2017年天津市南开区中考数学二模试卷及解析答案word版
天津市南开区2017年中考数学模拟试卷(5)含答案
天津市南开区2017年中考数学模拟试卷(5)含答案2017年九年级数学中考模拟试卷一、选择题:1.若|m|=3,|n|=5且m-n>0,则m+n的值是()A.-2B.-8或-2C.-8或8D.8或-22.如图,已知∠α的一边在x轴上,另一边经过点A(2,4),顶点为(﹣1,0),则sinα的值是()A.0.4B.C.0.6D.0.83.下列四个图案中,属于中心对称图形的是()A.B.C. D.4.2016年2月19日,经国务院批准,设立无锡市新吴区,将无锡市原新区的鸿山、旺庄、硕放、梅村、新安街道划和滨湖区的江溪街道归新吴区管辖.新吴区现有总人口322819人,这个数据用科学记数法(精确到千位)可表示为()A.323×103B.3.22×105C.3.23×105D.0.323×1065.如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个6.如图,以数轴的单位长度线段为边作一个正方形,以表示数2的点为圆心、正方形对角线的长为半径画弧,交数轴于点A,则点A表示的数是()A.-B.2-C.1-D.1+7.如果()2÷()2=3,那么a8b4等于()A.6B.9C.12D.818.若非零实数a、b满足4a2+b2=4ab,则=()A.2B.﹣2C.4D.﹣49.使有意义的x的取值范围是()A.x≥B.x>C.x>﹣D.x≥﹣10.下列说法中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相垂直平分且相等的四边形是菱形11.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为()12.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()二、填空题:13.分解因式:a2﹣6a+9﹣b2=.14.化简:=_______.15.暑假即将来临,小明和小亮每人要从甲、乙、丙三个社区中随机选取一个社区参加综合实践活动,那么小明和小亮选到同一个社区参加实践活动的概率为.16.结合正比例函数y=4x的图像回答:当x>1时,y的取值范围是17.如图,正方形ABCD的边长为25,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别落在边AD、AB、BC、CD上,则每个小正方形的边长为.18.若函数y=mx2+(m+2)x+0.5m+1的图象与x轴只有一个交点,那么m的值为.三、解答题:19.解不等式组.20.央视新闻报道从5月23日起,在《朝闻天下》、《新闻直播间》、《新闻联播》和《东方时空》等多个栏目播放《湟鱼洄游季探秘青海湖》新闻节目,广受全国观众关注,青海电视台到我市某中学进行宣传调查活动,随机调查了部分学生对湟鱼洄游的了解程度,以下是根据调查结果做出的统计图的一部分:(1)根据图中信息,本次调查共随机抽查了名学生,其中“不了解”在扇形统计图中对应的圆心角的度数是,并补全条形统计图;(2)该校共有3000名学生,试估计该校所有学生中“非常了解”的有多少名?(3)青海电视台要从随机调查“非常了解”的学生中,随机抽取两人做为“随行小记者”参与“湟鱼洄游”的宣传报道工作,请你用树状图或列表法求出同时选到一男一女的概率是多少?并列出所有等可能的结果.21.如图,△ABC内接于⊙O,且BC是⊙O的直径,AD⊥BC于D,F是弧BC中点,且AF交BC于E,连接OA,(1)求证:AE平分∠DAO;(2)若AB=6,AC=8,求OE的长.22.如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)23.如图,在一面靠墙的空地商用长为24米的篱笆,围成中间隔有二道篱笆的长方形花圃.设花圃的宽AB为x 米,面积为S平方米.(1)求S与x的函数关系式及自变量的取值范围;(2)已知墙的最大可用长度为8米;①求所围成花圃的最大面积;②若所围花圃的面积不小于20平方米,请直接写出x的取值范围.24.(1)如图1,在线段AB上取一点C(BC>AC),分别以AC、BC为边在同一侧作等边ACD与等边BCE,连结AE、BD,则ACE经过怎样的变换(平移、轴对称、旋转)能得到DCB?请写出具体的变换过程;(不必写理由)(2)如图2,在线段AB上取一点C(BC>AC),如果以AC、BC为边在同一侧作正方形ACDG与正方形CBEF,连结EG,取EG的中点M,设DM的延长线交EF于N,并且DG=NE;请探究DM与FM的关系,并加以证明;(3)在图2的基础上,将正方形CBEF绕点C顺时针旋转(如图3),使得A、C、E在同一条直线上,请你继续探究线段MD、MF的关系,并加以证明.25.如图,已知抛物线与x轴交于A(﹣1,0)、B(5,0)两点,与y轴交于点C(0,5).(1)求该抛物线所对应的函数关系式;(2)D是笫一象限内抛物线上的一个动点(与点C、B不重合),过点D作DF⊥x轴于点F,交直线BC于点E,连结BD、CD.设点D的横坐标为m,△BCD的面积为S.①求S关于m的函数关系式及自变量m的取值范围;②当m为何值时,S有最大值,并求这个最大值;③直线BC能否把△BDF分成面积之比为2:3的两部分?若能,请求出点D的坐标;若不能,请说明理由.参考答案1.D2.D3.D4.C5.A6.B7.B8.A9.A10.C11.C12.C13.(a﹣3+b)(a﹣3﹣b).14.略15.答案为:.16.略17.解:如图所示:∵正方形ABCD边长为25,∴∠A=∠B=90°,AB=25,过点G作GP⊥AD,垂足为P,则∠4=∠5=90°,∴四边形APGB是矩形,∴∠2+∠3=90°,PG=AB=25,∵六个大小完全一样的小正方形如图放置在大正方形中,∴∠1+∠2=90°,∴∠1=∠FGB,∴△BGF∽△PGE,∴=,∴=,∴GB=5.∴AP=5.同理DE=5.∴PE=AD﹣AP﹣DE=15,∴EG=5,∴小正方形的边长为.18.答案为:0或2或﹣2.19.解①得x>﹣0.5,解②得x≤0,则不等式组的解集是﹣0.5<x≤0.20.解:(1)根据题意得:(16+20)÷72%=50(名),72°,则本次调查共随机抽查了50名学生,“不了解”在扇形统计图中对应的圆心角的度数是72°;故答案为:50;72°;(2)根据题意得:240(名),则估计该校所有学生中“非常了解”的有240名;所有等可能的情况有12种,其中一男一女的情况有6种,则P(一男一女)=0.5.21.(1)证明:连接OA,∵BC是⊙O的直径,∴∠BAC=90°,∴∠C+∠B=90°,∵AD⊥BC,∴∠B+∠BAD=90°,∴∠BAD=∠C,∵OA=OC,∴∠OAC=∠C,∴∠BAD=∠OAC,∵F是弧BC中点,∴∠BAF=∠CAF,∴∠DAE=∠OAE,即AE平分∠DAO;(2)解:连接OF,∵∠BOF=2∠BAF=∠BAC=90°,∴OF⊥BC,∵AD⊥BC,∴OF∥AD,∴DE:OE=AD:OF,∵AB=6,AC=8,∴BC=AB 2+AC 2=10,∴AD=AB•ACBC=4.8,∴BD=AB 2−AD 2=3.6,∴OD=OB-BD=5-3.6=1.4,∴DE:OE=4.8:5=24:25,∴OE=5/7.22.解:由题意得,AH=10米,BC=10米,在Rt△ABC 中,∠CAB=45°,∴AB=BC=10,在Rt△DBC 中,∠CDB=30°,∴DB==10,∴DH=AH﹣AD=AH﹣(DB﹣AB)=10﹣10+10=20﹣10≈2.7(米),∵2.7米<3米,∴该建筑物需要拆除.23.解:(1)S=x(24﹣4x)=﹣4x 2+24x(0<x<6)(2)①S=﹣4x 2+24x=﹣4(x﹣3)2+36由,解得4≤x<6当x=4时,花圃有最大面积为32②令﹣4x 2+24x=20时,解得x 1=1,x 2=5所以5<x<624.(1)将ACE绕点C顺时针旋转60°后能得到DCB (2)如图(2),答:相等且垂直.先证MGD≌MEN∴DM=NM.在中,.∵NE=GD,GD=CD,∴NE=CD,∴FN=FD即FM⊥DM,∴DM与FM相等且垂直(3)如图(3),答:相等且垂直.延长DM交CE于N,连结DF、FN先证MGD≌MNE∴DM =NM,NE=DG.∵∠DCF=∠FEN=45°,DC=DG=NE,FC=FE,∴DCF≌NEF,∴DF=FN,∠DFC=∠NFE,可证∠DFN=90°,即FM=DM,FM⊥DM∴DM与FM相等且垂直25.。
天津市南开区一零九中 2017年九年级数学中考模拟试卷(解析版)
2017年中考数学模拟题一、选择题:1. 计算5﹣(﹣2)×3的结果等于()A. ﹣11B. ﹣1C. 1D. 11 【答案】D【解析】【分析】【详解】5-(-2)×3 =11故选:D.【点睛】2. 在Rt△ABC中,∠C=90°,若tan A=512,则sin A=()A. 1213B.512C.135D.513【答案】D 【解析】BC=5,AC=12,则AB=13.则sinA=513.故选D.3. 点p(5,-3)关于原点对称的点的坐标是()A. (3,-5)B. (-5,-3)C. (-5,3)D. (-3,5)【答案】C【解析】试题分析:点P(5.-3)关于原点对称的点的坐标是(-5,3).故选C.考点:关于原点对称的点的坐标.4. 我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4400000000人,这个数用科学记数法表示为()A. 4.4×108B. 4.40×108C. 4.4×109D. 4.4×1010【答案】C【解析】分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:4 400 000 000=4.4×109,故选C.5. 如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.【答案】D【解析】试题分析:观察几何体,可知该几何体是由3个大小完全一样的正方体组成的,它的左视图是,故答案选D.考点:简单几何体的三视图.6.251144=51122(4)4-=±22222-==-11113164424+=+=;错误的个数为( )A. 1B. 2C. 3D. 4 【答案】D【解析】【分析】根据算术平方根的定义即可得到结论.25 1 1441312,故错误;()24-16,故错误;()22-4=2,故错误;④11164+=54,故错误; 所以这4个都是错的. 故选D .【点睛】本题考查了算术平方根的定义,熟记算术平方根的定义是解题的关键.7.化简21(1)211x x x x ÷-+++的结果是( )A. 11x + B. 1x x+ C. x +1D. x ﹣1【答案】A 【解析】 【分析】根据分式混合运算法则计算即可. 【详解】解:原式=2211(1)1(1)1x x x x x x x x x +÷=⋅=++++ .故选:A .【点睛】本题考查的是分式的混合运算,熟知分式混和运算的法则是解答本题的关键. 8. 方程3x (x ﹣1)=5(x ﹣1)的根为( ) A. x=53B. x=1C. x 1=1 x 2=53D. x 1=1 x 2=35【答案】C 【解析】3x (x ﹣1)=5(x ﹣1)变形:125(1)(35)01,3x x x x --=⇒== 故选C.9. 要使式子2x -有意义,则的取值范围是【 】 A. x 0> B. x 2≥-C. x 2≥D. x 2≤【答案】D 【解析】 【分析】2x -2x 0x 2-≥⇒≤. 故选D.10. 如图,在正方形ABCD 中,2AB =,延长BC 到点E ,使1CE =,连接DE ,动点P 从点A 出发以每秒1个单位长度的速度沿AB BC CD DA →→→向终点A 运动.设点P 的运动时间为t 秒.当ABP △和DCE 全等时,t 的值为( )A. 3B. 5C. 7D. 3或7【答案】D 【解析】 【分析】分两种情况,①当点P 在BC 边上时,②当点P 在AD 边上时,找出对应的边列式计算即可. 【详解】当点P 在BC 边上时,在ABP △与DCE 中,90AB DC ABP DCE BP CE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴()ABP DCE SAS ≌. 由题意得21BP t =-=, ∴3t =.当点P 在AD 上时,在ABP △与CDE △中,90AB CD BAP DCE AP CE =⎧⎪∠=∠=︒⎨⎪=⎩, ∴()ABP CDE SAS ≌,由题意得81AP t =-=,解得7t =. 当点P 在CD 上时,不满足条件.∴当t 的值为3或7时,ABP △和DCE 全等. 故选D .【点睛】本题考查的是正方形的性质和全等三角形的性质,能够分情况讨论是解题的关键. 11. 函数6y x=- 的图象经过点A (x 1 ,y 1)、B (x 2 ,y 2),若x 1<x 2<0,则y 1、y 2、0三者的大小关系是( ) A. y 1<y 2<0B. y 2<y 1<0C. y 1>y 2>0D. y 2>y 1>0【答案】D 【解析】分析:本题考查的是反比例函数的性质. 解析:因为反比例函数y=﹣6x,在每一支上y 随x 的增大而增大,∵x 1<x 2<0,∴y 2>y 1>0. 故选D.12. 如图,在直角坐标系中,正△AOB 的边长为2,设直线x=t (0≤t≤2)截这个三角形所得位于此直线左方的图形的面积为y ,则y 关于t 的函数图象大致是( )A .B. C. D.【答案】D 【解析】当01t ≤≤ 时,232y =当12t <≤时,233)2y t =- 根据二次函数的图像,易得D.二、填空题:13. 计算()22133x y xy ⎛⎫-⋅=⎪⎝⎭_______. 【答案】33x y -【解析】 【分析】根据同底数幂的乘法法则计算即可. 【详解】()22133x y xy ⎛⎫-⋅⎪⎝⎭22133x y xy =-⨯⋅33x y =-故答案是:33x y -【点睛】本题考查了同底数幂的乘法,熟练掌握同底数幂的乘法运算法则是解题的关键. 14. 计算:327-=______. 【答案】53【解析】 【分析】先化为最简二次根式,再合并同类二次根式. 【详解】解:33532733-=-=故答案为:53. 15. 在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为,那么口袋中小球共有_______个.【答案】15 【解析】 【分析】【详解】试题分析:设小球共有x 个,则315x =,解得:x =15 考点:概率的计算16. 已知一次函数y =ax +b (a 、b 为常数),x 与y 的部分对应值如下表: x –2 –1 0 1 2 3 y642–2–4那么方程ax +b =0的解是________,不等式ax +b >0的解集是_______. 【答案】 (1). x=1 (2). x<1 【解析】(1). x=1 (2). x<117. 如图,在ABC 中,AB =2,AC =4,ABC 绕点C 按逆时针方向旋转得到A B C ''△,使CB '∥AB ,分别延长AB ,CA '相交于点D ,则线段BD 的长为__.【答案】6. 【解析】试题分析:∵将△ABC 绕点C 按逆时针方向旋转得到△A′B′C ,AB =2,AC =4, ∴A′B′=AB =2,AC′=AC =4,∠CA′B′=∠A. 又∵CB′∥AB ,∴∠A′CB′=∠A. ∴△A′CB′∽△DAC. ∴CA AB AD AC '''=,即4284AD AD =⇒=. ∴BD=6. 考点:1.旋转的性质;2.平行的性质;3.相似三角形的判定和性质.18. 如图,在平面直角坐标系中,抛物线y=a 1(x ﹣2)2+2与y=a 2(x ﹣2)2﹣3的顶点分别为A ,B ,与x 轴分别交于点O ,C ,D ,E .若点D 的坐标为(﹣1,0),则△ADE 与△BOC 的面积比为______.【答案】1 【解析】根据二次函数的对称轴为直线2x = ,则(50),(40),(22),(23)E C A B -,,,, 则△ADE 与△BOC 的面积比为12:12=1 三、简答题:19. 解不等式组: 12(3)33222x x x --≤⎧⎪⎨-<+⎪⎩①②,并把解集在数轴上表示出来.【答案】2≤x<6 【解析】解:解不等式①,得:x≥2,解不等式②,得:x <6, 所以原不等式组的解集为:2≤x<6,数轴上表示解集如图:20. 已知甲同学手中藏有三张分别标有数字11,,124的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为,a b . (1)请你用树形图或列表法列出所有可能的结果. (2)现制定这样一个游戏规则:若所选出的能使得有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请你用概率知识解释 【答案】(1)列表见解析;(2)不公平,理由见解析. 【解析】 【分析】(1)首先根据题意画出树状图,然后根据树状图即可求得所有等可能的结果;(2)利用一元二次方程根的判别式,即可判定各种情况下根的情况,然后利用概率公式求解即可求得甲、乙获胜的概率,比较概率大小,即可确定这样的游戏规是否公平. 【详解】(1)列表如下: a b12312(12,1)(12,2)(12,3)14(14,1)(14,2)(14,3)1(1,1)(1,2)(1,3)(2)要使方程210ax bx ++=有两个不相等的实根,即△=240b a ->,满足条件的有5种可能:1111,2,,2,,3,,3,(1,3)2424⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∴甲获胜的概率为()59P =甲,乙获胜的概率为()49P =乙,5499>即此游戏不公平.21. 如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB·AE.求证:DE是⊙O的切线.【答案】证明略【解析】证明:连结DC,DO并延长交⊙O于F,连结AF.∵AD2=AB·AE,∠BAD=∠DAE,∴△BAD∽△DAE,∴∠ADB=∠E.又∵∠ADB=∠ACB,∴∠ACB=∠E,BC∥DE,∴∠CDE=∠BCD=∠BAD=∠DAC,又∵∠CAF=∠CDF,∴∠FDE=∠CDE+∠CDF=∠DAC+∠CDF=∠DAF=90°,故DE是⊙O的切线22. 已知:在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若CE= 2,cos∠ACD= 45,求tan∠AEC的值及CD的长.【答案】tan∠AEC=3, CD=1212 5【解析】解:在RT△ACD与RT△ABC中∵∠ABC+∠CAD=90°, ∠ACD+∠CAD=90°∴∠ABC=∠ACD, ∴cos∠ABC=cos∠ACD=4 5在RT△ABC中,45BCAB=令BC=4k,AB=5k 则AC=3k由35BEAB= ,BE=3k 则CE=k,且2则2,2∴RT△ACE中,tan∠AEC=ACEC=3∵RT△ACD 中cos∠ACD=45CD AC ,,CD=12125. 23. 如图,A (0,1),M (3,2),N (4,4).动点P 从点A 出发,沿y 轴以每秒1个单位长的速度向上移动,且过点P 的直线l :y=-x+b 也随之移动,设移动时间为t 秒. (1)当t=2时,则AP= ,此时点P 的坐标是 . (2)当t=3时,求过点P 的直线l :y=-x+b 的解析式?(3)当直线l :y=-x+b 从经过点M 到点N 时,求此时点P 向上移动多少秒? (4)点Q 在x 轴时,若S △ONQ =8时,请直按写出点Q 的坐标是 .【答案】(1) 2,(0,3);(2)y=-x+4; (3)3秒; (4)(4,0)或(-4,0). 【解析】 【分析】【详解】(1) 当t=2时,则AP=2,此时点P 的坐标是(0,3); (2)直线y=-x+b 交y 轴于点P (0,b ), 由题意,得b>0,t≥0,b=1+t 当t=3时,b=4, ∴y=-x+4;(3)当直线y=-x+b 过M (3,2)时2=-3+b ,解得b=5 ,5=1+t 1,∴t 1=4, 当直线y=-x+b 过N (4,4)时,4=-4+b ,解得 b=8,8=1+ t 2,∴t 2=7, ∴t 2-t 1=7-4=3秒; (4)由题意得:1482Q x ,解得:4Qx 或-4,∴点Q 的坐标是(4,0)或(-4,0).24. 如图1,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接AG 、BG 、CG 、DG ,且∠AGD =∠BGC , (1)求证:AD =BC ;(2)求证:△AGD∽△EGF;(3)如图2,若AD、BC所在直线互相垂直,求ADEF的值.【答案】(1)见解析;(2)见解析;(3) 2.ADEF=【解析】【分析】(1)根据线段垂直平分线上的点到线段两个端点的距离相等可得GA=GB,GD=GC.由“SAS”可判定△AGD≌△BGC根据全等三角形的对应边相等即可得AD=BC;(2)根据两边对应成比例且夹角相等的两个三角形相似可判定△AGB∽△DGC,再由相似三角形对应高的比等于相似比可得GA EGGD FG=,再证得∠AGD=∠EGF,根据两边对应成比例且夹角相等的两个三角形相似即可判定△AGD∽△EGF;(3)如图1,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.由△AGD≌△BGC可知∠GAD=∠GBC.在△GAM和△HBM中,由∠GAD=∠GBC,∠GMA=∠HMB可证得∠AGB=∠AHB=90°,根据等腰三角形三线合一的性质可得∠AGE =45°,即可得出 2.GAGE=根据相似三角形对应边的比相等即可得 2.AD AGEF EG==【详解】(1)∵GE是AB的垂直平分线,∴GA=GB.同理GD=GC.在△AGD和△BGC中,∵GA=GB,∠AGD=∠BGC,GD=GC,∴△AGD≌△BGC.∴AD=BC.(2)∵∠AGD=∠BGC,∴∠AGB=∠DGC.在△AGB和△DGC中,GA GBGD GC=,∠AGB=∠DGC,∴△AGB∽△DGC.∴GA EGGD FG=,又∠AGE=∠DGF,∴∠AGD=∠EGF,∴△AGD∽△EGF.(3)如图,延长AD交GB于点M,交BC的延长线于点H,则AH⊥BH.由△AGD≌△BGC,知∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB.∴∠AGB=∠AHB=90°,∴∠AGE=12∠AGB=45°,∴ 2.GAGE=又△AGD∽△EGF,∴ 2.ADAGEF EG==25. 如图,抛物线223y x x=-++与x轴交于A,B两点,与y轴交于点C,点D为抛物线的顶点,请解决下列问题.(1)填空:点C的坐标为(,),点D的坐标为(,);(2)设点P的坐标为(a,0),当PD PC-最大时,求a的值并在图中标出点P的位置;(3)在(2)的条件下,将△BCP沿x轴的正方向平移得到△B′C′P′,设点C对应点C′的横坐标为t(其中0<t<6),在运动过程中△B′C′P′与△BCD重叠部分的面积为S,求S与t之间的关系式,并直接写出当t 为何值时S最大,最大值为多少?【答案】(1)C(0,3),D(1,4);(2)a=﹣3;(3)S=22533?(0)42{133?(6)122t t tt t t-+<<-+≤<,当t=65时,S有最大值95.【解析】试题分析:(1)令x=0,得到C的坐标,把抛物线配成顶点式,可得顶点D的坐标;(2)延长CD交x轴于点P.因为PD PC-小于或等于第三边CD,所以当PD PC-等于CD时,PD PC-的值最大.因此求出过CD 两点的解析式,求它与x 轴交点坐标即可;(3)过C 点作CE ∥x 轴,交DB 于点E ,求出直线BD 的解析式,得到点E 的坐标,求出P′C′与BC 的交点M 的坐标,分两种情况讨论:①点C′在线段CE 上;②点C′在线段CE 的延长线上,再分别求得N 点坐标,再利用图形的面积的差,可表示出S ,再求得其最大值即可.试题解析:(1)在223y x x =-++中,令x=0,得到y=3,∴C (0,3),∵223y x x =-++=2(1)4x --+,∴D (1,4),故答案为C (0,3),D (1,4);(2)∵在三角形中两边之差小于第三边,∴延长DC 交x 轴于点P ,设直线DC 的解析式为y kx b =+,把D 、C 两点坐标代入可得:4{3k b b +==,解得:13k b =⎧⎨=⎩,∴直线DC 的解析式为3y x ,将点P 的坐标(a ,0)代入得a+3=0,求得a=﹣3,如图1,点P (﹣3,0)即为所求;(3)过点C 作CE ∥x ,交直线BD 于点E ,如图2,由(2)得直线DC 的解析式为3y x ,易求得直线BD 的解析式为26y x =-+,直线BC 的解析式为3y x =-+,在26y x =-+中,当y=3时,x=32,∴E 点坐标为(32,3),设直线P′C′与直线BC 交于点M ,∵P′C′∥DC ,P′C′与y 轴交于点(0,3﹣t ),∴直线P′C′的解析式为3y x t =+-,联立:3{3y x y x t=-+=+-,解得:2{62tx t y =-=,∴点M 坐标为(2t ,62t -),∵B′C′∥BC ,B′坐标为(3+t ,0),∴直线B′C′的解析式为3y x t =-++,分两种情况讨论:①当302t <<时,如图2,B′C′与BD 交于点N ,联立:,解得:3{2x t y t=-=,∴N 点坐标为(3﹣t ,2t ),S=S △B′C′P ﹣S △BMP ﹣S △BNB′=12×6×3﹣12(6﹣t )×12(6﹣t )﹣12t×2t=2534t t -+,其对称轴为t=65,可知当302t <<时,S 随t 的增大而增大,当t=65时,有最大值95; ②当362t ≤<时,如图3,直线P′C′与DB 交于点N , 联立:26{3y x y x t =-+=+-,解得:33{1223t x t y +=-=,∴N 点坐标为(33t +,1223t -),S=S △BNP′﹣S △BMP′=12(6﹣t )×1223t -﹣12×(6﹣t )×62t -=21(6)12t -=21312t t -+; 显然当32<t <6时,S 随t 的增大而减小,当t=32时,S=2716 综上所述,S 与t 之间的关系式为S=22533?(0)42{133?(6)122t t t t t t -+<<-+≤<,且当t=32时,S 有最大值,最大值为2716. ∵927516>,∴当t=65时,S 有最大值95. 考点:1.二次函数综合题;2.分类讨论;3.最值问题;4.平移的性质;5.分段函数;6.二次函数的最值;7.压轴题.。
天津市南开区2017年中考数学模拟试卷3附答案
2017年中考数学模拟题一、选择题:1.计算(-3)-(-6)的结果等于()A.3B.-3C.9D.182.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AmB上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定3.下列图形既是轴对称图形又是中心对称图形的是( )4.2016年2月19日,经国务院批准,设立无锡市新吴区,将无锡市原新区的鸿山、旺庄、硕放、梅村、新安街道划和滨湖区的江溪街道归新吴区管辖.新吴区现有总人口322819人,这个数据用科学记数法(精确到千位)可表示为()A.323×103B.3.22×105C.3.23×105D.0.323×1065.下列几何体的主视图与其他三个不同的是()6.16的算术平方根和25平方根的和是()A.9B.-1C.9或-1D.-9或17.计算的正确结果是()A.0B.C.D.8.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( )A.2 018B.2 008C.2 014D.2 0129.当实数 x 的取值使得有意义时,函数 y=x+1 中 y 的取值范围是()A.y≥﹣3B.y≥﹣1C.y>﹣1D.y≤﹣310.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形11.已知反比例函数,当1<x<2时,y的取值范围是( )A.0<y<5B.1<y<2C.5<y<10D.y>1012.二次函数y=ax2+bx+c的图象如图,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()二、填空题:13.分解因式:x3﹣6x2+9x= .14.函数y=的自变量的取值范围是15.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是.16.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.5元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.15元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.17.如图,AD=DF=FB,DE∥FG∥BC,则S:SⅡ:SⅢ= .Ⅰ18.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形____________(用相似符号连接).三、解答题:19.解不等式组:,并在数轴上表示不等式组的解集.20.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.21.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.22.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)23.小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?24.在△ABC中,AB=AC=5,cos∠ABC=0.6,将△ABC绕点C顺时针旋转,得到△AB1C。
天津五区县2017年中考二模数学试题及答案
2017年天津市部分区初中毕业生学业考试第二次模拟练习数学参考答案一、选择题(本大题共12小题,每小题3分,共36分)(1)A (2)D (3)D (4)D (5)A (6)C(7)C (8)B (9)C (10)B (11)B (12)A二、填空题(本大题共6小题,每小题3分,共18分)(13)2618x xy -+ (14)125(15)答案不唯一 (16)81)1(1002=-x(17)4(18)(Ⅰ)52;(Ⅱ)如图,取格点M ,N ,连接MN 交AB于点P ,则点P 即为所求.三、解答题(本大题共7小题,共66分)(19)(本小题8分)解:(Ⅰ)x <3 ………... ……2分(Ⅱ)4x ≥- ………... ……4分(Ⅲ)(Ⅳ)4-≤x <3 ………... ……8分(20)(本小题8分)解:(Ⅰ)30 ………... ……1分(Ⅱ)补全图2 ………... ……2分.. ……6分第(18)题图∵ 在这组数据中,5出现了8次,出现的次数最多,∴ 这组数据的众数为5 ………... ……3分 ∵ 将这组数据按从小到大的顺序排列,其中处于中间的两个数都是5 ∴ 这组数据的中位数为5 ………... ……5分 (Ⅲ) 3.52027668544=⨯+⨯+⨯+⨯=x (棵), 答:抽查的20名学生平均每人的植树量5.3棵. ………... ……7分 13782603.5=⨯(棵)答:估计全校260名学生共植树1378棵. ………... ……8分 (21)(本小题10分)(Ⅰ)如图1:连接OC ………... ……1分 ∵CD 切⊙O 于点C∴CD OC ⊥ ………... ……2分 又∵四边形ABCD 是平行四边形∴AB ∥CD ∴AB OC ⊥又∵OB OC =∴︒=∠=∠45OCB B ………... ……3分 ∴︒=∠+∠=∠135OCB OCD BCD ………... ……4分∵四边形ABCD 是平行四边形∴︒=∠=∠135BCD DAB︒=∠=∠45B D ………... ……5分(Ⅱ)如图2,连接OC 交AB 于点E ,连接OB ………... ……6分由(1)可得AB OC ⊥∴222BE OE OB =-第(21)题图 1第(21)题图2222BE CE BC =-设cm x OE =,则()cm 3x CE -=又∵cm 3=OB ,cm 2=BC∴()2222323x x --=-∴37=x ……... ……7分即cm 37=OE ∴cm 32422=-=OE OB BE ………... ……8分 ∴cm 3282==BE AB ∵四边形ABCD 是平行四边形 ∴cm 328==AB CD ………... ……10分(22)(本小题10分)解:(Ⅰ)如图,过点D 作MN DP ⊥于点P ,……... ……1分 ∵DE ∥MN∴︒=∠=∠76ADE DCP ……... ……2分在Rt △CDP 中,DCDPDCP =∠sin ……... ……3分 ∴8.3897.04076sin =⨯≈︒=DC DP (cm )答:椅子的高度约为8.8cm 3 ………... ……4分(Ⅱ)作MN EQ ⊥于点Q ………... ……5分 ∴︒=∠=∠90EQB DPQ ∴DP ∥EQ第(22)题图QP又∵DF ∥MN ,︒=∠58AED ,︒=∠76ADE∴四边形DEQP 是矩形,且︒=∠=∠76ADE DCP ,︒=∠=∠58AED EBQ ∴,20==PQ DE 8.38==DP EQ 又∵在DPC Rt ∆和EQB Rt ∆中,︒=∠=67cos 40cos DCP CD CP ………... ……7分︒=∠=58tan 8.38EBQ tan EQ BQ ………... ……9分∴ 5476cos 402058tan 8.38≈︒++︒=++=CP PQ BQ BC (cm )答:椅子两脚B 、C 之间的距离约为54cm ………... ……10分(23)(本小题10分)解:(Ⅰ)1,2,2,1.5;75.12=+b a ,2,2; 第五空2分,其余每空1分,共8分;(Ⅱ)依题意y 与x 的关系式为()x x y -+=85.12即125.0+=x y …10分(24)(本小题10分) 解:(Ⅰ)A '(3-,3),B '(0,4) ………... ……2分(Ⅱ)①四边形CB B A '是平行四边形 ………... ……3分理由:如图2,∵C B '∥AB ∴BAC CA B ∠='∠又∵︒=∠+∠90CAO BAC ∴︒=∠+''∠90CAO A C B又∵︒='∠+''∠90A A O C A B ,且由旋转得A O OA '=,则A A O CAO '∠=∠ ∴C A B A C B ''∠=''∠ ………... ……4分 ∴A B C B ''=' 又∵AB B A ='' ∴AB C B ='∴四边形CB B A '是平行四边形 ………... ……5分 ②过点A '作x E A ⊥'轴,垂足为E由点A (32-,0)可得32=OA 又∵︒=∠90OAB ,︒=∠30AOB∴2=AB ,4=OB ,则32='A O ,2=''B A由︒='∠135A AO ,得︒='∠45OE A ∴622='='=A O E A OE ∴点A '(6,6) ………... ……6分 过点B '作E A F B '⊥',垂足为点F 由︒='∠45O A E ,得︒=''∠45B A E ∴2222=⨯='='F A F B ∴26-=EF ,26+='+F B OE∴点B '(26+,2-6) ………... ……7分(Ⅲ)C B '扫过的面积为12 ………... ……10分 ( 注:C B '扫过的图形是平行四边形) (25)(本小题10分)解:(Ⅰ)抛物线322+--=x x y 取0=y ,得11=x ,32-=x∴ A (3-,0),C (1,0) ………... ……2分 取0=x ,得3=y ∴B (0,3) ………... ……3分(Ⅱ)∵点D 为AC 中点,∴D (1-,0) ………... ……4分∵DE BE 2=,∴E (32-,1) ………... ……5分 设直线CE 为b kx y +=,把点C (1,0),E (32-,1)代入, F EyxA /B /C OBA图2得⎪⎩⎪⎨⎧=+=+-0132b k b k ,解得⎪⎪⎩⎪⎪⎨⎧=-=5353b k∴直线CE 为5353+-=x y ………... ……6分 由⎪⎩⎪⎨⎧+--=+-=3253532x x y x y 得⎩⎨⎧==01y x 或⎪⎪⎩⎪⎪⎨⎧=-=2551512y x ∴依题意点M (512-,2551) ………... ……7分 (Ⅲ)PG PC PA ++的最小值是192, ………... ……8分点P (199-,19312) ………... ……10分 附答案:∵AGQ ∆,APR ∆是等边三角形∴PR AR AP ==,AG AQ =,︒=∠=∠60RAP QAG∴G A P Q A R ∠=∠在Q A R ∆和G A P ∆中⎪⎩⎪⎨⎧=∠=∠=AP AR GAP QAR AGAQ∴Q A R ∆≌G A P ∆ ∴PG QR =∴QR PC PR PG PC PA ++=++∴当Q 、R 、P 、C 共线时PG PC PA ++的值最小,为线段QC 的值,如图: 作OA QN ⊥于点N ,作CQ AM ⊥于点M ,作CN PK ⊥于点K依题意︒=∠60GAO ,3=AO∴6===QA GQ AG ,︒=∠30AGO ∵︒=∠60AGQ ∴︒=∠90QGO ∴点Q (6-,33)在QNC Rt ∆中,33=QN ,7=CN ∴19222=+=CN QN QC ∴QCQNAC AM ACM ==∠sin ∴19576=AM ∵APR ∆是等边三角形, ∴︒=∠60APM ,AM PM 33=19191422=-=AM AC MC ∴19198=-=PM CM PC ∵QC QN PC PK PCN ==∠sin ,CQCNCP CK PCN ==∠cos ∴19312=PK ,1928=CK ∴199=OK ∴点P (199-,19312)。
天津市南开区2017年中考数学模拟试卷(4)含答案
2017年九年级数学中考综合复习题1.某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的三分之二人,但又不少于B种笔记本数量的三分之一,如果设他们买A种笔记本n本,买这两种笔记本共花费w元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?2.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨.现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.(1)将这些货物一次性运到目的地,有几种租用货车的方案?(2)若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?3.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?4.用总长为60cm的篱笆围成矩形场地.(Ⅰ)根据题意,填写下表:矩形一边长/m 5 10 15 20矩形面积/m2125 200 225 200(Ⅱ)设矩形一边长为lm,矩形面积为Sm2,当l是多少时,矩形场地的面积S最大?并求出矩形场地的最大面积;(Ⅱ)当矩形的长为 m,宽为 m时,矩形场地的面积为216m2.5.某企业投资112万元引进一条农产品加工生产线,该生产线投产后,从第1年到第x年的维修、保养费用累计..共为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,第2年的维修、保养费用为4万元.(1)求a和b的值;(2)若不计维修、保养费用,预计该生产线投产后每年可创利33万元.那么该企业在扣掉投资成本和维修、保险费用后,从第几年开始才可以产生利润?6.如图,在△ABC中,AB=AC.以AC为直径的⊙O交AB于点D,交BC于点E.过E点作⊙O的切线,交AB于点F.(1)求证:EF⊥AB;(2)若BD=2,BE=3,求AC的长.7.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)若⊙O半径为 2.5,OE=10时,求DE的长.8.如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=,求⊙O的半径r及sinB.9.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.⑴求证:AD平分∠BAC;⑵若AC=8,tan∠DAC=0.75,求⊙O的半径.10.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.。
天津市南开区2017年中考数学二模试卷附答案
2016-2017学年度南开区 九年级模拟数学 (二)一 选择题:1.(-2)3的结果是( )A.-6B.6C.-8D.82.4cos60°的值为( ) A.21 B.2 C.23 D.323.下列图形中,轴对称图形的个数是( )A.1B.2C.3D.44.小明上网查德H7N9禽流感病毒直径约为0.00000008米,用科学计数法表示为( )A.0.8×10-7米B.8×10-7米C.8×10-8米D.8×10-9米5.下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是( )6.估计2-41的值( )A.在4和5之间B.在3和4之间C.在2和3之间D. 在1和2之间7.如图,在平面直角坐标系中,点B 、C 、E 在y 轴上,Rt △ABC 讲过变换得到Rt △ODE ,若点C 的坐标为(0,1),AC=2,则这种变换可以是 ( )A.△ABC 绕点C 顺时针旋转90°,再向下平移3B.△ABC 绕点C 顺时针旋转90°,再向下平移1C.△ABC 绕点C 逆时针旋转90°,再向下平移1D.△ABC 绕点C 逆时针旋转90°,再向下平移38.下列等式成立的是( ) A.b a b a +=+321 B.b a b a +=+122 C.ba ab ab ab -=-2 D.b a a b a a +=+- 9.已知A(x 1,y 1),B(x 2,y 2),P(x 3,y 3)是反比例函数y=x 2上的三点,若x 1<x 2<x 3,y 2<y 1<y 3,则下列关系不正确的是( )A.x 1·x 2<0B.x 1·x 3<0C.x 2·x 3<0D.x 1+x 2<010.已知正方体的体积为22,则这个正方体的棱长为( ) A.1 B.2 C. 6 D.311.如图,四边形ABCD 是正方形,以CD 为边作等边△CDE ,BE 与AC 相交于点M ,则∠AMD 的度数是( )A.75°B.60°C.54°D.67.5°12.“如果二次函数y=ax 2+bx+c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx+c=0有两个不相等的实数根”.请根据你对这句话的理解,解决下面问题:若m 、n (m<n )是关于x 的方程1-(x-a)(x-b)=0的两根,且a < b, 则a 、b 、m 、n 的大小关系是( )A.m < a < b< nB.a < m < n < bC.a < m < b< nD.m < a < n < b二 填空题: 13. -|-3|= .14.已知关于x 的方程x 2-2x+a=0有两个不相等的实数根,则a 的取值范围为 .15.小玲在一次班会中参加知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机抽取1道,抽中数学题的概率是 .16.如果直线y=-2x+k 与两坐标轴所围成的三角形面积是9,则k 的值为 .17.如图,四边形ABCD 中,∠BAD=120°,∠B=∠D=90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小时,则∠AMN +∠ANM 的度数为18.下列网格中的六边形ABCDEF 是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长为 ;(2)在图中画出两条裁剪线,并画出将此六边形剪拼成的正方形.三 解答题:19.解不等式组:⎪⎩⎪⎨⎧->+-<-)2(1321)1(43)1(4x x x x 请结合题意填空:完成本题的解答:(Ⅰ)解不等式(1),得 ;(Ⅱ)解不等式(2),得 ;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为 .20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)根据表、图提供的信息,解决以下问题:(1)计算出表中a 、b 的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;少人?21.如图,在边长为8的正方形ABCD中,E是AB上的点,⊙O是以BC为直径的圆.(1)如图1,若DE与⊙O相切于点F,求BE的长;(2)如图2,若AO⊥DE,垂足为F,求EF的长.22.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(精确到0.1)(参考数据:2≈1.414,3≈1.132)23.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?24.如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针旋转135°,得到矩形EFGH(点E与O重合)(1)若GH交y轴于点M,则∠FOM= ,OM= ;(2)矩形EFGH沿y轴向上平移t个单位.①直线GH与x轴交于点D,若AD∥BO,求t的值;②若矩形EFHG与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤2-4时,S与t之间的函数2关系式.25.已知抛物线C1的函数解析式为y=ax2-2x-3a,若抛物线C1经过点(0,-3).(参考公式:在平面直角坐标系中,若P(x 1,y1),Q(x2,y2),则P,Q两点间的距离为)参考答案1.C2.B3.B4.B5.C6.A7.A8.C9.A10.B11.B12.A13.答案为:-3;14.答案为:a<1;15.答案为:0.25;16.答案为:±6.17.答案为:120°;18.答案为:(1)24;(2)如图:19.解:(1)x<0,(2)x<4,(3)略;(4)x<0.20.解:(1)162,135;(2)108°;(3)3800.21. 解:(1)BE=2;(2)554. 22.解:如图作BH ⊥EF ,CK ⊥MN ,垂足分别为H 、K ,则四边形BHCK 是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,∴HD=x﹣30+10=x﹣20,在RT△BHD中,∵∠BHD=30°,∠HBD=30°,∴tan30°=HD:HB,∴=,解得x=30+10.∴河的宽度为(30+10)米.23.24.解:(1)45°,;(2)①-2;②.25.解:(1)∵抛物线过(0,-3)点,∴-3a=-3∴a=1 ∴y=x2-2x-3∴y=x2-2x-3=(x-1)2-4∴抛物线C1的顶点坐标为(1,-4)(2)∵x>0,∴∴显然当x=1时,才有(3)由平移知识易得C2的解析式为:y=x2∴A(m,m2),B(n,n2)∵ΔAOB为RtΔ∴OA2+OB2=AB2∴m2+m4+n2+n4=(m-n)2+(m2-n2)2化简得:m n=-1∵SΔAOB==∵m n=-1∴SΔAOB==∴S的最小值为1,此时m=1,A(1,1)∴直线OA的一次函数解析式为y=x。
天津市南开区一零九中学 2017年九年级数学中考模拟试卷(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.计算﹣2﹣1的结果是()A.﹣3B.﹣2C.﹣1D.32.在Rt△ABC中,∠C=90°,若tanA=,则sinA=()A. B. C. D.3.下列图形中,是中心对称图形但不是轴对称图形的为()4.用四舍五入法得到近似数4.005万,关于这个数有下列说法,其中正确的是( )A.它精确到万位B.它精确到0.001C.它精确到万分位D.它精确到十位5.如图1所示,将一个正四棱锥(底面为正方形,四条侧棱相等)的其中四条边剪开,得到图2,则被剪开的四条边有可能是()A.PA,PB,AD,BCB.PD,DC,BC,ABC.PA,AD,PC,BCD.PA,PB,PC,AD6.下列各式中正确的是( )7.已知a是方程x2+x﹣2015=0的一个根,则的值为()A.2014B.2015C.D.8.用配方法解方程x2+x﹣1=0,配方后所得方程是()A.(x﹣0.5)2=0.75B.(x+0.5)2=0.75C.(x﹣0.5)2=1.25D.(x+0.5)2=1.259.使代数式有意义的x的取值范围是( )A.x≥0B.x≠C.x取一切实数D.x≥0且x≠10.如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1) B.(4,1) C.(﹣2,1) D.(2,﹣1)11.已知点A(-2,y),B(3,y2)是反比例函数图象上的两点,则有( )1A.y1<0<y2B.y2<0<y1 C.y1<y2<0 D.y2<y1<012.已知a≥2,m2﹣2am+2=0,n2﹣2an+2=0,则(m﹣1)2+(n﹣1)2的最小值是()A.6B.3C.﹣3D.0二、填空题:13.把x3﹣9x分解因式,结果正确的是14.化简×﹣4××(1﹣)0的结果是.15.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球个.16.直线y=kx+1与y=2x-1平行,则y=kx+1的图象不经过象限.17.如图,在正方形ABCD中,点E,N,P,G分别在边AB,BC,CD,DA上,点M,F,Q都在对角线BD上,且四边形MNPQ和AEFG均为正方形,则的值等于.18.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣1,2),且与x轴交点的横坐标分别为x、x2,其中﹣12<x1<﹣1,0<x2<1,下列结论:①4a﹣2b+c<0;②2a﹣b<0;③abc<0;④b2+8a<4ac.其中正确的结论有.(填写正确结论的序号)三、解答题:19.解不等式组:.20.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图(1)和图(2)是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为;(2)条形统计图中存在错误的是(填A、B、C中的一个),并在图中加以改正;(3)在图(2)中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?21.已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.22.在一次综合实践活动中,小明要测某地一座古塔AE的高度.如图,已知塔基顶端B(和A、E共线)与地面C处固定的绳索的长BC为80m.她先测得∠BCA=35°,然后从C点沿AC方向走30m到达D点,又测得塔顶E的仰角为50°,求塔高AE.(人的高度忽略不计,结果用含非特殊角的三角函数表示)23.某企业生产并销售某种产品,假设销售量与产量相等,如图中的折线ABD、线段CD分别表示该产品每千克生产成本y1(单位:元)、销售价y2(单位:元)与产量x(单位:kg)之间的函数关系.(1)请解释图中点D的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数表达式;(3)当该产品产量为多少时,获得的利润最大?最大利润是多少?24.在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).25.如图,在平面直角坐标系中,直线y=-x+4与x轴、y轴分别交于点A、B.抛物线y=-+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n= (用含m的代数式表示),点C的纵坐标是 (用含m的代数式表示).(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数表达式.(3)设矩形BCDE的周长为d(d>0),求d与m之间的函数表达式.(4)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.参考答案1.A1.D3.C4.D5.A6.C7.D8.D9.D10.A11.B12.A13.答案为:x(x+3)(x﹣3)14.答案为:.15.答案为:20;16.答案为:第四象限;17.答案为:.18.答案为:①②.19.,不等式①的解集为:x<4,不等式②的解集为:x>2.故不等式组的解集为:2<x<4.20.解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×(20%+40%)=360(人).答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.21.22.【解答】解:在Rt△ABC中,∠ACB=35°,BC=80m,∴cos∠ACB=,∴AC=80cos35°,在Rt△ADE中,tan∠ADE=,∵AD=AC+DC=80cos35°+30,∴AE=(80cos35°+30)tan50°.答:塔高AE为(80cos35°+30)tan50°m.23.【答案】(1)点D的横坐标、纵坐标的实际意义:当产量为130kg时,该产品每千克生产成本与销售价相等,都为42元;(2)y=﹣0.2x+60(0≤x≤90);(3)当该产品产量为75kg时,获得的利润最大,最大值为2250.24.25.【解答】解:(1)y=﹣(x﹣m)2+n=﹣x2+mx﹣m2+n,∴P(m,n),∵点P在直线y=﹣x+4上,∴n=﹣m+4,当x=0时,y=﹣m2+n=﹣m2﹣m+4,即点C的纵坐标为:﹣m2﹣m+4,故答案为:﹣m+4,﹣m2﹣m+4;(2)∵四边形BCDE是矩形,∴DE∥y轴.∵CD=2,∴当x=2时,y=2.∴DE与AB的交点坐标为(2,2).∴当点P在矩形BCDE的边DE上时,抛物线的顶点P坐标为(2,2).∴抛物线对应的函数表达式为.(3)∵直线y=﹣x+4与y轴交于点B,∴点B的坐标是(0,4).当点B与点C重合时,.解得m1=0,m2=﹣3.i)当m<﹣3或m>0时,如图①、②,..ii)当﹣3<m<0时,如图③,..(4)如图④⑤,点C、D在抛物线上时,由CD=2可知对称轴为:x=±1,即m=±1;如图⑥⑦,点C、E在抛物线上时,由B(0,4)和CD=2得:E(﹣2,4)则4=﹣(﹣2﹣m)2+(﹣m+4),解得:、.综上所述:m=1、m=﹣1、、.。
天津市南开区2017年中考数学模拟试卷(2)有答案
2017年中考数学模拟题一、选择题:1.计算5-(-2)×3的结果等于()A.-11B.-1C.1D.112.在Rt△ABC中,∠C=90°,若tanA=,则sinA=()A. B. C. D.3.点p(5,-3)关于原点对称的点的坐标是()A.(3,-5) B.(-5,-3) C.(-5,3) D.(-3,5)4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10105.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.6.下列运算中,错误的个数为 ( )A.1B.2C.3D.47.化简的结果是()A. B. C.x+1 D.x﹣18.方程3x(x﹣1)=5(x﹣1)的根为()A.x= B.x=1 C.x1=1 x2= D.x1=1 x2=9.要使式子有意义,则x的取值范围是()A.x>0B.x≥-2C.x≥2D.x≤210.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或711.函数y=﹣的图象经过点A(x,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是()1A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>012.如图,在直角坐标系中,正△AOB的边长为2,设直线x=t(0≤t≤2)截这个三角形所得位于此直线左方的图形的面积为y,则y关于t的函数图象大致是()二、填空题:13.计算(-3x2y)•(xy2)= .14.计算:﹣= .15.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为0.2,那么口袋中小球共有_______个.16.y的部分对应值如右表:的解是,不等式>0的解是.17.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.18.如图,在平面直角坐标系中,抛物线y=a(x﹣2)2+2与y=a2(x﹣2)2﹣3的顶点分别为A,B,与x轴分别交1于点O,C,D,E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为.三、简答题:19.解不等式组:,并把解集在数轴上表示出来.20.已知甲同学手中藏有三张分别标有数字、、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果;(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.21.如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB·AE. 求证:DE是⊙O的切线.22.已知在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若,,求tan∠AEC值及CD的长.23.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=2时,则AP= ,此时点P的坐标是。
天津市南开区2017年中考数学模拟试卷2含答案
2017年中考数学模拟题一、选择题:1.计算5-(-2)×3的结果等于()A.-11B.-1C.1D.112.在Rt△ABC中,∠C=90°,若tanA=,则sinA=()A. B. C. D.3.点p(5,-3)关于原点对称的点的坐标是()A.(3,-5) B.(-5,-3) C.(-5,3) D.(-3,5)4.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.4.4×10105.如图,几何体是由3个大小完全一样的正方体组成的,它的左视图是()A. B. C. D.6.下列运算中,错误的个数为 ( )A.1B.2C.3D.47.化简的结果是()A. B. C.x+1 D.x﹣18.方程3x(x﹣1)=5(x﹣1)的根为()A.x= B.x=1 C.x1=1 x2= D.x1=1 x2=9.要使式子有意义,则x的取值范围是()A.x>0B.x≥-2C.x≥2D.x≤210.如图,在正方形ABCD中,AB=2,延长BC到点E,使CE=1,连接DE,动点P从点A出发以每秒1个单位的速度沿AB﹣BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当△ABP和△DCE全等时,t的值为()A.3B.5C.7D.3或711.函数y=﹣的图象经过点A(x,y1)、B(x2,y2),若x1<x2<0,则y1、y2、0三者的大小关系是()1A.y1<y2<0B.y2<y1<0C.y1>y2>0D.y2>y1>012.如图,在直角坐标系中,正△AOB的边长为2,设直线x=t(0≤t≤2)截这个三角形所得位于此直线左方的图形的面积为y,则y关于t的函数图象大致是()二、填空题:13.计算(-3x2y)•(xy2)= .14.计算:﹣= .15.在一个不透明的口袋中,装有若干个除颜色不同外,其余都相同的小球.如果口袋中装有3个红球且从中随机摸出一个球是红球的概率为0.2,那么口袋中小球共有_______个.16.已知一次函数y=ax+b(a、b为常数),x与y的部分对应值如右表:17.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.18.如图,在平面直角坐标系中,抛物线y=a(x﹣2)2+2与y=a2(x﹣2)2﹣3的顶点分别为A,B,与x轴分别交1于点O,C,D,E.若点D的坐标为(﹣1,0),则△ADE与△BOC的面积比为.三、简答题:19.解不等式组:,并把解集在数轴上表示出来.20.已知甲同学手中藏有三张分别标有数字、、1的卡片,乙同学手中藏有三张分别标有数字1、3、2的卡片,卡片外形相同.现从甲乙两人手中各任取一张卡片,并将它们的数字分别记为a,b.(1)请你用树形图或列表法列出所有可能的结果;(2)现制定一个游戏规则:若所选出的a,b能使得ax2+bx+1=0有两个不相等的实数根,则甲获胜;否则乙获胜.请问这样的游戏规则公平吗?请用概率知识解释.21.如图,点P为△ABC的内心,延长AP交△ABC的外接圆于D,在AC延长线上有一点E,满足AD2=AB·AE. 求证:DE是⊙O的切线.22.已知在△ABC中,∠ACB=90°,CD⊥AB于D,BE:AB=3:5,若,,求tan∠AEC值及CD的长.23.如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t秒.(1)当t=2时,则AP= ,此时点P的坐标是。
天津市南开区 2017年 九年级数学中考预测试卷(含答案)
2017年九年级数学中考模拟试卷一、选择题:1.计算-5+(-2)×3的结果等于()A.-11B.-1C.1D.112.在△ABC中,若|sinA﹣|+(﹣cosB)2=0,∠A,∠B都是锐角,则∠C度数是()A.75°B.90°C.105°D.120°3.下列各图中,不是中心对称图形的是()4.G20峰会来了,在全民的公益热潮中,杭州的志愿者们摩拳擦掌,想为世界展示一个美丽幸福文明的杭州.据统计,目前杭州市注册志愿者已达9.17×105人.而这个数字,还在不断地增加.请问近似数9.17×105的精确度是()A.百分位B.个位C.千位D.十万位5.如图,一个正方体和一个圆柱体紧靠在一起,其左视图是()A. B. C. D.6.下列判断:①一个数的立方根有两个,它们互为相反数;②若x3=(-2)3,则x=-2;③15的立方根是;④任何有理数都有立方根,它不是正数就是负数.其中正确的有( )A.1个B.2个C.3个D.4个7.下列算式中,你认为错误的是()A. B.C. D.8.若非零实数a、b满足4a2+b2=4ab,则=()A.2B.﹣2C.4D.﹣4A. B. C. D.10.如图,有一平行四边形ABCD与一正方形CEFG,其中E点在AD上.若∠ECD=35°,∠AEF=15°,则∠B的度数为何?()A.50B.55C.70D.7511.如图,在矩形OABC中,AB=2BC,点A在y轴的正半轴上,点C在x轴的正半轴上,连接OB,反比例函数y=kx-1(k≠0,x>0)的图象经过OB的中点D,与BC边交于点E,点E的横坐标是4,则k的值是()A.1B.2C.3D.412.如图,在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),某抛物线的顶点坐标为D(-1,1)且经过点B,连接AB,直线AB与此抛物线的另一个交点为C,则S△BCD:S△ABO=()A.8:1B.6:1C.5:1D.4:1二、填空题:13.分解因式:9x2-6x+1=14.如图所示,直角三角形中较长的直角边是较短的直角边长度的2倍,且两个顶点在数轴上对应的数分别为﹣1和1,以斜边为半径的弧交数轴于点A,点C所表示的数为2,点A与点B关于点C对称,则点B表示的数为.15.在一个不透明的布袋中有除颜色外其它都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红色球和蓝色球的频率稳定在35%和55%,则口袋中可能有黄球个.16.直线经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是.17.在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)18.如图,已知在网格中,A、B分别在格点上,每个小正方形的边长为1.(1)线段AB的长等于;(2)已知线段CD=2,在如图所示的水平线段MN上,在网格图中用无刻度的直尺画出:当四边形ACDB周长最小时C、D点的位置,则周长最小值为:;并简要的说明作图过程:.(不要求证明,保留作图痕迹)三、解答题:19.解不等式组:,并在数轴上表示不等式组的解集.20.某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:(1)本次接收随机抽样调查的男生人数为人,扇形统计图中“良好”所对应的圆心角的度数为;(2)补全条形统计图中“优秀”的空缺部分;(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.21.已知P是⊙O外一点,PO交⊙O于点C,OC=CP=2,弦AB⊥OC,∠AOC的度数为60°,连接PB.(1)求BC的长;(2)求证:PB是⊙O的切线.22.如图,某校数学兴趣小组为测得校园里旗杆AB的高度,在操场的平地上选择一点C,测得旗杆顶端A的仰角为30°,再向旗杆的方向前进16米,到达点D处(C、D、B三点在同一直线上),又测得旗杆顶端A的仰角为45°,请计算旗杆AB的高度(结果保留根号)23.某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A,B两种笔记本的价格分别是12元和8元,他们准备购买这两种笔记本共30本.(1)如果他们购买奖品共花费了300元,则这两种笔记本各买了多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要不少于B种笔记本数量,但又不多于B 种笔记本数量2倍,如果设他们买A种笔记本n本,买这两种笔记本共花费W元.①请写出W(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮他们计算购买这两种笔记本各多少时,花费最少,此时的花费是多少元?24.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交直线DC于点F.(1)如图1,当点G在BC边上时,显然=1,此时= .(2)如图2,当点G在矩形ABCD内部时.①若=时,求的值;②若=k时,求的值.(3)当点G在矩形ABCD外部且=k,则的值为(请直接写出结论即可).25.已知直线L:y=(m-1)x+2m+1与抛物线y2=a(x+1)(x-3)交于A点,且直线L满足:无论m取何值,直线L始终1经过定点A点.(1)求A点坐标及a的值;(2)当m=0时.①定义:M={y1,y2},当y1<y2时,M=y1;当y1=y2时,M=y1=y2;当y1>y2时,M=y2.找出M与x之间的函数关系式,并求出当M=-3.5时x的值;②已知直线y=m与图象M有3个交点,求m的取值范围.参考答案1.A2.C3.B4.C5.D6.B7.B8.A9.D10.C11.B12.B13.答案为:(3x-1)2;14.答案为:5﹣.15.答案为:20;16.答案为:18.19.答案为:-1≤x<3.∴不等式组的整数解为 -1,0,1,2.20.解:(1)8÷20%=40(人),18÷40×360°=162°;(2)“优秀”的人数=40﹣2﹣8﹣18=12,(3)“良好”的男生人数:216(人),答:全年级男生体质健康状况达到“良好”的人数为216人.21.22.【解答】解:由题意可得,CD=16米,∵AB=CB•tan30°,AB=BD•tan45°,∴CB•tan30°=BD•tan45°,∴(CD+DB)×=BD×1,解得BD=8,∴AB=BD•tan45°=()米,即旗杆AB的高度是()米.23.24.解:(1)由折叠的性质可知,∠ABE=∠GBE,∵AD∥BC,∴∠AEB=∠GBE,∴∠ABE=∠AEB,∴AB=AE,∵E是AD的中点,∴AD=2AE,∴=2,故答案为:2;∴AE=DE,AE=EG,EF=EF,∠A=∠BGE=∠D=90°,在Rt△EGF和Rt△EDF中,,∴Rt△EGF≌Rt△EDF,∴FG=DF,设AB=DC=a,DF=b,∵=,∴BC=AD=a,CF=DC﹣DF=a﹣b.∵BG=AB=a,∴BF=BG+GF=a+b.在Rt△BCF中,∵BC2+CF2=BF2,∴(a)2+(a﹣b)2=(a+b)2,∴a=2b,∴==2,②解:∵FG=DF.设DF=x,BC=y,∴GF=x,AD=BC=y.∵=k,∴DC=k•DF,∴DC=AB=BG=kx.∵CF=DC﹣DF=kx﹣x,∴CF=(k﹣1)x,BF=BG+GF=(k+1)x.在Rt△BCF中,BC2+CF2=BF2,∴y2+[(k﹣1)x]2=[(k+1)x]2.∴y=2x,∴==;(3)由(2)②的结论可知,=.故答案为:.25.解:(1)A(-2,3),a=1;(2)M=-x+1(x≤-1);M=x2-2x-3(-1<x≤4);M=-x+1(x>4);(3)-4<m≤-3.。
2017年天津中考各区一模、二模、三模真题汇编--三角函数专题.docx
2017年天津中考模拟真题汇编•-三角函数专题22.(和平一模)如图,某幢大楼顶部有一块广告牌CD,在A 处测得D 点的仰角为45。
,在B 处测得C 点的仰角为60。
,A, B, E 三点在一条直线上,且与地而平行,若AB=8m, BE=15m, 求这块广告牌CD 的高度.(取辰1.73,保留整数)答:这块广告牌的高度约为3m.22.(和平二模)如图,长方形广告牌架在楼房顶部,已知CD=2m,经测量得到ZCAH=37°, ZDBH=60°, AB=10m,求 GH 的长.(参考数据:tan37°~0.75,需V732,结果精确到 0.1m ) 10w B H答:GH 的长为7.8m.22.(和平三模)(10分)如图,大楼AB 高16m,远处有一塔CD,某人在楼底B 处测得塔顶 C 的仰角为39。
,在楼顶A 处测得塔顶的仰角为22。
,求塔高CD 的高.(结果保留小数后一 位)参考数据:sin22°a0.37, cos22° = 0.93, tan22°^0.40, si39° = 0.63, cos39°~0.78, tan39° ^0.81.BD答:塔高CD 是31.6米. □□□□□□□□22.(河北一模)(10分)如图,某渔船航行至B处时,侧得一海岛位于B处的正北方向20 (1+V3)海里的C处,为了防止意外,渔船请求A处的渔监船前往C处护航,已知C位于A处的北偏东45。
方向上,A位子B的北偏西300的方向上,求A, C之间的距离.答:A、CZ间的距离为20血每里.22.(河北二模)(10分)如图,某社会实践活动小组地测量两岸互相平行的一段河的宽度, 在河的南岸边点A处,测得河的北岸点B在其北偏东45。
方向,然后向西走60m到达C点,测得点B在点C的北偏东60。
方向(I )求ZCBA的度数(II )求出这段河的宽(结果精确到lm,备用数据V2^1.41, 73^1.73)答:ZCBA=15°;这段河的宽是82m.22.(河东一模)(10分)如图,小东在教学楼距地面9米高笊窗口C处,测得正前方旗杆顶部A点的仰角为37。
2017年天津市南开区光明中学中考数学模拟试卷带答案解析
2017年天津市南开区光明中学中考数学模拟试卷一、选择题:1.(3分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c2.(3分)tan60°的值等于()A.1 B.C.D.23.(3分)下列汉字或字母中既是中心对称图形又是轴对称图形的是()A.B.C.D.4.(3分)目前我国年可利用的淡水资源总量为27500亿立方米,人均占有量居全世界第110位,因此我们要节约用水,27500亿这个数用科学记数法表示为()A.2.75×1013B.2.75×1012C.2.75×1011D.2.75×10105.(3分)一个几何体的三视图如图所示,则该几何体可能是()A. B. C. D.6.(3分)下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根7.(3分)下列各式中,计算正确的是()A.3﹣1=﹣3 B.3﹣3=﹣9 C.3﹣2=D.30=08.(3分)甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为﹣3和5,乙把常数项看错了,解得两根为2和2,则原方程是()A.x2+4x﹣15=0 B.x2﹣4x﹣15=0 C.x2+4x+15=0 D.x2﹣4x+15=09.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x>3 B.x≥3 C.x>﹣3 D.x≥﹣310.(3分)下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形11.(3分)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6) C.(2,﹣3)D.(3,﹣2)12.(3分)已知反比例函数y=的图象如图所示,则二次函数y=﹣kx2﹣2x+的图象大致为()A.B.C.D.二、填空题:13.(3分)计算:0.5a×(﹣2a3b)2=.14.(3分)﹣二次根式中字母的取值范围.15.(3分)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.16.(3分)己知一次函数y=kx+5和y=k′x+3,假设k>0,k′<0,则这两个一次函数图象的交点在第象限.17.(3分)如图,在正方形ABCD中,点E是BC边上一点,且BE:EC=2:1,AE与BD交于点F,则△AFD与四边形DFEC的面积之比是.18.(3分)如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从点B出发,沿BC以2cm/s的速度向点C移动,点Q从点C出发,以1cm/s的速度向点A移动,若点P、Q分别从点B、C同时出发,设运动时间为t s,当t=时,△CPQ与△CBA相似.三、解答题:19.解不等式组:,并在数轴上表示不等式组的解集.20.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为5,BC=6,求CD的长.22.如图,两条互相平行的河岸,在河岸一边测得AB为20米,在另一边测得CD为70米,用测角器测得∠ACD=30°,测得∠BDC=45°,求两条河岸之间的距离.(≈1.7,结果保留整数)23.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?24.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=1.25.(1)求直线AC的解析式.(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC 为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处?25.在平面直角坐标系中,抛物线y=ax2﹣2ax+a+4(a<0)经过点A(﹣1,0),且与x轴正半轴交于点B,与y轴交于点C,点D是顶点.(1)填空:a=;顶点D的坐标为;直线BC的函数表达式为:.(2)直线x=t与x轴相交于一点.①当t=3时得到直线BN(如图1),点M是直线BC上方抛物线上的一点.若∠COM=∠DBN,求出此时点M的坐标.②当1<t<3时(如图2),直线x=t与抛物线、BD、BC及x轴分别相交于点P、E、F、G,试证明线段PE、EF、FG总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值.2017年天津市南开区光明中学中考数学模拟试卷参考答案与试题解析一、选择题:1.(3分)实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c【解答】解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.2.(3分)tan60°的值等于()A.1 B.C.D.2【解答】解:tan60°=.故选C.3.(3分)下列汉字或字母中既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.4.(3分)目前我国年可利用的淡水资源总量为27500亿立方米,人均占有量居全世界第110位,因此我们要节约用水,27500亿这个数用科学记数法表示为()A.2.75×1013B.2.75×1012C.2.75×1011D.2.75×1010【解答】解:27500亿=2 750 000 000 000=2.75×1012≈2.8×1012.故选B.5.(3分)一个几何体的三视图如图所示,则该几何体可能是()A. B. C. D.【解答】解:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥的底面和圆柱的底面完全重合.故选:C.6.(3分)下列说法正确的是()A.任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根【解答】解:A、非负数0的平方根是0,只有一个,故本选项错误;B.一个正数有两个平方根,它们互为相反数,故本选项错误;C.因0的平方根是0,故本选项错误;D.负数没有平方根,故本选项正确;故选D.7.(3分)下列各式中,计算正确的是()A.3﹣1=﹣3 B.3﹣3=﹣9 C.3﹣2=D.30=0【解答】解:A、3﹣1=≠﹣3,本选项错误;B、3﹣3=≠﹣9,本选项错误;C、3﹣2=,本选项正确;D、30=1≠0,本选项错误.故选C.8.(3分)甲、乙两个同学分别解一道一元二次方程,甲因把一次项系数看错了,而解得方程两根为﹣3和5,乙把常数项看错了,解得两根为2和2,则原方程是()A.x2+4x﹣15=0 B.x2﹣4x﹣15=0 C.x2+4x+15=0 D.x2﹣4x+15=0【解答】解:∵甲因把一次项系数看错了,而解得方程两根为﹣3和5,∴﹣3×5=c,即c=﹣15,∵乙把常数项看错了,解得两根为2和2,∴2+2=﹣b,即b=﹣4,∴原方程为x2﹣4x﹣15=0.故选B.9.(3分)若式子在实数范围内有意义,则x的取值范围是()A.x>3 B.x≥3 C.x>﹣3 D.x≥﹣3【解答】解:根据题意得,x+3≥0,解得x≥﹣3.故选:D.10.(3分)下列命题中,真命题是()A.两条对角线相等的四边形是矩形B.两条对角线互相垂直的四边形是菱形C.两条对角线互相垂直且相等的四边形是正方形D.两条对角线互相平分的四边形是平行四边形【解答】解:A.两条对角线相等的平行四边形是矩形,故本选项错误;B.两条对角线互相垂直的平行四边形是菱形,故本选项错误;C.两条对角线互相垂直且相等的平行四边形是正方形,故本选项错误;D.两条对角线互相平分的四边形是平行四边形,正确;故选:D.11.(3分)已知反比例函数y=的图象经过点(2,3),那么下列四个点中,也在这个函数图象上的是()A.(﹣6,1)B.(1,6) C.(2,﹣3)D.(3,﹣2)【解答】解:∵反比例函数y=的图象经过点(2,3),∴k=2×3=6,A、∵(﹣6)×1=﹣6≠6,∴此点不在反比例函数图象上;B、∵1×6=6,∴此点在反比例函数图象上;C、∵2×(﹣3)=﹣6≠6,∴此点不在反比例函数图象上;D、∵3×(﹣2)=﹣6≠6,∴此点不在反比例函数图象上.故选:B.12.(3分)已知反比例函数y=的图象如图所示,则二次函数y=﹣kx2﹣2x+的图象大致为()A.B.C.D.【解答】解:∵点(1,2)在反比例函数图象上,∴有2=,解得:k=2.∴二次函数解析式为y=﹣2x2﹣2x+1.∵a=﹣2<0,∴抛物线开口向下;∵﹣=﹣=﹣,∴抛物线的对称轴为x=﹣.故选B.二、填空题:13.(3分)计算:0.5a×(﹣2a3b)2=2a7b2.【解答】解:0.5a×(﹣2a3b)2=0.5a×4a6b2=2a7b2.故答案为:2a7b2.14.(3分)﹣二次根式中字母的取值范围﹣5≤x<3.【解答】解:由题意得,x+5≥0,3﹣x>0,解得,﹣5≤x<3,故答案为:﹣5≤x<3.15.(3分)如图所示的六边形广场由若干个大小完全相同的黑色和白色正三角形组成,一只小鸟在广场上随机停留,刚好落在黑色三角形区域的概率为.【解答】解:∵黑色三角形的面积占总面积的=,∴刚好落在黑色三角形区域的概率为;故答案为:.16.(3分)己知一次函数y=kx +5和y=k′x +3,假设k >0,k′<0,则这两个一次函数图象的交点在第 二 象限.【解答】解:如图所示,这两个一次函数图象的交点在第二象限.故答案为:二.17.(3分)如图,在正方形ABCD 中,点E 是BC 边上一点,且BE :EC=2:1,AE 与BD 交于点F ,则△AFD 与四边形DFEC 的面积之比是 9:11 .【解答】解:设CE=x ,S △BEF =a , ∵CE=x ,BE :CE=2:1, ∴BE=2x ,AD=BC=CD=AD=3x ; ∵BC ∥AD ∴∠EBF=∠ADF , 又∵∠BFE=∠DFA ; ∴△EBF ∽△ADF ∴S △BEF :S △ADF ===,那么S △ADF =a .∵S △BCD ﹣S △BEF =S 四边形EFDC =S 正方形ABCD ﹣S △ABE ﹣S △ADF , ∴x 2﹣a=9x 2﹣×3x•2x ﹣,化简可求出x 2=;∴S △AFD :S 四边形DFEC =:=:=9:11,故答案为9:11.18.(3分)如图,在△ABC 中,∠C=90°,BC=16cm ,AC=12cm ,点P 从点B 出发,沿BC 以2cm/s 的速度向点C 移动,点Q 从点C 出发,以1cm/s 的速度向点A 移动,若点P 、Q 分别从点B 、C 同时出发,设运动时间为t s ,当t= 4.8或时,△CPQ 与△CBA 相似.【解答】解:CP和CB是对应边时,△CPQ∽△CBA,所以,=,即=,解得t=4.8;CP和CA是对应边时,△CPQ∽△CAB,所以,=,即=,解得t=.综上所述,当t=4.8或时,△CPQ与△CBA相似.故答案为4.8或.三、解答题:19.解不等式组:,并在数轴上表示不等式组的解集.【解答】解:解不等式1﹣,得:x≤1,解不等式3﹣2x>1﹣3x,得:x>﹣2,∴不等式组的解集为:﹣2<x≤1,表示在数轴上如下:.20.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.【解答】解:(1)根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),补全统计图,如图所示:(2)根据题意得:2000××100%=560(人),则估计全校同学中最喜爱“臭豆腐”的同学有560人;(3)列表如下:所有等可能的情况有16种,其中恰好两次都摸到“A”的情况有1种,则P=.21.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB.(1)求证:DC为⊙O的切线;(2)若⊙O的半径为5,BC=6,求CD的长.【解答】(1)证明:连接OC.如图1所示∵AC平分∠DAB,∴∠DAC=∠OAC,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OCA,∴DA∥OC,∵AD⊥DC,∴∠ADC=90°,∴∠OCD=90°,即OC⊥DC,∵OC为半径,∴DC为⊙O的切线.(2)解:连接BC,如图2所示:∵AB是⊙O的直径,∴AB=10,∠ACB=90°=∠ADC,∴AC==8,又∵∠DAC=∠OAC,∴△ACD∽△ABC,∴,即,解得:CD=4.8.22.如图,两条互相平行的河岸,在河岸一边测得AB为20米,在另一边测得CD为70米,用测角器测得∠ACD=30°,测得∠BDC=45°,求两条河岸之间的距离.(≈1.7,结果保留整数)【解答】解:如图,分别过点A、B作CD的垂线交CD于点E、F,令两条河岸之间的距离为h.∵AE⊥CD,BF⊥CD,AB∥CD,AB=20,∴AE=BF=h,EF=AB=20.在Rt△ACE中,∵∠AEC=90°,∠ACE=30°,∴tan∠ACE=,即tan30°=,∴CE=h.在Rt△BDF中,∵∠BFD=90°,∠BDF=45°,∴DF=BF=h.∵CD=70,∴CE+EF+FD=70,∴h+20+h=70,∴h=25(﹣1)≈18.答:两条河岸之间的距离约为18米.23.某超市对进货价为10元/千克的某种苹果的销售情况进行统计,发现每天销售量y(千克)与销售价x(元/千克)存在一次函数关系,如图所示.(1)求y关于x的函数关系式(不要求写出x的取值范围);(2)应怎样确定销售价,使该品种苹果的每天销售利润最大?最大利润是多少?【解答】解:(1)设y=kx+b,由图象可知,,解之,得:,∴y=﹣2x+60;(2)p=(x﹣10)y=(x﹣10)(﹣2x+60)=﹣2x2+80x﹣600,∵a=﹣2<0,∴p有最大值,当x=﹣=20时,p=200.最大值即当销售单价为20元/千克时,每天可获得最大利润200元.24.如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=1,OC=2,点D在边OC上且OD=1.25.(1)求直线AC的解析式.(2)在y轴上是否存在点P,直线PD与矩形对角线AC交于点M,使得△DMC 为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.(3)抛物线y=﹣x2经过怎样平移,才能使得平移后的抛物线过点D和点E(点E在y轴正半轴上),且△ODE沿DE折叠后点O落在边AB上O′处?【解答】解:(1)∵OA=1,OC=2,∴A(0,1),C(2,0),设直线AC的解析式为y=kx+b,把A(0,1),C(2,0)代入得,解得,∴直线AC的解析式为y=﹣x+1;(2)存在.D(,0),CD=2﹣=,设M(t,﹣t+1),当DM=DC时,(t﹣)2+(﹣t+1)2=()2,解得t1=,t2=2(舍去),则M (,),此时MD的解析式为y=﹣x+,P点坐标为(0,);当MD=MC时,则M点的坐标为(,),此时MD的解析式为y=x﹣,P 点坐标为(0,﹣);当CM=CD时,(t﹣2)2+(﹣t+1)2=()2,解得t1=,t2=,则M(,﹣)或(,),此时MD的解析式为y=﹣(﹣2)x+或y=(+2)x﹣,P 点坐标为(0,)或(0,),综上所述,P点坐标为(0,)或(0,﹣)或(0,)或(0,);(3)△ODE沿DE折叠后点O落在边AB上O′处,如图2,作O′H⊥x轴于H,则O′D=OD=,设O′(m,1),在Rt△O′DH中,(m﹣)2+12=()2,解得m1=2,m2=,当m=2时,AO′=2,而EO′=EO=EA+1,∴EA2+22=(EA+1)2,解得EA=,∴E(0,),设平移的抛物线解析式为y=﹣x2+bx+c,把E(0,),D(,0)代入得,解得,∴抛物线解析式为y=﹣x2﹣x+,∵y=﹣(x+)2+,∴抛物线y=﹣x2先向左单位,再向上平移单位,才能使得平移后的抛物线过点D和点E;当m=时,AO′=,而EO′=EO=1﹣AE,∴EA2+()2=(1﹣AE)2,解得EA=,∴E(0,),同样可得抛物线解析式为y=﹣x2+x+,∵y=﹣(x﹣)2+,∴抛物线y=﹣x2先向右单位,再向上平移单位,才能使得平移后的抛物线过点D和点E.25.在平面直角坐标系中,抛物线y=ax2﹣2ax+a+4(a<0)经过点A(﹣1,0),且与x轴正半轴交于点B,与y轴交于点C,点D是顶点.(1)填空:a=﹣1;顶点D的坐标为(1,4);直线BC的函数表达式为:y=﹣x+3.(2)直线x=t与x轴相交于一点.①当t=3时得到直线BN(如图1),点M是直线BC上方抛物线上的一点.若∠COM=∠DBN,求出此时点M的坐标.②当1<t<3时(如图2),直线x=t与抛物线、BD、BC及x轴分别相交于点P、E、F、G,试证明线段PE、EF、FG总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时t的值.【解答】解:(1)∵抛物线y=ax2﹣2ax+a+4(a<0)经过点A(﹣1,0),∴a+2a+a+4=0,解得:a=﹣1;∴抛物线解析式为:y=﹣x2+2x+3,∴=1,==4,∴顶点D的坐标为:(1,4);令x=0,得:y=3,即点C的坐标为(0,3);∵点A(﹣1,0),对称轴为直线x=1,∴1×2﹣(﹣1)=3,∴点B的坐标为(3,0),设直线BC的解析式为:y=kx+b,∴,解得:,∴直线BC的解析式为:y=﹣x+3;故答案为:﹣1,(1,4),y=﹣x+3;(2)①设点M的坐标为(m,﹣m2+2m+3),∵∠COM=∠DBN,∴tan∠COM=tan∠DBN,∴,解得:m=±,∵m>0,∴m=,∴点M(,2);②设直线BD的解析式为y=kx+b,∴,解得:,∴直线BD的解析式为:y=﹣2x+6;∴点P(t,﹣t2+2t+3),点E(t,﹣2t+6),点F(t,﹣t+3),∴PE=(﹣t2+2t+3)﹣(﹣2t+6)=﹣t2+4t﹣3,EF=(﹣2t+6)﹣(﹣t+3)=﹣t+3,FG=﹣t+3,∴EF=FG.∵EF+FG﹣PE=2(﹣t+3)﹣(﹣t2+4t﹣3)=(t﹣3)2>0,∴EF+FG>PE,∴当1<t<3时,线段PE,EF,FG总能组成等腰三角形,由题意的:,即,∴5t2﹣26t+33=0,解得:t=3或,∴1<t<3,∴t=.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征:运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为B2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
天津市南开区2017年中考数学模拟试卷(3)及答案
2017年中考数学模拟题一、选择题:1.计算(-3)-(-6)的结果等于()A.3B.-3C.9D.182.如图,点A、B、O是正方形网格上的三个格点,⊙O的半径为OA,点P是优弧AmB上的一点,则cos∠APB的值是()A.45°B.1C.D.无法确定3.下列图形既是轴对称图形又是中心对称图形的是( )4.2016年2月19日,经国务院批准,设立无锡市新吴区,将无锡市原新区的鸿山、旺庄、硕放、梅村、新安街道划和滨湖区的江溪街道归新吴区管辖.新吴区现有总人口322819人,这个数据用科学记数法(精确到千位)可表示为()A.323×103B.3.22×105C.3.23×105D.0.323×1065.下列几何体的主视图与其他三个不同的是()6.16的算术平方根和25平方根的和是()A.9B.-1C.9或-1D.-9或17.计算的正确结果是()A.0B.C.D.8.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2013-a-b的值是( )A.2 018B.2 008C.2 014D.2 0129.当实数x的取值使得有意义时,函数y=x+1 中y的取值范围是()A.y≥﹣3B.y≥﹣1C.y>﹣1D.y≤﹣310.下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形11.已知反比例函数,当1<x<2时,y的取值范围是( )A.0<y<5B.1<y<2C.5<y<10D.y>1012.二次函数y=ax2+bx+c的图象如图,则一次函数y=bx+b2﹣4ac与反比例函数y=在同一坐标系内的图象大致为()二、填空题:13.分解因式:x3﹣6x2+9x= .14.函数y=的自变量的取值范围是15.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是.16.某地市话的收费标准为:(1)通话时间在3分钟以内(包括3分钟)话费0.5元;(2)通话时间超过3分钟时,超过部分的话费按每分钟0.15元计算.在一次通话中,如果通话时间超过3分钟,那么话费y(元)与通话时间x(分)之间的关系式为.17.如图,AD=DF=FB,DE∥FG∥BC,则SⅠ:SⅡ:SⅢ= .18.如图,锐角三角形ABC的边AB,AC上的高线EC,BF相交于点D,请写出图中的两对相似三角形____________(用相似符号连接).三、解答题:19.解不等式组:,并在数轴上表示不等式组的解集.20.有甲、乙两个不透明的盒子,甲盒子中装有3张卡片,卡片上分别写着3cm、7cm、9cm;乙盒子中装有4张卡片,卡片上分别写着2cm、4cm、6cm、8cm;盒子外有一张写着5cm的卡片.所有卡片的形状、大小都完全相同.现随机从甲、乙两个盒子中各取出一张卡片,与盒子外的卡片放在一起,用卡片上标明的数量分别作为一条线段的长度.(1)请用树状图或列表的方法求这三条线段能组成三角形的概率;(2)求这三条线段能组成直角三角形的概率.21.如图,P A,PB是⊙O的切线,A,B为切点,∠OAB=30°.(1)求∠APB的度数;(2)当OA=3时,求AP的长.22.如图,“中国海监50”正在南海海域A处巡逻,岛礁B上的中国海军发现点A在点B的正西方向上,岛礁C上的中国海军发现点A在点C的南偏东30°方向上,已知点C在点B的北偏西60°方向上,且B、C两地相距120海里.(1)求出此时点A到岛礁C的距离;(2)若“中海监50”从A处沿AC方向向岛礁C驶去,当到达点A′时,测得点B在A′的南偏东75°的方向上,求此时“中国海监50”的航行距离.(注:结果保留根号)23.小明到服装店参加社会实践活动,服装店经理让小明帮助解决以下问题:服装店准备购进甲乙两种服装,甲种每件进价80元,售价120元;乙种每件进价60元,售价90元.计划购进两种服装共100件,其中甲种服装不少于65件.(1)若购进这100件服装的费用不得超过7500,则甲种服装最多购进多少件?(2)在(1)的条件下,该服装店在6月21日“父亲节”当天对甲种服装以每件优惠a(0<a<20)元的价格进行优惠促销活动,乙种服装价格不变,那么该服装店应如何调整进货方案才能获得最大利润?24.在△ABC中,AB=AC=5,cos∠ABC=0.6,将△ABC绕点C顺时针旋转,得到△AB1C。
天津市南开区2017年中考数学模拟试卷4附答案
2017年九年级数学中考综合复习题1.某校八年级举行英语演讲比赛,派了两位老师去学校附近的超市购买笔记本作为奖品.经过了解得知,该超市的A、B两种笔记本的价格分别是12元和8元,他们准备购买者两种笔记本共30本.(1)如果他们计划用300元购买奖品,那么能买这两种笔记本各多少本?(2)两位老师根据演讲比赛的设奖情况,决定所购买的A种笔记本的数量要少于B种笔记本数量的三分之二人,但又不少于B种笔记本数量的三分之一,如果设他们买A种笔记本n本,买这两种笔记本共花费w 元.①请写出w(元)关于n(本)的函数关系式,并求出自变量n的取值范围;②请你帮助他们计算,购买这两种笔记本各多少时,花费最少,此时的花费是多少元?2.某地为四川省汶川大地震灾区进行募捐,共收到粮食100吨,副食品54吨.现计划租用甲、乙两种货车共8辆将这批货物全部运往汶川,已知一辆甲种货车同时可装粮食20吨、副食品6吨,一辆乙种货车同时可装粮食8吨、副食品8吨.(1)将这些货物一次性运到目的地,有几种租用货车的方案?(2)若甲种货车每辆付运输费1300元,乙种货车每辆付运输费1000元,要使运输总费用最少,应选择哪种方案?3.某种商品每天的销售利润y(元)与销售单价x(元)之间满足关系:y=ax2+bx-75.其图象如图所示.(1)销售单价为多少元时,该种商品每天的销售利润最大?最大利润为多少元?(2)销售单价在什么范围时,该种商品每天的销售利润不低于16元?4.用总长为60cm的篱笆围成矩形场地.(Ⅰ)根据题意,填写下表:(Ⅱ)设矩形一边长为lm S最大?并求出矩形场地的最大面积;(Ⅱ)当矩形的长为 m,宽为 m时,矩形场地的面积为216m2.5.某企业投资112万元引进一条农产品加工生产线,该生产线投产后,从第1年到第x年的维修、保养费用累计..共为y(万元),且y=ax2+bx,若第1年的维修、保养费用为2万元,第2年的维修、保养费用为4万元.(1)求a和b的值;(2)若不计维修、保养费用,预计该生产线投产后每年可创利33万元.那么该企业在扣掉投资成本和维修、保险费用后,从第几年开始才可以产生利润?6.如图,在△ABC中,AB=AC.以AC为直径的⊙O交AB于点D,交BC于点E.过E点作⊙O的切线,交AB 于点F.(1)求证:EF⊥AB;(2)若BD=2,BE=3,求AC的长.7.如图,已知⊙O的直径为AB,AC⊥AB于点A,BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.(1)求证:ED是⊙O的切线;(2)若⊙O半径为2.5,OE=10时,求DE的长.8.如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=,求⊙O的半径r及sinB.9.如图,已知△ABC为直角三角形,∠C=90°,边BC是⊙O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接AD.⑴求证:AD平分∠BAC;⑵若AC=8,tan∠DAC=0.75,求⊙O的半径.10.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.11.如图,二次函数y=ax2+bx+c的图象与x轴的交点为A、D(A在D的右侧),与y轴的交点为C,且A(4,0).C(0,﹣3),对称轴是直线x=l.(1)求二次函数的解析式;(2)若M是第四象限抛物线上一动点,且横坐标为m,设四边形OCMA的面积为s.请写出s与m之间的函数关系式,并求出当m为何值时,四边形OCMA的面积最大;(3)设点B是x轴上的点,P是抛物线上的点,是否存在点P,使得以A,B、C,P四点为顶点的四边形为平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.12.矩形OABC在平面直角坐标系中的位置如图所示,AC两点的坐标分别为A(6,0),C(0,3),直线y=-0.75x+4.5与BC边相交于点D.(1)求点D的坐标;(2)若上抛物线y=ax2+bx(a≠0)经过A,D两点,试确定此抛物线的解析式;(3)设(2)中的抛物线的对称轴与直线AD交点M,点P为对称轴上一动点,以P、A、M为顶点的三角形与△ABD相似,求符合条件的所有点P的坐标.13.在正方形ABCD中,过点A引射线AH,交边CD于点H(点H与点D不重合).通过翻折,使点B落在射线AH上的点G处,折痕AE交BC于E,延长EG交CD于F.【感知】如图①,当点H与点C重合时,可得FG=FD.【探究】如图②,当点H为边CD上任意一点时,猜想FG与FD的数量关系,并说明理由.【应用】在图②中,当DF=3,CE=5时,直接利用探究的结论,求AB的长.14.(1)操作发现如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,且点G在举行ABCD内部.小明将BG延长交DC于点F,认为GF=DF,你同意吗?说明理由.(2)问题解决保持(1)中的条件不变,若DC=2DF,求AD:AB的值;(3)类比探求15.如图,已知矩形纸片ABCD,AD=2,AB=4.将纸片折叠,使顶点A与边CD上的点E重合,折痕FG分别与AB,CD交于点G,F,AE与FG交于点O.(1)如图1,求证:A,G,E,F四点围成的四边形是菱形;(2)如图2,当△AED的外接圆与BC相切于点N时,求证:点N是线段BC的中点;(3)如图2,在(2)的条件下,求折痕FG的长.参考答案1.解:(1)设能买A种笔记本x本,则能买B种笔记本(30﹣x)本依题意得:12x+8(30﹣x)=300,解得x=15因此,能购买A,B两种笔记本各15本;(2)①依题意得:w=12n+8(30﹣n)即w=4n+240且n<(30﹣n)和n≥解得7.5≤n<12所以,w(元)关于n(本)的函数关系式为:w=4n+240自变量n的取值范围是7.5≤n<12,n为整数.②对于一次函数w=4n+240∵w随n的增大而增大,且7.5≤n<12,n为整数,故当n为8时,w的值最小此时,30﹣n=30﹣8=22,w=4×8+240=272(元)因此,当买A种笔记本8本、B种笔记本22本时,所花费用最少,为272元.2.解:(1)设租用甲种货车x辆,则乙种货车为8﹣x辆,依题意得:解不等式组得3≤x≤5这样的方案有三种,甲种货车分别租3,4,5辆,乙种货车分别租5,4,3辆.(2)总运费s=1300x+1000(8﹣x)=300x+8000因为s随着x增大而增大所以当x=3时,总运费s最少为8900元.3.解:(1)y=ax2+bx-75的图象过点(5,0)、(7,16),∴25a+5b-75=0,49a+7b-75=0,解得a=-1,b=20,∴y=-x2+20x-75,∵y=-x2+20x-75=-(x-10)2+25,∴y=-x2+20x-75的顶点坐标是(10,25),∴当x=10时,y最大=25,答:销售单价为10元时,该种商品每天的销售利润最大,最大利润为25元;(2)∵函数y=-x2+20x-75图象的对称轴为直线x=10,可知点(7,16)关于对称轴的对称点是(13,16),又∵函数y=-x2+20x-75图象开口向下,∴当7≤x≤13时,y≥16.答:销售单价不低于7元且不超过13元时,该种商品每天的销售利润不低于16元.4.解:(1)若矩形一边长为10m,则另一边长为﹣10=20(m),此时矩形面积为:10×20=200(m2),若矩形一边长为15m,则另一边长为﹣15=15(m),此时矩形面积为:15×15=225(m2),若矩形一边长为20m,则另一边长为﹣20=10(m),此时矩形面积为:10×20=200(m2),(2)矩形场地的周长为60m,一边长为lm,则另一边长为(﹣l)m,∴矩形场地的面积S=l(30﹣l)=﹣l2+30l=﹣(l﹣15)2+225,当l=15时,S取得最大值,最大值为225m2,答:当l是15m时,矩形场地的面积S最大,最大面积为225m2;(3)根据题意,得:﹣l2+30l=216,解得:l=12或l=18,∴当矩形的长为 18m,宽为12m时,矩形场地的面积为216m2,故答案为:18,12.5.略6.解:(1)证明:如图1所示:连结OE.∵AB=AC,∴∠B=∠ACB.又∵OE=OC,∴∠OEC=∠ACB,∴∠OEC=∠ABC.∴OE∥AB.∵EF与⊙O 相切,∴OE⊥EF.∴∠OEF=90°.∵OE∥AB,∴∠AFE=90°.∴OE⊥AB.(2)如图2所示:连结DE、AE.∵四边形ACED为⊙O的内接四边形,∴∠DEC+∠BAC=180°.又∵∠DEB+∠DEC=180°,∴∠BED=∠BAC.又∵∠B=∠B,∴△BED∽△BAC.∴BE:AB=BD:BC.∵AC为⊙O的直径,∴∠AEC=90°.∵在△ABC中,AB=AC,∴BE=CE=3,∴BC=6.∴3:AB=2:6,∴AB=9.即AC=AB=9.7.∵AB=BF,OA=OD,∴∠BAF=∠BFA,∠OAD=∠D,而∠BFA=∠OFD,∴∠OAD+∠BAF=∠D+∠BFA=90°,即∠OAB=90°,∴OA⊥AB,∴AB是⊙O切线;(2)解:OF=CF﹣OC=4﹣r,OD=r,DF=,在Rt△DOF中,OD2+OF2=DF2,即r2+(4﹣r)2=()2,解得r1=3,r2=1(舍去);∴半径r=3,∴OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.在Rt△AOB中,AB2+OA2=OB2,∴AB2+32=(AB+1)2,∴AB=4,OB=5,∴sinB=0..9.解:(1)连接OD,∵BC是⊙O的切线,∴OD⊥BC ∴∠ODB=90°又∵∠C=90°∴AC∥OD ∴∠CAD=∠ADO又∵OA=OD ∴∠OAD=∠ADO ∴∠CAD=∠OAD[来源:学*科网]∴ AD平分∠BAC(2)在Rt△ACD中 AD=10 连接DE,∵AE为⊙O的直径∴∠ADE=90°∴∠ADE=∠C ∵∠CAD=∠OAD∴△ACD∽△ADE∴AE=12.5. ∴⊙O的半径是6.25.10.(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,∴AB=5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴===,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴=,设EC=CF=x,∴=,∴x=.∴CE=.11.12.13.解:猜想FD=FG.证明:连接AF,由折叠的性质可得AB=AG=AD,在Rt△AGF和Rt△ADF中,AG=AD,AF=AF,∴Rt△AGF≌Rt△ADF(HL).故可得FG=FD.[应用]设AB=x,则BE=EG=x-5,FE=x-2,FC=x-3,在Rt△ECF中,EF2=FC2+EC2,即(x-2)2=(x-3)2+52,解得x=15.即AB的长为15.14.略;15.解:(1)由折叠的性质可得,GA=GE,∠AGF=∠EGF,∵DC∥AB,∴∠EFG=∠AGF,∴∠EFG=∠EGF,∴EF=EG=AG,∴四边形AGEF是平行四边形(EF∥AG,EF=AG),又∵AG=GE,∴四边形AGEF是菱形.(2)连接ON,∵△AED是直角三角形,AE是斜边,点O是AE的中点,△AED的外接圆与BC相切于点N,∴ON⊥BC,∵点O是AE的中点,∴ON是梯形ABCE的中位线,∴点N是线段BC的中点.(3)作OM⊥AD,设DE=x,则MO=0.5x,在矩形ABCD中,∠C=∠D=90°,故AE为△AED的外接圆的直径.延长MO交BC于点N,则ON∥CD,∵四边形MNCD是矩形,∴MN=CD=4,∴ON=MN﹣MO=4﹣0.5x,∵△AED的外接圆与BC相切,∴ON是△AED的外接圆的半径,∴OE=ON=4﹣0.5x,AE=8﹣x,在Rt△AED中,AD2+DE2=AE2,∴22+x2=(8﹣x)2,得x=DE=,OE=4﹣0.5x=,∵△FEO∽△AEO,∴=,解得:FO=,∴FG=2FO=.故折痕FG的长是.。
2017年天津市南开区高考数学二模试卷(理科)(解析版)
2017年天津市南开区高考数学二模试卷(理科)一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设集合A={﹣1,0,2},集合B={﹣x|x∈A,且2﹣x∉A},则B=()A.{1}B.{﹣2}C.{﹣1,﹣2}D.{﹣1,0}2.(5分)设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为()A.11B.10C.9D.8.53.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sin x=sin y”的逆否命题为真命题4.(5分)由曲线y=x2,y=围成的封闭图形的面积为()A.B.1C.D.5.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,a=3,b=2,cos C=,则△ABC的面积为()A.3B.2C.4D.6.(5分)若(﹣)n的展开式中各项系数绝对值之和为1024,则展开式中x的系数为()A.15B.10C.﹣15D.﹣107.(5分)设F是抛物线C1:y2=2px(p>0)的焦点,点A是抛物线与双曲线C2:﹣=1(a>0,b>0)的一条渐近线的一个公共点,且AF⊥x轴,则双曲线的离心率为()A.B.C.D.28.(5分)已知函数f(x)=x﹣[x],其中[x]表示不超过实数x的最大整数.若关于x的方程f(x)=kx+k有三个不同的实根,则实数k的取值范围是()A.B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)复数z=∈R,则实数a的值是.10.(5分)执行如图所示的程序框图,输出的S值为.11.(5分)如图是一个组合几何体的三视图,则该几何体的体积是.12.(5分)已知直线C1:(t为参数),C2:(θ为参数),当α=时,则C1与C2的交点坐标为.13.(5分)已知直角梯形ABCD中,AB∥CD,∠BCD=60°,E是线段AD上靠近A的三等分点,F是线段DC的中点,若AB=2,AD=,则=.14.(5分)将A,B,C,D,E五个字母排成一排,若A与B相邻,且A与C 不相邻,则不同的排法共有种.三、解答题(本大题共6小题,共80分)15.(13分)已知函数f(x)=sin2x+2sin x cos x+sin(x+)sin(x﹣),x∈R.(Ⅰ)求f(x)的最小正周期和值域;(Ⅱ)若x=x0(x0∈[0,])为f(x)的一个零点,求sin2x0的值.16.(13分)某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.(1)求直方图中a的值及甲班学生每天平均学习时间在区间(10,12]的人数;(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.17.(13分)直三棱柱ABC﹣A1B1C1的所有棱长都为2,D为CC1中点.(Ⅰ)求证:直线AB1⊥平面A1BD;(Ⅱ)求二面角A﹣A1D﹣B的正弦值;(Ⅲ)当=λ时,异面直线DE和AC所成的角为90°,求CE的长.18.(13分)设数列{a n}的前n项和为S n,且S n=,{b n}为等差数列,且a1=b1,a2(b2﹣b1)=a1.(Ⅰ)求数列{a n}和{b n}通项公式;(Ⅱ)设,求数列{c n}的前n项和T n.19.(14分)已知点F是椭圆E:+=1(a>b>0)的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且△ABM 是边长为2的正三角形;又椭圆E上的P、Q两点关于直线l:y=x+n对称.(I)求椭圆E的方程;(II)当直线l过点(0,)时,求直线PQ的方程;(III)若点C是直线l上一点,且∠PCQ=,求△PCQ面积的最大值.20.(14分)函数f(x)=2(a﹣1)ln(e x﹣1)+e x,g(x)=(4a﹣2)x,其中a为常数(a>),f′(x)为函数f(x)的导函数.(Ⅰ)当a=时,证明f′(x)≥4;(Ⅱ)当a=时,x0满足f(x0)=4x0,证明:当x>x0时,f(x)>4x;(Ⅲ)设x1,x2分别是函数h(x)=f(x)﹣g(x)的极大值点和极小值点,且x2﹣x1>ln2,求a的取值范围.2017年天津市南开区高考数学二模试卷(理科)参考答案与试题解析一、选择题(本题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)设集合A={﹣1,0,2},集合B={﹣x|x∈A,且2﹣x∉A},则B=()A.{1}B.{﹣2}C.{﹣1,﹣2}D.{﹣1,0}【解答】解:∵集合A={﹣1,0,2},集合B={﹣x|x∈A,且2﹣x∉A},﹣1∈A,且2﹣(﹣1)=3∉A,故1∈B;0∈A,但2﹣0=2∈A,不满足题意;2∈A,但2﹣2=0∈A,不满足题意;故B={1},故选:A.2.(5分)设变量x,y满足约束条件,则目标函数z=2x+3y+1的最大值为()A.11B.10C.9D.8.5【解答】解:做出可行域如图所示:将目标函数转化为,欲求z的最大值,只需求直线l:在y轴上的截距的最大值即可.作出直线l0:,将直线l0平行移动,得到一系列的平行直线当直线经过点A时在y轴上的截距最大,此时z最大.由可求得A(3,1),将A点坐标代入z=2x+3y+1解得z的最大值为2×3+3×1+1=10故选:B.3.(5分)下列有关命题的说法正确的是()A.命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1”B.“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件C.命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”D.命题“若x=y,则sin x=sin y”的逆否命题为真命题【解答】解:对于A:命题“若x2=1,则x=1”的否命题为:“若x2=1,则x ≠1”.因为否命题应为“若x2≠1,则x≠1”,故错误.对于B:“x=﹣1”是“x2﹣5x﹣6=0”的必要不充分条件.因为x=﹣1⇒x2﹣5x ﹣6=0,应为充分条件,故错误.对于C:命题“∃x∈R,使得x2+x+1<0”的否定是:“∀x∈R,均有x2+x+1<0”.因为命题的否定应为∀x∈R,均有x2+x+1≥0.故错误.由排除法得到D正确.故选:D.4.(5分)由曲线y=x2,y=围成的封闭图形的面积为()A.B.1C.D.【解答】解:由曲线y=和曲线y=x2可得交点坐标为(0,0),(1,1),则曲线y=和曲线y=x2围成的封闭图形的面积为S=(﹣x2)dx=(﹣x3)=﹣=.故选:D.5.(5分)在△ABC中,内角A,B,C的对边分别为a,b,c,a=3,b=2,cos C=,则△ABC的面积为()A.3B.2C.4D.【解答】解:∵cos C=,∴sin C==,又∵a=3,b=2,∴S=ab sin C==4.△ABC故选:C.6.(5分)若(﹣)n的展开式中各项系数绝对值之和为1024,则展开式中x的系数为()A.15B.10C.﹣15D.﹣10【解答】解:(﹣)n的展开式中各项系数绝对值之和与的展开式中各项系数之和相等.对,令x=1,则其展开式中各项系数之和=4n.∴4n=1024,解得n=5.∴的通项公式T r+1==(﹣3)r,令=1,解得r=1.∴展开式中x的系数=﹣3×=﹣15.故选:C.7.(5分)设F是抛物线C1:y2=2px(p>0)的焦点,点A是抛物线与双曲线C2:﹣=1(a>0,b>0)的一条渐近线的一个公共点,且AF⊥x轴,则双曲线的离心率为()A.B.C.D.2【解答】解:由题意得F(,0),准线为x=﹣,设双曲线的一条渐近线为y=x,则点A(,),由抛物线的定义得|PF|等于点A到准线的距离,即=+,∴=1,e==,故选:A.8.(5分)已知函数f(x)=x﹣[x],其中[x]表示不超过实数x的最大整数.若关于x的方程f(x)=kx+k有三个不同的实根,则实数k的取值范围是()A.B.C.D.【解答】解:函数f(x)=x﹣[x]的图象如下图所示:y=kx+k表示恒过A(﹣1,0)点斜率为k的直线若方程f(x)=kx+k有3个相异的实根.则函数f(x)=x﹣[x]与函数f(x)=kx+k的图象有且仅有3个交点由图可得:当y=kx+k过(2,1)点时,k=,当y=kx+k过(3,1)点时,k=,当y=kx+k过(﹣2,1)点时,k=﹣1,当y=kx+k过(﹣3,1)点时,k=﹣,则实数k满足≤k<或﹣1<k≤﹣.故选:B.二、填空题(本大题共6小题,每小题5分,共30分)9.(5分)复数z=∈R,则实数a的值是.【解答】解:∵z==∈R,∴3﹣4a=0,即a=.故答案为:.10.(5分)执行如图所示的程序框图,输出的S值为10.【解答】解:由已知可得该程序的功能是计算并输出S=﹣12+22﹣32+42的值∵S=﹣12+22﹣32+42=10故答案为:1011.(5分)如图是一个组合几何体的三视图,则该几何体的体积是36+128π.【解答】解:由三视图可知该几何体为上部是一平放的直三棱柱,下部为圆柱体的组合体.上部一平放的直三棱柱形状如图,底面三角形一边为3,对应的高为4.直三棱柱高为4其体积V1=S1h1==36下部圆柱体的体积V2=S2h2=π××8=128π所以V=V1+V2=36+128π故答案为:36+128π12.(5分)已知直线C1:(t为参数),C2:(θ为参数),当α=时,则C1与C2的交点坐标为(1,0),(,﹣).【解答】解:(Ⅰ)当α=时,C1的普通方程为y=(x﹣1),C2的普通方程为x2+y2=1.联立方程组,解得C1与C2的交点为(1,0),(,﹣).故答案为(1,0),(,﹣).13.(5分)已知直角梯形ABCD中,AB∥CD,∠BCD=60°,E是线段AD上靠近A的三等分点,F是线段DC的中点,若AB=2,AD=,则=.【解答】解:过B作BM⊥DC于M,故AB=DM=2,因为BM=AD=,∠BCD=60°,故CM=1,=(+)•(+)=•+•=××(﹣1)+2×=,故答案为:14.(5分)将A,B,C,D,E五个字母排成一排,若A与B相邻,且A与C 不相邻,则不同的排法共有36种.【解答】解:依题意,可分三步,先排D,E,有种方法,产生3个空位,将AB捆绑,看作一个元素,插入三个空位之一,有3种方法,再将AB松绑,有种方法,这时AB、D、E产生四个空位,最后将C插入与A不相邻的三个空位之一,有3种方法,根据分步乘法计数原理得:共有•••=36种,故答案为:36.三、解答题(本大题共6小题,共80分)15.(13分)已知函数f(x)=sin2x+2sin x cos x+sin(x+)sin(x﹣),x∈R.(Ⅰ)求f(x)的最小正周期和值域;(Ⅱ)若x=x0(x0∈[0,])为f(x)的一个零点,求sin2x0的值.【解答】解:函数f(x)=sin2x+2sin x cos x+sin(x+)sin(x﹣),x∈R化简可得:f(x)=cos2x+sin2x+sin(x﹣)cos(x﹣),=﹣cos2x+sin2x+sin﹣cos2x=sin2x﹣cos2x+=2sin(2x﹣).(Ⅰ)∴f(x)的最小正周期T=值域为:[,].(Ⅱ)令f(x0)=0,可得sin(2x0﹣)=<0∵x0∈[0,],∴2x0﹣∈[﹣,0],cos(2x0﹣)=那么:sin2x0=sin[(2x0﹣)﹣]=sin(2x0﹣)cos()﹣cos(2x0﹣)sin=.16.(13分)某学校为了解高三年级学生寒假期间的学习情况,抽取甲、乙两班,调查这两个班的学生在寒假期间每天平均学习的时间(单位:小时),统计结果绘成频率分布直方图(如图).已知甲、乙两班学生人数相同,甲班学生每天平均学习时间在区间[2,4]的有8人.(1)求直方图中a的值及甲班学生每天平均学习时间在区间(10,12]的人数;(2)从甲、乙两个班每天平均学习时间大于10个小时的学生中任取4人参加测试,设4人中甲班学生的人数为ξ,求ξ的分布列和数学期望.【解答】解:(1)由直方图知,(0.150+0.125+0.100+0.0875+a)×2=1,解得a=0.0375,因为甲班学习时间在区间[2,4]的有8人,所以甲班的学生人数为,所以甲、乙两班人数均为40人.所以甲班学习时间在区间(10,12]的人数为40×0.0375×2=3(人).(2)乙班学习时间在区间(10,12]的人数为40×0.05×2=4(人).由(1)知甲班学习时间在区间(10,12]的人数为3人,在两班中学习时间大于10小时的同学共7人,ξ的所有可能取值为0,1,2,3.,,,.所以随机变量ξ的分布列为:.17.(13分)直三棱柱ABC﹣A1B1C1的所有棱长都为2,D为CC1中点.(Ⅰ)求证:直线AB1⊥平面A1BD;(Ⅱ)求二面角A﹣A1D﹣B的正弦值;(Ⅲ)当=λ时,异面直线DE和AC所成的角为90°,求CE的长.【解答】解:(Ⅰ)取BC中点O,连接AO、∵△ABC为正三角形,∴AO⊥BC.∵正三棱柱ABC﹣A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1,连接B1O,在正方形BB1C1C中,O、D分别为BC、CC1的中点,∴B1O⊥BD,∴AB1⊥BD.在正方形ABB1A1中,AB1⊥A1B,∴AB1⊥平面A1BD.(Ⅱ)设AB1与A1B交于点G,在平面A1BD中,作GF⊥A1D于F,连接AF,由(Ⅰ)得AB1⊥平面A1BD,∴∠AFG为二面A﹣A1D﹣B的平面角,在△AA1D中,由等面积法可求得AF=,又∵AG==AB1=,∴sin∠AFG=,所以二面角A﹣A1D﹣B的正弦值:(Ⅲ):取BC中点O,连接AO.∵△ABC为正三角形,∴AO⊥BC、∵正三棱柱ABC﹣A1B1C1中,平面ABC⊥平面BCC1B1,∴AO⊥平面BCC1B1,取B1C1中点O1,以0为原点,OB,OO1 ,OA的方向为x、y、z轴的正方向建立空间直角坐标系则B(1,0,0),D(﹣1,1,0),A1(0,2,),A(0,0,),B1(1,2,0),,.∵异面直线DE和AC所成的角为90°,∴,解得λ=2.即∴,∴CE的长为18.(13分)设数列{a n}的前n项和为S n,且S n=,{b n}为等差数列,且a1=b1,a2(b2﹣b1)=a1.(Ⅰ)求数列{a n}和{b n}通项公式;(Ⅱ)设,求数列{c n}的前n项和T n.【解答】解:(Ⅰ)当n=1时,a1=S1=1,当n≥2时,a n=S n﹣S n=()﹣()=,﹣1经验证当n=1时,此式也成立,所以,从而b1=a1=1,,又因为{b n}为等差数列,所以公差d=2,∴b n=1+(n﹣1)•2=2n﹣1,故数列{a n}和{b n}通项公式分别为:,b n=2n﹣1.(Ⅱ)由(Ⅰ)可知,所以+(2n﹣1)•2n﹣1①①×2得+(2n﹣3)•2n ﹣1+(2n﹣1)•2n②①﹣②得:﹣(2n﹣1)•2n==1+2n+1﹣4﹣(2n﹣1)•2n=﹣3﹣(2n﹣3)•2n.∴数列{c n}的前n项和.19.(14分)已知点F是椭圆E:+=1(a>b>0)的右焦点,点M在椭圆E上,以M为圆心的圆与x轴切于点F,与y轴交于A、B两点,且△ABM 是边长为2的正三角形;又椭圆E上的P、Q两点关于直线l:y=x+n对称.(I)求椭圆E的方程;(II)当直线l过点(0,)时,求直线PQ的方程;(III)若点C是直线l上一点,且∠PCQ=,求△PCQ面积的最大值.【解答】解:(I)由题意可知:M(c,2)且c为正三角形的高,所以c=将点M坐标代入椭圆方程可得:与a2=b2+3联立可得:a2=9,b2=6,所以椭圆方程为:(II)设PQ:y=﹣x+m代入椭圆方程2x2+3y2=18整理得5x2﹣6mx+3m2﹣18=0△=36m2﹣4•5•(3m2﹣18)>0,则令P(x1,y1),Q(x2,y2),故,则P、Q的中点为由于l方程为,故,得m=﹣1则直线PQ的方程为y=﹣x﹣1(III)[1+(﹣1)2]=的最大值为则当m=0时,S△POQ20.(14分)函数f(x)=2(a﹣1)ln(e x﹣1)+e x,g(x)=(4a﹣2)x,其中a为常数(a>),f′(x)为函数f(x)的导函数.(Ⅰ)当a=时,证明f′(x)≥4;(Ⅱ)当a=时,x0满足f(x0)=4x0,证明:当x>x0时,f(x)>4x;(Ⅲ)设x1,x2分别是函数h(x)=f(x)﹣g(x)的极大值点和极小值点,且x2﹣x1>ln2,求a的取值范围.【解答】解:(Ⅰ)a=时,由e x﹣1>0得f(x)的定义域是(0,+∞),则f′(x)=e x﹣1++2≥2+2=4;(Ⅱ)证明:构造函数F(x)=f(x)﹣4x=ln(e x﹣1)+e x﹣4x,∵f(x0)=4x0,∴F(x0)=0,由(Ⅰ)得F′(x)=+e x﹣4≥0,故F(x)在定义域内是增函数,∴x>x0时,F(x)>F(x0)=0,故f(x)>4x;(Ⅲ)∵h(x)=2(a﹣1)ln(e x﹣1)+e x﹣(4a﹣2)x,∴h′(x)=2(a﹣1)+e x﹣(4a﹣2),令h′(x)=0,化简得:e2x﹣(2a+1)e x+(4a﹣2)=0,解得:x=ln2或ln(2a﹣1),①2a﹣1>2即a>时,x1=ln2,x2=ln(2a﹣1),∵x2﹣x1>ln2,∴ln(2a﹣1)﹣ln2>ln2,∴a>;②2a﹣1<2即a<时,x1=ln(2a﹣1),x2=ln2,∵x2﹣x1>ln2,∴ln2﹣ln(2a﹣1)>ln2,∴<a<1,③2a﹣1=2即a=时,无极值点,不满足题意,综上,a的范围是(,+∞)或(,1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年天津市南开区中考数学二模试卷一、选择题:1.(3分)计算(﹣2)3所得结果是()A.﹣6 B.6 C.﹣8 D.82.(3分)4cos60°的值为()A.B.2 C.D.23.(3分)下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.44.(3分)小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为()A.0.8×10﹣7米 B.8×10﹣7米C.8×10﹣8米D.8×10﹣9米5.(3分)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.6.(3分)估计﹣2的值()A.在4和5之间B.在3和4之间C.在2和3之间D.在1和2之间7.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移38.(3分)下列等式成立的是()A.+=B.=C.= D.=﹣9.(3分)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<010.(3分)已知正方体的体积为2,则这个正方体的棱长为()A.1 B.C.D.311.(3分)如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°12.(3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且0<a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b二、填空题:13.(3分)化简:﹣|﹣3|=.14.(3分)已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是.15.(3分)小玲在一次班会中参加知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机抽取1道,抽中数学题的概率是.16.(3分)如果直线y=﹣2x+k与两坐标轴所围成的三角形面积是9,则k的值为.17.(3分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是.18.(3分)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长为;(2)在图中画出两条裁剪线,并画出将此六边形剪拼成的正方形.三、解答题:19.解不等式组:请结合题意填空:完成本题的解答:(Ⅰ)解不等式(1),得;(Ⅱ)解不等式(2),得;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为.20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?21.如图,在边长为8的正方形ABCD中,E是AB上的点,⊙O是以BC为直径的圆.(1)如图1,若DE与⊙O相切于点F,求BE的长;(2)如图2,若AO⊥DE,垂足为F,求EF的长.22.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(精确到0.1)(参考数据:≈1.414,≈1.132)23.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?24.如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0).将矩形OABC绕点O按顺时针方向旋转135°,得到矩形EFGH(点E与O重合).(1)若GH交y轴于点M,则∠FOM=°,OM=;(2)将矩形EFGH沿y轴向上平移t个单位.①直线GH与x轴交于点D,若AD∥BO,求t的值;②若矩形EFGH与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤4﹣2时,S与t之间的函数关系式.25.已知抛物线C1的函数解析式为y=ax2﹣2x﹣3a,若抛物线C1经过点(0,﹣3).(1)求抛物线C1的顶点坐标.(2)已知实数x>0,请证明x+≥2,并说明x为何值时才会有x+=2;(3)若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90°,m>0,n<0.请你用含m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为)2017年天津市南开区中考数学二模试卷参考答案与试题解析一、选择题:1.(3分)计算(﹣2)3所得结果是()A.﹣6 B.6 C.﹣8 D.8【解答】解:(﹣2)3=(﹣2)×(﹣2)×(﹣2)=﹣8.故选C.2.(3分)4cos60°的值为()A.B.2 C.D.2【解答】解:4cos60°=4×=2,故选:B.3.(3分)下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.4【解答】解:第一个,是轴对称图形,符合题意;第二个,不是轴对称图形,不合题意;第三个,是轴对称图形,符合题意;第四个,是轴对称图形,符合题意.故选:C.4.(3分)小明上网查得H7N9禽流感病毒的直径大约是0.00000008米,用科学记数法表示为()A.0.8×10﹣7米 B.8×10﹣7米C.8×10﹣8米D.8×10﹣9米【解答】解:0.00000008米用科学记数法表示为8×10﹣8米.故选C.5.(3分)下列几何体是由4个相同的小正方体搭成的,其中主视图和左视图相同的是()A.B.C.D.【解答】解:A、主视图是第一层三个小正方形,第二层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,故A错误;B、主视图是第一层两个小正方形,第二层中间一个小正方形,第三层中间一个小正方形,左视图是第一层一个小正方形,第二层一个小正方形,第三层一个小正方形,故B错误;C、主视图是第一层两个小正方形,第二层左边一个小正方形,左视图是第一层两个小正方形,第二层左边一个小正方形,故C正确;D、主视图是第一层两个小正方形,第二层右边一个小正方形,左视图是第一层一个小正方形,第二层左边一个小正方形,故D错误;故选:C.6.(3分)估计﹣2的值()A.在4和5之间B.在3和4之间C.在2和3之间D.在1和2之间【解答】解:∵36<41<49,∴,∴6<<7,∴4<﹣2<5,故选:A.7.(3分)如图,在平面直角坐标系中,点B、C、E、在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是()A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3【解答】解:根据图形可以看出,△ABC绕点C顺时针旋转90°,再向下平移3个单位可以得到△ODE.故选:A.8.(3分)下列等式成立的是()A.+=B.=C.= D.=﹣【解答】解:A、原式=,错误;B、原式不能约分,错误;C、原式==,正确;D、原式==﹣,错误,故选C9.(3分)已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0 B.x1•x3<0 C.x2•x3<0 D.x1+x2<0【解答】解:∵反比例函数y=中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,故选A.10.(3分)已知正方体的体积为2,则这个正方体的棱长为()A.1 B.C.D.3【解答】解:∵正方体的体积为2,∴这个正方体的棱长为===,故选B.11.(3分)如图,四边形ABCD是正方形,以CD为边作等边三角形CDE,BE与AC相交于点M,则∠AMD的度数是()A.75°B.60°C.54°D.67.5°【解答】解:如图,连接BD,∵∠BCE=∠BCD+∠DCE=90°+60°=150°,BC=EC,∴∠EBC=∠BEC=(180°﹣∠BCE)=15°∵∠BCM=∠BCD=45°,∴∠BMC=180°﹣(∠BCM+∠EBC)=120°,∴∠AMB=180°﹣∠BMC=60°∵AC是线段BD的垂直平分线,M在AC上,∴∠AMD=∠AMB=60°故选B.12.(3分)“如果二次函数y=ax2+bx+c的图象与x轴有两个公共点,那么一元二次方程ax2+bx+c=0有两个不相等的实数根.”请根据你对这句话的理解,解决下面问题:若m、n(m<n)是关于x的方程1﹣(x﹣a)(x﹣b)=0的两根,且0<a<b,则a、b、m、n的大小关系是()A.m<a<b<n B.a<m<n<b C.a<m<b<n D.m<a<n<b【解答】解:依题意,画出函数y=(x﹣a)(x﹣b)的图象,如图所示.函数图象为抛物线,开口向上,与x轴两个交点的横坐标分别为a,b(0<a<b).方程1﹣(x﹣a)(x﹣b)=0转化为(x﹣a)(x﹣b)=1,方程的两根是抛物线y=(x﹣a)(x﹣b)与直线y=1的两个交点.由m<n,可知对称轴左侧交点横坐标为m,右侧为n.由抛物线开口向上,则在对称轴左侧,y随x增大而减少,则有m<a;在对称轴右侧,y随x增大而增大,则有b<n.综上所述,可知m<a<b<n.故选:A.二、填空题:13.(3分)化简:﹣|﹣3|=﹣3.【解答】解:﹣|﹣3|=﹣3.故答案为﹣3.14.(3分)已知关于x的方程x2﹣2x+a=0有两个不相等的实数根,则a的取值范围是a<1.【解答】解:∵b2﹣4ac=(﹣2)2﹣4×1×a=4﹣4a>0,解得:a<1.∴a的取值范围是a<1.故答案为:a<1.15.(3分)小玲在一次班会中参加知识抢答活动,现有语文题6道,数学题5道,综合题9道,她从中随机抽取1道,抽中数学题的概率是.【解答】解:∵现有语文题6个,数学题5个,综合题9道,∴小玲从中随机抽取1个题目,抽中的是数学题的概率为:=.故答案为:.16.(3分)如果直线y=﹣2x+k与两坐标轴所围成的三角形面积是9,则k的值为±6.【解答】解:当x=0时,y=k;当y=0时,x=.∴直线y=﹣2x+k与两坐标轴的交点坐标为A(0,k),B(,0),∴S==9,△AOB∴k=±6.故填空答案:±6.17.(3分)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数是120°.【解答】解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.作DA延长线AH,∵∠DAB=120°,∴∠HAA′=60°,∴∠AA′M+∠A″=∠HAA′=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故答案为:120°.18.(3分)下列网格中的六边形ABCDEF是由边长为6的正方形左上角剪去边长为2的正方形所得,该六边形按一定的方法可剪拼成一个正方形.(1)根据剪拼前后图形的面积关系求出拼成的正方形的边长为4;(2)在图中画出两条裁剪线,并画出将此六边形剪拼成的正方形.【解答】解:(1)可得多边形面积为:36﹣4=32,故拼成的正方形的边长为:=4;故答案为:4;(2)如图所示:三、解答题:19.解不等式组:请结合题意填空:完成本题的解答:(Ⅰ)解不等式(1),得x<0;(Ⅱ)解不等式(2),得x<4;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为x<0.【解答】解:(Ⅰ)解不等式(1),得x<0;(Ⅱ)解不等式(2),得x<4;(Ⅲ)把不等式(1)和(2)的解集在数轴上表示出来:(Ⅳ)原不等式组的解集为:x<0,故答案为:x<0,x<4,x<0.20.为了解某地区七年级学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,从该地区随机抽取部分七年级学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名同学只能选择其中一类节目),并调查得到的数据用下面的表和扇形图来表示(表、图都没制作完成)根据表、图提供的信息,解决以下问题:(1)计算出表中a、b的值;(2)求扇形统计图中表示“动画”部分所对应的扇形的圆心角度数;(3)若该地区七年级学生共有47500人,试估计该地区七年级学生中喜爱“新闻”类电视节目的学生有多少人?【解答】解:(1)∵喜欢体育的人数是90人,占总人数的20%,∴总人数==450(人).∵娱乐人数占36%,∴b=450×36%=162(人),∴a=450﹣162﹣36﹣90﹣27=135(人);(2)∵喜欢动画的人数是135人,∴×360°=108°;(3)∵喜爱新闻类人数的百分比=×100%=8%,∴47500×8%=3800(人).答:该地区七年级学生中喜爱“新闻”类电视节目的学生有3800人.21.如图,在边长为8的正方形ABCD中,E是AB上的点,⊙O是以BC为直径的圆.(1)如图1,若DE与⊙O相切于点F,求BE的长;(2)如图2,若AO⊥DE,垂足为F,求EF的长.【解答】解:(1)设BE=x,则AE=8﹣x,∵⊙O是以BC为直径的圆,AB⊥BC,CD⊥BC,∴AB和CD都是⊙O的切线,∵DE与⊙O相切于点F,∴EF=BE=x,DF=DC=8,在Rt△AED中,∵AE2+AD2=DE2,∴(8﹣x)2+82=(8+x)2,解得x=2,即BE的长为2;(2)∵AO⊥DE,∴∠AFD=90°,∴∠ADF+∠DAF=90°,而∠DAF+∠BAO=90°,∴∠BAO=∠ADF,在△ADF和△OAB中,∴△ADF≌△OAB,∵AO==4,∵∠EAF=∠BAO,∠AFE=∠ABO=90°,∴△AEF∽△AOF,∴,∴EF==.22.在综合实践课上,小聪所在小组要测量一条河的宽度,如图,河岸EF∥MN,小聪在河岸MN上点A处用测角仪测得河对岸小树C位于东北方向,然后沿河岸走了30米,到达B处,测得河对岸电线杆D位于北偏东30°方向,此时,其他同学测得CD=10米.请根据这些数据求出河的宽度.(精确到0.1)(参考数据:≈1.414,≈1.132)【解答】解:如图作BH⊥EF,CK⊥MN,垂足分别为H、K,则四边形BHCK是矩形,设CK=HB=x,∵∠CKA=90°,∠CAK=45°,∴∠CAK=∠ACK=45°,∴AK=CK=x,BK=HC=AK﹣AB=x﹣30,∴HD=x﹣30+10=x﹣20,在Rt△BHD中,∵∠BHD=90°,∠HBD=30°,∴tan30°=,∴=,解得x=30+10 ≈47.3.∴河的宽度为47.3米.23.由于雾霾天气趋于严重,我市某电器商城根据民众健康需求,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.(1)完成下列表格,并直接写出月销售量y(台)与售价x(元/台)之间的函数关系式及售价x的取值范围;(2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?【解答】解:(1)根据题意,月销售量y与售价x之间的函数关系式为y=200+50×=﹣5x+2200,当y=250时,得﹣5x+2200=250,解得:x=390,补全表格如下:由得300≤x≤350;(2)∵w=(x﹣200)(﹣5x+2200)=﹣5(x﹣320)2+72000,=72000,∴当x=320时,w最大答:当售价x定为320元/台时,商场每月销售这种空气净化器所获得的利润w 最大,最大利润是72000元.24.如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0).将矩形OABC绕点O按顺时针方向旋转135°,得到矩形EFGH(点E与O重合).(1)若GH交y轴于点M,则∠FOM=45°,OM=2;(2)将矩形EFGH沿y轴向上平移t个单位.①直线GH与x轴交于点D,若AD∥BO,求t的值;②若矩形EFGH与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤4﹣2时,S与t之间的函数关系式.【解答】解:(1)如图所示:由旋转可得:∠AOF=135°,又∠AOC=90°,∴∠COF=∠AOF﹣∠AOC=45°,又∠MOC=90°,∴∠FOM=45°,又OF∥HG,∴∠OMH=∠FOM=45°,又∠H=90°,∴△OHM为等腰直角三角形,∴OH=HM=2,则根据勾股定理得:OM=2;(2)①如图所示:连接AD,BO∵AD∥BO,AB∥OD,∴四边形ADOB为平行四边形,∴DO=AB=2,由平移可知:∠HEM=45°,∴∠OMD=∠ODM=45°,∴OM=OD=2,由平移可知:EM=2,∴矩形EFGH平移的路程t=2﹣2=2(﹣1);②分三种情况考虑:(i)如图1所示,当0<t≤2时,重叠部分为等腰直角三角形,此时OE=t,则重叠部分面积S=t2;(ii)如图2所示,当2<t≤2时,重叠部分为直角梯形,此时S=[(t﹣2)+t]×2=2t﹣2;(iii)如图3所示,当2<t≤4﹣2时,E点在A点下方,重叠部分为五边形,此时S=(2t﹣2)﹣(t﹣2)2=﹣t2+2(+1)t﹣6.综上,S=.故答案为:45;2.25.已知抛物线C1的函数解析式为y=ax2﹣2x﹣3a,若抛物线C1经过点(0,﹣3).(1)求抛物线C1的顶点坐标.(2)已知实数x>0,请证明x+≥2,并说明x为何值时才会有x+=2;(3)若将抛物线先向上平移4个单位,再向左平移1个单位后得到抛物线C2,设A(m,y1),B(n,y2)是C2上的两个不同点,且满足:∠AOB=90°,m>0,n<0.请你用含m的表达式表示出△AOB的面积S,并求出S的最小值及S取最小值时一次函数OA的函数解析式.(参考公式:在平面直角坐标系中,若P(x1,y1),Q(x2,y2),则P,Q两点间的距离为)【解答】解:(1)∵抛物线过(0,﹣3)点,∴﹣3a=﹣3,∴a=1,∴y=x2﹣2x﹣3,∴y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线C1的顶点坐标为(1,﹣4);(2)∵x>0,∴x+﹣2=(﹣)2≥0,∴x+≥2,显然当x=1时,才有x+=2;(3)如图所示,由平移知识易得C2的解析式为:y=x2,∴A(m,m2),B(n,n2),∵△AOB为Rt△,∴OA2+OB2=AB2,∴m2+m4+n2+n4=(m﹣n)2+(m2﹣n2)2化简得:m n=﹣1,=OA•OB=•,∵S△AOB∵m n=﹣1,====(m+)≥×2=1,∴S△AOB∴S的最小值为1,此时m=1,A(1,1),△AOB∴直线OA的一次函数解析式为y=x.赠送:初中数学几何模型【模型一】半角型:图形特征:FAB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-aa BE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。