5m 处 ξ=3.859 查表 M=0 P=0四个轮的荷载只有两个距离0.6m 的两个轮的荷载叠加影响 在x 1=ξL =2.2*2.462=5.416m 和在x 2=ξL =2.443*2.462=6.016m M=-5M +max =0.01MPl=0.01×(38+15)×325×2.462=424.08kN.mp max =0.01Pp/l=0.01×(38+30)×325/2.462=89.764kN/mQ=0.01QP=0.01×(50+29)×325=256.75 kNM -min =0.01×(-5-5)×325×2.462=-80.015KN.mB 、正弯矩截面设计设受拉钢筋40a mm =,受压钢筋35a mm '=截面有效高度050040460h h a mm =-=-=则单筋矩形截面的最大正截面承载能力为:所以不需采用双筋截面。
龙门吊基础计算书(最终)
广东省龙川至怀集公路TJ31标钢筋加工厂龙门吊基础计算书1、龙门吊基础设计方案我项目钢筋加工厂龙门吊为24m宽,有效起重重量为10T,龙门吊为MH-10-24型,该龙门吊起吊能力为10T的门吊,门吊自重按12T计算。
基础采用条形基础,每隔10m设置一道2cm宽的沉降缝,宽100cm,高50cm,基础采用C20砼,纵向受力钢筋采用两层共六根Φ12mm带肋钢筋,箍筋采用Φ10mm光圆钢筋,箍筋间距为200mm,具体尺寸如图1-1,1-2所示。
图1-2 龙门吊轨道基础断面图2、基底地质情况基底为较软弱的红粘土,经实测地基承载力为160~180Kpa ,采用换填的方法提高地基承载力,基底换填0.3m 厚的碎石渣,未压实,按松散考虑,地基基本承载力为σ0为180kPa ,在承载力计算时取最小值160Kp 。
查《路桥施工计算手册》中碎石渣的变形模量E 0=29~65MPa ,红粘土的变形模量E 016~39MPa,为安全起见,取碎石渣的变形模量E 0=29 MPa ,红粘粘土16MPa 。
3、建模计算3.1、力学模型简化基础内力计算按弹性地基梁计算,用有限元软件Midas Civil2010进行模拟计算。
即把钢筋砼梁看成梁单元,将地基看成弹性支承。
龙门吊自重按12T 计算,总重22T ,两个受力点,单点受集中力11T ,基础梁按10m 长计算。
具体见图3-3。
图3-1 力学简化模型3.2、弹性支撑刚度推导根据《路桥施工计算手册》可知,荷载板下应力P 与沉降量S 存在如下关系:230(1)10cr P b E s ωυ-=-⨯其中:E0-----------地基土的变形模量,MPa ;ω-----------沉降量系数,刚性正方形板荷载板ω=0.88;刚性圆形荷载板ω=0.79;ν-----------地基土的泊松比,为有侧涨竖向压缩土的侧向应变与竖向压缩应变的比值;Pcr-----------p-s 曲线直线终点所对应的应力,MPa ;s-------------与直线段终点所对应的沉降量,mm ;b-------------承压板宽度或直径,mm ;不妨假定地基的变形一直处在直线段,这样考虑是比较保守也是可行的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
65t 龙门吊基础设计1、设计依据1.1、《基础工程》; 1.2、地质勘探资料;1.3、龙门吊生产厂家提所供有关资料;1.4、《建筑地基基础设计规范》(GB50007-2002); 1.5、《砼结构设计规范》(GB50010-2002)。
2、设计说明勘探资料显示:场地内2.3m 深度地基的承载力为125KPa ,冻深0.8m ,故选取基础埋深m h 0.1 。
龙门吊行走轨道基础采用钢筋砼条形基础,为减少砼方量,基础采用倒T 形截面,混凝土强度等级为C20。
龙门吊行走轨道根据龙门吊厂家设计要求采用P43型起重钢轨,基础设计中不考虑轨道与基础的共同受力作用,忽略钢轨承载能力不计;基础按弹性地基梁进行分析设计。
4022022025120040403035353535930N3φ8@350N2φ10N4φ8@350N1φ12N2φ10N1φ12N5φ8@350基础钢筋布置图1:10图-2.1 基础横截面配筋图(单位:mm )通过计算及构造的要求,基础底面配置24φ12;箍筋选取φ8@350;考基础顶面配置5φ12与箍筋共同构成顶面钢筋网片,以提高基础的承载能力及抗裂性;其他按构造要求配置架立筋,具体见图-2.1 横截面配筋图。
基础顶面预埋钢板用于焊接固定轨道钢扣片或预埋φ12钢筋用于固定钢轨。
为保证基础可自由伸缩,根据台座布置情况,每46m 设置一道20mm 宽的伸缩缝,两侧支腿基础间距38m ,基础位置根据制梁台座位置确定,具体见龙门吊基础图。
3、设计参数选定 3.1、设计荷载根据龙门吊厂家提供资料显示,65t 龙门吊行走台车最大轮压:KN P 253max =,现场实际情况,龙门吊最大负重仅40t ,故取计算轮压:KN P 200=; 砼自重按26.0KN/m 3 计,土体容重按2.7KN/m 3计。
3.2、材料性能指标 (1)、C20砼轴心抗压强度:MPa f c 6.9= 轴心抗拉强度:MPa f t 10.1= 弹性模量:MPa E c 41055.2⨯=(2)、钢筋I 级钢筋:MPa f y 210=,MPa f y 210'=II 级钢筋:MPa f y 300=,MPa f y 300'=(3)、地基根据探勘资料取地基承载力特征值:KPa f a 125= 地基压缩模量:MPa E s 91.3= 3.3、基础梁几何特性截面惯性矩:40417.0m I =4、地基验算 4.1基础形式的选择考虑到地基对基础的弹性作用及方便施工,故基础采用图-4.1形式。
4.2、地基承载力验算每个台座两侧各设一条钢轨,长46m ,两端各设伸缩缝20mm 。
考虑两台龙门吊同时作业,根据65T 龙门吊资料:支腿纵向距离为7.5m ,轮距离0.65m ,结合内模和钢筋骨架长度,前后两龙门吊最小中心间距为22m 。
按最不利荷载情况布置轮压,见图-4.2:图-4.1:基础截面图(单位:mm )FE BA P8P7P6P5P4P3P2P1460.656.850.6513.850.656.850.6515.85图-4.2:荷载布置图(单位:m )采用弹性地基梁模型计算地基的反力,根据场地地质勘测资料显示,地基持力层为粉质粘土,压缩模量MPa E s 91.3=,查表取泊松比3.0=v ;基础梁边比:460.146===b l m ,按柔性基础查表的,影响系数76.1=c I 。
基础截面惯性距:m I 40417.0=。
地基变形模量:MPa E E E s s 90.291.33.013.02112122=⨯⎪⎪⎭⎫⎝⎛-⨯-=⎪⎪⎭⎫ ⎝⎛--==ννβ 地基抗力系数:33/689.18101076.123.010.161090.221m KN I c )νb(E k =⨯⨯⎪⎭⎫ ⎝⎛-⨯⨯=-=-2/689.1810689.18100.1m KN k b k s =⨯=⋅=1436.00417.01055.2410689.1810441034=⨯⨯⨯⨯==I E k c s λ 荷载计算模式判定:P1:作用在基础端头,按半无限长梁计算P2:()πλ>=-⨯=⋅512.665.0461436.0l 按无限长梁计算 P3:()πλ>=--⨯=⋅529.585.665.0461436.0l 按无限长梁计算 P4:()πλ>=-⨯-⨯=⋅435.585.6265.0461436.0l 按无限长梁计算 P5:()πλ>=--⨯=⋅446.385.1315.8461436.0l 按无限长梁计算P6:()πλ>=--⨯=⋅353.365.022461436.0l 按无限长梁计算 P7:()πλ>=--⨯=⋅236.465.085.15461436.0l 按无限长梁计算 P8:()πλ>=-⨯=⋅330.485.15461436.0l 按无限长梁计算 4.2.1活荷载作用地基反力强度计算 (1)荷载P1对各计算点影响荷载P1按半无限长梁计算:01436.00=⨯==λαa对位置A :01436.00=⨯==λξx ,查表得反力系数2=p对位置B :09.01436.065.0=⨯==λξx ,查表得反力系数822.1=p 对位置C :()08.11436.085.665.0=⨯+==λξx ,查表得反力系数326.0=p 对位置D :()17.11436.085.6265.0=⨯+⨯==λξx ,查表得反力系数245.0=p对位置E :()16.31436.085.1385.6265.0=⨯++⨯==λξx ,查表得反力系数08.0-=p 对位置F :()25.31436.065.085.1385.6265.0=⨯+++⨯==λξx ,查表得反力系数07.0-=p对位置G :()24.41436.085.665.085.1385.6265.0=⨯++++⨯==λξx ,查表得反力系数069.0=p对位置H :()33.41436.085.1546=⨯-==λξx ,查表得反力系数087.0=p 对位置I :61.61436.046=⨯==λξx ,查表得反力系数504.0=p荷载P1按式:p P p λ1=计算P1对各计算点所作用地基反力,具体见表-1。
(2)其他荷载的影响 计算过程见表1:其中:Axi=e -λx (cos λx+sin λx)P ij =P*λ*p(j=1) P ik =P*λ* Axi/2b (k=2~8)考虑基础自重和回填土的重量:(26*1+2.7*0.7)/2*1=13.945Kpa地基的最大反力:108.60+13.945=122.55Kpa <[fa]=125Kpa ,满足要求!5、基础内力计算基础内力计算采用弹性地基梁算,计算过程见表2、表3 其中:B i1=e -λx *sin λx M i1=-PB ij /λ(j=1) C ij =e -λx (cos λx-sin λx) M ik =P*C ij /4λ(j=2~8) D ij =e -λx *cos λx V ij =-P*D x2/2(j=2~8) V ij =-PC ij (j=1) 6、基础配筋计算 1、判断T 型截面类型:基础在任何一个单元的受力只能是正弯矩或负弯矩,根据充分发挥混凝土的承压能力的原则,确定T 型基础的类型。
第一类,受压区仅位于内;第二类,翼缘和腹板均受压。
翼缘板全部受压:KNKN >h h bh f M c j 17.1098.319623.026.13.01106.9)2(6'0'=⎪⎭⎫ ⎝⎛-⨯⨯⨯⨯=-=腹板全部受压:KNKN >h h bh f M c j 56.53756.183427.026.17.03.0106.9)2(6'0'=⎪⎭⎫ ⎝⎛-⨯⨯⨯⨯=-=由计算可知:T 型基础为第一类。
2、基础正截面受弯配筋:根据表2可见:Mmax=1.2*537.56=645.07 KN.m (1.2为分项系数) Mmin=-1.2*109.17=-131.0 KN.mmh m <b cf M h h x b 512.093.055.0284.03.06106.931007.6452293.093.0220010=⨯==⨯⨯⨯⨯--=--=ξ 25.2638610300284.03.06106.911mm yf x b cf s A =⨯⨯⨯⨯=⨯⨯= 下部配钢筋:24φ12(HRB335),A=2714.4 mm 2 ,ρ=0.68%>ρmin =0.15%mh b m <bcf Mh h x 512.093.055.000148.016106.93101312293.093.022002=⨯==⨯⨯⨯⨯--=--=ξ26.4736103000148.016106.922mm yf x b c f s A =⨯⨯⨯⨯=⨯⨯=上部配钢筋:5φ12(HRB335),A=565.5 mm 2 ,ρ=0.31%>ρmin =0.15% 3、基础斜截面受剪配筋:根据表3:Vmax=1.2*309.69=371.63KN <0.25βc f c bh 0=0.25*1*9.6*106*0.3*0.93=669.6KN (1.2为分项系数)受剪截面尺寸满足要求。
V=0.7βh f t bh 0=0.7*(800/930)0.25*1.1*106*(0.3*0.665+1*0.265) =344.45KN <Vmax故需配箍筋mm h yv f bh t f cs V s v As 0572.093.061021025.11265.0665.03.06101.17.031063.371025.107.0=⨯⨯⨯⨯+⨯⨯⨯⨯-⨯=-=)(结合构造要求,选φ8@300,335.0=sAsvmm ,%088.010300101.124.024.0%1126.03003004/6814.3266min =⨯⨯⨯===⨯⨯⨯==y t sv sv f f >sb nA ρρ满足要求! 4、横向抗弯检算取纵向应力分布长度1m 为计算单元,计算部位见图6-1图6-1:横向抗弯计算位置图M=0.5*P j *a j 2 P j :基底净反力a j :计算截面到基础边缘的距离(取作用力的边缘为计算截面) M =0.5*108.6*0.352=6.652 kn.m28.132265.0*6102109.0310652.609.0mm hy f M A =⨯⨯⨯==用抗剪箍筋3φ8(A=150.9mm 2)能满足要求。
基础剪力计算表表3A B C D E F G Hx10.000.657.508.1522.0022.6529.5030.15 Cx1 1.000.84-0.10-0.13-0.07-0.060.000.00 Vi1-200.00-167.7719.7226.2014.4812.670.680.15 x20.650.00 6.857.5021.3522.0028.8529.50 Dx20.92 1.000.260.21-0.06-0.06-0.02-0.02 Vi2-91.61-100.00-26.06-21.40 5.86 5.55 1.99 1.72 x37.50 6.850.000.6514.5015.1522.0022.65 Dx30.210.26 1.000.92-0.05-0.05-0.06-0.05 Vi3-21.40-26.06-100.00-91.61 4.61 5.35 5.55 5.22 x48.157.500.650.0013.8514.5021.3522.00 Dx40.170.210.92 1.00-0.04-0.05-0.06-0.06 Vi4-17.19-21.40-91.61-100.00 3.66 4.61 5.86 5.55 x522.0021.3514.5013.850.000.657.508.15 Cx5-0.07-0.08-0.19-0.20 1.000.84-0.10-0.13 Vi514.4816.4038.4339.82-200.00-167.7719.7226.20 x622.6522.0015.1514.500.650.00 6.857.50 Cx6-0.06-0.07-0.18-0.190.84 1.00-0.06-0.10 Vi612.6714.4836.7538.43-167.77-200.0011.7519.72 x729.5028.8522.0021.357.50 6.850.000.65 Dx7-0.02-0.02-0.06-0.060.210.26 1.000.92 Vi7 1.72 1.99 5.55 5.86-21.40-26.06-100.00-91.61 x830.1529.5022.6522.008.157.500.650.00 Dx8-0.01-0.02-0.05-0.060.170.210.92 1.00 Vi8 1.47 1.72 5.22 5.55-17.19-21.40-91.61-100.00合计-299.88-280.65-112.00-97.14-377.76-387.06-146.05-133.05。