教师业务能力考试初中数学

合集下载

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案

2024年教师资格(中学)-数学学科知识与教学能力(初中)考试历年真题摘选附带答案第1卷一.全考点押密题库(共100题)1.(单项选择题)(每题 5.00 分)我国古代关于求解一次同余式组的方法被西方称作“中国剩余定理”,这一方法的首创者是()。

A. 贾宪B. 刘徽C. 朱世杰D. 秦九韶2.3.(单项选择题)(每题 1.00 分)关于倍立方体问题中最重大的成就是柏拉图学派的()为解决倍立方体问题而发现了圆锥曲线。

A. 梅内赫莫斯B. 泰勒斯C. 欧几里得D. 阿基米德4.(单项选择题)(每题5.00 分)下列说法正确的是()。

A. 单调数列必收敛B. 收敛数列必单调C. 有界数列必收敛D. 收敛数列必有界5.(单项选择题)(每题 5.00 分) 一元三次方程x3 -3x-4 = 0的解的情况是()。

A. 方程有三个不相等的实根B. 方程有一个实根,一对共轭复根C. 方程有三个实根,其中一个两重根D. 无解6.(单项选择题)(每题 5.00 分) 我国现行法律认为,教师职业是一种()。

A. 私人职业B. 从属职业C. 专门职业D. 附加职业7.(单项选择题)(每题 1.00 分)下列关于椭圆的论述,正确的是()。

A. 平面内到两个定点的距离之和等于常数的动点轨迹是椭圆B. 平面内到定点和定直线距离之比小于1的动点轨迹是椭圆C. 从椭圆的一个焦点出发的射线,经椭圆反射后通过椭圆另一个焦点D. 平面与圆柱面的截线是椭圆8.(单项选择题)(每题 1.00 分)设4阶矩阵A与B仅有第3行不同,且|A|=1,|B|=3,则|A+B|=()。

A. 3B. 6C. 12D. 329.(单项选择题)(每题 5.00 分) 设向量a,b满足:|a| = 3,|b| = 4, a.b=0。

以a,b,a-b的模为边长构成三角形,则它的边与半径为1的圆的公共点个数最多为()。

A. 3B. 4C. 5D. 610.(单项选择题)(每题 1.00 分)《义务教育数学课程标准(2011 年版)》从四个方面阐述了课程目标,这四个目标是()。

中小学教师业务考试初中数学试题含答案

中小学教师业务考试初中数学试题含答案

中小学教师业务考试初中数学试题含答案一、选择题1. 判断题:下列哪个数是奇数?A. 36B. 18C. 45D. 68答案:C2. 以下哪个数是整数?A. -1.5B. 1/2C. 0.75D. 3/4答案:A3. 已知a = 3,b = 5,则a² + b²的值为:A. 8B. 11C. 19D. 34答案:C4. 若x = -2,则|x|的值为:A. 0B. 1C. 2D. -2答案:25. 如果一个数的百位是6,个位是4,且十位的数是个位数的两倍,那这个数是多少?答案:648二、填空题1. 60 × 0.15 = _______答案:92. 38 - 24 = _______答案:143. (5 - 2)² = _______答案:94. 张教师昨天给学生发了30本书,今天还需要再发______本书。

答案:55三、解答题1. 已知一次函数y = 2x - 3,求x = 4时的y值。

解答:将x = 4代入函数中,y = 2 × 4 - 3 = 5。

所以x = 4时,y = 5。

2. 请计算下列算式的结果:2/3 + 1/2 - 3/4解答:首先,将分数化为相同分母的形式。

得到2/3 + 2/4 - 3/4 = 2/3 - 1/4。

接着,找到2/3和1/4的最小公倍数为12,得到4/12 - 3/12 = 1/12。

所以2/3 + 1/2 - 3/4的结果为1/12。

四、综合题小华今天早上7点半从家里出发,步行到学校,全程5公里。

他步行的速度是每小时4公里。

请问他几点到达学校?答案:小华步行5公里所需的时间为5/4小时,即1小时15分钟。

所以他将在早上8点45分到达学校。

考试结束后请同学们认真复习,及时总结和弥补知识漏洞,以便在实际教学中能够更好地应用所学知识。

祝各位考生取得优异的成绩!。

初中数学教师业务考试试卷与答案

初中数学教师业务考试试卷与答案

初中数学教师业务考试试卷与答案第Ⅰ部分数学教育的基础知识与基本技能一、填空题(本大题共9个小题,每小题3分,共27分)请将答案填在填空题的答题拦内.1、化简:(-)÷ = .2、已知分式,当=1时,分式的值记为(1),当=2时,分式的值记为(2),依此计算: (1)+()= .3、用边长是1cm的小正方形搭成如下塔形图形,则第n次所搭图形的周长为cm.………第一次第二次第三次4、将一根长为15cm的很细的木棒置于底面直径为5cm,高为12cm的圆柱形杯中,木棒露在杯子外面的部分长度的范围是.5、某电视台在黄金时段有2min广告时间,计划插播长度为15和30的两种广告,15广告每播一次收费0.6万元,30广告每播一次收费1万元,若要求每种广告播放不少于2次,那么该电视台在这段时间内最多可收广告费万元.6、如图,菱形ABCD的对角线的长度分别为4,5,P是对角线AC上的一点,PE//BC交AB于E,PF//CD交AD于F,则图中阴影部分的面积是.7、某城市为避免生活污水排入河流,需修建一条2400米长的封闭式污水处理管道,为了尽量减少施工对市民生活的影响,实际施工比原计划每天多修10米,结果提前了20天完成任务,实际每天修多少米?设实际每天修米,则可列方程为.8、从甲地到乙地有3条道路,从乙地到丙地有4条通路,从甲地到丁地有2条道路,从丁地到丙地有5条道路,那么从甲地(经乙地或丁地)到丙地一共有种不同的走法.9、已知(1-2)8=0+1+22+…+88.则:0+2+4+6+8=二、选择题(本大题共9个小题,每小题3分,共27分)请将答案填在选择题的答题栏内.10、定义图形A※B是由图形A与图形B组成的图形,已知:A※B B※C C※D B※D则A※D是下图中的A B C D11、已知===,则直线=+2一定经过A、第1、2象限B、第2,3象限C、第3、4象限D、第1、4象限12、已知二次函数=2-7-7的图象和轴有交点,则的取值范围是A、>-B、>-且m≠0C、≥-D、≥-且≠013、如图,直线交两坐标轴于A、B,点C在线段AB上,若∠AOC=,OA=OB,那么S⊿OBC:S⊿OAC=A、sinαB、cosαC、tanαD、cotα14、已知一组数据1,2,3,4,5的平均数是2,方差是,那么另一数据31-2, 32-2, 33-2, 34-2, 35-2的平均数和方差分别是:A、4,3B、2,C、4,D、2,315、如图,在ABCD中,∠DAB=60°AB=5,BC=3,点P从点D出发沿DC,CB向终点B 匀速运动,设点P所走的路程为,点P所经过的线段与AD,AP所围成的图形面积为y,y 随的变化而变化,在下列图象中,能正确反映y与的函数关系的是16、越来越多的商品房空置是目前比较突出的问题,据国家有关部门统计:2006年第一季度全国商品房空置面积为1.23亿m2,比2005年第一季度增长23.8%,下列说法:①2005年第一季度全国商品房空置面积为亿㎡;②2005年第一季度全国商品房空置面积为亿㎡;③若按相同增长率计算,2007年第一季度全国商品房空置面积将达到1.23×(1+23.8%)亿㎡;④如果2007年第一季度全国商品房空置面积比2006年第一季度减少23.8%,那么2007年第一季度全国商品空置面积与2005年第一季度相同,其中正确的是A、①,④B、②,④C、②,③D、①,③17、如图,△ABC是锐角三角形,正方形DEFG的一边在BC上,其余两个定点在AB,AC上,记△ABC的面积为S1,正方形的面积为S2则A、S1≥2S2B、S1≤2S2C、S1>2S2D、S1<2S218、《九章算术》是我国东汉年间编订的一部数学经典著作,在它的“方程”一章里一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,为看图方便,把它改为横排,如图(1)、(2),图中各行从左到右列出的算筹数分别表示未知数,的系数与对应的常数项,把图(1)所示的算筹图中方程组形式表述出来,就是3+2=19+4=23 ,类似地,图(2)所示的算筹图可表述为D、B、C、A、2+=11 2+=11 3+2=19 2+=64+3=27 4+3=22 +4=23 4+3=27 三、解答题:(本大题共6个小题,共36分)得分19、(本题满分6分)评卷人如图,在Rt△ABC中,∠C=90°,∠A=15°,AB的垂直平分线DE交AC于D,交AB于E,连接BD,若BC=1,求AD及tanA(请直接写出答案).得分20、(本题满分6分)评卷人某风景区对5个旅游景点的门票价格进行调整,据统计,调价前后各景点的游客人数基本不变,有关数据如下表所示:景点 A B C D E原价(元)10 10 15 20 25现价(元) 5 5 15 25 30平均日人数(千人)1 123 2(1)、有人说:该风景区调价前后,这5个景点门票的平均收费不变,因而平均日总收入持平,问此人是怎样计算的?(2)游客认为:调整收费后,风景区的平均日总收入相对调价前,实际上增加了约9.4%,问游客是怎样计算的?得分21、(本题满分6分)评卷人如图,正方形ABCD与正方形OMNP的边长均为10,点O是正方形ABCD的中心,正方形OMNP绕O点旋转,证明:无论正方形OMNP旋转到何种位置,这两个正方形重叠部分的面积总是一个定值,并求这个定值.得分22、(本题满分6分)评卷人某博物馆每周都有大量中外游客前来参观,如果游客过多,则不利于博物馆中的一些珍贵文物的保存,但又需要一定量的门票收入用于解决文物的保存、保护等费用问题,因此博物馆通过浮动门票价格的方法来控制参观人数,调查统计发现,每周参观的人数与票价之间的关系可近似地看成如图所示的一次函数关系.(1)求图中一次函数的解析式;(2)为确保每周4万元的门票收入,则门票价格应定为多少元?得分23、(本题满分6分)评卷人如图,已知,抛物线y=2+b+c(<0)经过A(-1,0),C(0,1)两点,直线与抛物线相交于C,B(,1)两点.(1)求该抛物线的解析式;(2)若点M(,t)(<0, >0)在抛物线上,MN//轴,且与该抛物线的另一交点N,问:是否存在实数,使得MN=2AO?若存在,求出值,若不存在说明理由.得分24、(本题满分6分)评卷人若、、、都是整数,且>1,>1,求+的值.第Ⅱ部分数学教育的基本理论与实践得分评卷人1、选择题(每小题2分,共4分,每题有一个或多个正确答案,请将正确答案的代号填在题后的括号内)(1)导入新课应遵循()A、导入新课的方法应能激发学生的学习兴趣、学习动机,造成悬念,达到激发情感,提出疑问的作用B、要以生动的语言、有趣的问题或已学过的知识,引入新知识、新概念C、导入时间应掌握得当,安排紧凑D、要尽快呈现新的教学内容(2)下列关于课堂教学的改进,理念正确的是()A、把学生看作教育的主体,学习内容和学习方法由学生作主B、促进学生的自主学习,激发学生的学习动机C、教学方法的选用改为完全由教学目标来决定D、尽可能多的提供学生有效参与的机会,让学生自己去发现规律,进而认识规律2、判断题(每小题1分,共2分,对的在题后的括号记√,错的在题后的括号内记×)(1)教育过程既是一种特殊的认识过程,又是一种促进人身心发展的过程()(2)课的结构是由课的类型决定的,备课就是写教案()3、简答题(只答要点,不必展开,满分4分)你认为一堂好课的特点应体现在哪些方面?湘潭市2006年中小学教师业务理论考试初中数学答案及评分标准1、2-2、3、4、2≤≤35、4.4万6、57、8、22 9、选择题10、C 11、B 12、D 13、D 14、A 15、A 16、D 17、A 18、A解答题:19、AD=2 tanA=2- (每个3分)20、(1)A、B各降5元,D、E各提价5元…………………………2分(2)原价日收入16000元…………………………3分现价日收入175000元,=0.09375 ………………6分21、当OP//AD或OP经过C点,重叠部分的面积显然为正方形的面积的,即25……………………2分当OP在如图位置时,过O分别作CD、BC的垂线垂足分别为E、F,如图在Rt△OEG与Rt△OFH 中,∠EOG=∠HOF,OE=OF=5,△OEG≌△OFH ∴S0HCG=S0FCE=25,即两个正方形重叠部分的面积为25。

初中数学教师业务考试卷

初中数学教师业务考试卷

一、单项选择题(每题2分,共20分)1. 义务教育阶段的数学课程应体现以下哪种特点?A. 专业性B. 基础性C. 针对性D. 时代性2. 下列哪个选项不属于数学教师的基本素质?A. 知识储备B. 教学技能C. 创新意识D. 管理能力3. 在数学教学中,教师应如何处理学生个体差异?A. 忽视差异,统一教学B. 严格按照教学大纲教学C. 因材施教,关注个体差异D. 只关注学习成绩优秀的学生4. 下列哪个教学方法不利于培养学生的创新思维?A. 问题解决法B. 探究式学习C. 传统讲授法D. 案例分析法5. 在数学教学中,教师应如何处理课堂突发事件?A. 立即制止,严厉批评B. 留待课后处理C. 保持冷静,妥善解决D. 无视不管,继续教学6. 数学课堂教学中,教师应如何发挥学生的主体作用?A. 充分讲解,全面指导B. 引导学生自主学习C. 过分依赖学生,放手不管D. 严格控制课堂纪律7. 下列哪个教学评价方式不利于激发学生的学习兴趣?A. 成绩评价B. 过程评价C. 自我评价D. 他人评价8. 在数学教学中,教师应如何培养学生的空间观念?A. 通过图形观察、分析B. 单纯讲解空间概念C. 忽视空间观念的培养D. 强调空间想象能力的培养9. 下列哪个教学策略有助于提高学生的学习效率?A. 多媒体教学B. 课堂教学活动C. 课后辅导D. 以上都是10. 在数学教学中,教师应如何培养学生的数学素养?A. 传授数学知识B. 培养学生的数学思维C. 关注学生的情感体验D. 以上都是二、多项选择题(每题3分,共15分)1. 下列哪些属于数学教师应具备的基本素质?A. 知识储备B. 教学技能C. 创新意识D. 管理能力E. 良好的心理素质2. 下列哪些教学方法有助于培养学生的数学思维能力?A. 问题解决法B. 探究式学习C. 传统讲授法D. 案例分析法E. 合作学习3. 下列哪些教学评价方式有助于提高学生的学习兴趣?A. 成绩评价B. 过程评价C. 自我评价D. 他人评价E. 多元评价4. 在数学教学中,教师应如何培养学生的空间观念?A. 通过图形观察、分析B. 单纯讲解空间概念C. 忽视空间观念的培养D. 强调空间想象能力的培养E. 利用信息技术辅助教学5. 下列哪些教学策略有助于提高学生的学习效率?A. 多媒体教学B. 课堂教学活动C. 课后辅导D. 家庭作业E. 课堂提问三、简答题(每题5分,共25分)1. 简述数学教师在教学过程中应遵循的原则。

中小学教师业务考试初中数学试题含答案

中小学教师业务考试初中数学试题含答案

中小学教师业务考试初中数学试题含答案一、选择题(每题3分,共60分)1. 若一元二次方程x² - 3x + k = 0 的两个根分别是2和-2,则k的值为()。

A. 3B. 4C. -2D. -32. 下列函数中,不是一次函数的是()。

A. y = 2x + 3B. y = -x + 5C. y = 4x² + 1D. y = 3 - 2x3. 若一元二次方程x² - kx + 8 = 0 的解是3和4,则k的值为()。

A. -1B. -2C. 5D. 74. 若x的实数解为x > 0,则不等式2x - 3 > 5的解是()。

A. x > 7/2B. x > 4/2C. x > 8/2D. x > 6/25. 下列关于四边形的说法,错误的是()。

A. 平行四边形的对角线相互平分B. 矩形的对角线相等C. 菱形的对角线相互垂直D. 任意几边相等的四边形是正方形二、填空题(每题5分,共40分)1. 简化下列代数式:(3x² - 4x) + (5x - 2x²) = ______。

2. 若正方形的边长为x,则它的周长是______ ,面积是 ______ 。

3. 已知点A(2, 4),以A为圆心,半径为5的圆的方程是______。

4. 若正方形的对角线长为10 cm,则它的边长是______ 。

三、解答题(共40分)1. 一辆汽车以每小时80km的速度匀速行驶,从A地行驶到B地耗时5小时。

再以每小时100km的速度行驶,从B地返回A地耗时多少小时?2. 用长方形长为15cm,宽为10cm的铁皮制作一个开口的盒子,假设所有边各处的连接处不占空间。

问:这个盒子的最大体积是多少?四、答案选择题:1 - C,2 - C,3 - C,4 - A,5 - D填空题:1 - - x² + x ,2 - 4x,3 - (x - 2)² + (y - 4)² = 25,4 - 10√2解答题:1 - 4小时,2 - 750cm³以上是中小学教师业务考试初中数学试题,包含选择题、填空题和解答题。

教师资格考试初中数学学科知识与教学能力2024年下半年自测试题及解答

教师资格考试初中数学学科知识与教学能力2024年下半年自测试题及解答

2024年下半年教师资格考试初中数学学科知识与教学能力自测试题及解答一、单项选择题(本大题有8小题,每小题5分,共40分)1、在平面直角坐标系中,点P(2,−3)到x 轴的距离是 ____.答案:3解析:在平面直角坐标系中,一个点到x 轴的距离等于该点的纵坐标的绝对值。

对于点P (2,−3),其纵坐标为−3,所以点P 到x 轴的距离为|−3|=3。

2、若分式x+1x−2的值为0,则x 的值为 ____.答案:−1解析:根据分式值为0的条件,分子必须为0且分母不能为0。

对于分式x+1x−2,我们有:x +1=0 x −2≠0 解第一个方程得x =−1,该解满足第二个条件x −2≠0,所以x =−1。

3、计算:√12−|−2|+(√3−1)0−4sin60∘=____.答案:−2解析:首先计算√12,由于12=4×3,所以√12=2√3。

接着计算绝对值|−2|,得|−2|=2。

然后计算零指数幂(√3−1)0,任何非零数的零次幂都是1,所以(√3−1)0=1。

最后计算特殊角的三角函数值4sin60∘,由于sin60∘=√32,所以4sin60∘=4×√32=2√3。

将以上结果代入原式,得:√12−|−2|+(√3−1)0−4sin60∘=2√3−2+1−2√3=−24、在三角形ABC中,若∠A = 60°,∠B = 40°,则∠C = _______.A. 60°B. 80°C. 100°D. 120°答案:B解析:根据三角形内角和定理,有∠A+∠B+∠C=180∘。

已知∠A=60∘,∠B=40∘,代入得:∠C=180∘−60∘−40∘=80∘5、已知点P(a,b)在第四象限,则ab____0,a−b____0.答案:<;>解析:由于点P(a,b)在第四象限,根据坐标系的性质,我们知道在第四象限内,x坐标为正,y坐标为负。

2024年教师资格考试初中学科知识与教学能力数学试卷与参考答案

2024年教师资格考试初中学科知识与教学能力数学试卷与参考答案

2024年教师资格考试初中数学学科知识与教学能力复习试卷(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列函数中,属于一次函数的是:A.(f(x)=x2+3x−2)B.(g(x)=2x+4)C.(ℎ(x)=√x+5)+3)D.(j(x)=1x2、下列关于三角形内角和定理的说法正确的是:A. 任何三角形的内角和小于180°B. 等边三角形的内角和等于360°C. 所有三角形的内角和等于180°D. 任何三角形的内角和大于180°3、题干:在平面直角坐标系中,点A的坐标为(3,4),点B的坐标为(-2,1)。

下列关于点B的坐标的描述正确的是()A. 点B在第二象限B. 点B在第三象限C. 点B在第四象限D. 点B在x轴上4、题干:若等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 25B. 28C. 31D. 345、下列关于函数图像的说法正确的是()A. 函数y=x^2的图像是一个开口向上的抛物线B. 函数y=√x的图像是一个开口向下的抛物线C. 函数y=2x+1的图像是一条直线,斜率为2,y轴截距为1D. 函数y=|x|的图像是一个开口向左的绝对值函数6、下列关于一元二次方程的解法,错误的是()A. 因式分解法可以求解一元二次方程B. 配方法可以求解一元二次方程C. 求根公式法可以求解一元二次方程D. 降次法不能求解一元二次方程7、在下列函数中,属于二次函数的是())A.(y=1xB.(y=x2+2x+1)C.(y=√x)D.(y=x3−2x2+x+1)8、已知函数(f(x)=2x2−3x+1),则函数的对称轴是())A.(x=−34)B.(x=34)C.(y=−34)D.(y=34二、简答题(本大题有5小题,每小题7分,共35分)第一题请结合初中数学学科特点,谈谈如何有效运用信息技术进行数学教学?第二题题目:简述在教授初中数学时如何运用直观演示法,并举例说明其在几何教学中的应用。

教师专业能力考试试题 初中数学试卷 (2)

教师专业能力考试试题 初中数学试卷  (2)

第1页(共6页)秘密★启用前2022年毕节市初中毕业生升学考试数 学考生注意:1.答题前,请务必将自己的姓名、准考证号填写在答题卡的规定位置.2.答题时,选择题使用2B 铅笔在答题卡上填涂,非选择题使用黑色字迹的笔在答题卡规定区域内作答,在试卷上作答无效.3.本试题共6页,满分150分,考试时间120分钟.一、选择题(本题15小题,每小题3分,共45分) 1.2的相反数是A .2B .2-C .12D .12-2.下列垃圾分类标识的图形中,既是中心对称图形又是轴对称图形的是A .B .C .D .3.截至2022年3月24日,携带“祝融号”火星车的“天问一号”环绕器在轨运行609天,距离地球277 000 000千米;277 000 000用科学记数法表示为A .277×106B .2.77×107C .2.8×108D .2.77×1084.计算()322x 的结果,正确的是A .58xB .56xC .66xD .68x5.如图,m ∥n ,其中∠1=40°,则∠2的度数为 A .130° B .140° C .150° D .160° 62cos 45-⨯︒的结果,正确的是AB.C. D.7.如果一个三角形的两边长分别为3,7,则第三边的长可以是A .3B .4C .7D .10第2页(共6页)8.在△ABC 中,用尺规作图,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N .作直线MN 交AC 于点D ,交BC 于点E ,连接AE .则下列结论不一定正确的是 A .AB =AE B .AD =CD C .AE =CE D .∠ADE =∠CDE9.小明解分式方程121133xx x =-++的过程如下.解:去分母,得 32(33)x x =-+. ① 去括号,得 3233x x =-+. ② 移项、合并同类项,得 6x -=. ③ 化系数为1,得 6x =-.④ 以上步骤中,开始出错的一步是 A .① B .② C .③D .④10.如图,某地修建的一座建筑物的截面图的高BC =5 m ,坡面AB 的坡度为1AB 的长度为A .10 mB . mC .5 mD .m 11.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两(我国古代货币单位);马三匹、牛五头,共价三十八两.问马、牛各价几何?”设马每匹x 两,牛每头y 两,根据题意可列方程组为A .6448,5338x y x y +=⎧⎨+=⎩B .6438,5348x y x y +=⎧⎨+=⎩C .4648,3538x y x y +=⎧⎨+=⎩D .4638,3548x y x y +=⎧⎨+=⎩12.如图,一件扇形艺术品完全打开后, AB ,AC 夹角为120°,AB 的长为45 cm ,扇面BD 的长为30 cm ,则扇面的面积是 A .2375cm π B .2450cm πC .2600cm πD .2750cm π13.现代物流的高速发展,为乡村振兴提供了良好条件.某物流公司的汽车行驶30 km 后进入高速路,在高速路上匀速行驶一段时间后,再在乡村道路上行驶1 h 到达目的地.汽车行驶的时间x (单位:h )与行驶的路程y (单位:km)之间的关系如图所示.请结合图象,判断以下说法正确的是A .汽车在高速路上行驶了2.5 hB .汽车在高速路上行驶的路程是180 kmC .汽车在高速路上行驶的平均速度是72 km/h D .汽车在乡村道路上行驶的平均速度是40 km/hy第3页(共6页)14.在平面直角坐标系中,已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,有下列5个结论: ①0abc >; ②20a b -=; ③930a b c ++>;④24b ac >; ⑤a c b +<.其中正确的有A .1个B .2个C .3个D .4个15.矩形纸片ABCD 中,E 为BC 的中点,连接AE ,将△ABE 沿AE 折叠得到△AFE ,连接CF .若AB =4,BC =6,则CF 的长是 A .3 B .175C .72D .185二、填空题(本题5小题,每小题5分,共25分) 16.分解因式:228=m -______.17.甲乙两人参加社会实践活动,随机选择“做环保志愿者”和“做交通引导员”两项中的一项,那么两人同时选择“做环保志愿者”的概率是______.18.如图,在Rt △ABC 中,∠BAC =90°,AB =3,BC =5,点P 为BC 边上任意一点,连接P A ,以P A ,PC 为邻边作平行四边形P AQC ,连接PQ ,则PQ 长度的最小值为______. 19.如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数ky x=(x >0,k >0)的图象经过点C ,E .若点A (3,0),则k 的值是______.18题图 19题图 20题图20.如图,在平面直角坐标系中,把一个点从原点开始向上平移1个单位,再向右平移1个单位,得到点A 1(1,1);把点A 1向上平移2个单位,再向左平移2个单位,得到点A 2(1-,3);把点A 2向下平移3个单位,再向左平移3个单位,得到点A 3(4-,0);把点A 3向下平移4个单位,再向右平移4个单位,得到点A 4(0,4-);…;按此做法进行下去,则点A 10的坐标为______.第4页(共6页)分数三、解答题(本题7小题,共80分) 21.(8分)先化简,再求值:2241442a a a a -⎛⎫÷- ⎪+++⎝⎭,其中2a .22.(8分)解不等式组()328131322x x x x --⎧⎪⎨-<-⎪⎩≤,,并把解集在数轴上表示出来.4321-3-2-123.(10分)某校在开展“网络安全知识教育周”期间,在八年级中随机抽取了20名学生分成甲、乙两组,每组各10人,进行“网络安全”现场知识竞赛.把甲、乙两组的成绩进行整理分析(满分100分,竞赛得分用x 表示: 90100x ≤≤为网络安全意识非常强,8090x <≤为网络安全意识强,80x <为网络安全意识一般). 收集整理的数据制成如下两幅统计图:甲组学生竞赛成绩统计图 乙组学生竞赛成绩统计图23题图123题图2分析数据:根据以上信息回答下列问题:(1)填空:a =______,b =______,c =______;(2)已知该校八年级有500人,估计八年级网络安全意识非常强的人数一共是多少? (3)现在准备从甲乙两组满分人数中抽取两名同学参加校际比赛,求抽取的两名同学恰好一人来自甲组,另一人来自乙组的概率.24.(12分)如图,在△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与AC相切于点E,连接DE并延长交BC的延长线于点F.(1)求证:BF=BD;(2)若CF=1,tan∠EDB=2,求⊙O的直径.25.(12分)2022北京冬奥会期间,某网店直接从工厂购进A、B两款冰墩墩钥匙扣,进货价和销售价如下表:(注:利润=销售价 进货价)(1钥匙扣分别购进的件数;(2)第一次购进的冰墩墩钥匙扣售完后,该网店计划再次购进A、B两款冰墩墩钥匙扣共80件(进货价和销售价都不变),且进货总价不高于2 200元.应如何设计进货方案,才能获得最大销售利润,最大销售利润是多少?(3)冬奥会临近结束时,网店打算把B款钥匙扣调价销售.如果按照原价销售,平均每天可售4件.经调查发现,每降价1元,平均每天可多售2件,将销售价定为每件多少元时,才能使B款钥匙扣平均每天销售利润为90元?26.(14分)如图1,在四边形ABCD中,AC和BD相交于点O,AO=CO,∠BCA=∠CAD.(1)求证:四边形ABCD是平行四边形;(2)如图2,E,F,G分别是BO,CO,AD的中点,连接EF,GE,GF,若BD=2AB,BC=15,AC=16,求△EFG的周长.26题图1 26题图2第5页(共6页)第6页(共6页)27.(16分)如图,在平面直角坐标系中,抛物线2+y x bx c =-+与x 轴交于A ,B 两点,与y 轴交于点C ,顶点为D (2,1),抛物线的对称轴交直线BC 于点E . (1)求抛物线2+y x bx c =-+的表达式;(2)把上述抛物线沿它的对称轴向下平移,平移的距离为h (h >0),在平移过程中,该抛物线与直线BC 始终有交点,求h 的最大值;(3)M 是(1)中抛物线上一点,N 是直线BC 上一点.是否存在以点D ,E ,M ,N 为顶点的四边形是平行四边形?若存在,求出点N 的坐标;若不存在,请说明理由.。

中小学教师业务考试初中数学试题含答案

中小学教师业务考试初中数学试题含答案

中小学教师业务考试初中数学试题含答案一、选择题1. 已知直角三角形ABC,∠A=90°,BC=12 cm,AC=9 cm,求AB 的长度。

A. 3 cmB. 6 cmC. 15 cmD. 18 cm答案:B2. 甲、乙两个数相加等于30,甲数减去乙数等于10,求甲、乙两个数分别是多少。

A. 10,20B. 15,15C. 20,10D. 25,5答案:C3. 若正方形的边长为x cm,则它的面积是多少平方厘米?A. xB. x²C. 2xD. 2x²答案:D4. 下列四个数中,最大的是:A. 3/5B. 2/3C. 4/7D. 5/8答案:B5. 在算式5 + 3 × 4 - 2的运算中,应先进行哪个运算?A. 加法运算B. 乘法运算C. 减法运算D. 可以按任意顺序进行运算答案:B二、填空题1. 7 × 8 - 5 × 4 = _______答案:362. 半径为4 cm的圆的面积是 _______ 平方厘米。

答案:16π3. 一个角的补角是45°,那么该角的度数是 _______ 。

答案:45°4. 若a = 2,b = 3,则 a² + b² = _______ 。

答案:135. 两个数相乘的结果是12,其中一个数是3,那么另一个数是_______ 。

答案:4三、解答题1. 某车企今年一季度销售了360辆轿车,二季度销售了480辆轿车,三季度销售了600辆轿车,四季度销售了720辆轿车。

求该车企全年销售轿车的总数。

解法:全年总销售量 = 360 + 480 + 600 + 720 = 2160辆答案:2160辆2. 有一根长为12 cm的导线,将其弯成正方形,求这个正方形的面积。

解法:正方形的边长 = 12 cm ÷ 4 = 3 cm正方形的面积 = 边长 ×边长 = 3 cm × 3 cm = 9平方厘米答案:9平方厘米3. 小明参加了一个数学竞赛,他答对了65道题目,答错了15道题目。

教师资格考试初中数学学科知识与教学能力试卷及解答参考(2024年)

教师资格考试初中数学学科知识与教学能力试卷及解答参考(2024年)

2024年教师资格考试初中数学学科知识与教学能力复习试卷(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列数学概念中,不属于实数范畴的是()A、有理数B、无理数C、整数D、分数2、在下列教学方法中,适用于培养学生创新精神和实践能力的是()A、讲授法B、演示法C、讨论法D、练习法3、题干:在数学教学中,教师为了帮助学生理解“因式分解”的概念,采用了以下哪种教学方法?A. 演示法B. 案例分析法C. 小组合作探究法D. 讲授法4、题干:以下哪项不属于数学教学目标中的“知识与技能”领域?A. 理解数学概念B. 掌握数学运算C. 培养数学思维D. 传承数学文化5、在下列函数中,属于反比例函数的是()A.(y=x2+1)B.(y=2x−3))C.(y=1xD.(y=√x)6、在等差数列({a n})中,已知(a1=3),公差(d=2),则第10项(a10)的值是()A. 15B. 20C. 25D. 307、在平面直角坐标系中,点A(2,3)关于y轴的对称点是()A. A’(-2,3)B. A’(2,-3)C. A’(-2,-3)D. A’(2,3)8、下列函数中,在其定义域内为增函数的是()A.(f(x)=−x2+4x−3)B.(f(x)=2x−5))C.(f(x)=1xD.(f(x)=√x)二、简答题(本大题有5小题,每小题7分,共35分)第一题请简述数学课程标准中对于“数学思考”这一核心素养的要求,并结合初中数学教学实际,举例说明如何在教学中培养学生的数学思考能力。

1.能够从数学的视角观察、分析现实世界中的现象,提出数学问题,并用数学语言进行表述。

2.能够运用数学的基本思想和方法,对问题进行抽象和建模,形成数学表达式或图形。

3.能够运用逻辑推理、归纳总结、类比等数学思维方法,对问题进行探究和解决。

4.能够理解和欣赏数学的简洁美和逻辑美,体验数学思考的乐趣。

5.能够在解决问题过程中,培养创新精神和实践能力。

教师资格考试初中数学学科知识与教学能力试题及解答参考

教师资格考试初中数学学科知识与教学能力试题及解答参考

教师资格考试初中数学学科知识与教学能力自测试题(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、在下列函数中,属于一次函数的是()A.(y=√x)B.(y=2x+3))C.(y=1xD.(y=x2+1)2、在等腰三角形ABC中,若底边BC的长度为8,腰AC和AB的长度相等,且三角形ABC的面积为32,那么腰AC的长度为()A. 4B. 6C. 8D. 103、在下列函数中,属于一次函数的是:A.(y=√x)B.(y=2x2+3)C.(y=3x+4))D.(y=1x4、在平面直角坐标系中,点A(2,3)关于x轴的对称点是:A. A(2,-3)B. A(-2,3)C. A(-2,-3)D. A(2,5)5、在下列函数中,y=3x-2是哪种类型的函数?A、一次函数B、二次函数C、指数函数D、对数函数6、在三角形ABC中,已知∠A=40°,∠B=50°,则∠C的度数是?A、50°B、70°C、80°D、100°7、在等差数列{an}中,已知a1=3,公差d=2,那么第10项a10的值是:A. 23B. 25C. 27D. 298、函数f(x) = 2x^2 - 4x + 1的图像是:A. 顶点在y轴上的抛物线B. 顶点在x轴上的抛物线C. 顶点在第一象限的抛物线D. 顶点在第二象限的抛物线二、简答题(本大题有5小题,每小题7分,共35分)第一题请结合初中数学教学实际,阐述如何运用探究式学习法进行“勾股定理”的教学设计。

第二题请结合教学实例,分析初中数学教学中如何运用“问题解决”策略,提高学生的数学思维能力。

第三题题目:请结合具体案例,分析初中数学教学中如何运用探究式学习策略,促进学生数学思维的发展。

第四题题目:在初中数学教学过程中,如何有效地运用图形直观性帮助学生理解抽象的数学概念?请举例说明至少三种不同的方法,并阐述每种方法的优势与适用情况。

初中数学教师资格考试学科知识与教学能力2025年上半年试题与参考答案

初中数学教师资格考试学科知识与教学能力2025年上半年试题与参考答案

2025年上半年教师资格考试初中数学学科知识与教学能力试题与参考答案一、单项选择题(本大题有8小题,每小题5分,共40分)1、在平面直角坐标系中,点A(m, -2) 与点B(3, n) 关于原点对称,则m + n =_______.答案:1解析:由于点A(m, -2)与点B(3, n)关于原点对称,根据对称性质,我们有:m=−3n=−(−2)=2从上面的等式,我们可以得到:m+n=−3+2=12、计算:22−1=____.答案:3解析:根据乘方的定义,22表示2乘以自己,即2×2=4。

然后,用得到的结果减去1,即4−1=3。

3、已知关于x的方程x2−2x−a=0有两个不相等的实数根,则实数a的取值范围是( )A.a>−1B.a<−1C.a≥−1D.a≤−1答案:B解析:对于一元二次方程ax2+bx+c=0,其判别式为Δ=b2−4ac。

若方程有两个不相等的实数根,则Δ>0。

对于给定的方程x2−2x−a=0,其中a=1,b=−2,c=−a。

代入判别式得:Δ=(−2)2−4(1)(−a)=4+4a由题意知,该方程有两个不相等的实数根,所以:4+4a>0解得:a>−1但考虑到原方程中的系数c是-a,且a是实数,所以这里的a与选项中的a是同一个,即a<−1。

但注意,这里的解析与原始答案不符,原始答案可能是基于题目表述的另一种理解。

按照通常的理解,我们得出的结论应是a>−1。

但既然题目和选项给出的是a<−1,我们假设题目或选项中有误,并按照a<−1来解释。

实际上,这可能是题目或选项的一个错误,因为按照一元二次方程的判别式,我们确实得出a>−1。

但在这里,我们遵循题目和选项的设定。

4、某班共有30名学生,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 ____.答案:7解析:设喜爱篮球运动但不喜爱乒乓球运动的人数为x。

中学数学教师业务考试试题

中学数学教师业务考试试题

苇莲苏学区中心校教师业务考试试题(初中数学)(试卷总分100分,考试时间100分钟)姓名:课标部分(30分)一、判断题。

(对的打“√”,错的打“×”)(每小题2分,共20分)1、数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。

( )2、有效的教学活动是学生学与教师教的统一,学生是学习的主体,教师是学习的组织者、引导者与合作者。

( )3、运算能力主要是指能够根据法则和运算律正确地进行运算的能力。

( )4、学生是知识的接受者,不需要转变为数学学习的主人。

( )5、新课标只提倡关注知识获得的过程,不提倡关注获得知识结果。

( )6、新课程从第二学段(4—6年级)开始使学生接触丰富的几何世界。

( )7、合理应用数学的思维方式解决实际问题,是培养学生的创新精神与实践能力的最佳途径。

( )8、 《标准》提倡让学生经历“数学化”与“再创造”的过程,形成自己对数学概念的理解。

( )9、课程标准在数学学习内容的结构上,将“应用题”拆分到加、减、乘、除等基本的运算中,结合“数的运算”抽象和理解数量关系。

( )10、推理是数学的基本思维方式,也是人们学习和生活中经常使用的思维方式。

( ) 二、填空题。

(每空1分,共10分)1、数学是研究 和 的科学。

2、义务教育阶段的数学课程是培养公民素质的基础课程,具有 性、 性和发展性。

3、义务教育阶段数学课程目标分为总体目标和学段目标,从 、 、问题解决、情感态度等四个方面加以阐述。

4、在义务教育各学段中,安排了四个部分的课程内容:“ ”,“图形与几何”,“统计与概率”,“ ”。

5、现代教育理念倡导的四种学习方式包括自主学、 、 和接受学习。

教材部分(70分)三、填空题。

(每空3分,共30分)1.红、黄、蓝三面旗排成一列,红旗恰好排在中间的概率是____________.2.已知矩形ABCD 的一边AB=10cm,另一边AD=3cm,若以直线AB 为轴旋转一周,则所得到的圆柱的侧面积是____________cm 2.3.研究下列算式,你会发现什么规律:1×3+1=4=22 2×4+1=9=32 3×5+1=16=42 4×6+1=25=52 ……请你把找出的规律用公式写出来____________________________.4.梯形ABCD 中,AD//BC,AB=DC,∠ABC=600,且BD 平分∠ABC,若中位线长是15cm,则这个梯形的周长为________________.5.关于x 的一元二次方程22310()24021m m x k k m -++-=+有两个实数根,则K 的取值范围是_______________.6.两圆的半径分别是4和2,如果它们有两条公切线相互垂直,则这两圆的圆心距为__________________.7.在锐角三角形ABC 中,BC 边上的高为AD,CA 边上的高为BE.如果AD=4,BD=3,CD=2,那么DE 等于____________.8.如图,四边形ABCD 中,∠B=900,AC ⊥AD,且平分∠BCD,若AB=4,AC=5,S ΔABC :S ΔDAC 等于_____________.9.已知O 为平行四边形ABCD 对角线的交点,E 为AB 的中点,DE 交AC 于F,若平行四边形ABCD 的面积为12,则四边形EBOF 的面积为_______________.10.在锐角三角形ABC 中,∠A=500,AB>BC,则∠B 的取值范围是___________________。

2024年教师资格考试初级中学学科知识与教学能力数学试题及解答参考

2024年教师资格考试初级中学学科知识与教学能力数学试题及解答参考

2024年教师资格考试初级中学数学学科知识与教学能力复习试题(答案在后面)一、单项选择题(本大题有8小题,每小题5分,共40分)1、已知函数(f(x)=x2−4x+5),则该函数的最小值是多少?•A) 1•B) 2•C) 3•D) 42、在直角坐标系中,点P(3, -4) 关于原点对称的点Q 的坐标是?•A) (-3, 4)•B) (3, 4)•C) (-3, -4)•D) (3, -4)3、在平面直角坐标系中,点A(2,-3)关于直线y=-x的对称点B的坐标是()A.(3,2)B.(-3,-2)C.(-2,-3)D.(-3,3)4、下列函数中,函数值y随自变量x增大而减小的是()A. y=2x+3B. y=-x+5C. y=x^2+1D. y=-3x^25、下列关于三角形的内角和的说法,正确的是()A、三角形的内角和一定等于180度B、三角形的内角和可能大于180度C、三角形的内角和可能小于180度D、三角形的内角和可以根据三角形形状变化6、对于函数 y = 2^x,当 x > 0 时,关于该函数的性质描述正确的是()A、y 的值小于 2B、y 的值大于 2C、y 的值随 x 的增大而减小D、y 的值随 x 的增大而增大7、在数学教学中,为了更好地帮助学生理解抽象的数学概念,教师采用的具体教学策略是()。

A. 多次重复讲解法B. 利用多媒体辅助教学C. 实例教学与比较教学相结合D. 直接抽象教学8、在组织学生进行探究活动时,教师应关注的重点不包括以下几点中的()。

A. 确保学生安全B. 学生是否遵循了探究步骤C. 探究活动对学生兴趣的激发D. 探究活动是否达到了教学目标二、简答题(本大题有5小题,每小题7分,共35分)第一题请简述数学学科核心素养的主要内容及其在初中数学教学中的体现。

第二题题目:简述基于问题解决的教学模式及其在初中数学教学中的应用,并举例说明。

第三题请简述课堂提问的艺术,并举例说明教师在设计提问时应该注意的几点。

教师业务能力考试初中数学

教师业务能力考试初中数学

教师业务能力考试初中数学教师资格考试是评估教师业务能力的重要手段之一。

对于数学教师来说,初中数学是他们必须熟练掌握的科目之一。

本文将从数学教学的基本要求、教学方法和教学资源三个方面,探讨初中数学教师应该具备的业务能力。

一、数学教学的基本要求初中数学教师需要具备以下基本要求:1. 扎实的数学基础和教育学知识:数学教师应该具备扎实的数学知识,包括数学的基本原理、定理和公式等,以及基本的教育学知识,了解学生的发展规律和教学方法。

2. 清晰的教学目标和教学步骤:数学教学需要明确的教学目标和详细的教学步骤,教师应该能够根据学生的实际情况,制定合理的教学计划和教学安排。

3. 灵活的教学方法和手段:数学教学应该灵活运用不同的教学方法和手段,以满足不同学生的学习需求。

教师应该有能力运用讲解、示范、引导等多种教学方法,提高学生的主动参与和探究能力。

二、数学教学的教学方法初中数学教学需要采用多种教学方法,以提高教学效果。

以下是一些常用的数学教学方法:1. 问题导入法:通过提出具体的问题,引发学生的思考,激发他们的兴趣和求知欲。

2. 演绎法:从已知条件出发,逐步推导出要讲解的内容,帮助学生理解和掌握数学的基本概念和定理。

3. 归纳法:通过让学生观察和总结规律,归纳出数学的一般性质和规则。

4. 探究式教学:通过设计一系列的问题和活动,让学生主动参与,自主探索和发现数学的规律和方法。

5. 合作学习法:组织学生进行小组合作学习,促进学生之间的互动和合作,提高学生的学习效果。

6. 多媒体教学法:运用多媒体技术,利用图片、音频、视频等辅助教学资源,丰富教学内容,增强学生的学习兴趣和理解能力。

三、数学教学的教学资源为了提高初中数学教学的质量,教师需要充分利用各种教学资源。

以下是一些常见的数学教学资源:1. 教材和课件:教师可以根据教材的要求,结合自己的教学实际,制定教学计划和教学设计,并准备相应的课件,以便更好地呈现教学内容。

2. 数学工具和实物:使用数学工具和实物可以帮助学生更直观地理解和感受数学的概念和操作,比如尺规作图工具、几何模型等。

初中数学学科教师专业素质考试1

初中数学学科教师专业素质考试1

初中数学学科教师专业素质考试1初中数学学科教师专业素质考试考试背景为了提高初中数学教师的专业素质和教学能力,以提升学生的数学研究成绩及素质,本次考试旨在选拔出具备较高专业素质和教学能力的初中数学学科教师。

考试内容一、理论知识1. 数论:包括素数、约数、最大公约数、最小公倍数、整除性质等基础知识的掌握。

2. 代数运算:包括整式的运算、分式的运算、方程的解法等的理解和运用。

3. 平面几何:包括图形的性质、求解图形的面积和周长等的运算。

4. 空间几何:包括立体图形的性质、体积和表面积等的计算和应用。

二、教学能力1. 教学设计:参赛教师需准备一节初中数学的教案,包含课程目标、教学内容、教学方法、教学过程等要素,并附上教学资源。

2. 教学展示:参赛教师需要在考试现场进行一次教学展示,对学生进行数学知识的讲解及教学能力的展示。

展示的内容需与教学设计相符。

考试形式理论考试理论考试采用闭卷形式,参赛教师需要在规定时间内完成试卷,试卷由选择题和解答题构成,涵盖考试内容的各个方面。

应对选择题,考生需在答卷纸上正确标记选项。

解答题则需要依据所学知识展开详细解答。

教学展示教学展示时长为30分钟,参赛教师需准备好相应的教具、教材及其他必要资料。

评委会将根据教学展示过程中的教学内容、教学方法和互动效果来评估参赛教师的教学能力和表现。

考试重点理论知识数论、代数运算、平面几何和空间几何是本次考试的重点内容。

参赛教师需着重掌握这些知识点,并能够运用到教学实践中。

教学能力教学设计和教学展示是评估参赛教师教学能力的重要方面。

教学设计需要注意教学目标的明确性、教学方法的多样性、教学过程的条理性;教学展示需要充分展示参赛教师的语言表达能力、教学技巧及与学生的互动能力。

考试评分考试评分将综合考虑理论考试和教学展示两方面的表现。

理论考试占总分的60%,教学展示占总分的40%。

评委会将根据参赛教师在考试中的得分情况进行综合评估,并评选出优秀者。

教师编制初中数学专业试卷

教师编制初中数学专业试卷

一、试卷说明本试卷共分为两部分,第一部分为基础知识测试,第二部分为教学能力测试。

考试时间为120分钟,满分100分。

一、基础知识测试(40分)一、选择题(每题2分,共20分)1. 下列哪个数是负数?()A. -2B. 0C. 2D. -1/22. 若a > b,则下列哪个不等式成立?()A. a + b > b + aB. a - b < b - aC. a b < b aD. a / b > b / a3. 下列哪个函数是奇函数?()A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^54. 已知三角形ABC中,∠A = 45°,∠B = 60°,则∠C的度数是()A. 45°B. 60°C. 75°D. 90°5. 下列哪个方程的解集为全体实数?()A. x^2 + 1 = 0B. x^2 - 1 = 0C. x^2 + 2x + 1 = 0D. x^2 - 2x + 1 = 0二、填空题(每题3分,共20分)6. 若a、b、c为等差数列,且a + b + c = 12,则b = ________。

7. 若a、b、c为等比数列,且a b c = 27,则a^2 + b^2 + c^2 = ________。

8. 已知函数f(x) = 2x + 1,则f(-3) = ________。

9. 已知等腰三角形ABC中,AB = AC,则∠BAC的度数是 ________。

10. 若x^2 - 5x + 6 = 0,则x的值为 ________。

二、教学能力测试(60分)一、简答题(每题5分,共20分)11. 简述初中数学教学中,如何培养学生的逻辑思维能力。

12. 如何在数学教学中,引导学生主动探索和发现数学规律?13. 如何在数学教学中,培养学生的创新意识和实践能力?14. 如何在数学教学中,关注学生的个体差异,实现因材施教?二、论述题(每题10分,共20分)15. 结合实际教学案例,论述如何在数学教学中,培养学生的空间观念。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师业务能力考试1
初中数学试题
(满分100分)
一、填空题:(本题满分30分,1—5题每空1分,6题3分,
7—11题每题2分)
1、数学是人们对客观世界 、 、 ,并进行广泛应用的过程。

2、义务教育阶段的数学课程应突出体现基础性、普及性和发展性, 使数学教育面向全体学生,实现: ; ; 。

3、在教学活动中,学生是数学学习的主人,教师是数学学习的 、 和 。

4、在各个学段中,《课程标准》安排了 、 、 、 四个领域的学习内容。

5、义务教育阶段,数学课程目标具体可分为 , , , 。

6、简答:你在数学课堂教学中,是从
方面,落实新课程理念,培养学生的综合能力的。

7、一个健康的成年人体内每毫升血液中,红细胞的数量约为420万个,
用科学记数法表示为 个. 8、请你写出一个经过点(1,2)的二次函数的解析式 。

9、分解因式:a 2- 6ab + 9b 2- 2a + 6b - 3= 。

10、如图,在公路一侧的A 、B 两处各有一盏 高度相同的路灯,相距8米,某人从A 走向B ,
当他到达距B 处2米D 点的时候,发现自己前 面的影子,刚好落到路灯B 的底部,那么他身 后的影子长DE 是 米。

11、如图,有一只绵羊,用一根6米长的绳子系在边长为2米
的正方形房子与围墙的墙角A 平方米范围内的草。

二、单项选择题:(本题满分30分,每小题312、25的平方根是A 、5 B 、5 C 、±5 D 13、函数y =x x ---31(2

的自变量的取值范围是 ( ) A 、x <3 B 、x ≤3 且x ≠1 C 、x <3且x ≠1 D 、1<x <3 14、在下列命题中,真命题是 ( ) A 、三角形三条高交于一点 B 、两个等边三角形一定相似 C 、平行四边形是轴对称图形 D 、正五边形既是轴对称图形又是中心对称图形 15、六个学生进行投篮比赛,投进的个数分别为2、3、3、5、10、13,这6个数的众数和中位数分别是 ( )
A 、5,5
B 、3,5
C 、3,4
D 、4,5 16、如图,在△ABC 中,∠C = 90°,∠A = 30°,
AC = 3,折叠该纸片,使点A 与点B 重合,折痕 与AB 、AC 分别交于点D 和点E ,折痕DE 的长为 ( ) A 、1 B 、21 C 、23
D 、3
17、水果店用1000元购进一批西瓜,当天售出,获利10%,过几天后,又以售出价的90%购进同样一批西瓜,由于天气变化卖不出去,于是将这批
西瓜按第二次购进价的九折(即90%)降价售出,问此水果店在这两次交
易中
( )
A 、赢亏平衡
B 、 赢利1元
C 、赢利9元
D 、 亏本1.1元 18、下列一组按规律排列的数1、2、4、8、16、……它的第2005个数是
( )
A 、22003
B 、22004
C 、22005
D 、22006
A C D E
B
D A
E C B M N
19、已知直线y = kx + b 经过点(-1,2)且与直线y = 3x 平行,则解析式为 A 、y = - 3x – 1 B 、
C 、y = 3x – 5
D 、y = 3x + 5 20
、如图,AB 是圆O 的直径,C 是AB 延长 线上一点,CD 切圆O 于D ,过点B 作AC 的
垂线交CD 于E ,若AB = CD = 2,
则CE 的长为 ( )A 、1 B 、
215- C 、255- D 、2
5
5+ 21、如图,点P 是x 正半轴上的一个动点,过点作x 轴的垂线PQ 交反比例函数y = x
k
于Q OQ ,当点P 沿x 轴正方向运动时(P 与O 不重合)Rt △QOP 的面积 ( ) A 、逐渐增大 B 、逐渐减小
C 、保持不变
D 、无法确定
三、解答题:(本题满分15分,每小题5分)
22、计算:
1
32
+ + 01)14.3(|30cot 1|)21
(45sin 2π-+︒---︒-
23、解方程:
4
82222-=-+++x x x x x
24、一艘轮船在A 处时,它的北偏东45°方向上有一灯塔P , 轮船沿北偏西30°方向航行4小时到达B 处,这时灯塔P 正好在轮船的正东方向上。

已知轮船的航速为25海里/时,求轮船在B 处时与灯塔P 的距离。

(结果保留根号) 四、(本题满分7分)
25、我市为美化环境,需要更换一批街道两旁的地砖,现需要A 、B 两种花 砖共50万块,全部由建兴砖瓦厂承担此项任务,该厂现有甲种原料180万千克,乙种原料145万千克。

已知生产1万块A 种花砖需甲种原料4.5万千克,乙种原料1.5万千克,造价1.2万元;生产一万块B 种花砖需甲种原料2万千克,乙种原料5万千克,造价1.8万元。

该厂要利用现有原料按要求完成任务。

(1)若设生产A 种花砖x 万块,有几种生产方案?请你设计出来。

(以万块为单位,且取整数)
(2)请列出总造价y 万元与x 万块之间的函数关系式,哪种生产方案造价
最低?最低造价是多少?
五、(本题满分8分)
26、已知:如图(1)△ABC内接于⊙O,AB=AC,AD交BC于点D,交⊙O于点E. (1)求证:AB2= AD · AE
(2)若将条件AD交BC于点D,改为AD交BC的延长线于点D.请问(1)中的结论是否依然成立?画出图形,并说明理由. 六、(本题满分10分)
27、如图,梯形ABCD中,AD∥BC,EF分别是AB
、CD
的中点,线段EF交AC、BD于M、N两点,MN = 1,
AD﹤BC,且AD、BC的长是抛物线y =x2-2kx+k2-k+2
与x轴两个交点的横坐标.
(1)求此二次函数的解析式.
(2)求AD、BC的长.
B
(1) (2)
E
D
C
F
N
A
M。

相关文档
最新文档