超(超)临界锅炉氧化皮的预防和优化方案
超超临界锅炉高温受热面氧化皮脱落与治理
超超临界锅炉高温受热面氧化皮脱落与治理超超临界锅炉是一种新一代的高效节能锅炉,其高温受热面处于极端的工作条件下,容易发生氧化皮脱落问题。
本文将探讨超超临界锅炉高温受热面氧化皮脱落的原因,并提出相应的治理措施。
1. 高温氧化作用:高温下,锅炉受热面的金属材料容易与氧气反应,形成氧化物。
这些氧化物会沉积在受热面上形成氧化皮,进而脱落。
2. 烟气侵蚀:锅炉燃料燃烧产生的烟气中含有大量的气体和颗粒物,其中包括酸性物质,如二氧化硫和二氧化氮等。
这些酸性物质会侵蚀受热面,导致氧化皮脱落。
3. 热应力作用:超超临界锅炉高温受热面由于长期承受高温烟气的冲击,会引起受热面的热胀冷缩。
这种热应力会使氧化皮与基材之间的结合变弱,从而加速氧化皮的脱落。
1. 材料选用:使用耐热、抗氧化性能好的材料作为受热面,以提高锅炉的耐温性和抗氧化性能。
常用的材料有铬钼钢和镍基高温合金等。
2. 涂层处理:在受热面表面涂覆一层抗氧化的涂层,以提高受热面的抗氧化性能和耐蚀性。
常用的涂层材料有铁铝高温涂层和陶瓷涂层等。
3. 清洗除锈:定期对受热面进行清洗除锈工作,以去除氧化皮和其他污垢,减少氧化皮的形成和脱落。
4. 热应力控制:通过优化锅炉的运行参数和调整受热面的结构设计,减少受热面的热应力,延缓氧化皮的脱落。
5. 烟气净化:增加烟气净化的设备,如脱硫装置和脱硝装置等,减少烟气中的酸性物质含量,减少受热面的侵蚀和氧化皮的脱落。
超超临界锅炉高温受热面氧化皮脱落是一个复杂的问题,需要综合考虑材料性能、涂层处理、清洗除锈、热应力控制和烟气净化等因素。
通过采取综合治理措施,可以有效延缓氧化皮的形成和脱落,提高锅炉的运行效率和安全性。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是目前较为常见和主要的电力发电设备之一,其运行过程中经常会出现氧化皮脱落的问题。
氧化皮的脱落会影响锅炉的正常运行,导致能效下降,甚至对设备的安全性产生严重威胁。
分析和防治超临界机组电站锅炉氧化皮脱落问题具有重要的理论和实践意义。
一、氧化皮脱落的原因1.1 温度梯度超临界机组锅炉工作过程中,受到高温高压蒸汽的冲击,锅炉管壁表面将产生较大的温度梯度。
不同部位的锅炉管壁温差过大,会导致金属材料产生不均匀的热应力,进而引发氧化皮层的脱落。
1.2 流体腐蚀蒸汽中的氧气和水分子会与金属表面发生反应,生成金属氧化物,形成氧化皮层。
当锅炉中腐蚀性物质较多时,会导致氧化皮层增厚和脱落,影响锅炉的热传导效果和安全性。
1.3 机械压力锅炉在运行过程中,受到蒸汽冲击和机械震动等力的作用,会产生机械压力。
当机械压力过大时,会使氧化皮层松动或脱落,需要及时修补和保养。
2.1 表面分析对锅炉管壁的氧化皮层进行表面分析,可以通过扫描电子显微镜等工具观察锅炉管壁表面的氧化皮脱落情况。
通过分析氧化皮的结构和形貌,可以判断其脱落的原因和程度,为防治提供依据。
2.2 金属温度分析对锅炉管壁的温度进行实时监测和记录,可以判断锅炉管壁温度梯度是否过大,从而引发氧化皮层的脱落。
合理调整锅炉的运行参数,降低温度梯度,可以有效减少氧化皮脱落的发生。
通过对锅炉内部金属材料和蒸汽的化学成分进行分析,可以判断蒸汽中是否存在腐蚀性物质。
并采取相应措施,如装置除氧器、水处理设备等,减少金属材料的氧化腐蚀,降低氧化皮层的脱落。
合理控制和调整超临界机组锅炉的运行参数,使锅炉管壁的温度梯度保持在一个合理的范围内。
可以通过增加锅炉管壁的保护层厚度、调整蒸汽流量等方式,减少锅炉管壁的温度应力和热应力,从而减少氧化皮层的脱落。
安装和使用除氧器、水处理设备等设施,减少锅炉腐蚀性物质的含量。
定期对锅炉内部进行清洗和维护,清除锅炉管壁表面的氧化皮层,及时修补和保养锅炉设备。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉氧化皮脱落是指在锅炉运行的过程中,锅炉管道、设备壁面等部位的氧化皮发生剥落。
这种情况不仅会影响锅炉的正常运行,还可能导致设备的损坏。
分析和防治超临界机组电站锅炉氧化皮脱落问题是非常重要的。
需要对超临界机组电站锅炉氧化皮脱落问题进行分析。
在锅炉运行过程中,高温和高压条件下,水中的氧化性物质和金属表面会发生反应,产生氧化皮。
而超临界机组电站锅炉运行温度和压力更高,氧化皮脱落的风险也更大。
氧化皮脱落可能出现在锅炉的各个部位,如锅炉管道、过热器、再热器等。
氧化皮脱落不仅阻塞了水循环系统,还会影响设备的散热效果,增加了设备的热负荷,导致设备的过热和腐蚀,甚至发生温度过高的事故。
针对超临界机组电站锅炉氧化皮脱落问题,我们可以采取以下措施进行防治:1. 加强水处理:通过对进水和循环水进行净化和处理,去除水中的杂质和氧化性物质,减少氧化皮的产生。
2. 优化化学控制:合理控制水化学条件,减少水中的溶解氧含量,调整水的pH值,控制水中的硅酸盐、氯离子等含量,降低锅炉水和金属表面之间的化学反应,减少氧化皮的形成。
3. 清洗和除锈:定期对设备进行清洗和除锈,去除已形成的氧化皮,恢复金属表面的平整度和光洁度。
4. 薄膜保护:在金属表面形成薄膜,减少与水中氧化性物质的接触,从而防止氧化皮的产生。
可以使用缓蚀剂、缓蚀剂、阻垢剂等加入水循环系统中,形成保护膜。
5. 定期维护和检查:定期对设备进行维护和检查,发现问题及时修复,防止问题扩大。
在实际操作中,除了以上几点防治措施,还可以根据具体情况制定更有针对性的措施,如增加设备的冷却和散热功能,改善水的流动状态等。
超临界机组电站锅炉氧化皮脱落问题需要进行全面的分析和防治。
通过加强水处理、优化化学控制、清洗和除锈、薄膜保护以及定期维护和检查等措施,可以有效减少氧化皮的产生,延长设备的使用寿命,提高电站锅炉的运行效率和安全性。
超(超)临界锅炉氧化皮问题及控制
1
0
7
13
19
25
31
37
43
49
55
61
67
79
S1
73
超(超)临界锅炉末级过热器布置的特点
• 燃烧器对冲布置的哈锅超临界锅炉
温度
一号炉高温再热器屏间温度分布 606.0 603.0 602.2 600.0 599.7 596.1 594.0 591.8 587.2 585.0 586.0 585.0 585.0 583.9 582.6 582.2 580.1 580.0 579.7 579.4 579.0 577.4 578.0 578.7 576.1 574.9 575.0 575.0 574.4 574.0 573.4 573.1 572.2 572.3 572.0 572.1 571.8ห้องสมุดไป่ตู้571.1 570.0 568.0 567.2 566.2 565.5 565.0 564.3 564.0 563.9 563.4 561.7 563.2 563.2 562.3 561.5 561.0 560.2 560.0 560.1 559.0 558.7 558.3 558.2 557.4 559.4 556.5 555.8 555.1 554.9 555.0 555.0 554.4 554.0 553.4 553.4 553.1 552.2 553.2 552.3 551.9 552.1 551.1 551.2 551.0 549.6 549.5 549.4 548.6 548.2 548.4 548.0 546.2 545.7 545.5 545.4 544.3 543.4 541.7 543.3 543.2 543.2 543.0 542.3 542.0 541.9 541.5 541.0 540.6 540.2 539.0 538.2 538.3 536.5 535.8 535.1 533.7 534.0 533.4 533.2 531.9 529.6 529.5 529.4 531.2 528.6 528.4 528.2 525.7 525.4 523.3 523.0 521.9 520.6 513.7 511.9 602.6
超(超)临界机组氧化皮生成、剥落机理与防治措施讲解
超(超)临界机组氧化皮生成、剥落机理与防治措施锅炉水/蒸汽流通系统中氧化皮的生成、剥落与沉积主要集中在炉前高压给水系统、水冷壁、过热器、再热器、主汽调门中。
氧化皮的生成、剥落与沉积受温度、压力、蒸汽参数(密度、离子积、介电常数、PH、氢电导率、阴离子含量、比电导率、氧化还原电位)、蒸汽溶氧量、蒸汽含铁量、蒸汽铬酸根含量等多种参数共同控制。
在锅炉不同位置氧化皮的生成、剥落、沉积机理不同,炉前高压给水系统和水冷壁中的氧化皮的沉积主要是流动加速腐蚀所致。
再热器、过热器与主汽调门中的氧化皮形成、剥落与沉积机理更加复杂,总的来说控制蒸汽含铁量、控制蒸汽氧化还原电位、降低蒸汽溶氧量有助于减少氧化皮的形成、剥落与沉积。
图1 电厂系统图一、生成、剥落与沉积原理1.1、氧化皮在炉前和水冷壁中的生成、剥落与沉积机理碳钢在水中不稳定,有腐蚀倾向,只有在钢表面形成稳定的氧化膜后,才能保持稳定。
在不同温度条件下,氧化膜的形成机制不同,其微观结构也不同。
在较低温度条件下形成的磁性铁氧化膜是多孔、疏松的。
在较低温度下,氧化膜的形成分为3步:第一步:Fe的氧化和H+的还原:Fe→Fe2++2e-;2H++2e-→H2;总反应为:Fe+2H2O→Fe2++2(OH-)+H2 (1)第二步:Fe2+和2(OH-)极易发生反应生成Fe(OH)2;Fe2++2(OH-)→Fe(OH)2 (2)第三步:Fe(OH)2被氧化生成Fe3O4;3Fe(OH)2→Fe3O4+4H2O+H2↑由式(1)可见,在较低温度下,氧化膜的形成需要有一定量的铁离子和氢氧根。
钢表面上的铁离子是由腐蚀过程扩散至表面的,而氢氧根则与水的PH值有关。
磁性氧化铁的形成通常受形成和溶解2个反应动力学控制。
任何条件的变化导致此动力学状态改变时,都会影响磁性氧化铁的稳定。
扩散系数和介电常数等因素会综合影响碳钢的腐蚀速率。
图2 给水系统管道腐蚀控制因素根据温度和压力的不同,碳钢表面可以分3个区域:第1个区域是磁性氧化铁稳定区;第2个区域是磁性氧化铁溶解区;第3个区域是磁性氧化铁沉积区。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是现代化的汽轮机发电装置,其关键部件之一即是锅炉。
锅炉的主要功能是将燃料的化学能转化为蒸汽能,并将蒸汽压力转化为机械能或电能。
在锅炉的运行过程中,由于锅炉进口水的含氧量、水质、水温等因素的影响,会产生氧化皮,影响锅炉的正常运行。
本文对氧化皮的形成原因、脱落的危害以及相应的防治措施进行分析。
一、氧化皮的形成原因在超临界机组电站锅炉运行中,锅炉的内壁与水接触,水中的氧气会与金属反应,产生一层氧化膜即氧化皮。
氧化皮生长速度受水中氧气浓度、水温、金属材料、水质等因素影响。
尤其是在高温高压条件下,氧化皮更容易产生和生长。
此外,由于水中掺杂有各种离子,如钙、镁、铁、铜等金属及其离子、硫酸盐、碳酸盐等化合物,在高温高压条件下,它们会沉积在锅炉内壁上,形成污垢和沉淀物,这也会引起氧化皮的生长。
二、氧化皮的危害1. 减小了热传递效率氧化皮的存在减小了锅炉的热传递效率。
经过氧化皮的内壁,热量需要穿过氧化层才能传递到水中,传热效率受到限制。
2. 降低了金属材料的强度氧化皮的形成不仅仅是一层膜,它还会继续生长,加速金属材料的老化、腐蚀和疲劳。
氧化皮层会加速金属材料的脆化、裂纹产生,降低材料强度,从而破坏锅炉的安全性能。
3. 影响水质氧化皮的流失和脱落会使得锅炉进口水中含氧量、金属杂质离子等因素发生变化,从而影响锅炉的水质的稳定性。
水质的不稳定对锅炉正常运行产生了负面影响,增加了锅炉的故障率和维护成本。
三、氧化皮的防治措施为了防止氧化皮的产生,需要对锅炉水质进行严格管理,排除水中氧气、二氧化碳等成分,同时要控制锅炉温度和压力,以减缓氧化皮的生成速度。
对于已经形成的氧化皮,需要定期进行清除和维护。
一般直接清除氧化皮是不可行的,需要了解氧化皮的性质和生长情况,采取适当的去氧化皮措施。
1. 喷水清洗法在锅炉运行时,通过器具喷洒水,实现对氧化皮的清洗。
但是,由于清洗时锅炉需要停机,影响发电量;此外,喷洒水会使得钢材的运动钝化层被冲掉,从而加速钢材的腐蚀速度。
超超临界锅炉高温受热面氧化皮脱落与治理
超超临界锅炉高温受热面氧化皮脱落与治理超超临界锅炉是目前国内外最先进、效率最高的一类锅炉,其高温受热面是其重要组成部分,但在运行中存在着氧化皮脱落的问题。
本文将围绕超超临界锅炉高温受热面氧化皮脱落与治理展开探讨。
1.1 高温、高压条件下金属氧化皮的生成超超临界锅炉所采用的高温、高压条件将使得管壁表面产生一层难以消除的氧化皮,这层氧化皮不仅影响了传热效果,还降低了管道的使用寿命。
1.2 循环腐蚀在超超临界锅炉内部,受到循环腐蚀的影响,导致高温受热面的金属腐蚀加速,连接处的氧化皮更容易脱落。
1.3 操作不当在锅炉操作中,如水质不达标、操作参数设置不恰当等问题,也会导致高温受热面氧化皮脱落的现象。
2.1 降低传热效率高温受热面氧化皮的脱落,将直接导致传热效果的减弱,降低了锅炉的工作效率。
2.2 引发事故高温受热面氧化皮脱落会加剧锅炉的损坏,甚至引发爆炸事故,对设备和人员造成危害。
2.3 增加维护成本高温受热面氧化皮脱落不仅影响了设备的寿命,同时还增加了维护成本,对锅炉的正常运行造成了不利影响。
3.1 提高水质提高水质是预防高温受热面氧化皮脱落的有效途径。
采用优质纯水,配套水处理剂等方式,可以有效降低循环腐蚀的程度,减少氧化皮的生成。
定期检查和维护超超临界锅炉的高温受热面,及时发现和处理氧化皮脱落的问题,保证设备的正常运行。
3.3 选用高质量耐高温材料在超超临界锅炉的设计和制造过程中,应该选择优质的耐高温材料,提高高温受热面的抗氧化能力,延长设备的使用寿命。
3.4 控制操作参数在锅炉操作过程中,要合理控制操作参数,确保操作的稳定性和安全性,避免因为操作不当而引起高温受热面氧化皮脱落的问题。
3.5 加强监测与管理加强对超超临界锅炉的监测与管理,在运行过程中及时发现问题,采取有效措施进行处理,确保设备的正常运行。
四、结语超超临界锅炉高温受热面氧化皮脱落的问题是目前工业生产中比较普遍的问题,对设备运行和安全造成了不小的影响。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治随着我国经济的快速发展,能源需求不断增长,因此电力行业的发展也越来越迅速。
超临界机组电站作为电力行业中的重要组成部分,具有效率高、环保性好的特点,成为了电力行业的主流。
随着超临界机组电站的使用,也出现了一些新的问题,其中之一就是锅炉氧化皮脱落。
一、锅炉氧化皮脱落的原因1.1 高温高压环境引起材料老化超临界机组电站锅炉工作环境为高温高压环境,长期处于这种严苛的工作条件下,锅炉材料容易出现老化现象,从而导致氧化皮脱落。
1.2 运行过程中的热膨胀冷收缩引起氧化皮裂纹在超临界机组电站锅炉的运行过程中,材料受到热膨胀和冷收缩的影响,容易产生应力,从而导致氧化皮的裂纹,最终导致氧化皮脱落。
1.3 操作与维护不当如果超临界机组电站锅炉的操作与维护不当,例如渣岩阳架不密合,给锅炉部件表面造成损伤、温度过高或者过低等,都会引起氧化皮脱落。
以上几点就是导致超临界机组电站锅炉氧化皮脱落的主要原因,下面将结合这些原因,分析氧化皮脱落的危害和防治措施。
2.1 对锅炉安全运行产生影响锅炉是超临界机组电站的核心设备之一,氧化皮脱落会严重影响到锅炉的安全运行,一旦脱落的氧化皮进入锅炉水循环系统中,易堵塞水循环系统,导致锅炉的透水性下降,严重时会引发锅炉爆炸事故,对人员和设备造成严重威胁。
2.2 降低锅炉的使用寿命氧化皮脱落会严重影响锅炉的使用寿命,因为氧化皮脱落后,锅炉的材料会遭受腐蚀,从而大大降低了锅炉的使用寿命,增加了维护和更换成本。
2.3 增加维护成本锅炉氧化皮脱落后,需要增加对锅炉的维护工作,加大了维护的工作量,增加了维护成本。
锅炉氧化皮脱落对超临界机组电站的安全运行和经济效益都产生了严重的危害,所以需要采取相应的防治措施。
三、防治措施3.1 提高材料的抗氧化能力为了防止氧化皮的脱落,首先需要提高锅炉材料的抗氧化能力。
选择具有抗氧化性能好的材料,采取合理的工艺制作锅炉,能够减少氧化皮脱落的可能性。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是电力发电厂常用的热能装置,其工作环境复杂,长期运行后,内壁容易形成氧化皮。
氧化皮脱落的主要原因包括锅炉内壁温度变化、烟气腐蚀和锅炉水质状况等。
为了保证锅炉的安全运行,必须对氧化皮脱落进行分析与防治。
一、氧化皮脱落的分析1. 温度变化引起的氧化皮脱落:超临界机组电站锅炉内壁温度变化较大,会导致内壁产生热应力,进而引起氧化皮脱落。
炉膛壁由于受到烟气温度变化的影响,壁温会发生剧烈的变化,导致内壁产生变形和应力变化,最终导致氧化皮脱落。
2. 烟气腐蚀引起的氧化皮脱落:由于煤燃烧产生的烟气中含有很多酸性成分(如SO2、HCl等),在高温下容易引起锅炉内壁的腐蚀,导致氧化皮脱落。
特别是在负荷变化时,锅炉内燃烧产生的烟气组分会发生变化,从而导致腐蚀程度的变化,进一步加剧氧化皮脱落。
3. 锅炉水质状况引起的氧化皮脱落:超临界机组电站锅炉在长期运行过程中,由于水质处理不当或循环水水质不佳,很容易导致内壁结垢和沉积物的产生。
结垢和沉积物会加剧烟气对锅炉内壁的腐蚀,进一步导致氧化皮脱落。
1. 温度变化引起的氧化皮脱落:为了减少炉膛和屏渣区域壁温的剧烈变化,可以采取增加炉膛出口温度的方法,提高出口温度的稳定性,并且进行壁面冷却的操作,减缓内壁的温度变化。
2. 烟气腐蚀引起的氧化皮脱落:对煤燃烧的控制,尽量降低煤中含硫量,减少烟气中SO2的含量,从而减少烟气对锅炉内壁的腐蚀程度。
加强对锅炉内壁的防腐蚀涂料的保护,可以有效延缓氧化皮脱落的速度。
3. 锅炉水质状况引起的氧化皮脱落:采取适当的水质处理措施,保证循环水的水质稳定,避免水中含有酸性物质、颗粒物等物质的沉积,减少结垢和沉积物的产生。
定期对锅炉进行清洗,清除内壁上的结垢和沉积物,可以有效预防氧化皮脱落。
超临界机组电站锅炉氧化皮脱落问题是影响锅炉安全运行的一个重要因素。
采取适当的分析和防治措施,可以减少氧化皮脱落的发生,保证锅炉的正常运行。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是一种高效、能耗低、环保的发电设备。
因其具有反应速度快、效率高等优点,对火电站的发电效率和环保指标有着极高的要求。
然而,锅炉在使用过程中容易发生氧化皮脱落现象,严重影响锅炉使用效率,甚至对环境造成污染。
因此,及时发现氧化皮脱落现象并采取相应措施进行防治十分重要。
一、氧化皮脱落的原因超临界机组电站锅炉氧化皮脱落的原因主要有两个方面:一是炉内高温氧化反应引起管子的氧化皮层剥落,二是炉内的化学成分沉积在管子表面形成氧化皮层,然后因管子受高温加热而脱落。
氧化皮脱落是一种自然现象,但是其对锅炉的影响却十分严重。
在高温高压下,氧化皮脱落会进入锅炉内部,造成如下问题:1. 浪费能源。
氧化皮脱落会降低锅炉的传热效率,使得发电效率降低。
2. 加速设备的磨损。
氧化皮脱落沉积在设备内部,会增加设备部件的摩擦,进一步加剧设备的磨损。
3. 污染环境。
氧化皮脱落后的残留物质可以堵塞排放口,导致烟气排放不畅,从而造成环境污染。
二、氧化皮脱落的检查和分析方法如何及时发现锅炉内的氧化皮脱落现象是防治氧化皮脱落的关键。
下面介绍一些基本的检查和分析方法:1. 外观检查通过外观检查可以初步了解锅炉的整体情况。
对于氧化皮脱落现象,可以通过裸眼观察锅炉的内外表面是否存在锈蚀、变形、裂纹等异常情况来初步判断锅炉是否存在氧化皮脱落现象。
2. 金属变色法利用金属变色法可以检测锅炉内部的炉膛、水侧等处是否有氧化皮脱落现象。
具体方法是在锅炉内部喷洒变色剂,通过观察变色情况来判断锅炉内部是否有氧化皮脱落。
3. 声学检测法通过声学检测可以探测锅炉内部存在的氧化皮脱落现象。
通过震动信号采集设备对锅炉内部进行扫描,可以通过对信号的反应判断锅炉内部存在的氧化皮脱落情况。
1. 定期清洗定期清洗锅炉内部是防止氧化皮脱落的重要措施。
通过清洗可以去除锅炉内部残留的颗粒物和化学物质,有效遏制氧化皮脱落的发生。
2. 防腐蚀防止锅炉内部产生复杂的化学反应也是防止氧化皮脱落的重要手段。
660MW超超临界机组锅炉氧化皮的产生及预防控制
660MW超超临界机组锅炉氧化皮的产生及预防控制发布时间:2022-10-11T01:30:35.058Z 来源:《科技新时代》2022年7期作者:车福禄[导读] 对于超超临界火电机组来说,车福禄京能(锡林郭勒)发电有限公司内蒙古锡林郭勒盟 026000摘要:对于超超临界火电机组来说,在锅炉运行中发生炉管氧化皮脱落问题较为常见,这种问题会引发最严重的后果则是炉管爆炸,会降低火电厂的经济效益。
为了避免此类事故的发生,就需要针对直流锅炉氧化皮脱落问题进行简述,对氧化皮脱落的原因进行分析,提出有效的预防控制措施。
关键词:火电厂;氧化皮;预防控制引言:近年来,时常发生的炉管氧化皮脱落问题,给发电机组保持正常运行产生了阻碍,不利于火电厂保持正常的运行。
根据相关调查显示,若发电机组容量较大,则温度越高,那么极易发生氧化皮脱落现象,并增加锅炉爆管泄漏的概率。
因此,本文主要对660 MW超超临界机组锅炉氧化皮的产生及预防控制进行研究与分析。
一、直流锅炉氧化皮简述660MW燃煤发电机组锅炉作为一种超超临界参数变压运行直流炉,体型较大,通常采用露天的方式布置并使用。
对于超超临界直流锅炉来说,如果受热面出现超温的情况,会导致过炉的金属组织出现老化的现象;受热面高温所带来的氧化腐蚀情况,会使得管壁变薄,更甚者会出现爆管情况【1】。
而且从实际情况来看,锅炉的过热器、主蒸汽管道等受热氧化之后,脱落的氧化皮表现为坚硬形态的固体颗粒,会对汽轮机流通部分的高/中压级的喷嘴等元件产生较大的影响,降低汽轮机流通部分的效率,更甚者则需要对叶片进行更换。
过热蒸汽管道在进行制造与加工环节时,会通过一定的反应形成氧化膜,整个过程要求必须达到高于570℃的高温环境,并且其中的氧元素与金属通过高温环境燃烧之后,这个过程中形成的氧化膜由内向外分别为氧化铁、四氧化三铁、三氧化二铁。
通过具体的实验证明,氧化铁层结构非常不稳定,在温度不超过570℃时,极易出现脱落现象,并且在脱落位置出现腐蚀情况。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉氧化皮脱落是电站运行过程中常见的问题之一,它会对设备的安全稳定运行产生不良影响。
在电站运行过程中,锅炉内壁的烟气侵蚀和高温腐蚀作用使得锅炉管道表面出现氧化皮,如果氧化皮未得到及时清除,会导致氧化皮脱落。
本文将对超临界机组电站锅炉氧化皮脱落进行分析,并提出相应的防治措施。
氧化皮脱落的原因主要有以下几点:1. 烟气侵蚀:锅炉燃烧产生的烟气中含有一定的酸性成分,这些酸性物质容易与锅炉管道表面的金属氧化物发生反应,形成氧化皮。
长期以来,烟气侵蚀是氧化皮的主要原因。
2. 高温腐蚀:超临界机组电站锅炉的工作温度较高,容易引起金属材料的高温腐蚀。
高温高压下,金属表面的氧化膜会加速腐蚀,从而使氧化皮脱落。
3. 金属疲劳:锅炉内部的金属材料会由于高温高压和膨胀收缩等因素产生应力,长期的应力作用容易导致金属疲劳,进而造成氧化皮脱落。
为了防止氧化皮脱落,可以采取以下措施:1. 脱硫:对烟气进行脱硫处理,减少烟气中的酸性物质含量,从而减缓烟气对锅炉管道的侵蚀作用。
2. 清除氧化皮:定期清除锅炉管道内的氧化皮,可以采用机械清洗、化学清洗等方法。
机械清洗可以通过刷洗和冲洗的方式将氧化皮清除,化学清洗可以使用化学试剂溶解氧化皮,并通过冲洗将氧化皮带走。
3. 金属保护:对锅炉管道进行防腐处理,可以使用耐蚀涂层、耐高温涂层等方式,增强金属的抗腐蚀能力,防止氧化皮的生成。
4. 加强运行监测:定期对锅炉管道进行检查,了解管道的腐蚀情况。
及时发现问题,并采取相应的修复措施,可以有效避免氧化皮的脱落。
超临界机组电站锅炉氧化皮脱落是一个具有一定危害性的问题。
需要从源头上减少烟气中的酸性物质,定期清除氧化皮,加强金属保护和运行监测,从而保障锅炉的稳定运行。
通过采取综合措施,可以有效预防和控制氧化皮脱落现象的发生。
超(超)临界参数锅炉高温受热面氧化皮的预防与综合治理
超(超)临界参数锅炉高温受热面氧化皮的预防与综合治理张利军(安徽淮南平圩发电有限责任公司,安徽淮南232001)摘要:详细阐述了锅炉受热面氧化皮的生成、剥落机理及危害,并从运行及检修两个方面,提出了防范控制措施及处理策略,为火力发电厂锅炉受热面氧化皮的防控问题提供参考。
关键词:高温受热面;氧化皮;预防;治理1氧化皮形成机理及危害1.1受热面生成氧化皮机理锅炉受热面的氧化膜主要是受热面管材中的铁元素和蒸汽在高温、高压下反应产生,主要包含Fe3O4、Fe2O3、FeO混合的铁基氧化物。
氧化膜分内外两层,内层是基体铁元素与蒸汽直接反应生成的黑色FeO及氧元素内迁与Fe、Cr、Ni生成的少量氧化物,外层或者叫延伸层是内层的FeO继续与蒸气反应生成的黑灰色Fe3O4,随着机组继续运行,Fe3O4又和蒸汽中的溶解氧发生反应,生成红色的Fe2O3。
随着氧化的逐步深入,氧化层开始从原基体界面向外发展,形成质地比较致密的Fe3O4,最后在最外层形成一层较薄的Fe2O3,这就是比较典型的双层氧化皮模型,即内层和外层。
其中,Fe3O4、Fe2O3及Fe、Cr、Ni基氧化物结构致密,性质稳定,不易脱落,能形成保护层,对金属管材起到很好的保护作用,但FeO结构疏松,晶格易产生缺陷,机组运行过程中极易发生脱落,破坏氧化层整体稳定性。
实验表明,在560~570℃及以下温度时,内层氧化膜主要以Fe3O4和Fe2O3为主,当温度大于570℃时运行生成的氧化物则含有较多的FeO。
1.2影响氧化皮生长的因素锅炉受热面所处环境恶劣,且工况复杂多变。
高温、高压环境中,金属氧化皮的形成以及增长受到很多因素的影响,如温度、时间、合金元素、热偏差变化、金属处理工艺、受热面尺寸及形状等。
另外,因制作加工工艺不同及合金元素的差异,也会对管材抗氧化性能造成很大的影响,因此要根据不同需求及设计冗余度来选择合适的管材,这对氧化皮的控制和减缓生成有着非常重要的作用。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是目前发电行业中使用最为广泛的一种锅炉。
这种锅炉有着高效、节能、环保等优点,同时也有一些缺点,比如对水质要求高、管子受热容易脱落等问题。
其中,在使用过程中,锅炉内部可能产生氧化皮,这对锅炉的安全和稳定运行都会造成严重危害。
氧化皮的产生和脱落氧化皮是指金属表面由于氧化反应而产生的一层薄膜。
超临界锅炉中,锅炉管道在高压、高温下运行,内壁受热膨胀、冷缩,表面产生张应力和压应力,此时管道表面的氧化皮会随着这种应力变化而形成和分裂。
当应力超过氧化皮的强度时,氧化皮就会脱落。
这种脱落现象可能产生划伤、切割管道或喷射高速氧化皮的碎片,造成管路遭受撞击打击或者再次被烧损等情况。
氧化皮的危害和防治氧化皮的产生和脱落会给锅炉带来一系列的安全隐患和稳定性问题。
首先,氧化皮具有硬度较高、易剥脱、斑块较大等特点,这些特性尤其在制造过程中加工不当时易于形成,极易造成管道损伤和泄露事故。
同时,氧化皮脱落的碎片会携带一定能量、速度和射程,如果撞击到周边的管道或设备上,极易造成这些设备的故障和损坏。
有效措施为了有效防治超临界锅炉内氧化皮的产生和脱落,需要采取以下措施:1.严格控制水质:氧化皮的产生和脱落与水质、雾化水分造成的挥发物和含氧及其它因素有很大关系,所以加强水质控制,减少管道受损,对于防治氧化皮的产生和脱落具有重要意义。
2.加强检修:定期对锅炉进行检修,及时发现氧化皮及时清除,更换不良的管路元件,修复损坏的部位。
3.提高制造质量:超临界锅炉的制造过程中,需要加强质量管理,在金属成形、焊接、热处理、清洗等关键环节环节上加强控制品质,确保零件不出现明显质量问题。
4.改善运行条件:为了使锅炉在高效、节能、环保的同时避免氧化皮脱落问题的发生,还需要改善运行条件,优化锅炉的操作过程,保证锅炉的运行在一个稳定的状态下。
总之,超临界锅炉在使用过程中出现氧化皮的现象,必须给予高度重视。
如何防止超临界锅炉受热面内氧化皮生成及剥落
如何防止超临界锅炉受热面内氧化皮生成及剥落1.原则要求1.1 末级过热器和末级再热器原则上不进行水压试验。
1.2 锅炉启动点火前,对热力系统进行冷态冲洗并严格按照水质要求进行。
1.3 锅炉启动点火后,对热力系统进行热态冲洗并严格按照水质要求进行。
1.4 任何情况下禁止汽温骤升和骤降。
1.5 金属壁温测点装置完好,显示准确。
1.6 在冷热态冲洗及正常运行中,严格监督给水、凝结水中的铁、二氧化硅及其pH值。
1.7 启动过程中尽量不使用减温水控制汽温。
机组负荷低于150MW严禁使用一二级及事故减温水,其它工况下再热减温水量不得大于再热蒸汽流量的10%。
当使用减温水时操作要平稳,温度控制要超前,避免突开突关减温水门使管壁急速降温和升温,导致氧化皮集中脱落。
2.冷态冲洗2.1 在冷态冲洗过程中,当凝汽器与除氧器间建立循环后,应投入凝结水泵出口加氨处理设备,控制冲洗水pH值为9.0~9.5,以形成钝化体系,减少冲洗腐蚀。
当凝结水及除氧器出口水含铁量大于500g/L时,应采取排放冲洗方式;当冲洗至凝结水及除氧器出口水含铁量小于500g/L时,可采取循环冲洗方式,投入凝结水处理装置运行(增加精处理运行方式),使水在凝汽器与除氧器间循环。
当除氧器出口水含铁量降至小于100g/L后,凝结水系统、低压给水系统冲洗结束。
2.2 当凝汽器与启动分离器建立循环后,应投入给水泵入口加氨处理设备。
调节冲洗水的pH值为9.0~9.3。
当启动分离器出口水含铁量大于500g/L时,应采取排放冲洗;小于500g/L时,将水返回凝汽器循环冲洗,投入凝结水处理装置除去水中铁。
当启动分离器出口水含铁量降至小于100g/L时,省煤器入口含铁量小于50g/L,冷态水冲洗结束。
3.热态冲洗在热态水冲洗过程中,当启动分离器出口水含铁量大于500g/L时,应由启动分离器将水排掉;当含铁量小于500g/L时,将水回收至凝汽器,并通过凝结水处理装置作净化处理,直至启动分离器出口水含铁量和二氧化硅含量均小于100g/L时,省煤器入口含铁量小于50g/L,热态水冲洗结束。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治随着我国经济的飞速发展,电力行业也迅速发展壮大,超临界机组电站成为电力行业的主力军。
超临界机组电站锅炉是电站的核心设备,其安全运行直接关系到电力供应的稳定性和可靠性。
在锅炉运行中,氧化皮脱落问题一直是困扰着电站运行的一个重要隐患。
本文将对超临界机组电站锅炉氧化皮脱落的原因进行分析,并提出相应的防治措施,以确保电站锅炉的安全运行。
1. 材料质量不佳超临界机组电站使用的锅炉材料需要具有耐高温、耐压和耐腐蚀的特性,而一些廉价的锅炉材料可能质量不佳,其表面会存在一定的氧化皮,容易脱落。
2. 高温高压作用超临界机组电站锅炉在工作过程中会受到高温高压的作用,如果材料质量不佳,容易导致氧化皮在高温高压下脱落。
3. 操作不当锅炉运行过程中,如温度、压力控制不当,会导致运行条件不稳定,从而引起氧化皮的脱落。
4. 气体侵蚀燃烧产生的气体中可能含有酸性物质,当这些气体与锅炉材料接触时,会对材料产生侵蚀作用,使氧化皮脱落。
1. 提高材料质量采购时需选择质量可靠的锅炉材料,确保其有良好的抗氧化性能,减少氧化皮脱落的可能性。
2. 强化锅炉维护加强对锅炉的维护保养工作,定期对锅炉进行检测,及时发现问题并进行修复,避免由于设备老化等原因导致氧化皮脱落。
3. 合理操作严格遵守锅炉操作规程,确保锅炉运行时温度、压力等参数的稳定性,避免由于操作不当导致氧化皮脱落。
4. 防腐蚀措施采取有效的措施,如喷涂保护涂层、定期清洗等,防止氧化皮脱落。
5. 定期清洗定期对锅炉进行清洗,保持锅炉内部的清洁,避免氧化皮的积聚和脱落。
6. 加强监测加强对锅炉运行情况的监测,定期进行检测分析,及时发现问题并进行处理,防止氧化皮脱落对锅炉和电站的安全造成影响。
通过以上分析和防治措施,可以有效降低超临界机组电站锅炉氧化皮脱落的发生率,确保锅炉的安全稳定运行。
电站运营管理者和工作人员应加强自身的安全意识和技能培训,提高对锅炉运行和维护的掌握,加强对锅炉安全问题的认识和风险防范,为电站的安全生产提供有力保障。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是现代火力发电厂的核心设备之一,其稳定运行对于保障电网安全运行起着至关重要的作用。
随着锅炉运行时间的不断延长,锅炉氧化皮脱落成为一个普遍存在的问题,给电站运行和安全带来了不小的隐患。
对超临界机组电站锅炉氧化皮脱落进行分析和防治显得尤为重要。
一、氧化皮脱落的原因分析1.1 锅炉燃料的选择燃料中含硫量过高会使得锅内硫酸盐析出并在锅炉管道内形成硫酸膜,加剧锅炉金属内部腐蚀和脱皮现象。
1.2 水质问题锅炉水中的水垢是锅炉金属的主要腐蚀介质,水质不良,水垢的形成和堆积会使得锅炉金属损耗加剧,从而导致氧化皮脱落。
1.3 设计和制造缺陷一些锅炉在设计和制造过程中可能存在材料选用不当、结构设计不合理等问题,导致锅炉在运行过程中容易产生氧化皮脱落现象。
1.4 运行参数变动锅炉运行参数的频繁变动,比如锅炉水位、汽温、汽压等参数的快速波动会给锅炉金属材料带来巨大的应力,导致氧化皮脱落。
2.1 影响锅炉热效率氧化皮脱落导致锅炉的金属材料暴露在高温高压的介质中,不仅容易破坏原有的热传导结构,还会影响燃烧过程中吸热、传热和蒸汽生成,降低锅炉的热效率。
氧化皮脱落使得锅炉的金属材料暴露在高温高压介质下,容易造成金属的腐蚀和损耗,从而影响锅炉的安全运行。
2.3 影响电站经济效益氧化皮脱落会降低锅炉的热效率,增加电站的运行成本,严重影响电站的经济效益。
加强对氧化皮脱落的分析,采取有效的防治措施对电站的运行和安全具有重要的意义。
三、氧化皮脱落的防治措施3.1 优化锅炉水质电站应加强对锅炉水质的检测和管理,充分理解和掌握水垢和腐蚀产生的原因,优化水处理过程,防止水垢和腐蚀产生。
3.2 严格控制锅炉运行参数3.3 定期清洗设备定期对锅炉设备进行清洗和维护,清除锅炉内的水垢和杂质,减少金属材料的腐蚀和损耗。
3.4 加强对锅炉的监测和检测建立完善的监测体系,对锅炉的运行状态进行实时监测和检测,及时发现氧化皮脱落的迹象,采取有效的预防措施。
超超临界锅炉氧化皮的产生和防治
超超临界锅炉氧化皮的产生和防治随着机组容量越来越大,蒸汽参数越来越高,金属在高温环境下不断产生氧化皮。
并伴随氧化皮剥落堆积,造成管壁超温并最终导致锅炉四管爆漏事故。
因此氧化皮的产生和剥落是影响机组安全稳定运行因素之一。
一、氧化皮生成的原因由于高温高压蒸汽具有氧化性,从400℃以上开始具有较强氧化性,500℃-700℃具有最强氧化性,600℃以上氧化速度加快。
500℃以上,奥氏体钢就与水蒸汽发生反应生产氧化层,570℃以上,氧化层中增加了FeO相,材料氧化速度加快。
在600℃-620℃之间,金属氧化速度存在突变点,氧化层迅速增厚,氧化层达到一定厚度,运行条件变化时,容易导致氧化层脱落,成为氧化皮。
氧化皮是高汽温参数带来的副产物。
氧化皮基本是双层结构,外层厚度相当,外层主要是疏松结构的Fe3O4,层为致密结构的(FeCr)3O4,其中Cr含量随金属不同而不同。
奥氏体钢只脱落外层氧化皮,层不易脱落。
铁素体钢外两层都易脱落,管壁部运行一段时间容易形成新的氧化皮,造成反复的形成和反复的脱落。
在机组实际运行过程中,锅炉高温过热器、高温再热器长期处于高温状态下,管壁出现短时超温是比较常见现象。
在长时超温和短时超温情况下,管材抗氧化能力大大降低。
加快氧化皮的生产和发展。
二、氧化皮的危害氧化皮的产生和剥落对机组运行的危害:(1)氧化皮剥落阻碍管蒸汽流动,使壁温大幅升高,金属蠕变胀粗,造成锅炉受热面管壁超温爆管。
(2)氧化皮的绝热作用引起受热面管金属壁温上升,影响管材寿命。
(3)氧化皮对汽轮机产生固体颗粒侵蚀,造成调门、喷嘴和叶片侵蚀损坏。
(4)氧化皮产生容易造成主汽门卡涩,机组停运造成主汽门关闭不严,威胁机组安全运行。
(5)氧化皮剥落容易堵塞疏水管,威胁机组安全运行。
(6)氧化皮剥落造成汽水污染,严重影响汽水品质。
三、氧化皮剥离的原因、条件及机理(1)原因:由于氧化皮的膨胀系数与碳钢和低合金钢接近,但是奥氏体钢的膨胀系数要比氧化皮大很多,大幅度的温度变化将导致金属应力增大而使氧化皮剥离。
超临界机组电站锅炉氧化皮脱落的分析与防治
超临界机组电站锅炉氧化皮脱落的分析与防治超临界机组电站锅炉是一种高效节能的发电设备,其锅炉部分承担着转化化石能源为电能的重要任务。
其中,锅炉的安全、稳定运行是保障发电厂运行的重要前提之一。
然而,在锅炉长期使用过程中,锅炉内部容易出现的一个问题就是氧化皮的脱落,这会引起一系列的连锁反应,对电站运行安全造成严重影响。
本文主要探讨超临界机组电站锅炉氧化皮脱落的原因、特征,以及如何有效的预防和治理这种现象。
一、氧化皮形成的原因锅炉的材质多是铁合金等金属材料,长期高温高压下,锅炉表面易出现氧化皮,这主要由以下原因导致:1、锅炉内部能量受限,产生较大热负荷,造成表面局部过热,从而发生氧化皮。
2、装置中存在一些缺陷,如气孔,层状缺陷,交界区缺陷等,加之局部应力集中,会使孔隙处易于产生氧化皮。
3、大气环境因素也是造成锅炉氧化皮的重要原因之一,腐蚀、污染等环境因素会大大加剧锅炉氧化皮的产生过程。
二、氧化皮脱落的特征锅炉内部存在有氧化皮,它会影响锅炉的安全性和运行效率,主要表现在以下几个方面:1、导致锅炉内部烟道堵塞,严重影响烟气排出和气流过程。
2、产生铁锈,使水质变劣。
3、降低了锅炉表面的光泽。
4、在烟囱周围形成污染物,使附近居民的生活和健康受到影响。
三、预防与治理措施为了预防和治理锅炉氧化皮脱落现象,超临界机组电站锅炉需要采取以下措施:1、加强锅炉表面的清洗和维护,防止氧化皮过度脱落。
2、有效避免锅炉起火的过程中产生过度的热负荷,一定程度上减少氧化皮的产生。
3、及时排放排污,保障锅炉内部水质的良好。
4、加强管理,设立专门的锅炉维护检测团队,对锅炉的状态进行全面的分析和检测,及时发现问题并解决。
综上,超临界机组电站锅炉氧化皮脱落问题需要有效防范和控制。
必须加强锅炉内部的管理和维护工作,严格按照标准要求,加强对氧化皮的清洗和护理。
同时也要加强锅炉的检测,及时解决锅炉内部存在的问题,确保超临界机组电站锅炉的运行安全、高效。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
锅炉岛产品性能优化服务项目超(超)临界锅炉防止氧化皮的措施和优化方案上海锅炉厂有限公司技术部2011年6月课题名称:超(超)临界锅炉氧化皮的预防和优化方案课题承担单位:上海锅炉厂有限公司技术部课题负责人:亓安芳课题参加人:张波金用强报告撰写:张波报告校对:王建泳报告审核:金用强报告批准:亓安芳目录0 前言 (1)1 锅炉金属材料的氧化膜 (1)1.1 氧化膜的生成机理 (1)1.2 氧化膜的生长方式、区域和厚度 (2)1. 3 氧化膜的形态 (6)1. 4 氧化膜的成分和结构 (8)2 氧化膜剥离理论及模型 (10)2.1 金属和氧化膜的线胀系数 (10)2.2 氧化膜剥离的临界应变或临界厚度 (11)2.3 氧化膜的剥离及模型 (13)3 氧化膜剥落的应力来源及影响因素 (15)3.1 氧化膜厚度和应力的影响 (16)3.2 氧化膜的成分和结构的影响 (17)3.3 温度和温度突变的影响 (17)3.4 烟气热流的影响 (18)3.5 几何参数的影响 (18)3.6 金属晶粒度的影响 (19)3.7 金属表面状态的影响 (19)3.8 金属化学成分的影响 (19)4 氧化膜剥落的预防 (19)4.1 减缓氧化膜的增厚速度 (20)4.1.1 选择合适的金属材料 (20)4.1.2 表面处理提高钢材抗氧化能力 (21)4.2 减少氧化皮的措施和优化方案 (27)4.2.1 设计方面 (27)4.2.2 制造方面 (27)4.2.3 使用方面 (28)5 结论 (30)0 前言1970年7月在美国新泽西亚特兰迪克举行的蒸汽设备学术讨论会上,公认汽轮机叶片的固体粒子冲蚀是该行业普遍存在的问题。
研究发现固体粒子来源于锅炉钢管内壁脱落的氧化膜。
这些氧化膜的硬度很高,在汽流的带动下,以微切削等方式致使叶片表面金属质量缺失,造成叶片的承载面积减小,直接产生开裂或高周疲劳断裂。
在锅炉系统中,过热器和再热器靠近蒸汽出口侧的钢管弯头处有大量的氧化膜堆积,使汽流通道的有效截面减小,曾经造成多起过热器和再热器超温爆管事故。
金属在锅炉运行过程中出现氧化膜是必然的,氧化膜的产生和剥落与金属材料自身的特性、锅炉的运行方式和运行时间、金属壁温度等因素有关,结合以往电厂的运行经验和上锅公司相关方面的研究和分析结果,提出了超超临界锅炉氧化皮的预防和优化方案。
1 锅炉金属材料的氧化膜1.1 氧化膜的生成机理从化学热力学的角度看,过热蒸汽与钢管内壁金属接触能否发生氧化反应的必要条件是:金属和水蒸汽组成的系统里等温-等压初始状态的自由能大于最终<0。
当ΔF T,P>0时,氧化反应不能进行。
当状态的自由能,即自由能之差ΔF T,PΔF T,P=0时,氧化物分解和生成达到动态平衡。
根据计算,在600~700℃之间,系统中氧化反应将自发进行。
即金属在蒸汽中被氧化是必然的。
金属与高温汽体接触发生氧化时,其过程可以分为化学反应和电化学反应二个阶段。
在氧化的最初时期,高温高纯水蒸汽与金属表面直接接触,水蒸气吸附于金属表面,并分解出氧原子,氧原子夺取金属中的电子后变成氧阴离子,氧阴离子与金属阳离子在金属表面发生化学反应生成氧化物。
随着氧化反应的不断进行,氧化物增多,氧化膜的覆盖率加大。
当氧化膜基本覆盖了钢材表面时,化学反应结束。
氧化反应的总表达式可以写成:XMe+YH2O→Me X O Y+YH2↑。
化学反应结束后,电化学反应开始。
此时,由化学反应生成的初始氧化膜起到了以空穴导电为主的P型半导体的作用,为电化学反应得以进行创造了必要条件。
电化学反应的具体过程可以表述如下:蒸汽中的水分子吸附在氧化膜的蒸汽侧表面上-被吸附的水分子分解出氧原子-氧原子再变成氧离子-氧离子向金属表面方向扩散-金属原子电离-电离后的金属离子和电子在氧化膜内部沿着未被阴阳离子占据的氧化物晶格的节点和电子空位向氧化膜过渡-氧化膜中的阳离子和电子向膜-汽相界面扩散-阳离子和阴离子作用形成新的金属氧化物,使得氧化膜继续增长。
综上所述,金属形成氧化膜可以导致系统中自由能降低,金属被蒸汽氧化是自发的过程。
氧化膜的生成和长大受化学反应和电化学反应两种机制控制。
因此金属被氧化的速度取决于化学反应速度和电化学反应中阴阳离子的扩散速度。
氧化物的组成和结构则取决于化学反应的生成物。
1.2 氧化膜的生长方式、区域和厚度氧化膜生长过程可以分为形核和核长大两个阶段,而形核又可以分为均匀形核和选择性形核两种方式。
氧化膜究竟以那种方式形核与试样表面参与氧化反应的元素种类、含量和晶粒尺寸有关,其长大的方式和生长的区域受化学反应和电化学反应二种机制控制。
氧化膜的生长区域与电化学反应过程中阴阳离子的扩散速度有关。
若阳离子的扩散速度大于阴离子,氧化膜将在蒸汽侧向氧化汽体方向增长,如果阴离子的扩散速度大于阳离子,氧化膜成长在初始膜的内侧和金属表面之间。
如果二者的扩散速度相近,膜的成长区域在初始氧化膜的内部。
阴阳离子的扩散速度与扩散系数有关,继而与温度和扩散激活能有关。
当温度一定时扩散速度主要受控于热激活能。
不同的元素在氧化膜中的扩散激活能不同。
阴阳离子的半径和初始氧化膜的性质对激活能的大小有一定影响。
(1)阴阳离子尺寸与扩散速度有关。
阴阳离子半径越小,扩散激活能越小。
正一价铁离子的半径为0.74À,正二价铁离子的半径为0.64À,正三价铬离子的半径为0.63À,负一价氧离子的半径为1.76À,负二价氧离子的半径为1.32À,可见铁、铬阳离子的半径约为阴离子的一半,单从尺寸因素上看阳离子的扩散速度会大于阴离子,氧化膜的生长区域倾向于在膜的外侧。
但实际情况并非如此,在金属/氧化物界面上,金属离子和电子从金属基体转移到氧化皮中,占据磁性氧化铁尖晶石点阵四面体间隙和部分八面体间隙,来自氧化皮中的氧离子则进入金属晶格的最外层,并与金属阳离子生成新的尖晶石结构。
依照这一方式,在原来的金属表面上长出两层氧化膜,一层朝外生长,一层朝内生长,原始金属表面是内外层氧化膜的分界面。
(2)阴阳离子的扩散速度与初始氧化膜的性质有关。
若初始氧化膜多孔疏松,阴阳离子的扩散激活能就小,扩散速度就快;若氧化膜致密,阴阳离子的扩散速度就慢。
而初始氧化膜是疏松还是致密取决于金属的化学成分,尤其是Cr等元素的含量。
通常高Cr合金钢的氧化膜比低Cr合金钢的致密,因此可以减缓金属的氧化速度。
(3)阴阳离子的扩散方式对扩散速度有影响。
通常双层膜中的内外两层都是尖晶石结构。
但是外层中缺金属离子富氧离子,而内层中富金属离子缺氧离子,这决定了离子沿外层氧化膜中空位的扩散速度比沿内层氧化膜的间隙位置的扩散速度快。
影响氧化膜生长区域的诸多因素综合作用的结果决定了氧化膜的具体生长区域,新生成的氧化膜在双层或多层的里面,先形成的氧化膜在外面。
总之,目前大家公认的氧化膜生长区域是,在初始氧化膜与金属表面之间或最内层的外面形成双层或者多层膜。
这也意味着金属基体被不断氧化的同时也可能引起已形成氧化膜的二次氧化。
V&M公司对TP347H、VM12和T91钢试样在650℃进行了为时2、4、8周的蒸汽氧化试验。
结果显示,TP347H类的奥氏体钢、12%Cr的VM12钢氧化膜的生长方式与T91不同,并以此试验结果为依据,将试验钢种的生长方式划分为两种,一种以Cr元素含量较低的T91为代表,以均匀形核和沿厚度方向长大的方式生长,称其为类型1;另一种以TP347H、VM12类的高Cr钢为代表,以选择性形核,并沿横向和厚度两个方向长大,称其为类型2。
类型1和类型2氧化膜的生长方式分别见示意图1和示意图2。
TP347H、VM12和T91蒸汽氧化试样横截面氧化物的形态分别见图3、图4和图5。
图2 类型2氧化膜生长示意图图3 TP347H 试样2、4、8周蒸汽氧化试验结果图4 VM12试样2、4、8周蒸汽氧化试验结果图5 T91试样2、4、8周蒸汽氧化试验结果也有人通过对T91的研究得出了氧化膜先横向生长,氧化膜覆盖了整个基体之后再侧向生长,认为裸露的基体中Cr、Fe和O结合成化合物的机会更多,所以氧化膜会优先横向堆积性生长,之后再纵向长厚。
氧化膜的生长厚度遵循塔曼法则:d2=kt(d 为氧化皮的厚度,K为与温度有关的塔曼系数,t为时间),从公式中可知,氧化皮的厚度与时间和温度有关。
当氧化膜形成之后,其长大速度或氧化膜的厚度取决于阴阳离子的扩散速度,而扩散速度对温度有明显的依存关系,氧化膜厚度随着温度的升高而增加。
但是当温度一定时,氧化膜的厚度就和时间有密切的关系了。
氧化膜形成初期,氧化膜的厚度与时间呈抛物线关系,此时可能为双层膜。
当超温或温度发生变化时,双层膜就会变成多层膜,这时氧化膜的厚度就和时间呈直线关系。
此外氧化膜的厚度还和蒸汽压力有关,有人认为压力低时的生长速度比压力高时为快,支持他观点的是依敏发电厂再热器的氧化皮量比过热器要多而尺寸大,但是这种观点不一定正确,对加氧前后再热器氧化皮的比较及分析结果与之不同。
由于过热器外层Fe2O3的含量普遍比再热器高,因此有人认为蒸汽压力高氧的分压就高,促进Fe2O3的产生,而氧化膜最外层的Fe2O3的出现和增厚是氧化膜原生外层剥落倾向增大的征兆。
前人对碳钢和Cr-Mo类钢进行了为时36000小时的蒸汽氧化试验,实验样品氧化膜的总厚度和内、外层的厚度测量的结果如表1所示。
实验结果显示,这些铁素体钢的氧化膜都由双层组成,内层的厚度大于外层的厚度,内、外层的总厚度有随着Cr元素含量的增加而略有变薄的趋势。
表1 Cr-Mo钢蒸汽氧化试样的氧化膜厚度(um)Array注:压力为2350磅/英寸2,温度为540±14℃的蒸汽中暴露36000小时。
有人在研究T91钢氧化物的生长方式时认为,在T91类钢表面初始生成的CrFe2O6纳米粒氧化物,它们以该微粒数量的增多而堆积式生长,当侧向生长并布满钢的表面后再不断增厚,其生长的前沿在CrFe2O6层的内表面和外表面,内界面所需氧原子由外环境通过CrFe2O6层扩散而来。
外表面所需的Fe和Cr原子由钢基体通过CrFe2O6层扩散而来,从而形成纳米粒氧化物内层。
随后在CrFe2O6纳米粒氧化物内层表面生成众多的尖晶石结构的CrFe2O4新晶核。
并长成细等轴晶,位向适宜的细等轴晶定向生长成粗锥状晶,这些细等轴晶和粗锥状晶共同组成氧化层CrFe2O4的中层。
该层Cr含量很少。
当继续氧化或氧化温度稍高时,再在CrFe2O4粗锥状晶层表面生成Fe2O3晶核,并长成Fe3O4-Fe2O3。
1. 3 氧化膜的形态通过光学显微镜观察了沙洲电厂末级过热器T23钢管内壁的氧化膜横截面光学金相的形态。
观察发现:(1)氧化膜与尚未氧化的金属基体之间存在鲜明的界面,在纯金属和纯氧化膜的交界区域金属和氧化膜共存,说明基体金属中的氧化不均匀,而是选择性进行。