数学会考练习7
河北会考复习资料高中
河北会考复习资料高中
河北会考是河北省的一项高考制度,对于所有高二学生来说都是一种非常关键的测试。
为了帮助学生们更好地备考,许多出版社和教育机构都推出了各种各样的复习资料。
本文将介绍一些高中生们可能用到的河北会考复习资料。
第一类是教辅类,包括各类预测试题和练习题。
这些教辅材料包括填空、选择、判断、简答和论述等各种形式的题目,还提供了详细的解析和复习技巧。
例如,《河北会考语文》、《河北会考数学》等各种科目的辅导书都可以帮助学生们更好地复习知识点,了解备考重点。
第二类是视频类,包括各类网络教学视频和录播课程。
这些视频课程可以帮助学生们更好地理解复杂的概念,掌握备考技巧。
例如,《小语种报名指南》、《商务英语教育》等各种科目的视频教学可以帮助学生们更好地备考,并在考试中获得高分。
第三类是网络在线复习平台,这些平台提供了各种河北会考科目的题库和模拟考试功能。
学生们可以通过这些平台进行在线模拟考试,提高应对考试的能力,并及时检查自己在备考中的薄弱
环节。
例如,《河北会考英语模拟考试系统》、《河北会考化学模拟考试系统》等等,都可以帮助学生们更好地针对性复习。
总的来说,河北会考具有一定的难度和挑战性。
对于高中生们来说,学习各种复习资料是必不可少的,可以帮助他们更好地备考。
无论何种复习资料,学生们都应该根据自己的情况进行合理的选择和学习。
在这个备考过程中,关键在于始终保持良好的心态,不断发掘自己的潜力和不足,才能更好地在考试中取得优异成绩。
高中会考数学试题及答案
高中会考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. √2C. 0.5D. 3.14答案:B2. 函数y=x^2+2x+1的图像是:A. 抛物线B. 直线C. 双曲线D. 圆答案:A3. 以下哪个选项是等比数列?A. 2, 4, 6, 8B. 1, 2, 4, 8C. 3, 6, 9, 12D. 5, 10, 15, 20答案:B4. 已知a=3,b=4,求a^2+b^2的值。
A. 25B. 29C. 37D. 415. 一个圆的半径为5,求该圆的面积。
A. 25πB. 50πC. 75πD. 100π答案:B6. 以下哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:D7. 以下哪个选项是不等式x+2>3的解集?A. x>1B. x<1C. x>-1D. x<-1答案:A8. 一个等差数列的首项是2,公差是3,求第5项的值。
A. 17B. 14C. 11D. 8答案:A9. 以下哪个选项是方程2x-3=7的解?B. x=3C. x=1D. x=-1答案:A10. 以下哪个选项是函数y=2sin(x)的图像?A. 正弦波形B. 余弦波形C. 正切波形D. 直线答案:A二、填空题(每题4分,共20分)11. 计算(3+4i)(2-i)的结果为______。
答案:8+5i12. 已知等差数列的第3项是7,第5项是11,求公差d。
答案:213. 计算极限lim(x→0) (sin(x)/x)的值为______。
答案:114. 已知函数f(x)=x^2-4x+3,求f(2)的值。
答案:-115. 计算定积分∫(0 to 1) x^2 dx的结果为______。
答案:1/3三、解答题(每题10分,共50分)16. 求函数y=x^3-3x^2+2x的导数。
答案:y'=3x^2-6x+217. 证明函数f(x)=x^2在(0, +∞)上是增函数。
二年级数学重点内容及易错题(下册)
二年级数学重点内容及易错题(下册)第一单元数据收集整理1、用画“正”字的方法收集数据。
2、用统计图表来表示数据的情况。
3、根据统计图表可以做出一些判断。
4、数据收集---整理---分析表格。
第二单元表内除法(一)一、平均分1、平均分的含义:把一些物品分成几份,每份分得同样多,叫平均分。
2、平均分的方法:(1)把一些物品按指定的份数进行平均分时,可以一个一个的分,也可以几个几个的分,直到分完为止。
(2)把一些物品按每几个一份平均分,分时可以想:这个数可以分成几个这样的一份。
二、除法1、除法算式的含义:只要是平均分的过程,就可以用除法算式表示。
2、除法算式的读法:通常按照从前往后顺序读,“÷”读作除以,“=”读作等于,其他读法不变。
3、除法算式各部分的名称:在除法算式中,除号前面的数叫被除数,除号后面的数叫除数,所得的数叫商。
三、用2~6的乘法口诀求商1、求商的方法:(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口诀求商。
2、用乘法口诀求商时,想除数和几相乘等于被除数。
四、解决问题1、解决有关平均分问题的方法:总数÷每份数=份数被除数=商×除数总数÷份数=每份数被除数=商×除数+余数一个因数=积÷另一个因数数除=被除数÷商2、用乘法和除法两步计算解决实际问题的方法:(1)所求问题要求求出总数,用乘法计算;(2)所求问题要求求出份数或每份数,用除法计算。
第三单元图形的运动(一)1、轴对称图形:沿一条直线对折,两边完全重合。
对折后能够完全重合的图形是轴对称图形,折痕所在的直线叫对称轴。
成轴对称图形的汉字:一,二,三,四,六,八,十,大,干,丰,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,画,伞,王,人,非,菲,天,典,奠,旱,春,亩,目,山,单,杀,美,品,工,天,网,回,喜,莫,罪,夫,黑,里,亚。
2、平移:当物体水平方向或竖直方向运动,并且物体的方向不发生改变,这种运动是平移。
数学会考试题及答案
数学会考试题及答案一、选择题1. 下列哪个数是素数?A. 12B. 13C. 14D. 15答案:B2. 已知函数f(x) = 2x + 5,求f(3)的值是多少?A. 6B. 7C. 8D. 9答案:C3. 以下哪个是一个等差数列?A. 1, 3, 5, 8, 10B. 2, 4, 7, 9, 11C. 1, 1, 2, 3, 5D. 1, 2, 4, 8, 16答案:B二、填空题1. 设正整数a和b满足a + b = 10,且ab = 16,求a的值是多少?答:22. 若两个数的比为3:5,且差为8,求这两个数的和是多少?答:323. 若一个数的16%等于20,求这个数。
答:125三、解答题1. 求下列方程的解:2x - 5 = 3x + 1解:移项得:2x - 3x = 1 + 5,化简得:-x = 6,再变号得:x = -62. 已知一个正方形的边长为x+3,求其面积。
解:正方形的面积为边长的平方,所以面积为(x+3)^2。
四、应用题1. 甲、乙、丙三个人从城市A出发,分别以每小时10公里、12公里和15公里的速度前往城市B,已知三人同时出发且距离城市B有150公里,问他们何时会在城市B相遇?(假设他们一直以恒定速度行进)解:设相遇时间为t小时,甲、乙、丙分别走了10t、12t和15t公里,则有10t + 12t + 15t = 150,解得t = 5。
所以他们将在5小时后在城市B相遇。
2. 一个长方形花坛的长是6米,宽是4米,现在要在周围修建一个相等宽度的围墙来保护花坛,求这个围墙的长度。
解:长方形花坛的周长为2(长 + 宽),即2(6 + 4) = 20。
所以这个围墙的长度为20米。
以上是数学会考试题及答案的示范,题目和题型仅供参考。
实际的数学会考可能包含更多题目和题型,请考生根据实际考试内容进行准备。
人教版六年级数学下册毕业会考模拟检测卷含答案(3套)
毕业会考模拟检测卷(1)一、填空。
(每空1分,共16分)1.958000000读作( ),改写成以“万”作单位的数是( ),省略亿位后面的尾数约是( )。
2. 如果-80元表示支出80元,那么+150元表示( )。
3.67能同时被2、3、5整除,个位上的数字是( ),百位上最大能填( )。
4.4.05 L =( )dm 3( ) cm 334小时=( )分钟5.在长18.8 cm ,宽9.2 cm 的长方形纸中,剪半径为1.5 cm 的圆,一共可以剪( )个。
6.一个三角形与一个平行四边形等底等高,平行四边形的面积是64.8cm 2,三角形的面积是( )cm 2。
7.一支钢笔a 元,比一个笔记本价钱的2.4倍少b 元,一个笔记本( )元。
8.一个两位小数,四舍五入到十分位约是3.0,这个两位小数最大是( ),最小是( )。
9.一条公路,已经修了59,已修和未修的路程的比是( )。
10.a 是b 的60%,b 是c 的23,则a 是c 的( )%。
(c ≠0) 二、判断。
(对的画“√”,错的画“×”)(每题2分,共12分)1.一个自然数(0除外)不是质数,就是合数。
( ) 2.生产90个零件,有10个不合格,合格率是90%。
( ) 3.一个棱长为6分米的正方体的表面积和体积相等。
( ) 4.某种奖劵的中奖率为10%,则每买100张肯定有10张中奖。
( ) 5.因为0.25×4=1,所以0.25和4互为倒数。
( ) 6.大于25而小于45的分数只有35。
( ) 三、选择。
(把正确答案的序号填在括号里)(每题2分,共10分) 1.一个锐角三角形的任意两个锐角的和一定( )第三个锐角。
A .大于B .小于C .等于D .无法确定2.将圆柱的底面半径扩大为原来的2倍,高不变,则圆柱的体积增加( )倍。
A .2 B .3 C .7 D .83.下列分数中,能化成有限小数的是( )。
全优练考卷答案六年级答案
全优练考卷答案六年级答案全优练考卷答案六年级答案【篇一:最新苏教版六年级数学上册数学练习与测试全部答案】class=txt>⑴选择3中颜色,把长方体的4条长、4条宽和4条高分别用不同的颜色涂一涂。
答:这个正方体的表面积是96平方厘米。
3:16 1 4:宽长/cm /cm12 6 1 2 高/cm 1 1 体积切成9个第7页5:序号③④⑤⑥涂上红色,上面和下面涂上黄色。
2:⑴6 45 ⑵长方2 ⑶正方16第3页第4页1:fdce 2:a 3:第一个4:115 2 55第6页1:⑴ b ⑵ c ⑶c2:图=108--62=66第8页第9页2:①② 3:①②③4:最后一个第10页1:⑴立方厘米⑵升⑶立方厘米⑷立方米2:⑴c⑵abc第11页32212做一做序号①②③④⑤⑥顶点/个4 6 65 810棱/条6 9 9 8112 5面/个4 5 5 5 6 7 v+f--e=2第12页第13页第14页第15页顶点/ 4 6 6 5 8 10 棱/条6 9 9 8 12 15 面/个4 5 5 5 6 7 序号③④⑤⑥长/厘2114 2 26 4 3宽/厘1 2 1 2 3 2高/厘米1 12 2 2 4⑤⑥两种面积小第16页答案1:⑴ c ⑵b⑶b2:5700 5.9 60 8.033:9.03 9030 1270 1.27 345 0.345 4.094090 4:36 48第17页答案第18页答案3:不相等空白部分的面积是160-60=100(平方厘米)。
】总的面积比表面积大,因为总面积有接头体积第19页答案⑵b1:3/20 9/20 2:3/83/5 3:6/35 25/6 1/104:(1)4/5x5/8=1/2 (2) 5/6x2/3=5/9第35页答案1:1/2 3/4 1/3 2/309/22/39/11第29页答案00=880第20页答案⑷ √ ⑸ √ 2:⑴ b ⑵ c ⑶ b第21页答案3:100100.91.351.35 200520054:75 60 60第22页答案1:<=>=2:⑴ a ⑵ c ⑶ a第23页答案第25页答案1 (3)3/16 (4)35/722:7:9/10x1/3=3/1 图形正三角形正方形正五边形9/10x2/9=1/5 正六边形边长2/5分米3/4分米7/109/10x=4/9=2/5 分米5/8分米周长6/5分米3分米7/2分米8:3/8x3/4 15/4分米1:82 3/5第26页答案5/72 13/2500 400 3:120x5/8x6/5=90小班15--5--6=46:1/2x1/2x1/2=1/8第27页答案第32页答案1:⑴小兰小1:7 1500 华比小兰多看375 65⑵计划实际比计2:2/3 5/6 7/6划节约3/103/223:<><><3--3/5=12/5分的三角形有1+2+3=第34页答案6(个),涂色部分的面积是2:94/5 1 5/3第36页答案1:<<<>2:⑴计划实际⑵计划实际比计划增加⑶计划实际比计划减少第37页答案第39页答案1:2/119/50 2:1/60 1/182/13第40页答案1:⑴图意不明,如果选就选c⑵图意不明,如果选就选b ⑶c第41页答案1:92:⑴题目可能有问题⑵a1:1/24 1/3 3/2速度/(千米/时)=4+1 =5第52页答案1:路时路程和程/间时间最千/简整数米时比第56页答案第47页答案16/15 =8/25第42页答案2: ⑴果树总数苹果树解设:……7/12x=707 x=1212⑵宇宙飞船卫星解设:…… 40/57x=8 x=57/5第43页答案3: 解设:……3/4x=9 x=12第44页答案1:12/251/1872 2:⑴篮球足球第45页答案做一做竖行都是24 6 8被除数和除数同时缩小相同的倍数,商不变。
人教版初1数学7年级下册 第7章(平面直角坐标系)过关练习(含答案)
人教七下数学过关练习第七章平面直角坐标系一、选择题1. 某班级第4组第5排位置可以用数对(4,5)表示,则数对(2,3)表示的位置是( )A.第3组第2排B.第3组第1排C.第2组第3排D.第2组第2排2. 根据下列表述,能确定位置的是( )A.运城空港北区B.给正达广场3楼送东西C.康杰初中北偏东35∘D.东经120∘,北纬30∘3. 若点P(m−1,m+2)在y轴上,则2m2−1的值为( )A.1B.−1C.2D.−24. 平面直角坐标系中有一点P,点P到y轴的距离为2,点P的纵坐标为−3,则点P的坐标是( )A.(−3,−2)B.(−2,−3)C.(2,−3)D.(2,−3)或(−2,−3)5. 将点A先向下平移3个单位,再向右平移2个单位后得B(−2,5),则A点坐标为( )A.(−4,11)B.(−2,6)C.(−4,8)D.(−6,8)6. 在平面直角坐标系中,点P(m−3,2−m)不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限7. 如图,建立平面直角坐标系,使点E,G的坐标分别为(−5,2)和(1,−1),则坐标为(2,2)的点是( )A.点A B.点B C.点C D.点D8. 点A(m−1,n+1)在平面直角坐标系中的位置如图所示,则坐标为(m+3,n−3)的点是( )A.P点B.B点C.C点D.D点9. 在平面直角坐标系中,一个长方形的三个顶点坐标分别为(−2,−2),(−2,3),(5,−2),则第四个顶点的坐标为( )A.(5,3)B.(3,5)C.(7,3)D.(3,3)10. 点A的坐标为(−2,−1),点B的坐标为(0,−2),若将线段AB平移至AʹBʹ的位置,点Aʹ的坐标为 (a,2),点 Bʹ 的坐标为 (1,b ),则 a +b 的值为 ( ) A . 0B . 2C . 4D . 511. 如图,在平面直角坐标系中有一个 2×2 的正方形网格,每个格点的横、纵坐标均为整数,已知点 A (1,2),作直线 OA 并向右平移 k 个单位,要使分布在平移后的直线两侧的格点数相同,则 k 的值为 ( )A . 14 B . 13C . 12D . 1二、填空题12. 一只蚂蚁先向上爬 4 个单位长度,再向左爬 3 个单位长度后,到达 (0,0),则它最开始所在位置的坐标是.13. 点 A 与点 B 的纵坐标相同,横坐标不同,则直线 AB 与 y 轴的位置关系是 .14. 已知点 P (3,a ) 关于 y 轴的对称点为 Q (b,2),则 ab = .15. 若点 A (a +1,b ) 在第二象限,则点 B (−a,b +1) 在 象限.16. 点 P 的坐标 (2−a,3a +6),点 P 在第四象限且点 P 到两坐标轴的距离相等,则点 P 的坐标是.三、解答题17. 如图,已知火车站的坐标为 (2,2),文化宫的坐标为 (−1,3).(1) 请你根据题目条件,画出平面直角坐标系;(2) 写出体育场、市场、超市的坐标.18. 如图,△ABC在直角坐标系中,(1) 请写出△ABC各点的坐标;(2) 求出S△ABC;(3) 若把△ABC向上平移2个单位,再向右平移2个单位得△AʹBʹCʹ,在图中画出△ABC变化的位置,写出Aʹ,Bʹ,Cʹ的坐标,并求出线段BC在平移过程中扫过的面积.19. 已知平面直角坐标系中有一点M(2m−3,m+1).(1) 点M到y轴的距离为1时,求M的坐标.(2) 点N(5,−1),且MN∥x轴时,求M的坐标.(3) 点M在第二象限的角平分线上,求M的坐标.20. 如图,在平面直角坐标系中,点A,B的坐标分别为(−1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD.(1) 求点C,D的坐标及四边形ABDC的面积S四边形ABDC;(2) 在y轴上是否存在一点P,连接PA,PB,使S△PAB=S四边形ABDC若存在这样一点,求出点P的坐标;若不存在,试说明理由.21. 在平面直角坐标系xOy中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”.例如,点P(1,4)的“3级关联点”为Q (3×1+4,1+3×4),即Q(7,13).级关联点”是点A1,点B(1,b)的“2级关联点”是点B1(3,3),求点(1) 已知点A(−2,6)的“12A1和点B的坐标.(2) 已知点M(m−1,2m)的“−3级关联点”Mʹ位于y轴上,求Mʹ的坐标.(3) 已知点C(−1,3),D(4,3),点N(1,y)和它的“4级关联点”Nʹ到CD所在直线的距离相等.求点N及Nʹ的坐标.答案一、选择题1. 【答案】C2. 【答案】D3. 【答案】A4. 【答案】D5. 【答案】C6. 【答案】A【解析】①m−3>0,即m>3时,2−m<0,∴点P(m−3,2−m)在第四象限;②m−3<0,即m<3时,2−m有可能大于0,也有可能小于0,点P(m−3,2−m)可以在第二或第三象限,综上所述,点P不可能在第一象限.7. 【答案】B8. 【答案】C9. 【答案】A10. 【答案】A【解析】根据题意得a=−2+1=−1,b=−2+3=1,把a=−1,b=1代入a+b=−1+1=0.11. 【答案】C【解析】如图所示,设直线OA为y=ax,则由点A(1,2),可得2=a,y=2x,又∵平移后的直线两侧的格点数相同,∴平移后的直线经过点B(2,3),设直线BC的解析式为y=2x+b,则由B(2,3),可得3=4+b,解得b=−1,∴y=2x−1,令y=0,则x=1,即,0,2∴OC=1,2∴k的值为1.2二、填空题12. 【答案】(3,−4)13. 【答案】垂直14. 【答案】−615. 【答案】第一16. 【答案】(6,−6)【解析】∵点P的坐标(2−a,3a+6),点P在第四象限且点P到两坐标轴的距离相等,∴2−a+3a+6=0,解得:a=−4,故点P的坐标是:(6,−6).三、解答题17. 【答案】(1) 如图所示:(2) 体育场(−2,5),市场(6,5),超市(4,−1).18. 【答案】(1) A(−1,−1),B(4,2),C(1,3).(2) S△ABC=5×4−12×3×5−12×3×1−12×2×4=7.(3) Aʹ(1,1),Bʹ(6,4),Cʹ(3,5).S四边形BCCʹBʹ=3×5−2×12×2×2−2×12×3×1=8.19. 【答案】(1) ∵点M(2m−3,m+1),点M到y轴的距离为1,∴∣2m−3∣=1,解得m=1或m=2,当m=1时,点M的坐标为(−1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(−1,2)或(1,3).(2) ∵点M(2m−3,m+1),点N(5,−1)且MN∥x轴,∴m+1=−1,解得m=−2,故点M的坐标为(−7,−1).(3) 根据题意得2m−3+m+1=0,解得m=23,∴点M的坐标为−5320. 【答案】(1) 依题意,得C(0,2),D(4,2),∴S四边形ABDC=AB×OC=4×2=8;(2) 在y轴上存在一点P,使S△PAB=S四边形ABDC.理由如下:设点P到AB的距离为ℎ,S△PAB=12×AB×ℎ=2ℎ,由S△PAB=S四边形ABDC,得2ℎ=8,解得ℎ=4,∴P(0,4)或P(0,−4).21. 【答案】(1) ∵点A(−2,6)的“12级关联点”是点A1,∴A1−2×12+6,−2+12×6,即A1(5,1).∵点B(1,b)的“2级关联点”是B1(3,3),∴2+b=3,解得b=1,∴B(1,1).(2) ∵点M(m−1,2m)的“−3级关联点”为Mʹ(−3(m−1)+2m,m−1+(−3)×2m),Mʹ位于y轴上,∴−3(m−1)+2m=0,解得:m=3,∴m−1+(−3)×2m=−16,∴Mʹ(0,−16).(3) 根据题意得Nʹ(4+y,1+4y),①当点N和Nʹ在直线CD同侧时,1+4y=y,解得y=−13,此时N1,−②当点N和Nʹ在直线CD异侧时,1+4y−3=3−y,解得y=1,此时N(1,1),Nʹ(5,5).。
四川省2020年高中招生考试暨初中毕业会考第二轮复习《解直角三角形》专题练习题(无答案)
四川省二○二〇年高中招生考试暨初中毕业会考第二轮复习《解直角三角形》专题练习题班级: 学号: 姓名: 成绩: 1、某区域平面示意图如图所示,点D 在河的右侧,红军路AB 与某桥BC 互相垂直。
某校“数学兴趣小组”在“研学旅行”活动中,在C 处测得点D 位于西北方向,又在A 处测得点D 位于南偏东65°方向,另测得m BC 414=,m AB 300=,求出点D 到AB 的距离。
(参考数据91.065sin ≈︒,42.065cos ≈︒,14.265tan ≈︒)2、2019年,成都马拉松成为世界马拉松大满贯联盟的候选赛事,这大幅提升了成都市的国际影响力.如图,在一场马拉松比赛中,某人在大楼A 处,测得起点拱门CD 的顶部C 的俯角为35°,底部D 的俯角为45°,如果A 处离地面的高度20=AB 米,求起点拱门CD 的高度。
(结果精确到1米;参考数据:57.035sin ≈︒,82.035cos ≈︒,70.035tan ≈︒) 65°B CDA45°D3、渠县賨人谷是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为川东“小九寨”。
端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今。
一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离。
他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40°,从前脚落地点D 看上嘴尖A 的仰角刚好60°,m CB 5=,m CD 7.2=。
景区管理员告诉同学们,上嘴尖到地面的距离是3m 。
于是,他们很快就算出了AB 的长。
你也算算?(结果精确到0.1m 。
参考数据:64.040sin ≈︒,77.040cos ≈︒,84.040tan ≈︒,41.12≈,73.13≈)4、如图,某数学兴趣小组为测量一颗古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪AF 测得古树顶端H 的仰角∠HFE 为45°,此时教学楼顶端G 恰好在视线FH 上,再向前走10米到达B 处,又测得教学楼顶端G 的仰角GED ∠为60°,点A 、B 、C 三点在同一水平线上。
人教版数学七年级下册第十章《数据的收集、整理与描述》周练习含答案
人教版数学七年级下册第十章《数据的收集、整理与描述》周练第十章数据的收集、整理与描述周周测1一选择题1.为了了解我市6 000名学生参加初中毕业会考数学考试的成绩情况,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这6 000名学生的数学会考成绩的全体是总体;②每个考生是个体;③200名考生是总体的一个样本;④样本容量是200.其中说法正确的有( )A.4个B.3个C.2个D.1个2.下列调查中:①调査本班同学的视力;②调查一批节能灯管的使用寿命;③为保证“神舟9号”的成功发射,对其零部件进行检查;④对乘坐某班次客车的乘客进行安检.其中适合采用抽样调查的是( )A.①B.②C.③D.④3.某校七年级共320名学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,则估计该校七年级学生在这次数学测试中达到优秀的人数大约有( )A.50人B.64人C.90人D.96人4.为了了解2014年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取1 000名学生的数学成绩,下列说法正确的是( )A.2014年昆明市九年级学生是总体B.每一名九年级学生是个体C.1 000名九年级学生是总体的一个样本D.样本容量是1 0005.某品牌电插座抽样检查的合格率为99%,则下列说法中正确的是( )A.购买100个该品牌的电插座,一定有99个合格B.购买100个该品牌的电插座,一定有1个不合格C.购买20个该品牌的电插座,一定都合格D.即使购买1个该品牌的电插座,也可能不合格6.为了解中学生获取资讯的主要渠道,设置“A:报纸,B:电视,C:网络,D:身边的人,E:其他”五个选项(五项中必选且只能选一项)的调查问卷,现随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图,该调查的方式及图中的a的值是( )A.全面调查,26B.全面调查,24C.抽样调查,26D.抽样调查,24二填空题7.一家电脑生产厂家在某城市三个经销本厂产品的大商场中进行调查,得到产品的销量占这三个大商场同类产品总销量的40%.由此他们在广告中宣传,他们的产品占国内同类产品销售量的40%.请你根据所学的统计知识,判断该宣传中的数据是否可靠:__________,理由是______________________________.三解答题8.为了了解中学生参加体育活动的情况,某校对部分学生进行了调查,其中一个问题是:“你平均每天参加体育活动的时间是多少?”共有4个选项:A.1.5小时以上B.1~1.5小时C.0.5小时D.0.5小时以下根据调查结果绘制了两幅不完整的统计图:请你根据以上信息解答下列问题:(1)本次调查活动采取了__________调查方式;(2)计算本次调查的学生人数;(3)请将图1中选项B的部分补充完整;(4)若该校有3 000名学生,你估计该校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下?9.某校九年级有1 200名学生,在体育考试前随机抽取部分学生进行体能测试,成绩分别记为A,B,C,D共四个等级,其中A级和B级成绩为“优”,将测试结果绘制成如下条形统计图和扇形统计图.(1)求抽取参加体能测试的学生人数;(2)估计该校九年级全体学生参加体能测试成绩为“优”的学生共有多少人?10.为了了解某市120 000名初中学生的视力情况,某校数学兴趣小组收集有关数据,并进行整理分析.(1)小明在眼镜店调查了1 000名初中学生的视力,小刚在邻居中调查了20名初中学生的视力,他们的抽样是否合理?并说明理由;(2)该校数学兴趣小组从该市七、八、九年级各随机抽取了1000名学生进行调查,整理他们的视力情况数据,得到如下的折线统计图.请你根据抽样调查的结果,估计该市120 000名初中学生视力不良的人数是多少?第十章数据的收集、整理与描述周周测1 参考答案与解析一、选择题1.C2.B3.D4.D5.D6.D二、填空题7.不可靠抽样不具有代表性三、解答题8.解:(1)抽样(2)60÷30%=200(名).答:本次调查的学生人数为200名.(3)选项B对应的人数为200-60-30-10=100(名),图略.(4)3000×5%=150(名).答:估计该校可能有150名学生平均每天参加体育活动的时间在0.5小时以下.9.解:(1)60÷30%=200(名).答:抽取参加体能测试的学生人数为200名.(2)由题意,C级对应人数为200×20%=40(名),则B级对应人数为200-60-40-15=85(名),1200×6085200+=670(名).答:估计该校九年级全体学生参加体能测试成绩为“优”的学生共有670人.10.解:(1)小明和小刚的抽象都不合理,抽样没有代表性.(2)120000×100049%100063%+100068%100010001000⨯+⨯⨯++=72000(名).答:估计该市120 000名初中学生视力不良的人数是72000名.第十章数据的收集、整理与描述周周测2一选择题1.下列调查中适合采用全面调查的是( )A.调查市场上某种白酒的塑化剂的含量B.调查电视机厂生产的电视机的使用寿命C.了解某火车的一节车厢内感染禽流感病毒的人数D.了解某城市居民收看辽宁卫视的时间2.以下问题,不适合用全面调查的是( )A.了解全班同学每周体育锻炼的时间B.某批种子的发芽率C.学校招聘老师,对应聘人员面试D.黄河三角洲中学调查全校753名学生的身高3.要反映台州市某一周每天的最高气温的变化趋势,宜采用( )A.条形统计图B.扇形统计图C.折线统计图D.频数分布统计图4.下图是某班学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是( )A.棋类组B.演唱组C.书法组D.美术组5.某住宅小区六月份1日至5日每天用水量变化情况如图所示,那么这5天平均每天的用水量是( )A.30吨B.31吨C.32吨D.33吨6.地球的水资源越来越枯竭,全世界都提倡节约用水,小明将自己家1月份至6月份的用水量绘制成折线图(如图),那么小明家这6个月的月平均用水量是( )A.10吨B.9吨C.8吨D.7吨二填空题7.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为__________.8.如图,某校根据学生上学方式的一次抽样调查结果,绘制出一个未完成的扇形统计图,若该校共有学生700人,则据此估计步行的有__________人.9.下列图1、图2是根据某中学为地震灾区捐款的情况而制作的统计图,已知该校在校学生3 000人,请根据统计图计算该校共捐款__________元.三解答题10.已知全班有40位学生,他们有的步行、有的骑车、还有的乘车来上学,根据以下已知信息完成统计表:11.以“你最喜欢的歌手(林俊杰、周杰伦、张韶涵、蔡依林、张杰、S·H·E)”为主题在班内进行调查,请设计一张问卷调查表.12.如图,图1表示的是某教育网站一周连续7天日访问总量的情况,图2表示的是学生日访问量占访问总量的百分比情况.观察图1,2,解答下列问题:(1)若这7天的日访问总量一共约为10万人次,求星期三的日访问量;(2)求星期日学生的日访问量;(3)请写出一条从统计图中得到的信息.第十章数据的收集、整理与描述周周测2 参考答案与解析一、选择题1.C2.B3.C4.B5.C6.A二、填空题7.40% 8.280 9.37770三、解答题10.1591611.解:答案不唯一,如:调查问卷在下面六个歌手(组合)中,你最喜欢的是().单选A.林俊杰B.周杰伦C.张韶涵D.蔡依林E.张杰F.S·H·E12.解:(1)由题意得,星期三的日访问量为10-0.5-1-1-1.5-2.5-3=0.5(万人次).(2)由题意得,星期日学生的日访问量为3×30%=0.9(万人次).(3)答案不唯一,如:此教育网站一周内学生的访问量呈稳定上升趋势.第十章数据的收集、整理与描述周周测3一选择题1.为绘制一组数据的频数分布直方图,首先要算出这组数据的变动范围,即是指数据的( ) A.最大值B.最小值C.个数D.最大值与最小值的差2.在对n个数据进行整理的频数分布表中,各组的频数之和等于( )A.n B.1 C.2n D.3n 3.如果一组数据共有30个,那么通常分成( )A.3~5组B.5~12组C.12~20组D.20~25组4.某频数分布直方图中,共有A,B,C,D,E五个小组,频数分别为10,15,25,35,10,则直方图中,长方形高的比为( )A.2∶3∶5∶7∶2 B.1∶3∶4∶5∶1C.2∶3∶5∶6∶2 D.2∶4∶5∶4∶25.一个容量为80的样本,最大值为141,最小值为50,取组距为10,则可以分成( ) A.10组B.9组C.8组D.7组6.一次数学测试后,某班40名学生的成绩被分为5组,第1~4组的频数分别为12,10,6,8,则第5组的频率是( )A.0.1 B.0.2 C.0.3 D.0.47.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,5月份这100户节则5月份这100A.1.00吨B.1.15吨C.1.23吨D.无法确定8.下图是某班45名同学爱心捐款额的频数分布直方图(每组含前一个边界值,不含后一个边界值),则捐款人数最多的一组是( )A.5~10元B.10~15元C.15~20元D.20~25元9.某棉纺厂为了了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如下表,则棉花纤维长度的数据在8≤x<32,这个范围的频率为( )棉花纤维长度x频数0≤x<818≤x<16216≤x<24824≤x<32632≤x<403A.0.8C.0.4 D.0.210.在500个数据中,用适当的方法抽取50个为样本进行统计,频率分布表中54.5~57.5这一组的频率(百分比)是0.15,那么估计总体数据在54.5~57.5之间的约有( ) A.150个B.75个C.60个D.15个二填空题11.九年级(3)班共有50名同学,下图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.12.对某校同龄的70名学生的身高进行测量,得到一组数据,其中最大值是175 cm,最小值是149 cm,对这组数据进行整理时,可得到其最大值与最小值的差为cm,如果确定它的组距(取整)为cm,那么组数为9.三解答题13.为了解居民月用水量,某市对某区居民用水量进行了抽样调查,并制成如下直方图.(1)这次一共抽查了_______户;(2)用水量不足10吨的有______户,用水量达到或超过16吨的有______户;(3)假设该区有8万户居民,估计用水量少于10吨的有多少户?14.在某市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A :乒乓球,B :篮球,C :跑步,D :跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下的条形统计图和扇形统计图.请你结合图中信息解答下列问题:(1)样本中喜欢B 项目的人数百分比是________; (2)把条形统计图补充完整;(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数约是多少?15.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的一次会议所用矿泉水的浪费情况进行调查.为期半天的会议中,每人发一瓶500毫升的矿泉水,会后对所发矿泉水喝剩的情况进行统计.大致可分为四种:A.全部喝完;B.喝剩约13;C.喝剩约一半;D.开瓶但基本未喝.同学们根据统计结果绘制成如下两个统计图:根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?并补全条形统计图;(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费矿泉水约多少毫升?(计算结果保留整数)(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40到60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500毫升/瓶)约有多少瓶?(可使用科学计算器)16.某校学生会干部对校学生会倡导的“助残”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图的统计图(图中信息不完整).已知A,B两组捐款人数的比为1∶5.捐款人数分组统计表请结合以上信息解答下列问题:(1)a=______,本次调查的样本容量是______;(2)先求出C组的人数,再补全“捐款人数分组统计图①”;(3)若该学校自愿捐款的学生有1500人,请估计捐款不少于30元的学生约有多少人?第十章数据的收集、整理与描述周周测3 参考答案与解析一、选择题1.D2.A3.B4.A5.A6.A7.B8.C9.A 10.B二、填空题11.92% 12.26 3三、解答题13.解:(1)100 (2)55 10(3)8×2035100+=4.4(万户).答:估计用水量少于10吨的有4.4户.14.解:(1)20%(2)B组对应人数为4444%×(1-44%-8%-28%)=20(人),图略.(3)1000×44%=440(人).答:估计全校喜欢乒乓球的人数约是440人.15.解:(1)参加会议的人数为25÷50%=50(人).C组对应的人数为50-10-25-5=10(人),图略.(2)1115001002510515032⎛⎫⨯⨯⨯+⨯+⨯+⨯⎪⎝⎭=18313≈183(毫升).答:这次会议平均每人浪费矿泉水约183毫升.(3)60×40602+×183÷500=1098(瓶).答:估计该单位一年中因此类会议浪费的矿泉水(500毫升/瓶)约有1098瓶.16.解:(1)20 500 解析:a=100×15=20,样本容量为(20+100)÷(1-40%-28%-8%)=500.(2)C组对应人数为500×40%=200(人),图略.(3)1500×(28%+8%)=540(人).答:估计捐款不少于30元的学生约有540人.第十章数据的收集、整理与描述周周测4一选择题1.一个容量为80的样本,最大值为150,最小值为59,取组距为10,则可以分成( )A.10组B.9组C.8组D.7组2.频数分布直方图反映了( )A.样本数据的多少B.样本数据的平均水平C.样本数据所分组数D.样本数据在各组的频数分布情况3.在频数分布直方图中,各个小组的频数比为1∶5∶4∶6,则对应的小长方形的高的比为( )A.1∶4∶5∶3B.1∶5∶3∶6C.1∶5∶4∶6D.6∶4∶5∶14.某棉纺厂为了解一批棉花的质量,从中随机抽取了20根棉花纤维进行测量,其长度x(单位:mm)的数据分布如表所示,则棉花纤维长度的数据在8≤x<32这个范围的百分比为( )棉花纤维长x(mm) 频数0≤x<8 18≤x<16 216≤x<24 a24≤x<32 632≤x<40 3A. 80%B.70%C.40%D.20%5.为了解我市某学校“书香校园”的建设情况,检查组在该校随机抽取40名学生,调查了解他们一周阅读课外书籍的时间,并将调查结果绘制成如图所示的频数分布直方图(每小组的时间值包含最小值,不包含最大值).根据图中信息估计该校学生一周课外阅读时间不少于4小时的人数占全校人数的百分比约等于( )A.50%B.55%C.60%D.65%二填空题6.考察40名学生的年龄,列频数分布表时,这些学生的年龄落在了4个小组中,第一、二、三组的数据个数分别是5,8,15,则第四组的频数是______.7.一个样本有50个数据,其中最大值是208,最小值是169,最大值与最小值的差是______;如果取组距为5,那么这组数据应分成______组,第一组的起点为________,第二组与第一组的分点为________.8.赵老师想了解本校“生活中的数学知识”大赛的成绩分布情况,随机抽取了100份试卷的成绩(满分为120分,成绩为整数),绘制成如图所示的统计图,由图可知,成绩不低于90分的共有______人.9.为迎接学校艺术节,七年级某班进行班级歌词征集活动,作品上交时间为星期一至星期五.班委会把同学们上交的作品件数按每天一组分组统计,绘制了频数分布直方图如下.已知从左至右各长方形的高的比为2∶3∶4∶6∶1,第二组的频数为9,则全班上交的作品有______件.10.为了增强环境保护意识,在6月5日“世界环境日”当天,在环保局工作人员指导下,若干名“环保小卫士”组成的“控制噪声污染”课题学习研究小组,抽样调查了全市40个噪声测量点在某时刻的噪声声级(单位:dB),将调查的数据进行处理(设所测数据是正整数),组别噪声声级分组/dB 频数百分比1 44.5~59.5 4 10%2 59.5~74.53 74.5~89.5 25%4 89.5~104.5 125 104.5~119.5 6合计40 100%如果全市共有的测量点约有______个三解答题11.某中学对八年级女生仰卧起坐的测试成绩进行统计分析,将数据整理后,画出频数分布直方图(如图).已知图中从左到右的第一、第二、第三、第四、第六小组的百分比依次是10%,15%,20%,30%,5%,第五小组的频数是36,根据所给的图填空:(1)第五小组的百分比是________;(2)参加这次测试的女生人数是________;若次数在24次(含24次)以上为达标,则该校八年级女生的达标率为________.12.为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:频数分布表(1)填空:a=______,b=________;(2)补全频数分布直方图;(3)该校九年级共有600名学生,估计身高不低于165 cm的学生大约有多少人?第十章数据的收集、整理与描述周周测4 参考答案与解析一、选择题1.A2.D3.C4.A5.C二、填空题6.127.39 8 168.5 173.5 8.279.48 10.60三、解答题11.(1)20% (2)180 55%12.16.解:(1)10 28%(2)155≤x<160对应人数为10,图略.(3)600×(28%+12%)=240(人).答:估计身高不低于165cm的学生大约有240人.第十章数据的收集、整理与描述周周测5一填空题1.七年级(2)班50名同学的一次考试成绩频率分布直方图如图所示,则71~90 分之间有_________人.2.某校为了了解九年级学生的体能情况,随机抽查了其中30名学生,测试了他们做1min 仰卧起坐的次数,并制成了如图所示的频数分布直方图,根据图示计算仰卧起坐次数在25~30次的频率是.3.如图是某校七年一班全班同学1min心跳次数频数直方图, 那么, 心跳次数在_______之间的学生最多,占统计人数的_____%.(精确到1%)二解答题4.如图是某单位职工的年龄(取正整数)的频数分布直方图, 根据图中提供的信息(每小组含最小值,不含最大值),回答下列问题:(1)该单位共有职工多少人?(2)不小于38岁但小于44岁的职工人数占职工总人数的百分比是多少?(3)如果42岁的职工有4人,那么年龄在42岁以上的职工有几人?5.已知一个样本,27,23,25,27,29,31,27,30,32,31,28,26,27,29,28, 24, 26,27,28,30,以2为组距画出频数分布直方图.6.为了增强学生的身体素质,某校坚持常年的全员体育锻炼,并定期进行体能测试.下面将某班学生立定跳远成绩(精确到0.1m)进行整理后,分成5组(含低值不含高值):1.60~1.80,1.80~2.00,2.00~2.20,2.20~2.40,2.40~2.60,已知前4个小组的频率分别是0.05,0.15,0.30,0.35,第五个小组的频数是9.(1)该班参加这项测试的人数是多少人?(2)请画出频数分布直方图;(3)成绩在2.00米以上(含2.00米)为合格,则该班成绩的合格率是多少?7.某小区便民超市为了了解顾客的消费情况,在该小区居民中进行调查,询问每户人家每周到超市的次数,下图是根据调查结果绘制的,请问:(1)这种统计图通常被称为什么统计图?(2)此次调查共询问了多少户人家?(3)有多少户居民每周去超市的次数不少于3次?(4)请将这幅图改为扇形统计图.8.为了了解学校开展“孝敬父母,从家务事做起”活动的实施情况,该校抽取八年级50名学生调查他们一周(按7天计算)做家务所用时间(单位:小时,调查结果保留一位小数),得到一组数据,并绘制成统计表,请根据表完成下列各题:(1(2)由以上信息判断, 每周做家务的时间不超过1.5h 的学生所占的百分比是________;(3)针对以上情况,写一个20字以内倡导“孝敬父母,热爱劳动”的句子.9.某班学生参加公民道德知识竞赛,将竞赛所取得的成绩(得分取整数) 进行整理后分成5组,并绘制成频率分布直方图,如下图所示,请结合直方图提供的信息, 回答下列问题.(1)该班共有多少名学生?(2)60.5~70.5这一分数段的频数、频率分别是多少?(3)根据统计图,提出一个问题,并回答你所提出的问题?10.为了进一步了解八年级学生的身体素质情况,体育老师对八年级(1) 班50名学生进行1min跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,如下图所示.组别次数x频数(人数)第4组第5组请结合图表完成下列问题.(1)表中的a=______;(2)请把频数直方图补充完整;(3)若八年级学生1min跳绳次数(x)达标要求是:x<120为不合格,120≤x<140 为合格,140≤x<160为良,x≥160为优,根据以上信息,请你给学校或八年级同学提一条合理化建议.第十章数据的收集、整理与描述周周测5 参考答案与解析一、填空题1.272.40%3.59.5~69.5 48%二、解答题4.解:(1)4+7+9+11+10+6+3=50(人).答:该单位共有职工50人.(2)6111050++×100%=56%.答:不小于38岁但小于44岁的职工人数占职工总人数的百分比是56%.(3)10-4+6+3=15(人).答:年龄在42岁以上的职工有15人.5.解:频数统计表如下:频数分布直方图略.6.解:(1)9÷(1-0.05-0.15-0.30-0.35)=60(人).答:该班参加这项测试的人数是60人.(2)各小组对应的人数分别为3,9,18,21,9,图略.(3)1-0.05-0.15=0.80=80%.答:该班成绩的合格率是80%.7.解:(1)这种统计图通常被称为频数分布直方图.(2)50+300+250+110+90+80+70+50=1000(户). (3)110+90+80+70+50=400(户).答:有400户居民每周去超市的次数不少于3次.(4)各小组在扇形统计图中对应的圆心角的大小分别为501000×360°=18°,3001000×360°=108°,2501000×360°=90°,1101000×360°=39.6°,901000×360°=32.4°,801000×360°=28.8°,701000×360°=25.2°,501000×360°=18°,如图.8.解:(1)表中从上到下依次填入:0.14 0.06 2 (2)58%(3)答案不唯一,如:孝敬父母,从心开始;热爱劳动,从做家务开始.9.解:(1)3+12+18+9+6=48(名). 答:该班共有48名学生(2)60.5~70.5这一分数段的频数是12,,频率是12×48=0.25.(3)若这次竞赛有3名学生的成绩为80分,如果成绩为80分及以上的为优秀,则该班这次竞赛的优秀率为多少?39648++×100%=37.5%. 答:该班这次竞赛的优秀率为37.5%.10.解:(1)12 (2)图略.(3)答案不唯一,如:希望八年级的每一位同学都积极参加日常体育锻炼,身体是学习的根本.第十章数据的收集、整理与描述周周测6一选择题1.x的值为( )A.15%B.10%2.下列调查中,最适合采用全面调查(普查)方式的是( )A.对重庆市初中学生每天阅读时间的调查B.对端午节期间市场上粽子质量情况的调查C.对某批次手机的防水功能的调查D.对某校九年级(3)班学生肺活量情况的调查3.下面调查方式中,合适的是( )A.调查你所在班级同学的身高,采用抽样调查方式B.调查湘江的水质情况,采用抽样调查的方式C.调查CCTV-5《NBA总决赛》栏目在我市的收视率,采用普查的方式D.要了解全市初中学生的业余爱好,采用普查的方式4.为了解某市参加中考的45 000名学生的身高情况,抽查了其中1 500名学生的身高进行统计分析.下面叙述正确的是( )A.45 000名学生是总体B.抽查的1 500名学生的身高是总体的一个样本C.每名学生是总体的一个个体D.以上调查是全面调查5.蜀山区三月中旬每天平均空气质量指数(AQI)分别为:118,96,60,82,56,69,86,112,108,94,为了描述这十天空气质量的变化情况,最适合用的统计图是( )A.折线统计图B.频数分布直方图C.条形统计图D.扇形统计图6.下图是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为( )A.50台B.65台C.75台D.95台7.为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是( )A.随机抽取100位女性老人B.随机抽取100位男性老人C.随机抽取公园内100位老人D.在城市和乡镇各选10个点,每个点任选5位老人8.某校测量了初三(1)班学生的身高(精确到1 cm),按10 cm为一段进行分组,得到如图频数分布直方图,则下列说法正确的是( )A.该班人数最多的身高段的学生数为7B.该班身高最高段的学生数为7C.该班身高最高段的学生数为20D.该班身高低于160.5 cm的学生数为159.2016年4月30日至5月2日,河北省共接待游客1 708.3万人次,实现旅游收入106.5亿元,旅行社的小王想了解某企业员工个人的旅游年消费情况,他随机抽取部分员工进行调查,并将统计结果绘制成如表所示的频数分布表,则下列说法中不正确的是( )A.小王随机抽取了100名员工B.在频数分布表中,组距是2 000,组数是5组C.个人旅游年消费金额在6 000元以上的人数占随机抽取人数的22%D.在随机抽取的员工中,个人旅游年消费金额在4 000元以下(包括4000元)的共有37人10.下面两图是某班全体学生上学时,乘车、步行、骑车的人数分布条形统计图和扇形统计图(两图均不完整),则下列结论中错误的是( )A.该班总人数为50B.骑车人数占总人数的20%C.乘车人数是骑车人数的2.5倍D.步行人数为30二填空题11.为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是.(填“全面调查”或“抽样调查”)12.为了解某中学七年级学生的体重情况,从中随机抽取了30名学生进行检测,在该问题中,样本是.13.一个样本的50个数据分别落在4个组内,第1,2,3组数据的个数分别是7,8,15,则第4组数据的频率为.14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是万元.。
北师大版六年级数学毕业试卷十套
小学六年级数学毕业考试试卷班级姓名成绩一、基础知识:(合格:对20道以上;优秀:对28道以上)1、填空题:(1)比3大,比5小的数有。
(2)妈妈买到一张火车票上写着:“14:40开车”,她应午点分前上车。
(3)数学课本的形状是,有个面,条棱。
(4)一瓶糖水中a克,如果糖占糖水的30%(5)长方形为“1”,阴影部分用分数表示是,用小数表示是,用百分数表示是。
(6)用字母表示数,乘法结合律可以表示为,长方形面积公式表示为。
(7)一个三角形和一个平行四边形的底和高都相等,它的面积比是。
(8)甲、乙两数,已知:(甲数—乙数)÷乙数=60%,这里的60%表示。
2、选择题:(9)下面几个数中,最接近8.07万的整数是。
A、8.071万B、80701C、80691D、80709(10)立方体的棱长和体积。
A、成正比例B、成反比例C、不成比例(11)0.5万是0.5亿的。
A、1/100B、1/1000C、1/10000(12)组成角的两条边是两条。
A、线段B射线C、直线(13)如果17a是质数,那么a= 。
A、1B、17C、不一定(14)某居民小区,去年的水电费比前年增加了5%,今年居民们增强了节水、节电意识,水电费比去年减少了5%,这个小区今年的水电费比前年。
A增加了B、减少了C、相同(15)计算3 —2.75+1 时,比较合理的方法是。
A、把小数化成分数计算B、把分数化成小数计算C、以上两种方法都可以(16)下列图形都是由相同的小正方形组成,哪一个图形不能折成正方体?3、判断题:(17)20×3/5=20÷5×3()(18)两个数分别除以这两数的最大公约数,所得的商是互质数。
()(19)把4.5千克盐放入100千克的水中,制成的盐水含盐4.5%。
()(20)如右图大小相等的甲乙两个长方形,阴影部分的面积相等。
()甲乙4、计算:1)直接写出得数:(21)0.81+15.3= 1300—497= 3 —1/2= 3/4+0.72= (22)1÷0.04= 1/8÷0.625= 4.5×4/15= ():1/5=1/21= (23)1.5+2/3×3= 1-1/3×2/5= 1.25×0.36×8= 1÷(2 -2.09)=2)解方程或比例:(24)3/5x+0.8=5.6 (25)1.4 :x=1 :0.753)怎样简便就怎样算:(26)50.4×2.7+24.48÷24 (27)9.4―5 ―2(28)(2 ―3/32+3/4)÷1/4 (29)[4-(0.5+2 )]× 0.754)列式计算:(30)120的30%减去20除4的商是多少?(31)一个数的1/3加上2.4与5/6的积,和是2.4,这个数是多少?(32—33)根据提供的数据,写出你所能得到的结论。
安徽普通高中会考数学真题及答案
2024年安徽普通高中会考数学真题及答案2024年安徽普通高中会考数学真题及答案一、真题部分1、在等差数列${ a_{n}}$中,已知$a_{3} + a_{7} = 22$,那么$a_{5} =$() A.$10$ B.$9$ C.$8$ D.$7$2、已知复数$z = \frac{1 + i}{1 - i}$,则$|z| =$()A.$1$B.$\sqrt{2}$C.$2$D.$2\sqrt{2}$3、已知向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,则$xy$的值为()A.$2$B.$3$C.$4$D.$5$二、答案部分1、正确答案是:A. $10$ 在等差数列${ a_{n}}$中,因为$a_{3} + a_{7} = 22$,所以$a_{5} = \frac{a_{3} + a_{7}}{2} = 10$。
因此,答案为A。
2、正确答案是:B. $\sqrt{2}$ 复数$z = \frac{1 + i}{1 - i} = \frac{(1 + i)^{2}}{(1 - i)(1 + i)} = i$,因此$|z| = 1$. 所以正确答案为B。
3、正确答案是:C.$4$ 向量$\overset{\longrightarrow}{a} = (1,2)$,$\overset{\longrightarrow}{b} = (x,y)$,且$\overset{\longrightarrow}{a} \perp\overset{\longrightarrow}{b}$,所以$\overset{\longrightarrow}{a} \cdot\overset{\longrightarrow}{b} = x + 2y = 0$,解得$xy = 4$. 因此,正确答案为C。
高中学业水平测试会考备考计划7篇
高中学业水平测试会考备考计划7篇高中学业水平测试会考备考计划【篇1】对于我班的数学学习,是不能适合简洁的、传统的复习形式的,必需立足于我班的实际,探究适合我们的复习方式。
一、复习指导思想我们的学生不具备基本的数学能力,那我们要怎么样在这样的情况下给学生复习会考呢?在学生初中的基本水平都难以达到的情况下,我们要怎么样才能让学生在短时间内学到基本的数学学问,把握基本的数学技巧呢?对于我班学生,我把数学的会考复习建立在这样的三个目标上:其一是让我班的学生更多的通过会考;其二是在高三之前,为我班学生打下高三复习的基础,力图学生能为高三复习储备基本的学问与技能。
在这样的目标下,面对我校学生的基本情况,我应当把学生放在“0”基础上,因为学生反正是学习的散乱的,没有体系的学问,而且这样的学习在他们的学习只是印象而已,那么,我还不如重新开始,重新给他们建立一个复习体系,向修建一栋建筑一样,去掉不牢固的废墟,重新建立牢固的基础,重新开始。
那么我们的复习毕竟要降低在什么程度开始呢?是不是要从我们的初中开始呢?这显然是不行的,在有限的时间内不可能完成这样大容量的学问复习,我们就算能扎实巩固初中学问,但是换回来的是大量的学生会考不过,甚至在高中的学问上突破较少,那也是失败的。
因此,我把会考复习在《会考大纲》的指导下,对高中的教材做出适当的调整,从学生的计算、逻辑推理、分析理解,函数及应用,空间几何初步三大块对高中学问进行整合复习,在涉及初中内容而学生有不懂或是遗忘的地方适当补充。
其三,建立学生高中学习应当拥有的学习方式,转变学生固有的学习习惯。
我们学生在数学的学习上,缺少正确学习方法和习惯。
在教学中要引导学生分析理解、推理和合理假设、证明与归纳总结的方法。
要让学生认识到简洁的记忆和背题是难以较快,较好的提高数学成果的。
二、会考复习计划:第一轮复习基本学问目标:形成基本的学问网络,能解决对应的基本问题,并能进行简洁的综合运用。
高中数学会考习题精选
⾼中数学会考习题精选⾼中数学会考练习题集练习⼀集合与函数(⼀)1. 已知S ={1,2,3,4,5},A ={1,2},B ={2,3,6},则______=B A I ,______=B A Y ,______)(=B A C S Y .2. 已知},31|{},21|{<<=<<-=x x B x x A则______=B A I ,______=B A Y .3. 集合},,,{d c b a 的所有⼦集个数是_____,含有2个元素⼦集个数是_____.4. 图中阴影部分的集合表⽰正确的有________.(1))(B A C U Y (2))(B A C U I(3))()(B C A C U U Y (4))()(B C A C U U I5. 已知},6|),{(},4|),{(=+==-=y x y x B y x y x A ________B A =则I .6. 下列表达式正确的有__________.(1)A B A B A =??I (2)B A A B A ??=Y(3)A A C A U =)(I (4)U A C A U =)(Y7. 若}2,1{≠?}4,3,2,1{?A ,则满⾜A 集合的个数为____.8. 下列函数可以表⽰同⼀函数的有________.(1)2)()(,)(x x g x x f == (2)2)(,)(x x g x x f == (3)x x x g x x f 0)(,1)(== (4))1()(,1)(+=+?=x x x g x x x f 9. 函数x x x f -+-=32)(的定义域为________.10. 函数291)(x x f -=的定义域为________.11. 若函数_____)1(,)(2=+=x f x x f 则.12. 已知_______)(,12)1(=-=+x f x x f 则.13. 已知1)(-=x x f ,则______)2(=f .14. 已知?≥<=0,20,)(2x x x x f ,则_____)0(=f _____)]1([=-f f .15. 函数x y 2-=的值域为________.16. 函数R x x y ∈+=,12的值域为________.17. 函数)3,0(,22∈-=x x x y 的值域为________.18. 下列函数在),0(+∞上是减函数的有__________.(1)12+=x y (2)x y 2= (3)x x y 22+-= (4)12+--=x x y(1)1+=x y (2)x x y -=2 (3)1=y (4)x y 1-=20. 若映射B A f →:把集合A 中的元素(x,y )映射到B 中为),(y x y x +-,则(2, 6)的象是______,则(2, 6)的原象是________.21. 将函数x y 1=的图象向左平移2个单位,再向下平移1个单位,则对应图象的解析式为 .22. 某⼚从1998年起年产值平均每年⽐上⼀年增长%,设该⼚1998年的产值为a ,则该⼚的年产值y 与经过年数x 的函数关系式为________.集合与函数(⼆)1. 已知全集I ={1,2,3,4,5,6},A ={1,2,3,4},B ={3,4,5,6},那么C I (A ∩B )=( ).A.{3,4}B.{1,2,5,6}C.{1,2,3,4,5,6}D.Ф2. 设集合M ={1,2,3,4,5},集合N ={9|2≤x x },M ∩N =( ).A.{33|≤≤-x x }B.{1,2}C.{1,2,3}D.{31|≤≤x x }3. 设集合M ={-2,0,2},N ={0},则( ).A .N 为空集 B. N ∈M C. N ?M D. M ?N4. 命题“b a >”是命题“22bc ac >”的____________条件.5. 函数y =)1lg(2-x 的定义域是__________________.6. 已知函数f (x )=log 3(8x +7),那么f (21)等于_______________.7. 若f (x )=x + 1x ,则对任意不为零的实数x 恒成⽴的是( ).A. f (x )=f (-x )B. f (x )=f (x 1) C. f (x )=-f (x 1) D. f (x ) f (x1)=0 8. 与函数y = x 有相同图象的⼀个函数是( ). =x 2 B. y =x 2x C. y =a log a x (a >0, a ≠1) D. y = log a a x (a>0, a≠1) 9. 在同⼀坐标系中,函数y =x 5.0log 与y =x 2log 的图象之间的关系是( ).A.关于原点对称D.关于y 轴对称10. 下列函数中,在区间(0,+∞)上是增函数的是( ).=-x 2 = x 2-x +2 =(21)x =x 1log 3.011. 函数y =)(log 2x -是( ).A. 在区间(-∞,0)上的增函数B. 在区间(-∞,0)上的减函数C. 在区间(0,+∞)上的增函数D. 在区间(0,+∞)上的减函数12. 函数f (x )=3x -13x +1 ( ).A. 是偶函数,但不是奇函数B. 是奇函数,但不是偶函数C. 既是奇函数,⼜是偶函数D.不是奇函数,也不是偶函数13. 下列函数中为奇函数的是( ).A. f (x )=x 2+x -1B. f (x )=|x |C. f (x )=23x x +D. f (x )=522xx --14. 设函数f (x )=(m -1)x 2+(m +1)x +3是偶函数,则m=________.15. 已知函数f (x )=||2x ,那么函数f (x )( ).A. 是奇函数,且在(-∞,0)上是增函数B. 是偶函数,且在(-∞,0)上是减函数C. 是奇函数,且在(0,+∞)上是增函数D. 是偶函数,且在(0,+∞)上是减函数16. 函数y =||log 3x (x ∈R 且x ≠0)( ) .A. 为奇函数且在(-∞,0)上是减函数B. 为奇函数且在(-∞,0)上是增函数C. 是偶函数且在(0,+∞)上是减函数D. 是偶函数且在(0,+∞)上是增函数17. 若f (x )是以4为周期的奇函数,且f (-1)=a (a ≠0),则f (5)的值等于(18. 如果函数y =x a log 的图象过点(91,2),则a =___________.19. 实数2732–3log 22·log 218 +lg4+2lg5的值为_____________.20. 设a =, b = c =则a, b, c 的⼤⼩关系为( )A. bB. aC. aD. c21. 若1log 21>x ,则x 的取值范围是( ).A. 21B.210<x D.0数列(⼀)1. 已知数列{n a }中,12=a ,121+=+n n a a ,则=1a ______.2. – 81是等差数列 – 5 , – 9 , – 13 , … 的第()项.3. 若某⼀数列的通项公式为n a n 41-=,则它的前50项的和为______.4. 等⽐数列,271,91,31,1…的通项公式为________. 5. 等⽐数列,54,18,6,2…的前n 项和公式n S =__________.6. 12-与12+的等⽐中项为__________.7. 若a ,b ,c 成等差数列,且8=++c b a ,则b = .8. 等差数列{a n }中,a 3+ a 4+ a 5+ a 6+ a 7=150,则a 2+a 8= .9. 在等差数列{a n }中,若a 5=2,a 10=10,则a 15=________.10. 在等差数列{a n }中,,56=a 583=+a a , 则=9S _____.10. 数列1781,1327,99,53,11,…的⼀个通项公式为________. 11. 在等⽐数列中,各项均为正数,且962=a a ,则)(log 5433 1a a a = .12. 等差数列中,2,241-==d a , 则n S =___________.13. 已知数列{ a n }的前项和为S n = 2n 2 – n ,则该数列的通项公式为_______.14. 已知三个数成等⽐数列,它们的和为14,它们的积为64,则这三个数为 .数列(⼆)1. 在等差数列}{n a 中,85=a ,前5项的和105=S ,2. 在公⽐为2的等⽐数列中,前4项的和为45,则⾸项为_____.3. 在等差数列}{n a 中,已知1554321=++++a a a a a ,则42a a +=_______.4. 在等差数列}{n a 中,已知前n 项的和n n S n -=24, 则=20a _____.5. 在等差数列}{n a 公差为2,前20项和等于100,那么20642...a a a a ++++等于________.6. 已知数列}{n a 中的3231+=+n n a a ,且2053=+a a ,则=8a _______. 7. 已知数列}{n a 满⾜n n a a =-+21,且11=a ,则通项公式=n a ______.8. 数列}{n a 中,如果)1(21≥=+n a a n n ,且21=a ,那么数列的前5项和=5S _.9. 两数15-和15+的等⽐中项是__________________.10. 等差数列}{n a 通项公式为72-=n a n ,那么从第10项到第15项的和为___.11. 已知a, b, c, d 是公⽐为3 的等⽐数列,则dc b a ++22=___________. 12. 在各项均为正数的等⽐数列中,若551=a a ,则=)(log 4325a a a ________.三⾓函数(⼀)1. 下列说法正确的有____________.(1)终边相同的⾓⼀定相等(2)锐⾓是第⼀象限⾓(3)第⼆象限⾓为钝⾓(4)⼩于?90的⾓⼀定为锐⾓ (5)第⼆象限的⾓⼀定⼤于第⼀象限的⾓2. 已知⾓x 的终边与⾓?30的终边关于y 轴对称,则⾓x 的集合可以表⽰为__________________________.3. 终边在y 轴上⾓的集合可以表⽰为________________________.4. 终边在第三象限的⾓可以表⽰为________________________.5. 在??-720~360之间,与⾓?175终边相同的⾓有__________________.6. 在半径为2的圆中,弧度数为3π的圆⼼⾓所对的弧长为________,扇形⾯积为__________.7. 已知⾓α的终边经过点(3,-4),则sin α=______ , cos α=______,tan α=_______ .8. 已知0cos 0sin ><θθ且,则⾓θ⼀定在第______象限.9. “0sin >θ”是“θ是第⼀或第⼆象限⾓”的________条件.10. 计算:πππ2cos cos 0tan 20sin 1223cos 7-+++=________. 11. 化简:tan cos ____θθ=.12. 已知,54cos -=α且α为第三象限⾓,则_____tan _____,sin ==αα . 13. 已知31tan =α,且23παπ<<,则_____cos _____,sin ==αα . 14. 已知2tan =α,则____sin cos cos 2sin =+-αααα. 15. 计算:_____)317sin(=-π, _____)4cos()sin()2sin()cos(=----++αππαπααπ.三⾓函数(⼆)1. 求值: ?165cos =________,=?-)15tan(________.2. 已知21cos -=θ,θ为第三象限⾓,则=+)3sin(θπ________, =+)3cos(θπ________,=+)3 tan(θπ________. 3. 已知x tan ,y tan 是⽅程0762=++x x 的两个根,则=+)tan(y x ______.4. 已知31sin =α,α为第⼆象限⾓,则=α2sin ______, =α2cos ______,=α2tan ______.5. 已知21tan =α,则=α2tan ______.6. 化简或求值:=---y y x y y x cos )cos(sin )sin(______,=??-??170sin 20sin 10cos 70sin ______,=-ααsin 3cos ______,____15tan 115tan 1=?-?+, _____5tan 65tan 35tan 65tan =??-?-?, =??15cos 15sin ____, =-2cos 2sin 22θθ______15.22cos 22-?=______, ?-?150tan 1150tan 22=______.7. 已知,3tan ,2tan ==?θ且?θ,都为锐⾓,则=+?θ______.8. 已知21cos sin =+θθ,则=θ2sin ______. 9. 已知41sin =θ,则=-θθ44cos sin ______. 10. 在ABC ?中,若,53sin ,135cos =-=B A 则=C sin ________.三⾓函数(三)1. 函数)4sin(π+=x y 的图象的⼀个对称中⼼是( ).A. )0,0(B. )1,4(πC. )1,43(πD. )0,43(π 2. 函数)3cos(π-=x y 的图象的⼀条对称轴是( ).B. 3π-=x C. 65π=x D. 3π=x 3. 函数x x y cos sin =的值域是________,周期是______,此函数的为____函数(填奇偶性).4. 函数x x y cos sin -=的值域是________,周期是______,此函数的为____函数(填奇偶性).5. 函数x x y cos 3sin +=的值域是________,周期是______,此函数的为____函数(填奇偶性).8. 函数)42tan(3π-=x y 的定义域是__________________,值域是________,周期是______,此函数为______函数(填奇偶性).9. ⽐较⼤⼩:??530cos ___515cos , )914sin(____)815sin(ππ-- ??143tan ____138tan , ??91tan ___89tan10. 要得到函数)42sin(2π+=x y 的图象,只需将x y 2sin 2=的图象上各点____11. 将函数x y 2cos =的图象向左平移6π个单位,得到图象对应的函数解析式为________________.12. 已知22cos -=θ,)20(πθ<<,则θ可能的值有_________.三⾓函数(四)1. 在??360~0范围内,与-1050o 的⾓终边相同的⾓是___________.2. 在π2~0范围内,与π310终边相同的⾓是___________. 3. 若sinα<0且cosα<0 ,则α为第____象限⾓.4. 在??-360~360之间,与⾓?175终边相同的⾓有_______________.5. 在半径为2的圆中,弧度数为3π的圆⼼⾓所对的弧长为______________. 6. 已知⾓α的终边经过点(3,-4),则cos α=______.7. 命题 “x = π2 ” 是命题 “sin x =1” 的_____________条件. 8. sin(π617-)的值等于___________. 9. 设π4 <α<π2 ,⾓α的正弦. 余弦和正切的值分别为a ,b ,c ,则( ). A. a10. 已知,54cos -=α且α为第三象限⾓,则_____tan =α. 11. 若 tan α=2且sin α<0,则cos α的值等于_____________.12. 要得到函数y =sin(2x -π3 )的图象,只要把函数y =sin2x 的图象( ).A.向左平移π3 个单位B. 向右平移π3 个单位C.向左平移π6 个单位13. 已知tan α=-3 (0<α<2π),那么⾓α所有可能的值是___________14. 化简cos x sin(y -x )+cos(y -x )sin x 等于_____________15. cos25o cos35o –sin25o sin35o 的值等于_____________(写具体值).16. 函数y =sin x +cos x 的值域是( )A.[-1,1]B.[-2,2]C.[-1, 2 ]D.[- 2 , 2 ]17. 函数y =cos x - 3 sin x 的最⼩正周期是( )A.2πB. 4π C. ππ18. 已知sin α=53,90o <α<180o ,那么sin2α的值__________. 19. 函数y=cos 2 x -sin 2x 的最⼩正周期是( )A. 4πB. 2πC. πD. π220. 函数y =sin x cos x 是( )A.周期为2π的奇函数B. 周期为2π的偶函数C. 周期为π的奇函数D. 周期为π的偶函数21. 已知2tan =α,则=α2tan ________.练习九平⾯向量(⼀)1. 下列说法正确的有______________.(1)零向量没有⽅向 (2)零向量和任意向量平⾏(3)单位向量都相等 (4)(a ·b )·c =a ·(b ·c )(5)若a ·c = b ·c ,且c 为⾮零向量,则a =b(6)若a ·b =0,则a,b 中⾄少有⼀个为零向量.2. “b a =”是“a ∥b ”的________________条件.3. 下列各式的运算结果为向量的有________________.(1)a +b (2)a -b (3)a ·b (4)λa (5)||b a + (6)a ·04. 计算:=-++MP MN NQ QP ______.设=AB a, =AC b ,⽤a , b 表⽰下列向量:=BC ________,=AM ________,=MB ________.=AB a,6. 在□ABCD 中,对⾓线AC ,BD 交于O 点,设=AD b ,⽤a , b 表⽰下列向量:=AC ________,.=BD ________,=CO ________,=OB ________.7. 已知21,e e 不共线,则下列每组中a , b 共线的有______________.(1)113,2e b e a -== (2)213,2e b e a -==(3)212121,2e e b e e a +-=-= (4)2121,e e b e e a +=-= 8. 已知,4||,3||==b a 且向量b a,的夹⾓为?120,则=b a ·________,=-||b a __________.9. 已知)1,1(),3,2(-==b a ,则=-b a 2______,=b a ·________,=||a ______,向量b a,的夹⾓的余弦值为_______.12. 已知)1,2(),2,1(-==b a k ,当b a,共线时,k =____;当b a,垂直时,k =____.13. 已知)4,2(),2,1(B A -,)3,(x C ,且A,B,C 三点共线,则x =______.14. 把点)5,3(P 按向量a =(4,5)平移⾄点P ’,则P ’的坐标为_______.15. 将函数22x y =的图象F 按a =(1,-1)平移⾄F ’, 则F ’的函数解析式为____.16. 将⼀函数图象按a =(1,2)平移后,所得函数图象所对应的函数解析式为x y lg =,则原图象的对应的函数解析式为_______.17. 将函数x x y 22+=的图象按某⼀向量平移后得到的图象对应的函数解析式为2x y =,则这个平移向量的坐标为________.18. 已知)3,2(),5,1(B A ,点M 分有向线段的⽐2-=λ,则M 的坐标为____.19. 已知P 点在线段21P P 上,21P P =5,P P 1=1,点P 分有向线段21P P 的⽐为__.20. 已知P 点在线段21P P 的延长线上,21P P =5,P P 2=10,点P 分有向线段21P P 的⽐为_____.21. 在ABC ?中,?=45A ,?=105C ,5=a ,则b =_______.22. 在ABC ?中,2=b ,1=c ,?=45B ,则C =_______.23. 在ABC ?中,32=a ,6=b ,?=30A ,则B =_______.24. 在ABC ?中,3=a ,4=b ,37=c ,则这个三⾓形中最⼤的内⾓为______.25. 在ABC ?中,1=a ,2=b ,?=60C ,则c =_______.26. 在ABC ?中,7=a ,3=c ,?=120A ,则b =_______.平⾯向量(⼆)1. ⼩船以10 3 km/h 的速度向垂直于对岸的⽅向⾏驶,同时河⽔的流速为10km/h ,则⼩船实际航⾏速度的⼤⼩为( ).2 km/h h C. 10 2 km/h D. 10km/h2. 若向量→a =(1,1),→b =(1,-1),→c =(-1,2),则→c =( ).A. -12 →a +32 →bB. 12 →a -32 →bC. 32 →a -12 →bD.- 32 →a +12 →b3. 有以下四个命题:①若→a ·→b =→a ·→c 且→a ≠→0,则→b =→c ;②若→a ·→b =0,则→a =→0或→b =→0;③⊿ABC 中,若→AB ·→AC >0,则⊿ABC 是锐⾓三⾓形;④⊿ABC 中,若→AB ·→BC =0,则⊿ABC 是直⾓三⾓形.其中正确命题的个数是( ).4. 若|→a |=1,|→b |=2,→c =→a +→b ,且→c ⊥→a ,则向量→a 与→b 的夹⾓为( ).D150o5. 已知→a . →b 是两个单位向量,那么下列命题中真命题是( ).A. →a =→bB. →a ·→b =0C. |→a ·→b |<1D. →a 2=→b 26. 在⊿ABC 中,AB =4,BC =6,∠ABC =60o ,则AC 等于( ).A. 28B. 76C. 27D. 2197. 在⊿ABC 中,已知a = 3 +1, b =2, c = 2 ,那么⾓C 等于( ).A. 30oB. 45oC. 60oD. 120o8. 在⊿ABC 中,已知三个内⾓之⽐A :B :C =1:2:3,那么三边之⽐a :b :c =(). A. 1: 3 :2 B. 1:2:3 C. 2: 3 :1 D. 3:2:1不等式1. 不等式3|21|>-x 的解集是__________.2. 不等式2|1|≤-x 的解集是__________.3. 不等式42>x 的解集是__________.4. 不等式022>--x x 的解集是__________.5. 不等式012<++x x 的解集是__________.6. 不等式032≥--xx 的解集是__________. 7. 已知不等式02>++n mx x 的解集是}2,1|{>-则m 和n 的值分别为__________.8. 不等式042>++mx x 对于任意x 值恒成⽴,则m 的取值范围为________.9. 已知d c b a >>,,下列命题是真命题的有_______________.(1)d b c a +>+ (2)d b c a ->- (3)x b x a ->- (4)bd ac > (5)c b d a > (6)22b a > (7)33b a > (8)33b a > (9)ba 11< (11) 22bx ax > 10. 已知64,52<<<<b a ,则b a +的取值范围是______________,则a b -的取值范围是______________,ab 的取值范围是___________. 11. 已知0,>b a 且,2=ab 则b a +的最___值为_______.12. 已知0,>b a 且,2=+b a 则ab 的最___值为_______.13. 已知,0>m 则函数mm y 82+=的最___值为_______,此时m =_______.14. a >0,b >0是ab >0的( ).A. 充分条件但不是必要条件B. 必要条件但不是充分条件C. 充分必要条件D. 既⾮充分条件也⾮必要条件15. 若0<A. b a 11>B. ab a 11>- C. ||||b a > D. 22b a > 16. 若0>>b a ,0>m ,则下列不等式中⼀定成⽴的是( ).A. m a m b a b ++>B. m b m a b a -->C. m a m b a b ++<D. mb m a b a --< 17. 若0>x ,则函数xx y 1+=的取值范围是( ). A.]2,(--∞ B. ),2[+∞ C. ),2[]2,(+∞--∞Y D. ]2,2[-18. 若0≠x ,则函数22364x xy --=有( ). A. 最⼤值264- B. 最⼩值264-C. 最⼤值264+D. 最⼩值264+19. 解下列不等式:(1) 5|32|1<-≤x (2) 6|5|2>-x x(3) 10|83|2<-+x x解析⼏何(⼀)1. 已知直线l 的倾斜⾓为?135,且过点)3,(),1,4(--m B A ,则m 的值为______.2. 已知直线l 的倾斜⾓为?135,且过点)2,1(,则直线的⽅程为____________.3. 已知直线的斜率为4,且在x .轴.上的截距为2,此直线⽅程为____________.4. 直线023=+-y x 倾斜⾓为____________.5. 直线042=+-y x 与两坐标轴围成的三⾓形⾯积为__________.6. 直线042=+-y x 关于y 轴对称的直线⽅程为________________.7. 过点)3,2(P 且在两坐标轴上截距互为相反数的直线⽅程为_____________.8. 下列各组直线中,互相平⾏的有____________;互相垂直的有__________. (1)022121=+-+=y x x y 与 (2)0322=-+-=y x x y 与 (3)0322=--=y x x y 与 (4)023=++y x 与33+=x y (5)052052=+=+y x 与 (6)052052=-=+x x 与9. 过点(2,3)且平⾏于直线052=-+y x 的⽅程为________________.过点(2,3)且垂直于直线052=-+y x 的⽅程为________________.10. 已知直线01:,022:21=--+=--+a y ax l a ay x l ,当两直线平⾏时,a =______;当两直线垂直时,a =______.11. 直线53=-y x 到直线032=-+y x 的⾓的⼤⼩为__________.12. 设直线0243:,022:,0243:321=+-=++=-+y x l y x l y x l ,则直线21l l 与的交点到3l 的距离为____________.13. 平⾏于直线0243=-+y x 且到它的距离为1的直线⽅程为____________.解析⼏何(⼆)1. 圆⼼在)2,1(-,半径为2的圆的标准⽅程为____________,⼀般⽅程为__________,参数⽅程为______________.2. 圆⼼在点)2,1(-,与y 轴相切的圆的⽅程为________________,与x 轴相切的圆的⽅程为________________,过原点的圆的⽅程为________________3. 半径为5,圆⼼在x 轴上且与x =3相切的圆的⽅程为______________.4. 已知⼀个圆的圆⼼在点)1,1(-,并与直线0334=+-y x 相切,则圆的⽅程为______.5. 点)1,1(-P 和圆024222=--++y x y x 的位置关系为________________.6. 已知4:22=+y x C 圆,(1)过点)3,1(-的圆的切线⽅程为________________.(2)过点)0,3(的圆的切线⽅程为________________.(3)过点)1,2(-的圆的切线⽅程为________________.(4)斜率为-1的圆的切线⽅程为__________________.7. 已知直线⽅程为043=++k y x ,圆的⽅程为05622=+-+x y x(1)若直线过圆⼼,则k =_________.(2)若直线和圆相切,则k =_________.(3)若直线和圆相交,则k 的取值范围是____________. (4)若直线和圆相离,则k 的取值范围是____________.8. 在圆822=+y x 内有⼀点)2,1(-P ,AB 为过点P 的弦.(1)过P 点的弦的最⼤弦长为__________.(2)过P 点的弦的最⼩弦长为__________.解析⼏何(三)1. 已知椭圆的⽅程为116922=+x y ,则它的长轴长为______,短轴长为______,焦点坐标为________,离⼼率为________,准线⽅程为____________.在坐标系中画出图形.2. 已知双曲线的⽅程为116922=-x y ,则它的实轴长为______,虚轴长为______,焦点坐标为________,离⼼率为________,准线⽅程为____________,渐近线⽅程为__________. 在坐标系中画出图形.3. 经过点)2,0(),0,3(--Q P 的椭圆的标准⽅程是_____________.4. 长轴长为20,离⼼率为53,焦点在y 轴上的椭圆⽅程为__________. 5. 焦距为10,离⼼率为35,焦点在x 轴上的双曲线的⽅程为__________. 6. 与椭圆1492422=+y x 有公共焦点,且离⼼率为45的双曲线⽅程为________. 7. 已知椭圆的⽅程为16422=+y x ,若P 是椭圆上⼀点,且,7||1=PF则________||2=PF .8. 已知双曲线⽅程为14491622-=-y x ,若P 是双曲线上⼀点,且,7||1=PF 则________||2=PF .9. 已知双曲线经过)5,2(-P ,且焦点为)6,0(±,则双曲线的标准⽅程为______10. 已知椭圆12516922=+y x 上⼀点P 到左焦点的距离为12,则P 点到左准线的距离为__________.11. 已知双曲线1366422=-y x 上点P 到右准线的距离为532,则P 点到右焦点的距离为__________.12. 已知⼀等轴双曲线的焦距为4,则它的标准⽅程为____________________.13. 已知曲线⽅程为14922=-+-k y k x , (1) 当曲线为椭圆时,k 的取值范围是______________.(2) 当曲线为双曲线时,k 的取值范围是______________.14. ⽅程y 2 = 2px (p >0)中的字母p 表⽰( ).A .顶点、准线间的距离B .焦点、准线间的距离C .原点、焦点间距离D .两准线间的距离15. 抛物线x y 22=的焦点坐标为__________,准线⽅程为____________.16. 抛物线y x 212-=的焦点坐标为__________,准线⽅程为____________.17. 顶点在原点,对称轴为坐标轴,焦点为)0,2(-的抛物线⽅程为________.18. 顶点在原点,对称轴为坐标轴,准线⽅程为81-=y 的抛物线⽅程为____. 19. 经过点)8,4(-P ,顶点在原点,对称轴为x 轴的抛物线⽅程为__________.解析⼏何(四) 1. 如果直线l 与直线3x -4y +5=0关于y 轴对称,那么直线l 的⽅程为_____.2. 直线3x + y +1=0的倾斜⾓的⼤⼩是__________.3. 过点(1,-2)且倾斜⾓的余弦是-35 的直线⽅程是______________.4. 若两条直线l 1: ax +2y +6=0与l 2: x +(a -1)y +3=0平⾏,则a 等于_________.5. 过点(1,3)且垂直于直线052=-+y x 的⽅程为________________.6. 图中的阴影区域可以⽤不等式组表⽰为().A. ≤+-≤≥0110y x y xB.≤+-≥≤0101y x y x C. ≥+-≥≤0101y x y x D. ??≥+-≥≥0101y x y x 7. 已知圆的直径两端点为)4,3(),2,1(-,则圆的⽅程为_____________.8. 圆⼼在点)2,1(-且与x 轴相切的圆的⽅程为________________.9. 已知02024:22=---+y x y x C 圆,它的参数⽅程为_________________.10. 已知圆的参数⽅程是θθsin 2cos 2{==y x (θ为参数),那么该圆的普通⽅程是______ 11. 圆x 2+y 2-10x=0的圆⼼到直线3x +4y -5=0的距离等于___________.12. 过圆x 2+y 2=25上⼀点P(4, 3),并与该圆相切的直线⽅程是____________.13. 已知椭圆的两个焦点是F 1(-2, 0)、F 2(2, 0),且点A(0, 2)在椭圆上,那么这个椭圆的标准⽅程是_________.14. 已知椭圆的⽅程为x 29 +y 225 =1,那么它的离⼼率是__________.15. 已知点P 在椭圆x 236 +y 2100 =1上,且它到左准线的距离等于10,那么点P 到左焦点的距离等于______.16. 与椭圆x 29 +y 24 =1有公共焦点,且离⼼率e =52 的双曲线⽅程是()A. x 2-y 24 =1B. y 2-x 24 =1C. x 24 -y 2=1D. y 24 -x 2=117. 双曲线x 24 -y 29 =1的渐近线⽅程是___________.18. 如果双曲线x 264 -y 236 =1上⼀点P 到它的右焦点的距离是5,那么点P 到它的右准线的距离是___________.19. 抛物线x y 22=的焦点坐标为__________.20. 抛物线y x 212-=的准线⽅程为__________. 21. 若抛物线y 2=2px 上⼀点横坐标为6,这个点与焦点的距离为10,那么此抛物线的焦点到准线的距离是_______.⽴体⼏何(⼀)判断下列说法是否正确:1. 下列条件,是否可以确定⼀个平⾯:[ ](1)不共线的三个点[ ](2)不共线的四个点[ ](3)⼀条直线和⼀个点[ ](4)两条相交或平⾏直线2. 关于空间中的直线,判断下列说法是否正确:[ ](1)如果两直线没有公共点,则它们平⾏[ ](2)如果两条直线分别和第三条直线异⾯,则这两条直线也异⾯[ ](3)分别位于两个平⾯内的两条直线是异⾯直线[ ](4)若βαβα//,,??b a ,则a,b 异⾯[ ](5)不在任何⼀个平⾯的两条直线异⾯[ ](6)两条直线垂直⼀定有垂⾜[ ](7)垂直于同⼀条直线的两条直线平⾏[ ](8)若c a b a //,⊥,则b c ⊥[ ](9)过空间中⼀点有且只有⼀条直线和已知直线垂直[ ](10)过空间中⼀点有且只有⼀条直线和已知直线平⾏3. 关于空间中的直线和平⾯,判断下列说法是否正确:[ ](1)直线和平⾯的公共点个数可以是0个,1个或⽆数[ ](2)若,,//α?b b a 则α//a[ ](3)如果⼀直线和⼀平⾯平⾏,则这条直线和平⾯的任意直线平⾏[ ](4)如果⼀条直线和⼀个平⾯平⾏,则这条直线和这个平⾯内的⽆数条直线平⾏[ ](5)若两条直线同时和⼀个平⾯平⾏,则这两条直线平⾏[ ](6)过平⾯外⼀点,有且只有⼀条直线和已知平⾯平⾏[ ](7)过直线外⼀点,有⽆数个平⾯和已知直线平⾏[ ](8)若共⾯且b a b a ,,,//αα?,则b a //4. 关于空间中的平⾯,判断下列说法是否正确:[ ](1)两个平⾯的公共点的个数可以是0个,1个或⽆数[ ](2)若b a b a //,,βα??,则βα//[ ](3)若βαβα//,,??b a ,则a βαα//,?a β//a αα//,//b a b a //βα//,//a a βα//αβα?a ,//β//a 关于直线与平⾯的垂直,判断下列说法是否正确:[ ](1)如果⼀直线垂直于⼀个平⾯内的所有直线,则这条直线垂直于这个平⾯[ ](2)若αα?⊥a l ,,则a l ⊥[ ](3)若m l m ⊥?,α,则α⊥l[ ](4)若n l m l n m ⊥⊥?,,,α,则α⊥l[ ](5)过⼀点有且只有⼀条直线和已知平⾯垂直[ ](6)过⼀点有⽆数个平⾯和已知直线垂直6. 关于平⾯和平⾯垂直,判断下列说法是否正确:[ ] (1)若,,βα⊥?a a 则βα⊥[ ] (2)若b a b a ⊥??,,βα,则βα⊥[ ] (3)若,,,βαβα??⊥b a ,则b a ⊥[ ] (4)若,,βαα⊥?a 则β⊥a[ ] (6)若γαβα//,⊥,则γβ⊥[ ] (7)垂直于同⼀个平⾯的两个平⾯平⾏[ ] (8)垂直于同⼀条直线的两个平⾯平⾏[ ] (9)过平⾯外⼀点有且只有⼀个平⾯与已知平⾯垂直7. 判断下列说法是否正确:[ ] (1)两条平⾏线和同⼀平⾯所成的⾓相等[ ] (2)若两条直线和同⼀平⾯所的⾓相等,则这两条直线平⾏[ ] (3)平⾯的平⾏线上所有的点到平⾯的距离都相等[ ] (4)若⼀条直线上有两点到⼀个平⾯的距离相等,则这条直线和平⾯平⾏⽴体⼏何(⼆)1. 若平⾯的⼀条斜线长为2,它在平⾯内的射影的长为3,则这条斜线和平⾯所成的⾓为________.2. 在⼀个锐⼆⾯⾓的⼀个⾯内有⼀点,它到棱的距离是到另⼀个平⾯距离的2倍,则这个⼆⾯⾓的⼤⼩为________.3. 已知AB 为平⾯α的⼀条斜线,B 为斜⾜,α⊥AO ,O 为垂⾜,BC 为平⾯内的⼀条直线,?=∠?=∠45,60OBC ABC ,则斜线AB 与平⾯所成的⾓的⼤⼩为________.4. 观察题中正⽅体ABCD-A 1B 1C 1D 1中, ⽤图中已有的直线和平⾯填空:(1) 和直线BC 垂直的直线有_________________.(2) 和直线BB 1垂直且异⾯的直线有__________.(3) 和直线CC 1平⾏的平⾯有________________.(4) 和直线BC 垂直的平⾯有________________.(5) 和平⾯BD 1垂直的直线有________________.5. 在边长为a 正⽅体!111D C B A ABCD -中(1)C B C A 111与所成的⾓为________.(2)1AC 与平⾯ABCD 所成的⾓的余弦值为________.(3)平⾯ABCD 与平⾯11B BDD 所成的⾓为________.(4)平⾯ABCD 与平⾯11B ADC 所成的⾓为________.(5)连结11,,DA BA BD ,则⼆⾯⾓1A BD A --的正切值为________.(6)BC AA 与1的距离为________.(7)11BC AA 与的距离为________.6. 在棱长均为a 的正三棱锥ABC S -中,(1) 棱锥的⾼为______.(2) 棱锥的斜⾼为________.(3) SA 与底⾯ABC 的夹⾓的余弦值为________.(4) ⼆⾯⾓A BC S --的余弦值为________.(5) 取BC 中点M ,连结SM ,则AC 与SM 所成的⾓的余弦值是_____.(6) 若⼀截⾯与底⾯平⾏,交SA 于A ’,且SA’:A’A =2:1,则截⾯的⾯积为______.7. 在棱长均为a 的正四棱锥ABCD S -中,(1) 棱锥的⾼为______.(2) 棱锥的斜⾼为________.(3) SA 与底⾯ABCD 的夹⾓为________.(4) ⼆⾯⾓A BC S --的⼤⼩为________. 8. 已知正四棱锥的底⾯边长为24,侧⾯与底⾯所成的⾓为?45,那么它的侧⾯积为_________.9. 在正三棱柱111C B A ABC -中,底⾯边长和侧棱长均为a , 取AA 1的中点M ,连结CM ,BM ,则⼆⾯⾓A BC M --的⼤⼩为 _________.10.已知长⽅体的长、宽、⾼分别是2、3、4,那么它的⼀条对⾓线长为_____.11. 在正三棱锥中,已知侧⾯都是直⾓三⾓形,那么底⾯边长为a 时,它的全⾯积是______.12. 若球的⼀截⾯的⾯积是π36,且截⾯到球⼼的距离为8,则这个球的体积为______,表⾯积为_________.。
苏教版三年级数学下册第五单元7.《练习七》教学设计
苏教版三年级数学下册第五单元7.《练习七》教学设计一. 教材分析《练习七》是苏教版三年级数学下册第五单元的一部分,主要让学生在掌握两位数乘一位数的基础上,进一步学习三位数乘一位数的笔算方法。
通过本节课的学习,学生能够理解并掌握三位数乘一位数的计算法则,提高笔算能力,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了两位数乘一位数的计算方法,对乘法运算有一定的认识。
但部分学生在笔算过程中,可能会出现计算错误和混淆的情况。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行指导和纠正。
三. 教学目标1.知识与技能目标:学生能够掌握三位数乘一位数的笔算方法,正确进行计算。
2.过程与方法目标:通过实例讲解和练习,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和积极进取的精神。
四. 教学重难点1.重点:三位数乘一位数的笔算方法。
2.难点:学生在笔算过程中,如何避免计算错误和混淆。
五. 教学方法1.采用实例讲解法,让学生通过观察和分析实例,理解并掌握三位数乘一位数的计算法则。
2.采用练习法,让学生在实践中巩固所学知识,提高笔算能力。
3.采用分组合作法,让学生在团队合作中,共同解决问题,培养学生的团队合作意识和积极进取的精神。
六. 教学准备1.准备相关教学PPT,展示实例和练习题。
2.准备练习本,供学生练习笔算。
3.准备答案,用于核对学生练习结果。
七. 教学过程1.导入(5分钟)通过一个生活实例,引出本节课的主题:三位数乘一位数。
例如,讲解一个购物场景,让学生计算总价。
2.呈现(10分钟)展示PPT,讲解三位数乘一位数的计算法则。
通过具体例子,让学生观察和分析,引导他们发现计算规律。
3.操练(10分钟)让学生分成小组,共同完成一些练习题。
在练习过程中,教师要关注学生的笔算过程,及时发现并纠正错误。
4.巩固(10分钟)让学生独立完成一些练习题,检验他们是否掌握了三位数乘一位数的计算方法。
2021届福建省普通高中学业水平合格性考试(会考 )适应性练习(一)数学试题(解析版)
2021届福建省普通高中学业水平合格性考试(会考 )适应性练习(一)数学试题一、单选题1.已知集合{0,2}A =,{2,1,0,1,2}B =--,则A B =( )A .{0,2}B .{1,2}C .{0}D .{2,1,0,1,2}-- 【答案】A【分析】由交集定义计算.【详解】根据集合交集中元素的特征,可得{0,2}A B ⋂=, 故选:A.【点睛】本题考查集合的交集运算,属于简单题.2.在下列向量组中,可以把向量()3,2a =表示出来的是( ) A .()10,0e =,()21,2e = B .()11,2e =-,()25,2e =- C .()13,5e =,()26,10e = D .()12,3e =-,()22,3e =-【答案】B【分析】根据平面向量基本定理列出方程组,然后判断方程组是否有解即可. 【详解】解:根据平面向量基本定理, 选项A ,()()()3,20,01,2λμ=+,则322μμ=⎧⎨=⎩,方程组无解,故选项A 不能;选项B ,()()()3,21,25,2λμ=-+-,则352,2221λμλλμμ=-+=⎧⎧⎨⎨=-=⎩⎩,故选项B 能. 选项C ,()()()3,23,56,10λμ=+,则3362510λμλμ=+⎧⎨=+⎩,因为3362510≠=,所以方程组无解,故选项C 不能. 选项D ,()()()3,22,32,3λμ=-+-,则322233λμλμ=-⎧⎨=-+⎩,因为322233-≠=-,所以方程组无解,故选项D 不能. 故选:B.【点睛】本题主要考查了平面向量基本定理的应用以及向量的坐标运算,根据12a e e λμ=+列出方程解方程,判断方程组是否有解是关键,属于基础题.3.不等式2320x x -+≤的解集是( ) A .{}12x x ≤≤ B .{}12x x << C .{|1x x <或2}x > D .{|1x x ≤或2}x ≥【答案】A【分析】确定对应二次方程的解,根据三个二次的关系写出不等式的解集. 【详解】2320x x -+≤,即为(1)(2)0x x --≤,12x ≤≤. 故选:A .4.某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本的老年教师人数为( )A .90B .100C .180D .300【答案】C【解析】由题意,总体中青年教师与老年教师比例为1600169009=;设样本中老年教师的人数为x ,由分层抽样的性质可得总体与样本中青年教师与老年教师的比例相等,即320169x =,解得180x =,故选C. 【解析】分层抽样.5.圆心为()1,1且过原点的圆的方程是( ) A .()()22111x y -+-= B .()()22111x y +++= C .()()22112x y +++= D .()()22112x y -+-= 【答案】D【解析】试题分析:设圆的方程为()()2211(0)x y m m -+-=>,且圆过原点,即()()220101(0)m m -+-=>,得2m =,所以圆的方程为()()22112x y -+-=.故选D.【解析】圆的一般方程.6.设0.80.70.713,,log 0.83a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .b c a <<D .c a b <<【答案】D【分析】利用指数函数与对数函数的性质,即可得出,,a b c 的大小关系. 【详解】因为0.731a =>,0.80.80.71333b a -⎛⎫==>= ⎪⎝⎭,0.70.7log 0.8log 0.71c =<=,所以1c a b <<<. 故选:D.【点睛】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围. 比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:xy a =,当1a >时,函数递增;当01a <<时,函数递减;(2)利用对数函数的单调性:log a y x =,当1a >时,函数递增;当01a <<时,函数递减;(3)借助于中间值,例如:0或1等. 7.已知3cos 4x =,则cos2x =( ) A .14-B .14C .18-D .18【答案】D【分析】根据余弦二倍角公式计算即可得到答案.【详解】2231cos 22cos 12148x x ⎛⎫=-=⨯-= ⎪⎝⎭. 故选:D【点睛】本题主要考查余弦二倍角公式,属于简单题. 8.函数y =x cos x +sin x 在区间[–π,π]的图象大致为( )A .B .C .D .【答案】A【分析】首先确定函数的奇偶性,然后结合函数在x π=处的函数值排除错误选项即可确定函数的图象.【详解】因为()cos sin f x x x x =+,则()()cos sin f x x x x f x -=--=-, 即题中所给的函数为奇函数,函数图象关于坐标原点对称, 据此可知选项CD 错误;且x π=时,cos sin 0y ππππ=+=-<,据此可知选项B 错误.故选:A.【点睛】函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.9.函数256()lg 3x x f x x -+=-的定义域为( )A .()2,3B .(]2,4C .()(]2,33,4 D .()(]1,33,6-【答案】C【分析】由题意可得240560330x x x x x ⎧-≥⎪-+⎪>⎨-⎪-≠⎪⎩ ,解不等式组即可求解. 【详解】由题意得240560330x x x x x ⎧-≥⎪-+⎪>⎨-⎪-≠⎪⎩,即()()2423030x x x x ⎧≤⎪⎪-->⎨⎪-≠⎪⎩, 解得4423x x x -≤≤⎧⎪>⎨⎪≠⎩即23x <<或34x <≤所以函数的定义域为(2,3)(3,4].故选:C10.已知三点A (1,0),B (0),C (2,则△ABC 外接圆的圆心到原点的距离为( ) A .53 B.3C.3D .43【答案】B 【详解】选B.【解析】圆心坐标11.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为( ) A .2p q+ B .(1)(1)12p q ++-C pqD (1)(1)1p q ++【答案】D【详解】试题分析:设这两年年平均增长率为x ,因此2(1)(1)(1)p q x ++=+解得(1)(1)1x p q =++.【解析】函数模型的应用.12.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A .23B .35 C .25D .15【答案】B【分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种,所以恰有2只做过测试的概率为63105=,选B . 【点睛】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.13.等比数列{}n a 的前n 项和为n S ,已知3215109S a a a =+=,,则1a = A .19B .19-C .13D .13-【答案】A【解析】设公比为q,则22411111111109,99a a q a q a q a q a q a ++=+⇒==∴=,选A.14.在ABC 中,4B π=,BC 边上的高等于13BC ,则sin A = A .310B.10CD【答案】D【解析】试题分析:设BC 边上的高线为AD ,则3,2BC AD DC AD ==,所以AC =.由正弦定理,知sin sin AC BC B A=3sin ADA =,解得sin A =,故选D . 【解析】正弦定理【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.15.已知()f x 是定义在R 上的偶函数,在(0,)+∞上单调递减,且(2)0f =,则不等式()0xf x >的解集为 A .(0,2)B .(2,+)∞C .(,2)(0,2)-∞-⋃D .(D)(,2)(2,)-∞-+∞【答案】C【解析】分析:首先根据偶函数的性质判断函数在(),0-∞的单调性,再由函数的零点确定()0f x >或()0f x <的解集,最后讨论不等式()0xf x >的解集. 详解:由条件可知函数在(),0-∞时增函数,且()20f -=,这样()(),22,-∞-+∞时,()0f x <,()()2,00,2-时,()0f x >,所以()()00x xf x f x >⎧>⇔⎨>⎩或()00x f x <⎧⎨<⎩,解集为()(),20,2-∞-,故选C.点睛:本题考查了利用函数的基本性质解不等式,将不等式的性质由图像表示,问题迎刃而解,属于基础题型二、填空题16.函数f (x )=sin 22x 的最小正周期是__________. 【答案】2π. 【分析】将所给的函数利用降幂公式进行恒等变形,然后求解其最小正周期即可. 【详解】函数()2sin 2f x x ==142cos x-,周期为2π 【点睛】本题主要考查二倍角的三角函数公式、三角函数的最小正周期公式,属于基础题.17.已知x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则23z x y =-的最小值为________.【答案】6-【分析】先画出可行域,由23z x y =-,得233zy x =-,画出直线23y x =,向上平移过点B 时,23z x y =-取得最小值,将点B 坐标代入可得结果【详解】解:变量x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩所表示的可行域如图所示,由23z x y =-,得233zy x =-,画出直线23y x =,向上平移过点B 时,23z x y =-取得最小值,对于2x y +=,当0x =时,2y =,所以点B 的坐标为(0,2),所以23z x y =-的最小值为20326⨯-⨯=-, 故答案为:6-18.已知l ,m 是平面α外的两条不同直线.给出下列三个论断:①l ⊥m ;②m ∥α;③l ⊥α.以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________.【答案】如果l ⊥α,m ∥α,则l ⊥m 或如果l ⊥α,l ⊥m ,则m ∥α. 【分析】将所给论断,分别作为条件、结论加以分析.【详解】将所给论断,分别作为条件、结论,得到如下三个命题: (1)如果l ⊥α,m ∥α,则l ⊥m . 正确; (2)如果l ⊥α,l ⊥m ,则m ∥α.正确;(3)如果l ⊥m ,m ∥α,则l ⊥α.不正确,有可能l 与α斜交、l ∥α.【点睛】本题主要考查空间线面的位置关系、命题、逻辑推理能力及空间想象能力. 19.设函数()()xxf x e aea R -=+∈,若()f x 为奇函数,则a =______.【答案】-1【分析】利用函数为奇函数,由奇函数的定义即可求解.【详解】若函数()xxf x e ae -=+为奇函数,则()()f x f x -=-,即()xx x x ae ae ee --+=-+,即()()10xxe a e-++=对任意的x 恒成立,则10a +=,得1a =-. 故答案为:-1【点睛】本题主要考查函数奇偶性的应用,需掌握奇偶性的定义,属于基础题. 20.如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E -BCD的体积是_____.【答案】10.【分析】由题意结合几何体的特征和所给几何体的性质可得三棱锥的体积. 【详解】因为长方体1111ABCD A B C D -的体积为120, 所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点, 所以112CE CC =, 由长方体的性质知1CC ⊥底面ABCD ,所以CE 是三棱锥E BCD -的底面BCD 上的高, 所以三棱锥E BCD -的体积1132V AB BC CE =⨯⋅⋅=111111201032212AB BC CC =⨯⋅⋅=⨯=.【点睛】本题蕴含“整体和局部”的对立统一规律.在几何体面积或体积的计算问题中,往往需要注意理清整体和局部的关系,灵活利用“割”与“补”的方法解题.三、解答题21.已知等差数列{}n a 满足32a =,前3项和392S =. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足11b a =,415b a =,求{}n b 的前n 项和n T . 【答案】(1)12n n a +=;(2)21nn T =-. 【分析】(1)利用等差数列的通项公式即可得出; (2)利用等比数列的通项公式与求和公式即可得出.【详解】(1)设{}n a 的公差为d ,则由已知条件得122+=a d ,1329322a d ⨯+=, 化简得122+=a d ,132a d +=,解得11a =,12d =,故{}n a 的通项公式112n n a -=+,即12n n a +=; (2)由(1)得11b =,41515182b a +===.设{}n b 的公比为q ,则3418b q b ==,从而2q ,故{}n b 的前n 项和1(21)2121n n n T ⨯-==--. 【点睛】本题考查了等差数列与等比数列的通项公式及其求和公式,考查了推理能力与计算能力,属于中档题.22.已知四边形ABCD 为平行四边形,()0,3A 、()4,1B,D 为边AB 的垂直平分线与x 轴的交点.(1)求点C 的坐标;(2)一条光线从点D 射出,经直线AB 反射,反射光线经过CD 的中点E ,求反射光线所在直线的方程.【答案】(1)()5,2C -;(2)3x =.【分析】(1)求出线段AB 的垂直平分线方程,可求得点D 的坐标,设点(),C a b ,由DC AB =结合平面向量的坐标运算可求得点C 的坐标;(2)求出点D 关于直线AB 的对称点D 的坐标,并求出线段CD 的中点E 的坐标,求出直线D E '的方程,即为反射光线所在直线的方程.【详解】(1)如图,设AB 中点为M ,则()2,2M ,由AB 的垂直平分线与x 轴交于点D ,可知1MD AB k k ⋅=-,131402AB k -∴==--,2MD k ∴=, 所以,直线MD 的方程为()222y x -=-,即22y x =-.令0y =,则1x =,D ∴点的坐标为()1,0. 又四边形ABCD 为平行四边形,设(),C a b ,DC AB =,即()()1,4,2a b -=-,5a ∴=,2b =-,即点C 的坐标为()5,2-; (2)由(1)知,直线AB 的方程为260x y +-=,如图,设点D 关于直线AB 的对称点为(),D m n ',则1112126022n m m n ⎧⎛⎫⋅-=- ⎪⎪⎪-⎝⎭⎨+⎪+⋅-=⎪⎩,整理可得2202110m n m n --=⎧⎨+-=⎩,解得34m n =⎧⎨=⎩,()3,4D '∴,又CD 的中点E 的坐标为()3,1E -,因此,反射光线所在直线D E '的方程为3x =.【点睛】方法点睛:解决光线反射问题,一般转化为点关于直线的对称点问题来求解,解决点关于直线对称问题要把握两点:点M 与点N 关于直线l 对称,则线段MN 的中点在直线l 上,直线l 与直线MN 垂直.23.某二手交易市场对某型号的二手汽车的使用年数x (0<x ≤10)与销售价格y (单位:万元/辆)进行整理,得到如下的对应数据: 使用年数x2 4 6 8 10 销售价格y16 13 9.5 7 4.5(1)试求y 关于x 的回归直线方程ˆˆˆybx a =+. (参考公式:()()121 () ˆni i i n i i x x y y b x x ==--=-∑∑,ˆˆˆa y bx =-) (2)已知每辆该型号汽车的收购价格为ω=0.05x 2﹣1.75x +17.2万元,根据(1)中所求的回归方程,预测x 为何值时,销售一辆该型号汽车所获得的利润z 最大?(利润=销售价格﹣收购价格)【答案】(1) 1.4518.ˆ7y x =-+;(2)3.【分析】(1)先求样本中心(),x y ,再求b ,最后将,,x y b 代入ˆˆˆay bx =-求a ,即可求解;(2)先列出利润的表达式z =﹣0.05x 2+0.3x +1.5,再结合二次函数性质即可求解最值;【详解】(1)由表中数据,计算15x =⨯(2+4+6+8+10)=6, 15y =⨯(16+13+9.5+7+4.5)=10, 51 i =∑(x i x -)(y iy -)=(﹣4)×6+(﹣2)×3+0×(﹣0.5)+2×(﹣3)+4×(﹣5.5)=﹣58.5;521 ()ii x x =-=∑(﹣4)2+(﹣2)2+02+22+42=40,由最小二乘法求得58.540b -==-1.45, a y b x =-=10﹣(﹣1.45)×6=18.7,∴y 关于x 的回归直线方程为ˆ 1.4518.7=-+yx ; (2)根据题意利润函数为z =(﹣1.45x +18.7)﹣(0.05x 2﹣1.75x +17.2)=﹣0.05x 2+0.3x +1.5,∴当()0.3320.05x =-=⨯-时,利润z 取得最大值. 【点睛】本题考查最小二乘法公式的求法,利用二次函数性质求最值,属于中档题 24.如图,在四梭柱1111ABCD A B C D -中,底面ABCD 是菱形,1DD ⊥底面ABCD ,点E 是1DD 的中点.(1)求证:1//BD 平面AEC ;(2)求证:平面AEC ⊥平面1BDD .【答案】(1)证明见解析;(2)证明见解析.【分析】(1)设AC ,BD 交于点O ,证明1//EO BD 即可得线面平行;(2)证明AC ⊥平面1BDD ,即可得.【详解】证明:(1)设AC ,BD 交于点O .∵四边形ABCD 为菱形,∴O 是AC 的中点,∵E 是1DD 的中点,连接OE ,∴1//OE BD ,∵OE ⊂平面AEC ,1BD ⊄平面AEC ,∴1//BD 平面AEC ;(2)∵四边形ABCD 为菱形,∴BD AC ⊥,∵1DD ⊥底面ABCD ,AC ⊂平面ABCD ,∴1DD AC ⊥,∵1BB ⊂平面1BDD ,BD ⊂平面1BDD ,1BB BD B ⋂=,∴AC ⊥平面1BDD ,∵AC ⊂平面AEC ,∴平面AEC ⊥平面1BDD .【点睛】本题考查证明线面平行,证明面面垂直.解题方法是几何法,即应用线面平行和面面垂直的判定定理证明.空间线面间的位置关系还可用空间向量法证明. 25.已知函数f (x )=x 2﹣2x +1+a 在区间[1,2]上有最小值﹣1.(1)求实数a 的值;(2)若关于x 的方程f (log 2x )+1﹣2k ⋅log 2x =0在[2,4]上有解,求实数k 的取值范围;(3)若对任意的x 1,x 2∈(1,2],任意的p ∈[﹣1,1],都有|f (x 1)﹣f (x 2)|≤m 2﹣2mp ﹣2成立,求实数m 的取值范围.(附:函数g (t )=t 1t+在(0,1)单调递减,在(1,+∞)单调递增.)【答案】(1)﹣1;(2)0≤t14≤;(3)m≤﹣3或m≥3.【分析】(1)由二次函数的图像与性质即可求解.(2)采用换元把方程化为t2﹣(2+2k)t+1=0在[1,2]上有解,然后再分离参数法,化为() g t=t1t+与y=2+2k在[1,2]上有交点即可求解.(3)求出|f(x1)﹣f(x2)|max<1,把问题转化为1≤m2﹣2mp﹣2恒成立,研究关于p 的函数h(p)=﹣2mp+m2﹣3,使其最小值大于零即可.【详解】(1)函数f(x)=x2﹣2x+1+a对称轴为x=1,所以在区间[1,2]上f(x)min=f(1)=a,由根据题意函数f(x)=x2﹣2x+1+a在区间[1,2]上有最小值﹣1.所以a=﹣1.(2)由(1)知f(x)=x2﹣2x,若关于x的方程f(log2x)+1﹣2k•log2x=0在[2,4]上有解,令t=log2x,t∈[1,2]则f(t)+1﹣2kt=0,即t2﹣(2+2k)t+1=0在[1,2]上有解,t1t+=2+2k在[1,2]上有解,令函数g(t)=t1 t +,在(0,1)单调递减,在(1,+∞)单调递增.所以g(1)≤2+2k≤g(2),即2≤2+2t52≤,解得0≤t14≤.(3)若对任意的x1,x2∈(1,2],|f(x1)﹣f(x2)|max<1,若对任意的x1,x2∈(1,2],任意的p∈[﹣1,1],都有|f(x1)﹣f(x2)|≤m2﹣2mp﹣2成立,则1≤m2﹣2mp﹣2,即m2﹣2mp﹣3≥0,令h(p)=﹣2mp+m2﹣3,所以h(﹣1)=2m+m2﹣3≥0,且h(1)=﹣2m+m2﹣3≥0,解得m≤﹣3或m≥3.【点睛】本题主要考查了二次函数的图像与性质、函数与方程以及不等式恒成立问题,综合性比较强,需有较强的逻辑推理能力,属于难题.。
初中毕业会考数学附加题(填空专项训练一)
A'A B CDE FGON初中数学附加题专项练习一1. 如图,等腰梯形ABCD 中,AD ∥BC ,∠DBC=45°.翻折梯形ABCD ,使点B 重合于点D ,折痕分别交边AB 、BC 于点F 、E .若AD=2,BC=8,则BE 的长是 ,CD :DE 的值是 .2. 如图,点P 是平行四边形ABCD 内一点,S △PAB =7,S △PAD =4,则S △PAC = .3. 如图,⊙O 的直径EF 为10cm ,弦AB 、CD 分别为6cm 、8cm ,且AB ∥EF ∥CD .则图中阴影部分面积之和为________.4.如图,PT 是⊙O 的切线,T 为切点,PA 是割线,交⊙O 于A 、B 两点,与直径CT 交于点D . 已知CD =2,AD =3,BD =4,那PB =________.5.如图,在边长为1的等边△ABC 中,中线AD 与中线BE 相交于点O , 则OA 长度为 .6.如图,已知正方形纸片ABCD 的边长为8,⊙0的半径为2,圆心在正方形的中心上, 将纸片按图示方式折叠,使E A ′恰好 与⊙0相切于点A ′(△EFA ′与⊙0除切点外 无重叠部分),延长FA ′交CD 边于点G , 则A ′G的长是ABCDO7.对于每个非零自然数n ,抛物线与x 轴交于A n 、B n 两点,以表示这两点间的距离,则的值是_________.8.如图,在等腰梯形ABCD 中,AD BC ∥,3AD =,5BC =,AC BD ,相交于O 点,且60BOC =∠,顺次连结等腰梯形各边中点所得四边形的周长是 .9.如图,⊙O 的直径AB 为10 cm ,弦AC 为6 cm ,∠ACB 的平分线交AB 于E ,交⊙O 于D .则弦AD 的长是 。
.10.如图,正方形纸片ABCD 的边长为1,M 、N 分别是AD 、BC 边上的点,将纸片的一角沿过点B 的直线折叠,使A 落在MN 上,落点记为A ′,折痕交AD 于点E,若M 、N 分别是AD 、BC 边的中点,则A ′N= ; 若M 、N 分别是AD 、BC 边的上距DC 最近的n 等分点(,且n 为整数),则A ′N=(用含有n 的式子表示)11.如图,AB 为半圆的直径,C 是半圆弧上一点,正方形DEFG 的一边DG 在直径AB 上,另一边DE 过ΔABC 的内切圆圆心O ,且点E 在半圆弧上。
2022夏季会考数学答案福建省
2022夏季会考数学答案福建省一、选择题(每空1分,共20分)1、已知小圆的半径是2cm,大圆的直径是6cm,小圆和小圆的周长之比为(),面积的比是()。
2、12的因数有()个,选4个组成一个比例是()。
3、一幅地图的比例尺是1:40000000,把它改成线段比例尺是(),已知AB两地的实际距离是24千米,在这幅地图上应画()厘米。
4、3时整,分针和时针的夹角是()°,6时整,分针和时针的夹角是()°。
5、一个比例的两个内项分别是4和7,那么这个比例的两个外项的积是()。
6、用圆规画一个直径是8cm的圆,圆规两脚尖的距离是()cm,这个圆的位置由()决定。
7、一个数,如果用2、3、5去除,正好都能被整除,这个数最小是(),如果这个数是两位数,它是()。
8、如果一个长方体,如果它的高增加2cm就成一个正方体,而且表面积增加24cm2,原来这个长方体的表面积是()。
9、一个三位小数四舍五入取近似值是2.80,这个数是(),最小是()。
10、打一份稿件,甲单独做需要10小时,乙单独做需要12小时,那么甲、乙的工效之比是(),时间比是()。
11、一个正方体的棱长总和是24cm,这个正方体的表面积是()cm2,体积是()cm3。
二、判断题(每题1分,共10分)1、两根1米长的木料,第一根用米,第二根用去,剩下的木料同样长。
()2、去掉小数0.50末尾的0后,小数的大小不变,计数单位也不变。
()3、一个三角形中至少有2个锐角。
()4、因为3a=5b(a、b不为0),所以a:b=5:3。
()5、如果圆柱和圆锥的体积和高分别相等,那么圆锥与圆柱的底面积的比是3:1。
()6、10吨煤,用去了一半,还剩50%吨煤。
()7、一组数据中可能没有中位数,但一定有平均数和众数。
()8、含有未知数的式子是方程。
()9、一个数乘小数,积一定比这个数小。
()10、把一个圆柱削成一个的圆锥,削去部分的体积是圆柱体积的。
高二会考函数练习题
高二会考函数练习题1. 已知函数 f(x) 的图像为抛物线,顶点坐标为(2, -3),经过点(-1, 0)。
求函数 f(x) 的解析式。
解析:由已知可得,函数 f(x) 的顶点坐标为(2, -3),因此抛物线的对称轴为 x = 2。
根据对称轴的性质,另一点在抛物线上的坐标为(3, 0)。
设函数 f(x) 的解析式为 f(x) = a(x - 2)^2 - 3。
代入点(-1, 0)可得 0 = a(-1 - 2)^2 - 3,化简得 0 = 9a - 3,解方程可得a = 1/3。
因此,函数 f(x) 的解析式为 f(x) = (1/3)(x - 2)^2 - 3。
2. 给定函数 g(x) = -2x^2 + 4x + k,若函数 g(x) 的图像过点(3, 5),求常数 k 的值。
解析:由已知可得,函数 g(x) 的图像过点(3, 5)。
代入点(3, 5)可得 5 = -2(3)^2 + 4(3) + k,化简得 5 = -18 + 12 + k,解方程可得 k = 11。
因此,常数 k 的值为 11。
3. 已知函数 h(x) 的图像为直线段,经过点(1, -2)和点(3, 4)。
求函数h(x) 的解析式。
解析:由已知可得,函数 h(x) 的图像为直线段,经过点(1, -2)和点(3, 4)。
设函数 h(x) 的解析式为 h(x) = mx + c。
代入点(1, -2)可得 -2 = m(1) + c,化简得 -2 = m + c。
代入点(3, 4)可得 4 = m(3) + c,化简得 4 = 3m + c。
解方程组可得 m = 3,c = -5。
因此,函数 h(x) 的解析式为 h(x) = 3x - 5。
4. 已知函数 p(x) 的图像经过点(-1, -4),且在点(2, 7)处存在切线,求函数 p(x) 的解析式。
解析:由已知可得,函数 p(x) 的图像经过点(-1, -4),且在点(2, 7)处存在切线。
初二数学完全平方公式练习题难题
初二数学完全平方公式练习题难题完全平方公式是初中数学中非常重要的一个知识点。
它可以帮助我们解决一类特殊的二次方程,即完全平方二次方程。
在学习完全平方公式后,我们可以通过运用它,迅速求解这类题型,提高解题的效率。
但是,有一些练习题可能会考查到我们的运用能力,下面我将为大家介绍一些初二数学完全平方公式练习题的难题,并给出解题思路。
难题一:解方程:x^2 - 10x + 24 = 0解题思路:我们可以通过配方法来解这个方程。
根据完全平方公式,一个完全平方二次方程可以表示为 (x - a)^2 = 0。
将方程进行变形,我们发现可以写成 (x - 4)(x - 6) = 0 的形式。
这样,我们可以得到方程的两个解:x = 4 和 x = 6。
难题二:解方程:4x^2 - 12x + 9 = 1解题思路:对于这类方程,我们首先要将方程化为标准形式,即 ax^2 + bx + c= 0。
然后,我们可以利用完全平方公式来解题。
根据完全平方公式,我们可以将方程变形为 (2x - 3)^2 = 0 的形式。
由此可知,方程的解为 x = 3/2。
难题三:解方程:7x^2 + 6x + 5 = 0解题思路:这个方程不是一个完全平方二次方程,但我们仍然可以尝试应用完全平方公式。
首先,我们可以将方程变形为 (7x^2 + 6x + 5) - 5 = 0 的形式。
再将方程进行化简,得到 (7x^2 + 6x) + 0 = 0 的形式。
此时,我们可以将方程分解为两个平方项相加的形式:(√7x + √5)^2 = 0。
由此可知,方程的解为 x = -√5/√7。
通过以上几个难题的解析,我们可以看出,初二数学完全平方公式练习题的难题主要集中在方程的配方、变形和化简上。
只要我们熟练掌握完全平方公式的运用,结合知识点的理解,就能轻松解答这类题目。
在实际解题过程中,我们不仅要学会灵活运用完全平方公式,还需要注意对题目的细节进行分析。
有时候,我们可能需要进行因式分解、整理方程,甚至进行多次变形,才能获得正确的解答。
西宁会考数学题
西宁会考数学题
【实用版】
目录
1.西宁会考数学题的背景和重要性
2.西宁会考数学题的特点和难点
3.如何准备西宁会考数学题
4.西宁会考数学题对学生和教育体系的影响
正文
西宁会考数学题是指在我国青海省西宁市举行的一种重要的数学考
试题目。
作为西宁市高中教育的一个重要组成部分,西宁会考数学题不仅对学生的学习有着重要的指导作用,同时也对学生的未来发展有着深远的影响。
西宁会考数学题的特点和难点主要体现在以下几个方面。
首先,这种考试的题目难度较大,需要学生掌握较高的数学知识。
其次,这种考试的题目灵活性较强,需要学生有一定的解题技巧和策略。
再次,这种考试的题目综合性较高,需要学生能够将所学的数学知识进行综合运用。
对于如何准备西宁会考数学题,学生需要做到以下几点。
首先,学生需要对所学的数学知识进行全面的复习和巩固,确保自己对数学知识的掌握。
其次,学生需要进行大量的数学题目练习,提高自己的解题技巧和策略。
再次,学生需要关注历年的西宁会考数学题,了解这种考试的题目特点和趋势。
西宁会考数学题对学生和教育体系的影响是深远的。
对于学生而言,这种考试的题目成绩不仅是评价学生数学学习成果的重要标准,同时也是学生进入大学或者就业市场的重要参考。
第1页共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学会考练习(七)
一.选择题
1.集合{}|03A x Z x =∈≤<,{}
2
|9B x Z x =∈≤,则A B = ( )
A .{}
03x x ≤<
B .
C .{}0,1,2
D .{}1,2
2.已知0<<b a ,则下列不等式中成立的是( )
A .
b
a 11> B .
1<b
a C .1<-a b
D .b a )3()3(>
3.已知幂函数()y f x =的图象经过点(2,4),则()f x 的解析式为( )
A .()2f x x =
B .2
()f x x =
C .()2x
f x =
D .()2f x x =+
4."2
1
sin "=
A 是"30"A = 的( ) A .充分不必要条件
B .必要不充分条件
C .充分必要条件
D .既不充分也不必要条件
5.偶函数)(x f y =在区间[0,4]上单调递减,则有( )
A .)()3
()1(ππ
->>-f f f
B .)()1()3
(ππ
->->f f f
C .)3
()1()(π
πf f f >->-
D .)3
()()1(π
πf f f >->-
6.若2
()(2)(21)0f x m x m x m =-+++=的两个零点分别在区间(1,0)-和区间(1,2)内,则m 的取值范
围是( )
A .11(,)24-
B .11
(,)42- C .11
(,
)42
D .11[,]42
7.33cos cos
sin sin 510510
ππππ
-=( ) A .1
B .0
C .1-
D .
2
1 8.如图,在四边形ABCD 中,设AB a = ,AD b = ,BC c = ,则 DC =
( )
A .a b c -+
B .()b a c -+
C .a b c ++
D .b a c -+
9.已知向量(1
)(1)n n ==-,,,a b ,若2-a b 与b 垂直,则=a ( ) A .1 B .2
C .4
D .6
C
B
A
D
10
0y +-=截圆224x y +=所的到的劣弧所对的圆心角是( )
A .
6
π B .
4
π C .
3
π D .
2
π 11.在等比数列{}n a 中,,8
1
,141==a a 则该数列的前10项和为( )
A .4122
-
B .9122
-
C .10122
-
D .11122
-
12.已知函数)(x f y =为奇函数,且当0>x 时32)(2+-=x x x f ,则当0<x 时,)(x f 的解析式( )
A .32)(2-+-=x x x f
B .32)(2---=x x x f
C .32)(2+-=x x x f
D .32)(2+--=x x x f
13.设2
2 (1)
() (12)2 (2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩
,若()3f x =,则x =( )
A .1-
B
C
.D .
-114.在半径为1的半圆内,放置一个边长为1
2
的正方形ABCD ,向半圆内任投一点,落在正方形内的概率是( ) A .
12
B .
14
C .14π
D .
12π
15.过点A (1,-1),B (-1,1),且圆心在直线02=-+y x 上的圆的方程是( )
A .2
2
(3)(1)4x y -++= B .22
(3)(1)4x y -+-= C .2
2
(1)(1)4x y -+-=
D .2
2
(1)(1)4x y +++=
16.如果两条直线033=-+y x 与016=++my x 互相平行,那它们之间的距离是( )
A .4
B .
1313
2
C .
1326
5
D .
1020
7
17.将x y cos =的图象上的所有点的纵坐标不变,横坐标缩小到原来的一半,然后再将图象沿x 轴负方向平移
4
π
个单位,则所得图象的解析式为( ) A .x y sin = B .x y 2sin -=
C .)4
2cos(π
+
=x y D .)4
2cos(
π+=x y
18.下列函数图象中,函数)10(≠>=a a a y x 且,与函数x a y )1(-=的图象只能是( )
A. B . C . D.
19.如图,三棱柱111ABC A B C -的侧棱长和底面边长均为2,且侧棱1AA ⊥底面ABC ,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( ) A B . C .D .4
20.函数)3
2215sin()(x
x f +=π,则)(x f ( ) A .是奇函数不是偶函数 B .是偶函数不是奇函数
C .既是奇函数又是偶函数
D .不是奇函数也不是偶函数
二.填空题
21.某工厂对一批电子元件进行了抽样检测,右图是根据 抽样检测后元件使用寿命(单位:小时)的数据绘制 的频率分布直方图,其中元件使用寿命的范围是
]600,100[, 样本数据分组为)200,100[,)300,200[, )400,300[,)500,400[,)600,500[,若样本元件的
总数为1000个,则样本中使用寿命大于或等于200小 时并且小于400小时的元件的个数是 .
22.在△ABC 中,a ,b ,c 分别是三个内角A ,B ,C 的对边,若1=a ,
2=b ,3
1
cos =B ,则=A sin .
23.阅读下面的程序框图,执行相应的程序,则输出的结果是 .
正(主)视图
A
B
C
A 1
B 1
C 1
n=n+1s=s+(-1)n ⋅n
n=1, s=0
n ≤ 10 ?
输出 S 开始
结束
是
否
C
A 1 1
24.有下列命题:
①函数)2(+-=x f y 与)2(-=x f y 的图象关于y 轴对称; ②若函数x e x f =)(,则∈∀21,x x R ,都有()()222121x f x f x x f +≤
⎪⎭
⎫
⎝⎛+; ③若函数x x f a log )(= ()1,0≠>a a 在(0,+∞)上单调递增,则)1()2(+>-a f f ; ④若函数()1220102--=+x x x f (x ∈R ),则函数)(x f 的最小值为-2. 其中真命题的序号是 . 三.解答题
25.三棱柱111C B A ABC -中,侧棱与底面垂直,
90=∠ABC ,12AB BC BB ===,,M N 分别是AB ,
1AC 的中点.
(Ⅰ)求证:MN 平面11B BCC ; (Ⅱ)求证:⊥MN 平面C B A 11.。