最新北师大版-七年级下数学第一单元试题

合集下载

北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)

北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。

(完整版)北师大版七年级下数学第一单元试题汇总

(完整版)北师大版七年级下数学第一单元试题汇总

Mayy第一章 整式的运算填空题2.若多项式( m+2) x m 1y 2-3xy 3是五次二项式,则 m= _____________13.写出一个关于 x 的二次三项式,使得它的二次项系数为 ,则这个二次三项式是22a4.若 a 1,b 2时,代数式 a 2的值是 ________b225. (-2m+3)( ______ )=4m -9 (-2ab+3) = __________________已知 23 83 2n ,则 n __________________2x 3,2y 7,则2x y -3= _____________ ______ .8.如果 x +y =6, xy =7, 那么 x 2+y 2=。

9.若 P=a 2+3ab +b 2,Q=a 2-3ab +b 2,则代数式 P Q 2P P Q 。

化简后结果是.选择题a 3b, 4, 23abc,0,x y, x 3中,单项式有【A )3个B )4个C )5 个 (D )6个班级 ____________ 座号 ___________姓名 _____________22个多项式与 2x 2 x 2的和是3x 22x 1, 则这个多项式是( a b)2 = _______________2( a b)26.计算:① ( a 3 )2③- 3xy · 2x 2y=;⑤ 5n (· 5)3·5n 1 _⑦ (8xy 2-6x 2y) ÷(-1 0 2(0.2 12 0) 2 __1)(4x 1) = _________________② 5x 2y ( 3x 2y) _____________________ 。

④-2a 3b 4÷ 12a 3b2= 。

⑥ (ab)m 3 (ab)m 1 ___________________ 。

2x) = _________________________ ; ⑧_; ⑩ (-x-4y) ·(-x-4y)= ______________m n m n7.a m3,a n4,am na 2m4n1.在下列代数式: ( 1 3a)( 1 3a) = _________________ , ( 4x⑨ ( -3x - 4y) ·-3(x+4y) =Mayy9).(3x 2y)( 2y 3x)(4y 2 9x 2)10 )、 0.125 100 × 8100342 xy2.单项式 的次数是【 7 (A )8次 (B )3次 (C )4 次 3.今天数学课上,老师讲了多项式的加减, ( D ) 5 次 放学后,小明回到家拿出课堂笔记,认真的复 习老师课上讲的内容,他突然发现一道题: 1 -x 2+3xy- 2 y 2) - - 2 x 2+4xy- 2 y 2) = 1 - 2 x 2 +y 2空格的地方被钢笔水弄污了,那么空格中的一项是( (A )-7xy 4.下列多项式次数为 (A )- 5x 2+6x - 1 5.下列说法中正确的是 (A )代数式一定是单项式 (B ) 3 的是【(B )】 7xy 】 x 2+x -1 C )-xy D ) xy C )a2b + ab + b2D) x 2y 2-2xy -1B )单项式一 定是 D )单项式-π 列各题能用同底数幂乘法法则进行计算的是( (C )单项式 x 的次数是 6. 代数式 2x 2y 2的次数是 6。

北师大版数学七年级下册 第一单元综合测试卷(解析版)

 北师大版数学七年级下册 第一单元综合测试卷(解析版)

北师大版数学七年级下册第一单元综合测试卷(解析版)一、选择题。

01.下列算式的运算结果为a⁴的是 ( )A.a⁴•a B.(a²)² C.a³+a³ D.a⁴÷a02 .下列运算正确的是 ( )A.3a²+a=3a³ B.2a³•(-a²)=2a⁵C.4a⁶+2a²=2a³ D.(-3a)²-a²=8a²03.下列计算结果正确的是 ( )A.2a³+a³=3a⁶B.(-a)²•a³=-a⁶C.(-1)⁻²=4 D.(-2)⁰=-1204.下列运算正确的是 ( )A.5m+2m=7m² B.-2m²•m³=2m⁵C.(-a²b)³=-a⁶b³ D.(b+2a)(2a-b)=b²-4a²05.下列各式的计算结果等于x²-5x-6的是 ( )A.(x-6)(x+1) B.(x+6) (x-l)C.(x-2)(x+3) D.(x+2)(x-3)06.下列各式的计算结果错误的是 ( )A.(a+b)(a-b)=a²-b²B.(x+l)(x-l)=x²-1C.(2x+l) (2x-l)=2x²-1D.(-3x+2)(-3x-2)=9x²-407.如果x²+2mx+9是一个完全平方式,则m的值是( )A.3 B.±3 C.6 D.±608.有下列运算:①a³+a³=a⁶;②(-a³)²=a⁶;③(-1)⁰=1;④(a+b)²=a²+b²;⑤a³•a³=a⁹;⑥(-ab²)³=ab⁶.其中正确的有 ( )A.1个 B.2个 C.3个 D.4个09.任意给定一个非零数,按下列程序计算,最后输出的结果是( )A.m B.m² C.m+l D.m-l10.计算(5m²+15m³n-20m⁴)÷(-5m²),结果正确的是( )A.1-3mn+4m² B.-1-3m+4m²C.4m²-3mn-1 D.4m²-3mn11.如图,从边长为(a+l)cm的正方形纸片中剪去一个边长为(a-l)cm的正方形(a >1),剩余部分沿虚线又剪拼成一个长方形(不重叠且无缝隙),则该长方形的面积是 ( )A.2 cm² B.2a cm²C.4a cm²D. (a²-l)cm²二、填空题.12.计算:3a³•a²-2a⁷÷a²=______________.13.一个长方形的面积为a²+2a,若一边长为a,则另一边长为___________.14如图①,将边长为a的大正方形剪去一个边长为b的小正方形并沿图中的虚线剪开,拼接后得到图②,这种变化可以用含字母a,b的等式表示为_____________.15.若(x+1)(2x-3)=2x ²+mx+n ,则m=______,n=____.16.若m ²-n ²=6,且m-n=3,则m+n=________.若x+y=3,xy=l ,则X ²+y ²=_____________.三、解答题.17 .先化简,再求值:(2+x)(2-x )+(x-1)(x+5),其中x=32.18 先化简,再求值:(m-l)²-m(n-2)-(m-l)(m+1),其中m 和n 是面积为5的直角三角形的两直角边长.19 .某种大肠杆菌的半径R 是3.5×10⁻⁶米,一只苍蝇携带这种细菌1.4×l0³个,如果把这个细菌近似地看成球状,那么这只苍蝇所携带的所有大肠杆菌的总体积是多少?(结果保留到小数点后3位,球的体积公式为343V R π)20. 已知(x+y)²=49,(x-y)²=1,求下列各式的值.(l)x ²+y ²;(2)xy .21 计算:(1)4-(-2)⁻²-3²÷(-3)⁰; (2)(2a+b)(b-2a)-(a-3b)².22. (1)已知m+n=4,mn=2,求m²+n²的值;(2)已知aᵐ=3,aⁿ=5,求a³ᵐ⁻²ⁿ的值.23. 两个两位数的十位上的数字相同,其中一个数的个位上的数字是6,另一个数的个位上的数字是4,它们的平方差是220,求这两个两位数.24 已知(x²+mx+n)(x+l)的结果中不含x²项和x项,求m,n的值.25 观察下列关于自然数的等式:(l)3²-4×l²=5;(2)5²-4×2²=9;(3)7²-4×3²=13;根据上述规律解决下列问题.(1)完成第五个等式:11²-4×____²=____;(2)写出你猜想的第n 个等式(用含n 的式子表示),并验证其正确性.26 对于任何实数,我们规定符号a b c d 的意义是a b c d =ad-bc . (1)按照这个规定请你计算5678的值;(2)按照这个规定请你计算:当x ²-3x+1=0时,12x x +- 31xx -值.27 阅读下面的文字,回答后面的问题.求5+5²+5³+…+5¹⁰⁰的值.解:令S=5+5²+5³+…+5¹⁰⁰①, 将等式两边同时乘5,得5S=5²+5³+5⁴+…+5¹⁰¹②,②-①得4S=5¹⁰¹-5,∴101554S -=. 即5+5²+5³+…+5¹⁰⁰=101554- 问题:(1)求2+2²+2³+…+2¹⁰⁰的值;(2) 求4+12+36+…+4×3⁴⁰的值.第一章综合测试卷01 B解析:A.a⁴•a=a⁵.不符合题意;B. (a²)²=a⁴,符合题意;C.a³+a³=2a³,不符合题意;D.a⁴÷a=a³,不符合题意,故选B.02 D解析:A 3a²与a不是同类项,不能合并,∴A选项错误;B.2a³•(-a²)=2×(-1)a⁵=-2a⁵,∴B选项错误;C.4a⁶与2a²不是同类项,不能合并,∴C选项错误;D.(-3a)²-a²= 9a²-a²=8a²,∴D选项正确.故选D。

北师大版数学七年级下册第一章单元测试卷(含答案)

北师大版数学七年级下册第一章单元测试卷(含答案)

北师大版数学七年级下册第一章单元测试卷一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个是符合要求的)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.计算:20·2-3等于( )A .-18B.18 C .0 D .83.2022年6月5日10时44分,神舟十四号飞船成功发射,将陈冬、刘洋、蔡旭哲三位宇航员送入了中国空间站.已知中国空间站绕地球运行的速度约为7 700 m/s, 7 700用科学记数法可表示为( )A .77×102B .7.7×103C .0.77×103D .0.77×1044.下列计算正确的是( )A .a 3+a 3=a 6B .(a 3)2=a 6C .a 6÷a 2=a 3D .(ab )3=ab 35.一个正方形的边长增加了2 cm ,面积相应增加了32 cm 2,则原正方形的边长为( )A .5 cmB .6 cmC .7 cmD .8 cm6.计算4m ·8-1÷2m 的结果为16,则m 的值等于( )A .7B .6C .5D .47.下列四个等式:①5x 2y 4÷15xy =xy 3;②16a 6b 4c ÷8a 3b 2=2a 3b 2c ;③9x 8y 2÷3x 2y =3x 4y ;④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2.其中正确的有( )A .0个B .1个C .2个D .3个8.下列各式中,能用完全平方公式计算的是( )A .(a -b )(-b -a )B .(-n 2-m 2)(m 2+n 2)C.⎝ ⎛⎭⎪⎫-12p +q ⎝ ⎛⎭⎪⎫q +12p D .(2x -3y )(2x +3y )9.若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab 10.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b二、填空题(本题共6小题,每小题3分,共18分)11.计算:2y (x -y )=__________.12.如果x +y =-1,x -y =8,那么代数式x 2-y 2的值是________.13.如果9x 2+kx +25是一个完全平方式,那么k 的值是________.14.若3x =a ,9y =b ,则3x -2y 的值为________.15.如图,长方形ABCD 的周长是12 cm ,以AB ,AD 为边向外作正方形ABEF和正方形ADGH ,若正方形ABEF 和正方形ADGH 的面积之和为26 cm 2,那么长方形ABCD 的面积是____________.316.在一个数字九宫格中,当处于同一横行、同一竖列、同一斜对角线上的3个数之积都相等时称之为“积的九宫归位”.在如图的九宫格中,已填写了一些数或式子,为了完成“积的九宫归位”,则x 的值为____________.三、解答题(本题共6小题,共52分.解答应写出文字说明、证明过程或演算步骤)17.(8分)化简:(1)⎝ ⎛⎭⎪⎫-12ab ⎝ ⎛⎭⎪⎫23ab 2-2ab +43b ;(2)x 2+(x +3)(2x -3)-x (x +2);(3)(a +b )(a -b )+4ab 3÷4ab ;(4)12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫x +12y 2+⎝ ⎛⎭⎪⎫x -12y 2⎝ ⎛⎭⎪⎫x 2-14y 2.18.(8分)计算:(1)992;(2)2 0230-⎝ ⎛⎭⎪⎫12-2+||-32;(3)⎝ ⎛⎭⎪⎫14-2×(3-π)0+⎝ ⎛⎭⎪⎫123÷⎝ ⎛⎭⎪⎫122;5 (4)2 0232-2 022×2 024.19.(8分)先化简,再求值:(x -y 2)-(x -y )·(x +y )+(x +y )2,其中x =3,y =-13.20.(8分)(1)如图①所示的大正方形的边长为a ,小正方形的边长为b ,则阴影部分的面积是________________(写成平方差的形式);(2)若将图①中的阴影部分剪下来,拼成如图②所示的长方形,则阴影部分的面积是__________________(写成多项式相乘的形式);(3)比较两图中阴影部分的面积,可以得到的公式为__________________;(4)应用公式计算:⎝ ⎛⎭⎪⎫1-122⎝ ⎛⎭⎪⎫1-132⎝ ⎛⎭⎪⎫1-142.21.(10分)将完全平方公式:(a±b)2=a2±2ab+b2适当变形,可以解决很多数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,所以a2+b2+2ab=9.因为ab=1,所以a2+b2+2=9,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)若(4-x)(5-x)=8,则(4-x)2+(5-x)2=____________;(3)如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,两正方形的面积分别为S1,S2.若AB=6,S1+S2=18,求图中阴影部分的面积.22.(10分)阅读:已知x2y=3,求2xy(x5y2-3x3y-4x)的值.分析:考虑到x,y的可能值较多,不能逐一代入求解,故考虑整体思想,将x2y=3整体代入.解:2xy(x5y2-3x3y-4x)=2x6y3-6x4y2-8x2y=2(x2y)3-6(x2y)2-8x2y=2×33-6×32-8×3=-24.你能用上述方法解决以下问题吗?试一试!(1)已知xy2=-2,求xy(x2y5-2xy3+3y)的值;(2)已知a2+a-1=0,求代数式a3+2a2+2 023的值.7答案一、1.D 2.B 3.B 4.B 5.C 6.A 7.C 8.B9.A 10.B二、11.2xy -2y 2 12.-8 13.±30 14.a b15.5 cm 2 16.-1三、17.解:(1)原式=⎝ ⎛⎭⎪⎫-12ab ·23ab 2+⎝ ⎛⎭⎪⎫-12ab ·(-2ab )+⎝ ⎛⎭⎪⎫-12ab ·43b =-13a 2b 3+a 2b 2-23ab 2.(2)原式=x 2+(2x 2-3x +6x -9)-(x 2+2x )=x 2+2x 2+3x -9-x 2-2x=2x 2+x -9.(3)原式=a 2-b 2+b 2=a 2.(4)原式=12⎝ ⎛⎭⎪⎫x 2+xy +14y 2+x 2-xy +14y 2⎝ ⎛⎭⎪⎫x 2-14y 2 =12×2⎝ ⎛⎭⎪⎫x 2+14y 2⎝ ⎛⎭⎪⎫x 2-14y 2 =x 4-116y 4. 18.解:(1)原式=(100-1)2=10 000-200+1=9 801.(2)原式=1-4+32=29.(3)原式=16×1+12=332.(4)原式=2 0202-(2 023-1)×(2 023+1)=2 0232-(2 0232-1)=1.19.解:原式=x -y 2-x 2+y 2+x 2+2xy +y 2=x +2xy +y 2.当x =3,y =-13时,原式=3-2+19=109.20.解:(1)a 2-b 2(2)(a +b )(a -b )(3)(a -b )(a +b )=a 2-b 2(4) ⎝ ⎛⎭⎪⎫1-122⎝ ⎛⎭⎪⎫1-132⎝ ⎛⎭⎪⎫1-142= ⎝ ⎛⎭⎪⎫1-12⎝ ⎛⎭⎪⎫1+12· ⎝ ⎛⎭⎪⎫1-13⎝ ⎛⎭⎪⎫1+13⎝ ⎛⎭⎪⎫1-14⎝ ⎛⎭⎪⎫1+14=12×32×23×43×34×54=1 2×5 4=5 8.21.解:(1)因为x+y=8,所以(x+y)2=82=64,所以x2+2xy+y2=64.因为x2+y2=40,所以2xy=x2+2xy+y2-(x2+y2)=64-40=24,所以xy=12.(2)17(3)设AC的长为a,BC的长为b,所以AB=AC+BC=a+b=6,所以(a+b)2=36.因为S1+S2=18,所以a2+b2=18,所以2ab=(a+b)2-(a2+b2)=18,所以12ab=92.又因为四边形BCFG是正方形,所以CF=CB,∠ACF=90°,所以S阴影=12AC·CF=12AC·BC=12ab=92.22.解:(1)xy(x2y5-2xy3+3y)=x3y6-2x2y4+3xy2=(xy2)3-2(xy2)2+3xy2=(-2)3-2×(-2)2+3×(-2) =-22.(2)因为a2+a-1=0,所以a2+a=1,所以a3+2a2+2 023=a(a2+a)+a2+2023=a2+a+2 023=1+2 023=2 024.9。

(新北师大版)数学七年级(下)第一单元测试题及答案

(新北师大版)数学七年级(下)第一单元测试题及答案

北师版七年级下册第一单元测试卷姓名 成绩一、选择题。

1、下列判断中不正确的是( )A.单项式m的次数是0B.单项式y的系数是1C.21,-2a都是单项式 D.x x -2+1是二次三项式2、如果一个多项式的次数是6次,那么这个多项式任何一项的次数( )A 、都小于6B 、都等于6C 、都不小于6D 、都不大于63、下列各式中,运算正确的是( )A 、422x x x =+B 、123=-n m n m y x y xC 、552332954y x y x y x =+D 、424242235y x y x y x -=+-4、下列多项式的乘法中,可以用平方差公式计算的有( )A 、)21)(21(--+x x B 、)2)(2(--+-m mC 、)22)(22(b a b a -+-D 、)33)(33(33y x y x +-5、在代数式π,2,52,,2,21,2222x yx x x a b b b a ++--+中,下列结论正确的是( )A 、有3个单项式,2个多项式B 、有4个单项式,2个多项式C 、有5个单项式,3个多项式D 、有7个整式6、关于200820082)21(⋅计算正确的是( )A 、0B 、1C 、-1D 、240167、多项式5334826x y x a a +--中,最高次项的系数和常数项分别为( )A 、2和8B 、4和-8C 、6和8D 、-2和-88、若关于x 的积)7)((+-x m x 中常数项为14,则m 的值为( )A 、2B 、-2C 、7D 、-79、已知31=+m m ,则441m m +的值是( )A 、9B 、49C 、47D 、110、若))(3(152n x x mx x ++=-+,则m 的值为( )A 、-5B 、5C 、-2D 、2二、填空题11、)3()918(252ab b a b a -÷-=_________。

12、若016822=+-+-n n m ,则______________,==n m 。

(完整版)北师大版七年级下册数学第一章单元测试题

(完整版)北师大版七年级下册数学第一章单元测试题

北师大版七年级下册数学第一章单元测试题一.选择题(共10小题)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x52.下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y24.下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2 D.(a﹣3)2=a2﹣95.下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x66.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1077.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.308.计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0 B.2 C.﹣2 D.﹣2a49.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm210.2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是()A.8 B.6 C.4 D.2二.填空题(共10小题)11.若a m=2,a n=8,则a m+n=______.12.计算:(﹣5a4)•(﹣8ab2)=______.13.若2•4m•8m=216,则m=______.14.计算:﹣(﹣)﹣83×0.1252=______.15.已知10m=3,10n=2,则102m﹣n的值为______.16.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为______.17.观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=______.18.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是______.19.如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=______.20.计算:=______.三.解答题(共10小题)21.已知a x=5,a x+y=30,求a x+a y的值.22.已知2x+5y=3,求4x•32y的值.23.计算:12×(﹣)+8×2﹣2﹣(﹣1)2.24.先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.25.已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.26.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.27.计算:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.28.(2016春•滁州期末)如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.29.已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n的值.30.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).北师大版七年级下册数学第一章单元测试题参考答案与试题解析一.选择题(共10小题)1.(2016•呼伦贝尔)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.(2016•哈尔滨)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(2016•娄底)下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、5a﹣2a=3a,故此选项错误;C、(a3)4=a12,正确;D、(x+y)2=x2+y2+2xy,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及合并同类项、幂的乘方运算、完全平方公式等知识,正确把握相关定义是解题关键.4.(2016•荆门)下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2 D.(a﹣3)2=a2﹣9【分析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,差的平方等余平方和减积的二倍,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、积的乘方等于乘方的积,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、差的平方等余平方和减积的二倍,故D错误;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(2016•东营)下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【分析】A:根据合并同类项的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据完全平方公式判断即可.D:根据同底数幂的除法法则判断即可.【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了完全平方公式的应用,以及合并同类项的方法,要熟练掌握.6.(2016•聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.7.(2016•临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2016春•揭西县期末)计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0 B.2 C.﹣2 D.﹣2a4【分析】原式利用平方差公式计算,去括号合并即可得到结果.【解答】解:原式=(x2﹣1)(x2+1)﹣(x4+1)=x4﹣1﹣x4﹣1=﹣2,故选C【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.(2016春•山亭区期末)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm2【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【解答】解:矩形的面积为:(a+4)2﹣(a+1)2=(a2+8a+16)﹣(a2+2a+1)=a2+8a+16﹣a2﹣2a﹣1=6a+15.故选C.【点评】此题考查了图形的剪拼,关键是根据题意列出式子,运用完全平方公式进行计算,要熟记公式.10.(2016春•相城区期中)(2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是()A.8 B.6 C.4 D.2【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字.【解答】解:原式=(2﹣1)•(2+1)•(22+1)•(24+1)…(216+1)+1=(22﹣1)•(22+1)•(24+1)…(216+1)+1=(24﹣1)•(24+1)…(216+1)+1=232﹣1+1=232,∵21=2,22=4,23=8,24=16,25=32,…,∴其结果个位数以2,4,8,6循环,∵32÷4=8,∴原式计算结果的个位数字为6,故选:B.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二.填空题(共10小题)11.(2016•大庆)若a m=2,a n=8,则a m+n=16.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m•a n=16,故答案为:16【点评】此题考查了同底数幂的乘法,熟练掌握乘法法则是解本题的关键.12.(2016•临夏州)计算:(﹣5a4)•(﹣8ab2)=40a5b2.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(﹣5a4)•(﹣8ab2)=40a5b2.故答案为:40a5b2.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.13.(2016•白云区校级二模)若2•4m•8m=216,则m=3.【分析】直接利用幂的乘方运算法则得出2•22m•23m=216,再利用同底数幂的乘法运算法则即可得出关于m的等式,求出m的值即可.【解答】解:∵2•4m•8m=216,∴2•22m•23m=216,∴1+5m=16,解得:m=3.故答案为:3.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用运算法则是解题关键.14.(2016•黄冈模拟)计算:﹣(﹣)﹣83×0.1252=﹣7.【分析】直接利用积的乘方运算法则结合有理数的乘法运算法则化简求出答案.【解答】解:﹣(﹣)﹣83×0.1252=﹣(8×0.125)2×8=﹣8=﹣7.故答案为:﹣7.【点评】此题主要考查了积的乘方运算和有理数的乘法运算,正确应用积的乘方运算法则是解题关键.15.(2016•阜宁县二模)已知10m=3,10n=2,则102m﹣n的值为.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:102m=32=9,102m﹣n=102m÷10n=,故答案为:.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.16.(2016•河北模拟)已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为0.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a,b,c的值,即可求出原式的值.【解答】解:已知等式整理得:x2+2x﹣3=ax2+bx+c,∴a=1,b=2,c=﹣3,则原式=9﹣6﹣3=0.故答案为:0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.17.(2016•百色)观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017.【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【解答】解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017【点评】此题考查了平方差公式,以及多项式乘以多项式,弄清题中的规律是解本题的关键.18.(2016•乐亭县二模)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(a﹣b)2.【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.19.(2016春•沛县期末)如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=3.【分析】利用平方差公式,对x2﹣y2分解因式,然后,再把x+y=﹣1,x﹣y=﹣3代入,即可解答.【解答】解:根据平方差公式得,x2﹣y2=(x+y)(x﹣y),把x+y=﹣1,x﹣y=﹣3代入得,原式=(﹣1)×(﹣3),=3;故答案为3.【点评】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a﹣b)=a2﹣b2.20.(2016春•高密市期末)计算:=2015.【分析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式===2015,故答案为:2015【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.三.解答题(共10小题)21.(2016春•长春校级期末)已知a x=5,a x+y=30,求a x+a y的值.【分析】首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出a y的值是多少;然后把a x、a y的值相加,求出a x+a y的值是多少即可.【解答】解:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.22.(2016春•江都区校级期中)已知2x+5y=3,求4x•32y的值.【分析】根据同底数幂相乘和幂的乘方的逆运算计算.【解答】解:∵2x+5y=3,∴4x•32y=22x•25y=22x+5y=23=8.【点评】本题考查了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘的性质,整体代入求解也比较关键.23.(2016•阜阳校级二模)计算:12×(﹣)+8×2﹣2﹣(﹣1)2.【分析】先算乘方,再算乘法,最后算加减即可.【解答】解:原式=12×(﹣)+8×﹣1=﹣4+2﹣1=﹣3.【点评】本题考查的是负整数指数幂,熟知有理数混合运算的法则是解答此题的关键.24.(2016•湘西州)先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣b2﹣ab+b2=a2﹣ab,当a=﹣2,b=1时,原式=4+2=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.25.(2015春•吉州区期末)已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.【分析】将所求式子利用幂运算的性质转化,再整体代入即可得到结果.【解答】解:(1)2x+y=2x•2y=3×5=15;(2)23x=(2x)3=33=27;(3)22x+y﹣1=(2x)2•2y÷2=32×5÷2=.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,利用幂运算的性质将所求式子变形是解题的关键.26.(2015春•张家港市期末)(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.【分析】(1)根据积的乘方和幂的乘方法则的逆运算,即可解答;(2)根据同底数幂乘法、除法公式的逆运用,即可解答.【解答】解:(1)(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=16×9=144;(2)32a﹣4b+1=(3a)2÷(32b)2×3=36÷4×3=27.【点评】本题考查的是幂的乘方和积的乘方、同底数幂的乘除法,掌握它们的运算法则及其逆运算是解题的关键.27.(2016春•宿州校级期末)计算:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用乘方的意义计算,即可得到结果.(2)原式第一项利用单项式乘单项式法则计算,第二项利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23=1+4﹣1﹣8=12;(2)(﹣4xy3)•(xy)+(﹣3xy2)2.=﹣2x2y4+9x2y4=7x2y4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.(2016春•滁州期末)如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.【分析】(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(a+b)(a﹣b)=a2﹣b2;(3)从左到右依次利用平方差公式即可求解.【解答】解:(1),S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.【点评】本题考查了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.29.(2016春•北京校级月考)已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n 的值.【分析】把式子展开,合并同类项后找到x2项和x项的系数,令其为0,可求出m和n的值.【解答】解:(x2+mx+n)(x+1)=x3+(m+1)x2+(n+m)x+n.又∵结果中不含x2的项和x项,∴m+1=0且n+m=0解得m=﹣1,n=1.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.30.(2016春•吉安期中)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是B;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【分析】(1)观察图1与图2,根据两图形阴影部分面积相等验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②原式利用平方差公式变形,约分即可得到结果.【解答】解:(1)根据图形得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y)=12,x+2y=4,∴x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.。

北师大版七年级数学下第一单元测试卷

北师大版七年级数学下第一单元测试卷

北师大版七年级数学下第一单元测试卷全文共4篇示例,供读者参考北师大版七年级数学下第一单元测试卷篇1一、填空题(每空1分,共41分)1、从右边起第( )位是万位,第( )位是亿位。

2、一个数是由6个百万、7个万和8个一组成,这个数写作( ),读作( )。

3、在自然数中,每相邻的两个计数单位之间的进率都是( ),这种计数方法叫作( )进制计数法。

4、49( )≈50万,( )里最小要填( ),最大能填( )。

5、最小的八位数是( ),减去1是( );最大的八位数是( ),加上1是( )。

6、用三个“0”和三个“9”组成的最大的六位数是( ),读作( ),把它四舍五入到万位约是( );组成最小的六位数是( ),读作( ),把它四舍五入到万位约是( )。

7、由五十亿、七亿和六千组成的数是( ),把它精确到亿位约是( )。

8、=( )万≈( )万=( )亿≈( )亿=( )亿=( )万≈( )万≈( )万=( )万9、一个8位数,千万位、万位、千位上的数字都是9,其他数位上的数字都是0,这个数写作( ),读作( ),精确到万位约是( )万。

10、在数字7和8中间添( )个0,就是七千万零八。

11、最小的自然数是( )。

12、是( )位数,最高位是( )位,其中的三个5从左往右分别表示( )、( )、( )。

二、在○里填上“<”、“>”或“=”。

(每题1分,共5分)○ 三十八万○三百八十万万○1亿万元○元5万米○米三、请读出下列数字。

(每题1分,共6分)读作:__________________________________读作:__________________________________读作:__________________________________读作:__________________________________读作:__________________________________读作:__________________________________四、请写出下列数字。

(完整版)新北师大版七年级数学下册单元测试题及答案(最新整理)

(完整版)新北师大版七年级数学下册单元测试题及答案(最新整理)


A.相等
B.互补
C.相等或互补 D.相等且互补
4、下列说法中,为平行线特征的是(

①两条直线平行,同旁内角互补; ②同位角相等, 两条直线平行;
③内错角相等, 两条直线平行;
④垂直于同一条直线的两条直线平行.
A.①
B.②③
C.④
D.②和④
5、如上图 3,AB∥CD∥EF,若∠ABC=50°,∠CEF=150°,则∠BCE=( )
【】
A.600
B.500
C.400
D.300
2、如上图,AB⊥BC,BC⊥CD,∠EBC=∠BCF,那么,∠ABE 与∠DCF 的位置与大小关系是
()
A.是同位角且相等 B.不是同位角但相等; C.是同位角但不等 D.不是同位角也不

3、如果两个角的一边在同一直线上,另一边互相平行,那么这两个角只能(
9.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是(

A.a8+2a4b4+b8 B.a8-2a4b4+b8 C.a8+b8
D.a8-b8
10.已知 P 7 m 1,Q m2 8 m (m 为任意实数),则 P、Q 的大小关系为(

15
15
A、 P Q
B、 P Q
C、 P Q
19.多项式 5x2-7x-3 是____次_______项式.
20.用科学记数法表示-0.000000059=________.
21.若-3xmy5 与 0.4x3y2n+1 是同类项,则 m+n=______.
22.如果(2a+2b+1)(2a+2b-1)=63,那么 a+b 的值是________.

北师大版数学七年级下册第一章测试题

北师大版数学七年级下册第一章测试题

北师大版数学七年级下册第一章测试题一、选择题1、在下列四个数中,哪个数是质数?A. 7.2 BB. 9.5C. 11D. 142、下列哪个数不是正整数?A. 20B. -5C. 0D. 303、下列哪个数是负分数?A. 1/3B. -2/3C. 0D. 5/7二、填空题1、请在下方空白处填入合适的答案:3/4 + 5/6 = _________.2、请在下方空白处填入合适的答案:已知x = -5,那么x + 2 = _________.三、解答题1、请计算:1/2 + 2/3 - 3/4 + 4/5 - 5/62、请计算:(-5) + (-2) + (-9) + (-4) + (7)3、请解答:如果一个数的倒数是-0.5,那么这个数是多少?四、附加题请在下方空白处解答:请计算:(1/3 - 1/4) + (2/5 - 3/8)这道题考察了我们对分数加减法的理解和掌握,需要我们细心计算,才能得到正确的答案。

北师大版八年级下册数学第一章测试题一、填空题1、在一个等腰三角形中,已知底边长为5,两条相等的边长为____。

2、如果一个矩形的长为6,宽为4,那么这个矩形的周长是____。

3、一个三角形的内角之和是180度,那么这个三角形的外角之和是____。

二、选择题1、下列哪个图形是轴对称图形?A.圆形B.方形C.三角形D.以上都不是2、下列哪个方程式有两个不相等的实数根?A. x² + 2x + 1 = 0B. x² + 2x + 2 = 0C. x² + 2x + 3 = 0D. x² + 2x + 4 = 0三、解答题1、已知:如图,AB=AC,AD=AE,求证:BD=CE。

2、证明:如果一个四边形是平行四边形,那么它的对边相等。

3、求证:在一个三角形中,至少有一个角大于或等于60度。

四、应用题1、一个矩形的长是6厘米,宽是4厘米。

如果将这个矩形的长和宽都增加1厘米,那么这个矩形的面积会增加多少?2、一个等腰三角形的底边长为5厘米,两条相等的边长为多少厘米?如果这个等腰三角形的面积为25平方厘米,那么这个三角形的底边长为多少厘米?七年级生物下册第一章测试题一、选择题1、下列哪个选项不是生物的特征?A.生长和繁殖B.运动和活动C.遗传和变异D.细胞和组织2、下列哪个选项不属于生命系统的结构层次?A.细胞B.组织C.器官D.原子和分子3、下列哪个选项不是植物体的组成部分?A.细胞B.组织C.器官D.系统二、填空题1、生物的主要特征包括______、______、______和______。

新北师大版七年级数学下册单元测试题和答案【最新整理】

新北师大版七年级数学下册单元测试题和答案【最新整理】

七年级数学下 第1章 整式的乘除--单元测试卷(一)一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( ) A. 1- B. 1 C. 0 D. 19973.设()()A b a b a +-=+223535,则A=( )A. 30ab B. 60ab C. 15ab D. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( ) A. 25. B 25- C 19 D 、19- 5.已知,5,3==b a x x 则=-b a x 23( ) A 、2527 B 、109 C 、53D 、526. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有( )A 、①②B 、③④C 、①②③D 、①②③④7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分) 11.设12142++mx x 是一个完全平方式,则m =_______。

北师大七年级下册数学第一章单元测试题

北师大七年级下册数学第一章单元测试题

北师大版七年级下册数学第一章单元测试题一.选择题(共10小题)1.化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x52.下列运算正确的是()A.a2?a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.下列运算正确的是()A.a2?a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y24.下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2D.(a﹣3)2=a2﹣95.下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x66.地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×1077.若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.308.计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0 B.2 C.﹣2 D.﹣2a49.如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2 B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm210.2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是()A.8 B.6 C.4 D.2二.填空题(共10小题)11.若a m=2,a n=8,则a m+n=______.12.计算:(﹣5a4)?(﹣8ab2)=______.13.若2?4m?8m=216,则m=______.14.计算:﹣(﹣)﹣83×0.1252=______.15.已知10m=3,10n=2,则102m﹣n的值为______.16.已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为______.17.观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=______.18.图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是______.19.如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=______.20.计算:=______.三.解答题(共10小题)21.已知a x=5,a x+y=30,求a x+a y的值.22.已知2x+5y=3,求4x?32y的值.23.计算:12×(﹣)+8×2﹣2﹣(﹣1)2.24.先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.25.已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.26.(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.27.计算:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23;(2)(﹣4xy3)?(xy)+(﹣3xy2)2.28.(2016春?滁州期末)如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.29.已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n的值.30.从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是______;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).北师大版七年级下册数学第一章单元测试题参考答案与试题解析一.选择题(共10小题)1.(2016?呼伦贝尔)化简(﹣x)3(﹣x)2,结果正确的是()A.﹣x6B.x6C.x5D.﹣x5【分析】根据同底数幂相乘,底数不变,指数相加计算后选取答案.【解答】解:(﹣x)3(﹣x)2=(﹣x)3+2=﹣x5.故选D.【点评】主要考查同底数幂的乘法的性质,熟练掌握性质是解题的关键.2.(2016?哈尔滨)下列运算正确的是()A.a2?a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(2016?娄底)下列运算正确的是()A.a2?a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2a3=a5,故此选项错误;B、5a﹣2a=3a,故此选项错误;C、(a3)4=a12,正确;D、(x+y)2=x2+y2+2xy,故此选项错误;故选:C.【点评】此题主要考查了同底数幂的乘法运算以及合并同类项、幂的乘方运算、完全平方公式等知识,正确把握相关定义是解题关键.4.(2016?荆门)下列运算正确的是()A.a+2a=2a2B.(﹣2ab2)2=4a2b4C.a6÷a3=a2D.(a﹣3)2=a2﹣9【分析】根据合并同类项系数相加字母及指数不变,积的乘方等于乘方的积,同底数幂的除法底数不变指数相减,差的平方等余平方和减积的二倍,可得答案.【解答】解:A、合并同类项系数相加字母及指数不变,故A错误;B、积的乘方等于乘方的积,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、差的平方等余平方和减积的二倍,故D错误;故选:B.【点评】本题考查了同底数幂的除法,熟记法则并根据法则计算是解题关键.5.(2016?东营)下列计算正确的是()A.3a+4b=7ab B.(ab3)2=ab6C.(a+2)2=a2+4 D.x12÷x6=x6【分析】A:根据合并同类项的方法判断即可.B:根据积的乘方的运算方法判断即可.C:根据完全平方公式判断即可.D:根据同底数幂的除法法则判断即可.【解答】解:∵3a+4b≠7ab,∴选项A不正确;∵(ab3)2=a2b6,∴选项B不正确;∵(a+2)2=a2+4a+4,∴选项C不正确;∵x12÷x6=x6,∴选项D正确.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了完全平方公式的应用,以及合并同类项的方法,要熟练掌握.6.(2016?聊城)地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,地球的体积约是太阳体积的倍数是()A.7.1×10﹣6B.7.1×10﹣7C.1.4×106D.1.4×107【分析】直接利用整式的除法运算法则结合科学记数法求出答案.【解答】解:∵地球的体积约为1012立方千米,太阳的体积约为1.4×1018立方千米,∴地球的体积约是太阳体积的倍数是:1012÷(1.4×1018)≈7.1×10﹣7.故选:B.【点评】此题主要考查了整式的除法运算,正确掌握运算法则是解题关键.7.(2016?临夏州)若x2+4x﹣4=0,则3(x﹣2)2﹣6(x+1)(x﹣1)的值为()A.﹣6 B.6 C.18 D.30【分析】原式利用完全平方公式,平方差公式化简,去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵x2+4x﹣4=0,即x2+4x=4,∴原式=3(x2﹣4x+4)﹣6(x2﹣1)=3x2﹣12x+12﹣6x2+6=﹣3x2﹣12x+18=﹣3(x2+4x)+18=﹣12+18=6.故选B【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2016春?揭西县期末)计算:(x﹣1)(x+1)(x2+1)﹣(x4+1)的结果为()A.0 B.2 C.﹣2 D.﹣2a4【分析】原式利用平方差公式计算,去括号合并即可得到结果.【解答】解:原式=(x2﹣1)(x2+1)﹣(x4+1)=x4﹣1﹣x4﹣1=﹣2,故选C【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.(2016春?山亭区期末)如图,从边长为(a+4)cm的正方形纸片中剪去一个边长为(a+1)cm的正方形(a>0),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为()A.(2a2+5a)cm2 B.(3a+15)cm2C.(6a+15)cm2D.(8a+15)cm2【分析】利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【解答】解:矩形的面积为:(a+4)2﹣(a+1)2=(a2+8a+16)﹣(a2+2a+1)=a2+8a+16﹣a2﹣2a﹣1=6a+15.故选C.【点评】此题考查了图形的剪拼,关键是根据题意列出式子,运用完全平方公式进行计算,要熟记公式.10.(2016春?相城区期中)(2+1)(22+1)(24+1)(28+1)(216+1)+1的计算结果的个位数字是()A.8 B.6 C.4 D.2【分析】原式变形后,利用平方差公式计算得到结果,归纳总结即可确定出结果的个位数字.【解答】解:原式=(2﹣1)?(2+1)?(22+1)?(24+1)…(216+1)+1=(22﹣1)?(22+1)?(24+1)…(216+1)+1=(24﹣1)?(24+1)…(216+1)+1=232﹣1+1=232,∵21=2,22=4,23=8,24=16,25=32,…,∴其结果个位数以2,4,8,6循环,∵32÷4=8,∴原式计算结果的个位数字为6,故选:B.【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.二.填空题(共10小题)11.(2016?大庆)若a m=2,a n=8,则a m+n=16.【分析】原式利用同底数幂的乘法法则变形,将已知等式代入计算即可求出值.【解答】解:∵a m=2,a n=8,∴a m+n=a m?a n=16,故答案为:16【点评】此题考查了同底数幂的乘法,熟练掌握乘法法则是解本题的关键.12.(2016?临夏州)计算:(﹣5a4)?(﹣8ab2)=40a5b2.【分析】直接利用单项式乘以单项式运算法则求出答案.【解答】解:(﹣5a4)?(﹣8ab2)=40a5b2.故答案为:40a5b2.【点评】此题主要考查了单项式乘以单项式,正确掌握运算法则是解题关键.13.(2016?白云区校级二模)若2?4m?8m=216,则m=3.【分析】直接利用幂的乘方运算法则得出2?22m23m=216,再利用同底数幂的乘法运算法则即可得出关于m的等式,求出m的值即可.【解答】解:∵2?4m8m=216,∴2?22m23m=216,∴1+5m=16,解得:m=3.故答案为:3.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算,正确应用运算法则是解题关键.14.(2016?黄冈模拟)计算:﹣(﹣)﹣83×0.1252=﹣7.【分析】直接利用积的乘方运算法则结合有理数的乘法运算法则化简求出答案.【解答】解:﹣(﹣)﹣83×0.1252=﹣(8×0.125)2×8=﹣8=﹣7.故答案为:﹣7.【点评】此题主要考查了积的乘方运算和有理数的乘法运算,正确应用积的乘方运算法则是解题关键.15.(2016?阜宁县二模)已知10m=3,10n=2,则102m﹣n的值为.【分析】根据幂的乘方,可得同底数幂的除法,根据同底数幂的除法,可得答案.【解答】解:102m=32=9,102m﹣n=102m÷10n=,故答案为:.【点评】本题考查了同底数幂的除法,利用幂的乘方得出同底数幂的除法是解题关键.16.(2016?河北模拟)已知(x﹣1)(x+3)=ax2+bx+c,则代数式9a﹣3b+c的值为0.【分析】已知等式左边利用多项式乘以多项式法则计算,利用多项式相等的条件求出a,b,c的值,即可求出原式的值.【解答】解:已知等式整理得:x2+2x﹣3=ax2+bx+c,∴a=1,b=2,c=﹣3,则原式=9﹣6﹣3=0.故答案为:0.【点评】此题考查了多项式乘以多项式,熟练掌握运算法则是解本题的关键.17.(2016?百色)观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017.【分析】根据已知等式,归纳总结得到一般性规律,写出所求式子结果即可.【解答】解:(a﹣b)(a+b)=a2﹣b2;(a﹣b)(a2+ab+b2)=a3﹣b3;(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4;…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=a2017﹣b2017,故答案为:a2017﹣b2017【点评】此题考查了平方差公式,以及多项式乘以多项式,弄清题中的规律是解本题的关键.18.(2016?乐亭县二模)图(1)是一个长为2a,宽为2b(a>b)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空的部分的面积是(a﹣b)2.【分析】先求出正方形的边长,继而得出面积,然后根据空白部分的面积=正方形的面积﹣矩形的面积即可得出答案.【解答】解:∵图(1)是一个长为2a,宽为2b(a>b)的长方形,∴正方形的边长为:a+b,∵由题意可得,正方形的边长为(a+b),∴正方形的面积为(a+b)2,∵原矩形的面积为4ab,∴中间空的部分的面积=(a+b)2﹣4ab=(a﹣b)2.故答案为(a﹣b)2.【点评】此题考查了完全平方公式的几何背景,求出正方形的边长是解答本题的关键.19.(2016春?沛县期末)如果x+y=﹣1,x﹣y=﹣3,那么x2﹣y2=3.【分析】利用平方差公式,对x2﹣y2分解因式,然后,再把x+y=﹣1,x﹣y=﹣3代入,即可解答.【解答】解:根据平方差公式得,x2﹣y2=(x+y)(x﹣y),把x+y=﹣1,x﹣y=﹣3代入得,原式=(﹣1)×(﹣3),=3;故答案为3.【点评】本题考查了平方差公式,熟练掌握平方差公式是解题的关键.公式:(a+b)(a﹣b)=a2﹣b2.20.(2016春?高密市期末)计算:=2015.【分析】原式变形后,利用平方差公式计算即可得到结果.【解答】解:原式===2015,故答案为:2015【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.三.解答题(共10小题)21.(2016春?长春校级期末)已知a x=5,a x+y=30,求a x+a y的值.【分析】首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,求出a y的值是多少;然后把a x、a y的值相加,求出a x+a y的值是多少即可.【解答】解:∵a x=5,a x+y=30,∴a y=a x+y﹣x=30÷5=6,∴a x+a y=5+6=11,即a x+a y的值是11.【点评】此题主要考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.22.(2016春?江都区校级期中)已知2x+5y=3,求4x?32y的值.【分析】根据同底数幂相乘和幂的乘方的逆运算计算.【解答】解:∵2x+5y=3,∴4x32y=22x?25y=22x+5y=23=8.【点评】本题考查了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘的性质,整体代入求解也比较关键.23.(2016?阜阳校级二模)计算:12×(﹣)+8×2﹣2﹣(﹣1)2.【分析】先算乘方,再算乘法,最后算加减即可.【解答】解:原式=12×(﹣)+8×﹣1=﹣4+2﹣1=﹣3.【点评】本题考查的是负整数指数幂,熟知有理数混合运算的法则是解答此题的关键.24.(2016?湘西州)先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣b2﹣ab+b2=a2﹣ab,当a=﹣2,b=1时,原式=4+2=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.25.(2015春?吉州区期末)已知2x=3,2y=5.求:(1)2x+y的值;(2)23x的值;(3)22x+y﹣1的值.【分析】将所求式子利用幂运算的性质转化,再整体代入即可得到结果.【解答】解:(1)2x+y=2x?2y=3×5=15;(2)23x=(2x)3=33=27;(3)22x+y﹣1=(2x)2?2y÷2=32×5÷2=.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,利用幂运算的性质将所求式子变形是解题的关键.26.(2015春?张家港市期末)(1)若x n=2,y n=3,求(x2y)2n的值.(2)若3a=6,9b=2,求32a﹣4b+1的值.【分析】(1)根据积的乘方和幂的乘方法则的逆运算,即可解答;(2)根据同底数幂乘法、除法公式的逆运用,即可解答.【解答】解:(1)(x2y)2n=x4n y2n=(x n)4(y n)2=24×32=16×9=144;(2)32a﹣4b+1=(3a)2÷(32b)2×3=36÷4×3=27.【点评】本题考查的是幂的乘方和积的乘方、同底数幂的乘除法,掌握它们的运算法则及其逆运算是解题的关键.27.(2016春?宿州校级期末)计算:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23;(2)(﹣4xy3)?(xy)+(﹣3xy2)2.【分析】(1)原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用乘方的意义计算,即可得到结果.(2)原式第一项利用单项式乘单项式法则计算,第二项利用幂的乘方与积的乘方运算法则计算,合并即可得到结果.【解答】解:(1)(π﹣3)0+(﹣)﹣2+(﹣14)﹣23=1+4﹣1﹣8=12;(2)(﹣4xy3)?(xy)+(﹣3xy2)2.=﹣2x2y4+9x2y4=7x2y4.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.28.(2016春?滁州期末)如图1所示,边长为a的正方形中有一个边长为b的小正方形,如图2所示是由图1中阴影部分拼成的一个正方形.(1)设图1中阴影部分面积为S1,图2中阴影部分面积为S2.请直接用含a,b的代数式表示S1,S2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+1.【分析】(1)根据两个图形的面积相等,即可写出公式;(2)根据面积相等可得(a+b)(a﹣b)=a2﹣b2;(3)从左到右依次利用平方差公式即可求解.【解答】解:(1),S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.【点评】本题考查了平方差的几何背景以及平方差公式的应用,正确理解平方差公式的结构是关键.29.(2016春?北京校级月考)已知(x2+mx+n)(x+1)的结果中不含x2项和x项,求m,n的值.【分析】把式子展开,合并同类项后找到x2项和x项的系数,令其为0,可求出m和n的值.【解答】解:(x2+mx+n)(x+1)=x3+(m+1)x2+(n+m)x+n.又∵结果中不含x2的项和x项,∴m+1=0且n+m=0解得m=﹣1,n=1.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.30.(2016春?吉安期中)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)上述操作能验证的等式是B;(请选择正确的一个)A、a2﹣2ab+b2=(a﹣b)2B、a2﹣b2=(a+b)(a﹣b)C、a2+ab=a(a+b)(2)应用你从(1)选出的等式,完成下列各题:①已知x2﹣4y2=12,x+2y=4,求x﹣2y的值.②计算:(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).【分析】(1)观察图1与图2,根据两图形阴影部分面积相等验证平方差公式即可;(2)①已知第一个等式左边利用平方差公式化简,将第二个等式代入求出所求式子的值即可;②原式利用平方差公式变形,约分即可得到结果.【解答】解:(1)根据图形得:a2﹣b2=(a+b)(a﹣b),上述操作能验证的等式是B,故答案为:B;(2)①∵x2﹣4y2=(x+2y)(x﹣2y)=12,x+2y=4,∴x﹣2y=3;②原式=(1﹣)(1+)(1﹣)(1+)…(1﹣)(1+)(1﹣)(1+)=××××××…××××=×=.【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.。

北师大版七年级下册数学第一章测试题

北师大版七年级下册数学第一章测试题

北师大版七年级下册数学第一章测试题北师大版七年级下册数学第一章测试题一.选择题(共10小题)1.计算(-x^2y)^2的结果是()A。

x^4y^2B。

-x^4y^2C。

x^2y^2D。

-x^2y^22.下列计算正确的是()A。

(-x^3)^2 = x^6B。

(-3x^2)^2 = 9x^4C。

(-x)^2 = x^2D。

x^8 ÷ x^4 = x^43.计算(2x+1)(x-1)-(x^2+x-2)的结果,与下列哪一个式子相同?()A。

x^2-2x+1B。

x^2-2x-3C。

x^2+x-3D。

x^2-34.若x^2+4x-4=0,则3(x-2)^2-6(x+1)(x-1)的值为()A。

-6B。

6C。

18D。

305.已知(x-2015)^2+(x-2017)^2=34,则(x-2016)^2的值是()A。

4B。

8C。

12D。

166.已知a-b=3,则代数式a^2-b^2-6b的值为()A。

3B。

6C。

9D。

127.已知正数x满足x^2+6x=62,则x+的值是()A。

8B。

4C。

-1+√17D。

-1-√178.如图(1),是一个长为2a宽为2b(a>b)的矩形,用剪刀沿矩形的两条对角线剪开,把它分成四个全等的小矩形,然后按图(2)拼成一个新的正方形,则中间空白部分的面积是()A。

abB。

(a+b)^2C。

(a-b)^2D。

a^2-b^29.设(5a+3b)^2=(5a-3b)^2+A,则A=A。

30abB。

60abC。

15abD。

12ab10.已知(x-y)^2=49,xy=2,则x^2+y^2的值为()A。

53B。

45C。

47D。

51二.选择题(共10小题)11.计算:(-5a^4)•(-8ab^2)=40a^5b^2.12.若2•4m•8m=216,则m=3/2.13.若x+3y=0,则2x•8y=-48xy.14.已知(x-1)(x+3)=ax^2+bx+c,则代数式9a-3b+c的值为12.15.已知(a+b)^2=7,(a-b)^2=4,则ab的值为-3/2.16.若(m-2)^2=3,则m^2-4m+6的值为7.17.观察下列各式及其展开式:a+b)^2=a^2+2ab+b^2a+b)^3=a^3-3a^2b+3ab^2-b^3a+b)^4=a^4-4a^3b+6a^2b^2-4ab^3+b^4a+b)^5=a^5-5a^4b+10a^3b^2-10a^2b^3+5ab^4-b^5…请你猜想(a-b)^10的展开式第三项的系数是120.分析】直接计算即可得出结果,注意符号的变化和运算顺序.解答】解:(﹣2)2+2×(﹣3)+2016=4+(﹣6)+2016=2014.故选:D.点评】此题考查了加减乘方运算的综合运用能力,需要注意计算顺序和符号变化.3.(2016•泰安)已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值是()A.﹣3B.﹣2C.0D.1分析】根据已知条件,化简3(2+x)(2﹣x)﹣(x﹣3)2,然后代入2x2﹣3x=2计算即可.解答】解:3(2+x)(2﹣x)﹣(x﹣3)2=3(4﹣x2)﹣(x﹣3)2=12﹣3x2﹣x2﹣6x﹣x2+6x﹣9=﹣5x2﹣6.代入2x2﹣3x=2,得3(2+x)(2﹣x)﹣(x﹣3)2=﹣5x2﹣6=﹣5×2﹣6=﹣16.故选:B.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.4.(2016•南京)已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.分析】根据已知条件,可以列出方程组,然后解方程求出ab和a2+b2的值.解答】解:由(a+b)2=25,得a+b=5;由(a﹣b)2=9,得a﹣b=3或a﹣b=﹣3.当a﹣b=3时,解得a=4,b=1,因此ab=4,a2+b2=17;当a﹣b=﹣3时,解得a=3,b=2,因此ab=6,a2+b2=13.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程.5.(2016•南昌)已知x﹣=3,求x2+和x4+的值.分析】根据已知条件,可以求出x的值,然后代入计算x2+和x4+的值.解答】解:由x﹣=3,得x=1/3.因此,x2+=(1/3)2=1/9,x4+=(1/3)4=1/81.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意代入计算的过程和细节.6.(2016•南京)已知关于x的多项式A,当A﹣(x﹣2)2=x(x+7)时,求多项式A.分析】根据已知条件,可以列出关于A的方程,然后解方程求出多项式A.解答】解:将A﹣(x﹣2)2=x(x+7)两边同时加上(x﹣2)2,得A=x(x+7)+(x﹣2)2.因此,多项式A=x2+7x+x2﹣4x+4=x2+3x+4.故选:A.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程.7.(2016•南昌)已知a+b=5,ab=6,求下列各式的值:1)a2+b22)(a﹣b)2.分析】根据已知条件,可以列出方程组,然后解方程求出a和b的值,代入计算各式的值.解答】解:由a+b=5,ab=6,得a=2,b=3或a=3,b=2.1)当a=2,b=3时,a2+b2=22+32=13;当a=3,b=2时,a2+b2=32+22=13.2)当a=2,b=3时,(a﹣b)2=(2﹣3)2=1;当a=3,b=2时,(a﹣b)2=(3﹣2)2=1.故选:B.点评】此题考查了解方程和代数式计算的能力,需要注意列方程和解方程的过程以及代入计算的细节.8.(2016•南昌)已知(x﹣y)2=9,x2+y2=5,求[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y的值.分析】根据已知条件,可以化简出题目中的式子,然后代入计算即可.解答】解:将[x(x2y2﹣xy)﹣y(x2﹣x3y)]÷x2y化简得y2﹣x2÷xy.由(x﹣y)2=9,得x﹣y=3或x﹣y=﹣3.当x﹣y=3时,解得x=2,y=﹣1,因此y2﹣x2÷xy=1/2;当x﹣y=﹣3时,解得x=﹣1,y=2,因此y2﹣x2÷xy=﹣1/2.故选:C.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.9.(2016•南昌)若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.分析】根据完全平方式的定义,可以列出方程,然后解方程求出k的值.解答】解:由4a2﹣(k﹣1)a+9是一个关于a的完全平方式,得k2﹣4×4×9(﹣1)=0.因此,k2﹣144=0,解得k=﹣12或k=12.故选:D.点评】此题考查了完全平方式的定义和解方程的能力,需要注意列方程和解方程的过程.10.(2016•南昌)若ax=2,ay=3,则a3x2y=______.分析】根据已知条件,可以将a3x2y化简为ax×ay×ax×ay×ax,然后代入计算即可.解答】解:a3x2y=ax×ay×ax×ay×ax=2×3×2×3×2=72.故选:C.点评】此题考查了代数式的化简和代入计算能力,需要注意计算过程中的细节和符号变化.二.填空题(共10小题)18.若4a2﹣(k﹣1)a+9是一个关于a的完全平方式,则k=______.解:k=12或k=﹣12.19.若ax=2,ay=3,则a3x2y=______.解:a3x2y=72.20.我国南宋数学家XXX用三角形解释二项和的乘方规律,称之为“XXX三角”.这个三角形给出了(a+b)n(n=1,2,3,4…)的展开式的系数规律(按a的次数由大到小的顺序):请依据上述规律,写出(x﹣)2016展开式中含x2014项的系数是______.解:(x﹣)2016展开式中含x2014项的系数是2015×(﹣1)×(﹣2)×…×(﹣2013)=2015×2013!/2!=﹣xxxxxxxx00.21.先化简,再求值(x﹣1)(x﹣2)﹣(x+1)2,其中x=.解:(x﹣1)(x﹣2)﹣(x+1)2=(x2﹣3x+2)﹣(x2﹣2x+1)=﹣x+1,其中x=2.22.(1)计算:(﹣2)2+2×(﹣3)+2016.(2)化简:(m+1)2﹣(m﹣2)(m+2).解:(1)(﹣2)2+2×(﹣3)+2016=2014.2)(m+1)2﹣(m﹣2)(m+2)=m2+2m+1﹣(m2﹣4)=6m+5.23.已知2x2﹣3x=2,求3(2+x)(2﹣x)﹣(x﹣3)2的值.解:3(2+x)(2﹣x)﹣(x﹣3)2=3(4﹣x2)﹣(x﹣3)2=﹣5x2﹣6.代入2x2﹣3x=2,得3(2+x)(2﹣x)﹣(x﹣3)2=﹣16.24.先化简,再求值:(2a+b)(2a﹣b)﹣a(8a﹣2ab),其中a=﹣,b=2.解:(2a+b)(2a﹣b)﹣a(8a﹣2ab)=4a2﹣b2﹣8a2+2ab2=﹣4a2+2ab2﹣b2=﹣20,其中a=﹣1/2,b=2.25.已知(a+b)2=25,(a﹣b)2=9,求ab与a2+b2的值.解:由(a+b)2=25,得a+b=5;由(a﹣b)2=9,得a﹣b=3或a﹣b=﹣3.当a﹣b=3时,解得a=4,b=1,因此ab=4,a2+b2=17;当a﹣b=﹣3时,解得a=3,b=2,因此ab=6,a2+b2=13.26.已知x﹣=3,求x2+和x4+的值.解:由x﹣=3,得x=1/3.即(x﹣2016+1)2+(x﹣2016﹣1)2=34。

北师大版七下数学第一章各节练习题含答案

北师大版七下数学第一章各节练习题含答案

北师大版七年级下册数学1.1同底数幂的乘法同步测试一、单选题1.若a m=5,a n=3,则a m+n的值为()A. 15B. 25C. 35D. 452.计算(﹣4)2×0.252的结果是()A. 1B. ﹣1C. ﹣D.3.计算a2•a5的结果是()A. a10B. a7C. a3D. a84.计算a•a•a x=a12,则x等于()A. 10B. 4C. 8D. 95.下列计算错误的是()A. (﹣2x)3=﹣2x3B. ﹣a2•a=﹣a3C. (﹣x)9+(﹣x)9=﹣2x9D. (﹣2a3)2=4a66.下列计算中,不正确的是()A. a2•a5=a10B. a2﹣2ab+b2=(a﹣b)2C. ﹣(a﹣b)=﹣a+bD. ﹣3a+2a=﹣a7.计算x2•x3的结果是()A. x6B. x2C. x3D. x58.计算的结果是()A. B. C. D.9.计算3n· ( )=—9n+1,则括号内应填入的式子为( )A. 3n+1B. 3n+2C. -3n+2D. -3n+110.计算(-2)2004+(-2)2003的结果是()A. -1B. -2C. 22003D. -22004二、填空题(共5题;共5分)11.若a m=2,a m+n=18,则a n=________.12.计算:(﹣2)2n+1+2•(﹣2)2n=________。

13.若x a=8,x b=10,则x a+b=________.14.若x m=2,x n=5,则x m+n=________.15.若a m=5,a n=6,则a m+n=________。

三、计算题(共4题;共35分)16.计算:(1)23×24×2.(2)﹣a3•(﹣a)2•(﹣a)3.(3)m n+1•m n•m2•m.17.若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.18.已知a3•a m•a2m+1=a25,求m的值.19.计算。

北师大版七年级下册数学第一章测试卷及答案

北师大版七年级下册数学第一章测试卷及答案

第一章知识梳理A卷知识点1同底数幂的乘法一、选择题1.计算a2·a5的结果是()A.a10B.a8C.a7D.a3答案:C2.计算2×24×23的结果是()A.27B.28C.212D.213答案:B3.计算x·(-x)2的结果是()A.x3B.-x3C.x2D.0答案:A4.(内蒙古呼伦贝尔)化简(-x)3(-x)2的结果正确的是()A.-x6B.x6C.x5D.-x5答案:D5.计算-b·b3·b4的结果是()A.-b7B.b7C.b8D.-b8答案:D二、填空题6.(黑龙江大庆)若a m=2,a n=8,则a m+n=答案:167.计算:(1)a5·a3·a2= ;(2)(-b)2·(-b)3·(-b)5= ;(3)x m·x·x n-2= .答案:(1)a10(2)b10(3)x m+n-18.若a2n-1·a2n+1=a12,则n= .答案:39.一个长方体的长、宽、高分别为a2,a,a3,则这个长方体的体积是 . 答案:a6三、解答题10.计算.(1)104×105×106;(2)(12)3×(12)4×12;(3)b2n·b2n·b2.答案:解:(1)原式=104+5+6=1015.(2)原式=(12)3+4+1=(12)8.(3)原式=b2n+2n+2=b4n+2.11.规定:a*b=10a×10b,例如3*4=103×104=107.(1)试求2*5和3*17的值;(2)猜想:a*b与b*a的运算结果是否相等?说明理由.答案:解:(1)2*5=102×105=107.3*17=103×1017=1020.(2)相等,理由如下:因为a*b=10a×10b=10a+b,b*a=10b×10a=10a+b,所以a*b=b*a.12.1 kg镭完全蜕变后,放出的热量相当于3.75×105 kg煤放出的热量,据估计,地壳中含有1×1010kg的镭,问这些镭完全蜕变后放出的热量相当于多少千克煤放出的热量.答案:解:3.75×105×1×1010=3.75×1015 kg.答:这些镭完全蜕变后放出的热量相当于3.75×1015 kg煤放出的热量.知识点2幂的乘方13.计算(a2)3的结果是()A.3a2B.2a3C.a5D.a6答案:D14.计算(103)2的结果是()A.103B.105C.106D.109答案:C15.计算(x m)3的结果是()A.x3+mB.x mC.x3D.x3m答案:D16.计算(a5)2·a3的结果是()A.a10B.a11C.a12D.a13答案:D17.计算:-(x2)3= .答案:-x618.若a12=x2=(a3)y,则x= ,y= .答案:a6419.若x3n=3,则x6n= .答案:920.若(a3)m=a4·a m,则m= .答案:221.有一个棱长10 cm的正方体,在某种物质的作用下,棱长以每秒扩大为原来的102倍的速度膨胀,则3秒后该正方体的体积是 cm3.答案:102122.计算.(1)(y4)2+(y2)3·y2;(2)-x6·(-x)6+2(x3)4.答案:解:(1)原式=y8+y8=2y8.(2)原式=-x12+2x12=x12.23.比较大小:2100与375,并说明理由.答案:解:2100<375.理由:2100=(24)25=1625,375=(33)25=2725,因为27>16,所以1625<2725,所以2100<375.知识点3积的乘方一、选择题24.计算(2x3)2的结果是()A.4x6B.2x6C.4x5D.2x5答案:A25.(四川攀枝花)计算(ab2)3的结果,正确的是()A.a3b6B.a3b5C.ab6D.ab5答案:A26.(四川成都)计算(-x3y)2的结果是()A.-x5yB.x6yC.-x3y2D.x6y2答案:D二、填空题27.计算:(1)(ab)3= ;(2)(-2a2)3= ;(3)(-4a3b)2= .答案:(1)a3b3(2)-8a6(3)16a6b2三、解答题28.计算.(1)a5·(-a)3+(-2a2)4;(2)[(-x2)3·(-x3)2]3;(3)(-2ab3c2)4.答案:解:(1)原式=-a8+16a8=15a8.(2)原式=(-x6·x6)3=-x36.(3)原式=16a4b12c8.知识点4同底数幂的除法一、填空题29.计算a6÷a3的结果是()A.a9B.a3C.a2D.a-3答案:B30.(12-)0的值是()A.1B.-1C.0D.1 2 -答案:A31.计算3-2的结果是()A.19B.19C.9D.-9 答案:A32.计算x ÷x 3的结果( ) A.21x B.41xC.x 2D.x 4 答案:A二、填空题33.计算:(1)x 6÷(-x )4= ;(2)(-2)6÷(-2)2= ;(3)(ab )5÷(ab )2= .答案:(1)x 2(2)16(3)a 3b 334.2.6×10-7用小数表示为 .答案:0.000 000 2635.若m-n=2,则10m ÷10n = .答案:10036.(山东威海)蜜蜂建造的蜂巢既坚固又省料,其厚度约为0.000 073 m ,将0.000 073用科学记数法表示为 .答案:7.3×10-537.若a=-0.32,b=-32,c=(-13)2,d=(-13)0,则a ,b ,c ,d 的大小关系为 . 答案:d >c >a >b三、解答题38.计算.(1)82m+3÷8m ;(2)2-2×43+(-13)0-(-2)4; (3)(-a 2)3÷(-a 3)2;(4)(m 2)n ·(m n )3÷m n-2;(5)(2m 2n -1)2÷3m 3n -5.答案:解:(1)原式=8m+3.(2)原式=16+1-16=1.(3)原式=-a 6÷a 6=-1.(4)原式=m 5n ÷m n-2=m 4n+2.(5)原式=4m4n-2÷3m3n-5=43mn3.知识点5整式的乘法一、选择题39.计算2a3·a2的结果是()A.2aB.2a5C.2a6D.2a9答案:B40.计算3x2·(-2x)3的结果是()A.-18x5B.-24x5C.-24x6D.-18x6答案:B41.计算(-2a2b)(3a3b2)的结果是()A.-6a5b3B.-6a3b5C.6a5b3D.6a3b5答案:A42.若(y+3)(y-2)=y2+my+n,则m,n的值分别为()A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-6答案:B43.计算(-2x+1)(-3x2)的结果为()A.6x3+1B.6x3-3C.6x3-3x2D.6x3+3x2答案:C44.下列计算结果正确的是()A.(6ab2-4a2b)·3ab=18ab2-12a2bB.(-x)(2x+x2-1)=-x3-2x2+1C.(-3x2y)(-2xy+3yz-1)=6x3y2-9x2y2z2+3x2yD.(34a3-12b)·2ab=32a4b-ab2答案:D45.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式,其中正确的是()①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.A.①②B.③④C.①②③D.①②③④答案:D二、填空题46.计算:(1)(-5a4)(-8ab2)= ;(2)12x2y·(2x+4y)= ;(3)(4x n+2y3)(-38x n-1y)= ;(4)(-12xyz)·23x2y2·(-35yz3)= .答案:(1)40a5b2(2)x3y+2x2y2(3)-32x2n+1y4(4)15x3y4z4三、解答题47.计算.(1)(x+3)(x-5)-x·(x-2);(2)(4a-b)(-2b)2;(3)(-53ab3c)·310ab3c·(-8abc)2;(4)-6ab·(2a2b-13ab2);(5)(x+5)(2x-3)-2x·(x2-2x+3);(6)(2x-4)(-3x2+12x+1).答案:解:(1)原式=x2-2x-15-x2+2x=-15. (2)原式=(4a-b)·4b2=16ab2-4b3.(3)原式=-32a4b8c4.(4)原式=-12a3b2+2a2b3.(5)原式=2x2+7x-15-2x3+4x2-6x=-2x3+6x2+x-15.(6)原式=-6x3+x2+2x+12x2-2x-4=-6x3+13x2-4.知识点6平方差公式一、选择题48.计算(2x+1)(2x-1)的结果是()A.4x2-1B.2x2-1C.4x-1D.4x2+1 答案:A49.下列式子能用平方差公式计算的是()A.(2a+b)(2b-a)B.(12+1)(-12-1)C.(3x-y)(-3x+y)D.(-m-n)(-m+n)答案:D50.计算(3m-2n)(-3m-2n)的结果是()A.9m2-4n2B.9m2+4n2C.-9m2-4n2D.-9m2+4n2答案:D二、填空题51.计算:(2a+b)(2a-b)= .答案:4a2-b252.已知m+n=3,m-n=2,那么m2-n2= .答案:653.(-3x2+2y2)()=9x4-4y4.答案:-3x2-2y254.如图,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a,b的等式为 .答案:a2-b2=(a+b)(a-b)三、解答题55.简便计算.(1)103×97;(2)899×901+1.答案:解:(1)原式=(100+3)(100-3)=9 991.(2)原式=(900-1)(900+1)+1=810 000.56.计算.(1)(3x-2)(-3x-2);(2)(2x-3y)(3y+2x)-(4y-3x)(3x+4y);(3)(x+1)(x2+1)(x-1).答案:解:(1)原式=-9x2+4.(2)原式=4x2-9y2-16y2+9x2=13x2-25y2.(3)原式=(x+1)(x-1)(x2+1)=(x2-1)(x2+1)=x4-1.知识点7完全平方公式一、选择题57.(湖北武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9B.x2-6x+9C.x2+6x+9D.x2+3x+9答案:C58.计算:(x-5)2=()A.x2-25B.x2+25C.x2-5x+25D.x2-10x+25答案:D59.下列各式中计算正确的是()A.(a-b)2=a2-b2B.(a+2b)2=a2+2ab+4b2C.(a2+1)2=a4+2a+1D.(-m-n)2=m2+2mn+n2答案:D60.如图1,是一个长为2a、宽为2b(a>b)的长方形,用剪刀沿图中虚线剪开,把它分成四个完全一样的小长方形,然后按图2拼成一个新的正方形,则中间空白部分的面积是()A.abB.(a+b)2C.(a-b)2D.a2-b2答案:C二、填空题61.已知a+b=3,ab=1,则a2+b2= .答案:762.若(m-2)2=3,则m2-4m+6的值为 .答案:563.一个正方形的面积是a2+2a+1(a>0),则其边长为 .答案:a+164.已知(a-b)2=9,(a+b)2=25,则a2+b2= .答案:17三、解答题65.简便计算.(1)982;(2)1 0032.答案:解:(1)原式=(100-2)2=1002-400+4=9 604.(2)原式=(1 000+3)2=1 0002+6 000+9=1 006 009.66.计算.(1)(2x-3y)2;(2)(a+1)2-a2;(3)(x+5)2-(x-2)(x-3);(4)(a+2b-3c)(a-2b+3c).答案:解:(1)原式=4x2-12xy+9y2.(2)原式=a2+2a+1-a2=2a+1.(3)原式=x2+10x+25-x2+5x-6=15x+19.(4)原式=[a+(2b-3c)][a-(2b-3c)]=a2-(2b-3c)2=a2-4b2+12bc-9c2.知识点8整式的除法一、选择题67.计算8a3÷(-2a)的结果是()A.4aB.-4aC.4a2D.-4a2答案:D68.计算(-2a3)2÷a2的结果是()A.-4a4B.4a4C.-4a8D.4a8答案:B69.计算(12x3-8x2+16x)÷(-4x)的结果是()A.-3x2+2x-4B.-3x2-2x+4C.-3x2+2x+4D.3x2-2x+4答案:A70.长方形的面积为4a2-6ab+2a,若它的一边长为2a,则它的周长为()A.4a-3bB.8a-6bC.4a-3b+1D.8a-6b+2答案:D二、填空题71.计算:(1)4a3b2÷2ab= ;(2)(8a3bc-2a2b2-12ab)÷(-12ab)= .答案:(1)2a2b(2)-16a2c+4ab+172.已知7x3y2与一个多项式之积是28x4y2+7x4y3-21x3y2,则这个多项式是 . 答案:4x+xy-373.月球距离地球约3.84×105km,一架飞机的速度为8×102km/h,若坐飞机飞行这么远的距离需 h.答案:480三、解答题74.计算.(1)5x2y÷(-12xy)·3xy2;(2)(12x3-6x2+9x)÷(-3x);(3)[x(x2-2x+3)-3x]÷12x2.答案:解:(1)原式=-30x2y2.(2)原式=-4x2+2x-3. (3)原式=2x-475.化简求值.(1)(-xy)3÷(x-2)3,其中x=-4,y=14;(2)[(x+2y)2-(x+y)(3x-y)-5y2]÷2x,其中x=-2,y=12.答案:解:(1)原式=-x3y3÷x-6=-x9y3,当x=-4,y=14时,原式=4 096.(2)原式=(x2+4xy+4y2-3x2-2xy+y2-5y2)÷2x=-x+y,当x=-2,y=12时,原式=52.。

初中数学北师大版七年级下学期-第一章-单元测试卷及答案

初中数学北师大版七年级下学期-第一章-单元测试卷及答案

初中数学北师大版七年级下学期第一章单元测试卷一、单选题1.下列运算正确的是()A.3a2÷2a2=1B.(a2)3=a5C.a2·a4=a6D.(2a2)2=2a42.计算(a3)2正确的是()A.a B.a5C.a6D.a83.下列各式能用平方差公式计算的是()A.(3x+2y)(2x−3y)B.(3x+2y)(3x−y)C.(3x+2y)(3x−2y)D.(3x−2y)(2y−3x)4.2020年疫情的影响,人类的健康备注关注。

同时我们生存的环境雾霾天气引发关注,宽空气中漂浮着大量的粉尘颗粒,若某各粉尘颗粒的直径约为0.0000065米,则0.0000065用科学记数法表示为()A.6.5×10-5 B.6.5×10-6 C.6.5×10-7 D.65×10-65.如图,边长为(m+4)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠、无缝隙),若拼成的矩形一边长为4,则另一边长为()A.m+4B.m+8C.2m+4D.2m+86.如图,边长为a的正方形中剪去一个边长为b的小正方形,剩下部分正好拼成一个等腰梯形,利用这两幅图形面积,能验证怎样的数学公式?()A.a2−b2=(a+b)(a−b)B.(a+b)2−(a−b)2=4abC.(a+b)2=a2+2ab+b2D.(a−b)2=a2−2ab+b27.a=5140,b=3210,c=2280,则a、b、c的大小关系是()A.a<b<c B.b<a<c C.c<a<b D.c<b<a8.已知2n+212+1(n<0)是一个有理数的平方,则n的值为()A .﹣16B .﹣14C .﹣12D .﹣10二、填空题9.某种计算机完成一次基本运算的时间约为 0.0000000001s ,把 0.0000000001 用科学记数法可以表示为 .10.计算: −2x(x 2+x −2)= .11.若 y x ⋅y 3⋅y 2⋅y =y 10 ,则 x = .12.当x 时, (x −4)0=1 .13.计算 (−x −y)2= .14.计算: (34)2017×(−113)2018= . 15.一个长方形的面积是(x 2-9)平方米,其长为(x +3)米,用含有x 的整式表示它的宽为 米.16.已知 a 2−3a +1=0 ,求 a 4+1a 4 的值为 . 三、计算题17.计算:(1)(−3a)2⋅(a 2)3+(−a 2)4 (2)(2x +y −2)(2x +y +2) .18.计算:(1)(−13)−1+(−2)3×(π−2)0 (2)(2a 2)2−a 7÷(−a)319.按要求完成下列各小题.(1)计算: (−38)2019×(83)2020 ; (2)已知 3x +5y =4 ,求 8x ⋅25y 的值.20.已知: a x =−2,a y =3 . 求(1)a x+y (2)a 3x−2y .四、解答题21.已知a m=4,a n=4,求a m+n的值.22.已知长方形的面积是3a3b4 -ab2,宽为2b2,那么长方形的长为多少?23.课后,数学老师在如图所示的黑板上给同学们留了一道题,请你帮助同学们解答.24.已知α,β为整数,有如下两个代数式22α,2 4β(1)当α=﹣1,β=0时,求各个代数式的值;(2)问它们能否相等?若能,则给出一组相应的α,β的值;若不能,则说明理由.答案解析部分1.【答案】C 2.【答案】C 3.【答案】C 4.【答案】B 5.【答案】C6.【答案】A 7.【答案】C 8.【答案】B 9.【答案】1×10−10 10.【答案】−2x 3−2x 2+4x11.【答案】4 12.【答案】≠4 13.【答案】x 2+2xy +y 2 14.【答案】43 15.【答案】(x-3)16.【答案】47 17.【答案】(1)解:原式= 9a 2⋅a 6+a 8= 9a 8+a 8= 10a 8 ;(2)解:原式= (2x +y)2−22= 4x 2+4xy +y 2−4 .18.【答案】(1)解: (−13)−1+(−2)3×(π−2)0 =- 3−8×1=-11(2)解: (2a 2)2−a 7÷(−a)3= 4a 4+a 4= 5a 4 .19.【答案】(1)解:原式= (−38)2019×(83)2019×83= (−38×83)2019×83= (−1)2019×83= −83; (2)解: 8x ⋅25y =23x ⋅25y =23x+5y因为 3x +5y =4 ,所以 23x+5y =24=16 .即 8x ⋅25y =16 .20.【答案】(1)解: a x+y =a x ⋅a y =(−2)×3=−6(2)解: a 3x−2y =(a x )3÷(a y )2=(−2)3÷32=−8921.【答案】解: ∵a m =4 , a n =4 ,∴ 原式 =a m ·a n ,=4×4=16 22.【答案】解: (3a3b4 -ab2)÷2b2= 32a3b2−12a 23.【答案】⑴解:由题意,得2a=23b﹣3,32b=3a﹣3,得{a=3b−32b=a−3,解得a=15,b=6;⑴m a+b÷m a﹣b=m2b=m12.24.【答案】解:(1)把α=﹣1代入代数式,得:22α=1 4,把β=0代入代数式,得:24β=2,(2)不能.理由如下:2 4β=222β=21−2β,∵α,β为整数,∴(1﹣2β)为奇数,2α为偶数,∴1﹣2β≠2α,∴22α≠24β.。

(完整版)北师大版七年级下数学第一单元试题汇总

(完整版)北师大版七年级下数学第一单元试题汇总

第一章 整式的运算班级____________ 座号____________ 姓名_______________ 一. 填空题1.一个多项式与,1x 2x 32x x 222+-+-的和是则这个多项式是______________________。

2.若多项式(m+2)1m 2x-y 2-3xy 3是五次二项式,则m=___________.3.写出一个关于x 的二次三项式,使得它的二次项系数为21-,则这个二次三项式是__________4.若2b 1a -=-=,时,代数式a ab2-的值是________。

5.(-2m+3)(_________)=4m 2-9 (-2ab+3)2=_____________2)b a (-- =____________, 2)b a (+- =_____________。

)a 31)(a 31(--+-=______________, )1x 4)(1x 4(--- =______________6.计算:①_______________)a (23=-- ②________________)y x 3(y x 522=---。

③-3xy ·2x 2y= ; ④-2a 3b 4÷12a 3b 2 = 。

⑤___;__________1n 5·35·n 5=--)( ⑥_____________)ab ()ab (1m 3m =÷+-。

⑦ (8xy 2-6x 2y)÷(-2x)=__________________; ⑧.____________)22.0(201=π++--⑨(-3x -4y) ·(-3x+4y)=________________; ⑩(-x-4y)·(-x-4y)=_____________ 7..______________a _,__________a ,4a ,3an 4m 2n m n m====--已知n33282=⋅,则n =_______________._________________2,72,323-y x y x =则+==8.如果x +y =6, xy =7, 那么x 2+y 2= 。

北师大版七年级下学期数学一单元测试题及答案

北师大版七年级下学期数学一单元测试题及答案

北师大版七年级下册第一单元测试题一、精心选一选(每小题3分,共21分)1.多项式892334+-+xy y x xy 的次数是 ( )A. 3B. 4C. 5D. 62.下列计算正确的是 ( )A. 8421262x x x =⋅B. ()()m m m y y y =÷34C. ()222y x y x +=+D. 3422=-a a3.计算()()b a b a +-+的结果是 ( )A. 22a b -B. 22b a -C. 222b ab a +--D. 222b ab a ++-4. 1532+-a a 与4322---a a 的和为 ( )A.3252--a aB. 382--a aC. 532---a aD. 582+-a a5.下列结果正确的是 ( ) A. 91312-=⎪⎭⎫ ⎝⎛- B. 0590=⨯ C. ()17530=-. D. 8123-=- 6. 若()682b a b a n m =,那么n m 22-的值是 ( )A. 10B. 52C. 20D. 327.要使式子22259y x +成为一个完全平方式,则需加上 ( )A. xy 15B. xy 15±C. xy 30D. xy 30±二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)1.在代数式23xy , m ,362+-a a , 12 ,22514xy yz x -, ab32中,单项式有 个,多项式有 个。

2.单项式z y x 425-的系数是 ,次数是 。

3.多项式5134+-ab ab 有 项,它们分别是 。

4. ⑴ =⋅52x x 。

⑵ ()=43y 。

⑶ ()=322b a 。

⑷ ()=-425y x 。

⑸ =÷39a a 。

⑹=⨯⨯-024510 。

5.⑴=⎪⎭⎫ ⎝⎛-⋅⎪⎭⎫ ⎝⎛325631mn mn 。

⑵()()=+-55x x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 整式的运算班级____________ 座号____________ 姓名_______________一. 填空题1.一个多项式与,1x 2x 32x x 222+-+-的和是则这个多项式是______________________。

2.若多项式(m+2)1m 2x -y 2-3xy 3是五次二项式,则m=___________.3.写出一个关于x 的二次三项式,使得它的二次项系数为21-,则这个二次三项式是__________4.若2b 1a -=-=,________。

5.(-2m+3)(_________)=4m 2-9 (-2ab+3)2=_____________2)b a (-- =____________, 2)b a (+- =_____________。

)a 31)(a 31(--+-=______________, )1x 4)(1x 4(--- =______________6.计算:①_______________)a (23=-- ②________________)y x 3(y x 522=---。

③-3xy ·2x 2y= ; ④-2a 3b 4÷12a 3b 2 = 。

⑤___;__________1n 5·35·n 5=--)( ⑥_____________)ab ()ab (1m 3m =÷+-。

⑦ (8xy 2-6x 2y)÷(-2x)=__________________; ⑧ .____________)22.0(201=π++--⑨(-3x -4y) ·(-3x+4y)=________________; ⑩(-x-4y)·(-x-4y)=_____________7..______________a _,__________a ,4a ,3a n 4m 2n m n m ====--已知n 33282=⋅._________________2,72,323-y x y x =则+==8.如果x +y =6, xy =7, 那么x 2+y 2= 。

9.若P=a 2+3ab +b 2,Q=a 2-3ab +b 2,则代数式()[]Q P P 2Q P -----。

化简后结果是______________________________。

二.选择题1.在下列代数式:x3,y x ,0,abc 32,4,3ab ---中,单项式有【 】(A )3个 (B )4个 (C )5个 (D )6个2.单项式7xy 243-的次数是【 】 (A )8次 (B )3次 (C )4次 (D )5次3.今天数学课上,老师讲了多项式的加减,放学后,小明回到家拿出课堂笔记,认真的复习老师课上讲的内容,他突然发现一道题:(-x 2+3xy-21y 2)-(-21x 2+4xy-23y 2)= -21x 2_____+y 2空格的地方被钢笔水弄污了,那么空格中的一项是( )(A )-7xy (B )7xy (C )-xy (D )xy4.下列多项式次数为3的是【 】(A )-5x 2+6x -1 (B )πx 2+x -1 (C )a 2b +ab +b 2 (D )x 2y 2-2xy -15.下列说法中正确的是【 】(A )代数式一定是单项式 (B )单项式一定是代数式(C )单项式x 的次数是0 (D )单项式-π2x 2y 2的次数是6。

6. 下列各题能用同底数幂乘法法则进行计算的是( )(A ).(B ).(C ).(D ). 7.下列各式中计算正确的是:( )632m 2m 22m 1052734a )a ( (D). a )a ()a ( C). ( a ])a [( (B). x )x ( ).A (-=-==-=-=8。

若m 为正整数,且a =-1,则122)(+--m m a 的值是:( )(A ). 1 (B ). -1 (C ). 0 (D ). 1或-19.已知:∣x ∣=1,∣y ∣=21,则(x 20)3-x 3y 2的值等于( )(A )-43或-45 (B )、43或45 (C )、43 (D )、-45三.解答题1.计算)a (5a a 4)a )(2( a a 3a a 2a a )1(3372322m 24m 31m ----++(3)(5x 2y 3-4x 3y 2+6x)÷6x (4)x x )x (x x 72342÷--+• (5) (x+2)(y+3)-(x+1)(y-2) ⑹ (3mn+1)(3mn-1)-(3mn-2)2(7).22)y 2x 3()y 2x 3(--+ (8). 22)y x ()y x (-+(9).)x 9y 4)(x 3y 2)(y 2x 3(22+--- (10)、0.125100×81002.化简求值:,x 2]y 5)y x 3)(y x ()y 2x [(22÷--+-+其中,x =-2,y =213.(1)已知,7b ab ,3ab a 22=+-=+试求2222b a ,b ab 2a -++的值。

(2)已知:a + a 1 = 3 , 求 a 2 + 2a1的值。

4.a 、b 、c 是三个正整数,且ac b 22=+1,以b 为边长的正方形和分别以a 、c 为长和寛的长方形,哪个图形的面积大?大多少?5.乘法公式的探究及应用.(1)如左图,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如右图,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式)(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达)(4)运用你所得到的公式,计算下列各题:①)p n m 2)(p n m 2(+--+ ② 7.93.10⨯北师大版七年级下期整式测试题150分(120分钟)一、选择题(共30分,每题3分)1.多项式322431x x y xy -+-的项数、次数分别是( ).A .3、4B .4、4C .3、3D .4、3 2.若0.5a 2b y 与34a xb 的和仍是单项式,则正确的是 ( )A .x =2,y =0B .x =-2,y =0C .x =-2,y =1D .x =2,y =13.减去-2x 后,等于4x 2-3x -5的代数式是 ( )A.4x2-5x-5 B.-4x2+5x+5 C.4x2-x-5 D.4x2-5 4.下列计算中正确的是()A.a n·a2=a2n B.(a3)2=a5 C.x4·x3·x=x7 D.a2n-3÷a3-n=a3n -65.x2m+1可写作()A.(x2)m+1 B.(x m)2+1 C.x·x2m D.(x m)m+1 6.如果x2-kx-ab=(x-a)(x+b),则k应为()A.a+b B.a-b C.b-a D.-a-b 7.()2--等于().a bA.22a ab b++D.22-+a ab b22-C.22+B.22a ba b8.若a≠b,下列各式中成立的是()A.(a+b)2=(-a+b)2 B.(a+b)(a-b)=(b+a)(b -a)C.(a-b)2n=(b-a)2n D.(a-b)3=(b-a)39.若a+b=-1,则a2+b2+2ab的值为( )A.1 B.-1 C.3 D.-310.两个连续奇数的平方差是( )A.6的倍数B.8的倍数C.12的倍数D.16的倍数二、填空题(共21分,每题3分)11.一个十位数字是a,个位数学是b的两位数表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,前后两个数的差是.12. x +y =-3,则5-2x -2y =_____.13. 已知(9n )2=38,则n =_____.14.若(x +5)(x -7)=x 2+mx +n ,则m =__________,n =________.15.(2a -b )( )=b 2-4a 2.16.(x -2y +1)(x -2y -1)2=( )2-( )2=_______________.17.若m 2+m -1=0,则m 3+2m 2+2008= .三、计算题(共30分,每题5分)18.(3)(2a -3b )2(2a +3b )2;19.(2x +5y )(2x -5y )(-4x 2-25y 2);20.(x -3)(2x +1)-3(2x -1)2.21.4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2);22.(20a n -2b n -14a n -1b n +1+8a 2n b )÷(-2a n -3b );23.解方程:(3x +2)(x -1)=3(x -1)(x +1).四、解答题(共59分,24-26每题5分,27-29每题8分,30、31每题10分)24.已知a 3=5,b 9=10,求b a 23+.25.已知多项式32241x x --除以一个多项式A ,得商式为2x ,余式为1x -。

求这个多项式.26.当3x =-时,代数式538ax bx cx ++-的值为6,试求当3x =时,538ax bx cx++-的值.27.已知(a+b)2=10,(a-b)2=2,求a2+b2,ab的值.28.已知a+b=5,ab=7,求222ba+,a2-ab+b2的值.29.已知a2+b2+c2=ab+bc+ac,求证a=b=c.30.(1)正方形的边长增大5cm,面积增大2cm75.求原正方形的边长及面积.(2)正方形的一边增加4厘米,邻边减少4厘米,所得的矩形面积与这个正方形的边长减少2厘米所得的正方形的面积相等,求原正方形的边长.31.在一次联欢会上,节目主持人让大家做一个猜数的游戏,游戏的规则是:主持人让观众每人在心里想好一个除0以外的数,然后按以下顺序计算:()1把这个数加上2后平方.()2然后再减去4.()3再除以原来所想的那个数,得到一个商.最后把你所得到的商是多少告诉主持人,主持人便立即知道你原来所想的数是多少,你能解释其中的奥妙吗?五、压底题(10分)32.已知a2+6a+b2-10b+34=0,求代数式(2a+b)(3a-2b)+4ab的值.一、选择题1.B 2.D 3.A 4.D.5.C.6.B.7.C 8.C.9.A 10.B二、填空题11.9(a-b)12.1113.214.-2,35.15.-2a-b.16.x-2y,1x2-4xy+4y.17.2009三、计算题18.16a4-72a2b2+81b419.625y4-16x420.-10x2+7x-6.16ax4y21.522.-10ab n-1+7a2b n-4a n+323.将方程变形为:3x2-x-2=3(x2-1),去括号、移项得:-x-2=-3,解得x=1四、解答题24.b a 23+=3a ·32b =3a ·9b =50.25.2122x x --;26.22-;27.a 2+b 2=21[(a +b )2+(a -b )2]=6,ab =41[(a +b )2+(a -b )2]=2.28.222b a +=21[(a +b )2-2ab ]=21(a +b )2-ab =211. a 2-ab +b 2=(a +b )2-3ab =4.29.用配方法,a 2+b 2+c 2-ab -bc -ac =0,∴ 2(a 2+b 2+c 2-ab -ac -bc )=0,即(a -b )2+(b -c )2+(c -a )2=0.∴ a =b =c .26.x >-31.30.(1)设原正方形的边长为x cm ,由题意得(x +5)2-x 2=75,整理得5(x +5+x )=75(或者10x +25=75),解得x =5,故原正方形的边长为5cm ,面积为25cm 2.(2)设原正方形的边长为x cm ,由题意得(x +4)(x -4)=(x -2)2,整理得x 2-16=x 2-4x +4,移项解得x =5,故原正方形的边长为5厘米. 探究拓广31.解:设这个数为x ,据题意得,()()2224444444x x x x ⎡⎤+-÷=++-÷=+⎣⎦。

相关文档
最新文档