九年级下总复习反比例函数与应用
人教版九年级数学下册作业课件 第二十六章 反比例函数 专题课堂(二) 反比例函数的综合应用
n=-2,
得 b=6,
∴直线 AC 的解析式为:y=-2x+6
二、反比例函数与二次函数的综合应用
【例 2】(2022·绥化)已知二次函数 y=ax2+bx+c 的部分函数图象如图所示,则一
次函数
y=ax+b2-4ac
与反比例函数
4a+2b+c y= x
在同一平面直角坐标系中的图象
大致是( B )
[对应训练] 4.抛物线 y=ax2+bx+c(a<0)与双曲线 y=kx 相交于点 A,B,且抛物线经过坐 标原点,点 A 的坐标为(-2,2),点 B 在第四象限内,过点 B 作直线 BC∥x 轴,点 C 为直线与抛物线的另一交点,已知直线 BC 与 x 轴之间的距离是点 B 到 y 轴的距离 的 4 倍.记抛物线顶点为 E. (1)求双曲线和抛物线的解析式; (2)计算△ABC 与△ABE 的面积.
b=-4,
的解析式为 y=-x-4 (2)如图,过点 B 作 BM⊥OP,垂足为 M,由题意可知,
OM=1,BM=3,AC=1,MC=OC-OM=3-1=2,∴S 四边形 ABOC=S△BOM+S 梯 形 ACMB=32 +12 (1+3)×2=121
[对应训练] 1.一次函数 y=kx+b(k≠0)与反比例函数 y=kx (k≠0)在同一平面直角坐标系上的 大致图象如图所示,则 k,b 的取值范围是( C ) A.k>0,b>0 B.k<0,b>0 C.k<0,b<0 D.k>0,b<0
解:(1)由点 A(-2,2)在双曲线上得双曲线的解析式为 y=-4x ,设点 B 的坐标为
(m,-4m)且 m>0,代入 y=-4x ,得 m=1,∴B(1,-4),由题意知 c=0,把 A,B
4a-2b=2,
人教版九年级数学反比例函数知识点归纳
人教版九年级数学反比例函数知识点归纳本文介绍了新人教版九年级数学下册第26章反比例函数的知识点和研究目标。
其中,重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用。
难点是反比例函数及其图象的性质的理解和掌握。
基础知识包括反比例函数的概念和反比例函数的图象。
反比例函数的图象与x轴、y轴无交点,称取点关于原点对称。
反比例函数的图象的形状是双曲线,与坐标轴没有交点,称两条坐标轴是双曲线的渐近线。
图象关于原点对称,对称性是反比例函数的重要性质。
如图1所示,设点P(a,b)在双曲线上。
作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积等于三角形PAO和三角形PBO的面积之和。
由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上。
作QC⊥XXX的延长线于C,则三角形PQC的面积为(图2)。
需要注意的是,双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论。
直线与双曲线的关系有两种情况:一种是两图象必有两个交点,另一种是两图象没有交点;当有交点时,这两个交点关于原点成中心对称。
反比例函数与一次函数有联系。
求函数解析式的方法有两种:待定系数法和根据实际意义列函数解析式。
需要注意学科间知识的综合,但重点放在对数学知识的研究上。
在解决问题时,可以充分利用数形结合的思想。
对于例题,若y是x的反比例函数,则应选C或A。
对于已知函数的图象在第二、四象限内和y随x的增大而减小的情况,可以求出k的值。
已知一次函数y=ax+b的图象经过第一、二、四象限时,可以确定它的图象位于第三象限。
若反比例函数经过点(a,b),则直线不经过的象限为第四象限。
若P (2,2)和Q(m,n)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过第一、三、四象限。
对于函数的增减性问题,需要分别讨论。
y轴作垂线,得到三个小矩形和一个三角形,它们的面积之和为20平方单位,求函数的解析式.2)已知函数y=f(x)的图象如图所示,其中ABCD为一矩形,E为函数图象上一点,且E在ABCD内部.若矩形ABCD的长为4,宽为2,求函数的解析式.答案:(1)设函数解析式为y=ax²+bx+c,由题意可列出方程组:a+b+c=54a+2b+c=2016a+4b+c=80解得a=2,b=-4,c=7,因此函数的解析式为y=2x²-4x+7.2)设函数解析式为y=f(x)=kx+m,由题意可得:f(0)=m=2f(2)=2k+m=4f(4)=4k+m=0解得k=-1/2,m=2,因此函数的解析式为y=-1/2x+2.1) 在图中,通过每个点作两条垂线段,分别与x轴和y轴围成一个矩形。
九年级数学下册 反比例函数知识点总结
九年级数学下册反比例函数知识点总结反比例函数是数学中常见的一种函数形式。
在反比例函数中,当自变量的值增大时,因变量的值会减小;当自变量的值减小时,因变量的值会增大。
下面是九年级数学下册关于反比例函数的知识点总结:1.反比例函数的定义:反比例函数是指一个函数,其方程形式为y = k/x,其中k是常数,x是自变量,y是因变量。
2.反比例函数的特点:当x为正数且逐渐增大,y的值会逐渐减小。
当x为正数且逐渐减小,y的值会逐渐增大。
如果x等于0,函数的值为无穷大或无穷小。
反比例函数的图像通常是一个曲线,经过原点,并且关于y轴和x轴都对称。
3.反比例函数的图像:反比例函数的图像通常是一个双曲线的一支。
当k为正数时,双曲线的开口朝上。
当k为负数时,双曲线的开口朝下。
当k的绝对值变大时,双曲线的形状越陡峭。
4.反比例函数的应用:反比例函数在实际生活中有许多应用,例如:速度与时间的关系:当行驶的时间增加时,速度会减小。
工作的时间与人数的关系:当完成工作的时间减少时,需要的人数会增加。
投资的金额与收益的关系:当投资的金额增加时,收益会减少。
5.反比例函数的求解:给定反比例函数的方程,可以通过代入不同的自变量的值来计算相应的因变量的值。
给定一组包含自变量和因变量的数值对,可以通过取自变量与因变量的乘积的比值来求解反比例函数的常数k。
以上是九年级数学下册关于反比例函数的知识点总结。
反比例函数在数学中扮演着重要的角色,并在实际生活中有许多应用。
通过理解这些知识点,可以更好地应用和解决与反比例函数相关的问题。
部编数学九年级下册专项26反比例函数图像和性质(3大类型)(解析版)含答案
专项26 反比例函数图像和性质(3大类型)【考点1 反比例函数性质】1.若反比例函数y=的图象经过点(2,﹣3),则k= .【答案】﹣6【解答】解:∵反比例函数y=的图象经过点(2,﹣3),∴﹣3=,解得,k=﹣6,故答案为:﹣6.2.若反比例函数的图象在第二、四象限,m的值为 .【答案】-2【解答】解:∵是反比例函数,∴3﹣m2=﹣1.解得:m=±2.∵函数图象在第二、四象限,∴m+1<0,解得:m<﹣1.∴m=﹣2.故答案为:﹣2.3.已知反比例函数y=图象位于一、三象限,则m的取值范围是 .【答案】m<6【解答】解:∵反比例函数y=图象位于一、三象限,∴﹣(m﹣6)>0,解得m<6.故答案是:m<6.4.在反比例函数y=的图象的每一支上,y都随x的增大而增大,则m的取值范围是 .【答案】m<2 【解答】解:依题意得:m﹣2<0,解得m<2故答案是:m<2.5.已知点A(2,a)、B(b,﹣3)都在函数的图象y=上,若将这个函数图象向左平行3个单位长度,则曲线AB所扫过的图形的面积是 .【答案】9【解答】解:将A、B两点代入函数解析式,得:a=﹣6,b=4,∴A(2、﹣6)、B(4,﹣3),∴向左平行3个单位长度后A的对应点A'(﹣1,﹣6),B的对应点B'(1,﹣3).∴平行四边形ABB'A'的底=3,高=﹣3﹣(﹣6)=3,∴平行四边形ABB'A'的面积=3×3=9,∴曲线AB所扫过的图形的面积=平行四边形ABB'A'的面积=9.故答案为:9.【考点2 反比例大小比较】6.若点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为 .【答案】y2<y1<y3【解答】解:∵反比例函数y=(k为常数),k2+1>0,∴该函数图象在第一、三象限,在每个象限内y随x的增大而减小,∵点A(﹣1,y1)、B(﹣,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,﹣1<﹣,点A、B在第三象限,点C在第一象限,∴y2<y1<y3,故答案为:y2<y1<y3.7.如图,在平面直角坐标系中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于点A(﹣2,2),B(n,﹣1).当y1<y2时,x的取值范围是 .【答案】﹣2<x<0或x>4【解答】解:∵反比例函数y2=的图象经过点A(﹣2,2),B(n,﹣1),∴﹣1×n=(﹣2)×2,∴n=4.∴B(4,﹣1).由图象可知:第二象限中点A的右侧部分和第四象限中点B右侧的部分满足y1<y2,∴当y1<y2时,x的取值范围是﹣2<x<0或x>4.故答案为:﹣2<x<0或x>4.8.如图,正比例函数y1=k1x(k1≠0)与反比例函数y2=(k2≠0)的图象相交于A,B 两点,其中点A的横坐标为1.当k1x<时,x的取值范围是 .【答案】0<x<1或x<﹣1【解答】解:由正比例函数与反比例函数的对称性可得点B横坐标为﹣1,由图象可得当k1x<时,x的取值范围是0<x<1或x<﹣1.故答案为:0<x<1或x<﹣1.【考点3 反比例函数与其他综合运用】9.在一个不透明的纸箱内装有形状、质地、大小、颜色完全相同的5张卡片,卡片上分别标有数字﹣3,﹣1,0,1,2,将它们洗匀后,背面朝上,从中随机抽取1张,把抽得的数字记作a,再从剩下的卡片中随机抽取1张,把抽得的数字记作b,则使得反比例函数的图象经过第一、三象限的概率为 .【答案】【解答】解:∵反比例函数的图象经过第一、三象限,∴ab>0,画树状图得:则共有20种等可能的结果,ab为正数的所有可能值为:3,3,2,2;∴使得反比例函数的图象经过第一、三象限的概率为=.故答案为:.10.反比例函数y=(k为整数,且k≠0)在第一象限的图象如图所示,已知图中点A的坐标为(2,1),则k的值是 .【答案】1【解答】解:假设点A(2,1)在反比例函数y=(k为正整数)第一象限的图象上,则1=,∴k=2,但是点A在反比例函数y=(k为正整数)第一象限的图象的上方,∴k<2,∵k为整数,且k≠0,k>0,∴k=1,故答案为:1.11.当≤x≤2时,函数y=的图象为曲线段CD,y=﹣2x﹣b的图象分别与x轴、y轴交于A、B两点,若曲线段CD在△AOB的内部(且与三条边无交点),则b的取值范围为 .【答案】b<﹣ 【解答】解:反比例函数y=,当≤x≤2时,≤y≤2,∵曲线段CD在△AOB的内部(且与三条边无交点),∴当x=,﹣2×﹣b>2 ①,当x=2时,﹣2×2﹣b>②,解①得b<﹣3,解②得b<﹣,因此,b的取值范围为b<﹣.故答案为:b<﹣.12.当1≤x≤2时,反比例函数y=(k>﹣3且k≠0)的最大值与最小值之差是1,则k 的值是 .【答案】±2【解答】解:当k>0时,在其每一象限内,反比例函数y随x的增大而减小.∴,解得k=2,当﹣3<k<0时,在其每一象限内,反比例函数y随x的增大而增大.,解得k=﹣2,综上所述,k=±2.答案:±2.13.如图,曲线AB是抛物线y=﹣4x2+8x+1的一部分(其中A是抛物线与y轴的交点,B是顶点),曲线BC是双曲线y=(k≠0)的一部分.曲线AB与BC组成图形W.由点C开始不断重复图形W形成一组“波浪线”.若点P(2020,m),Q(x,n),在该“波浪线”上,则m的值为 ,n的最大值为 .【答案】1,5【解答】解:∵y=﹣4x2+8x+1=﹣4(x﹣1)2+5,∴当x=0时,y=1,∴点A的坐标为(0,1),点B的坐标为(1,5),∵点B(1,5)在y=的图象上,∴k=5,∵点C在y=的图象上,点C的横坐标为5,∴点C的纵坐标是1,∴点C的坐标为(5,1),∵2020÷5=404,∴P(2020,m)在抛物线y=﹣4x2+8x+1的图象上,m=﹣4×0+8×0+1=1,∵点Q(x,n)在该“波浪线”上,∴n的最大值是5,故答案为:1,5.14.如图,在△ABO中,∠ABO=90°,点A的坐标为(3,4).写出一个反比例函数y=(k≠0),使它的图象与△ABO有两个不同的交点,这个函数的表达式为 .【答案】y=(答案不唯一)【解答】解:∵∠ABO=90°,点A的坐标为(3,4),反比例函数y=(k≠0),使它的图象与△ABO有两个不同的交点,∴这个函数的表达式为:y=(答案不唯一).故答案为:y=(答案不唯一).15.如图,点P(4a,a)是反比例函数y=(k>0)与⊙O的一个交点,图中阴影部分的面积为17π,则反比例函数的解析式为 .【答案】y=【解答】解:∵图中阴影部分的面积为17π,∴圆的面积=4×17π=68π,∴圆的半径=2,∵P(4a,a)在圆上,∴16a2+a2=(2)2,解得a=2或﹣2(舍去),∴P点坐标为(8,2),把P(8,2)代入y=得k=8×2=16,∴反比例函数的解析式为y=.故答案为y=.16.如图,在平面直角坐标系xOy中,矩形OABC,OA=2,OC=1,写出一个函数y=,使它的图象与矩形OABC的边有两个公共点,这个函数的表达式可以为 (答案不唯一).【答案】y=,(答案不唯一,0<k<2的任何一个数)【解答】解:∵矩形OABC,OA=2,OC=1,∴B点坐标为(2,1),当函数y=(k≠0)过B点时,k=2×1=2,∴满足条件的一个反比例函数解析式为y=.故答案为:y=,(答案不唯一,0<k<2的任何一个数);17.给定函数y=,下列说法正确的有 .①不等式y>0的解为:x<或x>1;②无论t为何值,方程y=t一定有解;③若点(x1、y1),(x2,y2)在该函数图象上而且x1<x2,则y1>y2;④经过原点的直线和该函数的图象一定有交点;⑤该函数的图象既是中心对称图形,又是轴对称图形.【答案】①④⑤ 【解答】解:函数y=可化为:y==3+①当y>0时,或解得:x>1或x<故①正确;②∵y=3+∴y≠3∴当t=3时,y=3,方程无解;故②错误;③若取x=0,则y=1;x=3,y=40<3,1<4,故③错误;④∵y=3+可看作由y=向右平移一个单位,再向上平移三个单位∴经过原点的直线和该函数的图象一定有交点故④正确;⑤∵y=既是轴对称图形,也是中心对称图形,y=3+是y=平移之后的图形,故其既是轴对称图形,也是中心对称图形故⑤正确综上,正确的选项有:①④⑤故答案为:①④⑤.18.函数y1=x与y2=的图象如图所示,下列关于函数y=y1+y2的结论:①函数的图象关于原点中心对称;②当x<2时,y随x的增大而减小;③当x>0时,函数的图象最低点的坐标是(2,4),其中所有正确结论的序号是 .【答案】①③【解答】解:①由图象可以看出函数图象上的每一个点都可以找到关于原点对称的点,故正确;②在每个象限内,不同自变量的取值,函数值的变化是不同的,故错误;③y=x+=(﹣)2+4≥4,当且仅当x=2时取“=”.即在第一象限内,最低点的坐标为(2,4),故正确;∴正确的有①③.故答案为:①③.19.如图,在平面直角坐标系中,直线y=x+1与x轴,y轴分别交于点A,B,与反比例函数y=的图象在第一象限交于点C,若AB=BC,则k的值为 .【答案】2【解答】解:过点C作CH⊥x轴于点H.∵直线y=x+1与x轴,y轴分别交于点A,B,∴A(﹣1,0),B(0,1),∴OA=OB=1,∵OB∥CH,∴==1,∴OA=OH=1,∴CH=2OB=2,∴C(1,2),∵点C在y=的图象上,∴k=2,故答案为:2.20.已知点A在反比例函数y=(x>0)的图象上,点B在x轴正半轴上,若△OAB为等腰三角形,且腰长为5,则AB的长为 .【答案】5或2或【解答】解:当AO=AB时,AB=5;当AB=BO时,AB=5;当OA=OB时,设A(a,)(a>0),B(5,0),∵OA=5,∴=5,解得:a1=3,a2=4,∴A(3,4)或(4,3),∴AB==2或AB==;综上所述,AB的长为5或2或.故答案为:5或2或.21.已知点A为直线y=﹣2x上一点,过点A作AB∥x轴,交双曲线y=于点B.若点A 与点B关于y轴对称,则点A的坐标为 .【答案】(,﹣2)或(﹣,2)【解答】解:因为点A为直线y=﹣2x上,因此可设A(a,﹣2a),则点A关于y轴对称的点B(﹣a,﹣2a),由点B在反比例函数y=的图象上可得2a2=4,解得a=±所以A(,﹣2)或(﹣,2),故答案为:(,﹣2)或(﹣,2).22.如图,在平面直角坐标系中,直线y=x与函数y=(x>0)的图象交于点A,直线y=x﹣1与函数y=(x>0)的图象交于点B,与x轴交于点C.若点B的横坐标是点A的横坐标的2倍,则k的值为 .【答案】【解答】解:直线y=x与函数y=(x>0)的图象交于点A,∴k>0,设A(a,a),则B(2a,2a﹣1),代入y=,,即a=2a﹣1,解得,a=,把a=,代入a=,得k=,故答案为:.23.已知点A是反比例函数y=﹣(x<0)的图象上的一个动点,连接OA,若将线段OA 绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数关系式是 .【答案】y=(x>0)【解答】解:如图,∵点A是反比例函数y=﹣(x<0)的图象上∴S△OAM=|k|=,∵线段OB是由线段OA绕点O顺时针旋转90°得到的,∴OA=OB,∠AOB=90°,又∵∠AOM+∠OAM=90°,∠AOM+∠BON=180°﹣90°=90°,∵∠AMO=∠ONB=90°,∴△AOM≌△OBN(AAS),∴S△OBN =S△AOM==|k|,又∵k>0,∴k=3,∴过点B的反比例函数关系式为y=(x>0),故答案为:y=(x>0).24.如图,△OA1B1,△A1A2B2,△A2A3B3…是分别以A1,A2,A3…为直角顶点,一条直角边在x轴正半轴上的等腰直角三角形,其斜边的中点C1,C2,C3…均在反比例函数y=(x>0)的图象上,则点A2021的坐标为 .【答案】(2,0)【解答】解:设点C1的坐标为(x,),∵点C1是OB1的中点,∴点B1的坐标为(2x,),∴A1的坐标为(2x,0),∴OA1=2x,A1B1=,∵△OA1B1是等腰直角三角形,∴OA1=A1B1,即2x=,解得:x=1或x=﹣1(舍),∴点A1的坐标为(2,0);设点C2的坐标为(a,),∵点C2是A1B2的中点,∴点B2的坐标为(2a﹣2,),点A2的坐标为(2a﹣2,0),∴A1A2=2a﹣4,A2B2=,∵△A1B2A2是等腰直角三角形,∴A1A2=A2B2,即2a﹣4=,解得:a=1+或a=1﹣(舍),∴点A2的坐标为(2,0),设点C3的坐标为(m,),∵点C3是A2B3的中点,∴点B3的坐标为(2m﹣2,),点A3的坐标为(2m﹣2,0),∴A2A3=2m﹣4,A3B3=,∵△A2B3A3是等腰直角三角形,∴A2A3=A3B3,即2m﹣4=,解得:m=+或m=﹣(舍),∴点A3的坐标为(2,0),…,点A2021的坐标为(2,0),故答案为:(2,0).。
微专题4 反比例函数的综合应用++课件+2025年九年级中考数学总复习人教版(山东)
①当AC,BO为对角线时,AC,BO的中点重合,∴
,
+4=0+0
=
解得
,
= −
经检验,t=4,k=-16符合题意,
此时点C的坐标为(4,-4);
25
②当CB,AO为对角线时,CB,AO的中点重合,
+=+
∴
,
+0=4+0
= −
解得
,
= −
经检验,t=-4,k=-16符合题意,
所以S△AOB=S△AOM+S△BOM= ×2×3+ ×2×1=4.
因为正比例函数图象与反比例函数图象都是中心对称图形,且坐标原点是对称中
心,
所以点B和点C关于点O成中心对称,所以BO=CO,所以S△ABC=2S△AOB=8.
17
类型2
求特殊三角形或特殊四边形
【思维切入】
1.动点三角形的形状问题:
∵点A(m,4)在y=2x+2上,
∴2m+2=4,∴m=1,
∴点A的坐标为(1,4),
∵点A(1,4)在y= 上,∴4= ,∴k2=4,∴y= .
8
(2)如图,连接DE,过点B作BF垂直于y轴,垂足为F,
联立
= +
=
= 1 = −2
,解得
,
,
= 4 = −2
3.动点四边形的问题转化为动点三角形问题:
动点菱形问题转化为动点等腰三角形问题;
动点矩形问题转化为动点直角三角形问题.
九年级数学《反比例函数》反比例函数知识点总结
《反比例函数》知识点汇编一、反比例函数的定义一般地,形如xky =(k 为常数,0k ≠)的函数称为反比例函数。
(1)x 是自变量,y 是x 的反比例函数; (2)自变量x 的取值范围是0x ≠的一切实数,函数值的取值范围是0y ≠;(3)反比例函数有三种表达式:①xk y =(0k ≠),②1kx y -=(0k ≠), ③k y x =⋅(0k ≠);(4)函数xky =(0k ≠)与y k x =(0k ≠)是等价的,所以当y 是x 的反比例函数时,x 也是y 的反比例函数。
二、反比例函数解析式的确定方法有两种: 1、等量关系法要用到常见的一些等量关系 2、待定系数法用待定系数法求反比例函数关系式的一般步骤是:①设所求的反比例函数为:xky =(0k ≠); ②列出含k 的方程;③解出待定系数k 的值; ④把k 值代入函数关系式xky =中。
三、反比例函数的图像及画法1、反比例函数的图像是由两支曲线组成,称“双曲线”注:这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量0x ≠,函数值0y ≠,所以它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。
2、反比例的画法分三个步骤:⑴列表;⑵描点;⑶连线。
3、在作反比例函数的图像时应注意以下几点:①列表时选取的数值宜对称选取;②列表时选取的数值越多,画的图像越精确;③连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,画成折线;切忌将图像与坐标轴相交④画图像时,它的两个分支应全部画出,但实际问题除外。
四、反比例函数的性质:xky =)0k (≠的变形形式为k xy =(常数)所以: 1、其图象的位置是:当0k >时,x 、y 同号,图象在第一、三象限; 当0k <时,x 、y 异号,图象在第二、四象限。
2、若点(m,n)在反比例函数xky =的图象上,则点(-m,-n )也在此图象上,故反比例函数的图象关于原点对称。
人教版数学九年级下册第26章 反比例函数(21页)
数.其中 x 是自变量,a,b,c 分别是二次项系数、一次
项系数和常数项.
教学目标
1.了解反比例函数的概念,能判断一个给定的函数是否
为反比例函数.
2.会用待定系数法求反比例函数解析式.
3.能根据实际问题中的条件确定反比例函数的解析式.
在反比例函数 = (k 为常数,k≠0)中,只有一个待
定系数 k,因此只要给出一组 x,y 的对应值,就可以
求出待定系数 k 的值,从而确定反比例函数的解析式.
用待定系数法求反比例函数解析式的一般步骤:
设:根据题意,设反比例函数的解析式为 =
(k≠0).
列:把 x,y 的一对对应值代入 = 中,得到一个
课堂导入
生活中我们常常通过控制电阻的变化来实现舞台
灯光的效果. 在电压 U 一定时,当 R 变大,电流 I 会
变小,灯光就会变暗;相反,当 R 变小,电流 I 会变
大,灯光就会变亮. 你能写出这些量之间的关系式吗?
新知探究
知识点1:反比例函数的概念
下列问题中,变量间具有函数关系吗?如果有,请写出
求这个函数的表达式
k
(k≠0)
解:设这个反比例函数的解析式为 y =
x
∵当x=3时,y=2
k
,解得:k=6
∴2=
3
∴这个反比例函数的解析为 y =
6
x
3.已知y与x+2成反比例,且当 x 1时,y = 3.
(1)求y与x之间的函数解析式;
(2)当 x = 0 时,求y的值.
九年级数学反比例函数知识点归纳总结
一、反比例函数的定义:
反比例函数是指其表达式可以表示为y=k/x(k≠0),其中k为常数,x≠0。
二、反比例函数的一般式:
1.y=k/x
2.k为比例系数,表示常数项。
三、反比例函数的图像特点:
1.垂直于y轴;
2.不过原点,但会经过x轴的正半轴和y轴的正半轴;
3.上升(k>0)或下降(k<0)。
四、反比例函数的性质:
1.定义域:x≠0,值域:y≠0
2.渐近线:x轴和y轴是反比例函数的渐近线。
3.对称性:关于y轴对称。
4.单调性:k>0时,单调递减;k<0时,单调递增。
五、反比例函数图像的平移:
1.y=k/(x-h):左右平移h个单位;
2.y=k/(x)+v:上下平移v个单位。
六、反比例函数与直线的关系:
1. 反比例函数与直线y=kx的图像在一起;
2. 直线y=kx可以看做反比例函数的简化形式,即k=1
七、反比例函数的应用:
1.反比例函数在实际中常用于描述两个变量之间的比例关系,如一方
的量增大,另一方的量就会减小的规律。
2.可以用反比例函数解决实际问题,如物品的价格与销量之间的关系、速度与时间之间的关系等。
人教版数学九年级下册26.1.2反比例函数图象和性质课件
在反比例函数中,自变量 $x$ 和因变量 $y$ 之间存在一种倒数关系。 当 $x$ 增大时,$y$ 减小;当 $x$ 减小时,$y$ 增大。这种关系反映 了反比例函数的基本特性。
函数值域及变化规律
函数值域:反比例函 数的值域为所有非零 实数。当 $k > 0$ 时 ,函数图象位于第一 、三象限;当 $k < 0$ 时,函数图象位于 第二、四象限。
变化规律
1. 当 $k > 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐增大到正无穷大 (或从负无穷大逐渐 减小到零)。
2. 当 $k < 0$ 时,随 着 $x$ 从正无穷大逐 渐减小到零(或从负 无穷大逐渐增大到零 ),函数值 $y$ 从零 逐渐减小到负无穷大 (或从正无穷大逐渐 增大到零)。
不具备单调性。
与一次函数比较
关系
一次函数 $y = ax + b$ (a ≠ 0) 和反比例函数无直接关联。
图象
一次函数的图象是一条直线,而反比例函数的图象是两条曲线。
性质
一次函数在其定义域内是单调的,而反比例函数在其定义域内不具备单调性。此外,一次 函数的值域为全体实数,而反比例函数的值域为除去使分母为零的点外的全体实数。
3. 在每个象限内,随 着 $x$ 的绝对值增大 ,函数值 $y$ 的绝对 值逐渐减小。
02
反比例函数图象绘制方法
列表法绘制步骤
确定自变量的取值范围,并在此范围 内选取若干个自变量的值。
列出表格,将自变量和对应的函数值 分别填入表格中。
根据反比例函数的解析式,求出与每 个自变量值对应的函数值。
根据表格中的数据,在坐标系中描出 各点,并用平滑的曲线连接各点,即 可得到反比例函数的图象。
九年级数学下册第二十六章反比例函数重点知识归纳(带答案)
九年级数学下册第二十六章反比例函数重点知识归纳单选题1、如图,在平面直角坐标系中,矩形ABCD 的对角线AC 的中点与坐标原点重合,点E 是x 轴上一点,连接AE .若AD 平分∠OAE ,反比例函数y =k x (k >0,x >0)的图象经过AE 上的两点A ,F ,且AF =EF ,△ABE 的面积为18,则k 的值为( )A .6B .12C .18D .24答案:B分析:先证明OB ∥AE ,得出S △ABE =S △OAE =18,设A 的坐标为(a ,k a ),求出F 点的坐标和E 点的坐标,可得S △OAE =12×3a×k a =18,求解即可.解:如图,连接BD ,∵四边形ABCD 为矩形,O 为对角线,∴AO=OD ,∴∠ODA=∠OAD ,又∵AD 为∠DAE 的平分线,∴∠OAD=∠EAD ,∴∠EAD=∠ODA ,∴OB ∥AE ,∵S △ABE =18,∴S △OAE =18,设A 的坐标为(a ,k a ), ∵AF=EF ,∴F 点的纵坐标为k 2a , 代入反比例函数解析式可得F 点的坐标为(2a ,k 2a ), ∴E 点的坐标为(3a ,0),S △OAE =12×3a×k a =18,解得k=12,故选:B .小提示:本题考查了反比例函数和几何综合,矩形的性质,平行线的判定,得出S △ABE =S △OAE =18是解题关键.2、若反比例函数y =k x 的图象经过点(2,4),则k 的值是( ) A .2B .−2C .8D .−8答案:C分析:把点(2,4)代入y =k x ,求出k 的数值即可. 解:把点(2,4)代入y =k x 得4=k 2, 解得k =8.故选:C .小提示:此题考查利用待定系数法求函数解析式,图象上点的坐标都适合函数解析式解题的关键.3、如图,在同一平面直角坐标系中,一次函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=c x (c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是( )A.﹣3<x<2B.x<﹣3或x>2C.﹣3<x<0或x>2D.0<x<2答案:C分析:一次函数y1=kx+b落在与反比例函数y2= c图象上方的部分对应的自变量的取值范围即为所求.x∵一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2= c(c是常数,且c≠0)的图象相交于A(﹣3,x﹣2),B(2,3)两点,∴不等式y1>y2的解集是﹣3<x<0或x>2,故选C.小提示:本题考查了反比例函数与一次函数的交点问题,利用数形结合是解题的关键.的图象上,则x1,x2,x3的大小关系是()4、若点A(x1,−5),B(x2,2),C(x3,5)都在反比例函数y=10xA.x1<x2<x3B.x2<x3<x1C.x1<x3<x2D.x3<x1<x2答案:C分析:因为A,B,C三点均在反比例函数上,故可将点代入函数,求解x1,x2,x3,然后直接比较大小即可.,可求得x1=−2,x2=5,x3=2,比较其大小可得:x1<x3<x2.将A,B,C三点分别代入y=10x故选:C.小提示:本题考查反比例函数比较大小,解答本类型题可利用画图并结合图像单调性判别,或者直接代入对应数值求解即可.(k为常数,且k≠0)的图象大致( )5、在同一平面直角坐标系中,函数y=x−k与y=kxA .B .C .D .答案:A 分析:根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决. 解:∵函数y =x −k 与y =k x (k 为常数,且k≠0), ∴当k >0时,y =x −k 经过第一、三、四象限,y =k x 经过第一、三象限,故选项A 正确,选项B 错误; 当k <0时,y =x −k 经过第一、二、三象限,y =k x 经过第二、四象限,故选项C 错误,选项D 错误, 故选:A .小提示:本题考查反比例函数的图象、一次函数的图象,熟练掌握是解题的关键.6、如图,在平面直角坐标系中,菱形ABCD 的顶点A ,B 在反比例函数y =k x (k >0,x >0)的图象上,横坐标分别为1,4,对角线BD ∥x 轴.若菱形ABCD 的面积为452,则k 的值为( )A .54B .154C .4D .5答案:D分析:设A(1,m),B(4,n),连接AC 交BD 于点M ,BM=4-1=3,AM=m-n ,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n ,从而可求出n 的值,即可得到k 的值.设A(1,m),B(4,n),连接AC 交BD 于点M ,则有BM=4-1=3,AM=m-n ,∴S 菱形ABCD =4×12BM•AM , ∵S 菱形ABCD =452,∴4×12×3(m-n )=452,∴m-n=154,又∵点A ,B 在反比例函数y =k x , ∴k=m=4n ,∴n=54,∴k=4n=5,故选D.小提示:本题考查了反比例函数k 的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.7、一次函数y =mx +n 的图像与反比例函数y =m x 的图像交于点A 、B ,其中点A 、B 的坐标为A (-1m ,-2m )、B (m ,1),则△OAB 的面积( )A .3B .134C .72D .154答案:D分析:将点A 的坐标代入可确定反比例函数关系式,进而确定点B 的坐标,再利用待定系数法求出一次函数关系式;求出直线AB 与y 轴交点D 的坐标,确定OD 的长,再根据三角形的面积公式进行计算即可.解:∵A (-1m ,-2m )在反比例函数y =m x 的图像上, ∴m =(-1m ) • ( -2m )=2,∴反比例函数的解析式为y =2x ,∴B (2,1),A (-12,-4), 把B (2,1)代入y =2x +n 得1=2×2+n ,∴n =-3,∴直线AB 的解析式为y =2x -3,直线AB 与y 轴的交点D (0,-3),∴OD =3,∴S △AOB =S △BOD +S △AOD=12×3×2+12×3×12 =154.故选:D . .小提示:本题考查一次函数与反比例函数的交点,把点的坐标代入函数关系式是解决问题常用的方法.8、为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产进行治污改造,其月利润y (万元)与月份x 之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的一部分,下列选项错误..的是( )A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元答案:C分析:直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.A、设反比例函数的解析式为y=kx,把(1,200)代入得,k=200,∴反比例函数的解析式为:y=200x,当x=4时,y=50,∴4月份的利润为50万元,正确意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确;C、当y=100时,则100=200x,解得:x=2,则只有3月,4月,5月共3个月的利润低于100万元,不正确.D、设一次函数解析式为:y=kx+b,则{4k+b=506k+b=110,解得:{k=30b=−70,故一次函数解析式为:y=30x−70,故y=200时,200=30x−70,解得:x=9,则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确.故选:C.小提示:此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键.(k≠0)的图象经过点(2,−3),则它的图象也一定经过的点是()9、若反比例函数y=kxA.(−2,−3)B.(−3,−2)C.(1,−6)D.(6,1)答案:C分析:先利用反比例函数y=k(k≠0)的图象经过点(2,−3),求出k的值,再分别计算选项中各点的横纵坐x标之积,然后根据反比例函数图象上点的坐标特征进行判断.(k≠0)的图象经过点(2,−3),解:∵反比例函数y=kx∴k=2×(﹣3)=﹣6,∵(﹣2)×(﹣3)=6≠﹣6,(﹣3)×(﹣2)=6≠﹣6,1×(﹣6)=﹣6,,6×1=6≠﹣6,则它一定还经过(1,﹣6),故选:C.小提示:本题考查了反比例函数图象上点的坐标特征:反比例函数y=k(k≠0)的图象是双曲线,图象上的点x(x,y)的横纵坐标的积是定值k,即xy=k.熟练掌握反比例函数的性质是解题的关键.(x>0)图象上的一点,过点A作x轴的平行线交y轴于点B,连接OA,如果10、如图,点A为函数y=kx△AOB的面积为2,那么k的值为()A.1B.2C.3D.4答案:Dmn=2,所以mn=4,设点A坐标为(m,n),则有AB=m,OB=n,由题意可得:12又点A在双曲线y=k上,所以k=mn=4,x故选D.填空题的图象相交于点M(1,m),N(﹣2,n).若y1<y2,则x的取值范围11、如图,函数y1=x+1与函数y2=2x是x<﹣2或 _____.答案:0<x<1分析:观察函数图象,找出一次函数图象在反比例函数图象的下方时对应的x的取值范围即可.解:由图象可知,y1<y2时的x的取值范围为:x<−2或0<x<1,所以答案是:0<x<1.小提示:本题主要考查了反比例函数图象与一次函数图象的交点问题,能利用数形结合求出不等式的解集是解答此题的关键.的图象交于M,N两点.若点M的坐标是(1,2),则点N的坐标12、如图,已知直线y=2x与反比例函数y=2x是______.答案:(-1,-2)分析:直接利用正比例函数和反比例函数的性质得出M,N两点关于原点对称,进而得出答案.解:∵直线y=2x与反比例函数y=2x的图象交于M,N两点,∴M,N两点关于原点对称,∵点M的坐标是(1,2),∴点N的坐标是(-1,-2).所以答案是:(-1,-2).小提示:此题主要考查了反比例函数与正比例函数图象的性质,正确得出M,N两点位置关系是解题关键.13、如图,点A是反比例函数y=kx(x<0)图象上一点,过点A作AB⊥y轴于点D,且点D为线段AB的中点.若点C为x轴上任意一点,且△ABC的面积为4,则k=______________.答案:−4分析:设点A(a,ka ),利用S△ABC=12×(−2a)×ka=4即可求出k的值.解:设点A(a,ka),∵点D为线段AB的中点.AB⊥y轴∴AB=2AD=−2a,又∵S△ABC=12×(−2a)×ka=4,∴k=−4.所以答案是:−4小提示:本题考查利用面积求反比例函数的k的值,解题的关键是找出S△ABC=12×(−2a)×ka=4.14、已知反比例函数y=−k2−1x图象上的三个点(x1,y1),(x2,y2),(x3,y3),其中x1<0<x2<x3,则y1,y2,y3的大小关系是______(用“<”连接).答案:y2<y3<y1分析:根据平方的非负性得出−k2−1<0,再分析反比例函数y=−k2−1x图象上点的坐标特征解答即可.解:∵反比例函数y=−k2−1x中,−k2−1<0,∴反比例函数图象位于第二,第四象限内,且每一象限内y随x的增大而增大.∵点(x1,y1),(x2,y2),(x3,y3)在反比例函数y=−k2−1x图象上,且x1<0<x2<x3,∴y2<y3<0<y1,∴y2<y3<y1.所以答案是:y2<y3<y1.小提示:本题考查了根据反比例函数图象的性质比较反比例函数值的大小,根据平方的非负性判断反比例函数图象所处的象限,并熟练掌握反比例函数图象上点的坐标特征是解题的关键.15、正比例函数y=kx与反比例函数y=1x的图象交于A(x1,y1)、B(x2,y2)两点,则代数式x1y2+x2y1的值是_________.答案:-2分析:联立方程组,用含k的式子表示x1,x2,y1,y2,再代入求解即可.解:正比例函数y=kx与反比例函数y=1x的图象交于A(x1,y1)、B(x2,y2)两点,∴{y =kx y =1x解得:{x 1=√k k y 1=√k 或{x 2=−√k k y 2=−√k,∴x 1y 2+x 2y 1=√k k ×(−√k)+(−√k k )×√k =−2,所以答案是:-2.小提示:本题考查了正比例函数与反比例函数的交点问题和解二元一次方程组,联立方程组求解是解题的关键.解答题16、定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点(1,1)是函数y =12x +12的图象的“等值点”.(1)分别判断函数y =x +2,y =x 2−x 的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;(2)设函数y =3x (x >0),y =−x +b 的图象的“等值点”分别为点A ,B ,过点B 作BC ⊥x 轴,垂足为C .当△ABC 的面积为3时,求b 的值;(3)若函数y =x 2−2(x ≥m)的图象记为W 1,将其沿直线x =m 翻折后的图象记为W 2.当W 1,W 2两部分组成的图象上恰有2个“等值点”时,直接写出m 的取值范围.答案:(1)函数y =x +2没有“等值点”; 函数y =x 2−x 的“等值点”为(0,0),(2,2);(2)b =4√3或−2√3;(3)m <−98或−1<m <2.. 分析:(1)根据定义分别求解即可求得答案;(2)根据定义分别求A (√3,√3),B (b 2,b 2),利用三角形面积公式列出方程求解即可;(3)由记函数y =x 2-2(x ≥m )的图象为W 1,将W 1沿x =m 翻折后得到的函数图象记为W 2,可得W 1与W 2的图象关于x =m 对称,然后根据定义分类讨论即可求得答案.解:(1)∵函数y =x +2,令y =x ,则x +2=x ,无解,∴函数y =x +2没有“等值点”;∵函数y=x2−x,令y=x,则x2−x=x,即x(x−2)=0,解得:x1=2,x2=0,∴函数y=x2−x的“等值点”为(0,0),(2,2);(2)∵函数y=3x,令y=x,则x2=3,解得:x=√3(负值已舍),∴函数y=3x的“等值点”为A(√3,√3);∵函数y=−x+b,令y=x,则x=−x+b,解得:x=b2,∴函数y=−x+b的“等值点”为B(b2,b2);△ABC的面积为12BC•|x B−x A|=12•|b2|•|b2−√3|=3,即b2−2√3b−24=0,解得:b=4√3或−2√3;(3)将W1沿x=m翻折后得到的函数图象记为W2.∴W1与W2两部分组成的函数W的图象关于x=m对称,∴函数W的解析式为{y=x2−2(x≥m)y=(2m−x)2−2(x<m),令y=x,则x2−2=x,即x2−x−2=0,解得:x1=2,x2=−1,∴函数y=x2−2的“等值点”为(-1,-1),(2,2);令y=x,则(2m−x)2−2=x,即x2−(4m+1)x+4m2−2=0,当m≥2时,函数W的图象不存在恰有2个“等值点”的情况;当−1<m<2时,观察图象,恰有2个“等值点”;当m<−1时,∵W1的图象上恰有2个“等值点”(-1,-1),(2,2),∴函数W2没有“等值点”,∴△=[−(4m+1)]2−4×1×(4m2−2)<0,整理得:8m+9<0,解得:m<−98.综上,m的取值范围为m<−98或−1<m<2.小提示:本题属于二次函数的综合题,考查了二次函数、反比例函数、一次函数的性质以及函数的对称性.解答本题的关键是明确题意,找出所求问题需要的条件.17、如图,点A(a,2)在反比例函数y=4x 的图象上,AB//x轴,且交y轴于点C,交反比例函数y=kx于点B,已知AC=2BC.(1)求直线OA的解析式;的解析式;(2)求反比例函数y=kx上一动点,连接AD交y轴于点E,当E为AD中点时,求△OAD的面积.(3)点D为反比例函数y=kx;(3)3.答案:(1)y=x;(2)y=−2x分析:(1)先求解A的坐标,再把A的坐标代入正比例函数y=mx,解方程即可得到答案;(2)利用AC=2BC,先求解B的坐标,再利用待定系数法求解解析式即可;),而A(2,2),E为AD的中点,利用中点坐标公式求解D,E的坐标,再利用S△OAD=S△ODE+(3)设D(n,−2nOE(|x A|+|x D|),计算即可得到答案.S△OAE=12的图象上,解:(1)∵点A(a,2)在反比例函数y=4x∴2a=4,a=2,则A(2,2),∴AC=2,设直线AO为:y=mx,∴2m=2,则m=1,所以直线AO为:y=x,(2)∵AB//x轴,AC=2BC=2.∴BC=1,∴B(−1,2),∴k=xy=−1×2=−2,.所以反比例函数为:y=−2x(3)设D(n,−2n),而A(2,2),E为AD的中点,∴x E=12(2+n)=0,∴n=−2,∴D(−2,1),E(0,32),∴S△OAD=S△ODE+S△OAE=12OE(|x A|+|x D|)=12×32×(2+2)=3.小提示:本题考查的利用待定系数法求解一次函数与反比例函数的解析式,图形与坐标,中点坐标公式,熟练应用以上知识解题是关键.18、如图,一次函数y=k1x+b与反比例函数y=k2x(x>0)的图象交于A(1,6),B(3,n)两点.(1)求反比例函数的解析式和n的值;(2)根据图象直接写出不等式k1x+b<k2x的x的取值范围;(3)求△AOB的面积.答案:(1)y=6x,2;(2)0<x<1或x>3;(3)8分析:(1)把A的坐标代入反比例函数解析式即可求得k2的值,然后把x=3代入即可求得n的值;(2)根据一次函数和反比例函数的图象即可直接求解;(3)利用待定系数法求得一次函数的解析式,设直线与x轴相交于点C,然后根据S△AOB=S△AOC−S△BOC即可求解.解:(1)∵A(1,6)在y=k2x的图象上,∴k2=6,∴反比例函数的解析式是y =6x . 又∵B(3,n)在y =k 2x 的图象上,∴n =63=2; (2)由图像可知:当0<x <1或x >3时,k 1x +b <k 2x ;(3)∵A(1,6),B(3,2)在函数y =k 1x +b 的图象上,∴ {k 1+b =63k 1+b =2, 解得:{k 1=−2b =8, 则一次函数的解析式是y =−2x +8, 设直线y =−2x +8与x 轴相交于点C ,则C 的坐标是(4,0).∴S △AOB =S △AOC −S △BOC=12OC ⋅|y A |−12OC ⋅|y B | =12×4×6−12×4×2 =8.小提示:本题考查了反比例函数和一次函数的综合,熟练掌握待定系数法求函数的解析式是解决本题的关键.。
人教版数学九年级下册:(反比例函数)实际问题与反比例函数(教案)
实际问题与反比例函数第1课时实际问题与反比例函数(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中的水将用多长时间排完?【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.第2课时实际问题与反比例函数(2)【知识与技能】运用反比例函数解决实际应用问题,增强数学建模思想.【过程与方法】经历“实际问题一数学建模一拓展应用”的过程,发展学生分析问题,解决问题的能力.【情感态度】进一步锻炼学生的数学应用能力,增强数学应用意识,提高学习数学的兴趣. 【教学重点】用反比例函数的有关知识解决实际应用问题.【教学难点】构建反比例函数模型解决实际应用问题,巩固反比例函数性质.一、情境导入,初步认识“给我一个支点,我可以撬动地球”,古希腊科学家阿基米德曾如是说,他的“杠杆定律”通俗地讲是:阻力×阻力臂=动力×动力臂.由上述等式,我们发现,当阻力、阻力臂一定时,动力和动力臂成反比例函数关系.二、典例精析,掌握新知例1 小伟欲用撬棍撬动一块大石头,已知阻力和阻力臂不变,分别为1200 N和0.5 m.(1 )动力F和动力臂l有怎样的函数关系?当动力臂为1.5 m时,撬动石头至少需要多大的力?(2)若想使动力F不超过题(1)中所用力的一半,则动力臂l至少要加长多少?【分析】显然本题应用杠杆定律相关知识来解决问题,首先由阻力和阻力臂的数据得到动力F与动力臂l的函数关系式为F=600l(l>0),再把l=1 . 5代入,求出动力的大小.注意“橇动石头至少需要多大的力”表面上看是不等关系,但用相等关系来解决更方便些.而(2)中的问题即可用F=400×12= 200代入求动力臂的长度的最小值,也可利用不等关系,600l≤400×12,得l的范围是l≥3,而动力臂至少应加长1.5米才行.【教学说明】在本例教学时,应仍由学生自主探究,构建适合题意的反比例函数关系式,让学生加深对反比例函数意义的理解,进一步增强分析问题和解决问题的能力.教师在学生练习过程中,巡视指导,帮助有困难同学形成正确认知,在大部分学生自主完成后,可提出以下问题让学生思考,巩固提高:(1 )用反比例函数知识解释:在我们使用撬棍时,为什么动力臂越长就越省力?(2)你能再举一些应用杠杆原理做实际例子吗?例2—个用电器的电阻是可调节的,其范围是110〜220Ω,已知电压为220 V,这个用电器的电路图如图所示.(1 )输出功率犘与电阻只有怎样的函数关系?(2)这个用电器功率的范围是多少?【分析】要想顺利解决本题,应了解电学中关于电功率P、电阻R和电压U的关系,即有PR= U2,可以发现2UPR=或2URP=.这样由于用电器电压U = 220V是确定的,从而可得(1)的解应为P =2220R,再把R = 110和R = 220代入可得电功率P值分别为440 W和220 W,故电功率P的范围为220≤P≤440.事实上,这里还可以由2220RP=及 110≤R≤220,得110≤2220P≤220,得220≤P≤440.【教学说明】教学时,教师应先让学生熟悉与本例相关的电学知识,即PR= U2,然后让学生独立完成,由于题目难度不大,学生应该能予以解决,对个别有困难的同学,可予以指导,也可让他们与同伴交流,从而能解决问题,在大多数同学完成以后,教师仍可设置以下两个问题,让学生进一步加深对知识的理解:(1 )想一想,为什么收音机的音量,某些台灯的亮度以及电风扇的转速都可以调节?(2)你还能列举一些生活中用电器应用反比例函数性质的例子吗?培养学生学以致用的能力,即能用所学知识解决现实世界中实际问题的能力,也可增强学生的学习兴趣.三、运用新知,深化理解1.一司机驾驶汽车从甲地去乙地,他以80 km/h的平均速度用6小时到达目的地.(1)当他按原路返回来,汽车的平均速度v与时间t有怎样的函数关系?(2)如果该司机必须在4 h之内回到甲地,则返程时的平均速度不能低于多少?2.新建成的住宅楼主体工程已经竣工,只剩下楼体外表面需贴瓷砖,已知楼体的外表面面积为5×103 m2 .(1)所需的瓷砖块数n与每块瓷砖的面积 S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白、蓝三种颜色的瓷砖,每块瓷砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2:2: 1,则需要三种瓷砖各多少块?3.如图是放置在桌面上的一个圆台,已知圆台的上底面积是下底面积的1/4,此时圆台对桌面的压强为100 Pa.若把圆台翻过来放,则它对桌面的压强是多大呢?【教学说明】由学生独立完成,然后相互交流,发现问题,及时纠正,从而巩固对反比例函数的性质的理解.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1. ( 1 )V=806t ⨯ ,V =480t (t >0). (2)V =4804= 120 (km/h). 2.(1)n • S = 5× 103 , n =3510S⨯ (S >0). (2)80cm 2=8×10-3m 2.353510 6.2510810n -⨯==⨯⨯(块), 则有n 灰=6.25×105×25= 2.5×105(块),n 白=6.25×105×25 =2.5×105(块) ,n 蓝=6.25×105×51=1.25×105(块).3. 解:设下底面积为S 0,则上底面积为04S . 由F p S= ,且当S = S 0时,p = 100,∴0100F pS S ==⨯ . 同一物体质量不变,∴ F=100S 0是定值.000100400(Pa)44S S F S p S S ∴====当时,. 因此,当把圆台翻过来放置时,它对桌面的压强是400Pa.四、师生互动,课堂小结1.请举出一些应用反比例函数的实例,同伴之间相互交流.2.说说这节课你又有哪些收获?1. 布置作业:从教材“习题26.2”中选取.2. 完成创优作业中本课时的“课时作业”部分.本节课讨论了反比例函数的其他一些应用(主要是在物理学科中的应用).在这些实际应用中,备课时应注意到与学生的实际生活相联系,并且注意用函数观点来对这些问题做出某种解释,从而加深对函数的认识,并突出知识之间的内在联系,特别是与物理知识之间的联系.。
人教版九年级数学下册知识点总结:第二十六章反比例函数
人教版九年级数学下册知识点总结第二十六章、反比例函数知识点一:反比例函数的概念及其图象、性质1.反比例函数的概念(1)定义:形如y=kx(k≠0)的函数称为反比例函数,k叫做比例系数,自变量的取值范围是非零的一切实数.(2)形式:反比例函数有以下2种基本形式:①y=kx;②y=kx-1; ③xy=k.(其中k为常数,且k≠0)例:函数y=3x m+1,当m=-2时,则该函数是反比例函数.2.反比例函数的图象和性质k的符号图象经过象限y随x变化的情况k>0 图象经过第一、三象限(x、y同号)每个象限内,函数y的值随x的增大而减小.k<0 图象经过第二、四象限(x、y异号)每个象限内,函数y的值随x的增大而增大.3.反比例函数的图象特征(1)由两条曲线组成,叫做双曲线;(2)图象的两个分支都无限接近x轴和y轴,但都不会与x轴和y轴相交;(3)图象是中心对称图形,原点为对称中心;也是轴对称图形,2条对称轴分别是平面直角坐标系一、三象限和二、四象限的角平分线.4.待定系数法只需要知道双曲线上任意一点坐标,设函数解析式,代入求出反比例函数系数k即可.例:已知反比例函数图象过点(-3,-1),则它的解析式是y=3/x知识点二:反比例系数的几何意义及与一次函数的综合5.系数k的几何意义(1)意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|,以该点、一个垂足和原点为顶点的三角形的面积为1/2|k|.(2)常见的面积类型:失分点警示已知相关面积,求反比例函数的表达式,注意若函数图象在第二、四象限,则k<0.例:已知反比例函数图象上任一点作坐标轴的垂线所围成矩形为3,则该反比例函数解析式为:3yx=或3yx=-6.与一次函数的综合(1)确定交点坐标:【方法一】已知一个交点坐标为(a,b),则根据中心对称性,可得另一个交点坐标为(-a,-b).【方法二】联立两个函数解析式,利用方程思想求解.(2)确定函数解析式:利用待定系数法,先确定交点坐标,再分别代入两个函数解析式中求解(3)在同一坐标系中判断函数图象:充分利用函数图象与各字母系数的关系,可采用假设法,分k>0和k<0两种情况讨论,看哪个选项符合要求即可.也可逐一选项判断、排除.(4)比较函数值的大小:主要通过观察图象,图象在上方的值大,图象在下方的值小,结合交点坐标,确定出解集的范围.涉及与面积有关的问题时,①要善于把点的横、纵坐标转化为图形的边长,对于不好直接求的面积往往可分割转化为较好求的三角形面积;②也要注意系数k的几何意义.例:如图所示,三个阴影部分的面积按从小到大的顺序排列为:S△AOC=S△OPE>S△BOD知识点三:反比例函数的实际应用7.一般步骤(1题意找出自变量与因变量之间的乘积关系;(2设出函数表达式;(3)依题意求解函数表达式;(4)根据反比例函数的表达式或性质解决相关问题.。
人教版初三数学9年级下册 第26章(反比例函数)复习讲义及例题和习题(含答案)
第二十六章 反比例函数本章知识结构图:中考说明中对本章知识的要求:考试内容A 层次B 层次C 层次反比例函数能结合具体情境了解反比例函数的意义;能画出反比例函数的图象;理解反比例函数的性质能根据已知条件确定反比例函数的解析式;能用反比例函数的知识解决有关问题主要内容:1.定义:一般地,形如)0(≠=k k x ky 是常数,且的函数,叫反比例函数. 反比例函数的解析式有三种形式:(1)xky =(k ≠0的常数);(2)k xy =(k ≠0的常数);(3)1-=kx y (k ≠0的常数).2. 反比例函数的图象及性质:(1)反比例函数的图象是双曲线;(2)当k >0时,两支曲线分别位于第一、三象限,在每一象限内,y 的值随x 值的增大而减小;当k <0时,两支曲线分别位于第二、四象限,在每一象限内,y 的值随x 值的增大而增大;(3)反比例函数图象的两个分支无限接近x 轴和y 轴,但永远不会与x 轴和y 轴相交;(4)反比例函数的图象是对称图形,反比例函数的图象既是轴对称图形又是中心对称图形:①)0(≠=k x ky 是轴对称图形,其对称轴为x y x y -==和两条直线;②)0(≠=k x ky 是中心对称图形,对称中心为原点(0,0)。
③xky x k y -==和在同一坐标系中的图像关于x 轴、y 轴成轴对称。
(5)反比例函数的几何意义:在反比例函数)0(≠=k xky 的图象上任取一点M ,从几何意义上看,从点M 向两轴作垂线,两垂线段与坐标轴所围成的矩形的面积为定值k ;(6)k 越大,双曲线越远离原点。
3.反比例函数在代数、几何及实际问题中的应用。
四、例题与习题:1.下面的函数是反比例函数的是 ( )A . 13+=x yB .x x y 22+= C . 2xy =D .xy 2=2.用电器的输出功率与通过的电流、用电器的电阻之间的关系是,下面说法正确的是()A .为定值,与成反比例B .为定值,与成反比例C .为定值,与成正比例D .为定值,与成正比例3.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m 3)是体积V (单位:m 3)的反比例函数,它的图象如图3所示,当310m V =时,气体的密度是( )A .5kg/m 3B .2kg/m 3C .100kg/m 3D .1kg/m 34. 已知三角形的面积一定,则它底边上的高与底边之间的函数关系的图象大致是( )B .C .D .5.某物体对地面的压力为定值,物体对地面的压强p (Pa )与受力面积S (m 2)之间的函数关系如图所示,这一函数表达式为p = .6.点在反比例函数的图象上,则 .7.点(3,-4)在反比例函数ky x=的图象上,则下列各点中,在此图象上的是( )A.(3,4)B. (-2,-6)C.(-2,6)D.(-3,-4)P I R 2P I R =P I R P 2I R P I R P 2I R a h a (231)P m -,1y x=m =8.已知某反比例函数的图象经过点()m n ,,则它一定也经过点( )A .()m n -,B .()n m ,C .()m n -,D .()m n ,9.已知反比例函数的图象经过点(m ,2)和(-2,3)则m 的值为 .10.已知n 是正整数,n P (n x ,n y )是反比例函数xky =图象上的一列点,其中1x 1=,2x 2=,…,n x n =,记211y x T =,322y x T =,…,1099y x T =;若1T 1=,则921T T T ⋅⋅⋅⋅⋅⋅的值是_________.11.在平面直角坐标系中,将点(53)P ,向左平移6个单位,再向下平移1个单位,恰好在函数ky x=的图象上,则此函数的图象分布在第 象限.12.对于反比例函数(),下列说法不正确的是( )A. 它的图象分布在第一、三象限B. 点(,)在它的图象上C. 它的图象是中心对称图形D. 每个象限内,随的增大而增大13. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .14.已知反比例函数y =x2k -的图象位于第一、第三象限,则k 的取值范围是( ).(A )k >2 (B ) k ≥2(C )k ≤2(D ) k <215.若反比例函数的图象经过点,其中,则此反比例函数的图象在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限16.若反比例函数1k y x-=的图象在其每个象限内,y 随x 的增大而减小,则k 的值可以是( )A.-1B.3C.0D.-317.若点00()x y ,在函数ky x=(0x <)的图象上,且002x y =-,则它的图象大致是( )18.设反比例函数中,在每一象限内,随的增大而增大,则一次函数的图象不经过()xk y 2=0≠k k k y x ky x=(3)m m ,0m ≠)0(≠-=k xky y x k kx y -=A .B .C .D .(A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限19.如果点11()A x y ,和点22()B x y ,是直线y kx b =-上的两点,且当12x x <时,12y y <,那么函数ky x=的图象大致是( )20.若()A a b ,,(2)B a c -,两点均在函数1y x=的图象上,且0a <,则b 与c 的大小关系为( )A .b c>B .b c<C .b c=D .无法判断21.已知点A (3,y 1),B (-2,y 2),C (-6,y 3)分别为函数xky =(k<0)的图象上的三个点.则y 1 、y 2 、y 3的大小关系为 (用“<”连接).22.在反比例函数的图象上有两点A ,B ,当时,有,则的取值范围是( )A 、B 、C 、D 、23.若A (,)、B (,)在函数的图象上,则当、满足______________________________________时,>.24. 已知直线与双曲线的一个交点A 的坐标为(-1,-2).则=_____;=____;它们的另一个交点坐标是______.25.在平面直角坐标系xoy 中,直线yx =向上平移1个单位长度得到直线l .直线l 与反比例函数ky x=的图象的一个交点为(2)A a ,,则k 的值等于 .26.如果函数x y 2=的图象与双曲线)0(≠=k xky 相交,则当0<x 时,该交点位于A .第一象限B .第二象限C .第三象限D .第四象限27.在同一平面直角坐标系中,函数xy 1=与函数x y =的图象交点个数是( )A 、0个B 、1个C 、2个D 、3个28.函数1ky x-=的图象与直线y x =没有交点,那么k 的取值范围是( ) A .1k > B .1k < C .1k >- D .1k <-12my x-=()11,x y ()22,x y 120x x <<12y y <m 0m <0m >12m <12m >1x 1y 2x 2y 12y x=1x 2x 1y 2y mx y =xky =m k xxxx.D .29.在同一坐标系中,一次函数(1)21y k x k =-++与反比例函数ky x=的图象没有交点,则常数k 的取值范围是.30.如图,直线)0(>=k kx y 与双曲线xy 2=交于A 、B 两点,若A 、B 两点的坐标分别为A ()11,y x ,B ()22,y x ,则1221y x y x +的值为()A . -8B .4C . -4D . 031.已知反比例函数2y x=,下列结论中,不正确的是( ) A .图象必经过点(12),B .y 随x 的增大而减少C .图象在第一、三象限内D .若1x >,则2y <32.已知函数1y x=的图象如下,当1x ≥-时,y 的取值范围是( ) A .1y <- B .1y ≤- C .1y ≤- 或0y > D .1y <-或0y ≥33.如图,一次函数与反比例函数的图象相交于A、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是_____________.34.如图,正方形ABOC 的边长为2,反比例函数xky =过点A ,则K 的值是( )A .2B .-2C .4D .-435.过反比例函数(0)ky k x=>的图象上的一点分别作x 、y 轴的垂线段,如果垂线段与x 、y 轴所围成的矩形面积是6,那么该函数的表达式是______;若点A(-3,m)在这个反比例函数的图象上,则m=______.36.如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =.37.在反比例函数4y x=的图象中,_4-1-1yx第32题图第34题图第33题图第36题图阴影部分的面积不等于4的是( )A .B .C .D .38.两个反比例函数k y x =和1y x =在第一象限内的图象如图所示,点P 在ky x =的图象上,PC ⊥x 轴于点C ,交1y x =的图象于点A ,PD ⊥y 轴于点D ,交1y x=的图象于点B ,当点P在ky x=的图象上运动时,以下结论:①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 .(把你认为正确结论的序号都填上,少填或错填不给分).39.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的图象交于点A ,已知OA=23,则该函数的解析式为( )A .xy 3=B .xy 3-= C .xy 9=D .xy 9-=40.如图,一次函数122y x =-的图象分别交x 轴、y 轴于A 、B ,P 为AB 上一点且PC 为△AOB 的中位线,PC 的延长线交反比例函数(0)k y k x =>的图象于Q ,32OQC S ∆=,则k的值和Q 点的坐标分别为______________.ky x =1y x=(第38题图)第39题图41.当m 取什么数时,函数2)1(--=m xm y 为反比例函数式?42.已知反比例函数102)2(--=m x m y 的图象,在每一象限内y 随x 的增大而减小,求反比例函数的解析式.43.平行于直线y x =的直线l 不经过第四象限,且与函数3(0)y x x=>和图象交于点A ,过点A 作AB y ⊥轴于点B ,AC x ⊥轴于点C四边形ABOC 的周长为8.求直线l 的解析式.44.已知正比例函数的图象与反比例函数(为常数,)的图象有一个交点的横坐标是2.(1)求两个函数图象的交点坐标;(2)若点,是反比例函数图象上的两点,且,试比较的大小.45.已知一次函数y kx b =+的图象与反比例函数my x=的图象相交于A (-6,-2)、B (4,3)两点.(1)求出两函数解析式;(2)画出这两个函数的图象;(3)根据图象回答:当x 为何值时,一次函数的函数值大于反比例函数的函数值?46.如图,直线y =x +1与双曲线x2y =交于A 、B 两点,其中A 点在第一象限.C 为x 轴正半轴上一点,且S △ABC =3.(1)求A 、B 、C 三点的坐标;(2)在坐标平面内,是否存在点P ,使以A 、B 、C 、P 为顶点的四边形为平行四边形?若存在,请直接写出点P 的坐标,若不存在,请说明理由.47.为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比;药物释放完毕后,y 与y kx =5ky x-=k 0k ≠11()A x y ,22()B x y ,5ky x-=12x x <12y y ,3(0)x x>(第47题)t 的函数关系式为tay =(a 为常数),如图所示.据图中提供的信息,解答下列问题: (1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围; (2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?48.我们学习了利用函数图象求方程的近似解,例如:把方程的解看成函数的图象与函数的图象交点的横坐标.如图,已画出反比例函数在第一象限内的图象,请你按照上述方法,利用此图象求方程的正数解.(要求画出相应函数的图象;求出的解精确到0.1)49.如图,帆船A 和帆船B 在太湖湖面上训练,O 为湖面上的一个定点,教练船静候于O点.训练时要求A 、B 两船始终关于O 点对称.以O 为原点.建立如图所示的坐标系,轴、y 轴的正方向分别表示正东、正北方向.设A 、B 两船可近似看成在双曲线上运动,湖面风平浪静,双帆远影优美.训练中当教练船与A 、B 两船恰好在直线上时,三船同时发现湖面上有一遇险的C 船,此时教练船测得C 船在东南45°方向上,A 船测得AC 与AB 的夹角为60°,B 船也同时测得C 船的位置(假设C 船位置213x x -=-21y x =-3y x =-1y x=210x x --=x 4y x=y x=不再改变,A 、B 、C 三船可分别用A 、B 、C 三点表示).(1)发现C 船时,A 、B 、C 三船所在位置的坐标分别为 A( , )、B( ,)和C(,);(2)发现C 船,三船立即停止训练,并分别从A 、O 、B 三点出发沿最短路线同时前往救援,设A 、B 两船 的速度相等,教练船与A 船的速度之比为3:4,问教练船是否最先赶到?请说明理由。
九年级春季数学下册听课笔记:第二十六章反比例函数-反比例函数在实际中的应用
2024九年级春季数学下册听课笔记:第二十六章反比例函数- 反比例函数在实际中的应用1. 导入教师行为:•通过生活实例引入,如:“同学们,你们有没有注意过,当我们在超市购物时,购买的商品数量增加,但每样商品的单价保持不变,总价却会如何变化呢?又或者在长途旅行中,车速越快,所需时间就越短,但行驶的总路程是固定的。
这些现象背后都隐藏着一个数学规律——反比例关系。
”•提问学生:“谁能尝试用数学语言描述一下刚才提到的现象?”引导学生思考反比例关系的本质。
学生活动:•倾听教师讲述,思考并尝试用自己的话描述反比例关系。
•部分学生可能会尝试用“一个量增大,另一个量减小,但它们的乘积保持不变”来概括。
过程点评:•导入环节贴近生活实际,能够有效激发学生的兴趣和好奇心,为后续学习奠定基础。
•通过提问引导学生主动思考,培养学生的逻辑思维能力和语言表达能力。
2. 教学过程(重点详细)2.1 理论讲解教师行为:•正式介绍反比例函数的定义:“如果两个变量的乘积是一个常数(k ≠ 0),那么它们之间的关系就是反比例关系,可以表示为y = k/x(其中x ≠ 0)。
”•讲解反比例函数的图像特征,如双曲线、两支曲线关于原点对称等。
学生活动:•认真听讲,记录反比例函数的定义和图像特征。
•通过教师给出的例子,尝试画出简单的反比例函数图像。
过程点评:•理论讲解清晰明了,有助于学生建立正确的概念体系。
•通过图像特征的讲解,加深学生对反比例函数性质的理解。
2.2 实例分析教师行为:•展示几个反比例函数在实际生活中的应用案例,如电流与电阻的关系、速度与时间的关系等。
•分析每个案例中的反比例关系,并引导学生建立数学模型。
学生活动:•积极参与讨论,分析每个案例中的反比例关系。
•尝试根据教师引导,建立相应的数学模型。
过程点评:•实例分析贴近学生生活,有助于学生将理论知识与实际应用相结合。
•通过分析案例,培养学生的问题解决能力和数学建模能力。
3. 板书设计(提纲式)4. 作业布置•完成课本上关于反比例函数应用的练习题,要求每题都写出详细的解题过程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重点例题 2
“重点突破”
2、如图,点A是双曲线y=- k x 与直线y=-x-k在第二象限内的交 点,AB⊥x轴于B, 1 且S△ABO= . 2 (1)求这两个函数的解析式; (2)求直线与双曲线的两个交 点A、C的坐标和△AOC的面积.
想一想
“慧眼”辩真伪
难点解决
例3 函数 的图象上有三点
(-3,y (-1,y 则函数值y (- 1), (- 2), (2,y3),则函数值 1、y2、y3的 则函数值 大小关系是_______________。 。 大小关系是
想一想
难点解决
6
y
6
y
4
4
2
2
-5
O
-2
5
x
-5
O
-2
5
x
4.如图,函数y=k/x和 .如图,函数 和 y=-kx+1(k≠0)在同一 - 在同一 坐标系内的图象大致是 ( ) 先假设某个函数 图象已经画好, 图象已经画好, 再确定另外的是否 符合条件. 符合条件.
-4
-4
6
y
6
y
4
4
2
2
-5
O
-2
2.已知矩形的面积是10cm2,若矩形的长为acm,宽 为bcm,则a与b的函数图象大致是( ).
b/cm b/cm b/cm b/cm
o o (1)
a/cm
a/cm
o (2)
a/cm
o (3)
a/cm
(4)
做一做
提高从函数的图象中获取信息的能力
基础练习(B)组
说一说,当你看到下面的图象时,你能从中知道k和b的取值范围 说一说,当你看到下面的图象时,你能从中知道k 你能从中知道它们的增减性吗? 吗?你能从中知道它们的增减性吗? y y = kx + b y
1
基础巩固 练 习 2 某商场出售一批进价为2元的贺卡,在市场营销中发现此商 品的日销售单价x(元)与日销售量y(个)之间有如下关系:
日销售单价x 日销售单价x(元) 3 4 5 6
日销售量y(个 日销售量y(个) y(
20
Байду номын сангаас
15
12
10
(1)根据表中数据,在直角坐标系中描出实数对(x,y) 的对应点; (2)猜测并确定y与x之间的函数关系式,并画出图象; (3)设经营此贺卡的销售利润为W元,求出W与x之间的函 数关系式.若物价局规定此贺卡的售价最高不能超过10元/个, 请你求出当日销售单价x定为多少时,才能获得最大日销售利 润?
y = k x y = k x
o
x
o
x
挑战“图形信息”
做一做
是谁先摘到“金牌 k ” y =
反比例函数
基础练习(C)组
x
S1 S2 R • S3
S1、S2 、 S3 有什么关系?为什么? 有什么关系?为什么?
重点例题 1
“重点突破”
1、一定质量的氧气,它的密度ρ(kg/m3)是它的体 积(m3)的反比例函数,当=10m3时ρ=1.43kg/m3. (1)求ρ与的函数关系式 (2)求当=2m3时,氧气的密度ρ.
做一做
思维慎密
基础练习(A)组
1、近视眼镜的度数y(度)与镜片焦距x成反比例.已知400度近视眼 镜片的焦距为0.25米,则眼镜度数y与镜片焦距x之间的函数关系式 是 . k y= 2、如果反比例函数 . x 的图象过点(2,-3),那么k = 当x<0时,函数图象在第 象限,y随x的增大而 . 3、已知y与(2x+1)成反比例,且当x=1时,y=2,那么当x=0,y 的值是 . 4、反比例函数 y =
x
2.某村有耕地 某村有耕地346.2公顷 人口数量 逐年发生变化 公顷,人口数量 逐年发生变化, 某村有耕地 公顷 人口数量n逐年发生变化 那么该村人均占有耕地面积m(公顷 公顷/人 是全村人 那么该村人均占有耕地面积 公顷 人)是全村人 口数n的反比例函数吗?表达式是为什么 表达式是为什么? 口数 的反比例函数吗 表达式是为什么
反比例函数的图象和性质 形状 反比例函数的图象是双曲线; 位置 当k>0时, 第一,三象限内;当k<0时, 第二,四 象限内; 增减性 当k>0时,在每一象限内,y随x的增大而减小; 当k<0时,在每一象限内,y随x的增大而增大. 图象的发展趋势 反比例函数的图象无限接近于x,y 轴,但永远达不到x,y轴,画图象时,要体现出这个特点. 对称性 反比例函数的图象既是轴对称图形又是中心 对称图形
m = 346 . 2 n
回顾与思考 1
挑战“记忆”
我反思——我进步
2 2 1.画出函数 y = x 和 y = − 的草 x
图 2.你能总结一下反比例函数的图 象特征吗?
回顾与思考 2
温故而知新
反比例 函数
一般地 , 如果两个变量 x , y 之间的关系可以表示成 k y = (k 为常数 , k ≠ 0 )的形式那么称 y 是 x 的反比例函数 . x
九年级(下 数学总复习 九年级 下)数学总复习
反比例函数与应用
班级:九年级( ) 班级:九年级(11) 授课教师: 授课教师:周建龙
回顾与思考 1
挑战“记忆”
我反思——我进步
1.一个矩形的面积是 一个矩形的面积是20cm2,相邻的两条边长为 一个矩形的面积是 相邻的两条边长为 xcm和y cm,那么变量 是x反比例函数吗 表达式 那么变量y是 反比例函数吗 反比例函数吗?表达式 和 那么变量 20 是什么? 是什么 y =
5
x
-5
O
-2
5
x
-4
-4
知识的升华
基础巩固练习 1
1 ,1)和Q(- 1、一个反比例函数图像过点P( 一个反比例函数图像过点P ,m ) 6 6 那么m=______ 那么m=______ 3 的图象上, 已知点A( 2,y1),B(-1,y2)都在反比例函数 A(2、已知点A(-2,y1),B(-1,y2)都在反比例函数 y= x 的图象上, y1与y2的大小关系 则y1与y2的大小关系______ 某闭合电路中,电源电压为定值,电流I 与电阻R 3、某闭合电路中,电源电压为定值,电流I(A)与电阻R(Ω) 成反比例.下图表示的是该电路中电流I与电阻R 成反比例.下图表示的是该电路中电流I与电阻R之间函数关系的 图象,则用电阻R表示电流I 图象,则用电阻R表示电流I的函数解析式为______ 如图A 是函数y= x 的图象上任意两点,过点A 4、如图A、C是函数y= k 的图象上任意两点,过点A作y轴的 垂线,垂足为B 过点C 轴的垂线,垂足为D RtΔAOB的面 垂线,垂足为B,过点C作y轴的垂线,垂足为D,记RtΔAOB的面 积为S1 Rt△ S1, 的面积S2 积为S1,Rt△COD 的面积S2 ,则( ) S1> B.S1< A.S1>S2 B.S1<S2 D、S1和S2的大小关系不能确定 C.S1 =S2 D、S1和S2的大小关系不能确定
那么m的取值范围是( ) A、m<0 B、m>0 C、m<5 D、m>5 5、已知反比例函数的图象经过点(1,2),则它的图象也一定经过 ( ) A、(-1,-2) B、(-1,2) C、(1,-2)D、(-2,1)
m−5 x 的图象的两个分支分别在第二、四象限内,
做一做
面积计算中的函数
基础练习(B)组
下课了!
祝你成功!
必做题P39 基础自测 1~7 作业 :必做题 选做题P40 综合提升 综合提升1~4 选做题