有关电磁感应的几个小专题(一)

合集下载

《电磁感应定律》专题

《电磁感应定律》专题

t 《电磁感应定律》专题一.选择题(共10小题)1.物理学中的许多规律是通过实验发现的,下列说法中符合史实的是()A.法拉第通过实验发现了电磁感应现象B.牛顿通过理想斜面实验发现了物体的运动不需要力来维持C.奥斯特通过实验发现了电流的热效应D.卡文迪许通过扭秤实验测出了静电力常量2.关于电磁感应,以下说法正确的是()A.只要磁通量发生变化就会产生感应电流B.导体做切割磁感线运动时,导体两端会产生电压C.感应电流的产生是因为静电力做了功D.发生电磁感应,外界不需要提供能量3.如图所示,两个相同的小导线环和大导线环放在同一水平面内,且两小环关于大环圆心对称.当两小环中通过图示方向的电流,电流强度随时间均匀增大且始终相同,大环()A.无感应电流,不存在扩张收缩趋势B.有顺时针方向的感应电流,存在扩张趋势C.有顺时针方向的感应电流,存在收缩趋势D.有逆时针方向的感应电流,存在收缩趋势4.在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈M相接,如图所示.导轨上放一根导线ab,磁感线垂直于导轨所在平面.欲使M所包围的小闭合线圈N产生顺时针方向的感应电流,则导线的运动可能是()A.匀速向右运动B.加速向右运动C.匀速向左运动D.加速向左运动5.如图甲所示,在坐标系xOy中,有边长为L的正方形金属线框abcd,其对角线ac和y轴重合,顶点a位于坐标原点O处.在y轴右侧的第I象限内有一等腰直角三角形区域,直角边边长为L,底边的左端位于坐标原点O处,内有垂直纸面向里的匀强磁场.t=0时刻,线圈从图示位置沿cb方向,匀速穿过磁场区域.取a→b→c→d→a为感应电流的正方向,则在线圈穿越磁场区域的过程中,感应电流i、ab间的电势差U ab.随时间t变化的图线应是乙图中的()A.B.C.D.6.在如图所示的倾角为θ的光滑斜面上,存在着两个磁感应强度大小均为B的强磁场区域,区域I的磁场方向垂直斜面向上,区域II的磁场方向垂直斜面向下,磁场和宽度H P及PN均为L,一个质量为m、电阻为R、边长也为L的正方形导线框,由静止开始沿斜面下滑,1时刻ab边刚越GH进入磁场I区域,此时导线框恰好以速度v1做匀速直线运动;t2时刻ab边下滑到JP与MN的中间位置,此时导线框又恰好以速度v2做匀速直线运动.重力加速度为g,下列说法中正确的是()A.当ab边刚越好JP时,导线框具有加速度大小为a=gsinθB.导线框两次匀速直线运动的速度v1:v2=4:1C.从t1到t2的过程中,导线框克服安培力做功的大小等于重力势能的减少D.从t1到t2的过程中,有+机械能转化为电能7.如图所示,磁场垂直于纸面向外,磁场的磁感应强度随水平向右的x轴按B=B0+kx(B0、k为常量)的规律均匀增大.位于纸面内的正方形导线框ab cd处于磁场中,在外力作用下始终保持dc边与x轴平行向右匀速运动.若规定电流沿a→b→c→d→a的方向为正方向,则从t=0到t=t1的时间间隔内,下列关于该导线框中产生的电流i随时间t变化的图象,正确的是()A.B.C.D.8.如图电路中,A1、A2是两个指示灯,L是自感系数很大的线圈,电阻R阻值较小,开关S1断开、S2闭合.现闭合S1,一段时间后电路稳定.下列说法中正确的是()A.闭合S1,通过电阻R的电流先增大后减小B.闭合S1,A l亮后逐渐变暗C.闭合S1,A2逐渐变亮,然后亮度不变D.断开电路时,为保护负载,应先断开S2,再断开S19.如图所示,电源的电动势为E、内阻为r,L1、L2为两个相同的灯泡,线圈L的直流电阻不计,与灯泡L1连接的是一只理想二极管D.下列说法中正确的是()A.闭合开关S稳定后L1、L2亮度相同B.断开S的瞬间,L2会逐渐熄灭C.断开S的瞬间,L1中电流方向向左D.断开S的瞬间,a点的电势比b点高10.下列关于日光灯电路的接法中,正确的是()A.B.C.D.二.解答题(共4小题)11.如图所示,间距为L的光滑M、N金属轨道水平放置,ab是电阻为R0的金属棒,此棒可紧贴平行导轨滑动.导轨右侧连接一水平放置的平行板电容器,板间距为d,板长也为L,导轨左侧接阻值为R的定值电阻,其它电阻忽略不计.轨道处的磁场方向垂直轨道平面向下,电容器处的磁场垂直纸面向里,磁感应强度均为B.当ab以速度v0向右匀速运动时,一带电量大小为q的粒子以某一速度从紧贴A板左侧平行于A板进入电容器内,恰好做匀速圆周运动,并从C板右侧边缘离开.试求:(1)AC两板间的电压U;(2)带电粒子的质量m;(3)带电粒子的速度大小v.( 12.如图甲所示,单匝矩形闭合导线框 αbed 处于匀强磁场中,线框电阻为 R ,αb 、αd 的边长分别为 L l 、L 2;磁感应 强度 B 的大小随时间变化的规律如图乙所示.(1)求 0~2t 0 时间内,回路中电流 I 1 的大小和方向;(2)求 t 0 时刻 ab 边受到的安培力大小 F ;(3)在 2t 0 时刻后线框绕 cd 边以角速度 ω 匀速转动,计算线框中感应电流的有效值 I 2,并求线框从中性面开始转过 90°的过程中,通过导线横截面的电量 q .13.如图 A 所示,一能承受最大拉力为 16N 的轻绳吊一质量为 m=0.8k g 边长为 L= m 正方形线圈 ABCD ,已知线圈 总电阻为 R=0.5Ω,在线圈上半部分布着垂直于线圈平面向里,大小随时间变化的磁场,如图B 所示,已知 t 0 时刻轻绳 刚好被拉断,g=10m/s 2求:1)在轻绳被拉断前线圈感应电动势大小及感应电流的方向;(2)t=0 时 AB 边受到的安培力的大小;(3)t 0 的大小.14.如图所示,正方形单匝均匀线框 a b cd ,边长 L=0.4m ,每边电阻相等,总电阻 R=0.5Ω. 一根足够长的绝缘轻质细 线跨过两个轻质光滑定滑轮,一端连接正方形线框,另一端连接 绝缘物体 P ,物体 P 放在一个光滑的足够长的固定斜 面上,斜面倾角 θ=30°,斜面上方的 细线与斜面平行.在正方形线框正下方有一有界的勻强磁场,上边界 I 和下边界 II 都水平,两边界之间距离也是 L=0.4m .磁场方向水平,垂直纸面向里,磁感应强度大小 B=0.5T . 现让正方形线框 的 cd 边距上边界 I 的正上方高度 h=0.9m 的位置由静止释放,且线框在 运动过程中始终与磁场垂直,cd 边始终保持水 平,物体 P 始终在斜面上运动,线框刚好能 以 v=3m/s 的速度进入勻强磁场并匀速通过匀强磁场区域.释放前细线绷 紧,重力加速度 g=10m/s 2,不计空气阻力.(1)线框的 cd 边在匀强磁场中运动的过程中,c 、d 间的电压是多大?(2)线框的质量 m 1 和物体 P 的质量 m 2 分别是多大?(3)在 cd 边刚进入磁场时,给线框施加一个竖直向下的拉力 F 使线框以进入磁场前 的加速度匀加速通过磁场区域, 在此过程中,力 F 做功 w=0.23J ,求正方形线框 cd 边产生的焦耳热是多少?( 由 《电磁感应定律》专题参考答案与试题解析一.选择题(共 10 小题)1.物理学中的许多规律是通过实验发现的,下列说法中符合史实的是( )A .法拉第通过实验发现了电磁感应现象B .牛顿通过理想斜面实验发现了物体的运动不需要力来维持C .奥斯特通过实验发现了电流的热效应D .卡文迪许通过扭秤实验测出了静电力常量解:A 、法拉第通过实验发现了电磁感应现象.故 A 正确.B 、伽利略通过理想斜面实验发现了物体的运动不需要力来维持.故 B 错误.C 、奥斯特通过实验发现了电流的磁效应.故 C 错误.D 、卡文迪许通过实验测出了引力常量,故 D 错误.故选:A .2.(2014•长宁区一模)关于电磁感应,以下说法正确的是( ) A .只要磁通量发生变化就会产生感应电流 B .导体做切割磁感线运动时,导体两端会产生电压C .感应电流的产生是因为静电力做了功D .发生电磁感应,外界不需要提供能量解:A 、当闭合电路中的磁通量发生变化,才会产生感应电流,故 A 错误;B 、导体做切割磁感线运动时,导体两端会产生电压,故 B 正确;C 、感应电流现象是产生电能,而静电力做功是消耗电能,故 C 错误;D 、在电磁感应现象中,消耗了机械能而产生了电能,即机械能转化为了电能,故D 错误;故选:B .3. 2013•嘉定区一模)如图所示,两个相同的小导线环和大导线环放在同一水平面内,且两小环关于大环圆心对称.当 两小环中通过图示方向的电流,电流强度随时间均匀增大且始终相同,大环( )A .无感应电流,不存在扩张收缩趋势B .有顺时针方向的感应电流,存在扩张趋势C .有顺时针方向的感应电流,存在收缩趋势D .有逆时针方向的感应电流,存在收缩趋势解:根据安培定则判断可知,两个小环产生的磁场方向相反,面积又相等,则知穿过大环的磁通量 完 全抵消,即总的磁通量为零,而且不会变化,故大环中无感应电流,也就不受磁场的安培力作用,不存在扩张或收缩 趋势.故选 A4.(2014•上海二模)在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大线圈 M 相接,如图所示.导轨上放一根 导线 ab ,磁感线垂直于导轨所在平面.欲使 M 所包围的小闭合线圈 N 产生顺时针方向的感应电流,则导线的运动可 能是( )A .匀速向右运动B .加速向右运动C .匀速向左运动D .加速向左运动解:A 、导线 ab 匀速向右运动时,导线 ab 产生的感应电动势和感应电流恒定不变,大线圈M 产生的磁场恒定不变,穿过小线圈 N 中的磁通量不变,没有感应电流产生.故 A 错误.B 、导线 ab 加速向右运动时,导线 ab 中产生的感应电动势和感应电流增加, 右手定则判断出来 a b 电流方向由 a →b ,根据安培定则判断可知:M 产生的磁场方向:垂直纸面向里,穿过N 的磁通量增大,由楞次定律判断得知:线圈N 产 生逆时针方向的感应电流,不符合题意.故 B 错误.C 、导线 ab 匀速向左运动时,导线 ab 产生的感应电动势和感应电流恒定不变,大线圈 M 产生的磁场恒定不变, 穿过小线圈 N 中的磁通量不变,没有感应电流产生,不符合题意.故 C 错误.D 、导线 ab 加速向左运动时,导线 ab 中产生的感应电动势和感应电流增加,由右手定则判断出来 ab 电流方向由 b →a ,根据安培定则判断可知:M 产生的磁场方向:垂直纸面向外,穿过 N 的磁通量增大,由楞次定律判断得知:线 圈 N 产生顺时针方向的感应电流,符合题意.故 D 正确.故选 D( t =5.(2014•德州二模)如图甲所示,在坐标系 xOy 中,有边长为 L 的正方形金属线框 abcd ,其对角线 ac 和 y 轴重合, 顶点 a 位于坐标原点 O 处.在 y 轴右侧的第 I 象限内有一等腰直角三角形区域,直角边边长为 L ,底边的左端位于坐 标原点 O 处,内有垂直纸面向里的匀强磁场.t=0 时刻,线圈从图示位置沿 cb 方向,匀速穿过磁场区域.取 a →b →c →d →a 为感应电流的正方向,则在线圈穿越磁场区域的过程中,感应电流 i 、ab 间的电势差 U ab .随时间 t 变化的图线应是乙 图中的( )A .B .C .D . 解:A 、在 d 点运动到 O 点过程中,ab 边切割磁感线,根据右手定则可以确定线框中电流方向为逆时针方向,即正方 向,电动势均匀减小到 0,则电流均匀减小到 0;然后 cd 边开始切割,感应电流的方向为顺时针方向,即负方向,电 动势均匀减小到 0,则电流均匀减小到 0.故 A 错误,B 正确.C 、d 点运动到 O 点过程中,ab 边切割磁感线,ab 相当于电源,电流由 a 到 b ,b 点的电势高于 a 点,ab 间的电势差 Uab 为负值,大小等于电流乘以 bcd a 三条边的电阻,并逐渐减小.ab 边出磁场后后,cd 边开始切割,cd 边相当于电 源,电流由 b 到 a ,ab 间的电势差 Uab 为负值,大小等于电流乘以 ab 边得电阻,并逐渐减小,且电压的最大值小于前 阶段的最大值.故 C 错误,D 也错误.故选:B .6. 2014•陕西校级二模)在如图所示的倾角为 θ 的光滑斜面上,存在着两个磁感应强度大小均为B 的强磁场区域,区 域 I 的磁场方向垂直斜面向上,区域 II 的磁场方向垂直斜面向下,磁场和宽度 HP 及 PN 均为 L ,一个质量为 m 、电阻 为 R 、边长也为 L 的正方形导线框,由静止开始沿斜面下滑,t 1 时刻 ab 边刚越 GH 进入磁场 I 区域,此时导线框恰好 以速度 v 1 做匀速直线运动;2 时刻 ab 边下滑到 JP 与 MN 的中间位置,此时导线框又恰好以速度 v 2 做匀速直线运动.重 力加速度为 g ,下列说法中正确的是( )A .当 ab 边刚越好 JP 时,导线框具有加速度大小为 a=gsin θB .导线框两次匀速直线运动的速度 v 1:v 2=4:1C .从 t 1 到 t 2 的过程中,导线框克服安培力做功的大小等于重力势能的减少D .从 t 1 到 t 2 的过程中,有+ 机械能转化为电能【解答】解:A 、t 1 时刻,线圈做匀速直线运动,所受的安培力与重力的下滑分力平衡,则得:F 1==mg sin θ;当 ab 边刚越好 JP 时,线圈的上下两边都切割磁感线,产生感应电动势,回路中产生的总感应电动势为 E=2BLv 1,线圈所受的安培力的合力为 F=2BIL=2BL •=4mgsin θ 根据牛顿第二定律得:F ﹣mgsin θ=ma ,解得:a=3gsin θ,故 A 错误.B 、t 2 时刻,有安培力 F 2=2BLI 2=2BL= =mg sin θ,由两式比较得,v 1:v 2=4:1.故 B 正确.C 、从 t 1 到 t 2 过程中,导线框克服安培力做功的大小等于回路中产生的焦耳热,此过程中,线框的重力势能和动能均 减小,根据功能关系得知,线圈克服安培力做功的大小等于重力势能的减少量与动能减小量之和.故C 错误.D 、根据能量守恒定律得从 t 1 到 t 2,线框中产生的电能为:E 电 + .故 D 正确.故选:BD7.(2014•吉林校级二模)如图所示,磁场垂直于纸面向外,磁场的磁感应强度随水平向右的 x 轴 按 B=B 0+kx (B 0、k 为常量)的规律均匀增大.位于纸面内的正方形导线框 abcd 处于磁场中,在外力作用下始终保持dc边与x轴平行向右匀速运动.若规定电流沿a→b→c→d→a的方向为正方向,则从t=0到t=t1的时间间隔内,下列关于该导线框中产生的电流i随时间t变化的图象,正确的是()A.B.C.D.【解答】解:由题意可知,ad、bc两边均在切割磁感线,产生感应电动势的方向相反,大小相减,根据题意,bc、ad两边的磁场之差为:△B=B0+k(L+x)﹣B0﹣kx=kL根据法拉第电磁感应定律E=BLv,则有:△E=BLv=Lv•kL;而感应电流i==,是定值,故A正确,BCD错误;故选:A8.(2014•宿迁二模)如图电路中,A1、A2是两个指示灯,L是自感系数很大的线圈,电阻R阻值较小,开关S1断开、S2闭合.现闭合S1,一段时间后电路稳定.下列说法中正确的是()A.闭合S1,通过电阻R的电流先增大后减小B.闭合S1,A l亮后逐渐变暗C.闭合S1,A2逐渐变亮,然后亮度不变D.断开电路时,为保护负载,应先断开S2,再断开S1解:A、闭合开关S1的瞬间,由于线圈中自感电动势的阻碍,通过电阻R的电流慢慢增加.故A错误.B、闭合开关S1,虽因存在自感作用,但通过R的电流逐渐增加,干路电流逐渐增加,通过A l逐渐变亮.故B错误.C、当闭合S1,线圈对电流的阻碍渐渐变小,导致A2逐渐变暗,故C错误;D、断开电路时,为保护负载,由于线圈L产生自感电动势,应先断开S2,再断开S1.故D正确,故选:D.9.(2013•扬州模拟)如图所示,电源的电动势为E、内阻为r,L1、L2为两个相同的灯泡,线圈L的直流电阻不计,与灯泡L1连接的是一只理想二极管D.下列说法中正确的是()A.闭合开关S稳定后L1、L2亮度相同B.断开S的瞬间,L2会逐渐熄灭C.断开S的瞬间,L1中电流方向向左D.断开S的瞬间,a点的电势比b点高解:A、闭合开关S稳定后,因线圈L的直流电阻不计,所以L1与二极管被短路,导致灯泡L1不亮,而L2将更亮,因此L1、L2亮度度不同,故A错误;B、断开S的瞬间,L2会立刻熄灭,故B错误;C、断开S的瞬间,线圈L与灯泡L1及二极管构成回路,因线圈产生感应电动势,a端的电势高于b端,所以回路中没有电流,故C错误,D正确;故选:D10.(2009•肇庆一模)下列关于日光灯电路的接法中,正确的是()A.B.C.D.解:启辉器是一个自动开关,开始时闭合,然后迅速断开,整流器线圈中产生瞬时高电压,点燃灯管;故启辉器与灯管并联后与整流器串流,故AD错误,BC正确;故选BC.二.解答题(共4小题)11.(2014惠州模拟)如图所示,间距为L的光滑M、N金属轨道水平放置,ab是电阻为R0的金属棒,此棒可紧贴平行导轨滑动.导轨右侧连接一水平放置的平行板电容器,板间距为d,板长也为L,导轨左侧接阻值为R的定值电阻,其它电阻忽略不计.轨道处的磁场方向垂直轨道平面向下,电容器处的磁场垂直纸面向里,磁感应强度均为B.当ab 以速度v0向右匀速运动时,一带电量大小为q的粒子以某一速度从紧贴A板左侧平行于A板进入电容器内,恰好做匀速圆周运动,并从C板右侧边缘离开.试求:(1)AC两板间的电压U;(2)带电粒子的质量m;(3)带电粒子的速度大小v.解:(1)棒ab向右运动时产生的电动势为:E=BLv0AC间的电压即为电阻R的分压,由分压关系可得:(或:,U=IR)解得:(2)带电粒子在AC板间电磁场中做匀速圆周运动,则重力与电场力平衡,则有:解得:(3)粒子由牛顿第二定律可得:粒子运动轨迹如图所示,由几何关系可得:L2+(r﹣d)2=r2解得:v=答:(1)AC两板间的电压U为;(2)带电粒子的质量m为;(3)带电粒子的速度大小v为.12.(2014•南通三模)如图甲所示,单匝矩形闭合导线框αbed处于匀强磁场中,线框电阻为R,αb、αd的边长分别为L l、L2;磁感应强度B的大小随时间变化的规律如图乙所示.(1)求0~2t0时间内,回路中电流I1的大小和方向;(2)求t0时刻ab边受到的安培力大小F;(3)在2t0时刻后线框绕cd边以角速度ω匀速转动,计算线框中感应电流的有效值I2,并求线框从中性面开始转过90°的过程中,通过导线横截面的电量q.解:(1)在0到2t0时间内,回路中的感应电动势:E1=;由图乙可知,;由闭合电路欧姆定律,则有:电流大小I1=;解得:;由楞次定律,可知,在0到2t0时间内,回路中的电流方向逆时针;(2)安培力的大小F=BI1L1;t0时刻的磁场为B=;那么安培力的大小为,F=;(3)线框匀速转动时,产生正弦交流电,感应电动势的最大值E2m=B0L1L2ω;感应电动势的有效值E2=;感应电流的有效值I2==;平均感应电流;通过导线横截面的电量q=;解得:答:(1)0~2t0时间内,回路中电流I1的大小和方向为逆时针;(2)t0时刻ab边受到的安培力大小F=(3)线框中感应电流的有效值I2=.;;线框从中性面开始转过90°的过程中,通过导线横截面的电量:, 13.(2014•潮州二模)如图 A 所示,一能承受最大拉力为 16N 的轻绳吊一质量为 m=0.8k g 边长为 L= m 正方形线圈 ABCD ,已知线圈总电阻为 R=0.5Ω,在线圈上半部分布着垂直于线圈平面向里,大小随时间变化的磁场,如图 B 所示, 已知 t 0 时刻轻绳刚好被拉断,g=10m/s 2求:(1)在轻绳被拉断前线圈感应电动势大小及感应电流的方向;(2)t=0 时 AB 边受到的安培力的大小;(3)t 0 的大小.解:(1)由法拉第电磁感应定律,则有:E= = ,代入数据,解得:E==1V ;根据楞次定律可知,感应电流的方向:逆时针方向;(2)根据闭合电路欧姆定律,则有:I= ; 而 AB 受到的安培力大小为:F=BIL=1×2×N=2 N ; (3)当轻绳刚好被拉断,对其受力分析,如图所示,则有:2Fcos45°+mg=T解得:F=4 N ; 而安培力 F ﹣BIL ,可得:B=; 再根据图象可得:t 0=1s ;答:(1)在轻绳被拉断前线圈感应电动势大小 1V 及感应电流的方向逆时针;(2)t=0 时 AB 边受到的安培力的大小 2 N ;(3)t 0 的大小 1s .14.(2014•福州二模)如图所示,正方形单匝均匀线框 a bcd ,边长 L=0.4m ,每边电阻相等,总电阻 R=0.5Ω. 一根足 够长的绝缘轻质细线跨过两个轻质光滑定滑轮,一端连接正方形线框,另一端连接 绝缘物体 P ,物体 P 放在一个光滑 的足够长的固定斜面上,斜面倾角 θ=30°,斜面上方的 细线与斜面平行.在正方形线框正下方有一有界的勻强磁场, 上边界 I 和下边界 II 都水平,两边界之间距离也是 L=0.4m .磁场方向水平,垂直纸面向里,磁感应强度大小 B=0.5T . 现 让正方形线框的 cd 边距上边界 I 的正上方高度 h=0.9m 的位置由静止释放,且线框在 运动过程中始终与磁场垂直,cd 边始终保持水平,物体 P 始终在斜面上运动,线框刚好能 以 v=3m/s 的速度进入勻强磁场并匀速通过匀强磁场区域.释 放前细线绷紧,重力加速度 g=10m/s 2,不计空气阻力.(1)线框的 cd 边在匀强磁场中运动的过程中,c 、d 间的电压是多大?(2)线框的质量 m 1 和物体 P 的质量 m 2 分别是多大?(3)在 cd 边刚进入磁场时,给线框施加一个竖直向下的拉力 F 使线框以进入磁场前 的加速度匀加速通过磁场区域,在此过程中,力 F 做功w=0.23J ,求正方形线框 cd 边产生的焦耳热是多少?【解答】解:(1)正方形线框匀速通过匀强磁场区域的过程中,设 c d 边上的感应电动势为 E ,线框中的电流强度为 I , c 、d 间的电压为 U cd ,则E=BLv由欧姆定律,得 解得 U cd =0.45V(2)正方形线框匀速通过磁场区域的过程中,设受到的安培力为 F ,细线上的张力为 T ,则F=BIL T=m 2gsin θ m 1g=T+F正方形线框在进入磁场之前的运动过程中,根据能量守恒,则解得 m 1=0.032kg ,m 2=0.016kg(3)因为线框在磁场中运动的加速度与进入前的加速度相同(只受重力) 所以在通过磁场区域的过程中,线框和物体 P 的总机械能保持不变,故力 F 做功 W 等于整个线框中产生的焦耳热 Q ,即 W=Q 设线框 cd 边产生的焦耳热为 Q cd ,根据 Q=I 2Rt 得 解得 Q cd =0.0575J。

电磁感应专题-高中物理试题解析版

电磁感应专题-高中物理试题解析版

电磁感应专题(4)1.轻质细线吊着一质量为m =0.32kg 、边长为L =0.8m 、匝数n =10的正方形线圈,总电阻为r =1Ω.边长为L2的正方形磁场区域对称分布在线圈下边的两侧,如图12甲所示,磁场方向垂直纸面向里,大小随时间变化如图12乙所示,从t =0开始经t 0时间细线开始松弛,取g =10m/s 2.求:(1)在前t 0时间内线圈中产生的电动势;(2)在前t 0时间内线圈的电功率;(3)t 0的值.解析(1)由法拉第电磁感应定律得E =nΔΦΔt =n ×12×(L 2)2ΔB Δt =10×12×(0.82)2×0.5V =0.4V.(2)I =Er=0.4A ,P =I 2r =0.16W.(3)分析线圈受力可知,当细线松弛时有:F 安=nBt 0I L 2=mg ,I =E r ,Bt 0=2mgrnEL =2T由图象知:Bt 0=1+0.5t 0(T),解得t 0=2s.答案(1)0.4V(2)0.16W(3)2s2.小明同学设计了一个“电磁天平”,如图1所示,等臂天平的左臂为挂盘,右盘挂有矩形线圈,两臂平衡.线圈的水平连长L =0.1m,竖直连长H =0.3m,匝数为N 1.线圈的下边处于匀强磁场内,磁感应强度B 0=1.0T,方向垂直线圈平面抽里.线圈中通有可在0-2.0A 范围内调节的电流I .挂盘放上待测物体后,调节线圈中电流使天平平衡,测出电流即可测得物体的质量.(重力加速度取g =10m/s 2)(1)为使电磁天平的是量程达到0.5kg,线圈的匝数N 1至少为多少?(2)进一步探究电磁感应现象,另选N 2=100匝、形状相同的线圈,总电阻R =10Ω,不接外电流,两臂平衡.如图2所示,保持B 0不变,在线圈上部另加垂直纸面向外的匀强磁场,且磁感应强度B 随时间均匀变大,磁场区域宽度d =0.1m.当挂盘中放质量为0.01kg 的物体时,天平平衡,求此时磁感应强度的变化率tB∆∆.3.如图所示,足够长的U 形导体框架的宽度L=0.5m ,电阻可忽略不计,其所在平面与水平面成θ=37°角.有一磁感应强度B=0.8T 的匀强磁场,方向垂直于导体框平面.一根质量m=0.2kg 、电阻为R=2Ω的导体棒MN 垂直跨放在U 形框架上,某时刻起将导体棒由静止释放.已知导体棒与框架间的动摩擦因数μ=0.5.(已知sin37°=0.6,cos37°=0.8,g=10m/s 2),求:(1)导体棒运动过程中的最大速度;(2)从导体棒开始下滑到速度刚达到最大的过程中,通过导体棒横截面的电量Q=2C ,导体棒在此过程中消耗的电能.B 0I 图1图24.如图所示,两根竖直放置在绝缘地面上的金属导轨的上端,接有一个电容为C 的电容器,框架上有一质量为m、长为L 的金属棒,平行于地面放置,与框架接触良好且无摩擦,棒离地面的高度为h,磁感强度为B 的匀强磁场与框架平面垂直.开始时,电容器不带电.将金属棒由静止释放,问:棒落地时的速度为多大?(整个电路电阻不计)2,因为Q=CUc,所以△Q=C△Uc 电源路端电压U==B l v,而U=Uc,所以△Uc=B l △v.I Qt C U tC Bl v t CBla====∆∆∆∆∆∆①mg-B·I·l=ma②从③式知a=恒量,所以金属棒做匀加速运动.v ah mghm CB l 12222==+5.如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L 。

电磁感应基础知识归纳

电磁感应基础知识归纳

1.感应电动势大小的计算公式(1):E =tn ∆∆Φ〔任何条件下均适用;t ∆∆Φ为斜率,斜率的符号相同,表示感应电流的方向相同。

斜率的大小就表示感应电动势或感应电流的大小〕(2):E =tB nS ∆∆〔S 为有磁感线穿过的面积,适用于S 不变时;t B ∆∆为斜率,斜率的符号相同,表示感应电流的方向相同。

斜率的大小就表示感应电动势或感应电流的大小〕 (3):E =nBLV适用于导体棒垂直切割磁感线时;B 、L 和V 两两互相垂直,不垂直时,把B 或V 正交分解 L 为有效长度;切割的磁感线越多,E 就越大,切割的磁感线相同,E 就相同 B 为导体棒垂直切割处的磁感强度大小 B 可为非匀强磁场(4):E =nB 1L 1V 1 ± nB 2L 2V 2适用于两根以上导体棒垂直切割磁感线时,B 、L 和V 两两互相垂直,不垂直时,把B 或V 正交分解感应电流相互抵消时用减号L 为有效长度;切割的磁感线越多,E 就越大; B 为导体棒垂直切割处的磁感强度大小; B 可为非匀强磁场(5):E =ω221BL 用于导体一端固定以角速度ω旋转切割磁感线,ω单位必须用rad/s ;B 、L 和V 两两互相垂直,不垂直时,把B 或V 正交分解;L 为有效长度;切割的磁感线相同,E 就相同,切割的磁感线越多,E 就越大;; B 为导体棒垂直切割处的磁感强度大小; B 可为非匀强磁场(6):e= θωsin NBS = t NBS ωωsin 〔用于从中性面开始计时,即线圈垂直于磁感线开始计时〕e 为交流发电机的瞬时感应电动势〔V 〕; B 为匀强磁场(T);S 为有磁感线穿过的面积(m 2)ω为线圈的角速度,其单位必须用rad/s ;450=4π rad ;5r/s(转/秒)=5⨯2π rad/s ω=2πf 〔f 为交流电的频率〕θ为线圈和中性面的夹角〔rad 〕;线圈处于中性面时,Φ最大,感应电动势e=0应从切割磁感线的角度理解该公式,切割的磁感线越多,E 就越大;(7):e= βωcos NBS =t NBS ωωcos (从线圈平行于磁感线开始计时)e 为交流发电机的瞬时感应电动势〔V 〕; B 为匀强磁场(T);S 为有磁感线穿过的面积(m 2)ω为线圈的角速度,其单位必须用rad/s ;300= 6π rad ;5r/s(转/秒)=5⨯2π rad/s ω=2πf 〔f 为交流电的频率〕θ为线圈和磁感线的夹角〔rad 〕;线圈和中性面垂直时,即线圈和磁感线平行,Φ=0,感应电动势e 最大 应从切割磁感线的角度理解该公式,切割的磁感线越多,E 就越大;(8):E=U 外+Ir 〔适用条件:适用于任何电路;U 外为电源两端的电压〔即外电路的总电压〕,I 为总电流,r 为电源的内阻〕2:公式的推导:(1):E = BLV (如右图)E=t n ∆∆Φ=n BLv tBLdvt d BL tBLdS d BL tt ===-+-+∆Φ-∆Φ)()(0 (2):E=NBS ωsin θ(如右图)一矩形线圈绕oo ´轴转动〔t=0时,线圈处于中性面〕E=BL ad V ad sin θ + BL bc V bc sin θ E=BL ad ω21L ab sin θ + BL bc ω21L ab sin θE=21B ωS sin θ+ 21B ωS sin θ E=B ωS sin θ当线圈有N 匝时:E=NBS ωsin θθ=ωt∴ E=NBS ωsin ωt 即 e=NBS ωsin ωt3.磁通量:表示穿过某截面的磁感线数量,穿过的磁感线数量越多,磁通量越大;穿过的磁感线数量相同,磁通量就相同〔1〕:Φ=BS 使用条件:B 和S 垂直时,S 为有磁感线穿过的面积(m 2) 〔2〕:Φ=0 使用条件:B 和S 平行时〔3〕:当B 、S 既不平行也不垂直时,可以把B 拿来正交分解或把S 投影到B 的方向上,0<Φ<BS〔4〕:0Φ-Φ=∆Φt ,Φ是标量,但是它有正负,如:某线圈的磁通量为6 wb ,当它绕垂直于磁场的轴转过1800,此时磁通量为-6 wb ,在这一过程中,∆Φ=12 wb 而不是04:感应电动势E 与∆Φ的大小、B 的大小无关,E 与B 的变化快慢、∆Φ的变化快慢有关。

电磁感应测试题及答案

电磁感应测试题及答案

高二物理《电磁感应》测试题(一)1.关于磁通量的概念,下面说法正确的是( )A .磁感应强度越大的地方,穿过线圈的磁通量也越大B .磁感应强度大的地方,线圈面积越大,则穿过线圈的磁通量也越大C .穿过线圈的磁通量为零时,磁通量的变化率不一定为零D .磁通量的变化,不一定由于磁场的变化产生的 2.下列关于电磁感应的说法中正确的是( )A .只要闭合导体与磁场发生相对运动,闭合导体内就一定产生感应电流B .只要导体在磁场中作用相对运动,导体两端就一定会产生电势差C .感应电动势的大小跟穿过回路的磁通量变化成正比D .闭合回路中感应电动势的大小只与磁通量的变化情况有关而与回路的导体材料无关 5.如图1所示,一闭合金属圆环用绝缘细绳挂于O 点,将圆环拉离平衡位置并释放, 圆环摆动过程中经过匀强磁场区域,则(空气阻力不计) ( )A .圆环向右穿过磁场后,还能摆至原高度B .在进入和离开磁场时,圆环中均有感应电流C .圆环进入磁场后离平衡位置越近速度越大,感应电流也越大D .圆环最终将静止在平衡位置6.如图(2),电灯的灯丝电阻为2Ω,电池电动势为2V ,内阻不计,线圈匝数足够多,其直流电阻为3Ω.先合上电键K ,稳定后突然断开K ,则下列说法正确的是( )A .电灯立即变暗再熄灭,且电灯中电流方向与K 断开前方向相同B .电灯立即变暗再熄灭,且电灯中电流方向与K 断开前方向相反C .电灯会突然比原来亮一下再熄灭,且电灯中电流方向与K 断开前方向相同D .电灯会突然比原来亮一下再熄灭,且电灯中电流方向与K 断开前方向相反 7.如果第6题中,线圈电阻为零,当K 突然断开时,下列说法正确的是( ) A .电灯立即变暗再熄灭,且电灯中电流方向与K 断开前方向相同 B .电灯立即变暗再熄灭,且电灯中电流方向与K 断开前方向相反 C .电灯会突然比原来亮一下再熄灭,且电灯中电流方向与K 断开前相同 D .电灯会突然比原来亮一下再熄灭,且电灯中电流方向与K 断开前相反8.如图(3),一光滑的平面上,右方有一条形磁铁,一金属环以初速度V 沿磁铁的中线向右滚动,则以下说法正确的是( )A 环的速度越来越小B 环保持匀速运动C 环运动的方向将逐渐偏向条形磁铁的N 极D 环运动的方向将逐渐偏向条形磁铁的S 极9.如图(4)所示,让闭合矩形线圈abcd 从高处自由下落一段距离后进入匀强磁场,从bc 边开始进入磁场到ad 边刚进入磁场的这一段时间里,图(5)所示的四个V 一t 图象中,肯定不能表示线圈运动情况的是 ( )10.如图(6)所示,水平放置的平行金属导轨左边接有电阻R ,轨道所在处有竖直向下的匀强磁场,金属棒ab 横跨导轨,它在外力的作用下向右匀速运动,速度为v 。

法拉第电磁感应定律专题(高清图)

法拉第电磁感应定律专题(高清图)

法拉第电磁感应定律(第5讲)倾向于专题单杆平动切割专题1.(2003沪)粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场出磁场,如图中,磁场方向垂直于线框平面,其边界与正方形线框的边平行。

现使线框以同样大小的速度沿四个不同方向平移所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是A. B. C. D.2.(2009上海)如图,金属棒ab 置于水平放置的U 形光滑导轨上,在ef 右侧存在有界匀强磁场B ,磁场方向垂直导轨平面向下,在ef 左侧的无磁场区域cdef 内有一半径很小的金属圆环L ,圆环与导轨在同一平面内。

当金属棒ab 在水平恒力F 作用下从磁场左边界ef 处由静止开始向右运动后,圆环L 有_____(填收缩、扩张)趋势,圆环内产生的感应电流______(填变大、变小、不变)。

3.(2009山东)如图所示,一导线弯成半径为a 的半圆形闭合回路。

虚线MN 右侧有磁感应强度为B 的匀强磁场。

方向垂直于回路所在的平面。

回路以速度v 向右匀速进入磁场,直径CD 始络与MN 垂直。

从D 点到达边界开始到C 点进入磁场为止,下列结论正确的是A .感应电流方向不变B .CD 段直线始终不受安培力C .感应电动势最大值E m =BavD .感应电动势平均值BavE π41=4.(2010新课标)如图所示,两个端面半径同为R 的圆柱铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场。

一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直。

让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为E 1,下落距离为0.8R 时电动势大小为E 2。

忽略涡流损耗和边缘效应。

关于E 1、E 2的大小和铜棒离开磁场前两端的极性,下列判断正确的是 A .E 1>E 2,a 端为正 B .E 1>E 2,b 端为正 C .E 1<E 2,a 端为正 D .E 1<E 2,b 端为正5.(2007四川)如图所示,矩形线圈 abcd 在匀强磁场中可以分别绕垂直于磁场方向的轴P 1和P 2以相同的角速度匀速转动,当线圈平面转到与磁场方向平行时A .线圈绕P 1转动时的电流等于绕P 2转动时的电流B .线圈绕P 1转动时的电动势小于绕P 2转动时的电动势C .线圈绕P 1和P 2转动时电流的方向相同,都是 a →b →c →dD .线圈绕P 1转动时dc 边受到的安培力大于绕P 2转动时dc 边受到的安培力B MN6.(2007四川)如图所示,P 、Q 为水平面内平行放置的光滑金属长直导轨,间距为L 1,处在竖直向下、磁感应强度大小为B 1的匀强磁场中。

物理3-2人教(浙江专)全程导笔记文档:第四章 电磁感应 微型专题1 含答案

物理3-2人教(浙江专)全程导笔记文档:第四章 电磁感应 微型专题1 含答案

微型专题1楞次定律的应用[课时要求]1。

应用楞次定律的推论判断感应电流的方向.2。

理解安培定则、左手定则、右手定则和楞次定律的区别.一、楞次定律的重要结论1.“增反减同”法感应电流的磁场总要阻碍引起感应电流的磁通量(原磁场磁通量)的变化.(1)当原磁场磁通量增加时,感应电流的磁场方向与原磁场方向相反.(2)当原磁场磁通量减少时,感应电流的磁场方向与原磁场方向相同.口诀记为“增反减同".例1如图1所示,一水平放置的矩形闭合线圈abcd在细长磁铁的N极附近竖直下落(线圈始终水平),保持bc边在纸外,ad边在纸内,由图中位置Ⅰ经过位置Ⅱ到位置Ⅲ,位置Ⅰ和位置Ⅲ都很接近位置Ⅱ,这个过程中线圈的感应电流()图1A.沿abcda流动B.沿dcbad流动C.先沿abcda流动,后沿dcbad流动D.先沿dcbad流动,后沿abcda流动答案A解析由条形磁铁的磁场分布可知,线圈在位置Ⅱ时穿过闭合线圈的磁通量最小,为零,线圈从位置Ⅰ到位置Ⅱ,从下向上穿过线圈的磁通量在减少,线圈从位置Ⅱ到位置Ⅲ,从上向下穿过线圈的磁通量在增加,根据楞次定律可知感应电流的方向是abcda.2.“来拒去留”法由于磁场与导体的相对运动产生电磁感应现象时,产生的感应电流与磁场间有力的作用,这种力的作用会“阻碍"相对运动.口诀记为“来拒去留".例2如图2所示,当磁铁突然向铜环运动时,铜环的运动情况是()图2A.向右摆动B.向左摆动C.静止D.无法判定答案A解析当磁铁突然向铜环运动时,穿过铜环的磁通量增加,为阻碍磁通量的增加,铜环远离磁铁向右运动,故选A.3.“增缩减扩”法就闭合电路的面积而言,收缩或扩张是为了阻碍电路原磁通量的变化.若穿过闭合电路的磁通量增加,面积有收缩趋势;若穿过闭合电路的磁通量减少,面积有扩张趋势.口诀记为“增缩减扩”.说明:此法只适用于闭合回路中只有一个方向的磁感线的情况.例3如图3所示,在载流直导线旁固定有两平行光滑导轨A、B,导轨与直导线平行且在同一水平面内,在导轨上有两个可自由滑动的导体ab和cd。

《法拉第电磁感应定律》专题一

《法拉第电磁感应定律》专题一

《法拉第电磁感应定律》专题一磁通量、产生感应电流的条件、楞次定律和右手定则一.磁通量Φ 1.表达式:⊥⋅=ΦS B2.物理意义:穿过某一面积的磁感线条数。

3.如果穿过面积⊥S 的磁感线有进又有出,则可看作相互抵消,所以求磁通量时要按代数和的方法求总的磁通量:进出Φ-Φ=Φ。

二.产生感应电动势和感应电流的条件1.产生感应电流的条件:穿过闭合回路的磁通量发生变化。

2.产生感应电动势的条件:磁通量发生变化的物体(即可看作“电源”)。

若电路不闭合,就不会产生 ,但电路中仍有 。

三.感应电流(感应电动势)方向的判定1.右手定则——拇指:导体的运动方向(v 方向) 掌心:让磁感线垂直(或斜着)穿过 四指:导体中感应电流的方向用途:判定闭合回路的一部分导体做切割磁感线运动时,产生的感应电动势与感应电流的方向。

(特别注意:四指指向是电源内部电流的方向,因而也是电势升高的方向)2.楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.增反减同(步骤:①原B 方向;②Φ方向;③感B 方向;④感I 方向) 来拒去留增缩减扩:Φ的增大或减小使线圈面积有扩大或缩小的趋势练习:1.下列图中能产生感应电流的是( ) 2.如图所示,矩形闭合线圈与匀强磁场垂直,一定能产生感应电流的是() A .沿磁场方向平动 B .以一条边为轴转动C .线圈形状逐渐变为圆形D .沿纸平面加速平动楞次定律×××× × ×××× ×V (A ) (B ) (C ) (D ) (E ) (F )3.如图所示,开始时矩形线圈平面与匀强磁场的方向垂直,且一半在磁场内,一半在磁场外,若要使线框中产生感应电流,下列做法中可行的是( ) A .以ab 为轴转动B .以bd 边为轴转动(转动的角度小于60°)C .以bd 边为轴转动90°后,增大磁感强度D .以ac 为轴转动(转动的角度小于60°)4.关于感应电流的产生条件,下列说法正确的是 ( ) A .只要导体相对磁场运动,导体内一定有感应电流 B .只要导体做切割磁感线的运动,导体内一定有感应电流C .只要闭合电路在磁场中做切割磁感线的运动,电路中一定会有感应电流D .只要穿过闭合电路的磁通量发生变化,电路中一定会有感应电流5.如图所示,试根据已知条件画出导线中的感应电流方向(图中的导线是闭合电路中的一部分):6.关于对楞次定律的理解,下面说法中正确的是 ( ) A .感应电流的磁场方向,总是跟原磁场方向相同 B .感应电流的磁场方向,总是跟原磁砀方向相反 C .感应电流的方向总是使它的磁场阻碍原来磁通量的变化D .感应电流的磁场方向可以跟原来的磁场方向相同,也可以相反7.如图所示为某磁场磁感线,有铜线圈自图示A 位置落至B 位置,在下落过程中,自上向下看,线圈中的感应电流方向是 ( ) A .始终顺时针 B .始终逆时针 C .先顺时针再逆时针 D .先逆时针再顺时针8.一平面线圈用细杆悬于P 点,开始时细杆处于水平位置,释放后让它在如图所示的匀强磁场中运动,已知线圈平面始终与纸面垂直,当线圈第一次通过位置Ⅰ和位置Ⅱ时,顺着磁场的方向看去,线圈中的感应电流的方向分别为 ( ) 位置Ⅰ 位置Ⅱ A .逆时针方向 逆时针方向 B .逆时针方向 顺时针方向 C .顺时针方向 顺时针方向 D .顺时针方向 逆时针方向9.一个环形线圈放在磁场中,设第1秒内磁感线垂直于线圈平面向里,如图(甲)所示,若磁感强度B 随时间t 的变化的关系如(乙),那么在第2秒内线圈中的感应电流方向是( )××× × ××× × ×Bv (A ) (B )(C ) (D )A. 顺时针方向B. 逆时针方向C. 没有感应电流D. 先顺时针方向,后逆时针方向10.如图所示,在两根平行长直导线中,通以同方向、同强度的电流,导线框ABCD 和两导线在同一平面内,导线框沿着与两导线垂直的方向自右向左在两导线间匀速运动。

电磁感应经典专题总结

电磁感应经典专题总结

电磁感应专题1、关于电磁感应的几个基本问题(1)电磁感应现象利用磁场产生电流(或电动势)的现象,叫电磁感应现象。

所产生的电流叫感应电流,所产生的电动势叫感应电动势。

所谓电磁感应现象,实际上是指由于磁的某种变化而引起电的产生的现象,磁场变化,将在周围空间激起电场;如周围空间中有导体存在,一般导体中将激起感应电动势;如导体构成闭合回路,则回路程还将产生感应电流。

(2)发生电磁感应现象,产生感应电流的条件:发生电磁感应现象,产生感应电流的条件通常有如下两种表述。

①当穿过线圈的磁通量发生变化时就将发生电磁感应现象,线圈里产生感应电动势。

如线圈闭合,则线圈子里就将产生感应电流。

②当导体在磁场中做切割磁感线的运动时就将发生电磁感应现象,导体里产生感应电动势,如做切割感线运动的导体是某闭合电路的一部分,则电路里就将产生感应电流。

产生感应电动势的那部分导体相当于电源。

应指出的是:闭合电路的一部分做切割磁感线运动时,穿过闭合电路的磁通量也将发生变化。

所以上述两个条件从根本上还应归结磁通量的变化。

但如果矩形线圈abcd在匀强磁场B中以速度v平动时,尽管线圈的bc和ad边都在做切割磁感线运动,但由于穿过线圈的磁通量没有变,所以线圈回路中没有感应电流。

(3)发生电磁感应现象的两种基本方式及其理论解释①导体在磁场中做切割磁感线的相对运动而发生电磁感应现象:当导体在磁场中做切割磁感线的相对运动时,就将在导体中激起感应电动势。

这种发生电磁感应现象的方式可以用运动电荷在磁场中受到洛仑兹力的作用来解释。

②磁场变化使穿过磁场中闭合回路的磁通量改变而发生电磁感应现象:当磁场的强弱改变而使穿过磁场中的闭合回路程的磁通量发生变化时,就将在闭合回路程里激起感应电流。

这种发生电磁感应现象的方式可以用麦克斯韦的电磁场理论来解释。

(4)引起磁通量变化的常见情况(1)线圈在磁场中转动;(2)线圈在磁场中面积发生变化;(3)线圈中磁感应强度发生变化;(4)通电线圈中电流发生变化。

专题05 电磁感应与电磁波初步 (重难点知识集锦)

专题05 电磁感应与电磁波初步 (重难点知识集锦)

专题05 电磁感应与电磁波初步第1节磁场磁感线1、磁场概念的形成、电流的磁效应及电流周围的磁场分布。

(重点)2、磁场的物质性和基本性质(难点)1.电和磁的联系磁可以产生电,电也可以产生磁。

2.磁场①基本性质:磁体间、磁体与电流、电流与电流间都可以通过磁场产生力的作用②客观存在:磁场是客观存在的,看不见摸不着的。

3.磁感线磁感线是在磁场中画出的具有方向的曲线,在这些曲线上,每一点的切线方向都与该点的磁场方向一致。

4.安培定则用右手握住导线,让伸直的拇指所指的方向与电流方向一致,弯曲的四指所指的方向就是磁感线环绕的方向。

第2节 磁感应强度 磁通量1、磁感应强度的定义。

(重点)2、磁通量的概念及计算。

(重点)3、磁感应强度的计算。

(难点)4、磁通量的计算。

(难点)(一)磁感应强度1.方向:物理学中规定,小磁针静止时,N 极所指的方向为该点的磁感应强度方向,简称磁场的方向。

2.大小(1)公式:B F IL =(2)意义:表示磁场强弱和方向的物理量 (3)单位:特斯拉,简称特,符号T ,即m A NT ⋅=11 (二)匀强磁场:磁感应强度处处相等的磁场(三)磁通量1.定义:设在磁感应强度为B 的匀强磁场中,有一个与磁场方向垂直的平面,面积为S ,我们把B 与S 的乘积叫作穿过这个面积的磁通量2.公式:Φ=BS3.单位:韦伯,简称韦,符号Wb 。

211m T Wb ⋅=4.意义:磁通量表示穿过此平面的磁感线条数。

第3节 电磁感应现象及应用1.知道什么是电磁感应现象(重点)2.了解产生感应电流的条件(重点)3.电磁感应现象的产生及其条件(难点)4.电磁感应现象中的能量转化特点(难点)(一)电磁感应的发现1.发现人:法拉第。

2.定义:闭合电路的一部分导体在磁场里做切割磁感线的运动时,导体中就会产生电流,这种现象叫电磁感应现象。

3.感应电流:电磁感应产生的电流为感应电流。

(二)产生感应电流的条件1.条件:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中就产生感应电流。

高中物理电磁感应知识点归纳总结

高中物理电磁感应知识点归纳总结

高中物理电磁感应知识点归纳总结电磁感应是物理学中的重要部分,它研究了电流和磁场之间的相互作用以及磁场变化对电场的影响。

在高中物理课程中,学生将学习有关电磁感应的基本原理、法拉第电磁感应定律、感应电动势、互感和自感等知识。

下面是对这些知识点的归纳总结。

1. 法拉第电磁感应定律法拉第电磁感应定律是电磁感应的基本定律,它描述了磁场发生变化时感应电动势的产生情况。

定律表述如下:当磁场的磁通量Φ发生变化时,通过电路的感应电动势ε的大小与变化率成正比,即ε = -dΦ/dt。

其中,ε表示感应电动势,Φ表示磁通量,t表示时间。

该定律指出,只有磁场的变化才会产生感应电动势。

2. 感应电动势感应电动势是指由于电路中磁通量变化而产生的电动势。

它是法拉第电磁感应定律的直接应用。

当导体与磁场相互作用时,磁通量发生变化,从而感应电动势产生。

感应电动势的大小与磁场变化率、导体的长度、导体与磁场间的角度有关。

感应电动势可以通过下列公式计算:ε = -N(dΦ/dt),其中ε表示感应电动势,N表示线圈的匝数。

3. 感应电流感应电动势产生的结果是感应电流。

当感应电动势存在时,如果电路是闭合的,感应电动势将驱动电流流过电路。

感应电流的产生是为了抵消磁场的变化,从而维持能量守恒。

感应电流的大小与电路的阻抗有关。

4. 互感与自感互感是指当两个或多个电路的线圈相互作用时,其中一个线圈中的变化电流引起其他线圈中的感应电动势的现象。

互感的大小与线圈的匝数、线圈之间的耦合系数有关。

互感可以用公式M = k√(L1*L2)来计算,其中M表示互感,k表示耦合系数,L1和L2表示两个线圈的自感值。

自感是指电流改变时,由于线圈自身的磁场变化而产生的感应电动势。

自感的大小与线圈匝数、线圈的形状和大小有关。

自感可以用公式L = NΦ/I来计算,其中L表示线圈的自感,Φ表示线圈中的磁通量,I表示线圈中的电流。

综上所述,高中物理中的电磁感应知识点包括法拉第电磁感应定律、感应电动势、感应电流以及互感和自感。

高中物理 高三电磁感应微专题(学生版)

高中物理  高三电磁感应微专题(学生版)

高三电磁感应微专题(学生版)1、(2019·石家庄调研)如图所示,电路中L 是一电阻可忽略不计的电感线圈,a 、b 为L 的左、右两端点,A、B、C 为完全相同的三盏灯泡,原来开关S 是闭合的,三盏灯泡均发光。

某时刻将开关S 断开,则下列说法正确的是()A.a 点电势高于b 点,A 灯闪亮后缓慢熄灭B.b 点电势高于a 点,B、C 灯闪亮后缓慢熄灭C.a 点电势高于b 点,B、C 灯闪亮后缓慢熄灭D.b 点电势高于a 点,B、C 灯不会闪亮只是缓慢熄灭2、(2018·全国卷Ⅰ)如图,导体轨道OP Q S 固定,其中P Q S 是半圆弧,Q 为半圆弧的中点,O 为圆心。

轨道的电阻忽略不计。

OM 是有一定电阻、可绕O 转动的金属杆,M 端位于P Q S 上,OM 与轨道接触良好。

空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B 。

现使OM 从O Q 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ)。

在过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于()A.54B.32C.74D.23.(多选)(2018·全国卷Ⅲ)如图(a),在同一平面内固定有一长直导线P Q 和一导线框R ,R 在P Q 的右侧。

导线P Q 中通有正弦交流电i ,i 的变化如图(b)所示,规定从Q 到P 为电流正方向。

导线框R 中的感应电动势()A.在t =T4时为零B.在t =T2时改变方向C.在t =T2时最大,且沿顺时针方向D.在t =T 时最大,且沿顺时针方向4.(多选)(2017·全国卷Ⅱ)两条平行虚线间存在一匀强磁场,磁感应强度方向与纸面垂直。

边长为0.1m、总电阻为0.005Ω的正方形导线框abcd 位于纸面内,cd 边与磁场边界平行,如图(a)所示。

已知导线框一直向右做匀速直线运动,cd 边于t =0时刻进入磁场。

高中物理经典难题电磁感应专题

高中物理经典难题电磁感应专题

高中物理大题集练——电磁感应1、如图所示,两平行的光滑金属导轨安装在一倾角为a的光滑绝缘斜面上,导轨间距为L,电阻忽略不计且足够长,以宽度为d的有界匀强磁场垂直于斜面向上,磁感应强度为B.另有一长为2d的绝缘杆将一导体棒和一边长为d(d V L)的正方形线框连在一起组成的固定装置,总质量为m,导体棒中通有大小恒为I的电流.将整个装置置于导轨上,开始时导体棒恰好位于磁场的下边界处.由静止释放后装置沿斜面向上运动,当线框的下边运动到磁场的上边界MN处时装置的速度恰好为零•重力加速度为g.(1)求刚释放时装置加速度的大小;(2)求这一过程中线框中产生的热量;(3)之后装置将向下运动,然后再向上运动,经过若干次往返后,最终整个装置将在斜面上作稳定的往复运动.求稳定后装置运动的最高位置与最低位置之间的距离.2、如图(a)所示,间距为I、电阻不计的光滑导轨固定在倾角为0的斜面上。

在区域I内有方向垂直于斜面的匀强磁场,磁感应强度为B;在区域II内有垂直于斜面向下的匀强磁场,其磁感应强度B t的大小随时间t变化的规律如图(b)所示。

t=0时刻在轨道上端的金属细棒ab从如图位置由静止开始沿导轨下滑,同时下端的另一金属细棒cd在位于区域I内的导轨上由静止释放。

在ab棒运动到区域II的下边界EF处之前,cd棒始终静止不动,两棒均与导轨接触良好。

已知cd 棒的质量为m、电阻为R,ab棒的质量、阻值均未知,区域II沿斜面的长度为21,在t=t x时刻(t x未知)ab棒恰进入区域II,重力加速度为g。

求:(1) 通过cd棒电流的方向和区域I内磁场的方向;(2) 当ab棒在区域II内运动时,cd棒消耗的电功率;(3) ab棒开始下滑的位置离EF的距离;(4) ab棒开始下滑至EF的过程中回路中产生的热量。

3、如图甲所示,长、宽分别为L[=0.1m、L2=0.2m的矩形金属线框位于竖直平面内,其匝数为100匝,总电阻为1Q,可绕其竖直中心轴O1O2转动.线框的两个末端分别与两个彼此绝缘的铜环C、D(集流环)焊接在一起,并通过电刷和定值电阻R=9Q相连.线框所在空间有水平向右均匀分布的磁场,磁感应强度B的大小随时间t的变化关系如图乙所示,其中B0=5X1O-3T、B1=1X10-2T 和t1=2x10-3S.在0〜t1的时间内,线框保持静止,且线框平面和磁场垂直;t1时刻后线框在外力的驱动下开始绕其竖直中心轴以角速度3=200rad/s匀速转动.求:(2) 线框匀速转动后,在转动一周的过程中电流通过电阻R产生的热量;(3) 线框匀速转动后,从图甲所示位置转过90°的过程中,通过电阻R的电何量.4、有一金属细棒ab,质量m=0.05kg,电阻不计,可在两条轨道上滑动,如图所示,轨道间距为L=0.5m,其平面与水平面的夹角为0=37°,置于垂直于轨道甲平面向上的匀强磁场中,磁感应强度为B=1.0T,金属棒与轨道的动摩擦因数卩=0.5,(设最大静摩擦力与滑动摩擦力大小相等)回路中电源电动势为E=3V,内阻r=0.5Q.(g=10m/s2,sin37°=0.6,cos37°=0.8)求:(1)为保证金属细棒不会沿斜面向上滑动,流过金属细棒ab的电流的最大值为多少?(2)滑动变阻器R的阻值应调节在什么范围内,金属棒能静止在轨道上?5、如图所示,两根足够长的直金属导轨MN、PQ平行放置在倾角为0的绝缘斜面上,两导轨间距为L。

第三章磁路与电磁感应1

第三章磁路与电磁感应1
场媒质的磁性() 无关;而磁感应强度 B 与磁场媒
质的磁性有关。
总目录 章目录 返回 上一页 下一页
物质的磁性
1. 非磁性物质 非磁性物质分子电流的磁场方向杂乱无章,几乎
不受外磁场的影响而互相抵消,不具有磁化特性。
非磁性材料的磁导率都是常数,有:
0 r1 当磁场媒质是非磁性材料时,有: B( )
B=0H
总目录 章目录 返回 上一页 下一页
安培环路定律(全电流定律)
Hdl I
I1 H
式中: H d l 是磁场强度矢量沿任意闭合
I2
线(常取磁通作为闭合回线)的线积分;
I 是穿过闭合回线所围面积的电流的代数和。
安培环路定律电流正负的规定: 任意选定一个闭合回线的围绕方向,凡是电流方
向与闭合回线围绕方向之间符合右螺旋定则的电流
即有: Φ
NI l
F
Rm
S
式中:F=NI 为磁通势,由其产生磁通;
Rm 称为磁阻,表示磁路对磁通的阻碍作用; l 为磁路的平均长度;
S 为磁路的截面积。
2. 磁路的欧姆定律
若某磁路的磁通为,磁通势为F ,磁阻为Rm,则
F
Rm
此即磁路的欧姆定律。
总目录 章目录 返回 上一页 下一页
3. 磁路与电路的比较 磁路
磁通势F
磁通
磁感应强度B
磁阻 R m l
S
I
N
F NI
Rm
l
S
电路
电动势 E 电流 I 电流密度 J 电阻 R l
S
I
+
_E
R
I E R
E l
S
总目录 章目录 返回 上一页 下一页

专题:法拉第电磁感应定律综合应用

专题:法拉第电磁感应定律综合应用

【例5】如图所示,竖直平面内有一金属环,半径为a,总 电阻为R,磁感应强度为B的匀强磁场垂直穿过环平面,与环的 最高点A铰链连接的长度为2a、电阻为R/2的导体棒AB由水平 位置紧贴环面摆下,当摆到竖直位置时,B点的线速度为v,则 这时AB两端的电压大小为( )
【例6】(2012· 课标全国· 19)如 图所示,均匀磁场中有 一由半圆弧 及其直径构成的导线框,半圆直径与磁场边缘 重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大 小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的 轴以角速度ω匀速转动半周,在线框中产生感应电流.现使 线框保持图中所示位置,磁感应强度大小随时间线性变 化.为了产生与线框转动半周过程中同样大小的电流,磁感 应强度随时间的变化率 ΔB/Δt的大小应为 ( ) A.4ωB0/π B.2ωB0/π C.ωB0/π D.ωB0/2π
【例4】(2013福建,18)如图,矩形闭合线框在匀强 磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab 边和cd边刚进入磁场的时刻。线框下落过程形状不变,ab 边始终保持与磁场水平边界OO′ 平行,线框平面与磁场方向 垂直。设OO′ 下方磁场磁场区域足够大,不计空气影响,则 下列哪一个图像不可能反映线框下落过程中速度v随时间t变 化的规律( )
M v P a 2R e c C R B b f d N 2v Q
【例6】如图所示,在匀强磁场中,与磁感应强度B成 30°角放置一矩形线圈,线圈长l1=10cm、宽l2=8cm,共 100匝,线圈电阻r=1.0Ω,与它相连的电路中,电阻 R1=4.0Ω,R2=5.0Ω,电容C=50μF,磁感应强度变化如图 乙所示,开关S在t0=0时闭合,在t2=1.5s时又断开,求: (1)t=1.0s时,R2中电流的大小及方向; (2)S断开后,通过R2的电量。

电磁感应综合大题1

电磁感应综合大题1

电磁感应综合应用专题一、电磁感应中的电路问题1、为了提高自行车夜间行驶的安全性,小明同学设计了一种“闪烁”装置。

如图所示,自行车后轮由半径r 1=5.0×10-2m 的金属内圈、半径r 2=0.40m 的金属外圈和绝缘幅条构成。

后轮的内、外圈之间等间隔地接有4根金属条,每根金属条的中间均串联有一电阻值为R 的小灯泡。

在支架上装有磁铁,形成了磁感应强度B =0.10T 、方向垂直纸面向外的“扇形”匀强磁场,其内半径为r 1、外半径为r2、张角θ=π/6 。

后轮以角速度 ω=2πrad/s 相对于转轴转动。

若不计其它电阻,忽略磁场的边缘效应。

二、电磁感应中的力学问题2、如图1所示,匀强磁场的磁感应强度B 为0.5T ,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“A”形状的光滑金属导轨MPN (电阻忽略不计),MP 和NP 长度均为2.5m ,MN 连线水平,长为3m ,以MN 的中点O 为原点,OP 为x 轴建立一维坐标系Ox ,一根粗细均匀的金属杆CD ,长度d 为3m ,质量m 为1kg ,电阻R 为0.3Ω,在拉力F 的作用下,从MN 处以恒定速度v =1m/s 在导轨上沿x 轴正向运动(金属杆与导轨接触良好),g 取10m/s 2.(1)求金属杆CD 运动过程中产生的感应电动势E 及运动到x =0.8m 处电势差U CD ;(2)推导金属杆CD 从MN 处运动到P 点过程中拉力F 与位置坐标x 的关系式,并在图2中画出F ﹣x 关系图象;(3)求金属杆CD 从MN 处运动到P 点的全过程产生的焦耳热.三、电磁感应中的能量问题3、如图(a)为一研究电磁感应的实验装置示意图,其中电流传感器(电阻不计)能将各时刻的电流数据实时通过数据采集器传输给计算机,经计算机处理后在屏幕上同步显示出I-t图像。

平行且足够长的光滑金属轨道的电阻忽略不计,导轨平面与水平方向夹角θ=30°。

电磁感应专题(含答案)

电磁感应专题(含答案)

电磁感应专题1、如图所示,电阻不计的光滑平行金属导轨MN 和OP 水平放置,MO 间接有阻值为R 的电阻,两导轨相距为L ,其间有竖直向下的匀强磁场。

质量为m ,长度为L ,电阻为R 0的导体棒CD 垂直于导轨放置,并接触良好。

用平行于MN 向右的水平力拉动CD 从静止开始运动,拉力的功率恒定为P ,经过时间t 导体棒CD 达到最大速度v 0。

(1).求出磁场磁感强度B 的大小?(2).求出该过程中R 电阻上所产生的电热?2、如图所示, ab 、ef 是平行地固定在水平绝缘桌面上的光滑金属导轨,导轨间距为d .在导轨左端a 、c 上连有一个阻值为R 的电阻,一质量为3m ,长为d 的金属棒恰能置于导轨上并和导轨良好接触。

起初金属棒静止于MN 位置,整个装置处于方向垂直桌面向下、磁感应强度为B 的磁场中。

现有一质量为m 的带电量为q 的绝缘小球在桌面上从O 点(O 为导轨上的一点)以与ef 成60°斜向右方射向ab ,随后小球直接垂直地打在金属棒的中点上,并和棒粘合在一起(设小球与棒之间没有电荷转移)。

小球运动过程中不计导轨间电场的影响,导轨和金属棒的电阻不计。

求:⑪小球射入磁场时的出速度υ0;⑫电阻R 上产生的热量Q 和通过的电量Δq .3、如图所示,水平面上有两电阻不计的光滑金属导轨平行固定放置,间距d 为0.5米,左端通过导线与阻值为2欧姆的电阻R 连接,右端通过导线与阻值为4欧姆的小灯泡L 连接;在CDEF 矩形区域内有竖直向上均匀磁场,CE 长为2米,CDEF 区域内磁场的磁感应强度B 如图所示随时间t 变化;在t=0s 时,一阻值为2欧姆的金属棒在恒力F 作用下由静止从AB 位置沿导轨向右运动,当金属棒从AB 位置运动到EF 位置过程中,小灯泡的亮度没有发生变化。

求:(1)通过的小灯泡的电流强度;(2)恒力F 的大小;(3)金属棒的质量。

O4、如图所示,两根竖直的平行光滑导轨MN、PQ,相距为L。

电磁感应有关知识

电磁感应有关知识

电磁感应有关知识1、磁铁具有吸引铁、钴、镍等金属的能力,俗称吸引石。

2、磁场有磁力作用的空间,叫做磁场。

磁场由永久磁铁产生,也可由电流通过导线产生。

3、磁极磁场最强的地方称为磁极。

磁极有南极(S)和北极(N),磁极同性相斥,异性相吸。

4、磁力线磁场可用磁力线表示,磁力线有以下特点:1)磁力线上任意一点的切线方向就是该点的磁场方向。

2)磁力线是互不交叉的闭合曲线,在磁体外部由N极指向S极,磁体内部由S极指向N极。

3)磁力线越密磁场越强,磁力线越疏磁场越弱。

5、均匀磁场磁力线均匀分布而又相互平行的区域,称为均匀磁场。

6、电流的磁效应电流通过导线产生磁场,这种现象叫做电流的磁效应。

磁场的方向可用右手螺旋定则判断。

1)通电直导线磁场方向如下图所示:右手握导线,大拇指指向电流方向,弯曲四指所指的方向即为磁场方向。

2)通电螺旋管线圈磁场方向如下图所示:右手握线圈,四指指向电流方向,大拇指所指的方向即为磁场方向。

7、磁通垂直通过某一面积S的磁力线数叫作磁通。

Φ=BS8、磁感应强度1)磁感应强度是描述磁场中各点磁场强弱和方向的物理量,磁场中某点磁感应强度的方向就是该点磁力线的切线方向,大小等于一根具有单位长度,并与磁场方向相垂直的导体,通过单位电流时所受到的作用力。

B=F/IL 单位为特斯拉,简称特(T),工程上磁感应强度的单位是高斯(Gs),1T=10000Gs2)由B=Φ/S可知磁感应强度的大小等于与磁场方向垂直的单位面积上的磁通,故磁感应强度又称为磁通密度,简称磁密。

9、磁场强度取决于激磁电流、导体的形状和布置状况,与介质的性质无关,方向与所在点的磁感应强度方向相同。

10、磁导率磁导率是表示磁场中媒介质磁性能的物理量,又叫磁导系数。

11、相对磁导率媒介质磁导率与真空磁导率的比值称为相对磁导率。

1)反磁物质相对磁导率略小于1,如铜、银和炭等。

反磁物质仅受到磁场非常微弱的排斥。

2)顺磁物质相对磁导率略大于1,如锡和铝等。

电磁感应专题

电磁感应专题

电磁感应专题考点例析电磁感应是电学的重点,是高中物理中难度较大、综合性最强的部分。

这一章是高考必考内容之一。

如感应电流产生的条件、方向的判定、自感现象、电磁感应的图象问题,每年必考,题目多以选择题、填空题的形式出现,难度一般中档左右。

而感应电动势的计算、法拉第电磁感应定律,因与力学、电路、磁场、能量、动量等密切联系,涉及知识面广,综合性强,能力要求高,灵活运用相关知识综合解决实际问题,成为高考的重点。

本章知识应用,和生产、生活、高科技联系紧密,如日光灯原理、磁悬浮列车的确原理、电磁阻尼现象、延时开关、传感器的原理、超导技术的应用、电磁流量计等,要特别关注此类问题。

一、夯实基础知识1.深刻理解磁通量的概念及产生感应电流条件。

(1)磁通量:穿过某一面积的磁感线条数。

公式为BSsinαΦ=,其中a是指回路平面与磁感强度方向的夹角。

(2)合磁通:若通过一个回路中有方向相反的磁场,则不能直接用公式BSsinαΦ=求Φ,应考虑相反方向抵消以后所剩余的磁通量,亦即此时的磁通是合磁通。

(3)产生感应电流的条件:穿过闭合回路的磁通量发生的变化。

若电路不闭合,即使有感应电动势产生,也没有感应电流。

2.深刻理解楞次定律和右手定则。

(1)感应电流方向的判断有两种方法:楞次定律和右手定则。

当闭合电路中磁通量发生变化时,用楞次定律判断感应电流方向,但当闭合电路中一部分导体做切割磁感线运动时,则用右手定则就比较简便。

(2)楞次定律的内容:感应电流的磁场总是要阻碍引起感应电流的原磁通的变化。

可理解为:如原来磁场在增强,感应电流磁场与原磁场反向;如原来磁场在减弱,感应电流磁场就与原磁场方向一致。

“阻碍”不是“阻止”,线圈中的磁通量还是在改变的。

(3)应用楞次定律的基本程序是:(1)弄清原磁场是谁产生的(由磁体还是电流产生),画出穿过闭合回路的磁场方向和分析磁通量的变化情况(增或减);(2)判定感应电流磁场的方向;当磁通量增加时感应电流磁场与原磁场方向相反;当磁通量减少时感应电流的磁场与原磁场方向相同;(3)用安培定则(右手螺旋定则)确定感应电流的方向。

电磁感应问题归类解析

电磁感应问题归类解析

电磁感应问题归类解析摘要:电磁感应的综合问题实际上就是电学、磁学、力学与运动学的综合应用,解答此类问题的关键是要抓住知识点间的衔接。

比如:电路与欧姆定律是电与磁的衔接点;安培力是磁学与力学和运动学的衔接点。

除电磁感应和力学、电学的综合外,电磁学中的图象问题也是高考中的一个重点,本文据此部分出现的重点题型试举例说明。

关键词:物理教学;电磁感应;归类解析在多年的教学经验中,笔者总结了以下三种题型,对电磁感应问题进行归类解析。

通过自己的分析和总结,以期给同仁带来帮助。

题型一:电磁感应现象中的图象问题电流为顺时针方向……选项D正确。

方法总结:解决图象问题,首先要设法看懂图象,从中找出必要的信息,把图象反映的规律对应到实际过程中去;其次要根据实际过程进行抽象,用相应的图象去表达。

用到的方法:利用右手定则或楞次定律判定感应电流的方向,利用法拉第电磁感应定律判定电流的大小变化。

题型二:电磁感应现象中的力学问题电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此电磁感应问题往往跟力学问题联系在一起.解决此类问题的一般思路是:先由法拉笫电磁感应定律求感应电动势,然后根据欧姆定律求感应电流,再求出安培力,再后依照力学问题的处理方法进行,如进行受力情况分析、运动情况分析及功能关系分析等。

1.电磁感应中的平衡问题方法总结:解决电磁感应中平衡问题的基本方法还是力学的研究方法:确定研究对象;进行受力分析;根据平衡条件建立方程.只是受力中多了安培力,而安培力是由于感应电流产生的,故此类问题是将有关电磁感应规律、安培力公式和平衡条件相结合解题。

2.电磁感应中的运动问题在电磁感应中,由于磁场变化或导体杆的运动的速度的变化会引起感应电流的变化,感应电流的变化会引起安培力的变化,安培力的变化又可能引起合外力的变化,从而导致导体的加速度、速度等发生变化,而速度的变化反过来又影响感应电流、磁场力、合外力的变化,最终可能使导体达到稳定状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有关电磁感应的几个小专题(一)(一)学习磁场和电磁感应你注意了吗?磁场和电磁感应部分主要讲了两个定则,左手定则和右手定则;两个定律,楞次定律和法拉第电磁感应定律以及一些基本概念。

在考查一些物理量之间的关系以及一些基本概念时,许多学生经常混淆,陷入一些选择题的解答误区。

下面通过本节课引起同学们的注意。

1. 导体受的安培力为零,该处的磁感应强度可以不是零,你注意了吗?解析:导体受的安培力θsin BIL F =,θ是B 与I 的夹角,当B 与I 时平行时,B 与I 均不为零,但安培力却为零。

2. 导体受的安培力一定垂直B 和I ,但B 和I 却不一定垂直,你注意了吗?解析:由左手定则可知,安培力一定垂直于B 和I 决定的平面,所以安培力一定垂直B 也一定垂直I ,但B 和I 却不一定垂直。

3. 线圈面积越大,磁通量不一定越大,你注意了吗?解析:磁通量BS =Φ,S 是指充满磁感线且与磁感线垂直的投影面积。

不一定是线圈面积,如果线圈平面与磁感线平行,即使线圈面积再大,磁通量总为零。

4. 线圈面积大,穿过的磁通量不一定大,你注意了吗?解析:磁通量可用穿过某一面积的磁感线的条数来表示,若穿过某面的磁感线方向相反,穿过该面的磁通量为合磁通。

应取代数差。

如图1所示,虽然线圈a 的面积小于线圈b 的面积,但通过线圈a 的磁通量却大于穿过线圈b 的磁通量。

图15. 线圈转过相同的角度,磁通量变化量不一定相同,你注意了吗?解析:如图2所示,设线圈的面积为S ,匀强磁场的磁感应强度为B ,当线圈从图2所示的位置转过θ角时,甲图中穿过线圈的磁通量增加θsin BS =∆Φ,乙图中穿过线圈的磁通量减少)cos 1(θ-=∆ΦBS 。

图26. 线圈转动︒180,磁通量变化量并不为零,你注意了吗?解析:磁通量只有大小,没有方向,但它有正负,规定从一个侧面穿过的磁通量为正,则从另一个侧面穿过的磁通量为负。

若匀强磁场的磁感应强度为B ,线圈的面积为S ,原来B 和S 垂直,则线圈转动︒180时磁通量的变化量为BS 2=∆Φ。

7. 磁通量为零,感应电动势可以很大,你注意了吗?解析:由法拉第电磁感应定律t n E ∆∆Φ=可知,感应电动势并不与磁通量成正比,而与磁通量的变化率成正比,当磁通量为零时感应电动势可以很大。

8. 线圈在磁场中转动时可能产生感应电流也可能不产生,你注意了吗?解析:产生感应电流的条件是:穿过闭合电路的磁通量发生变化,在图3甲中,当线圈转动时穿过线圈的磁通量做周期性的变化,线圈中将产生感应电流,在图3乙中当线圈转动时穿过线圈的磁通量不发生变化,线圈中将不产生感应电流。

图39. 线圈做切割磁感线运动时可能产生感应电流也可能不产生,你注意了吗?解析:在图4甲中,当线圈向右拉出时,线圈不仅切割磁感线,而且穿过线圈的磁通量在减小,所以线圈中将产生感应电流,在图4乙中线圈垂直纸面向里运动,虽然线圈切割磁感线,但穿过线圈的磁通量不发生变化,所以线圈中不产生感应电流。

图410. 有电势差但不一定产生感应电流,你注意了吗?解析:如图5所示,设磁场范围足够大,当边长为L 的正方形线圈以水平速度v 向右匀速运动时,AC 和BD 两条边不切割磁感线,将不产生感应电动势。

而AB 和CD 两条边切割磁感线将产生感应电动势。

均为BLv E =,由于穿过线圈和磁通量不发生变化,线圈中将不产生感应电流,但AB 和CD 两端均有电势差,且BLv U U CD AB ==。

图5(二)楞次定律的因果关系楞次定律与力和运动的综合命题,多次以选择、填空的题型出现,充分考查考生的综合分析能力。

1. 楞次定律中的因果关系楞次定律所提示的电磁感应过程中有两个最基本的因果关系,一是感应磁场与原磁场磁通量变化之间的阻碍与被阻碍的关系,二是感应电流与感应磁场间的产生和被产生的关系。

抓住“阻碍”和“产生”这两个因果关联点是应用楞次定律解决物理问题的关键。

2. 运用楞次定律处理问题的思路(1)判断感应电流方向类问题的思路。

运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为:① 明确原磁场:弄清原磁场的方向及磁通量的变化情况;② 确定感应磁场:即根据楞次定律中的“阻碍”原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向;③ 判定电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流方向。

(2)判断闭合电路(或电路中可动部分导体)相对运动类问题的分析策略。

在电磁感应问题中,有一类综合性较强的分析判断类问题,主要讲的是磁场中的闭合电路在一定条件下产生了感应电流,而此电流又处于磁场中,受到安培力作用,从而使闭合电路或电路中可动部分的导体发生了运动。

对其运动趋势的分析判断可有两种思路方法:① 常规法:据原磁场(原B 方向及∆Φ情况)−−−−→−楞次定律确定感应磁场(感B 方向)−−−−→−安培定则判断感应电流(感I 方向)−−−−→−左手定则导体受力及运动趋势。

② 效果法:由楞次定律可知,感应电流的“效果”总是阻碍引起感应电流的“原因”,深刻理解“阻碍”的含义。

据“阻碍”原则,可直接对运动趋势作出判断,更简捷、迅速。

[例1] 如图1所示,通电螺线管与电源相连,在螺线管同一轴线上套有三个轻质闭合铝环,b 在螺线管中央,a 在螺线管左端,c 在螺线管右端。

当开关S 闭合时,若忽略三个环中感应电流的相互作用,则( )A. a 向左运动,c 向右运动,b 不动B. a 向右运动,c 向左,b 不动C. c b a ,,都向左运动D. c b a ,,都向右运动图1例题意图:考查楞次定律、安培定则、左手定则的综合应用能力及逻辑推理能力。

B 级要求。

错解分析:找不到该题中现象间的因果关系,即感应磁场与原磁场磁通量变化之间的阻碍与被阻碍关系;感应电流与感应磁场间的产生和被产生的关系;寻找不到先行现象和后继现象间的关联点,从而无法顺利地推理判断出正确选项。

解题方法与技巧:首先应弄清楚,当开关S 闭合时,由通电螺线管所产生的磁场在铝环c b a ,,中的磁通量变化情况。

电学知识告诉我们,通电后,该螺线管的磁场等效为一个N 极在左、S 极在右的条形磁铁的磁场(如图2所示),当开关S 闭合时,向左通过各铝环的磁通量突然增大。

图2然后,由于向左通过各铝环的磁通量突然增大,根据楞次定律可知,各铝环的感应磁场方向必然与螺线管的磁场方向相反而向右。

接着,运用安培定则可确定,各铝环的感应电流方向如图(乙)所示,从右向左看均为逆时针方向。

最后,根据图3所提供的感应电流和原磁场的分布情况,运用左手定则可判断c b a ,,三个铝环所受的安培力分别如图3所示,于是a 受安掊力a F 作用,向左运动,c 环受安培力c F 作用,向右运动,而由b 环受力的对称性可知,b 环所受的安培力b F 合力为零,b 环仍然静止。

因此正确答案为选项A 。

图3[例2] 如图4所示,一水平放置的圆形通电线圈1固定,另一较小的圆形线圈2从1的正上方下落,在下落过程中两线圈平面始终保持平行共轴,则线圈2从正上方下落至1的正下方过程中,从上往下看,线圈2的感应电流为( )A. 无感应电流B. 有顺时针方向的感应电流C. 先是顺时针方向,后是逆时针方向的感应电流D. 先是逆时针方向,后是顺时针方向的感应电流图4解法1:线圈1中环形电流的磁场方向由安培定则可知向上,线圈2从正上方下落到与线圈1共面的过程中穿过线圈2的磁通量增加,感应电流形成的磁场要阻碍磁通量的增加,故感应电流形成的磁场方向与线圈1的磁场方向相反,再根据安培定则判断可知,线圈2中电流方向为顺时针。

在线圈2从与1共面落到正下方的过程中,穿过线圈2的磁通量减少,感应电流形成的磁场要阻碍磁通量的减少,故感应电流形成的磁场与线圈1的磁场方向相同,再根据安培定则判断可知,线圈2中电流方向为逆时针。

所以答案选C。

解法2:由楞次定律可知,感应电流在原磁场所受到的作用力阻碍它们的相对运动。

则在下落过程中应是斥力,反向电流相斥,故2中电流顺时针,在远离过程中应是引力,同向电流相吸,故2中电流逆时针,应选C。

正确理解阻碍的含义,解题方便快捷。

(三)从多个视角解读“楞次定律”楞次定律作为一个重要的知识点,包容了丰富的内涵,体现了辩证法,极具内在的美感。

1. 楞次定律与右手定则关系从研究对象上说,楞次定律研究的是整个闭合回路,右手定则研究的是闭合电路的一部分,即一段导线做切割磁感线运动。

楞次定律可应用于由磁通量变化引起感应电流的各种情况,右手定则只用于一段导线在磁场中做切割磁感线运动的情况,因此,右手定则可以看作楞次定律的特殊情况。

2. 如何理解楞次定律中的“阻碍”?感应电流的效果总是要阻碍产生感应电流的原因,常见有以下几种表现:(1)增反减同从磁通量角度来看,感应电流的效果总是要阻碍引起感应电流的磁通量(原磁通量)的变化,即当原磁通量增加时,感应电流的磁场就与原磁场方向相反,当原磁通量减少时,感应电流的磁场就与原磁场方向相同。

[例1] 如图1所示,螺线管CD的导线绕法不明。

当磁铁AB插入螺线管时,电路中有图示方向的感应电流产生,下列关于螺线管极性的判断正确的是()A. C端一定是N极B. C端一定是S极C. C端的极性一定与磁铁B端的极性相同D. 无法判断极性的关系,因螺线的绕法不明图1正确答案:C分析与解答:当磁铁AB插入螺线管的过程,螺线管内原磁通量增加,根据楞次定律可知,螺线管中感应电流的磁场就与原磁场方向相反,所以螺线管中感应电流形成的电磁铁C端极性一定与磁铁B端的极性相同。

(2)来拒去留从导体与磁体的相对运动角度来看,感应电流的效果总是要阻碍导体和磁体的相对运动。

[例2] 如图2所示,一闭合的金属环从静止开始由高处下落通过条形磁铁后继续下落,空气阻力不计,则在圆环的运动过程中,下列说法正确的是()A. 圆环在磁铁的上方时,加速度小于g,在下方时大于gB. 圆环在磁铁的上方时,加速度小于g,在下方时也小于gC. 圆环在磁铁的上方时,加速度小于g,在下方时等于gD. 圆环在磁铁的上方时,加速度大于g,在下方时小于g图2正确答案:B分析与解答:此题易错选A或C,原因是在判断磁力作用时缺乏对条形磁铁磁感线的空间分布的了解。

今用楞次定律第二种推广含义来判断:感应电流总是阻碍导体间的相对运动,意思是,总a<;是阻碍导体间的距离变化。

因此圆环在磁铁的上方下落时,磁场力总是阻碍圆环下落,即ga<。

而下落到磁铁的下方时,由于圆环与磁铁的距离增大,磁场力要阻碍它向下距离增大,因此g 点评:一般地,凡是由于外界因素而使导体运动,进而产生感应电流的,都可用“阻碍导体的相对运动”来判定。

此方法避免了对磁铁磁感线空间分布的判断,使问题的解答简便。

相关文档
最新文档