北师大七年级数学下全等及平行线
北师大版数学七年级下册3平行线的性质课件
名师导学
B. 平行线的性质综合运用:两直ຫໍສະໝຸດ 平行两直线平行,同位角相等;
两直线平行
两直线平行,内错角相等;
两直线平行
两直线平行,同旁内角互补.
2. 如图2-20-2,若l1∥l2,l3∥l4,若∠1=116°,则∠2的 度数为( A )
A. 64°
B. 84°
C. 94°
D. 116°
课堂导练
知识点1 平行线的判定与性质综合运用
思路点拨:根据平行线的判定和性质解答即可.
2. 如图2-20-6,∠ENC+∠CMG=180°,AB∥CD. (1)求证:∠2=∠3; (2)若∠A=∠1+70°,∠ACB=42°,求∠B的度数.
(1)证明:因为∠ENC+∠CMG=180°,∠CMG=∠FMN, 所以∠ENC+∠FMN=180°. 所以FG∥ED(同旁内角互补,两直线平行). 所以∠2=∠D(两直线平行,同位角相等). 因为AB∥CD,所以∠3=∠D(两直线平行,内错角相等). 所以∠2=∠3. (2)解:因为AB∥CD, 所以∠A+∠ACD=180°(两直线平行,同旁内角互补). 因为∠A=∠1+70°,∠ACB=42°, 所以∠1+70°+∠1+42°=180°. 所以∠1=34°. 因为AB∥CD,所以∠B=∠1=34°(两直线平行,内错角相等).
知识点1 平行线的判定与性质综合运用
【例2】如图2-20-5,E是AB上一点,F是CD上一点,DE,BF 分别交AC于点G,H,∠B=∠D,∠1+∠2=180°,探索∠A 与∠C的数量关系,并说明理由.
解:∠A=∠C.理由如下. 因为∠1=∠DGC,∠1+∠2=180°, 所以∠DGC+∠2=180°. 所以BF∥DE(同旁内角互补,两直线平行). 所以∠D=∠BFC(两直线平行,同位角相等). 因为∠B=∠D, 所以∠B=∠BFC. 所以AB∥CD(内错角相等,两直线平行). 所以∠A=∠C(两直线平行,内错角相等).
北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(知识梳理与考点分类讲解)
北师大版七年级下册第二单元相交线与平行线单元——平行线的性质(全章知识梳理与考点分类讲解)【知识点一】平行线的判定方法11.方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称为:同位角相等,两直线平行.2.表达方式:因为∠1=∠2,(已知)所以a//b(同位角相等,两直线平行)特别提醒:“同位角相等,两直线平行”是通过两个同位角的大小关系(相等)推导出两直线的位置关系(平行).它是构建起角的大小关系与直线的位置关系的桥梁.【知识点二】平行线的画法过直线外一点画已知的直线平行线的步骤一落:把三角尺的一边落在一直的直线上;二靠:紧靠三角尺的另一边放一直尺;三移:把三角尺沿着直尺移动使其经过已知点;四画:沿三角尺的一边画直线.此直线即为已知直线的平行线.特别提醒:1.经过直线上一点不可以作已知直线的平行线.2.画线段或射线的平行线是画它们所在直线的平行线.3.移动是要始终保持紧靠.【知识点三】平行线的性质及其推论1.平行线的性质:过直线外一点有且只有一条直线与这条直线平行.2.表达方式:如果a//b,b//c,那么a//b.特别提醒:平行线的性质的前提是“过直线外一点”,若点在直线上,则不可能有平行线.【考点目录】【平行线性质求角的等量关系】【考点1】同位角相等两直线平行;【考点2】内错角相等两直线平行;【考点3】同旁内角互补两直线平行;【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度;【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度;【考点6】平行线判定与性质证明;【平行线间的距离】【考点7】平行线间的距离(应用).【平行线性质求角的等量关系】【考点1】同位角相等两直线平行【答案】相等;理由见分析【分析】根据平行投影可得∠B=∠E,再根据垂直可得∠C=∠F=90°,然后利用“角边角”证明△ABC 和△DEF全等,根据全等三角形对应边相等即可得证.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC =EF ,∵在△ABC 和△DEF 中B E BC EF C F ∠∠⎧⎪⎨⎪∠∠⎩===∴△ABC ≌△DEF (ASA ),∴AC =DF ,即两根旗杆的高度相等.【点拨】本题考查了全等三角形的应用,根据题意找出三角形全等的条件,然后证明两三角形全等是解题的关键.【变式1】(2023·黑龙江齐齐哈尔·统考中考真题)如图,把一块三角板的30︒角顶点A 放在直尺的一边BC 上,若1:23:7∠∠=,则2∠=()A .126︒B .118︒C .105︒D .94︒【答案】C 【分析】根据平行线的性质和平角的定义即可得到结论.解:如图,由题意知:DE BC ∥,∴31∠=∠,∵1:23:7∠∠=,∴3:23:7∠∠=,∴3327∠=∠,∵2330180∠+∠+︒=︒,∴322301807∠+∠+︒=︒,∴2105∠=︒.故选:C .【点拨】本题考查的是平行线的性质和平角的定义.熟练掌握两直线平行,同位角相等是解题的关键.【变式2】(2022·甘肃嘉峪关·校考一模)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为.【答案】60°/60度【分析】由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故答案为:60°.【点拨】此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.【考点2】内错角相等两直线平行【例2】(2014下·贵州铜仁·七年级统考期末)已知:如图,点D、E分别在AB、BC上,DE AC∥,165∠=︒,265∠=︒,请说明:F CBF ∠=∠.(不必注明依据)【答案】证明见分析【分析】根据平行线的性质得出165C ∠=∠=︒,得出2C ∠=∠,根据平行线的判定得出AF BC ∥,再根据平行线的性质即可得证.解:∵DE AC ∥,165∠=︒,265∠=︒,∴165C ∠=∠=︒,∴2C ∠=∠,∴AF BC ∥,∴F CBF ∠=∠.【点拨】本题考查平行线的判定和性质,能灵活运用平行线的性质和判定定理进行推理是解题的关键.【变式1】(2023·吉林白城·校联考三模)已知,如图,AB ∥CD ,∠A=70°,∠B=40°,则∠ACD=()A .55°B .70°C .40°D .110°【答案】B解:AB CD ∥.A ACD ∴∠=∠70.A ∠=︒ 70.ACD ∠=︒故选B.【点拨】两直线平行,内错角相等.【变式2】(2023·辽宁阜新·统考中考真题)如图,直线a b ,直线l 与直线a 相交于点P ,直线l 与直线b 相交于点Q ,PM l ⊥于点P ,若155∠=︒,则2∠=.︒【答案】35【分析】本题主要考查平行线性质以及垂线的性质.根据平行线性质得3155∠=∠=︒,利用垂线性质即可求得2∠.解:直线a b ,3155∴∠=∠=︒,又PM l ⊥ 于点P ,90MPQ ∴∠=︒,2903905535∴∠=︒-∠=︒-︒=︒.故答案为:35.【考点3】同旁内角互补两直线平行【例3】(2023下·山东烟台·六年级统考期末)如图,ABD ∠和BDC ∠的角平分线交于点E ,BE 交CD 于点F ,1290∠+∠=︒.(1)试说明://AB CD .(2)若228∠=︒,求3∠的度数.【答案】(1)见分析;(2)62︒【分析】(1)根据角平分线的定义,结合1290∠+∠=︒,可得180ABD BDC ∠+∠︒=,进而即可得到结论;(2)由228∠=︒,得162∠=︒,进而得62ABF ∠=︒,结合//AB CD ,即可得到答案.解:(1)∵ABD ∠和BDC ∠的角平分线交于点E ,∴21ABD ∠∠=,22BDC ∠∠=,又∵1290∠+∠=︒,∴2(12)180ABD BDC ∠+∠∠+∠=︒=,∴//AB CD ;(2)∵228∠=︒,1290∠+∠=︒,∴162∠=︒,又∵BF 平分ABD ∠,∴162ABF ∠=∠=︒,又∵//AB CD ,∴362ABF ∠=∠=︒.【点拨】本题主要考查角平分线的定义,平行线的判定和性质定理,掌握“同旁内角互补,两直线平行”,“两直线平行,内错角相等”,是解题的关键.【变式1】(2012下·广东茂名·七年级统考期中)两条平行线被第三条直线所截,一对同旁内角的比为4:5,则这两个角中较小的角的度数为()A .20︒B .80︒C .100︒D .120︒【答案】B【分析】根据比例设两个角为4x 、5x ,再根据两直线平行,同旁内角互补列式求解即可.解:设两个角分别为4x 、5x ,∵这两个角是两平行线被截所得到的同旁内角,∴45180x x +=︒,解得20x =︒,480x =︒,5100x =︒,所以较小的角的度数等于80︒.故选:B .【点拨】本题考查了平行线的性质,主要利用了两直线平行,同旁内角互补的性质,熟记性质是解题的关键.【变式2】(2023下·辽宁大连·七年级统考期末)如图,AB ∥CD ,射线AE 交CD 于点F ,若∠1=116°,则∠2的度数等于.【答案】64°【分析】根据两直线平行,同旁内角互补可求出∠AFD 的度数,然后根据对顶角相等求出∠2的度数.解:∵AB ∥CD ,∴∠1+∠AFD =180°.∵∠1=116°,∴∠AFD =64°.∵∠2和∠AFD 是对顶角,∴∠2=∠AFD =64°.故答案为64°.【点拨】本题考查了平行线的性质,解题的关键是掌握两直线平行,同旁内角互补.【平行线性质探究角的关系】【考点4】平行线判探究角的关系或求角度【例4】(2017下·北京东城·七年级统考期中)已知:直线AB CD ,点M 、N 分别在直线AB 、直线CD 上,点E 为平面内一点,(1)如图1,请写出AME ∠,E ∠,ENC ∠之间的数量关系,并给出证明;(2)如图2,利用(1)的结论解决问题,若30AME ∠=︒,EF 平分MEN ∠,NP 平分ENC ∠,EQ NP ∥,求FEQ ∠的度数;(3)如图3,点G 为CD 上一点,AMN m EMN ∠=∠,GEK m GEM ∠=∠,EH MN 交AB 于点H ,GEK ∠,BMN ∠,GEH ∠之间的数量关系(用含m 的式子表示)是.【答案】(1)MEN AME ENC ∠=∠+∠,证明见分析;(2)15︒;(3)180GEK BMN m GEH ∠+∠-∠=︒.【分析】(1)过点E 作EE AB ' ,根据平行线的性质进行证明即可;(2)利用EF 平分MEN ∠,NP 平分ENC ∠,可得11,22NEF MEN ENP ENC ∠=∠∠=∠,再根据MEN AME ENC ∠=∠+∠,进行等量代换进行计算即可;(3)由已知条件可得11,22NEF MEN ENP ENC ∠=∠∠=∠,1EMN HEM AMN m∠=∠=∠,再根据平行线的性质进行各角的等量转换即可.解:(1)MEN AME ∠=∠+∠,证明如下:如图1所示,过点E 作EE AB ' ,∵AB CD ,∴AB CD EE 'P P ,∴1,2AME ENC ∠=∠∠=∠,∵12MEN ∠=∠+∠,∴MEN AME ENC ∠=∠+∠.(2)∵EF 平分MEN ∠,NP 平分ENC ∠,∴11,22NEF MEN ENP ENC ∠=∠∠=∠.∵EQ NP ∥,30AME ∠=︒,∴12QEN ENP ENC ∠=∠=∠.∵MEN AME ENC ∠=∠+∠,∴30MEN ENC AME ∠-∠=∠=︒,∴111130152222FEQ FEN QEN MEN ENC AME ∠=∠-∠=∠-∠=∠=⨯︒=︒.(3)180GEK BMN m GEH ∠+∠-∠=︒.证明如下:∵AMN m EMN ∠=∠,GEK m GEM ∠=∠,∴1EMN AMN m ∠=∠,1GEM GEK m∠=∠.∵EH MN ,∴1EMN HEM AMN m∠=∠=∠,∵11GEH GEM HEM GEK AMN m m ∠=∠-∠=∠-∠,∴m GEH GEK AMN ∠=∠-∠,∵180AMN BMN ∠=︒-∠,∴()180m GEH GEK BMN ∠=∠-︒-∠,180GEK BMN m GEH ∠+∠-∠=︒.故答案为:180GEK BMN m GEH ∠+∠-∠=︒.【点拨】本题考查了平行线的判定和性质,角的平分线,熟练掌握平行线的判定和性质是解题的关键.【变式1】(2022下·贵州黔南·七年级统考期中)如图,在五边形ABCDE 中,AE BC ∥,则C D E ∠+∠+∠=()A .540︒B .360︒C .270︒D .180︒【答案】B 【分析】首先过点D 作DF AE ∥,交AB 于点F ,由AE BC ∥,可证得AE DF BC ∥∥,然后由两直线平行,同旁内角互补可知180E EDF Ð+Ð=°,180CDF C Ð+Ð=°,继而证得结论.解:过点D 作DF AE ∥,交AB 于点F ,AE BC ∥,AE DF BC ∴∥∥,180E EDF ∴∠+∠=︒,180CDF C Ð+Ð=°,360C CDE E \Ð+Ð+Ð=°.故选:B .【点拨】此题考查了平行线的性质,注意掌握辅助线的作法,注意数形结合思想的应用.【变式2】(2023下·广东江门·七年级统考期末)如图,AB ∥CD ,∠ABF =23∠ABE ,∠CDF =23∠CDE ,则∠E :∠F 等于【答案】3:2解:如图,过点E、F分别作EG∥AB、FH∥AB,又因AB∥CD,根据平行线的传递性可得AB∥EG∥FH∥CD,∵AB∥FH,∴∠ABF=∠BFH,∵FH∥CD,∴∠CDF=∠DFH,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF;同理可得∠BED=∠DEG+∠BEG=∠ABE+∠CDE;∵∠ABF=23∠ABE,∠CDF=23∠CDE,∴∠BFD=∠DFH+∠BFH=∠CDF+∠ABF=23(∠ABE+∠CDE)=23∠BED,∴∠BED:∠BFD=3:2.故答案为:3:2.【点拨】本题主要考查了平行线的性质,解决这类题目要常作的辅助线(平行线),充分运用平行线的性质探求角之间的关系是解题的关键.【平行线性质性质与判定综合】【考点5】平行线判定与性质求角度【例5】(2023上·广东潮州·八年级校考阶段练习)如图,A B、两处是灯塔,船只在C处,B处在A 处的南偏西45°方向,C处在A处的南偏东15°方向,C处在B处的北偏东80°方向,求船只与两灯塔的视角ACB的度数.【答案】85°【分析】根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°,然后根据平行线的性质与三角形内角和定理即可求解.解:如图,根据方向角的定义,可得∠BAE=45°,∠CAE=15°,∠DBC=80°.∵∠BAE=45°,∠EAC=15°,∴∠BAC=∠BAE+∠EAC=45°+15°=60°.∵AE ,DB 是正南正北方向,∴BD ∥AE ,∵∠DBA=∠BAE=45°,又∵∠DBC=80°,∴∠ABC=80°-45°=35°,∴∠ACB=180°-∠ABC-∠BAC=180°-60°-35°=85°.题的关键.【变式1】(2023下·甘肃白银·八年级统考期末)如图所示,已知AB EF ∥,那么BAC ACE CEF ∠+∠+∠=()A .180°B .270°C .360°D .540°【答案】C 【分析】先根据平行线的性质得出180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒,,进而可得出结论.解:过点C 作CD EF ∥,∥Q AB EF ,AB CD EF \∥∥,∴180180BAC ACD DCE CEF ∠+∠=︒∠+∠=︒①,②,由①②+得,360BAC ACD DCE CEF ∠+∠+∠+∠=︒,即360BAC ACE CEF Ð+Ð+Ð=°.故选:C .【点拨】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.【变式2】(四川省成都市金牛区2020-2021学年七年级下学期期末数学试题)一副直角三角板如图放在直线m 、n 之间,且//m n ,则图中1∠=度.【答案】15【分析】如图,过点A 作AC ∥m ,则有////AC m n ,然后可得,45BAC CAD CAD ADE ∠=∠∠=∠=︒,进而问题可求解.解:如图所示,过点A 作AC ∥m ,∵//m n ,∴////AC m n ,∴1,45BAC CAD ADE ∠=∠∠=∠=︒,∵60BAC CAD ∠+∠=︒,∴115BAD CAD ∠=∠-∠=︒;故答案为15.【点拨】本题主要考查平行线的性质与判定,熟练掌握平行线的性质与判定是解题的关键.【考点6】平行线判定与性质证明【例6】(2023下·七年级课时练习)如图,BD 平分ABC ∠,ED BC ∥,130∠=︒,4120∠=︒.(1)求2∠,3∠的度数;(2)证明:DF AB .【答案】(1)230∠=︒,360∠=︒;(2)见详解【分析】(1)根据BD 平分ABC ∠,112ABD ABC ∠=∠=∠,即有130ABD ∠=∠=︒,60ABC ∠=︒,再结合ED BC ∥,即可求解;(2)由60ABC ∠=︒,4120∠=︒可得ABC ∠4=180+∠︒,则DF AB ,问题得解.解:(1)∵BD 平分ABC ∠,130∠=︒,∴112ABD ABC ∠=∠=∠,∴130ABD ∠=∠=︒,60ABC ∠=︒,∵ED BC ∥,∴2130∠=∠=︒,360ABC ∠=∠=︒,即:230∠=︒,360∠=︒;(2)∵60ABC ∠=︒,4120∠=︒,∴ABC ∠4=180+∠︒,∴DF AB .【点拨】本题主要考查了角平分线的定义,平行线的判定与性质等知识,掌握两直线平行同位角相等;两直线平行同位角相等;两直线平行,同旁内角互补是解答本题的关键.【变式1】(2020上·河南洛阳·七年级统考期末)如图,若12∠=∠,DE BC ∥,则下列结论:①FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠.其中,正确结论的个数为()A .2个B .3个C .4个D .5个【答案】B 【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出2DCB =∠∠,得出FG DC ,①正确;由平行线的性质得出⑤正确;即可得出结果.解:DE BC ∥,1DCB ∴∠=∠,AED ACB ∠=∠,故②正确;12∠=∠ ,2DCB ∴∠=∠,FG DC ∴∥,故①正确;BFG BDC ∴∠=∠,故⑤正确;而CD 不一定平分ACB ∠,1B ∠+∠不一定等于90︒,故③,④错误;故选:B .【点拨】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.【变式2】(2021下·江苏盐城·七年级统考期中)如图a b ,c 与a 相交,d 与b 相交,下列说法:①若12∠=∠,则3=4∠∠;②若14180∠+∠=︒,则c d ∥;③4231∠-∠=∠-∠;④1234360∠+∠+∠+∠=︒正确的有(填序号)【答案】①②③【分析】根据平行线的性质和判定逐一进行判断即可.解:如图,①若∠1=∠2,则b ∥e ,则∠3=∠4,故原说法正确;②若∠1+∠4=180°,则c ∥d ;故原说法正确;③由a ∥b 得到∠1=∠6,∠5+∠4=180°,由∠2+∠3+∠5+180°-∠6=360°得,∠2+∠3+180°-∠4+180°-∠1=360°,则∠4-∠2=∠3-∠1,故原说法正确;④由③得,只有∠1+∠4=∠2+∠3=180°时,∠1+∠2+∠3+∠4=360°.故原说法错误.正确的有①②③,故答案为:①②③.【点拨】本题考查了平行线的判定与性质,熟练掌握平行线的性质与判定是解题的关键.【平行线间的距离】【考点7】平行线间的距离(应用)【例7】(2022下·贵州遵义·七年级校考阶段练习)如图,直线a b ∥,AB 与a ,b 分别交于点A ,B ,且AC AB ⊥,AC 交直线b 于点C .(1)若160∠= ,求2∠的度数;(2)若6,8AC AB ==,10BC =,求直线a 与b 的距离.【答案】(1)30︒;(2)245【分析】(1)由直线a b ∥,根据平行线的性质得出3160∠=∠=︒,再由AC AB ⊥,根据垂直的定义即可得到结果;(2)过A 作AD BC ⊥于D ,根据1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ,即可求解.解:(1)∵a b∥∴3160∠=∠=︒又∵AC AB⊥∴290330∠=︒-∠=︒(2)如图,过A 作AD BC ⊥于D ,则AD 的长即为直线a 与b 的距离∵6,8AC AB ==,10BC =,ABC 是直角三角形∵1122ABC S AB AC BC AD =⨯⨯=⨯⨯ ∴8624105AB AC AD BC ⨯⨯===∴直线a 与b 的距离245【点拨】本题考查了平行线的性质及三角形的面积,解题的关键是掌握:从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离.【变式1】(2021下·安徽合肥·八年级统考期末)如图,123////l l l ,且相邻两条直线间的距离都是2,A ,B ,C 分别为1l ,2l ,3l 上的动点,连接AB 、AC 、BC ,AC 与2l 交于点D ,90ABC ∠=︒,则BD 的最小值为()A.2B.3C.4D.5【答案】A【分析】求BD的最小值可以转化为求点B到直线AC的距离,当BD⊥AC时,BD有最小值,根据题意求解即可.解:由题意可知当BD⊥AC时,BD有最小值,此时,AD=CD,∠ABC=90°,∴BD=AD=BD=12AC=2,∴BD的最小值为2.故选:A.【点拨】本题考查平行线的性质,需结合图形,根据平行线的性质推出相关角的关系从而进行求解.【变式2】(2019下·上海金山·七年级统考期中)已知直线a∥b∥c,a与b的距离是5cm,b与c的距离是3cm,则a与c的距离是.【答案】8cm或2cm【分析】直线c的位置不确定,可分情况讨论.(1)直线c在直线b的上方,直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,直线a和直线c之间的距离为5cm-3cm=2cm.解:(1)直线c在直线b1:直线a和直线c之间的距离为5cm+3cm=8cm;(2)直线c在直线a、b的之间,如图2:直线a和直线c之间的距离为5cm-3cm=2cm;所以a与c的距离是8cm或2cm,故答案为8cm或2cm.【点拨】此题考查两线间的距离,本题需注意直线c的位置不确定,需分情况讨论.。
北师大版七年级数学下册第二章相交线与平行线暑假培训讲义集体备课教案:平行线、平行线的构造(含答案)
四川省渠县崇德实验学校北师大版七年级数学下册第二章相交线与平行线暑假培训讲义集体备课教案(授课内容:平行线、平行线的构造)知识梳理 一、平行线1.平行线:在同一平面内,永不相交的两条直线称为平行线.用“//”表示. 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 【例】如图1,过直线a 外一点A 作b//a ,c//a ,则b 与c 重合.3.平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行. 简记为:平行于同一条直线的两条直线平行. 【例】如图2,若b//a ,c//a ,则b//c .图1 图2 图34.平行线的性质(1)两直线平行,同位角相等.如图3,若a//b ,则Ð1=Ð2. (2)两直线平行,内错角相等.如图3,若a//b ,则Ð2=Ð3. (3)两直线平行,同旁内角互补.如图3,若a//b ,则Ð3+Ð4=180°. 5.平行线的判定(1)同位角相等,两直线平行.如图3,若Ð1=Ð2,则a//b . (2)内错角相等,两直线平行.如图3,若Ð2=Ð3,则a//b . (3)同旁内角互补,两直线平行.如图3,若Ð3+Ð4=180°,则a//b . 二、平行的构造1.如图4,若a//b ,则Ð1=Ð2+Ð3 2.如图5,若a//b ,则Ð1+Ð2+Ð3=360°(c )b aAcba b a4321a b` 213`a b213图4 图5例题讲解 一、平行线下列说法中:下列说法中:①如果两条直线都和第三条直线平行,那么这两条直线也互相平行;①如果两条直线都和第三条直线平行,那么这两条直线也互相平行; ②过直线外一点,有且只有一条直线和这条直线相交;②过直线外一点,有且只有一条直线和这条直线相交; ③如果同一平面内的两条直线不相交,那么它们互相平行;③如果同一平面内的两条直线不相交,那么它们互相平行; ④过直线外一点,有且只有一条直线与已知直线平行.④过直线外一点,有且只有一条直线与已知直线平行. 正确的是__________.【解析】①③④.【提示】这道题主要考查平行线的概念和平行公理.(1)如图2-1,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若125Ð=°,则2Ð的度数是(的度数是( ) A .155° B .135° C .125° D .115°(2)如图2-2,已知AB//CD ,EF 分别交AB 、CD 于M 、N ,EMB Ð=50°,MG 平分BM BMF F Ð,交CD 于G ,MGN Ð的度数为__________.FE AMBC N G D12图2-1 图2-2(3)证明:三角形三个内角的和等于180°.【解析】(1)D ;(2)65°;(3)证法1:如右图,过△ABC 的顶点A 作直线l//BC . 则B Ð1=Ð,C Ð2=Ð(两直线平行,内错角相等). 又因为BAC Ð1+Ð+Ð2=180°.(平角的定义) 所以B BAC C Ð+Ð+Ð=180°(等量代换). 即三角形三个内角的和等于180°. 证法2:如右图,延长BC ,过C 作CE//AB , 则A Ð1=Ð(两直线平行,内错角相等),B Ð2=Ð(两直线平行,同位角相等).又∵BCA Ð+Ð1+Ð2=180°, ∴BCA A B Ð+Ð+Ð=180°, 即三角形三个内角的和等于180°.【提示】这道题主要考查平行线的性质,(3)题证明方法老师可以自行补充,这个结论和平行公理是等价的.平行公理是等价的.另外,另外,这种证明题需要学生先转化成常规的已知和求证,这种证明题需要学生先转化成常规的已知和求证,然后然后再证明,重点强调格式.(1)根据图在()根据图在( )内填注理由:)内填注理由: ①∵B CEF Ð=Ð(已知),(已知),∴AB//CD ( );); ②∵B BED Ð=Ð(已知),(已知),∴AB//CD ( );); ③∵B CEB Ð+Ð=180°(已知),(已知),l21CB A 21DCEBAA CDBFE∴AB//CD ( ).).(2)已知:如图所示,ABC ADC Ð=Ð,BF 和DE 分别平分ABC Ð和ADC Ð,AED EDC Ð=Ð.求证:ED//BF .证明:∵BF 和DE 分别平分ABC Ð和ADC Ð(已知)(已知)∴EDC Ð=__________ADC Ð,FBA Ð=__________ABC Ð( ), 又∵ADC ABC Ð=Ð(已知),(已知), ∴Ð__________FBA =Ð(等量代换).(等量代换). 又∵AED EDC Ð=Ð(已知),(已知),∴Ð__________=Ð__________(等量代换),(等量代换), ∴ED//BF ( ).).【解析】(1)①同位角相等,两直线平行;②内错角相等,两直线平行; ③同旁内角互补,两直线平行. (2)12;12;角平分线定义;EDC ;AED ;FBA ;同位角相等,两直线平行. 【提示】这道题主要考查平行的判定,这道题主要考查平行的判定,也通过这道题规范孩子们的书写过程,也通过这道题规范孩子们的书写过程,也通过这道题规范孩子们的书写过程,这种题型也是这种题型也是各学校的必考题型.如图,已知EF BC ^,C Ð1=Ð,Ð2+Ð3=180°.证明:AD BC ^.【解析】C Ð1=ÐQ ,(已知)\GD//AC ,(同位角相等,两直线平行) \CAD Ð=Ð2.(两直线平行,内错角相等)A CD BF EABCDEFG123又Ð2+Ð3=180°Q ,(已知)\CAD Ð3+=Ð180°.(等量代换)\AD//EF ,(同旁内角互补,两直线平行) \ADC EFC Ð=Ð.(两直线平行,同位角相等)EF BC ^Q ,(已知) ADC \Ð=90°,\AD BC ^.【提示】平行的性质和判定结合,时间可以留长点.请你分析下面的题目,从中总结规律,填写在空格上,并选择一道题目具体书写证明. (1)如图5-1,已知:AB//CD ,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AME Ð,CNE Ð.求证:MG//NH .从本题我能得到的结论是:_____________.(2)如图5-2,已知:AB//CD ,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分BMF Ð,CNE Ð.求证:MG//NH .从本题我能得到的结论是:_____________.(3)如图5-3,已知:AB//CD ,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AMF Ð,CNE Ð,相交于点O .求证:MG NH ^.从本题我能得到的结论是:_____________________.图5-1 图5-2 图5-3【解析】(1)两直线平行,同位角的角平分线平行.A CG EB M H NDFOACGEB MHNDF A CG EBMHNDF(2)证明:∵AB//CD ,∴BMF CNE Ð=Ð,又∵MG ,NH 分别平分BMF Ð,CNE Ð,∴GMF BMFCNE HNM 11Ð=Ð=Ð=Ð22,∴MG//NH , 从本题我能得到的结论是:两直线平行,内错角的角平分线平行. (3)证明:∵AB//CD ,∴AMF CNE Ð+Ð=180°,又∵MG ,NH 分别平分AMF Ð,CNE Ð, ∴GMF HNE AMF CNE 11Ð+Ð=Ð+Ð=90°22,∴MON GMF HNE Ð=180°-Ð-Ð=90°,∴MG NH ^.从本题我能得到的结论是:两直线平行,同旁内角的角平分线垂直.【提示】平行线的性质和判定相结合,练习平行线倒角.二、平行线的构造(1)如图6-1,已知直线a//b ,Ð1=40°,Ð2=60°,则Ð3等于_________.(2)如图6-2,l 1//l 2,Ð1=120°,=Ð2100°,则Ð3=_________.(3)如图6-3,AB//CD ,ABE Ð=120°,ECD Ð=25°,则E Ð=_________.图6-1 图6-2 图6-3【解析】(1)100°;(2)40°;(3)85°.321b aED CBAl 1l 2321【提示】练习基础的平行线倒角模型:铅笔模型和猪蹄模型.(1)如图7-1,AB//CD ,BAFEAF 1Ð=Ð3,FCD ECF 1Ð=Ð3,AEC Ð=128°,则AFC Ð的度数为________.(2)如图7-2,已知:AB//CD ,ABP Ð和CDP Ð的平分线相交于点E ,ABE Ð和CDE Ð的平分线相交于点F ,BFD Ð=54°,则BPD Ð=________,BED Ð=________.图7-1 图7-2【解析】(1)58°;(2)144°;108°. 【提示】铅笔模型和猪蹄模型综合.(1)如图8-1,AB//CD ,A Ð=32°,C Ð=70°,则F Ð=________.(2)如图8-2,AB//CD ,E Ð=37°,C Ð=20°,则EAB Ð的度数为________.图8-1 图8-2【解析】(1)38°;(2)57°. 【提示】铅笔模型和猪蹄模型的变形.EF A BPCDFD CBEAED CBA如图,直线AC//BD ,连结AB ,直线AC 、BD 及线段AB 把平面分成①、②、③、④四个部分,规定线上各点不属于任何部分,规定线上各点不属于任何部分,当动点当动点P 落在某个部分时,落在某个部分时,连结连结P A 、PB ,构成PAC Ð,APB Ð,PBD Ð三个角。
北师大版数学七年级下册.1平行线的性质(平行线的性质)-课件
两直线平行
同位角相等
内错角相等
同旁内角互补
线的关系
角的关系
判定
性质
平行线的性质和平行线的判定方法的 区 别 与 联 系
作业布置
1、完成数学作业本 2、完成一课一练的训练案 3、完成导学案课后学习
第二章 平行线与相交线
2.3 平行线的性质
知识回顾
独学2分钟 对学1分钟
独学:2分钟
要求:
对学:1分钟
任务:视察图形,完成填空(友谊提示:很简单,你行的!)已知:如图(1)∠3=∠B,则EF∥AB,根据是 同位角相等,两直线平行(2)∠2+∠A=180°,则DC∥AB,根据是同旁内角互补,两直线平行(3)∠1=∠4,则GC∥EF,根据是内错角相等,两直线平行 (4)GC ∥ EF,AB ∥ EF,则GC∥AB,根据平行于同一条直线的两条直线平行
2(2015山东临沂)如图,直线a//b,∠1=60°,∠2=40°,则∠3等于 ( )
A. 40° B. 60° C. 80° D. 100°
3、一辆汽车在笔直的公路上行驶,在两次转弯后,仍在本来的方向上平行前进,那么这两次转弯的角度可以是( )A、先右转80o,再左转100 o B、先左转80 o ,再右转80 o C、先左转80 o ,再左转100 o D、先右转80 o,再右转80
独学1分钟
独学1分钟
新知探索2
例:如图,AE∥CD,若∠1=37° , ∠D=54° ,求∠2和∠BAE的度数.
师生互动,典例示范
目标检测2
1、∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是( ) A.∠1=∠2 B.∠1>∠2; C.∠1<∠2 D.无法确定
北师大版七年级下册数学《两条直线的位置关系》相交线与平行线研讨说课复习课件
对顶角相等
探究新知
素养考点 1利用对顶角的性质求角的度数
例 如图,直线a,b相交,∠1=40°,求 ∠2,∠3,∠4的度数.
解:由平角的定义可知, ∠2=180°-∠1
=180°-40°=140°;
b
1( 2
a
4 )3
由对顶角相等可得,
12 43
58 67
所以∠2的补角有∠1,∠3,∠6和∠8.
连接中考
1.(2020•金昌)若α=70°,则α的补角的度数是( B ) A.130° B.110° C.30° D.20° 2.(2020•陕西)若∠A=23°,则∠A余角的大小是( B ) A.57° B.67° C.77° D.157°
DO
C
12 34
AN B
图2
图3
探究新知
将图2简化为图3,ON 与 DC 相交所成的 ∠ DON和∠CON
都等于90° ,且∠1=∠2.在图 3 中: (1)有哪些角互为补角?有哪些角互为余角? 互补的角: ∠1与∠AOC, ∠1与∠BOD,
DO
C
12
34
∠互2余与的∠角B:OD∠,1与∠∠2与3,∠∠AO1C与,∠∠4,D∠ON2与与∠∠4N,O∠C.2与∠A3,N图3 B (2) ∠3与∠4有什么关系?为什么?
第一课时垂线的定义及性质 核心要点 1垂线的有关概念:两条直线相交成四个角,如果有一个角是 直角 ,那么称这两条直线互相垂直,其中的一条直线叫做另一条直线 的 垂线 ,它们的交点叫做 垂足 。 2.垂线的性质: (1)平面内,过一点有且 只有一条 直线与已知直线垂直。 (2)直线外一点与直线上各点连接的所有线段中,垂线段 最短。 3.点到直线的距离:过点A作直线L的垂线,垂足为B,线段 AB 的长度叫做点A到直线L的距离。
北师大版七年级下数学第二章《相交线与平行线》全套教案
1北师大版七年级下数学第二章《相交线与平行线》教案 《2.1两条直线的位置关系》教案一:教学目标1、掌握两条直线平行与垂直的条件;2、会运用条件判断两直线是否平行或垂直;3、能运用条件确定两平行或垂直直线的方程系数.二:教学重点、难点两条直线平行与垂直的条件, 两条直线平行与垂直的条件的应用.三:教学设计(一)情景引入A :两条直线位置关系当中平行为简单;现在我们来研究平面内两条直线平行的关系. ①先入为主的思想;在研究直线问题时首先考虑特殊情况:α=90°时,画图.这个情况很简单:当α=90°时只要x 1≠x 2,则两条直线平行.②一般情况:α≠90°时,则k 存在,∴y 1=kx +b 1 y 2=kx +b 2已知直线l 1,l 2的斜截式方程为:l 1:y =k 1x +b 1 l 2:y =k 2x +b 2,若l 1//l 2,则有α1=α2且b 1≠b 2,∴tan α=tan α [α1∈[0,180°),α2∈[0,180°)]∴k 1=k 2反之,是否成立?若k 1=k 2且b 1≠b 2则有tan α=tan α,∵0≤α1,α2<π,∴α1=α2且b 1≠b 2,∴l 1//l 2结论一:①特殊情况:若两条直线l 1,l 2斜率都不存在也不重合,则两直线l 1,l 2平行; ②有斜率的两条直线l 1//l 2 <=> k 1=k 2且b 1≠b 2∴判断不重合的两条直线平行的程序:两条直线方程——两条直线斜率都不存在且不重合→平行.两条直线方程——化为斜截式方程→求两条直线斜率.若k 1=k 2且b 1≠b 2→平行若k 1≠k 2→相交或者若A 1B 2≠B 1A 2且B 1C 2≠B 2C 1或A 1B 2=A 2B 1且A 1C 2≠A 2C 1 则两条直线平行.例1:已知两条直线l 1:4x +2y -7=0,l 2:2x -y -5=0求证l 1∥l 212122∵l 1的斜率为,l 2的斜率为 ∴k 1=k 2∴l 1∥l 2 例2:求过点A (1,-4)且与直线2x +3y +5=0平行的直线的方程?解:已知直线的斜率为-,因为所求直线与已知直线平行,因此它的斜率也是-. 根据点斜式,得到所求直线的方程是:y +4=-(x -1)即2x +3y +10=0 例3:如果直线ax +2y +2=0与3x -y -2=0平行,那么系数a =()A .3B .-6C .-D . 例4:求与直线3x +4y +1=0平行,且在两坐标轴上截距之和为的直线l 的方程? 法一:设直线方程为3x +4y +m =0,交x 轴于点(-,0)交y 轴于点(0,-),由题意可得(-)+(-)=即m =-4, ∴所求直线l 的方程为3x +4y -4=0, 法二:设直线方程为+=1, ∴a +b =,-=-,可得a =,b =1, ∴所求直线l 的方程为3x +4y -4=0B :平时我们已经理解了;接下来我们来研究两直线相互垂直的关系.①同样的先考虑特殊情况:若已知一条直线的倾斜角为90°,x =x 1,则求其另一条与它垂直的直线方程.②一般情况:若已知两条直线l 1:y =k 1x +b 1,l 2:y =k 2 x +b 2,相互垂直则k 1与k 2有何关系? α+(π-β)= ∴α-β=- ∴β=α+ 21213232322332373m 4m 3m 4m 37a x b y 37a b 43342π2π2π3tan β=tan (α+)=-cot α ∴tan α·tan β=tan α·(-cot α)=-1∴最后我们得证:若两条直线垂直则k 1k 2=-1.③α=90°时=>β=0°(特殊情况)k 1=0,k 2不存在.或者k 1不存在,k 2=0.例4:已知直线l 1:ax -y +2a =0与l 2:(2a -1)x +ay +a =0互相垂直,求a 的值一、①当α=90°即a =0时,l 2:x =0 ∴l 1:y =0 ∴l 1⊥l 2②当α≠90°则k 1·k 2=a ·(-)=-1 ∴a =1 二、A 1A 2+B 1B 2=0 =>a (2a -1)-a =0 2a ²-2a =0 =>a =1或a =0例5:求与3x +4y +1=0平行,且在两坐标轴上截距之和为7/3的直线l 的方程.(一)设直线方程为3x +4y +m =0,交x 轴于点(-,0)交y 轴于点(0,-) ∴(-)+(-)= ∴m =-4∴所求直线l 的方程为3x +4y -4=0(二)设直线方程为+=1 =>a +b =;-=-=>a =,b =1 ∴l :3x +4y -4=0例6:已知三角形两条高线为x +y =0和2x -3y +1=0且一个顶点C (1,2),求三角形AC ,BC 边所在直线的方程.∵AC ,BC 与两条高线垂直∴AC ,BC 的斜率为1和- ∴边AC ,BC 所在直线的方程为y -2=1(x -1),y -2=-(x -1) 即x -y +1=0,3x +2y -7=0《2.2探索直线平行的条件》教案一、导学目标1.使学生能够熟练识别同位角;2πaa )12(-3m 4m 3m 4m 37a xb y 37a b 433423232.使学生会用同位角相等判定二条直线平行.二、重点难点1.重点(1)识别同位角.(2)用同位角相等判定二条直线平行.2.难点用同位角相等判定二条直线平行.三、导学过程一、自主学习:操作---观察---探索如图:3根木条(或硬纸条)相交成∠1、∠2,固定木条b、c,转动木条a.问:1.在木条a的转动过程中,木条a、b的位置关系发生了什么变化?∠2与∠1的大小关系发生了什么变化?2.改变图中∠1的大小,按照上面的方式再试一试,当∠2与∠1的大小满足什么关系时,木条a与木条b平行?二、合作探究:活动一:利用平移三角尺的方法画平行线,探索直线平行的条件.当∠1与∠2相等,直线a、b就;当∠1与∠2不相等时,直线a、b平行吗?活动二:通过观察、比较,认识“同位角”,探索直线平行的条件.直线a、b被第三条直线c所截而成的8个角中,像∠1与∠2这样的一对角称为.请问图中还有没有其他的同位角?4归纳:相等,两直线.活动三:例题讲解.例:如图,∠1=∠C,∠2=∠C,请找出图中互相平行的直线,并说明理由.三、拓展提高:1.∠1与∠C、∠2与∠B、∠ 3与∠ C分别是哪两条直线被哪一条直线截成的同位角?2.如图,直线a、b被直线c所截,∠1=35°,∠2=145°,问:直线a与b平行吗?四、达标检测:1.如图,∠1与∠B是直线和被直线所截构成的同位角;∠2与∠A直线和被直线所截构成的同位角.2.如图,∠1、∠2、∠3中,和是同位角.3.如图,如果∠B=∠1,根据,那么可得DE//BC;如果∠B=∠2,根据同位角相等,两直线平行,那么可得// .4.如图,已知直线AB、CD被直线EF所截,如果∠BMN=∠DNF,∠1=∠2,那么MQ∥NP,为什么?AB CD EF13256《2.3平行线的性质》教案教学目标:理解平行线的性质的推导,掌握平行线的性质.教学重点:平行线的性质以及应用.教学难点:平行线的性质公理与判定公理的区别.教学过程:一、梳理旧知,引出新课平行线的判定:判定方法1、同位角相等,两直线平行.判定方法2、内错角相等,两直线平行.判定方法3、同旁内角互补,两直线平行.问题:反过来也成立吗?过去我们学过:如果两个数的和为0,这两个数互为相反数.反过来,如果两个数互为相反数,那么这两个数的和为0.这两个句子都是正确的.现在换一个例子:如果两个角是对顶角,那么这两个角相等.它是对的.反过来,如果两个角相等,这两个角是对顶角.对吗?再看下面的例子:“如果一个整数个位上的数字是5,那么它一定能够被5整除.”对吗?这句话反过来怎么说?对不对?【结论】如果一个句子是正确的,反过来说(因果对调),就未必正确.二、动手操作,归纳性质上一节课,我们学过:同位角相等,两直线平行.反过来怎么说?它还是对的吗?(板书)性质1、两直线平行,同位角相等.P Q M N21F ED C B A7如果把平行线性质1:“两直线平行,同位角相等”看作是基本事实(公理),我们可以利用这个公理证明平行线性质2:“两直线平行,内错角相等”.【例】如图,已知:直线a 、b 被直线c 所截,且a ∥b ,求证:∠1=∠2.证明:∵a ∥b ,∴∠1=∠3(__________________).∵∠3=∠2(对顶角相等),∴∠1=∠2(等量代换).(板书)性质2、两直线平行,内错角相等【变式】下面我们来证明平行线的性质3:两直线平行,同旁内角互补.请模仿范例写出证明.如图,已知:直线a 、b 被直线c 所截,且a ∥b ,求证:∠1+∠2=180º.证明:(略)(板书)性质:两直线平行,同旁内角互补三、巩固新知,深化理解例1、如图,平行线AB ,CD 被直线AE 所截.(1)从∠1=110º.可以知道∠2是多少度吗?为什么?(2)从∠1=110º可以知道∠3是多少度吗?为什么?(3)从∠1=110º可以知道∠4是多少度吗?为什么?例2、如图,已知AB ∥CD ,AE ∥CF ,∠A = 39°,∠C 是多少度?为什么?ab1 2 3 c ab 1 23c ED CB A12348方法一解:∵AB ∥CD , ∴ ∠C=∠1.∵ AE ∥CF ,∴ ∠A=∠1.∴ ∠C=∠A .∵∠A = 39º,∴∠C = 39º.方法二解:∵AB ∥CD ,∴ ∠C=∠2.∵ AE ∥CF ,∴ ∠A=∠2.∴ ∠C=∠A .∵∠A = 39º,∴∠C = 39º.练习1:如图,已知直线a 、b 被直线c 所截,在括号内为下面各小题的推理填上适当的根据: (1)∵a ∥b ,∴∠1=∠3(___________________);(2)∵∠1=∠3,∴a ∥b (_________________).(3)∵a ∥b ,∴∠1=∠2(__________________);(4)∴a ∥b ,∴∠1+∠4=180º(_____________________________________)(5)∵∠1=∠2,∴a ∥b (___________________);(6)∵∠1+∠4=180º,∴a ∥b (_______________).练习2:教材第51页 随堂练习四、盘点收获,布置作业1、(1)平行线的性质是什么?(2)你能用自己的语言叙述研究平行线性质的过程吗?(3)性质2和性质3是通过简单推理得到的,在推理论证中需要注意哪些问题?2、作业G FED C B Aa b12 3 c 49《2.4用尺规作角》教案教学目的:1、经历尺规作角的过程,进一步培养学生的动手操作能力,增强学生的数学应用和研究意识.2、能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学重点:能按作图语言来完成作图动作,能用尺规作一个角等于已知角.教学难点:作图步骤和作图语言的叙述,及作角的综合应用.教学过程:一、问题的提出如图,要在长方形木板上截一个平行四边形,使它的一组对边在长方形木板的边缘上,另一组对边中的一条边为AB .(1)请过点C 画出与AB 平行的另一条边.(2)如果你只有一个圆规和一把没有刻度的直尺,你能解决这个问题吗?二 、新课内容一:(请按作图步骤和要求操作,别忘了留下作图痕迹)(一) 用尺规作一个角等于已知角.(1)已知:∠AOB求作:∠A′O′B′,使∠A′O′B′=∠AOB(2)已知:∠10求作:∠AOB ,使∠AOB=∠(二)用尺规作一个角等于已知角的倍数:(3)已知:∠1求作:∠MON ,使∠MON=2∠1∠COD ,使∠COD=3∠1(三)用尺规作一个角等于已知角的和:(4) 已知:∠1、∠2、∠3求作:①∠AOB ,使∠AOB=∠1+∠2②∠POQ ,使∠POQ=∠1+∠2+∠3③∠MON ,使∠MON=2∠1+∠2(四)用尺规作一个角等于已知角的差:已知:∠、∠、∠求作:①∠AOB ,使∠AOB=∠-∠②∠POQ ,使∠POQ=∠-∠-∠③求作一个角,使它等于2∠-∠(五) 综合练习:(通过以下练习,意味着你掌握了作角的真本领,多动一下脑筋,你一定会完成得很出色的)1、已知:线段AB 、 ∠、∠αα1αβγαβγαβαβγβγαβ13211求作:分别过点A 、点B 作∠CAB=∠、∠CBA=∠2、如图,点P 为∠ABC 的边AB 上的一点,过点P 作直线EF//BC .3、已知:直线L 和L 外一点P ,求作:一条直线,使它经过点P ,并与已知直线L 平行.4、已知:△ABC ,求作:直线MN ,使MN 经过点A ,且MN//BC .5、如图,以点B 为顶点,射线BA 为一边,在∠ABC 外再作一个角,使其等于∠ABC .(六)小结(七)作业αβLA αβ。
北师大数学七年级下册第二章平行线的性质及尺规作图(提高)
平行线的性质及尺规作图(提高)知识讲解【学习目标】1.掌握平行线的性质,并能依据平行线的性质进行简单的推理;2.了解平行线的判定与性质的区别和联系,理解两条平行线的距离的概念;3.了解尺规作图的基本知识及步骤;4. 通过用尺规作图活动,进一步丰富对“平行线及角”的认识.【要点梳理】要点一、平行线的性质性质1:两直线平行,同位角相等.性质2:两直线平行,内错角相等.性质3:两直线平行,同旁内角互补.要点诠释:(1)“同位角相等、内错角相等”、“同旁内角互补”都是平行线的性质的一部分内容,切不可忽视前提“两直线平行”.(2)从角的关系得到两直线平行,是平行线的判定;从平行线得到角相等或互补关系,是平行线的性质.要点二、两条平行线的距离同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即平行线间的距离处处相等.要点三、尺规作图1. 定义:尺规作图是指用没有刻度的直尺和圆规作图.要点诠释:(1)只使用圆规和直尺,并且只准许使用有限次,来解决不同的平面几何作图题.(2)直尺必须没有刻度,无限长,且只能使用直尺的固定一侧.只可以用它来将两个点连在一起,不可以在上面画刻度.(3)圆规可以开至无限宽,但上面也不能有刻度.它只可以拉开成之前构造过的长度.2.八种基本作图(有些今后学到):(1)作一条线段等于已知线段.(2)作一个角等于已知角.(3)作已知线段的垂直平分线.(4)作已知角的角平分线.(5)过一点作已知直线的垂线.(6)已知一角、一边做等腰三角形.(7)已知两角、一边做三角形.(8)已知一角、两边做三角形.【典型例题】类型一、平行线的性质1.(2015春•荣昌县期末)如图,已知射线AB与直线CD交于点O,OF平分∠BOC,OG⊥OF 于O,AE∥OF,且∠A=30°.(1)求∠DOF的度数;(2)试说明OD平分∠AOG.【思路点拨】(1)根据两直线平行,同位角相等可得∠FOB=∠A=30°,再根据角平分线的定义求出∠COF=∠FOB=30°,然后根据平角等于180°列式进行计算即可得解;(2)先求出∠DOG=60°,再根据对顶角相等求出∠AOD=60°,然后根据角平分线的定义即可得解.【答案与解析】解:(1)∵AE∥OF,∴∠FOB=∠A=30°,∵OF平分∠BOC,∴∠COF=∠FOB=30°,∴∠DOF=180°﹣∠COF=150°;(2)∵OF⊥OG,∴∠FOG=90°,∴∠DOG=∠DOF﹣∠FOG=150°﹣90°=60°,∵∠AOD=∠COB=∠COF+∠FOB=60°,∴∠AOD=∠DOG,∴OD平分∠AOG.【总结升华】本题考查了平行线的性质,对顶角相等的性质,垂线的定义,(2)根据度数相等得到相等的角是关键.举一反三:【变式】(2015•青海)如图,直线a∥b,直线l与a相交于点P,与直线b相交于点Q,且PM垂直于l,若∠1=58°,则∠2=.【答案】32°类型二、两平行线间的距离2.下面两条平行线之间的三个图形,图的面积最大,图的面积最小.【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小.【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;所以,图3平行四边形的面积最大,图2三角形的面积最小.【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是厘米.【答案】35类型三、尺规作图3. 如图所示,已知∠α和∠β,利用尺规作∠AOB,使∠AOB=2(∠α-∠β).【答案与解析】作法:如图所示.(1)作∠COD=∠α;(2)以射线OD为一边,在∠COD•的外部作∠DOA,使∠DOA=∠α;(3)以射线OC为一边,在∠COA的内部作∠COE,使∠COE=∠β;(4)以射线OE为一边,在∠EOA内部作∠EOB,使∠EOB=∠β,则∠AOB就是所求作的角.【总结升华】本题考查作一个差角的倍数角,本题的做法有两种:一种可以先做倍数角再做差角,如本题提供的答案;另一种也可以先做差角再做倍数角.4. (苏州中考模拟)如图所示,在长为50m,宽为22m的长方形地面上修筑宽度都为2 m 的道路,余下的部分种植花草,求种植花草部分的面积.【思路点拨】因种植花草部分比较分散,且有的是不规则的图形,所以直接求其面积较困难.因小路都是宽度相同的长方形,所以可想到把小路平移到一起,这样种植花草部分将汇集成一个长方形,问题便迎刃而解.【答案与解析】解:如图所示②把几条2米宽的小路分别平移到大长方形的上边缘和左边缘,则种植花草部分汇集成一个长方形,显然,这个长方形的长是50-2=48(m),宽是22-2=20(m),于是种植花草部分的面积为48×20=960(m2).【总结升华】若分步计算则较繁琐.但采用“平移”的手段从整体上把握,问题便迅速求解.举一反三:【变式】如图①,在宽为20m、长为30m的矩形地面上修建两条同样宽度的道路,余下部分作为耕地.根据图中数据,可得耕地的面积为()A.600m2B.551m2C.550m2D.500m2【答案】B类型四、平行的性质与判定综合应用5.(黄冈调考)如图所示,AB∥CD,分别写出下面四个图形中∠A与∠P,∠C的数量关系,请你从所得到的关系中任选一图的结论加以说明.【思路点拨】过P点作AB的平行线,问题便会迅速得到求解.【答案与解析】解: (1)∠A+∠C=∠P;(2)∠A+∠P+∠C=360°;(3)∠A=∠P+∠C;(4)∠C=∠P+∠A.现以(3)的结论加以证明如下:如上图,过点P作PH∥AB ,因为AB∥CD,所以PH∥AB∥CD.所以∠HPA+∠A=180°,即∠HPA=180°-∠A;∠HPA+∠P+∠C=180°,即180°-∠A+∠P+∠C=180°,也即∠A=∠P+∠C.【总结升华】随着折点的不同,结论也会不同,但解法却如出一辙.都是过折点作平行线求解.举一反三:【变式1】如图,AB∥CD,∠ABG=42°,∠CDE=68°,∠DEF=26°.求证:BG∥EF.【答案】如图,分别过点G、F、E作GP∥AB,FQ∥AB,ER∥CD,又因为AB∥CD,所以AB∥GP∥FQ∥CD∥FQ.∴∠1=42°,∠2=∠3,∠4=∠5,∠5+26°=68°,∴∠5=68°-26°=42°,且∠4=∠5=42°.∴∠1+∠2=42°+∠2;∠4+∠3=42°+∠3.∴∠1+∠2=42°+∠3,即∠BGF=∠GFE.∴BG∥EF.【变式2】如图所示,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C是().A.120°B.130°C.140°D.150°【答案】D平行线的性质及尺规作图(提高)巩固练习【巩固练习】一、选择题1. 若∠1和∠2是同旁内角,若∠1=45°,则∠2的度数是()A.45°B.135°C.45°或135°D.不能确定2.(2016•安徽模拟)如图AB∥CD,∠E=40°,∠A=110°,则∠C的度数为()A.60° B.80°C.75° D.70°3.(湖北襄樊)如图所示,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C的度数为()A.150°B.130°C.120°D.100°4.如图,OP∥QR∥ST,则下列等式中正确的是()A.∠1+∠2-∠3=90°B.∠2+∠3-∠1=180°C.∠1-∠2+∠3=180°D.∠1+∠2+∠3=180°5. 如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且交EF于点O,则与∠AOE相等的角有()A.5个B.4个C.3个D.2个6.(湖北潜江)如图,AB∥EF∥CD,∠ABC=46°,∠CEF=154°,则∠BCE等于()A.23°B.16°C.20°D.26°7.如图所示,在一个由4×4个小正方形组成的正方形网格中,把线段EF向右平移3个单位,向下平移1个单位得到线段GH,则阴影部分面积与正方形ABCD的面积比是()A.3:4 B.5:8 C.9:16 D.1:2二、填空题8.(2016春•江苏月考)如图,BC∥DE,AD⊥DF,∠l=30°,∠2=50°,则∠A=.9.如图所示,AB∥CD,若∠ABE=120°,∠DCE=35°,则有∠BEC=________.10.(四川攀枝花)如图,直线l1∥l2,∠1=55°,∠2=65°,则∠3=.11.一个人从点A出发向北偏东60°方向走了4m到点B,再向南偏西80°方向走了3m到点C,那么∠ABC的度数是________.12.如图所示,过点P画直线a的平行线b的作法的依据是_.13.如图,已知ED∥AC,DF∥AB,有以下命题:①∠A=∠EDF;②∠1+∠2=180°;③∠A+∠B+∠C=180°;④∠1=∠3.其中,正确的是________.(填序号)三、解答题14.如图所示,AD⊥BC,EF⊥BC,∠3=∠C,则∠1和∠2什么关系?并说明理由.15.已知如图(1),CE∥AB,所以∠1=∠A,∠2=∠B,∴∠ACD=∠1+∠2=∠A+∠B.这是一个有用的事实,请用这个结论,在图(2)的四边形ABCD内引一条和边平行的直线,求∠A+∠B+∠C+∠D的度数.16.(2015春•澧县期末)已知如图,AB∥CD,试解决下列问题:(1)∠1+∠2=;(2)∠1+∠2+∠3=;(3)∠1+∠2+∠3+∠4=;(4)试探究∠1+∠2+∠3+∠4+…+∠n=.【答案与解析】一、选择题1. 【答案】D;【解析】本题没有给出两条直线平行的条件,因此同旁内角的数量关系是不确定的. 2. 【答案】D;【解析】∵AB∥CD,∴∠A+∠AFD=180°,∵∠A=110°,∴∠AFD=70°,∴∠CFE=∠AFD=70°,∵∠E=40°,∴∠C=180°﹣∠E﹣∠CFE=180°﹣40°﹣70°=70°,故选D .3. 【答案】C ;【解析】解:如图,∠3=30°,∠1=∠2=30°,∠C =180°-30°-30°=120°.4. 【答案】B ;【解析】反向延长射线ST 交PR 于点M,则在△MSR 中,180°-∠2+180°-∠3+∠1=180°,即有∠2+∠3-∠1=180°.5. 【答案】A【解析】与∠AOE 相等的角有:∠DCA ,∠ACB ,∠COF ,∠CAB ,∠DAC .6. 【答案】C ;【解析】解:∵AB ∥EF ∥CD ,∠ABC =46°,∠CEF =154°,∴∠BCD =∠ABC =46°,∠FEC +∠ECD =180°,∴∠ECD =180°—∠FEC =26°,∴∠BCE =∠BCD —∠ECD =46°—26°=20°.7. 【答案】B ;【解析】=22+312=10S ⨯⨯⨯阴,=44=16S ⨯正ABCD ,所以ABCD S =10:165:8S =正阴:.二.填空题8. 【答案】70°;【解析】∵AD⊥DF,∴∠ADF=90°.∵∠1=30°,∴∠ADE=90°﹣30°=60°.∵BC∥DE,∴∠ABC=∠ADE=60°,∵△ABC 中,∠ABC=60°,∠2=50°,∴∠A=180°﹣60°﹣50°=70°.故答案为:70°.9.【答案】95°;【解析】如图,过点E 作EF ∥AB .所以∠ABE +∠FEB =180°(两直线平行,同旁内角互补),所以∠FEB =180°-120°=60°.又因为AB ∥CD ,EF ∥AB ,所以EF ∥CD ,所以∠FEC =∠DCE =35°(两直线平行,内错角相等),所以∠BEC =∠FEB +∠FEC =60°+35°=95°.10.【答案】60°;【解析】解:如图所示:∵l 1∥l 2,∠2=65°,∴∠6=65°,∵∠1=55°,∴∠1=∠4=55°,在△ABC中,∠6=65°,∠4=55°,∴∠3=180°﹣65°﹣55°=60°.11.【答案】20°;【解析】根据题意画出示意图,可得:∠ABC=80°-60°=20°.12.【答案】内错角相等,两直线平行;13.【答案】①②③④;【解析】由已知可证出:∠A=∠1=∠3=∠EDF,又∠EDF与∠1和∠3互补.三.解答题14.【解析】解:∠1=∠2.理由如下:∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFB=90°.∴AD∥EF(同位角相等,两直线平行),∴∠1=∠4(两直线平行,同位角相等).又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行).∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2.15.【解析】解:如图,过点D作DE∥AB交BC于点E.∴∠A+∠2=180°,∠B+∠3=180°(两直线平行,同旁内角互补).又∵∠3=∠1+∠C,∴∠A+∠B+∠C+∠1+∠2=360°,即∠A+∠B+∠C+∠ADC=360°.16.【解析】解:(1)∵AB∥CD,∴∠1+∠2=180°(两直线平行,同旁内角互补);(2)过点E作一条直线EF平行于AB,∵AB∥CD,∵AB∥EF,CD∥EF,∴∠1+∠AEF=180°,∠FEC+∠3=180°,∴∠1+∠2+∠3=360°;(3)过点E、F作EG、FH平行于AB,∵AB∥CD,∵AB∥EG∥FH∥CD,∴∠1+∠AEG=180°,∠GEF+∠EFH=180°,∠HFC+∠4=180°;∴∠1+∠2+∠3+∠4=540°;(4)中,根据上述规律,显然作(n﹣2)条辅助线,运用(n﹣1)次两条直线平行,同旁内角互补.即可得到n个角的和是180°(n﹣1).。
新北师大版2013-2014七年级数学下册第二章相交线与平行线知识点总结
87654321FED C B A图1F E DCBA4321图2cba 87654321图3ED CBA 第二章 相交线与平行线一、知识提要:1、两条直线的位置关系:平行、相交(垂直).2、两条直线相交:对顶角,余角和补角,三线八角,内错角,同位角,同旁内角. 和为度的两个角互为余角;和为度的两个角互为补角;余角和补角都是角.对顶角是 形成的角;同位角、内错角、同旁内角是 角. 定理:①对顶角 ;② 余角相等;③ 补角相等. 3、两直线垂直:同一平面内直线外一点有且只有一条直线与已知直线垂直;直线外一点与直线上各点的所有线段中,垂线段最短.4、平行线的判定:① ,两直线平行;② ,两直线平行;③ ,两直线平行.5、平行线的性质:①两直线平行, ;②两直线平行, ;③两直线平行, . 6、尺规作图:作一个角等于已知角,作两个角的和或者差,或者一个角的平分线.二、试题精讲:1. 下列说法正确的个数是( )①若∠1与∠2是对顶角,则∠1=∠2;②若∠1与∠2是邻补角,则∠1=∠2; ③若∠1与∠2不是对顶角,则∠1≠∠2;④若∠1与∠2不是邻补角,则∠1+∠2≠180°A .0 B .1 C .2 D .32. 如右图,直线AB 、CD 与直线EF 相交,∠5和 是同位角,和 是内错角,与 是同旁内角.( )A .∠1;∠4;∠2B .∠1;∠3;∠2C .∠2;∠4;∠1D .∠2;∠3;∠13. 如图1,∠1=∠A ,则下列结论一定成立的是( )A .AB ∥FD B .ED ∥ACC .∠B =∠1D .∠3=∠14. 如图2,直线a 、b 被c 所截,则下列式子:①∠1=∠2;②∠3=∠6;③∠1=∠8;④∠5+∠8=180°,能说明a ∥b 的条件是( ) A .①② B .①②③ C .②④ D .①②③④5. 如图3,AB ∥CD ,∠BAE =120°,∠DCE =30°,则∠AEC =( )A .90°B .150°C .75°D .60° 作业:FE DCBA 图4图1nm21GF E DC BA321图3图21FEDCB AFEDCBA21E D CBACB A1. 如图1,若m ∥n ,∠1=105°,则∠2 = .2. 如图2,若∠1= ,那么AB ∥EF ,若∠1= ,那么DF ∥AC ,若∠DEC + =180°,那么DE ∥BC .3. 如图3,EF ∥AD ,∠1=∠2,∠BAC =70°.将求∠AGD 的过程填写完整:因为EF ∥AD ,所以∠2= .又因为∠1=∠2,所以∠1=∠3.所以AB ∥ .所以∠BAC +___=180°.又因为∠BAC =70°,所以∠AGD = .4. 填空并在括号内加注理由. 如图4,已知DE ∥BC ,DF 、BE 分别平分∠ADE 和∠ABC求证:∠FDE =∠DEB . 证明:∵DE ∥BC∴∠ADE = ( ) ∵DF 、BE 分别平分∠ADE 、∠ABC∴∠ADF =12∴∠ABE =12( )∴∠ADF =∠ABE ( )∴ ∥ ( ) ∴∠FDE =∠ ( )5. 如图,AB ∥CD ,∠B =40°,∠E =30°,求∠D 的度数.6. 如图,已知DE ∥BC ,∠1=∠2,求证:∠B =∠C .7. 如图:已知∠B =25°,∠BCD =45°,∠CDE =30°,∠E =10°,求证:AB ∥EF .HG CB A FED 21FEDB C A 3A 12B C D E F G 8. 已知:如图∠1=∠2,∠C =∠D ,请问∠A 与∠F 相等吗?试说明理由.解题过程训练1. 已知如图,AB ∥CD ,∠AEB=∠B ,∠CED=∠D ,试说明BE ⊥DE . 解:作射线EF ,使∠AEB =∠BEF (作辅助线)∵∠AEB =∠B (已知)∴∠ =∠ ( ) ∴ ∥ ( ) ∵AB ∥CD (已知)∴ ∥ ( ) ∴∠DEF=∠D ( )∵∠CED=∠D ( ) ∴∠ =∠ ( )∴∠AEB+∠CED=∠BEF+∠DEF ( ) ∵∠AEC =180°( )∴∠BED=∠BEF+∠DEF =90°( )∴BE ⊥DE ( ).2. 如图,已知BD ⊥AC ,EF ⊥AC ,D 、F 为垂足,G 是AB 上一点,且∠l=∠2.判断∠AGD 和∠ABC 的数量关系?并说明你的理由.解:∠______ =∠______, 理由如下: ∵______⊥_______,______⊥_______,( )∴______//______( ) ∴∠_____=∠_____( ) 又 ∵∠_____=∠_____( ),∴∠_____=∠_____( ) ∴______//______(_______________________________)12A BCD E F 354∴∠_____=∠_____(______________________________).3. 如图,已知∠1+∠2=180°,∠3=∠B ,试判断∠AED 与∠C 的关系.平行线常见模型4. 如图,a ∥b ,∠1=120°,∠2=100°,则∠3= .5. 如图,AB ∥CD ,∠BAC 的平分线和∠ACD 的平分线交于点E ,则∠AEC 的度数是 .6. 探究:(1)如图(1),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(2)如图(2),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(3)如图(3),AB ∥CD ,BO 与DO 相交于点O ,试探索下列各种情况下∠ABO 、∠CDO 、∠BOD 之间的关系,并说明理由.(3)(2)(1)OO OACDBACDBACD Bba 321EDCBA。
北师大版七年级数学下全部知识点归纳
北师大版七年级数学下册全部知识点归纳第一章:整式的运算 单项式: 。
整 式 多项式: 。
同底数幂的乘法:幂的乘方:积的乘方:幂的运算 同底数幂的除法: 零指数幂: 负指数幂: 整式的加减单项式与单项式相乘整式运算单项式与多项式相乘: 整式的乘法 多项式与多项式相乘:平方差公式: 完全平方公式:单项式除以单项式整式的除法 多项式除以单项式:完全平方公式的变形公式:(1)22222212()2()2[()()]a b a b ab a b ab a b a b +=+-=-+=++-(2)22()()4a b a b ab +=-+ (3)2214[()()]ab a b a b =+-- 第二章 平行线与相交线平行线: 。
对顶角的性质:垂线的性质:性质1:过一点有 。
性质2:连接直线外一点 。
平行线的性质:1、平行公里:过 性质2:平行于 平行。
整 式 的 运算余角:余角和补角 补角:邻补角:两线相交 对顶角:同位角三线八角 内错角同旁内角平行线的判定:平行线平行线的性质:尺规作图:第三章 变量之间的关系自变量变量的概念 因变量变量之间的关系 表格法关系式法变量的表达方法 图象法第四章 三角形三角形概念: 称为三角形。
三角形按内角的大小可分为三类:直角三角形的性质: ;直角三角形的两直角边为a 、b ,斜边为c ,斜边上的高为h,则h= 。
任意三角形都有三条角平分线,并且它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条中线,它们相交于三角形内一点。
这个点叫三角形的 任意三角形都有三条高线,它们所在的直线相交于一点。
这个点叫三角形的平行线与相交线三角形都有三条高线:区 别相 同中 线 平分对边 三条中线交于三角形内部 (1)都是线段 (2)都从顶点画出 (3)所在直线相交于一点 角平分线 平分内角三条角平分线交于三角形内部高 线 垂直于对边(或其延长线)锐角三角形:三条高线交于直角三角形:三条高线交于钝角三角形:三条高线交于三角形三边关系:三角形 三角形内角和定理:角平分线三条重要线段 中线高线三角形 全等图形的概念: 全等三角形的性质:SSSSAS全等三角形 全等三角形的判定 ASAAASHL (适用于Rt Δ)全等三角形的应用 利用全等三角形测距离作三角形第五章 生活中的轴对称: 轴对称图形于轴对称: 轴对称图形轴对称区别是一个图形自身的对称特性 是两个图形之间的对称关系 对称轴可能不止一条对称轴只有一条共同点沿某条直线对折后都能够互相重合如果轴对称的两个图形看作一个整体,那么它就是一个轴对称图形;如果把轴对称图形分成两部分(两个图形),那么这两部分关于这条对称轴成轴对称。
北师大版数学七年级下册第二章1两条直线的位置关系(共76张PPT)
图2-1-5 注意 (1)垂线是直线,垂线段特指一条线段,点到直线的距离是指垂线段 的长度. (2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后 计算或度量垂线段的长度,在实际问题中要应用其“最近性”解决问题.
1 两条直线的位置关系
例4 在图2-1-6所示的各图中,分别过点P作AB的垂线.
点拨 除了互补的两个角和为180°外,由平角的定义也可以得到和为180°.
1 两条直线的位置关系
栏目索引
题型二 垂线性质在生活中的应用
例2 如图2-1-9所示,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政 府准备投资修建一个蓄水池.
图2-1-9 (1)不考虑其他因素,请你画图确定蓄水池H的位置,使它到四个村庄距离之 和最小; (2)计划把河水引入蓄水池H中,怎样开渠使水渠最短?并说明理由.
1 两条直线的位置关系
栏目索引
知识点三 余角和补角 1.如果两个角的和是90°,那么称这两个角互为余角. 2.如果两个角的和是180°,那么称这两个角互为补角. 3.余角、补角的性质:同角或等角的余角相等,同角或等角的补角相等. 注意 (1)互余、互补都是指两个角之间的关系.当∠1+∠2+∠3=90°时,不 能说∠1、∠2、∠3互余;当∠1+∠2+∠3=180°时,也不能说∠1、∠2、 ∠3互补.(2)互余的两个角都是锐角,而互补的两个角可能是一个锐角一个 钝角,也可能都是直角.(3)互余和互补都是反映两个角的数量关系,而不是 位置关系.
栏目索引
②必须强调“平面内”,否则,在空间里,经过一点与已知直线垂直的直线 有无数条. (2)直线外一点与直线上各点连接的所有线段中,垂线段最短,简称:垂线段 最短.
北师大版七年级数学下册.1平行线的性质
知识点 2 两条直线平行,内错角相等
两条平行线被第三条直线截得的内错角会具 有怎样的数量关系?
性质2 两条平行线被第三条直线所截,内错角 相等.
简称为:两直线平行,内错角相等.
数学符号表示方法: 如图,∵a∥b(已知), ∴∠1=∠2(两直线平行,内错角角相等).
例3 如图,如果AB∥DF,DE∥BC,且∠1=65°,那 么你能说出∠2,∠3,∠4的度数吗?为什么?
导引:由DE∥BC,可得 ∠1=∠4,∠1+∠2=180°; 由DF∥AB,可得∠3=∠2, 从而得∠2,∠3,∠4的度数.
解:能.∠2=∠3=115°,∠4=65°. 理由如下: ∵DE∥BC(已知), ∴∠4=∠1=65°(两直线平行,内错角相等), ∠2+∠1=180°(两直线平行,同旁内角互补). ∴∠2=180°-∠1=180°-65°=115°. 又∵DF∥AB(已知), ∴∠3=∠2(两直线平行,同位角相等). ∴∠3=115°(等量代换).
例2 如图,已知∠B=∠C,AE∥BC,试说明AE平分 ∠CAD.
导引:要说明AE平分∠CAD,即说明 ∠DAE=∠CAE.由于AE∥BC, 根据两直线平行,同位角相等和 内错角相等可知∠DAE=∠B,∠EAC=∠C, 这就将说明∠DAE=∠CAE转化为说明∠B=∠C了.
解: ∵ AE∥BC(已知), ∴∠DAE=∠B(两直线平行,同位角相等), ∠EAC=∠C(两直线平行,内错角相等).
简称为:两直线平行,同位角相等.
E
C
P
D
2
A
1
B
F
数学符号表示方法: 如图,∵a∥b(已知), ∴∠1=∠2(两直线平行,同位角相等).
北师大版七年级下册数学第2章(相交线和平行线)章末总结
《相交线与平行线》章末总结【知识点】一.余角和补角如果两个角的和为90°(或直角),那么这两个角互为余角; 如果两个角的和为180°(或平角),那么这两个角互为补角.注意:这两个概念都是对于两个角而言的,而且两个概念强调的是两个角的数量关系,与两个角的相互位置没有关系.它们的主要性质:同角或等角的余角相等;同角或等角的补角相等.二.平行的条件及平行线的特征①同位角相等 ⇔ 两直线平行; ②内错角相等 ⇔ 两直线平行; ③同旁内角互补 ⇔ 两直线平行.平行公理:经过直线外一点,有且只有一条直线与这条直线______. 推论:如果两条直线都与第三条直线平行,那么_____________________. 设a 、b 、c 为平面上三条不同直线,若//,//a b b c ,则a 与c 的位置关系是_________; 若,a b b c ⊥⊥,则a 与c 的位置关系是________; 若//a b ,b c ⊥,则a 与c 的位置关系是________.三.用尺规作线段和角尺规作图是指只用圆规和没有刻度的直尺来作图.直尺的功能是:在两点间连接一条线段;将线段向两方向延长.圆规的功能是:以任意一点为圆心,任意长度为半径作一个圆;以任意一点为圆心,任意长度为半径画一段弧.【提高练习】1.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //的是( )A. 43∠=∠B. 21∠=∠C. DCE D ∠=∠D. ο180=∠+∠ACD D2.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( )E DC BA4321EDCBAEDBC′FCD ′A图7CAE B FD图81 23图9A. 第一次向左拐ο30,第二次向右拐ο30B. 第一次向右拐ο50,第二次向左拐ο130 C. 第一次向右拐ο50,第二次向右拐ο130 D. 第一次向左拐ο50,第二次向左拐ο130 3.两条平行直线被第三条直线所截,下列命题中正确..的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 4.下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行. (2)过一点有且只有一条直线与已知直线垂直.(3)在同一平面内,两条直线的位置关系只有相交、平行两种. (4)不相交的两条直线叫做平行线.(5)有公共顶点且有一条公共边的两个角互为邻补角.A. 1个B. 2个C. 3个D. 4个 5.下列说法中,正确..的是( ) A. 图形的平移是指把图形沿水平方向移动 B. 平移前后图形的形状和大小都没有发生改变 C. “相等的角是对顶角”是一个真命题 D. “直角都相等”是一个假命题 6.如右图,CD AB //,且ο25=∠A ,ο45=∠C ,则E ∠的度数是( ) A. ο60 B. ο70 C. ο110 D. ο807、如图7,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′的度数为 .8、如图8,直线AB CD 、相交于点E ,DF AB ∥.若100AEC ∠=°,则D ∠等于 . 9、如图9,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°,则3∠的度数等于 .10、如图10,已知AB ∥CD ,若∠A=20°,∠E=35°,则∠C 等于 ..300PFEBA CDAB DC1 23 11、如图11,12//l l ,∠1=120°,∠2=100°,则∠3= .12、如图12,已知AC ∥ED ,∠C =26°,∠CBE =37°,则∠BED 的度数是 .图10 图11 图1213、如图13,AB ∥CD ,∠ABE =66°,∠D =54°,则∠E 的度数为_______________.14、如图14,AB//CD ,直线EF 与AB 、CD 分别相交于E 、F 两点,EP 平分∠AEF ,过点F 作FP ⊥EP ,垂足为P ,若∠PEF=300,则∠PFC=__________.15、如图15,1502110AB CD ∠=∠=∥,°,°,则3∠= . 16、如图16,已知//AE BD ,∠1=130o ,∠2=30o ,则∠C = .图13 图14 图15 图1617、如图,AB ∥DE ,试问∠B 、∠E 、∠BCE 有什么关系.解:∠B +∠E =∠BCE 过点C 作CF ∥AB ,则B ∠=∠____( ) 又∵AB ∥DE ,AB ∥CF ,∴____________( ) ∴∠E =∠____( ) ∴∠B +∠E =∠1+∠2 即∠B +∠E =∠BCE .18.如图,AB ∥CD ,∠1=115°,∠2=140°,求∠3的度数.19. ⑴如图,已知∠1=∠2 求证:a ∥b ; ⑵直线//a b ,求证:12∠=∠.20. 阅读理解并在括号内填注理由:如图,已知AB ∥CD ,∠1=∠2,试说明EP ∥FQ . 证明:∵AB ∥CD ,∴∠MEB =∠MFD ( ) 又∵∠1=∠2,∴∠MEB -∠1=∠MFD -∠2, 即 ∠MEP =∠______∴EP ∥_____.( )21、已知DB ∥FG ∥EC ,A 是FG 上一点,∠ABD =60°,∠ACE =36°,AP 平分∠BAC , 求:⑴∠BAC 的大小;⑵∠PAG 的大小.22. 如图,已知ABC ∆,AD BC ⊥于D ,E 为AB 上一点,EF BC ⊥于F ,//DG BA 交CA 于∠=∠.G. 求证1223. 已知:如图∠1=∠2,∠C=∠D,问∠A与∠F相等吗? 试说明理由.360.24.已知AB//CD,试问∠B+∠BED+∠D=︒B AED C 25.如图2-101,已知∠BED=∠ABE+∠CDE,那么AB//CD吗? 为什么?26.如图2-102,在折线ABCDEFG中,已知∠1=∠2=∠3=∠4=∠5,延长AB,GF交于点M.那么,∠AMG=∠3,为什么?27.如图2-103,已知AB//CD,∠1=∠2.试问∠BEF=∠EFC吗? 为什么?(提示:作辅助线BC).28. 如图2-104,AB//CD,在直线,AB和CD上分别任取一点E、F.已知有一定点P在AB、CD之间,试问∠EPF=∠AEP+CFP 吗? 为什么?29 如图2-106,AB//CD ,BEFGD 是折线,那么∠B+∠F+∠D=∠E+∠G 吗? 简述你的理由.30、如图2-107,已知∠1=∠2=∠3,∠GFA=︒36,∠ACB=︒60,AQ 平分∠FAC ,求∠HAQ 的度数.。
北师大版数学七年级下册 平行线的判定与性质的综合应用教案与反思
第2课时平行线的判定与性质的综合应用师者,所以传道,授业,解惑也。
韩愈市实验学校陈思思【知识与技能】经历掌握平行线性质与判定的过程,能用它们进行简单的推理和计算.【过程与方法】经历观察、测量、推理、交流等活动,进一步提高推理能力.【情感态度】通过学习平行线性质和判定直线平行条件的联系与区别,让学生懂得事物既是普遍联系又是相互区别的辩证唯物主义思想.【教学重点】平行线的三条性质及简单应用.【教学难点】平行线的性质与平行线判定方法的区别.一、情景导入,初步认知在前几节课我们探究了如何去判别两条直线是平行的,即平行线的判定.下面我想请同学来回答一下有哪些方法可以判定两条直线平行?二、思考探究,获取新知请用学过的同位角、内错角、同旁内角的概念及两直线平行的条件填空:(1)因为∠1=∠5(已知);所以a∥b().(2)因为∠4=∠ (已知);所以a∥b(内错角相等,两直线平行).(3)因为∠4+∠ =180°(已知);所以a∥b().【教学说明】判定平行线的条件和平行线的性质是互逆的,对初学者来说易将它们混淆.因此,复习判定直线平行的条件能为后面学习性质做好准备.三、运用新知,深化理解1.见教材52例1、例2、例3,2.如果两条直线被第三条直线所截,那么一组内错角的平分线(D)A.互相垂直B.互相平行C.互相重合D.以上均不正确3.如图已知∠1=∠2,∠BAD=∠BCD,则下列结论(1)AB∥CD;(2)AD∥BC;(3)∠B=∠D;(4)∠D=∠ACB中正确的有(C)A.1个B.2个C.3个D.4个4.如图,如果∠1=∠2,那么∠2+∠3=180°吗?为什么?解:∵∠1=∠2,∴L1∥L2. ∴∠2+∠3=180°.5.如图,AB∥CD,BF∥CE,则∠B与∠C有什么关系?请说明理由.解:∵AB∥CD,∴∠B=∠1.∵BF∥CE,∴∠C=∠2.∵∠1+∠2=180°,∴∠B+∠C=180°.即∠B与∠C互补.6.如图,已知AB∥CD,∠1=∠2,试探索∠BEF与∠EFC之间的关系,说明理由.解:∠BEF=∠EFC.理由如下:分别延长BE.DC相交于点G.∵AB∥CD,∴∠1=∠G(两直线平行,内错角相等).∵∠1=∠2,∴∠2=∠G,∴BE∥FC.∴∠BEF=∠EFC(两直线平行,内错角相等).【教学说明】通过练习及时巩固所学知识,进一步激发学生的探究兴趣,灵活运用所学知识解决一些数学问题.四、师生互动,课堂小结通过刚才的应用,大家能谈一谈今天学习的平行线的性质和上一节判定直线平行的条件有什么不同么?五、教学板书1.布置作业:教材习题2.6”中第1、2、3题.2.完成同步练习册中本课时的练习.在平行线的性质这一课时中,重点内容为平行线性质的探究及应用,所以在授课过程中应将着眼点放在学生对性质的理解上,并强化学生基于性质之上的应用,使学生掌握并进行实际应用.在挖掘概念的过程中提炼出内容的实质并注重知识的落实.【素材积累】1、2019年,文野31岁那年,买房后第二年,完成了人生中最重要的一次转变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是( )A.120°B.125°C.127°D.104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BADB.∠CAB=∠DBAC.OB=OCD.∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论.5、如图,AB=AC,BD=CD,求证:∠1=∠2.6、如图,已知AB=CD,AC=BD,求证:∠A=∠D.7、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3B.4C.5D.62、如图2,AB=AC,AD=AE,欲证△ABD≌△ACE,可补充条件( )A.∠1=∠2B.∠B=∠CC.∠D=∠ED.∠BAE=∠CAD3、如图3,AD=BC,要得到△ABD和△CDB全等,可以添加的条件是( )A.AB∥CDB.AD∥BCC.∠A=∠CD.∠ABC=∠CDA4、如图4,AB与CD交于点O,OA=OC,OD=OB,∠AOD=________,•根据_________可得到△AOD≌△COB,从而可以得到AD=_________.5、如图5,已知△ABC中,AB=AC,AD平分∠BAC,请补充完整过程说明△ABD≌△ACD的理由.DC BA ∵AD 平分∠BAC , ∴∠________=∠_________(角平分线的定义). 在△ABD 和△ACD 中,∵____________________________, ∴△ABD ≌△ACD ( ) 6、如图6,已知AB=AD ,AC=AE ,∠1=∠2,求证∠ADE=∠B.7、如图,已知AB=AD ,若AC 平分∠BAD ,问AC 是否平分∠BCD ?为什么?8、如图,在△ABC 和△DEF 中,B 、E 、F 、C ,在同一直线上,下面有4个条件,请你在其中选3个作为题设,余下的一个作为结论,写一个真命题,并加以证明.①AB=DE ; ②AC=DF ; ③∠ABC=∠DEF ; ④BE=CF.全等三角形(三)AAS 和ASA 【典型例题】例1.如图,AB ∥CD ,AE=CF ,求证:AB=CD例2.如图,已知:AD=AE ,ABE ACD ∠=∠,求证:BD=CE.例3.如图,已知:ABD BAC D C ∠=∠∠=∠.,求证:OC=OD.例4.如图,已知321∠=∠=∠,AB=AD.求证:BC=DE.AEBDCFOA DEBC ABODC AE12【经典练习】1.△ABC 和△C B A '''中,C B C B A A ''='∠=∠,',C C '∠=∠则△ABC 与△C B A ''' .2.如图,点C ,F 在BE 上,,,21EF BC =∠=∠请补充一个条件,使△ABC ≌DFE,补充的条件是 .3.在△ABC 和△C B A '''中,下列条件能判断△ABC 和△C B A '''全等的个数有( ) ①A A '∠=∠ B B '∠=∠,C B BC ''= ②A A '∠=∠,B B '∠=∠,C A C A ''=' ③A A '∠=∠ B B '∠=∠,C B AC ''= ④A A '∠=∠,B B '∠=∠,C A B A ''=' A . 1个 B. 2个 C. 3个 D. 4个4.如图,已知MB=ND ,NDC MBA ∠=∠,下列条件不能判定是△ABM ≌△CDN 的是( )A . N M ∠=∠ B. AB=CD C . AM=CN D. AM ∥CN 5.如图2所示, ∠E =∠F =90°,∠B =∠C ,AE =AF ,给出下列结论:①∠1=∠2 ②BE=CF ③△ACN ≌△ABM ④CD=DN其中正确的结论是_________ _________。
(注:将你认为正确的结论填上)1 2ABC DMNEF ABC DO图2图36.如图3所示,在△ABC 和△DCB 中,AB =DC ,要使△ABO ≌DCO ,请你补充条件________________(只填写一个你认为合适的条件).7. 如图,已知∠A=∠C ,AF=CE ,DE ∥BF ,求证:△ABF ≌△CDE.B AE21F CD8.如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 交CD 于F ,且AD=DF ,求证:AC= BF 。
BA EFCD12ABC FE D M NAC B D9.如图,AB ,CD 相交于点O ,且AO=BO ,试添加一个条件,使△AOC ≌△BOD ,并说明添加的条件是正确的。
(不少于两种方法)10.如图,已知:BE=CD ,∠B=∠C ,求证:∠1=∠2。
直角三角形全等HL【知识要点】斜边直角边公理:有斜边和直角边对应相等的两个直角三角形全等.【典型例题】例1 如图,B 、E 、F 、C 在同一直线上,AE ⊥BC ,DF ⊥BC ,AB=DC ,BE=CF ,试判断AB 与CD 的位置关系. 例2 已知 如图,AB ⊥BD ,CD ⊥BD ,AB=DC ,求证:AD ∥BC.例3 公路上A 、B 两站(视为直线上的两点)相距26km ,C 、D 为两村庄(视为两个点),DA ⊥AB 于点A ,CB ⊥AB 于点B ,已知DA=16km ,BC=10km ,现要在公路AB 上建一个土特产收购站E ,使CD 两村庄到E 站的距离相等,那么E 站应建在距A 站多远才合理?【经典练习】1.在Rt △ABC 和Rt △DEF 中,∠ACB=∠DFE= 90,AB=DE ,AC=DF ,那么Rt △ABC 与Rt △DEF (填全等或不全等)A EDBC O1 2CADBOABADBC A EBCD┐ ┎CD F ┐┘E2.如图,点C 在∠DAB 的内部,CD ⊥AD 于D ,CB ⊥AB 于B ,CD=CB 那么Rt △ADC ≌Rt △ABC 的理由是( )A .SSS B. ASA C. SASD. HL 3.如图,CE ⊥AB ,DF ⊥AB ,垂足分别为E 、F ,AC ∥DB ,且AC=BD ,那么Rt △AEC ≌Rt △BFC 的理由是( ).A .SSSB. AASC. SASD. HL4.下列说法正确的个数有( ).①有一角和一边对应相等的的两个直角三角形全等; ②有两边对应相等的两个直角三角形全等; ③有两边和一角对应相等的两个直角三角形全等; ④有两角和一边对应相等的两个直角三角形全等. A .1个B. 2个C. 3个D. 4个5.过等腰△ABC 的顶点A 作底面的垂线,就得到两个全等三角形,其理由是 . 6.如图,△ABC 中,∠C=︒90,AM 平分∠CAB ,CM=20cm ,那么M 到AB 的距离是( )cm.7.在△ABC 和△C B A '''中,如果AB=B A '',∠B=∠B ',AC=C A '',那么这两个三角形( ). A .全等B. 不一定全等C. 不全等D. 面积相等,但不全等8.如图,∠B=∠D=︒90,要证明△ABC 与△ADC 全等,还需要补充的条件是 .9.如图,在△ABC 中,∠ACB=︒90,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN于E , 求证:DE=AD+BE.一.填空题1.如果∠A =35°18′,那么∠A 的余角等于_____;2.如图①,直线a 、b 被直线c 所截(即直线c 与直线a 、b 都相交), 且a ∥b ,若∠1=118°,则∠2的度数=_____;AC DBBCDF ┎ ┘AE ┐ABM CAC DBADBENC3.如图②,已知直线a 、b 被直线c 所截,a ∥b ,∠1=50°,则∠2=___________。
4.如图所示,有一个破损的扇形零件,利用图中的量角器可以量出这个扇形的圆心角的度数,所用的数学依据是 ; 5.已知:如图,,点C 、D 在线段AB 上,且点D 是线段BC 的中点,若AB=10cm ,DB=4cm ,AC=____________cm .6.如图(1),已知AB ∥CD ,∠3=∠2, ∠1=30º,求得∠4= 度7.已知线段AB=5cm ,在线段AB 的延长线上截取BC=3cm ,则AC= cm ,在AB 的反向延长线上截取BD=14cm ;则 AD= cm 。
二.选择题1.下列说法正确的是 ( )(A )经过一点的直线有且只有一条(B )连结两点的线段叫做这两点间的距离(C )过点A 作直线l 的垂线段,则这条垂线段叫做点A 到直线l 的距离 (D )经过一点有且只有一条直线与已经直线垂直2.下列命题中,错误的命题是 ( )(A )如果a ⊥b ,b ⊥c ,那么a//c (B )如果a//b ,b//c ,那么a//c (C )相等的两个角是对顶角(D )一个角的补角与这个角的余角的差是90°3.一个人从A 点出发向北偏东300方向走到B 点,再从B 点出发向南偏东150方向走到C 点,那么∠ABC 等于( )(A )、750 (B )、1050 (C )、450 (D )、900 4.如图,AO ⊥BO ,CO ⊥DO ,∠AOD 与∠BOC 的度数之比是4:5,则∠AOD 的度数是( )(A )、200 (B )、300 (C )、800 (D )、10005.如图,已知AB ∥CD ,则角α、β、γ 之间的关系为( )A 、α+β+γ=1800B 、α—β+γ=1800C 、α+β—γ=1800D 、α+β+γ=36006.如图,光线a 照射到平面镜CD 上,然后在平面镜 AB 和CD 之间来回反射,这时光线的入射角等于反ABC DE αβγA O BCD B1ABC D 432A射角,即∠1=∠6,∠5=∠3,∠2=∠4。