线性系统理论(复习)
总复习(信号与线性系统必过知识点)
目录
• 信号与系统基本概念 • 线性时不变系统 • 信号的变换 • 系统的变换 • 信号与系统的应用
01 信号与系统基本概念
信号的描述与分类
信号的描述
信号是信息的载体,可以通过时间或空间的变化来传递信息 。信号的描述包括信号的幅度、频率、相位等特征。
信号的分类
拉普拉斯变换
拉普拉斯变换的定义
将一个信号从时域转换到复频域的过 程,通过将信号表示为无穷积分的形 式来实现。
拉普拉斯变换的性质
拉普拉斯变换的应用
在控制系统分析、电路分析等领域有 广泛应用,如系统稳定性分析、传递 函数求解等。
包括线性性、时移性、复频域平移性、 收敛性等。
Z变换
Z变换的定义
01
将一个序列信号从时域转换到复平面的过程,通过将信号表示
因果性
线性时不变系统的输出仅与当 前和过去的输入有关,而与未 来的输入无关。
稳定性
如果系统对所有非零输入信号 的响应最终都趋于零,则称该
系统是稳定的。
线性时不变系统的分析方法
01
02
03
频域分析法
通过傅里叶变换将时域信 号转换为频域信号,然后 分析系统的频率响应。
时域分析法
通过求解差分方程或常微 分方程来分析系统的动态 行为。
系统分析方法
系统分析是对系统进行建模、分析和综合的方法。常用的系统分析方法包括传递 函数分析、状态方程分析、根轨迹分析等。
02 线性时不变系统
线性时不变系统的性质
线性性
线性时不变系统对输入信号的 响应与输入信号的强度无关,
只与输入信号的形状有关。
时不变性
线性时不变系统的特性不随时 间变化,即系统对输入信号的 响应不会因为时间的推移而改 变。
线性系统理论第一章
第一章线性定常系统的状态空间描述及运动分析1.1 线性定常系统的传递函数描述传递函数描述局部的,有局限性的描述传递函数描述的是系统的输入--输出关系,即假定对系统结构的内部信息一无所知,只能得到系统的输入信息和输出信息,系统内部结构就像一个"黑箱"一样,因此,传递函数只能刻画系统的输入--输出特性,它被称为系统的输入--输出描述和外部描述.常用的数学工具:拉普拉斯变换主要适用于描述线性定常系统1.单变量情形回顾已知由下列常系数微分方程描述的定常系统其中 : 系统的输出 ; :系统的输入; : 时间; 均为常数 ,(希望input少,收益大)假定所有初始值(包括导数的值)全为0,对上式两边取拉普拉斯变换,得到其中为的拉普拉斯变换,则下式称为系统的传递函数 :传递函数为的真有理分式,则称系统为物理能实现的. 单输入--单输出系统的传递函数必为真有理分式.系统的特征多项式: 多项式系统的特征方程 : 代数方程系统的极点 : 特征方程的根或者说特征方程的零点系统的零点 : 多项式的零点传递函数的零点和极点 : 零极相消后剩下的系统的零点和极点 (若系统有相同的零点和极点,则称系统有零极点相消)2.传递函数矩阵考察多输入--多输出的线性定常系统.令输入变量组 : {} , 输出变量组 : {} 且假定系统的初始变量为 0 .用和分别表示和的拉普拉斯变换, 表示系统的由第个输入端到第个输出端的传递函数,其中则由系统的线性属性(即满足叠加原理) 可以导出:称由上式所定义的为系统的传递函数矩阵. 容易看出, 为的一个有理分式矩阵. 当的元传递函数除严格真还包含真有理分式时,即它的一个或一些元传递函数中分母和分子多项式具有相等的最高幂次时,称为真有理分式矩阵.通常,当且仅当为真的或严格真的时,它才是物理上可实现的.作为一个判别准则,当且仅当零阵时, 为严格真的;非零常阵传递函数矩阵为真的.1.2 线性定常系统的状态空间描述1. 状态和状态空间定义1.1 动力学系统的状态定义为完全的表征系统时间域行为的一个最小内部变量组.组成这个变量组的变量称为系统的状态变量,其中为初始时刻由初始变量构成的列向量称为系统的状态向量,简称为状态.状态空间则定义为状态向量取值的一个向量空间.几点解释:1. 状态向量组可完全的表征系统行为的属性.2. 状态变量组的最小性.3. 状态变量组在数学上的特征.4. 状态变量组包含了系统的物理特征.5. 状态变量组选取上的不唯一性定理1.1 系统任意选取的两个状态变量组之间为线性非奇异的关系2.动态系统的状态空间描述和输入--输出描述不同,状态空间描述中把系统动态过程的描述考虑为一个更加细致的过程,输入引起系统状态的变化,而状态和输入则决定了输出的变化."输入"引起"状态"的变化 ( 一个运动的过程)数学上必须采用微分方程或差分方程来表征并且称这个数学方程为系统的状态方程考虑最为一般的连续动态过程: (一个一阶非线性时变微分方程组)进而,在引入向量表示的基础上,还可将状态方程简洁的表示为向量方程的形式:其中"状态"和"输入"决定"输出"的变化 (一个变量见的转换过程)描述这种转换过程的数学表达式为变换方程,并且称之为系统的输出方程或量测方程.最一般的,一个连续的动力学系统的输出方程具有以下形式:表示为向量方程的形式为其中系统的状态空间描述由状态方程和输出方程组成.离散动态过程(离散系统)的状态空间的描述: 只在离散时刻取值,用来表示其状态空间过程描述只反映离散时刻的变量组间的因果关系和转换关系.通常,可采用两条可能的途径来组成系统的状态空间描述:一是分析途径,适用于结构和参数已知的系统;二是辨识的途径,适用于结构和参数难于搞清楚的系统.3.线性定常系统的状态空间描述限于考虑线性定常系统的连续动态过程,此时,向量函数将都具有线性的关系,且不显含时间 .从而线性定常系统的状态空间描述的表达式为其中维状态向量维控制输入向量维输出向量系统矩阵输入矩阵输出矩阵前馈矩阵以上统称为系统的系数矩阵,均为实常阵.线性定常系统也叫做线性时不变系统(linear time-invariant L TI),完全由系数矩阵决定.简记为.对于线性定常系统,我们分别称系统矩阵的特征值,特征向量,若尔当标准型,特征方程,特征多项式为系统的特征值,特征向量,若尔当标准型,特征方程,特征多项式,系统的特征值也称作系统的极点.若,则此系统为单输入线性定常系统;若,此系统为单输出线性定常系统;若,此系统为单输入--单输出系统,或单变量系统.考虑线性定常离散系统的状态空间描述,其一般形式为其中维状态向量维控制输入向量维输出向量阶实常系数矩阵简记为1.3 输入输出描述导出状态空间描述------------- 系统的实现问题(第五章详解)考虑单输入--单输出线性定常系统.表征此系统动态过程的输入-输出描述,时域为或等价的频域描述即传递函数其中和分别表示和的拉普拉斯变换对于由上式描述的系统,可以引进状态变量 ,将其写成状态空间描述形式,其中为维状态变量分别为的常矩阵由"上"写成"下",称为实现问题,实现不具有唯一性1. 当时,有如下结论:定理1.2 给定单输入--单输出线性定常系统的输入输出描述如"上",当时,其对应的一个状态空间描述为:2. 当时,已知"上"求其状态空间描述.先求极限然后令为严格真,直接按的形式写出即可.3. 当时, 此时输入输出关系为此时状态空间描述形式为:1.4 由状态空间描述导出的传递函数矩阵对于多输入--多输出线性定常系统,传递函数矩阵是表征系统输入输出特性的最基本的形式.1. 传递函数矩阵的表示的基本表达式定理1.3 对应于状态空间描述的传递函数矩阵为并且 ,当时, 为真的 , 时, 为严格真的,且有2.的实用关系式有给出的关系式在理论分析上很重要,但从计算的角度而言不方便,下面给出由计算的两个实用算式.定理1.4 给定状态空间描述的系数矩阵 , 求出则相应的传递函数矩阵可表示为注: 的根 : 系统的极点 ; 分子的根 : 系统的零点推论1.1 若的最小多项式为则系统的传递函数矩阵可表示为2. 脉冲响应矩阵和状态空间描述定理1.11 线性定常系统其中的实常阵的脉冲响应矩阵为将其写作更为常用的形式定理1.12 两个代数等价的线性定常系统具有相同的脉冲响应矩阵.定理1.13 两个代数等价的线性定常系统具有相同的输出零状态响应和输出零输入响应.3. 脉冲响应矩阵和传递函数矩阵定理1.14 分别表示线性定常系统的脉冲响应矩阵和传递函数矩阵,则有推论1.2 给定两个线性定常系统 ,设两者都具有相同的输入和输出维数,状态维数不一定相同,则两系统具有相同的脉冲响应矩阵(即相同的传递函数矩阵)的充要条件为1.8 线性定常离散系统的运动分析归结为对定常的线性差分方程进行求解.1. 线性定常离散系统的运动规律对于上述系统,其状态运动的表达式为或2. 脉冲传递函数矩阵取初始状态 , 则可得到系统的输入输出关系式为其中为线性定常离散系统的传递函数矩阵, 按习惯称为脉冲传递函数矩阵.G(z) 为 z 的有理分式矩阵,通常只讨论其为真的或严格真的情况,此时 G(z) 为物理可实现的. 1.9 线性定常系统的时间离散化1. 问题的提出把连续时间系统化为等价的离散时间系统的问题. (课本P22 或百度文库)2.线性定常系统按采样周期T的离散化线性定常系统引入三点基本假设,以保证系统离散化后的描述简单,且是可复原的1. 采样器的采样方式取为以常数 T 为周期的等间隔采样. 采样瞬时为2. 保持器为零阶的.3. 采样周期的值要满足香农(Shannon)采样定理所给出的条件香农定理:离散信号可以完满地复原为原来的连续信号的条件为采样频率满足.考虑到 , 故上式可化为定理1.15 上述系统的时间离散化模型为其中注 :定理1.15提供了线性定常连续系统时间离散化的算法, 离散化系统仍为定常系统.不管A是否奇异,离散化后系统矩阵G一定是非奇异的.。
线性系统理论讲义
对于线性系统
X A(t)X B(t)u Y C(t)X D(t)u
1/2,12/50
时变系统和时不变系统
若向量f,g不显含时间变量t,即
f
g
f (x, u) g(x, u)
该系统称为时不变系统
若向量f,g显含时间变量t,即
f
g
f (x, u, t) g(x, u, t)
该系统称为时变系统
x t ,K , x t 为坐
1
n
标轴构成的 n 维空间。
(5)状态方程:描述系统状态与输入之间关系
的、一阶微分方程(组):x&(t) Ax(t) Bu(t)
(6) 输出方程:描述系统输出与状态、输入之间关
系的数学表达式: y(t) Cx(t) Du(t)
(7)状态空间表达式: (5)+ (6). 状态变量的特点: (1)独立性:状态变量之间线性独立. (2)多样性:状态变量的选取并不唯一,实
4/18,17/50
写成矩阵形式: x1
x2
0
0
xn1 xn
0
a0
1 0 0 1
0 0 a1 a2
0 0
x1 x2
0 0
1 an
1
xn1
xn
u 0 1
y b0 a0bn
b1 a1bn
bn2 an2bn
x1
x2
bn1 an1bn bnu
5/18,18/50
结论2 给定单输入,单输出线性时不变系统的输入输出描述,其对应的状态空
uc
R2C
duc dt
R1iL
R1C
duc dt
L diL dt
L diL dt
线性系统理论考点汇总
4
系统运动的稳定性
考点 4.1. 渐进稳定: 对特征多项式det(sI − A)运用劳斯判据。 特 征 多 项 式 系 数 都 大 于0是 渐 进 稳 定 的的 必 要 条 件。 BIBO稳定: 传递函数的极点均具有负实部。 考点 4.2. 大范围渐进稳定。 步骤:1、V (x)c。 ˙ (x)负定。或V ˙ (x)半负定,系统状态方程的解 2、V 只有平衡状态(导数不恒为0)。 3、||x|| → ∞,V (x) → ∞ 考点 4.3. P A + AT P = Q,Q = −I 。 若P对称正定,则大范围渐进稳定。
考点 3.1. 系统是否能控/能观。 若A无特定形式:采用秩判据。 若A为 约 旦 规 范 形: 不 同 特 征 值 的 约 旦 块 末 行(首 列)非 零。 相 同 特 征 值 的 约 旦 块 末 行(首 列)线 性 无 关。 考点 3.2. 判断连续时间线性线性时变系统是否完 全能控。 M0 (t) = b(t) 0 (t) M1 (t) = −AM0 (t) + dM dt 对于任意的t,rank M0 (t) M1 (t) 满秩,系统完 全能控。 考点 3.3. 求线性时不变系统的能控性指数和能观 性指数。 使能控性判别阵rank B AB . . . 满秩。 A的最小幂次为α。能 控性指 数u=α+1 C 使能观性判别阵rank CA 的满秩。 ... A的最小幂次为β 。能观性指数v=β +1 考点 3.4. 已知状态空间表达式, 求能控规范性及 其变换阵。 步骤:1、列出特征多项式det(sI − A) 1 0 0 2、变换阵P = A2 B AB B a2 1 0 a1 a2 1 −1 −1 3、A = P AP , B = P B , C = CP 能观规范形形式上对偶。 考点 3.5. 定出三阶龙伯格能控规范形。 取能控性判别阵线性无关的三列,构造变换阵P −1 。 由P的块末行导出变换阵S −1 。 基于状态变换x = S −1 x,导出变换后系统的系数矩 阵。 考点 3.6. 传递函数的能控规范形实现。 提 出 直 接 传 递 矩 阵 化 简 后 分 母 必 须 为严 真 首 一 多 项式。 考 点 3.7. G(s)的 行 列 维 数 为 能 观 块 维 数 和 能 控 块 维数。 考点 3.8. 传递函数矩阵的最小实现。 考点 3.9. 按能控性分解。 取 能 控 性 判别 阵 的 非 零 向Q量q1 ,另取 线 性 无 关 非 零向量q2 ,构成变换矩阵Q。 基于状态变换x = Q−1 x,导出变换后系统的系数矩 阵 考点 3.10. 定出能控能观子系统。
线性系统理论(第1章)
第1章 线性系统的数学描述
江苏大学电气学院
假设系统有p个输入, 个输出 分别用u 个输出, 假设系统有 个输入,q个输出,分别用 1,u2,…,up 个输入 , 和y1,y2,…,yq来表示。或记为向量的形式:[u]=[u1 , 来表示。或记为向量的形式:[u]= , [y]= u2 … up]T,[y]=[y1 [u]、[y]为系统的 y2 …yq]T,称[u]、[y]为系统的 y
第1章 线性系统的数学描述
江苏大学电气学院
1.1 系统的输入与输出描述
系统的输入-输出描述揭示了系统的输入和输出之间 系统的输入- 的某种数学关系。在建立系统输入 输出描述时 输出描述时, 的某种数学关系。在建立系统输入—输出描述时,可以假 设系统的内部特性是完全未知的,可将系统看作一个“ 设系统的内部特性是完全未知的,可将系统看作一个“黑 箱”,向该“黑箱”施加各种类型的输入并测量出与之相 向该“黑箱” 应的输出,从这些输入- 应的输出,从这些输入-输出数据可以确定出系统的输入 和输出之间的数学关系。 和输出之间的数学关系。 系统输入—输出描述是系统的外在表现, 系统输入 输出描述是系统的外在表现,只接触系统 输出描述是系统的外在表现 的输入端和输出端,不去表示系统内部的结构及变量, 的输入端和输出端,不去表示系统内部的结构及变量,只 从输入-输出的因果关系中获悉系统的内在的本质特性, 从输入-输出的因果关系中获悉系统的内在的本质特性, 因此称系统的输入-输出描述为系统的外部描述。 因此称系统的输入-输出描述为系统的外部描述。
第1章 线性系统的数学描述
江苏大学电气学院
2. 状态变量 状态变量是指构成系统状态的每一个变量, 状态变量是指构成系统状态的每一个变量,记为
{ x1 (t ), x2 (t ), L ,xn (t )}
线性系统理论全
稳定性判据与判定方法
稳定性判据
在控制工程中,常用的稳定性判据有Routh判据、Nyquist判据、 Bode判据等。这些判据通过分析系统的特征方程或频率响应来判 断系统的稳定性。
判定方法
除了使用稳定性判据外,还可以通过时域仿真、频域分析、根轨 迹法等方法来判定系统的稳定性。这些方法各有优缺点,适用于 不同类型的线性系统和不同的问题背景。
100%
线性偏差分方程
处理离散空间和时间的问题,如 数字滤波器和图像处理等。
80%
初始条件与边界条件
在差分方程中,初始条件确定系 统的起始状态。
状态空间模型
状态变量与状态方程
表示系统内部状态的变化规律 ,揭示系统动态特性。
输出方程
描述系统输出与状态变量和输 入的关系,反映系统对外部激 励的响应。
状态空间表达式的建立
复频域分析法
拉普拉斯变换
将时域信号转换为复频域信号,便于分析系统的稳定性和动态性 能。
系统函数
描述Байду номын сангаас统传递函数的复频域表示,反映系统的固有特性和对输入信 号的响应能力。
极点、零点与稳定性
通过分析系统函数的极点和零点分布,可以判断系统的稳定性以及 动态性能。
04
线性系统稳定性分析
BIBO稳定性
01
线性系统理论全
目
CONTENCT
录
• 线性系统基本概念 • 线性系统数学模型 • 线性系统分析方法 • 线性系统稳定性分析 • 线性系统能控性与能观性分析 • 线性系统优化与综合设计
01
线性系统基本概念
线性系统定义与性质
线性系统定义
满足叠加性与均匀性的系统。
线性系统性质
线性系统理论汇总
非线性序
序列中存在分支、闭合环路或者其他复杂 情形。
当实际问题被表示为数学形式,特别是解析 形式时,线性与非线性的区别显而易见,只 包含变量的一次项是线性特性,企业的均为 非线性特性。而没有给出数学表达式的实际 现象往往可以通过直观的判断。
能够用线性数学模型描述的系统
称为线性系统。
所具有线性基本特性:
一对多
变量之间的 关系
多对多 多对一
一对一•
变量之间最简单最 基本的对应关系
函数
线性函数
因变量和自变量成比例 的变化,即变化过程中 二者的比值不变,称 为线性函数
非线性函数
因变量和自变量之间的 变化过程中二者的比值 变化
最简单的一元线性函数的一般形式为: y=ax+b
a:代表因变量与自变量的不同比率 线性静态系统 b: 线性函数的截距
截距
有实际意义,函数形式为y=ax+b
没有实际意义,则 x1=x+ b/a
y=ax1
简单的变量关系用一元函数表示
较为复杂的变量关系须用多元函数表示 如,z=ax+by,函数所表示的图形就是3维空间 中的一张平面。
函数仅仅是描述一个变量对另一个变量的 依存关系,如果要表示多个变量之间的相互 依存关系,则应该用以下的数学形式:
y
x
x
t
不稳定结点,如组织溃散、文化感弱的团队会越来越难以 形成一个有机的有力整体。
y x
x t
稳定结点,如团队的建立,起初建立起来的团队是动荡 不稳定的,但是最后有一个趋于稳定有效的过程。
y x
y x
两张图分别表示稳定焦点和不稳定焦点,举例来说就如企 业团队在合作的过程中团队成员向团队核心人物靠拢或着 远离团队领导人。
线性系统复习题—答案 - 副本
1、已知线性定常系统状态方程为:Ax x =.其中,⎥⎦⎤⎢⎣⎡-=2310A (1)采用线性变换化A 为对角型;32231det )det(2-+=⎥⎦⎤⎢⎣⎡+--=-s s s s A SI 特征值:1,321=-=λλ鉴于系统矩阵是能控规范型,且特征值互异,故取变化矩阵⎥⎦⎤⎢⎣⎡-=1311P ⎥⎦⎤⎢⎣⎡-==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=--13,41434141 11AP P A P 故有则(2)求出状态转移矩阵)(t Φ;⎥⎦⎤⎢⎣⎡+--=-231)(s sA SI⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-++-++--++--++=⎥⎦⎤⎢⎣⎡+-+=--=--141343143343141341143341312)1)(3(1)()()(1s s s s s s s s s s s s A SI A SI adj A SI (主对换,负变号)()[]⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-+-+=-=Φ∴------t t tt t t tt e e e e e e e e A SI L t 4143434341414341)(333311 (3)初始状态T x ]10[)0(=时,写出系统齐次状态方程)(t x 。
⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-=Φ==--t t t t Ate e e e X t X e t X 41434141)0()()0()(332、已知系统方程为:[]x y u x x 110,121201112201=⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⋅(1)写出对偶系统的状态空间描述;;(2)写出原系统的能控矩阵c Q 、能观矩阵o Q ;(3)写出对偶系统的能控矩阵c Q 、能观矩阵o Q ;(4)运用对偶原理,判断原系统及其对偶系统的状态能控、能观测性。
原系统 :能控性: 能观测性:rank( )=3=n即原系统属于完全能控和完全能观系统。
对偶系统 : 根据对偶原理完全能控 完全能观测 完全能观测 完全能控推出,对偶系统属于完全能控和完全能观系统。
线性系统理论
线性系统理论线性系统理论是一个广泛应用的数学分支,该分支研究线性系统的性质、行为和解决方案。
线性系统可以描述很多现实世界中的问题,包括电子、机械、化学和经济系统等。
在这篇文章中,我们将探讨线性系统理论的基础、应用、稳定性和控制等不同方面。
一、线性系统基础线性系统是一种对于输入响应线性的系统。
当输入为零时,系统的响应为零,称之为零输入响应。
当没有外界干扰时,系统内部存在固有的动态响应,称之为自然响应。
当有外界输入时,系统将对输入做出响应,称之为强制响应。
线性系统具有很多性质,可以让我们更好地理解系统的行为。
其中一个重要的性质是线性可加性,就是说当输入是线性可加的时候,输出也是线性可加的。
换句话说,如果我们有两个输入信号,将它们分别输入到系统中,我们可以在系统的输出中将它们加起来,并得到对应的输出信号。
另外一个重要的性质是时不变性,就是说当输入信号的时间变化时,输出信号的时间变化也会随之发生。
这个性质告诉我们,系统的行为不随着时间的改变而改变。
除此之外,线性系统还有其他很多性质,比如可逆性、稳定性、因果性等等。
二、线性系统的应用线性系统有着广泛的应用,它们可以用来描述很多各种各样的问题,包括但不限于电子电路、航天控制、化学反应、经济系统等等。
下面我们来看看这些应用领域中的具体案例。
1. 电子电路线性系统在电子电路中有着广泛应用。
例如,如果我们想要设计一个低通滤波器,以使高频信号被抑制,我们可以使用线性系统来描述它的行为。
我们可以将电子电路看作一个输入信号到输出信号的转换器。
这个转换器的输出信号可以通过控制电子器件的电流、电压等参数来实现。
这种线性系统可以用来滤掉任何频率的信号,因此在广播和通信中也有广泛的应用。
2. 航天控制航天控制是线性系统理论的一个应用重点。
它包括控制飞行器姿态、轨道以及动力学行为。
在这些问题中,线性可变系统被广泛应用。
这种系统的输出信号是受到飞行器的控制和环境因素的影响。
控制器的任务是计算信号,以引导飞行员和总体系统实现期望的性能和特征。
线性系统理论(复习)
u
u1
x1
1
y1
x2
2
y2 y
y1 1 0 x1
R
S2: x2 x2 3u2
y2 2x2
+
e(t)
i
C - uc
e
uc
RC
duc dt
,
x 1 x 1 u, RC RC
yx
解:
1 2 0 1
.
x
A1 B2C1
0 A2
x
B1
B2
D1
u
0 3
3 0
0 x1 3 u 1 0
例 线性定常系统的齐次状态方程为
x1 x2
0 2
1 x1
3
x2
求其状态转移矩阵 eAt
解
[sI
A]1
s 2
1
1
1 s 3
s 3
(s 1)(s
2)
2
1 s
s
2 1
s
1
2
2 s 1
s
2
2
s
1 1
s
1
2
1 s 1
s
2
2
于是
eAt L
1[sI
A]1
2et
x1
x2
[D1
D2
]u
G(s) G1(s) G2 (s)
:
p
x1 A1
xN
y C1
x1 B1
u
AN xN BN
CN
x1 x2
[D1
DN ]u
N
G(s) Gi (s) i 1
u1
例:求如下并联系统的状态空间描述 u
0 1 0
线性系统理论复习大纲
Chapter 2 Mathematical Descriptions of Systems定义2.1 一个系统在0t 时刻的状态是一组信息的组合,它和系统的输入0()()u t t t ≥一起可唯一确定系统的输出0()()y t t t ≥系统数学描述小结系统类型 内部描述 外部描述 分布、线性 0()(,)()tt y t G t u d τττ=⎰ 集中、线性()()()()x A t x B t uy C t xD t u=+=+ 0()(,)()tt y t G t u d τττ=⎰分布、线性、定常()()()()()()t y t G t u dy s G s u s i r r a t i o n a lτττ=-=⇒⎰集中、线性、定常 x A x B uy C x D u=+=+()()()()()()t y t G t u dy s G s u s r a t i o n a lτττ=-=⇒⎰Chapter 4 State-space Solutions and Realizations线性定常系统状态方程的解()()(0)()tAtA t x t e x eBu d τττ-=+⎰()()(0)()()tAt A t y t Ce x C eBu d Du t τττ-=++⎰111()()[(0)()]()()(0)[()]()xs sI A x B u s y s C sI A x C sI A B D us ---=-+=-+-+连续状态方程按采样时间T 离散化 0TA TAA d eB de B d ττ==⎰定义4.1 设P 为n n ⨯非奇异实矩阵,任等价变换x Px =,那么方程xAx Bu y C x Du=+=+ 与原方程代数等价。
(其中,11,,,A PAP B PB C C P D D --====)定理 4.1 两个线性定常系统状态方程为零状态态等价(具有相同的传递矩阵)的充分必要条件mmCA B CA B =定义4.2 设()X t 是()x A t x = 的任一基本矩阵,那么100(,)()()t t X t X t φ-=称该方程的状态转移矩阵,它同时也是方程00'(,)()(,)t t A t t t φφ=关于初始条件00(,)t t I φ=的唯一解。
线性系统理论(xue)
线性系统理论Linear System Theory 1-1 状态空间的基本概念例1-1 图示RLC 网络。
设:u i 为输入变量;u o =u c 为输出变量。
2 状态空间描述中常用的基本概念例1-1 图示RLC 网络。
设:u i 为输入变量;u o =u c 为输出变量。
用矩阵表示状态空间表达式:⎪⎨+−−=u x R x x 11&1-2 线性连续系统状态空间表达式的建立1......)((b s b s b s b s Y G n n ++++−1 N(s)/D(s)的串联分解——可控标准型实现x&x x⎤⎡⎡00010L &状态变量图例1-5 已知系统微分方程:u u T y y y +=ω+ωζ+试求系统的状态空间表达式,并绘制该系统的状态变量图。
21u x x x+ζω−ω−=22&2 可观测标准型实现设可控标准型实现为例1-6 已知系统微分方程:试求可观测标准型实现,并绘制其状态变量图。
3 并联分解——Jordan标准型实现⎤⎡−s L 0001ss s s U s G 89)()(23++==例1-7 已知某系统传递函数:⎡1⎤4 矩阵的特征方程、特征值1)方阵2 线性定常连续系统状态方程的求解2-1 齐次状态方程的解⎢⎣⎥⎦⎢⎣−−=⎥⎦⎢⎣22x 32x &解:用拉氏变换的方法:例2-1 求已知状态方程的状态转移矩阵。
2-2 状态转移矩阵的性质例2-2 已知状态转移矩阵,求Φ-1和系统矩阵A。
性质9 若例2-3已知系统矩阵,求状态转移矩阵及其状态转移矩阵的逆。
非齐次状态方程:例2-4 已知状态空间描述及零初始条件,输入为单位阶跃,求状态方程的解SISO系统:例9-29 已知系统动态方程,试求系统的传递矩阵。
⎡x&9-4-2开环与闭环传递矩阵MIMOU(s)E(s)Y(s)由图可知:3-1 线性系统的可控性与可观性3-1-1 问题的提出例3-2 已知系统状态空间表达式,⎧3-2 可控性问题基本概念考虑线性系统:3-3 可观测性的基本概念3-4 线性定常系统可控性判据考虑线性定常系统:例3-3 判断已知系统的可控性。
研究生线性系统理论题
1.为什么要对连续系统进行离散化?离散化有哪些方法?它们各自的特点是什么?因为连续系统在电脑上无法实现,只能把连续系统离散化,而离散华是将连续变化的模拟量信号,转换成数字量(脉冲)信号,但是这里的离散化是非常密集的,在误差允许的范围内,可以非常的逼近原函数.这样就能用数字电子计算机(电脑)进行计算或处理。
1.前向差分法S平面左半平面得极点可能映射到Z平面单位圆外,这种方式所得到得离散滤波器可能不稳定2.后向差分法变换计算简单;S平面得左半平面映射到Z平面得单位圆内部一个小圆内因此如果D(s)稳定则变换后的D(z)也稳定;离散滤波器得过程特性及频率特性同原连续滤波器比较有一定得失真,需要较小得采样周期T。
3.双线性变换法如果D(s)稳定,则相应得D(z)也稳定;D(s)不稳定,则相应的D(z)也不稳定;所得D(z)的频率响应应在低频段与D(s)得频率响应相近,而在高频段相对于D(S)得频率响应有严重畸变。
4.脉冲响应不变法D(z)和D(s)有相同得单位脉冲响应序列;若D(z)稳定,则D(s)也稳定;D(z)存在着频率失真。
该法特别适用于频率特性为锐截止型的连续滤波器的离散化。
主要应用于连续控制器D(s)具有部分分式结构或能较容易地分解为并联结构,以及D(s)具有陡衰减特性,且为有限带宽得场合。
这时采样频率足够高,可减少频率混叠影响,从而保证D(z)得频率特性接近原连续控制器D(s)。
5.阶跃响应不变法若D(s)稳定,则相应的D(z)也稳定;D(z)和D(s)得阶跃响应序列相同;6.零极点匹配法需要先求出连续传递函数得全部零极点,计算复杂;能够保持变换前后特征频率处得增益不变;不改变系统得稳定区域,变换前后G(z)和G(s)的稳定特性不变2.多输入/多输出系统能控性和能观测性与系统传递函数矩阵的关系如何?在单输入单输出系统中,能控且能观测得充分必要条件是传递矩阵G (s )的分母与分子之间不发生因子相消。
线性系统理论(2013.7.26)
定义 Φ(t ) e At L1[(sI A)1 ] 为系统状态转移矩阵
解状态方程的关键——求状态转移矩阵 。
13
已知状态方程及初始条件:x1(0)=1,x2(0)=0,求解该齐次方程。
1 0 x x 1 1
解:
(sI A)-1
1 s 1 0 (s - 1)2 1 s - 1
系统结构图:
U1(s) G1/s 11(s) Y1(s)
0 G21(s)
1/s(s+2) G12(s)
U2(s)
1 y1 s y 2 0
1 s( s 2) u1 1 u2 s2
1/(s+2) G22(s)
y c1m c1,m 1 c12 c11 X
2) 由系统结构图建立状态空间表达式
4
例 系统如图,试建立起状态空间表达式。 u
—
k x3 1 x2 1 s1 s2 s
x1
yHale Waihona Puke 解:由结构图X 1 ( s) 1 X 2 ( s) s
x1 x2
X 2 ( s) 1 X 3 ( s) s 2
y x1
5
5 矩阵的特征方程、特征值
1)方阵A的特征方程与特征值 设A 为n×n的方阵,如有一未知量λ ,则: 0 a11 a12 ... a1n a11 a12 a 21 a22 ... a 2 n a21 a 22 I A ... ... ... ... ... ... an1 an 2 ... ann an1 a n 2 0
线性系统复习
完全能观V对连续时间线性时变系统和指定初始时刻九匚£如果存在一个时刻輕几f"*使系统以A W F为初始状态的输HVW恒为零,即HCmtreivj.则称非零状态「切在时刻如为不能观测;如果状态空闻中所有非塞状态在时刻f松都不为不能观测,则称系统在时刻如为完全能观瀝,不完全能观一致完全能观r如果系统对任意时刻均为完全能观測,即能观测性与初始时刻如的选取无关・则称系统为救S全能观测.完全能控判据对H维连续时间线性时不变系统,系统完全能控的充分必要条件为能控性判别矩阵S松=[5 AE,才鱼…才T R满秩,即ranliQ=ftn维连续时间线性时不变系统完全能控的充分必要条件为:rank{Sf-A / Vs€ C或TOM耳人r-坨月]="&为系统特征值能控性指数令Q& =2炯…屮5对完全能控连续时间线性时不变系统,定义能控性指数为:"=使/71戚0=丹成立的最小正整数h完全能观判据对科维连续时间线性时不变系统,系统完全能观测的充分必要条件为能观测性判别矩阵CCA满秩,即fank Qf,=rt歼维连续时间线性时不变系统完全能观测的充分必要条件;Sf-ACrank=/?V5E C或rank 人/一川C ZMy…4,为系统特征值= A(t)X + 5® Y 二 c(t)XI 屮r = —/厂⑴屮卩+ C 丁⑴/b =£「(f)屮 rP = \b Ab A^b …才比]能观性指数 宦义:令西=cCA完全能观测胖堆连续時间线性时不变系统的能观测性指数 定义为訂使"皿必0=/|"成立的最小正整数4离散系统能控 结论4 H 维离散时间线性时不变系统X 茁十1} = GVW 十切 系统完全能达的充分必要条件为矩阵久“乩他…”切馬秩 离散系统能观 结论8 «维离散时间线性时不变系统完全能观测的充分必要 条件为Q"* =c ' CG cc*-'对偶系统满秩能控标准型 比—|W6=严%©=eP兀=PrcinkQ^=r<n^尸1=尸=[如,血…4「丨Oz …,qJ于是可得能控子系统动态方程V = 4 rV 十岀沙厂十和 ”=百*不能控子系统动态方程丘点-兀2丫己Xl — C 2七zrank 0。
《线性系统理论基础》复习提纲
已知系统 x& = Ax + Bu, y = Cx + Du
1)求矩阵的互不相同的特征根 λi ,i = 1, 2,L, n :即求特征多项式 λ I − A = 0 的根 2)求每个特征根 λi 对应的特征向量 vi :即求解线性方程组
(λ iI − A)vi = 0
3)构造线性变换 x = Px 的矩阵 P :即以特征向量 vi 为列向量构成矩阵
m
,将其转化为
⎡ x1 ⎤ ⎡ y ⎤
⎧⎪ ⎨ ⎪⎩
y(n) y=
+ an−1y(n−1) + " + a1y + bm y(m) + bm−1y(m−1) + "
a0 y = u + b1y + b0
y
,选取状态向量
⎢ ⎢ ⎢
x2 #
⎥ ⎥ ⎥
=
⎢ ⎢ ⎢
y #
⎥ ⎥ ⎥
已知系统的状态方程 x& = Ax + Bu 、初始状态 x(0) 和输入控制量 u(t) ,求状态响应 x(t) : 1)求状态转移矩阵 eAt
∫ 2)分别求系统的零输入响应 eAt x(0) 和零状态响应 t eA(t−τ )Bu(τ )dτ 0
3)系统的状态响应为
∫ x(t) = eAt x(0) + t eA(t−τ )Bu(τ )dτ 0
( A − λ i I ) pij3 = pij2 M
(A−λ
i I ) pikj j
=
pj i(k j −1)
(其中 k j 表示相应于特征向量 pij 的广义特征向量个数)
变换矩阵的构造如下:
à 对应于 λ i 的 βi 个约当块的分块矩阵为 Pi j = ⎡⎣ pi1j pij2 L
gf 线性系统理论6 中文版 - 复习
n维LTI状态方程中
2 n-1 (Qc ) B AB A B A B n1 n
定义n×n ,其中前n1列是C中任 意n1个线性无关列,剩余列可任意选择,但要保证P非 奇异,则等价变换 x Px 将 LTI 方程变为
C AC x xC 0 A12 xC BC u A C xC 0
These n unknowns are to be solved from the following set of n equations
f(A) =h(A), h(λ) is said to equal f(λ) on the spectrum of A
7
Using power series f(λ)
矩阵 P q1 qn1 qn
1
xC y C C Du C C xC
其中 AC 的维数n1×n1 ,AC 的维数是 (n-n1)×(n-n1) 1 n1维子系统 A P A P x A x B u
c c c c
y Cc x c Du
vT [B AB A2B L An−1B]=vTQC = 0
与QC 为行满秩矛盾
10
6.3 可观测性
可观测性与可控性是对偶的 可控性研究输入改变状态的可能性 可观测性研究由输出估计状态的可能性 这两个概念的定义均建立在状态方程或矩阵A, B,C, D均为已 知的前提下 p维输入,q维输出,n维状态方程
12
6.4 规范分解
本节讨论系统方程的规范分解
基本结果用于建立状态空间描述和传递矩阵描述之间的 关系
Ax Bu x y Cx Du