2018-2019学年最新人教版八年级数学上册《最短路径问题》教学设计-优质课教案
部编版人教初中数学八年级上册《13.4 课题学习 最短路径问题 教学设计》最新精品优秀教案
前言:该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)13.4课题学习—最短路径问题教学内容解析:本节课的主要内容是利用轴对称研究某些最短路径问题,最短路径问题在现实生活中经常遇到,初中阶段,主要以“两点之间,线段最短”“三角形两边之和大于第三边”为知识基础,有时还要借助轴对称、平移变换进行研究。
本节课以数学史中的一个经典故事----“将军饮马问题”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称将线段和最小问题转化为“两点之间、线段最短”的问题。
教学目标设置:1、能利用轴对称解决简单的最短路径问题2、在谈最短路径的过程中,体会“轴对称”的桥梁作用,感悟转化的数学思想。
教学重点难点:重点:利用轴对称将最短路径问题转化为“两点之间、线段最短”问题。
难点:如何利用轴对称将最短路径问题转化为线段和最小问题。
学生学情分析:1、八年级学生的观察、操作、猜想能力较强,但演绎推理、归纳和运用数学意识的思想比较薄弱,自主探究和合作学习能力也需要在课堂教学中进一步引导。
此年龄段的学生具有一定的探究精神和合作意识,能在一定的亲身经历和体验中获取一定的数学新知识,但在数学的说理上还不规范,集合演绎推理能力有待加强。
2、学生已经学习过“两点之间,线段最短。
”以及“垂线段最短”。
以及刚刚学习的轴对称和垂直平分线的性质作为本节知识的基础。
教学策略分析:最短路径问题从本质上说是最值问题,作为八年级学生,在此前很少涉及最值问题,解决这方面问题的数学经验尚显不足,特别是面对具有实际背景的最值问题,更会感到陌生,无从下手。
解答“当点A、B在直线l的同侧时,如何在l上找到点C,使AC与BC的和最小”,需要将其转化为“直线l异侧的两点,与直线l上的点的线段的和最小”的问题,为什么需要这样转化,怎样通过轴对称实现转化,一些学生会存在理解上和操作上的困难。
人教版数学八年级上册13.4最短路径问题教案
其次,在新课讲授环节,我发现学生们对轴对称性质的理解较为扎实,但在将其应用于最短路径问题的求解过程中,部分学生还是显得有些吃力。针对这一点,我在讲解过程中尽量放慢速度,通过详细的步骤解析和直观的图形演示,帮助他们理解。在之后的课堂中,我还需要加强对学生的个别辅导,确保他们能够真正掌握这一知识点。
(2)确定最短路径问题中的对称轴:在实际问题中,确定对称轴可能较为困难,尤其是当问题涉及多个线段或点时。
难点解析:通过具体例子,展示如何寻找和确定线段、点到线段的最短路径问题中的对称轴。
(3)计算最短路径长度的方法:在确定对称轴和对称点后,如何进行有效计算,避免复杂和繁琐的步骤。
难点解析:教授学生运用几何图形的直观和代数计算相结合的方法,简化计算过程,如利用勾股定理等。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了轴对称的基本概念、最短路径问题的求解方法及其在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对这些知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的课堂上,我们探讨了人教版数学八年级上册13.4节“最短路径问题”。这节课让我感受到了学生们对几何问题的热情,也让我意识到了一些教学中的亮点和需要改进的地方。
4.培养学生的团队合作意识,通过小组讨论和合作完成最短路径问题的求解,提高学生的沟通与协作能力。
三、教学难点与重点
1.教学重点
(1)轴对称图形的性质及其应用:轴对称图形的对称轴、对称点等基本概念,以及如何利用这些性质解决最短路径问题。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
4.鼓励学生在课后进行深入研究,不断提高自己的数学素养。
五、案例亮点
1.生活实例引入:通过引入实际生活中的最短路径问题,如旅行路线规划、物流配送等,使学生能够直观地理解最短路径问题的意义和应用,提高学生的学习兴趣。
3.教师引导学生运用坐标系、函数、图论等知识,分析问题、解决问题。
(三)小组合作
1.学生分组进行讨论,培养学生的团队合作意识。
2.教师组织小组间的交流与分享,促进学生间的互帮互助。
3.教师巡回指导,针对不同小组的特点进行针对性指导。
(四)反思与评价
1.教师引导学生对自己的学习过程进行反思,总结最短路径问题的解决方法。
人教版八年级数学上册13.4课题学习最短路径问题优秀教学案例
一、案例背景
本节内容为“人教版八年级数学上册13.4课题学习最短路径问题”,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等基础知识的基础上进行学习的。通过对最短路径问题的探究,旨在培养学生的逻辑思维能力、空间想象能力和解决问题的能力。
3.组织学生探讨、交流最短路径问题的解决方法,培养学生合作学习的能力。
4.引导学生运用图论中的最短路径算法解决实际问题,提高学生运用所学知识解决实际问题的能力。
5.对学生进行评价,了解学生对最短路径问题的理解和运用程度,及时进行教学调整。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.设计具有挑战性和吸引力的数学问题,激发学生的求知欲。
3.创设轻松、愉快的学习氛围,使学生在课堂上敢于发表自己的观点,培养学生的创新精神。
(二)问题导向
1.引导学生提出问题,如“如何找到两点之间的最短路径?”、“最短路径问题在实际生活中有哪些应用?”等。
人教版数学八年级上册13.4最短路径问题优秀教学案例
2.组织学生进行课堂展示,让他们分享自己的学习心得和解决问题的方法,培养他们的表达能力和沟通能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
(五)作业小结
1.布置具有实践性和拓展性的作业,让学生运用所学知识解决实际问题,提高他们的应用能力。
2.要求学生在作业中总结最短路径问题的解决方法,培养他们的归纳总结能力。
3.教师对学生的学习过程和结果进行评价,关注他们的进步和成长,激发他们的学习动力。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示实际,激发他们的学习兴趣。
2.设计具有挑战性和趣味性的实例,让学生在解决问题的过程中,自然引入最短路径问题的概念和方法。
3.创设合作交流的氛围,让学生在小组内共同探讨问题,激发他们的思考和创造力。
(二)讲授新知
1.引导学生关注最短路径问题的本质,即寻找两点间的最优路径,让学生在解决问题的过程中,自然而然地掌握相关知识。
2.通过提问、设疑等方式,引导学生思考最短路径问题的解决方法,激发他们的求知欲和好奇心。
3.讲解最短路径问题的解决方法,如坐标系法、动态规划法、图论等,让学生了解多种解决思路。
3.教师及时批改作业,给予学生反馈,帮助他们发现不足,提高学习效果。
本节课的教学内容与过程注重知识的传授、方法的训练和情感的培养,充分体现了教育的人文关怀和学生的全面发展。通过本节课的学习,学生将更好地掌握最短路径问题的解决方法,提高他们的数学素养和实际应用能力,为未来的学习和生活打下坚实基础。
八年级数学上册《学习最短路径问题》教案、教学设计
1.设计练习题:根据教学目标和重难点,设计不同难度的练习题,让学生巩固所学知识。
2.独立完成:学生独立完成练习题,提高解决问题的能力。
3.教师指导:针对学生做题过程中遇到的问题,给予个别指导,帮助学生掌握解题方法。
4.评价与反馈:对学生的练习成果进行评价,及时反馈,促使学生改进和提高。
八年级数学上册《学习最短路径问题》教案、教学设计
一、教学目标
(一)知识与技能
1.理解最短路径问题的基本概念,了解其在现实生活中的应用,如地图导航、网络路由等。
2.学会使用数学方法求解最短路径问题,包括但不限于:欧几里得算法、迪杰斯特拉算法等。
3.能够运用所学的最短路径算法解决实际问题,并能够根据问题背景选择合适的算法。
(五)总结归纳
1.知识点回顾:对本节课所学的最短路径问题、欧几里得算法、迪杰斯特拉算法等知识点进行回顾和总结。
2.学生分享:邀请学生分享自己在学习过程中的收获和感悟,提高学生的表达能力。
3.教师点评:针对学生的分享,给予积极的评价和引导学生认识到数学在解决实际问题中的价值,培养他们勇于探索、积极思考的精神,以及团队合作、尊重他人的品质。
三、教学重难点和教学设想
(一)教学重点
1.最短路径问题的基本概念及其在实际中的应用。
2.欧几里得算法、迪杰斯特拉算法等最短路径求解方法。
3.将实际问题转化为数学模型的能力。
4.培养学生的逻辑思维能力和团队合作意识。
(二)教学难点
1.理解并掌握最短路径算法的原理和步骤。
2.将算法应用于解决实际问题,进行数学建模。
4.掌握最短路径问题的数学表达和建模方法,能够将实际问题转化为数学模型。
(二)过程与方法
在教学过程中,教师应关注以下过程与方法:
人教版八年级数学上册13.4最短路径问题优秀教学案例
4.多媒体教学手段:利用多媒体教学手段,如图片、视频等,展示实际问题情境,让学生更直观地感受到问题的背景和意义,提高学习效果。
在现实生活中,最短路径问题具有广泛的应用,如道路规划、网络路由等。因此,本节课的教学案例将以实际问题为背景,引导学生运用数学知识解决实际问题,培养学生的数学应用意识。
为了提高教学效果,本节课将采用小组合作、讨论交流的教学方法,让学生在探讨最短路径问题的过程中,提高自主学习能力和合作意识。同时,教师将以引导者、组织者的角色参与教学,为学生提供必要的帮助和指导,确保教学活动的顺利进行。
(三)小组合作
1.教师将学生分成小组,鼓励学生进行合作交流,共同探讨最短路径问题的解决方法。
2.教师引导学生进行小组讨论,鼓励学生分享自己的思路和观点,培养学生的合作意识和团队精神。
3.教师巡回指导,参与小组讨论,为学生提供必要的帮助和指导,确保每个学生都能参与到教学活动中来。
(四)反思与评价
1.教师引导学生进行自我反思,总结自己在解决最短路径问题过程中的思路和方法,找出自己的不足之处。
3.教师介绍迪杰斯特拉算法和贝尔曼-福特算法,讲解这两种算法的原理和步骤,并通过示例进行演示。
4.教师引入动态规划思想,讲解如何运用动态规划解决最短路径问题,并给出动态规划解决最短路径问题的步骤。
(三)学生小组讨论
1.教师将学生分成小组,并提出讨论问题,如“比较迪杰斯特拉算法和贝尔曼-福特算法的优缺点”、“如何运用动态规划解决最短路径问题?”等。
2.利用多媒体教学手段,展示实际问题情境,让学生直观地感受到最短路径问题的重要性和实用性。
人教版八年级数学上册教学设计:13.4 课题学习 最短路径问题
人教版八年级数学上册教学设计:13.4 课题学习最短路径问题一. 教材分析人教版八年级数学上册第十三章第四节“课题学习最短路径问题”主要是让学生了解最短路径问题的背景和意义,掌握利用图的性质和算法求解最短路径问题的方法。
通过本节课的学习,学生能够将所学的图的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的基本概念和相关性质,如顶点、边、连通性等。
同时,学生也学习了一定的算法知识,如排序、查找等。
因此,学生在学习本节课时,能够将已有的知识和经验与最短路径问题相结合,通过自主探究和合作交流,理解并掌握最短路径问题的求解方法。
三. 教学目标1.了解最短路径问题的背景和意义,能运用图的性质和算法求解最短路径问题。
2.提高学生将实际问题转化为数学问题的能力,培养学生的逻辑思维和解决问题的能力。
3.增强学生合作交流的意识,提高学生的团队协作能力。
四. 教学重难点1.教学重点:最短路径问题的求解方法及其应用。
2.教学难点:理解并掌握最短路径问题的求解算法,能够灵活运用到实际问题中。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.算法教学法:以算法为主线,引导学生了解和掌握最短路径问题的求解方法。
3.合作学习法:学生进行小组讨论和合作交流,共同解决问题,提高团队协作能力。
六. 教学准备1.准备相关实际问题的案例,如城市间的道路网络、网络通信等。
2.准备算法教学的PPT,以便在课堂上进行讲解和演示。
3.准备练习题和拓展题,以便进行课堂练习和课后巩固。
七. 教学过程1.导入(5分钟)通过展示实际问题案例,如城市间的道路网络,引导学生了解最短路径问题的背景和意义。
提问:如何找到两点之间的最短路径?引发学生的思考和兴趣。
2.呈现(10分钟)讲解最短路径问题的求解方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
通过PPT演示算法的具体步骤和过程,让学生清晰地了解算法的原理和应用。
2018-2019人教版八年级数学上册教案: 13.4第1课时 课题学习 最短路径问题(1)
二、师生互动,探究新知
问题1:要在公路上修建一个泵站C,分别向公路两侧A,B两镇供气,泵站修在什么地方,可使泵站C到A,B两镇所用的输气管线最短?
教师提出问题:“这是个实际问题,你打算首先做什么呢?”
学生回答:“将A,B两镇抽象成两个点,将公路抽象为一条直线”.
继而教师提出问题:“为什么交点到两端点的距离之和最小呢?”
学生会非常自然地想到“两点之间,线段最短”的理论来证明.
教师再次提问:“如果另取一点C′,你能证明此时的距离超过了刚才的距离吗?”学生会想到连接AC′,BC′,用“三角形两边之和大于第三边”去证明.
问题2:“饮马问题”.
如图,牧马人从A地出发,到一条笔直的河流l边饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?
教师提出问题:“证明AC+BC最短时,为什么要在直线l上任取一点C′(与点C不重合)?这里的“C′”的作用是什么呢?”
学生互相交流,教师适当点拨,最后达成共识:若直线l上任意一点(与点C不重合)与A,B两点的距离和都大于AC+BC,就说明AC+BC最小.让学生完成证明过程.
让学生经历简单数学建模的过程,并引导学生根据已有的生活和知识经验找到点C是线段AB与公路的交点.
让学生初步尝试了“最值问题”的证明方法,起到了分散难点的作用.
让学生将实际问题抽象为数学问题,即将最短路径问抽象为“线段和最小问题”
学生对于最短路径问题通常感到无从下手,所以此处深入分析,让学生经历最短路径问题的分析过程.
三、运用新知,解决问题
(若把点A变成直线上的一个动点呢?出示变式1,学生探究后展示分析过程)
变式1:如图1,已知直线m,l和点B,在直线m,l上分别取点A、点C,使点B到点C再到点A的距离之和最小.
人教版数学八年级上册《13.4 课题学习 最短路径问题》教学设计2
人教版数学八年级上册《13.4 课题学习最短路径问题》教学设计2一. 教材分析《人教版数学八年级上册》第13.4课题学习“最短路径问题”是本册内容的一个重要组成部分。
本节课主要让学生了解最短路径问题的背景和应用,掌握利用图的性质和简单的图算法解决最短路径问题的方法。
通过本节课的学习,学生能够进一步提高分析问题和解决问题的能力,培养逻辑思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了图的相关知识,如图的定义、图的表示方法、图的性质等。
同时,学生也了解了一些简单的算法,如深度优先搜索、广度优先搜索等。
但部分学生对这些知识的掌握程度不够扎实,对算法的理解也相对模糊。
因此,在教学过程中,需要关注这部分学生的学习情况,引导他们更好地理解和掌握本节课的内容。
三. 教学目标1.了解最短路径问题的背景和应用,理解最短路径的概念。
2.掌握利用图的性质和简单的图算法解决最短路径问题的方法。
3.培养学生的逻辑思维能力和问题解决能力。
四. 教学重难点1.教学重点:最短路径问题的解决方法,如迪杰斯特拉算法、贝尔曼-福特算法等。
2.教学难点:算法的原理和实现,以及如何将实际问题转化为最短路径问题。
五. 教学方法1.情境教学法:通过引入实际问题,激发学生的学习兴趣,引导学生主动探究。
2.案例教学法:分析具体的最短路径问题案例,让学生直观地了解问题的解决过程。
3.算法分析法:引导学生分析算法的原理和实现,提高学生的逻辑思维能力。
4.小组合作学习:鼓励学生分组讨论和合作解决问题,培养学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示最短路径问题的背景、应用和解决方法。
2.案例材料:准备一些具体的最短路径问题案例,供学生分析和讨论。
3.编程环境:为学生提供编程环境,以便他们在课堂上实践算法。
七. 教学过程1.导入(5分钟)利用课件展示最短路径问题的背景和应用,如地图导航、网络通信等。
引导学生关注最短路径问题,激发学生的学习兴趣。
八年级数学人教版上册13.4课题学习最短路径问题(第一课时)优秀教学案例
(五)作业小结
1.作业布置:布置一些有关最短路径问题的课后作业,让学生进一步巩固所学知识,提高解决问题的能力。
2.作业反馈:对学生的作业进行及时批改和反馈,指出其中的错误和不足,给予肯定和建议。
3.课后拓展:鼓励学生参加数学竞赛、研究性学习等活动,拓宽视野,培养创新精神。同时,关注学生在学习过程中的情感态度和价值观的培养,引导他们关爱他人、乐于助人,形成良好的品德素养。
2.利用多媒体展示典型实例,让学生更好地理解和掌握最短路径问题的解决方法。
3.鼓励学生积极参与课堂讨论,培养他们的合作精神和团队意识。
4.注重个体差异,给予学生个性化的指导,帮助他们在原有基础上得到提高。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,让他们感受到数学在生活中的实际应用,提高学生学习数学的积极性。
4.反思与评价:引导学生进行自我反思和同伴评价,培养学生的批判性思维和自我改进的能力。同时,教师对学生的学习过程和结果进行评价,注重鼓励性评价,激发学生的学习兴趣和自信心。
5.课后拓展与情感态度培养:布置相关的课后作业,让学生进一步巩固所学知识,提高解决问题的能力。同时,关注学生在学习过程中的情感态度和价值观的培养,引导他们关爱他人、乐于助人,形成良好的品德素养。
五、案例亮点
1.生活情境导入:通过生活情境导入新课,使学生能够直观地感受到最短路径问题的实际意义,激发学生的学习兴趣和积极性。
2.多媒体辅助教学:利用多媒体展示典型的最短路径问题实例,使抽象的问题具体化、形象化,有助于学生更好地理解和掌握知识。
3.问题导向与小组合作:提出具有挑战性的问题,引导学生进行小组讨论和合作交流,培养学生的团队协作能力和解决问题的能力。
八年级数学人教版上册13.4最短路径问题(第一课时)优秀教学案例
(一)知识与技能
1.理解最短路径问题的实际应用背景,认识到最短路径问题在生活中的重要性。
2.掌握利用图的性质寻找最短路径的方法,能够运用所学知识解决实际问题。
3.了解最短路径问题的基本概念,如路径、权重、最短路径等。
4.学会使用图论中的算法求解最短路径问题,如迪杰斯特拉算法。
(二)过程与方法
四、教学内容与过程
(一)导入新课
1.生活情境引入:通过展示城市交通网络图,引导学生关注实际生活中的最短路径问题,激发学生的学习兴趣。
2.创设问题情境:提出问题:“如何在城市交通网络中找到从一个地点到另一个地点的最短路径?”引导学生思考和提出解决问题的方法。
(二)讲授新知
1.图的基本概念:介绍图的定义、图的节点和边等基本概念,为学生理解最短路径问题打下基础。
5.知识拓展与延伸:在教学过程中,不仅关注学生对知识的掌握程度,还注重引导学生思考最短路径问题在其他领域的应用,激发学生的学习兴趣和拓展思维。通过知识拓展与延伸,学生能够更好地将所学知识应用于实际生活中,提高他们的数学应用能力。
在教学过程中,我以城市交通网络为背景,设计了一系列具有挑战性的问题,引导学生从实际情境中发现问题、提出问题,激发学生的探究兴趣。同时,我充分发挥学生的主体作用,组织学生进行合作探究,引导他们通过画图、讨论等方式,寻找解决问题的策略。
在教学评价方面,我注重过程性评价与终结性评价相结合,不仅关注学生对知识的掌握程度,更注重培养学生的数学思维能力和解决问题的能力。通过本节课的教学,使学生能够运用所学的知识解决实际生活中的最短路径问题,提高他们的数学应用意识。
3.评价原则:评价应具有客观性、发展性、指导性,能够激发学生的学习动力和自我提升意识。
八年级数学上册《最短路径问题》教学设计
《13.4 课题学习最短路径问题》教学设计【教学目标】1、了解解决最短路径问题的基本策略和基本原理.2、能将实际问题中的“地点”“河”抽象为数学中的点和直线问题,使实际问题数学化.3、能利用平移解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用.【学情分析】学生已经有了一定的最短路径问题分析基础,但对于从实际问题抽象出数学问题还有一定的困难,解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零这一问题的分析有难度,怎样转化为求直线异侧的两点到直线上一点所连线段的和最小的问题存在一定的困惑.对于这一方法的直接应用问题不大,但灵活应用还有一定的挑战.【教学重难点】重点:利用平移将最短路径问题转化为“两点之间,线段最短”问题.难点:如何利用平移将最短路径问题转化为线段和最小问题.【教学过程】一、创设情景问题一:如图,某快递公司每天要派快递员从A地出发前往B地送货,途经一条笔直的街道l.快递公司想在街道上建一个中转站,请问中转站建在街道l的什么地方,可使快递员每天所走的路径最短?追问:你运用什么知识解决这个问题的? (板书课题)二、探究新知问题二:如图,某城市要进行改造扩建,若A地和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)问题1:我们从题目中能找到哪些已知条件?从A到B的路径AMNB是指谁?问题2:如果不考虑路径最短,桥的选址有多少种情况?问题3:以我们的观察力能否直接看出桥MN的位置选在哪里,AM+MN+NB最小?(利用几何画板让点N动起来)明晰:通过几何画板的演示,观察到这样的位置确实存在,MN的长度不变。
问题4:桥建在哪里才能保证AM+NB最小,带着思考尝试画出你认为最短的路径.师生活动:学生独立思考,画图分析,组内交流作法,全班展示成果.问题5:本节课解决的中转站问题与选址造桥问题有什么共同点?有什么不同点?能否将第二个问题转化成第一个问题?什么知识能够帮助我们解决这个问题呢?(平移)师生活动:学生独立思考,尝试画图平移点A,确定桥的位置找出最短路径,全班展示成果.用几何画板再次展示作法:(1)如图,过点A作AC垂直于河岸,且使AC等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.问题6:我们这样找到的点N是否合理?试说明理由。
人教版八年级数学上册13.4《最短路径问题》优秀教学案例
1.教师将学生分成若干小组,每组选择一个最短路径问题进行研究和探究;
2.引导学生相互讨论、交流,共同解决问题,培养学生的团队协作能力和沟通能力;
3.教师巡回指导,针对不同小组的问题,提供适当的帮助和指导,促进学生的思考和发展。
(四)总结归纳
1.教师引导学生对自己的学习过程进行反思,总结自己在解决问题过程中的优点和不足;
人教版八年级数学上册13.4《最短路径问题》优秀教学案例
一、案例背景
本节课为人教版八年级数学上册13.4《最短路径问题》,是在学生已经掌握了平面直角坐标系、一次函数和二次函数等知识的基础上进行学习的。八年级的学生思维活跃,好奇心强,具备一定的探究能力,但同时在学习过程中容易忽视数学与实际生活的联系,对最短路径问题的理解停留在理论层面。因此,本节课的教学案例旨在通过生活实例,引导学生感受最短路径问题在实际生活中的应用,培养学生解决实际问题的能力,提高学生的数学素养。
2.组织学生进行评价,让学生互相评价,提高学生的自我认知和评价能力;
3.教师对学生的学习过程和结果进行评价,关注学生的全面发展,给予极的反馈和鼓励。
(五)作业小结
1.教师布置与本节课相关的基础性作业和拓展性作业,巩固学生对最短路径问题的理解和掌握;
2.鼓励学生运用所学知识解决实际生活中的最短路径问题,提高学生的数学应用意识;
三、教学策略
(一)情景创设
1.利用多媒体展示实际生活中的最短路径问题,如快递员送快递、旅行家规划旅行路线等,让学生感受到最短路径问题在现实生活中的重要性;
2.设计具有挑战性的问题,如学校到图书馆的最短路径是什么?引导学生思考并尝试解决;
3.创设情境,让学生扮演不同角色,如导演、导游等,规划最短路径,提高学生的参与度和积极性。
2018-2019学年度第一学期初中数学人教版(新)八年级上13.4 课题学习 最短路径问题教案版本2-优质
13.4.最短路径问题一、内容和内容解析1.内容利用轴对称、平移研究某些最短路径问题2.内容解析最短路径问题在现实生活中经常遇到,初中阶段主要以“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”为基础知识,有时还要借助轴对称、平移、旋转等变换进行研究.本节课以数学史中的两个经典问题——“将军饮马问题”“造桥选址”为载体开展对“最短路径问题”的课题研究,让学生经历将实际问题抽象为数学的线段和最小问题,再利用轴对称﹑平移等变化将线段和最小问题转化为“两点之间,线段最短”(或“三角形两边之和大于第三边”)问题.基于以上分析,确定本节课的教学重点是:利用轴对称﹑平移将最短路径问题转化为“两点之间,线段最短”问题.二、目标和目标解析1.目标:(1)能利用轴对称﹑平移变化解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,(2)在探索最短路径的过程中,感悟﹑应用转化思想.2. 目标解析达成目标(1)的标志是:学生能将实际问题中的“地点”“河”抽象为数学中的“点”“线”,把实际问题抽象为数学问题;能利用轴对称、平移变化,将不共线的点﹑线转化到一条直线上,从而将线段和最小问题转化为“两点之间,线段最短”问题;并能通过逻辑推理证明所求距离最短.达成目标(2)的标志是:在探索最短路径的过程中,能借助轴对称、平移变化,将不共线的点﹑线转化到一条直线上,体会轴对称、平移的“桥梁”作用,感悟转化思想.三、教学问题诊断分析最短路径问题从本质上说是极值问题,作为八年级的学生,在此之前很少接触,解决这方面问题的经验尚显不足,特别是面对具有实际背景的极值问题,更会感到陌生,无从下手对于直线同侧的两点,如何在直线上找到一点,使这一点到这两点的距离之和最小,一些学生会感到茫然,找不到解决问题的思路.教学时.教师可从“直线异侧的两点”过渡到“直线同侧的两点”,为学生搭建“脚手架”.在证明“最短”时,需要在直线上任取一点(与所求作的点不重合),证明所连线段和大于所求作的线段和,学生想不到,不会用.教师可作适时的点拨,让学生体会“任意”的作用.基于以上分析,确定本节课的教学难点是:如何利用轴对称、平移变化将最短路径问题转化为线段和最小问题.四、教学支持条件分析根据本节内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,化静为动,以《几何画板》为平台,通过动态的演示,对线段长度的度量,更有助于学生的探究发现.活动一、抽象问题。
八年级数学人教版上册13.4最短路径问题优秀教学案例
一、案例背景
八年级数学人教版上册13.4节主要讲述最短路径问题,这是学生对图论初步了解后的进一步深化。在学习了图的定义、表示和遍历等基础知识后,最短路径问题既是对前面知识的综合运用,又是向更为复杂图论问题的过渡。
本节课内容对于学生来说具有一定的难度,需要他们能够理解并掌握最短路径的算法,并能够运用到具体的问题中。同时,这也是对学生逻辑思维能力和问题解决能力的考查。
四、教学内容与过程
(一)导入新课
1.利用PPT展示生活中的最短路径问题,如旅行中最短路线的选择、网络数据传输的最短路径等,引导学生关注最短路径问题在现实生活中的应用。
2.向学生提出问题:“如何找到两点之间的最短路径?”让学生思考并发表自己的观点,为导入新课做好铺垫。
3.教师总结:今天我们将学习图论中的一个重要问题——最短路径问题,希望通过本节课的学习,大家能够掌握最短路径的求解方法,并能够运用到实际问题中。
4.在解决问题的过程中,引导学生总结规律,提高学生的归纳总结能力。
(三)小组合作
1.组织学生进行小组讨论,培养学生的团队协作能力和沟通能力。
2.分配具有挑战性的任务,让学生在合作中共同解决问题,提高解决问题的效率。
3.鼓励学生互相评价、互相学习,培养学生的自主学习和反思能力。
4.教师在小组合作过程中进行巡视指导,关注学生的学习情况,及时给予帮助和引导。
在教学过程中,我通过设计丰富多样的教学活动,引导学生主动探究、合作交流,从而提高他们对最短路径问题的理解和运用能力。同时,注重培养学生的数学素养,让他们在学习过程中感受到数学的趣味性和实用性。
二、教学目标
(一)知识与技能
1.理解最短路径问题的概念,掌握基本的最短路径算法。
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
最新人教版八年级数学上册《课题学习最短路径问题》优质教学设计
13.4 课题学习最短路径问题【知识与技能】1.了解最短路径问题.2.掌握解决最短路径问题的方法.【过程与方法】通过解决最短路径问题的过程培养学生分析问题的能力.【情感态度】通过对最短路径问题的学习,增强应用数学知识解决实际问题的信心.【教学重点】解决最短路径问题.【教学难点】最短路径的选择.一、情景导入,初步认识问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)【教学说明】(1)C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l 的什么位置时,AC与CB的和最小.作出点B关于l的对称点B′,连接AB′,线段AB′与直线l的交点C的位置即为所求.(2)N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?将AM沿与河岸垂直方向平移,移动距离为河宽,则A点移到A′点,连接A′B,线段A′B与直线b的交点N的位置即为所求,即在点N处造桥MN.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知例要在燃气管道l上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管道最短?【分析】本问题就是要在l上找一点C,使AC与CB的和最小.设B′是B关于直线l的对称点,本问题也就是要使AC与CB′的和最小.在连接AB′的线中,线段AB′最短.因此,线段AB′与直线l的交点C的位置即为所求.【教学说明】解决最短路径问题通常运用的知识有“过直线作已知点的对称点”,“两点的所有连线中,线段最短”等.三、师生互动,课堂小结这节课主要学习了最短路径问题,让学生相互交流体会与收获,并总结本课所学知识.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.学习小提示同学们,通过这节课的学习,你们学到了哪些知识?明白什么道理?时间就像日历一样,撕掉一张就不会再回来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.4 课题学习最短路径问题
学习目标
1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.(重点)
2.利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.(难点)
教学过程
一、情境导入
相传,古希腊亚历山大里亚城里有一位久
负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?
二、合作探究
探究点:最短路径问题
【类型一】求直线异侧的两点与直线上一点所连线段的和最小的问题
例1:如图所示,在河a两岸有A、B两个村庄,现在要在河上修建一座大桥,为方便交通,要使桥到这两村庄的距离之和最短,应在河上哪一点修建才能满足要求?(画出图形,做出说明。
)
解析:利用两点之间线段最短进而得出答案.
解:如图所示:连接AB交直线a于点P,此时桥到这两村庄的距离之和最短.理由:两点之间线段最短.
【方法总结】求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.
变式训练:见《学练优》本课时练习“课堂达标练习” 第2题
【类型二】运用轴对称解决距离最短问题
例2:在图中直线l上找到一点M,使它到A,B两点的距离和最小.
解析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.
解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.
【方法总结】利用轴对称解决最值问题应注意题目要求根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.
【类型三】最短路径选址问题
如图,小河边有两个村庄A,B,要在河边建一自来水厂向A村与B村供水.
(1)若要使厂部到A,B村的距离相等,则应选择在哪建厂?(要求:尺规作图,保留作图痕迹.写出必要的文字说明)
(2)若要使厂部到A,B两村的水管最短,应建在什么地方?
解析:(1)欲求到A、B两地的距离相等,即作出AB的中垂线与EF的交点M即可,交点即为厂址所在位置.
(2)利用轴对称求最短路线的方法得出A点关于直线EF的对称点A′,再连接A′B交EF于点N,即可得出答案。
解:(1)作出AB的中垂线与EF的交点M,交点M即为厂址所在位置;
(2)如图所示:作A点关于直线EF的对称点A′,再连接A′B交EF于点N,点N即为所求.
【方法总结】选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.
变式训练:见《学练优》本课时练习“课堂达标练习” 第2题
【类型四】运用轴对称解决距离之差最大问题
例4:如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.
解析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.
解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C 即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B=C′A′-C′B<A′B,所以C′A′-C′B<CA-CB.
【方法总结】根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.
三、板书设计
课题学习最短路径问题
1.求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.
2.求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.
教学反思
通过本节从具体情境发现并提出数学问题的学习活动,进一步体会数学与自然及人类社会的密切联系,了解数学的价值。
在互动交流活动中,学习从不同角度理解问题,寻求解决问题的方法,并有效地解决问题。
体会在解决问题中与他人合作的重要性。
体会运用数学的思维方式去观察、分析现实社会,去解决日常生活中和其他学科学习中的问题,增强应用数学的意识.。