六年级奥数测试题三

合集下载

六年级奥数综合测试(三)

六年级奥数综合测试(三)
6、某校六年级有学生120人,参加体育、文学、数学兴趣小组的人数之和为135人,其中既参加体育组又参加文学组的有15人;既参加体育组又参加数学组的有10人;既参加文学组又参加数学组的有8人;三个小组都参加的有4人。求三个小组都没参加的有多少人?
六年级奥数综合测试(三)
姓名:得分:
一、填空题:
1、在1~30这30个自然数中,既是奇数又是合数的数共有()个。
2、72和120的最大公因数和最小公倍数分别是()和()。
3、4时25分=()时0.06 =( )
4、把30克糖分成质量相等的()袋,每袋的质量是 千克。
5、 = =0.75= =
6、能同时被2、3、5整除的最小三位数是()。
7、用棱长是2cm的正方体拼成一个长4厘米,宽8厘米,高6厘米的长方体,这个长方体的表面积是()。
8、甲、乙、丙三个数的平均数是10,甲、乙的平均数为11,乙、丙之和为19,甲数是()。
9、在1、2、3、4、……399、400中,数字2共出现了()次。
10、一座铁路桥全长1200米,一列火车开过大桥需要75秒,火车开过路旁的电线杆只需15秒,那么火车全长()米。
(3)0.5×〔20-(4.5- ÷25%)〕(4) ( + )×7-21÷13
四、列综合算式或方程解答。
1、 与 的差乘 的倒数,再加上 ,结果是多少?
2、一个数的 比这个数的75%少36,这个数是多少?
五、解方程。
1、(2 -1.6)÷0.2=20.5 2、 -2= ( +18)
六、解决问题。
1、在四年级期末检测中,一班45人,人平88分,二班46人,人平86分,三班44人,人平刚好等于全年级的人平分,求全年级的人平分是多少?(得数保留整数。)

苏教版小学六年级数学奥数竞赛试卷及答案图文百度文库 (3)

苏教版小学六年级数学奥数竞赛试卷及答案图文百度文库 (3)

一、拓展提优试题1.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.2.(15分)二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:那么,将二进制数 11111011111 转化为十进制数,是多少?3.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.4.从12点整开始,至少经过分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).5.如图,一个长方形的长和宽的比是5:3.如果长方形的长减少5厘米,宽增加3厘米,那么这个长方形边长一个正方形.原长方形的面积是平方厘米.6.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.7.如图,一个底面直径是10厘米的圆柱形容器装满水.先将一个底面直径是8厘米的圆锥形铁块放入容器中,铁块全部浸入水中,再将铁块取出,这时水面的高度下降了3.2厘米.圆锥形铁块的高厘米.8.用1024个棱长是1的小正方体组成体积是1024的一个长方体.将这个长方体的六个面都涂上颜色,则六个面都没有涂色的小正方体最多有个.9.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?10.小红买1支钢笔和3个笔记本共用了36.45元,其中每个笔记本售价的与每支钢笔的售价相等,则1支钢笔的售价是元.11.某日是台风天气,雨一直均匀地下着,在雨地里放一个如图1所示的长方体容器,此容器装满雨水需要1小时.请问:雨水要下满如图2所示的三个不同的容器,各需要多长时间?12.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是平方厘米.13.张强晚上六点多外出锻炼身体,此时时针与分针的夹角是110°;回家时还未到七点,此时时针与分针的夹角仍是110°,则张强外出锻炼身体用了分钟.14.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是.15.若(n是大于0的自然数),则满足题意的n的值最小是.16.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码).那么,这本书原来有页.17.已知两位数与的比是5:6,则=.18.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于.19.某项工程,开始由6人用35天完成了全部工程的,此后,增加了6人一起来完成这项工程.则完成这项工程共用天.20.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.21.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.22.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是数(填“奇”或“偶”).23.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是.24.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.25.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.26.小红整理零钱包时发现,包中有面值为1分,2分,5分的硬币共有25枚,总值为0.60元,则5分的硬币最多有枚.27.如图,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是.28.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备面旗子.29.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.30.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具,店的售价更便宜,便宜元.31.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2=cm2(圆周率π取3).32.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.33.小强和小林共有邮票400多张,如果小强给小林一些邮票,小强的邮票就比小林的少;如果小林给小强同样多的邮票,则小林的邮票就比小强的少,那么,小强原有227张邮票,小林原有张邮票.34.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.35.已知自然数N的个位数字是0,且有8个约数,则N最小是.36.李华在买某一商品的时候,将单价中的某一数字“7”错看成了“1”,准备付款189元,实际应付147元,已知商品的单价及购买的数量都是整数,则这种商品的实际单价是元,李华共买了件.37.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.38.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是立方分米.39.如图是甲乙丙三人单独完成某项工程所需天数的统计图,根据图中信息计算,若甲先做2天,接着乙丙两人合作了4天,最后余下的工程由丙1人完成,则完成这项工程共用天.40.22012的个位数字是.(其中,2n表示n个2相乘)【参考答案】一、拓展提优试题1.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.2.解:(11111011111)2=1×210+1×29+1×28+1×27+1×26+0×25+1×24+1×23+1×22+1×21+1×20=1024+512+256+128+64+0+16+8+4+2+1=(2015)10答:是2015.3.解:==,答:这三个分数中最大的一个是.故答案为:.4.解:设所走的时间为x小时.30x=360﹣360x3x+360x=360﹣30x+360390x=360x=小时=55分钟.故答案为:55.5.解:先求出一份的长:(5+3)÷(5﹣3)=8÷2=4(厘米)长是:4×5=20(厘米)宽是:4×3=12(厘米)原来的面积是:20×12=240(平方厘米);答:原来长方形的面积是240平方厘米.故答案为:240.6.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.7.解:圆锥形铁块的体积是:3.14×(10÷2)2×3.2=3.14×25×3.2=251.2(cm3)铁块的高是:251.2×3÷[3.14×()2]=251.2×3÷50.24=15(cm)答:铁块的高是15cm.8.解:因为1024=210=8×8×16(8﹣2)×(8﹣2)×(16﹣2)=6×6×14=504答:六个面都没有涂色的小正方体最多有504个.故答案为:504.9.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.10.解:36.45÷(3+)=36.45=5.45.4×=20.25(元)答:1支钢笔的售价是 20.25元.故答案为:20.25.11.解:图1所示的长方体容器的容积:10×10×30=3000(立方厘米)接水口的面积为:10×30=300(平方厘米)接水口每平方厘米每小时可接水:3000÷300÷1=10(立方厘米)所以,图①需要:10×10×30÷(10×10×10)=3(小时)图②需要:(10×10×20+10×10×10)÷(10×10×20)=1.5(小时)图③需要:2÷2=1(厘米)3.14×1×1×20÷(3.14×1×10)=2(小时)答:容器①需要3小时,容器②需要1.5小时,容器③需要2小时.12.解:10=80(平方厘米)答:兔子图形的面积是80平方厘米.故答案为:80.13.解:依题意可知:分针开始落后时针共格;后来分针领先格,路程差为格.锻炼身体的时间为:=40(分);故答案为:40.14.解:设这个数是a,[(a+5)×2﹣4]÷2﹣a=[2a+6]÷2﹣a=a+3﹣a=3,故答案为:3.15.解:当n=1时,不等式左边等于,小于,不能满足题意;当n=2时,不等式左边等于+==,小于,不能满足题意;同理,当n=3时,不等式左边大于,能满足题意;所以满足题意的n的值最小是3.故答案是:316.解:设这本书的页码是从1到n的自然数,正确的和应该是1+2+…+n=n(n+1),由题意可知,n(n+1)>4979,由估算,当n=100,n(n+1)=×100×101=5050,所以这本书有100页.答:这本书共有100页.故答案为:100.17.解:因为(10a+b):(10b+a)=5:6,所以(10a+b)×6=(10b+a)×560a+6b=50b+5a所以55a=44b则a=b,所以b只能为5,则a=4.所以=45.故答案为:45.18.解:如图,设D的面积为x,9:12=15:x9x=12×15x=x=20答:第4个角上的小长方形的面积等于20.故答案为:20.19.解:总工作量看做单位“1”.剩余工作量为1﹣=,一个人的工作效率为÷6÷35,(1﹣)÷[÷6÷35×(6+6)]=÷(÷6÷35×12)=÷=35(天)35+35=70(天)答:完成这项工程共用70天.故答案为:70.20.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.21.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.22.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;所以一个学生得分是:25+3x+y﹣z,=25+3x+y﹣(20﹣x﹣y),=5+4x+2y;4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;2013个奇数相加的和仍是奇数.所以所有参赛学生得分的总和是奇数.故答案为:奇.23.解:长方体的高是:56÷4÷(1+2+4),=14÷7,=2,宽是:2×2=4,长是:4×2=8,体积是:8×4×2=64,答:这个长方体的体积是64.故答案为:64.24.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.25.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.26.解:因为0.60元=60分,设1分,2分,5分的硬币各有x枚、y枚和z枚,则有x+y+z=25,x+2y+5z=60,把上面的两个式子相减得出y+4z=35,要使5分的硬币最大,即Z最大,y最小,因为35是奇数,所以y必须是奇数,当y=1时,z的值不是整数,当y=3时,z=8,所以z=8;答:5分的硬币最多有8枚;故答案为:8.27.解:由图可知,阴影部分的面积是图中最大圆面积的,非阴影部分的面积是图中最大圆面积的,所以图中阴影部分面积与非阴影部分面积之比是::=1:3;答:图中阴影部分面积与非阴影部分面积之比是1:3.故答案为:1:3.28.解:400和90的最小公倍数是3600,则3600÷90=40(面).答:小明要准备40面旗子.故答案为:40.29.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.30.解:甲商店:25×(1+10%)×(1﹣20%),=25×110%×80%,=27.5×0.8,=22(元);乙商店:25×(1﹣10%),=25×90%,=22.5(元);22.5﹣22=0.5(元);答:甲商店便宜,便宜了0.5元.故答案为:甲,0.5.31.解:3×(16÷2)2﹣122=192﹣144,=48(平方厘米);答:S1﹣S2=48cm2.故答案为:48.32.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.33.解:(1﹣):1=13:19,13+19=32;1:(1﹣)=17:11,17+11=28,32与28的最小公倍数是224,小强和小林共有邮票400多张,所以共有224×2=448张,448÷32×13=182,448÷28×17=272.小强:(182+272)÷2=227张小林:448﹣227=221.故答案为:227,221.34.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.35.解:自然数N的个位数字是0,它一定有质因数5和2,要使N最小,5的个数应最少为1个,而求其它因数最好都是2和3,并且2的个数不能超过2个,其它最好都是3;设这个自然数N=21×51×3a,根据约数和定理,可得:(a+1)×(1+1)×(1+1)=8,(a+1)×2×2=8,a=1;所以,N最小是:2×3×5=30;答:N最小是30.故答案为:30.36.解:189=3×3×3×7=27×7147=3×7×7=21×7正好是27×7=189中把27看成21×7=147所以这种商品的实际单价是21元,卖了7件.故答案为:21,7.37.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.38.解:25.7÷(1+1+3)=25.7÷5=5.14(立方分米)5.14×3=15.42(立方分米)答:圆柱形铁块的体积是15.42立方分米.故答案为:15.42.39.解:依题意可知:甲乙丙的工作效率分别为:,,;甲乙工作总量为:×2+×4=;丙的工作天数为:(1﹣)=3(天);共工作2+4+3=9故答案为:940.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.。

六年级奥数集训班测试题

六年级奥数集训班测试题

六年级奥数强化训练测试题(1)1.一列数,前两个数都为1,从第三个数开始,每个数都是前两个数的和,即1,1,2,3,5,8…… 到第2000个数为止,共排出列出( )个奇数2.将一个底面周长为20厘米的圆柱形木块沿底面直径竖着剖分成相同的两块,表面积增加了100平方厘米,这个圆柱形木块的体积是( )立方厘米3.在下面的乘法竖式中,每个汉字代表0~9中的不同数字,当竖式成立时,“我爱中华”四个汉字组成的四位数是( )我 爱 中 华 D× 我 爱 中 华4.右上图正方形ABCD 的边长是4cm,DE 长4.5cm,AF 垂直DE ,则AF 的长度是( )cm5.一个八位数,它除以3余1,除以4余2,除以11恰好整除,已知这个八位数的前6位是257633,那么它的后两位数字是( )6.把一个长方形的游泳池用1:500的比例尺画在纸上,量得这个游泳池的周长是34厘米,并且长是宽的522倍,这个游泳池的实际面积是( )2cm7.小明的图书馆有58本不是故事书,有42本不是科技书。

已知小明的故事书和科技书共有60本,小明的科技书共有( )本。

8.甲,乙二人分别从A ,B 两地同时相对出发,相遇后,甲继续向B 地走,乙马上返回B 地走。

甲从A 地到过B 地,比乙返回B 地迟0.5小时。

已知甲的速度是乙的0.75倍,甲从A 地到达B 地用了共用( ) 小时。

9.青竹湖一中购进一批小免和小狗玩具,共80只,已销售出小免只数的51与小狗只数的32共30只,购进的小免的只数与小狗只数之比( )10.南海中学学生运动会上,前入前三名的有10人次,已知获得第一名可得9分,获得第二名可得5分,获得第三名可得2分,其它名次不计分,该班共计得61分,其中获得第一名至多有( )人次。

11.一项工程,若单独干,甲比乙提前5天完成。

如果两人合干,那么6天就能定成。

甲单独干,要( )天完成。

12.六年二班用120元钱买了笔记本,圆珠笔,铅笔共计55件,作为班级联欢会的记念品。

六年级奥数行程问题之发车问题练习题【三篇】

六年级奥数行程问题之发车问题练习题【三篇】

六年级奥数行程问题之发车问题练习题【三
篇】
导读:本文六年级奥数行程问题之发车问题练习题【三篇】,仅供参考,如果觉得很不错,欢迎点评和分享。

【第一篇】【第二篇】【第三篇】【例1】A、B 是公共汽车的两个车站,从A站到B站是上坡路。

每天上午8点到11点从A,B两站每隔30分同时相向发出一辆公共汽车。

已知从A 站到B站单程需105分,从B站到A站单程需80分。

问:(1)8:30、9:00从A站发车的司机分别能看到几辆从B站开来的汽车?
(2)从A站发车的司机最少能看到几辆从B站开来的汽车?
【例2】(奥数网精选试题)某人以匀速行走在一条公路上,公路的前后两端每隔相同的时间发一辆公共汽车.他发现每隔15分钟有一辆公共汽车追上他;每隔10分钟有一辆公共汽车迎面驶来擦身而过.问公共汽车每隔多少分钟发车一辆?
【例3】小强骑自行车从家赶往体育场去看比赛,一路上不断有公交车经过,小强注意到每10分钟就有一辆公交车从对面驶来,每30分钟就有一辆公交车从后边超过小强,半路上小强的自行车坏了,他只能以原来三分之一的速度往体育场赶,已知公交车的速度固定,且发车时间间隔相同,那么这时候他每隔多少分钟被后面驶来的公交车赶上?
【例4】(人大附中人学测试题)一条公路上,有一个骑车人和一个步行人,骑车人速度是步行人速度的3倍,每隔6分钟有一辆公共汽车超过步行人,每隔10分钟有一辆公共汽车超过骑车人,如果公共汽车始发站发车的时间间隔保持不变,那么间隔几分钟发一辆公共汽车?。

六年级奥数题及答案

六年级奥数题及答案

六年级奥数题及答案题目1某音乐会上,参加演出的有4个合唱团,如果其中2个合唱团属于小学生合唱团,2个合唱团属于中学生合唱团。

小学生合唱团有5个不同的节目,中学生合唱团有6个不同的节目。

现在打乱了合唱团的次序,从这个次序中选出演出节目,一次不重复地选出7个节目。

问有多少种选法?解答:首先需要从中学生合唱团的6个节目中选择4个,然后从小学生合唱团的5个节目中选择3个。

根据组合数的计算公式(组合数公式:C(n, m)=n!/[m!(n-m)!]),可以得出:C(6, 4)表示从中学生合唱团的6个节目中选择4个的方案数;C(5, 3)表示从小学生合唱团的5个节目中选择3个的方案数。

可以将题目分解为两个步骤的乘积来计算方案数:C(6, 4) × C(5, 3) = (6!/(4!(6-4)!) × 5!/(3!(5-3)!)) = (6 × 5 ×4!/(4! × 2!)) × (5 × 4 × 3!/(3! × 2!))化简后得到:(6 × 5) × (5 × 4) = 30 × 20 = 600所以,选出7个节目的方式一共有600种。

题目2小明手上有2个硬币和4个甲板。

他要将这些牌全部洗均匀,然后从中任意抽出3个牌,并按抽牌的顺序排列。

问一共有多少种不同的结果?解答:首先,将两个硬币看作一样的牌,总共有6个牌。

然后,需要从这6个牌中选择3个,按照抽牌的顺序排列。

可以使用排列组合的计算公式(排列计算公式:A(n,m)=n!/(n-m)!)来解答问题。

所以,需要计算A(6, 3):A(6, 3) = 6!/(6-3)!= 6!/(3!)= 6 × 5 × 4 = 120所以,一共有120种不同的结果。

题目3在一个数字方阵中,从左上角开始,每一步可以向右或向下移动一格,直到到达右下角的终点。

最新小学六年级奥数精选例题加习题编排(3)

最新小学六年级奥数精选例题加习题编排(3)

(★★) (小数报数学竞赛)某运输队运一批大米,第一天运走总数的 15多 60 袋,第二天运走总数的 14少 60 袋,还剩下220 袋没有运走,这批大米原来一共有多少袋?(★★★)甲乙二人欲买一件商品,按照标价,甲带的钱差 40 元,乙带的钱少 1。

经过讨价最后可以4按 9 折购买,于是他们合买了一件,结果剩下 28 元。

这件商品标价为多少元?(★★★★) (2008 年 101 中学试题)北京中学生运动会男女运动员比例为 19∶12,组委会决定增加女子艺术体操项目,这样男女运动员比例变为 20∶13;后来又决定增加男子象棋项目,男女比例变为 30∶19,已知男子象棋项目运动员比女子艺术体操运动员多 15 人,则现在总运动员人数为多少?小升初应用题重点考查内容——分数、比例应用题如图所示,B 与C 的面积之和等于A面积的4,且A 中的阴影部分面积占A 面积的1,B的阴影部分面积占B 面积的155,C 的阴影部分面积占C 面积的1。

求36A、B、C 的面积之比。

(★★★★)秀情倒满一杯纯牛奶,第一次喝了13 1,然后加入纯净水,将杯子斟满并搅拌均匀,第二次,又喝了,继续用纯净水斟满并搅拌均匀,重复上述过程,那么第4 次,秀情喝的纯牛奶占3秀情喝的所有牛奶的几分之几?(★★★★) (2008 年湖北省“创新杯”六年级二试)甲乙两种商品成本共200 元。

商品甲按30%的利润定价,商品乙按20%的利润定价。

后来两种商品都按定价的九折销售,结果仍获得利润27.7 元。

问甲种商品的成本是多少元?(★★★★)温馨提示:请在线作答,以便及时反馈孩子的薄弱环节。

1.孙悟空给小猴分桃子,第一天分了全部的2,第二天分了剩下的1 5 3分20 个桃子,那么孙悟空分的桃子一共有( )个。

,第二天比第一天少A.50 B.100 C.150 D.2002.叮叮和铛铛两个人一共有48 个苹果,叮叮又买来12 个苹果,铛铛又买来自己苹果的1 ,7此时他们的苹果数相同,那么原来叮叮有( )个苹果。

六年级下册数学试题-小学毕业升学考试挑战奥数题测试卷(三)无答案人教版

六年级下册数学试题-小学毕业升学考试挑战奥数题测试卷(三)无答案人教版

小学毕业升学考试挑战奥数题测试卷(三)1 、红花映绿叶×夏=叶绿映花红,“红、花、映、绿、叶、夏”分别为数字()。

A.4、1、9、6、8、3B.2、1、9、7、3、4C.2、1、9、7、8、4D.1、2、9、8、7、32 、汽车牌照一般有固定格式,例如:沪A12345,沪代表一个省或自治区直辖市的简称,A代表26个字母中的其中一个,12345代表10个数字中的5个。

问:假如一个省或自治区或直辖市只能用一个简称,按上述构成,可以形成()个不同的牌照。

A.24373440B.25159680C.80600000D.832000003 、某考试均为判断题,共10题,每题10分,满分为100分。

考生答题时认为正确则画为“O”。

认为不正确则画“×”。

以下是考生的答题情况及甲、乙、丙的实际得分,则丁的得分为()。

A.20分B.40分C.60分D.80分4 、一次面试,试卷共有6道题。

50个面试者回答后,答对的共有202人次。

已知每人至少答对2题,答对2题的5人,答对4题的9人,答对3题和5题的人数同样多。

则答对6题的人有()个。

A.5B.6C.7D.85 、已知A股票上涨了0.16元,相当于该股票原价的16%,B股票上涨1.68元,也相当于原价的16%,则两种股票原价相差()。

B.9.5元C.10元D.10.5元6 、1898年4月1日,星期五,三只新时钟被调到相同的时间:中午12点。

第二天中午,发现A钟的时间完全准确,B钟正好快了1分钟,C钟正好慢了1分钟。

现在假设三个钟都没有被调,它们保持着各自的速度继续走而且没有停。

那么到(),三只时钟的时针分针会再次都指向12点。

A.1900年3月20日正午12点B.1900年3月21日正午12点C.1900年3月22日正午12点D.1900年3月23日正午12点7 、2010年2月15日后第80天的日期是:A.5月5日B.5月6日C.5月3日D.5月4日8 、把自然数A的十位数、百位数和千位数相加,再乘以个位数字,将所得积的个位数字续写在A的末尾,成为对A的一次操作。

小学奥数计数专题--组合(六年级)竞赛测试.doc

小学奥数计数专题--组合(六年级)竞赛测试.doc

小学奥数计数专题--组合(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx 题xx 题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx 分)【题文】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成个小组,每组人,分别进行单循环赛;第三阶段:由4个小组产生的个第名进行场半决赛和场决赛,确定至名的名次.问:整个赛程一共需要进行多少场比赛?【答案】148【解析】第一阶段中,每个小组内部的个人每人要赛一场,组内赛场,共个小组,有场;第二阶段中,每个小组内部人中每人赛一场,组内赛场,共个小组,有场;第三阶段赛场.根据加法原理,整个赛程一共有场比赛。

【题文】由数字1,2,3组成五位数,要求这五位数中1,2,3至少各出现一次,那么这样的五位数共有________个。

【答案】150【解析】这是一道组合计数问题.由于题目中仅要求,,至少各出现一次,没有确定,,出现的具体次数,所以可以采取分类枚举的方法进行统计,也可以从反面想,从由组成的五位数中,去掉仅有个或个数字组成的五位数即可.(法1)分两类:⑴,,中恰有一个数字出现次,这样的数有(个);⑵,,中有两个数字各出现次,这样的数有(个).符合题意的五位数共有(个).(法2)从反面想,由,,组成的五位数共有个,由,,中的某个数字组成的五位数共有个,由,,中的某个数字组成的五位数共有个,所以符合题意的五位数共有(个)。

【题文】个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?【答案】35【解析】(法1)乘法原理.按题意,分别站在每个人的立场上,当自己被选中后,另一个被选中的,可以是除了自己和左右相邻的两人之外的所有人,每个人都有种选择,总共就有种选择,但是需要注意的是,选择的过程中,会出现“选了甲、乙,选了乙、甲”这样的情况本来是同一种选择,而却算作了两种,所以最后的结果应该是()(种).(法2)排除法.可以从所有的两人组合中排除掉相邻的情况,总的组合数为,而被选的两个人相邻的情况有种,所以共有(种)。

小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试.doc

小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试.doc

小学奥数几何专题--复杂直线型面积-3(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】图中两个正方形的边长分别是6厘米和4厘米,则图中阴影部分三角形的面积是多少平方厘米.【答案】8【解析】.【题文】如图,有三个正方形的顶点、、恰好在同一条直线上,其中正方形的边长为10厘米,求阴影部分的面积.【答案】100【解析】评卷人得分对于这种几个正方形并排放在一起的图形,一般可以连接正方形同方向的对角线,连得的这些对角线互相都是平行的,从而可以利用面积比例模型进行面积的转化.如右图所示,连接、、,则,根据几何五大模型中的面积比例模型,可得,,所以阴影部分的面积就等于正方形的面积,即为平方厘米.【题文】图是由大、小两个正方形组成的,小正方形的边长是厘米,求三角形的面积.【答案】8【解析】这道题似乎缺少大正方形的边长这个条件,实际上本题的结果与大正方形的边长没关系.连接(见右上图),可以看出,三角形与三角形的底都等于小正方形的边长,高都等于大正方形的边长,所以面积相等.因为三角形是三角形与三角形的公共部分,所以去掉这个公共部分,根据差不变性质,剩下的两个部分,即三角形与三角形面积仍然相等.根据等量代换,求三角形的面积等于求三角形的面积,等于.【题文】如图,与均为正方形,三角形的面积为6平方厘米,图中阴影部分的面积为多少.【答案】6【解析】如图,连接,比较与,由于,,即与的底与高分别相等,所以与的面积相等,那么阴影部分面积与的面积相等,为6平方厘米.【题文】正方形ABCD和正方形CEFG,且正方形ABCD边长为10厘米,则图中阴影面积为多少平方厘米?【答案】50【解析】方法一:三角形BEF的面积,梯形EFDC的面积三角形BEF的面积,而四边形CEFH是它们的公共部分,所以,三角形DHF的面积三角形BCH的面积,进而可得,阴影面积三角形BDF的面积三角形BCD的面积(平方厘米).方法二:连接CF,那么CF平行BD ,所以,阴影面积三角形BDF的面积三角形BCD的面积(平方厘米).【题文】已知正方形边长为10,正方形边长为6,求阴影部分的面积.【答案】20【解析】如果注意到为一个正方形的对角线(或者说一个等腰直角三角形的斜边),那么容易想到与是平行的.所以可以连接、,如上图.由于与平行,所以的面积与的面积相等.而的面积为,所以的面积也为20.【题文】图中,和是两个正方形,和相交于,已知等于的三分之一,三角形的面积等于6平方厘米,求五边形的面积.【答案】49.5【解析】连接、,由于与平行,可知四边形构成一个梯形.由于面积为6平方厘米,且等于的三分之一,所以等于的,根据梯形蝴蝶定理或相似三角形性质,可知的面积为12平方厘米,的面积为6平方厘米,的面积为3平方厘米.那么正方形的面积为平方厘米,所以其边长为6厘米.又的面积为平方厘米,所以(厘米),即正方形的边长为3厘米.那么,五边形的面积为:(平方厘米).【题文】如下图,、分别是梯形的下底和腰上的点,,并且甲、乙、丙个三角形面积相等.已知梯形的面积是平方厘米.求图中阴影部分的面积.【答案】12.8【解析】因为乙、丙两个三角形面积相等,底.所以到的距离与到的距离相等,即与平行,四边形是平行四边形,阴影部分的面积平行四边形的面积的,所以阴影部分的面积乙的面积.设甲、乙、丙的面积分别为份,则阴影面积为份,梯形的面积为份,从而阴影部分的面积(平方厘米).【题文】如图,已知长方形的面积,三角形的面积是,三角形的面积是,那么三角形的面积是多少?【答案】6.5【解析】方法一:连接对角线.∵是长方形∴∴,∴,∴∴.方法二:连接,由图知,所以,又由,恰好是面积的一半,所以是的中点,因此,所以【题文】如图,在平行四边形中,,.求阴影面积与空白面积的比.【答案】1:2【解析】方法一:因为,,所以,.因为,所以,所以,.同理可得,,.因为,所以空白部分的面积,所以阴影部分的面积是.,所以阴影面积与空白面积的比是.【题文】如图所示,三角形中,是边的中点,是边上的一点,且,为与的交点.若的面积为平方厘米,的面积为平方厘米.且是平方厘米,那么三角形的面积是多少平方厘米.【答案】10【解析】,,所以(平方厘米).所以(平方厘米).【题文】如图,在梯形中,,,且的面积比的面积小10平方厘米.梯形的面积是多少平方厘米?【答案】115【解析】根据题意可知,则,,而平方厘米,所以,则平方厘米.又,所以平方厘米.所以(平方厘米).【题文】如图,是梯形的一条对角线,线段与平行,与相交于点.已知三角形的面积比三角形的面积大平方米,并且.求梯形的面积.【答案】28【解析】连接.根据差不变原理可知三角形的面积比三角形大4平方米,而三角形与三角形面积相等,因此也与三角形面积相等,从而三角形的面积比三角形的大4平方米.但,所以三角形的面积是三角形的,从而三角形的面积是(平方米),梯形的面积为:(平方米).【题文】如右图所示,在长方形内画出一些直线,已知边上有三块面积分别是,,.那么图中阴影部分的面积是多少?【答案】97【解析】三角形的面积三角形的面积长方形面积阴影部分面积;又因为三角形的面积三角形的面积长方形面积,所以可得:阴影部分面积.【题文】图中是一个各条边分别为5厘米、12厘米、13厘米的直角三角形.将它的短直角边对折到斜边上去与斜边相重合,那么图中的阴影部分(即未被盖住的部分)的面积是多少平方厘米?【答案】【解析】如下图,为了方便说明,将某些点标上字母.有为直角,而,所以也为直角.而.与同高,所以面积比为底的比,及===,设的面积为“8”,则的面积为“5”.是由折叠而成,所以有、面积相等,是由、、组成,所以=“8”+“5”+“5”=“18”对应为,所以“1”份对应为,那么△ADE的面积为=平方厘米.即阴影部分的面积为平方厘米.【题文】如图,长方形的面积是2平方厘米,,是的中点.阴影部分的面积是多少平方厘米?【答案】平方厘米【解析】如下图,连接,、的面积相等,设为平方厘米;、的面积相等,设为平方厘米,那么的面积为平方厘米.,.所以有.比较②、①式,②式左边比①式左边多,②式右边比①式右边大0.5,有,即,.而阴影部分面积为平方厘米.【题文】如图,三角形田地中有两条小路和,交叉处为,张大伯常走这两条小路,他知道,且.则两块地和的面积比是多少【答案】1:2【解析】方法一:连接.设的面积为1,的面积,则根据题上说给出的条件,由得,即的面积为、;又有,、,而;得,所以.方法二:连接,设(份),则,设则有,解得,所以方法三:过点作∥交于点,由相似得,又因为,所以,所以两块田地ACF和CFB的面积比【题文】如图,,,被分成个面积相等的小三角形,那么|【答案】24【解析】由题意可知,,所以,;又,所以,同样分析可得,所以.【题文】如图,在角的两边上分别有、、及、、六个点,并且、、、、的面积都等于1,则的面积等于.【答案】【解析】根据题意可知,,所以,.【题文】、分别为直角梯形两边上的点,且、、彼此平行,若,,,.求阴影部分的面积.【答案】25【解析】连接、.由于、、彼此平行,所以四边形是梯形,且与该梯形的两个底平行,那么三角形与、三角形与的面积分别相等,所以三角形的面积与三角形的面积相等.而三角形的面积根据已知条件很容易求出来.由于为直角梯形,且,,,,所以三角形的面积的面积为:.所以三角形的面积为25.【题文】已知为等边三角形,面积为400,、、分别为三边的中点,已知甲、乙、丙面积和为143,求阴影五边形的面积.(丙是三角形)【答案】43【解析】因为、、分别为三边的中点,所以、、是三角形的中位线,也就与对应的边平行,根据面积比例模型,三角形和三角形的面积都等于三角形的一半,即为200.根据图形的容斥关系,有,即,所以.又,所以.【题文】如图,已知,,,,线段将图形分成两部分,左边部分面积是38,右边部分面积是65,求三角形的面积.【答案】40【解析】连接,.根据题意可知,;;所以,,,,,于是:;;可得.故三角形的面积是40.【题文】如图,点、、在线段上,已知厘米,厘米,厘米,厘米,将整个图形分成上下两部分,下边部分面积是平方厘米,上边部分面积是平方厘米,则三角形的面积是多少平方厘米?【答案】128【解析】连接设的面积是,由于所以的面积是、的面积是由于上半部分的面积是平方厘米所以的面积是()平方厘米,因为下半部分的面积是平方厘米所以的面积是()平方厘米,因为是的2倍所以可以列方程为:()解得,的面积为平方厘米.【题文】如图,正方形的边长为10,四边形的面积为5,那么阴影部分的面积是多少【答案】40【解析】如图所示,设上的两个点分别为、.连接.根据面积比例模型,与的面积是相等的,那么与的面积之和,等于与的面积之和,即等于的面积.而的面积为正方形面积的一半,为.又与的面积之和与阴影部分的面积相比较,多了2个四边形的面积,所以阴影部分的面积为:.【题文】如图,正方形的边长为12,阴影部分的面积为60,那么四边形的面积是多少【答案】6【解析】如图所示,设上的两个点分别为、.连接.根据面积比例模型,与的面积是相等的,那么与的面积之和,等于与的面积之和,即等于的面积.而的面积为正方形面积的一半,为.又与的面积之和与阴影部分的面积相比较,多了2个四边形的面积,所以四边形的面积为:.【题文】如图所示,长方形内的阴影部分的面积之和为70,,,四边形的面积为多少?【答案】10【解析】利用图形中的包含关系可以先求出三角形、和四边形的面积之和,以及三角形和的面积之和,进而求出四边形的面积.由于长方形的面积为,所以三角形的面积为,所以三角形和的面积之和为;又三角形、和四边形的面积之和为,所以四边形的面积为.另解:从整体上来看,四边形的面积三角形面积三角形面积白色部分的面积,而三角形面积三角形面积为长方形面积的一半,即60,白色部分的面积等于长方形面积减去阴影部分的面积,即,所以四边形的面积为.【题文】如图所示,矩形的面积为24平方厘米.三角形与三角形的面积之和为平方厘米,则四边形的面积是多少平方厘米?【答案】1.8【解析】因为三角形与三角形的面积之和是矩形的面积的一半,即12平方厘米,又三角形与三角形的面积之和为平方厘米,则三角形与三角形的面积之和是平方厘米,则四边形的面积三角形面积三角形与三角形的面积之和三角形面积(平方厘米).【题文】如图所示,矩形的面积为36平方厘米,四边形的面积是3平方厘米,则阴影部分的面积是多少平方厘米?【答案】12【解析】因为三角形面积为矩形的面积的一半,即18平方厘米,三角形面积为矩形的面积的,即9平方厘米,又四边形的面积为3平方厘米,所以三角形与三角形的面积之和是平方厘米.又三角形与三角形的面积之和是矩形的面积的一半,即18平方厘米,所以阴影部分面积为(平方厘米).【题文】如图,长方形的面积是36,是的三等分点,,则阴影部分的面积为多少?【答案】2.7【解析】如图,连接.根据蝴蝶定理,,所以;,所以.又,,所以阴影部分面积为:.【题文】如图,如果长方形的面积是平方厘米,那么四边形的面积是多少平方厘米?【答案】32.5【解析】如图,过、、、分别作长方形的各边的平行线.易知交成中间的阴影正方形的边长为厘米,面积等于平方厘米.设、、、的面积之和为,四边形的面积等于,则,解得(平方厘米).【题文】如图,阴影部分四边形的外接图形是边长为的正方形,则阴影部分四边形的面积是().【答案】48【解析】如图所示,分别过阴影四边形的四个顶点作正方形各边的平行线,相交得长方形,易知长方形的面积为平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于、、、四个长方形的面积之和,等于正方形的面积加上长方形的面积,为平方厘米,所以四个空白三角形的面积之和为平方厘米,那么阴影四边形的面积为平方厘米.【题文】如图,阴影部分四边形的外接图形是边长为厘米的正方形,则阴影部分四边形的面积是多少平方厘米?【答案】68【解析】如图所示,分别过阴影四边形的四个顶点作正方形各边的平行线,相交得长方形,易知长方形的面积为平方厘米.从图中可以看出,原图中四个空白三角形的面积之和的2倍,等于、、、四个长方形的面积之和,等于正方形的面积加上长方形的面积,为平方厘米,所以四个空白三角形的面积之和为平方厘米,那么阴影四边形的面积为平方厘米.【题文】已知正方形的边长为10,,,则?【答案】53【解析】如图,作于,于.则四边形分为4个直角三角形和中间的一个长方形,其中的4个直角三角形分别与四边形周围的4个三角形相等,所以它们的面积和相等,而中间的小长方形的面积为,所以.【题文】如图,三角形的面积是,、的长度分别为11、3.求长方形的面积.【答案】67【解析】如图,过作∥,过作∥,、交于,连接.则另解:设三角形、、的面积之和为,则正方形的面积为.从图中可以看出,三角形、、的面积之和的2倍,等于正方形的面积与长方形的面积之和,即,得,所以正方形的面积为.【题文】如图,长方形中,,.、分别是边上的两点,.那么,三角形面积的最小值是多少?【答案】717【解析】由于长方形的面积是一定的,要使三角形面积最小,就必须使、、的面积之和最大.由于、、都是直角三角形,可以分别过、作、的平行线,可构成三个矩形、和,如图所示.容易知道这三个矩形的面积之和等于、、的面积之和的2倍,而这三个矩形的面积之和又等于长方形的面积加上长方形的面积.所以为使、、的面积之和最大,只需使长方形的面积最大.长方形的面积等于其长与宽的积,而其长,宽,由题知,根据”两个数的和一定,差越小,积越大”,所以当与的差为0,即与相等时它们的积最大,此时长方形的面积也最大,所以此时三角形面积最小.当与相等时,,此时三角形的面积为:.(也可根据得到三角形的面积)【题文】是边长为12的正方形,如图所示,是内部任意一点,、,那么阴影部分的面积是().【答案】34【解析】(法1)特殊点法.由于是内部任意一点,不妨设点与点重合(如上中图),那么阴影部分就是和.而的面积为,的面积为,所以阴影部分的面积为.(法2)寻找可以利用的条件,连接、、、可得右图所示:则有:同理可得:;而,即;同理:,,;所以:而;;所以阴影部分的面积是:即为:.【题文】如图所示,在四边形中,,,,分别是各边的中点,求阴影部分与四边形的面积之比.【答案】1【解析】(法1)设,,,.连接知,,,;所以;同理.于是;注意到这四个三角形重合的部分是四块阴影小三角形,没算的部分是四边形;因此四块阴影的面积和就等于四边形的面积.(法2)特殊值法(只用于填空题、选择题),将四边形画成正方形,很容易得到结果.【题文】如图,、、、分别是四边形各边的中点,与交于点,、、及分别表示四个小四边形的面积.试比较与的大小.【答案】【解析】如图,连接、、、,则可判断出,每条边与点所构成的三角形都被分为面积相等的两部分,且每个三角形中的两部分都分属于、这两个不同的组合,所以可知.【题文】如图,四边形中,,,,已知四边形的面积等于4,则四边形的面积是多少?【答案】【解析】运用三角形面积与底和高的关系解题.连接、、、,因为,,所以,在中,,在中,,在中,,在中,.因为,所以.又因为,所以.【题文】如图,对于任意四边形,通过各边三等分点的相应连线,得到中间四边形,求四边形的面积是四边形的几分之几?【答案】【解析】分层次来考虑:⑴如下左图,,,所以.又因为,,所以;.⑵如右上图,已知,;所以;所以,即是三等分点;同理,可知、、都是三等分点;所以再次应用⑴的结论,可知,.【题文】有正三角形,在边、、的正中间分别取点、、,在边、、上分别取点、、,使,当和、和、和的相交点分别是、、时,使.这时,三角形的面积是三角形的面积的几分之几?请写出思考过程.【答案】【解析】连接、、,显然,是正三角形将放大至如图⑵.连,由对称性知,.因此,.同理,.所以,.【题文】如图:已知在梯形中,上底是下底的,其中是边上任意一点,三角形、三角形、三角形的面积分别为、、.求三角形的面积.【答案】21【解析】如图,设上底为,下底为,三角形与三角形的高相差为.由于,所以.即.又,所以.【题文】如图,已知是梯形,∥,,,,求的面积.【答案】6【解析】本题是09年六年级试题,初看之下,是梯形这个条件似乎可以用到梯形蝴蝶定理,四边形内似乎也可以用到蝴蝶定理,然而经过试验可以发现这几个模型在这里都用不上,因为、这两个点的位置不明确.再看题目中的条件,,,这两个条件中的前一个可以根据差不变原理转化成与的面积差,则是与的面积差,两者都涉及到、以及有同一条底边的两个三角形,于是想到过、分别作梯形底边的平行线.如右图,分别过、作梯形底边的平行线,假设这两条直线之间的距离为.再过作的垂线.由于,所以,故.根据差不变原理,这个差等于与的面积之差.而与有一条公共的底边,两个三角形边上的高相差为,所以它们的面积差为,故.再看,它的面积等于是与的面积之差,这两个三角形也有一条公共的底边,边上的高也相差,所以这两个三角形的面积之差为,故.由于,所以,则,所以.【题文】如图,是一个四边形,、分别是、的中点.如果、与的面积分别是6、7和8,且图中所有三角形的面积均为整数,则四边形的面积为多少.【解析】连接、、.由于是的中点,所以与的面积相等,而比的面积大1,所以比的面积大1;又由于是的中点,所以的面积与的面积相等,那么的面积比的面积大1,所以的面积为9.假设的面积为,则的面积为.根据几何五大模型中的蝴蝶定理,可知的面积为,的面积为.要使这两个三角形的面积为整数,可以为1,3或7.由于的面积为面积的一半,的面积为面积的一半,所以与的面积之和为四边形面积的一半,所以与的面积之和等于四边形的面积,即:,得.将、3、7分别代入检验,只有时等式成立,所以{{10l连接,,,所以,设份,则份,平方厘米,所以份是平方厘米,份就是平方厘米,的面积是平方厘米.由此我们得到一个重要的定理,共角定理:共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.【题文】如图,三角形中,是的5倍,是的3倍,如果三角形的面积等于1,那么三角形的面积是多少?【答案】15连接.∵∴又∵∴,∴.。

小学奥数应用题专题--年龄问题(六年级)竞赛测试.doc

小学奥数应用题专题--年龄问题(六年级)竞赛测试.doc

小学奥数应用题专题--年龄问题(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx 题总分得分一、xx题(每空xx 分,共xx分)【题文】小卉今年6岁,妈妈今年36岁,再过6年,小卉读初中时,妈妈比小卉大多少岁?【答案】30岁【解析】这道题有两种解答方法:方法一:解答这道题,一般同学会想到,小卉今年6岁,再过6年(岁);妈妈今年36岁,再过6年是()岁,也就是42岁,那时,妈妈比小卉大(岁).列式:(岁)方法二:聪明的同学会想,虽然小卉和妈妈的岁数都在不断变大,但她们两人相差的岁数永远不变.今年妈妈比小卉大()岁,不管过多少年,妈妈比小卉都大这么多岁.通过比较第二种方法更简便.列式:(岁)答:再过6年,小卉读初中时,妈妈比小卉大30岁.【题文】小英比小明小3岁,今年他们的年龄和是老师年龄的一半,再过15年,他们的年龄和就等于老师的年龄,今年小英的年龄是多少岁?【答案】6岁【解析】经过15年,小英和小明的年龄和比老师多增加15岁,所以老师今年年龄的一半是15岁,即小英和小明今年的年龄和是15岁,小英今年的年龄是(15-3)÷2=6(岁).【题文】爸爸妈妈现在的年龄和是岁;五年后,爸爸比妈妈大岁.今年爸爸妈妈二人各多少岁?【答案】爸爸39岁,妈妈33岁【解析】五年后,爸爸比妈妈大岁,即爸妈的年龄差是岁.它是一个不变量.所以爸爸、妈妈现在的年龄差仍然是岁.这样原问题就归结成“已知爸爸、妈妈的年龄和是岁,他们的年龄差是岁,求二人各是几岁”的和差问题.爸爸的年龄:(岁)妈妈的年龄:(岁)【题文】今年小宁9岁,妈妈33岁,那么再过多少年小宁的岁数是妈妈岁数的一半?【答案】15年【解析】今年小宁比妈妈小(岁),那么小宁永远比妈妈小24岁.几年后小宁是妈妈岁数的一半时,即妈妈年龄是小宁的2倍时,妈妈仍比小宁大24岁.这是个差倍问题.以小宁的年龄作为1倍量,妈妈年龄是2倍量,所以妈妈比小宁大的岁数也是1倍量,即1倍量代表着24岁.所以小宁24岁时是妈评卷人得分妈年龄的一半,因此再过(年).【题文】6年前,母亲的年龄是儿子的5倍,6年后母子年龄和是78岁.问:母亲今年多少岁?【答案】51岁【解析】6年后母子年龄和是78岁,可以求出母子今年年龄和是78-6×2=66 (岁).6年前母子年龄和是66-6×2=54(岁).又根据6年前母子年龄和与母亲年龄是儿子的5倍,可以求出6年前母亲年龄,再求出母亲今年的年龄.母子今年年龄和: 78-6×2=66(岁),母子6年前年龄和: 66-6×2=54(岁),母亲6年前的年龄: 54÷ (5+1)×5=45(岁),母亲今年的年龄: 45+6=51(岁).【题文】小航的爸爸比妈妈大4岁,今年小航的父母年龄之和是小航的7倍,3年后小航的父母年龄之和是小航的6倍,那么小航的妈妈今年多少岁?【答案】40岁【解析】今年小航的父母年龄之和是小航的7倍,3年后小航的父母年龄之和刚好是小航的6倍,则小航今年的年龄与父母增加的年龄的和刚好是小航增加年龄的6倍.即“小航今年的年龄”,小航今年的年龄:(岁).小航父母今年的年龄和:(岁).小航的爸爸比妈妈大4岁,所以小航的妈妈今年的年龄:(岁).【题文】学校张老师和刘备、张飞、关羽三个学生,现在张老师的年龄刚好是这三个学生的年龄和;9年后,张老师年龄为刘备、张飞两个学生的年龄和;又3年后,张老师年龄为刘备、关羽两个学生的年龄和;再3年后,张老师年龄为张飞、关羽两个学生的年龄和.求现在各人的年龄.【答案】张老师36岁,刘备15岁,张飞12岁,关羽9岁【解析】张老师刘备张飞关羽,张老师刘备张飞,比较一下这两个条件,很快得到关羽的年龄是9岁;同理可以得到张飞是(岁),刘备是(岁),张老师是(岁).【题文】父亲与两个儿子的年龄和为84岁,12年后父亲的年龄正好等于两个儿子的年龄和,父亲现在多少岁?【答案】48岁【解析】三人现在的年龄和是84岁,12年后的年龄和是(岁),那时父亲(岁),父亲现在(岁).【题文】小明与爸爸的年龄和是53岁,小明年龄的4倍比爸爸的年龄多2岁,小明与爸爸的年龄相差几岁?【答案】31岁【解析】把小明的年龄看成是一份,那么爸爸的年龄是四份少2,根据和倍关系:小明的年龄是:(53+2)÷(4+1)=11(岁),爸爸的年龄是:53-11=42(岁),小明与爸爸的年龄差是:42-11=31(岁).【题文】一家三口人,三人年龄之和是72岁,妈妈和爸爸同岁,妈妈的年龄是孩子的4倍,三人各是多少岁?【答案】爸爸32岁,妈妈32岁,孩子8岁【解析】妈妈的年龄是孩子的4倍,爸爸和妈妈同岁,那么爸爸的年龄也是孩子的4倍,把孩子的年龄作为1倍数,已知三口人年龄和是72岁,那么孩子的年龄为:72÷(1+4+4)=8(岁),妈妈的年龄是:8×4=32(岁),爸爸和妈妈同岁为32岁.【题文】甲、乙、丙三人平均年龄为岁,若将甲的岁数增加,乙的岁数扩大倍,丙的岁数缩小倍,则三人岁数相等,丙的年龄为多少岁?【答案】76岁【解析】当遇关系复杂时,将条件分别列出,再进行解决。

小学六年级 奥数题及答案100道

小学六年级 奥数题及答案100道

小学六年级奥数竞赛100道测试题!附答案解析1、有28位小朋友排成一行.从左边开始数第10位是学豆,从右边开始数他是第几位?2、纽约时间是香港时间减13小时.你与一位在纽约的朋友约定,纽约时间4月1日晚上8时与他通电话,那么在香港你应几月几日几时给他打电话?3、鸡与兔共100只,鸡的腿数比兔的腿数少28条,问鸡与兔各有几只?4、请找出下面哪个图形与其他图形不一样.5、四个房间,每个房间里不少于2人,任何三个房间里的人数不少8人,这四个房间至少有多少人?6、在1998的约数(或因数)中有两位数,其中最大的是哪个数?7、英文测验,小明前三次平均分是88分,要想平均分达到90分,他第四次最少要得几分?8、相传古时候一位老人留在人间很多宝盒,里面装着世界上最宝贵的财富,但是并不是拥有宝盒都可以得到这笔财富,在宝盒的上面设置了密码,只有写出密码的人才会真正拥有这笔财富,聪明的你你能找出密码吗?9、将0, 1, 2, 3, 4, 5, 6, 7, 8, 9这十个数字中,选出六个填在下面方框中,使算式成立,一个方框填一个数字,各个方框数字不相同.□+□□=□□□问算式中的三位数最大是什么数?10、有一个号码是六位数,前四位是2857,后两位记不清,即2857□□但是我记得,它能被11和13整除,请你算出后两位数.11、观察图形的变化,想一想,按图形的变化规律,在带“?”的空格处应画什么样的图形?12、一个三位数的各位数字之和是17.其中十位数字比个位数字大1.如果把这个三位数的百位数字与个位数字对调,得到一个新的三位数,则新的三位数比原三位数大198,求原数.13、一个两位数,在它的前面写上3,所组成的三位数比原两位数的7倍多24,求原来的两位数.14、幼儿园的老师把一些画片分给A, B, C三个班,每人都能分到6张.如果只分给B班,每人能得15张,如果只分给C班,每人能得14张,问只分给A班,每人能得几张?15、两人做一种游戏:轮流报数,报出的数只能是1, 2, 3, 4, 5, 6, 7, 8.把两人报出的数连加起来,谁报数后,加起来的数是123,谁就获胜,让你先报,就一定会赢,那么你第一个数报几?16、四个小动物排座位,一开始,小鼠坐在第1号位子上,小猴坐在第2号,小兔坐在第3号,小猫坐在第4号.以后它们不停地交换位子,第一次上下两排交换.第二次是在第一次交换后左右两列交换,第三次再上下两排交换,第四次再左右两列交换…这样一直换下去.问:第五次交换位子后,小兔坐在第几号位子上?17、狗跑5步的时间马跑3步,马跑4步的距离狗跑7步,现在狗已跑出30米,马开始追它。

六年级数学(上)奥数思维拓展《列方程解应用题问题》测试题(含答案)

六年级数学(上)奥数思维拓展《列方程解应用题问题》测试题(含答案)

六年级数学(上)奥数思维拓展《列方程解应用题问题》测试题(含答案)一.选择题(共8小题)1.“学校图书馆有故事书420本,____。

科技书有多少本?”为了解决这个问题,小智补充了一条信息后,设科技书有x本,列出的方程是(1+)x=420。

小智补充的信息是()A.故事书比科技书少B.故事书比科技书多C.科技书比故事书多2.施工队修一座桥,原计划每天工作7小时,11天可以完成。

但因天气原因,按原计划工作6天后,每天只能工作5小时。

如果工作效率不变,求还需要多少天可以完成。

下面列式不正确的是()。

(如用方程解,设还需要x天可以完成。

)A.5x=11×7﹣6×7B.5×(6+x)=7×11C.[7×(11﹣6 )]÷5D.5x+6×7=11×73.水果店运进苹果150千克,比运进的梨的少24千克。

水果店运进梨多少千克。

解设运进梨x千克。

列出方程中,错误的是()A.x+24=150B.x﹣24=150C.x=150+24D.x﹣150=24 4.笑笑正在读一本故事书,第一周读了96页,还剩下这本书的没有读。

这本故事书一共有多少页?如果用方程解,设这本书共有x页,下面列式正确的是()A.x=96B.=96C.=965.某地区烛光晚餐中,设座位有x排,每排坐30人,则有8人无座位;每排坐31人,则空26个座位,则下列方程正确的是()A.30x﹣8=31x+26B.30x﹣8=31x﹣26C.30x+8=31x+26D.30x+8=31x﹣266.学校图书馆里的科技书和故事书一共有160本,科技书的数量是故事书的。

如果设故事书的数量为x本,下列方程中符合题意的()A.x﹣x=160B.(1+)x=160C.x=160D.(1﹣)x=1607.李伟和赵强一起去旅游。

李伟共花3150元,李伟所花钱数比赵强多5%,如果赵强花的钱设为x元。

[六年级小学生奥数题及答案和解析]六年级小学生奥数练习题

[六年级小学生奥数题及答案和解析]六年级小学生奥数练习题

[六年级小学生奥数题及答案和解析]六年级小学生奥数练习题奥数题中常常出现一些数量关系非常特殊的题目用普通的方法很难列式解答有时根本列不出相应的算式来。

我们可以用枚举法根据题目的要求一一列举基本符合要求的数据然后从中挑选出符合要求的答案。

以下是本站整理的《六年级小学生奥数练习题【三篇】》希望帮助到您。

六年级小学生奥数练习题篇一1、已知△和☆表示两个自然数并且△/5+☆/11=37/55△+☆等于多少?2、已知1999×△+4×□=9991其中△□是自然数那么□等于多少?3、箱子里有乒乓球若干个其中25%是一级品五分之几是二级品其余91个是三级品箱子里有乒乓球多少个?4、某班同学分成若干小组去植树若每组植树n棵且n为质数则剩下树苗20棵若每组植树9棵则还缺少2棵树苗这个班的同学共分成几组?5、数学测试卷有20道题做对一道得7分做错一道扣4分不答得0分张红得100分她有几道题没答?6、x是自然数x÷810=0a25字母a表示一个数字x是多少?7、某青年1997年的年龄等于出生年份各数字的和那么他的出生年份是多少?8、王老师家电话号码是七位数将前四位数组成的数与后四位数组成的数相加得9063将三位数组成的数与后四位数组成的数相加得2529王老师家电话号码是多少?9、如果在分数28/43的分子分母上加上自然数a、b所得结果是7/12那么a+b的最小值等于多少?10、有三个分子相同的量减假分数化成带分数后为a(2/3)b(5/6)c(7/8)已知a、b、c小于10a是多少?六年级小学生奥数练习题篇二1、将一个棱长6分米的立方体钢材熔铸成一个底面积是48平方分米的圆锥形模具这个模具的高是多少分米?2、某建筑队修筑一段公路原计划每天修56米15天完成实际上每天多修4米实际用了几天?3、两个车间共有150人如果从一车间调出50人这时一车间人数是二车间的二车间原有多少人?4、甲筐苹果的重量是乙筐的3倍。

小学奥数数论专题--余数(六年级)竞赛测试.doc

小学奥数数论专题--余数(六年级)竞赛测试.doc

小学奥数数论专题--余数(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】号码分别为101,126,173,193的4个运动员进行乒乓球比赛,规定每两人比赛的盘数是他们号码的和被3除所得的余数.那么打球盘数最多的运动员打了多少盘?【答案】5【解析】因为两个数和的余数同余与余数的和.有101,126,173,193除以3的余数依次为2,0,2,1.则101号运动员与126,173,193号运动员依次进行了2,1,0盘比赛,共3盘比赛;26号运动员与101,173,193号运动员依次进行了2,2,1盘比赛,共5盘比赛;173号运动员与101,126,193号运动员依次进行了1,2,0盘比赛,共3盘比赛;193号运动员与101,126,173号运动员依次进行了0,1,0盘比赛,共1盘比赛.所以,打球盘数最多的运动是126号,打了5盘.【题文】自然数-1的个位数字是多少?【答案】7【解析】我们先计算出的个数数字,再减去1即为所求.(特别的如果是0,那么减去1后的个位数字因为借位为9)将一个数除以10,所得的余数即是这个数的个位数字.而积的余数等于余数的积.有2除以10的余数为2,2×2除以10的余数为4,2×2×2除以10的余数为8,2×2×2×2除以10的余数为6;2×2×2×2×2除以10的余数为2,除以10的余数为4,除以10的余数为8,除以10的余数为6;…… ……也就是说,n个2相乘所得的积除以10的余数每4个数一循环.因为67÷4=16……3,所以除以10的余数同余与2×2×2,即余数为8,所以-1除以8的余数为7.即-1的个位数字为7.评注:n个相同的任意整数相乘所得积除以10的余数每4个数一循环.【题文】算式7+7×7+…+计算结果的末两位数字是多少?【答案】56【解析】我们只用算出7+7×7+…+的和除以100的余数,即为其末两位数字.7除以100的余数为7,7×7除以100的余数为49,7×7×7除以100的余数为43,7×7×7×7除以100的余数等于43×7除以100的余数为1;而除以100的余数等于×7的余数,即为7,……这样我们就得到一个规律除以100所得的余数,4个数一循环,依次为7,49,43,1.1990÷4=497……2,所以7+7×7+…+的和除以100的余数同余与:497×(7+49+43+1)+7+49=49756,除以100余56.所以算式7+7×7+…+计算结果的末两位数字是56.【题文】除以9的余数是多少?【答案】2【解析】能被9整除的数的特征是其数字和能被9整除,如果这个数的数字和除以9余a,那么我们在减去a而得到的新数一定能被9整除,那么这个新数加上a后再除以9,所得的余数一定为a,即一个数除以9的余数等于其数字和除以9的余数.的数字和为20×(1+9+9+0)=380,380的数字和又是3+8=11,11除以9的余数为2,所以除以9的余数是2.【题文】将1,2,3,…,30从左往右依次排列成一个5l位数,这个数被11除的余数是多少?【答案】8【解析】1,2,3,...,30这30个数从左往右依次排列成一个51位数为:123456...910...17...192021...25 (2930)记个位为第1位,十位为第2为,那么:它的奇数位数字和为:0+9+8+7+6+…+1+9+8+7+6+…+1+9+7+5+3+1=115;它的偶数位数字和为:3+++8+6+4+2=53;它的奇数位数字和与偶数位数字和的差为115-53=62.而62除以11的余数为7.所以将原来的那个51位数增大4所得到的数123456…910…17…192021…25…2934就是11倍数,则将123456…910…17…192021…25…2934减去4所得到数除以11的余数为7.即这个51位数除以11的余数是7.评注:如果记个位为第1位,十位为第2位,那么一个数除以11的余数为其奇数位数字A和减去偶数位数字和B的差A-B=C,再用C除以11所得的余数即是原来那个数的余数.(如果减不开可将偶数位数字和B 减去奇数位数字和A,求得B-A=C,再求出C除以11的余数D,然后将11-D即为原来那个数除以11的余数) .如:123456的奇数位数字和为6+4+2=12,偶数位数字和为5+3+1=9,奇数位数字和与偶数位数字和的差位12-9=3,所以123456除以11的余数为3.又如:654321的奇数位数字和为1+3+5=9,偶数位数字和位2+4+6=12,奇数位数字和减不开偶数位数字和,那么先将12-9=3,显然3除以11的余数为3,然后再用11-3=8,这个8即为654321除以11的余数.【题文】一个1994位的整数,各个数位上的数字都是3.它除以13,商的第200位(从左往右数)数字是多少?商的个位数字是多少?余数是多少?【答案】2,7【解析】这个数即为,而整除13的数的特征是将其后三位与前面的数隔开而得到两个新数,将这两个新数做差,这个差为13的倍数.显然有能够被13类整除,而1994÷6=332……2,即==+33,而是13的倍数,所以除以13的余数即为33除以13的余数为7.有÷13=25641,而÷13=25641025641,所以除以13所得的商每6个数一循环,从左往右依次为2、5、6、4、1、0.200÷6=33……2,所以除以13所得商的第23位为5.除以13的个位即为33除以13的个位,为2.即商的第23位(从左往右数)数字是5,商的个位数字是2,余数是7.【题文】己知:a=.问:a除以13的余数是几?【答案】8【解析】因为199119911991能被13整除,而1991÷3=663……2.有a==199119911991×+199119911991×+199119911991×++199119911991×+…+199119911991×+19911991.所以a除以13的余数等于19911991除以13的余数8.【题文】有一个数,除以3余数是2,除以4余数是1.问这个数除以12余数是几?【答案】5【解析】我们将这个数加上7,则这个数能被3整除,同时也能被4整除,显然能被12整除,所以原来这个数除以12的余数为12-7=5.【题文】某个自然数被247除余63,被248除也余63.那么这个自然数被26除余数是多少?【答案】11【解析】我们将这个数减去63,则得到的新数能被247整除,也能被248整除,而相邻的两个整数互质,所以得到的新数能被247×248,显然能被26整除.于是将新数加上63除以26的余数等于63除以26的余数为11.所以这个自然数被26除余数是11.【题文】一个自然数除以19余9,除以23余7.那么这个自然数最小是多少?【答案】237【解析】这个自然数可以表达为19m+9,也可以表达为23n+7,则有19m+9=23n+7,即23n-19m=2,将未知数系数与常数对19取模,有4n≡2(mod 19) .n最小取10时,才有4n≡2(mod 19) .所以原来的那个自然数最小为23×10+7=237.评注:有时往往需要利用不定方程来清晰的表示余数关系,反过来不定方程往往需要利用余数的性质来求解.【题文】如图,在一个圆圈上有几十个孔(不到100个).小明像玩跳棋那样从A孔出发沿着逆时针方向,每隔几个孔跳一步,希望一圈以后能跳回到A孔.他先试着每隔2孔跳一步,结果只能跳到B孔.他又试着每隔4孔跳一步,也只能跳到B孔.最后他每隔6孔跳一步,正好回到A孔.问这个圆圈上共有多少个孔?【答案】91【解析】设这个圆圈有n个圆孔,那么有n除以3余1,n除以5余1,n能被7整除.则将n-1是3、5的倍数,即是15的倍数,所以n=15t+1,又因为n是7的倍数,即15t+1=7A,将系数与常数对7取模,有t-1≡0(mod 7),所以t取6或6与7的倍数和.对应孔数为15×6+1=91或91与105的倍数和,满足题意的孔数只有91.即这个圆圈上共有91个孔.【题文】某住宅区有12家住户,他们的门牌号分别是l,2,3,…,12.他们的电话号码依次是12个连续的六位自然数,并且每家的电话号码都能被这家的门牌号码整除.已知这些电话的首位数字都小于6,并且门牌号码是9的这一家的电话号码也能被13整除,问这一家的电话号码是什么数?【答案】388089【解析】设这12个连续的自然数为n+1,n+2,n+3,…,n+12,那么有它们依次能被1,2,3,…,12整除,显然有n能同时被1,2,3,…,12整除.即为1,2,3,…,12的公倍数.[1,2,3,…,12]=23×32×5×7×11=27720,所以n是27720的倍数,设为27720k.则有第9家的门牌号码为27720k+9为13的倍数,即27720k+9=13A,将系数与常数对13取模有:4k+9≡0(mod 13),所以k可以取1或1与13的倍数和.有要求n+1,n+2,n+3,…,n+12,为六位数,且首位数字都小于6,所以k只能取14,有n=27720×14=388080.那么门牌号码是9的这一家的电话号码是388080+9=388089.【题文】有5000多根牙签,可按6种规格分成小包.如果10根一包,那么最后还剩9根.如果9根一包,那么最后还剩8根.第三、四、五、六种的规格是,分别以8,7,6,5根为一包,那么最后也分别剩7,6,5,4根.原来一共有牙签多少根?【答案】5039【解析】设这包牙签有n根,那么加上1根后为n+1根,此时有n+1根牙签即可以分成10根一包,又可以分成9根一包,还可以分成8、7、6、5根一包.所以,n+1是10、9、8、7、6、5的倍数,即它们的公倍数.[10,9,8,7,6,5]=23×32×5×7=2520,即n+1是2520的倍数,在满足题意下只能是2520×2=5040,所以n=5039.即原来一共有牙签5039根.【题文】有一个自然数,用它分别去除63,90,130都有余数,3个余数的和是25.这3个余数中最大的一个是多少?【答案】20【解析】设这个自然数为☆,设它除63,90,130所得的余数依次为a,b,c,商依次为A,B,C.显然有63+90+130=☆×(A+B+C)+(a+b+c)=☆×(A+B+C)+25,所以☆×(A+B+C)=(63+90+130)-25=258,所以☆是258的约数.258=2×3×43,显然当除数☆为2、3、6时,3个余数的和最大为3×(2-1)=3,3×(3-1)=6,3×(6-1)=15,所以均不满足.而当除数☆为43×2,43×3,43×2×3时,它除以63的余数均是63,所以也不满足.那么除数☆只能是43,它除以63,90,130的余数依次为20,4,1,余数的和为25,满足.显然这3个余数中最大的为20.【题文】一个数去除55l,745,1133,1327这4个数,余数都相同.问这个数最大可能是多少?【答案】194【解析】这个数A除55l,745,1133,1327,所得的余数相同,所以有55l,745,1133,1327两两做差而得到的数一定是除数A的倍数.1327-1133=194,1133-745=388,745-551=194,1327-745=582,1327-551=776,1133-551=582.这些数都是A的倍数,所以A是它们的公约数,而它们的最大公约数(194,388,194,582,776,582)=194.所以,这个数最大可能为194.【题文】用某自然数去除,得到商是46,余数是,求和.【答案】43,14【解析】因为是的倍还多,得到,得,所以,.【题文】甲、乙两数的和是,甲数除以乙数商余,求甲、乙两数.【答案】1000,88【解析】(法1)因为甲乙,所以甲乙乙乙乙;则乙,甲乙.(法2)将余数先去掉变成整除性问题,利用倍数关系来做:从中减掉以后,就应当是乙数的倍,所以得到乙数,甲数.【题文】一个两位数除310,余数是37,求这样的两位数。

3套六年级数学奥数试题

3套六年级数学奥数试题

数学测试题3一.填空1.用三个4和五个0组成一个只读出两个0的八位数,这个八位数最小是( )。

2.把2691 的分母加上7,要使分数的大小不变,分子应加上( )。

3.用三个“5”和两个“0”组成一个五位数,使两个零都不读出来,这个五位数是( )。

4.一个最简分数,如果给分子加1,分数值就等于1,如果给分母加1,分数值等于23,这个最简分数是( )5.在四位数2□6□中,能同时被2、3、5整除的最小数是( )。

6.在整数0、1、2、3……9中,当m 表示( ),b 表示( )时,1m=26 =mb成立。

7.某班有51人,在一次数学测验中,有1人请病假,有2人不及格。

这次测验的及格率是( )。

8.甲数是乙数的70%,乙数与甲数的比是( ):( )。

9.在○里填入“>”、“<”或“=”。

π○227 1×123 ○1÷12310、a ÷19=207……b 是整数除法,要使b 的值最大,a 应是( )。

11、被除数、除数、商与余数之和是165,已知商是11,余数是 5,那么被除数是( )。

12、有一个自然数,和它相邻的左、右两个自然数的乘积比它的20倍还大20,这个自然数是( )。

二.判断,对的在括号里画“√”,错的在括号里画“×”。

1.a 和b 都是不等于0的数,如果a =7 b ,那么a 是b 的倍数,b 是a 的约数( )。

2.把水冻成冰,体积增加111 。

若把冰化成水,体积就会减少112 ( )。

3.一桶油,先取出15 ,后又取出余下的25%,两次取出的油同样多( )。

4. 79 既可以看成是分数,也可以看成是比,还可以看成是比值( )。

三.选择。

把正确答案的序号填在括号里。

1、一个小数的小数点向右移动一位,得到的数比原数多( )。

A 、10倍 B 、9倍 C 、11倍 D 、102、已知圆柱体的侧面积是9.8596平方厘米,高是3.14厘米,圆柱体的侧面展开图是( )。

奥数入门测试(竞赛)-六年级上册数学人教版

奥数入门测试(竞赛)-六年级上册数学人教版

小学六年级奥数入门测试本试卷包括5大题,35个小题,满分100分,建议用时30分钟。

一.选择题。

(每题2分,共20分)1.计算111×33.6-1.2×333的结果是()A3333 B3330 C3300 D3360具购进()套A.20B.45C.30D.103.鸡和兔共有头30个,共有足88只,那么鸡和兔各有多少?()A鸡16只,兔14只 B鸡14只,兔16只C鸡18只,兔12只 D鸡12只,兔18只4.72有()个不同的因数。

A8 B9 C12 155.用一个数去除30,60,75,都能整除,那么这个数最大是()A5 B10 C15 D306.单独干某项工程,甲队需要100天完成,乙队需要150天完成。

甲、乙两队合干50天后,剩下的工程乙队干还需要()天。

A20 B25 C100 D507.在一个面积为12平方厘米的正方形内,作一个最大的圆,则这个圆的面积是()平方厘米。

(其中π取3.14。

)A12 B3.14 C6.28 D9.428.下图是某种儿童奶粉的营养成分统计图。

如果这种儿童奶粉中含有蛋白质315克,那么含有维生素和矿物质()克。

A15.75 B35 C124 D31.59.已知1,4,2,8,5,7,1,4,2,8,5,7,1,4,2,8……,从左往右数,第2023个数字是()。

A1 B4 C7 D510.把一个正方形的一边减少20%,另一边增加2米,得到一个长方形,它与原来的正方形面积相等,问正方形的面积是()平方米。

A16 B8 C36 D64二.填空题。

(每题2分,共20分。

)1.一栋楼每层有18个台阶,从一楼到六楼,要爬( )个台阶。

2.将表面积分别为54平方厘米,96平方厘米和150平方厘米的三个铁质正方体熔成一个大正方体(不计损耗),这个大正方体的体积是()3.某村要修一条4500米的公路,已经修了1020米,还要修()米正好修这条路的2/3。

4.光明小学将六年级的140名学生分成了三个小组进行植树活动,已知第一组和第二组人数的比为2:3,第二组和第三组人数的比是4:5,那么第三小组有()人。

小学奥数计数专题--排列(六年级)竞赛测试.doc

小学奥数计数专题--排列(六年级)竞赛测试.doc

小学奥数计数专题--排列(六年级)竞赛测试姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)【题文】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。

【答案】(1)5040(2)720(3)1440(4)240(5)2400(6)5040(7)2880【解析】(1)(种)。

(2)只需排其余6个人站剩下的6个位置.(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×=1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置. (种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3××2=2880(种).排队问题,一般先考虑特殊情况再去全排列。

【题文】用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?【答案】20【解析】个位数字已知,问题变成从从个元素中取个元素的排列问题,已知,,根据排列数公式,一共可以组成(个)符合题意的三位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

六年级奥数测试题三
1,某商店购进一批小兔和小狗玩具,共80只,已卖出小兔只数
的1
5和小狗只数的2
3
,共卖出30只,则商店购进小兔和小狗玩
具各多少只?
2,一件商品按20%的利润定价,然后又按八折出售,结果亏损了64元,这件商品的成本是多少元?
3,某商场在十一促销期间,将一批商品降价出售。

如果减去定价的10%的出售,那么可盈利215元,如果减去定价的20%出售,那么亏损125元,此商品的购入价是多少元?
4,某品牌西服原价800元?为了促销,降低了价格,销量增加了1倍,收入增加了40%。

问每套西服降价多少元?。

相关文档
最新文档