小学奥数训练专题 分数应用题(三).学生版【推荐】.doc
六年级奥数《分数应用题》训练题
六年级奥数《分数应用题》训练题例题1:仓库里有一批化肥;第一次取出总25;第二次取出总数的13少12袋;这时仓库里的还剩36袋;两次共取出多少袋?2:一本书;已看了130页;剩下的准备8天看完;如果每天看的页数相等;3天看的页数恰好为全书的522。
则这本书共有多少页?3:一块西红柿地;今年获得丰收。
第一天收下全部的38,装了3筐还余12千克;第二天把剩下的全部收完;正好装了6筐。
这块地共收了多少千克西红柿?4:某校共有72人参加“华罗庚杯”数学竞赛。
已知获奖人数的59与未获奖人数的13共有34人;该校获奖人数是多少?初级训练1:体育组有排球13个;足球有15个;这些球比学校球类总数少37,学校球类总数是多少?2:果园里有一批苹果上午运走全部的13,下午运走240千克;这时已经运走的占全部苹果的质量的38。
这批苹果共有多少千克?3:服装店分两次加工一批服装;第一次做了全部的15,第二次比第一次多做180件。
这一批服装共有多少件?中级训练1:黄瓜获得丰收;收下全部的49,装满了4筐还多36千克;收完其余的部分时;又刚好装满8筐;共收黄瓜多少千克?2:一堆砖;用去了它的310后;又运来了280块;这时砖的总数是原来的78。
用去了多少块砖?3:有两堆棋子共259个;现在从第一堆里取出12个;从第二堆棋子里取出110以后;剩下两堆棋子个数就一样多了。
原来两堆棋子各有多少个4:小军三天看完一本书;第一天看了全书的14还少4页;第二天看了全书的13还多14页;第三天看了90页。
这本故事书共有多少页?高级训练1、一辆汽车;从车站开出时坐满了人;途中到达某站;有13的乘客下车;又有21人上车;这时有6位乘客没有座位;这时车内有多少乘客?2、甲:乙两班共有108人;甲班人数的12与乙班人数的14共有40人。
甲:乙两班各有多少人?。
小学奥数专题-分数应用题(三).学生版
1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析.在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”.例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”.解答题关键:只要找准总数和部分数,确定单位“1”就很容易了.(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多.有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”.在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”.例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几.这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”.(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系.这类分数应用题的单位“1”比较难找.需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析.例如:水结成冰后体积增加了,冰融化成水后,体积减少了.完善后:水结成冰后体积增加了→ “水结成冰后体积比原来增加了” →原来的水是单位“1”冰融化成水后,体积减少了→ “冰融化成水后,体积比原来减少了” →原来的冰是单位“1”知识点拨教学目标分数应用题(三)单位“1”变化【例 1】养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的114倍.鸭比鸡少几分之几?【巩固】某校男生比女生多37,女生比男生少几分之几?【例 2】一炉铁水凝成铁块,其体积缩小了134,那么这个铁块又熔化成铁水(不计损耗),其中体积增加了几分之几?【巩固】水结成冰后体积增大它的110. 问:冰化成水后体积减少它的几分之几?【例 3】磁悬浮列车的能耗很低.它的每个座位的平均能耗是汽车的70%,而汽车每个座位的平均能耗是飞机的1021,则飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的________倍.【例 4】在下降的电梯中称重,显示的重量比实际体重减少17;在上升的电梯中称重,显示的重量比实际体重增加16.小明在下降的电梯中与小刚在上升的电梯中称得的体重相同,小明和小刚实际体重的比是.例题精讲【例 5】学校阅览室里有36名学生在看书,其中女生占49,后来又有几名女生来看书,这时女生人数占所有看书人数的919.问后来又有几名女生来看书?【巩固】工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工人.【巩固】学校派出60名选手参加2008年“华罗庚金杯小学数学邀请赛”,其中女选手占14.正式比赛时有几名女选手因故缺席,这样就使女选手人数变为参赛选手总数的211.正式参赛的女选手有多少名?【巩固】某公司有15的职员参加新产品的开发工作,后来又有2名职工主动参加,这样参加新产品开发的职工人数是其余人数的13,原来有多少职工参加开发工作?【例 6】春天幼儿园中班小朋友的平均身高是115厘米,其中男孩比女孩多15,女孩的平均身高比男孩高10%,这个班男孩的平均身高是厘米.【例 7】有甲、乙两桶油,甲桶油的质量是乙桶的5倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质量是乙桶的43倍,乙桶中原有油千克.【例 8】(1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?【巩固】某工厂二月份比元月份增产110,三月份比二月份减产110.问三月份比元月份增产了还是减产了?【巩固】一件商品先涨价15,然后再降价15,问现在的价格和原价格比较升高、降低还是不变?【例 9】某校三年级有学生240人,比四年级多14,比五年级少15.四年级、五年级各多少人?【巩固】把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?【例 10】新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人?【巩固】王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗?【巩固】四只小猴吃桃,第一只小猴吃的是另外三只的总数的13,第二只小猴吃的是另外三只吃的总数的1 4,第三只小猴吃的是另外三只的总数的15,第四只小猴将剩下的46个桃全吃了.问四只小猴共吃了多少个桃?【巩固】兄弟四人去买电视,老大带的钱是另外三人的一半,老二带的钱是另外三人的1/3,老三带的钱是另外三人总钱数的1/4,老四带91元,兄弟四人一共带了多少钱?【例 11】小刚给王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【巩固】五(一)班原计划抽15的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余人数的13.原计划抽多少个同学参加大扫除?【巩固】某校学生参加大扫除的人数是未参加大扫除人数的14,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的13,这个学校有多少人?【例 12】小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少37;如果小刚给小莉24个,则小刚的玻璃球比小莉少58,小莉和小刚原来共有玻璃球多少个?【例 13】某班一次集会,请假人数是出席人数的19,中途又有一人请假离开,这样一来,请假人数是出席人数的322,那么,这个班共有多少人?【巩固】小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数19,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的13,问题是,这本书共有多少页?”【例 14】某校四年级原有两个班,现在要重新编为三个班,将原一班的13与原二班的14组成新一班,将原一班的14与原二班的13组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多110,那么原一班有多少人?【巩固】某工厂对一、二两个车间的职工进行重组,将原来的一车间人数的12和二车间人数的13分到一车间,将原来的一车间人数的13和二车间人数的12分到二车间,两个车间剩余的140人组成劳动服务公司,现在二车间人数比一车间人数多117,现在一车间有人,二车间有人.【例 15】 林林倒满一杯纯牛奶,第一次喝了13,然后加入豆浆,将杯子斟满并搅拌均匀,第二次林林又喝了13,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的 (用分数表示).【例 16】 参加迎春杯数学竞赛的人数共有2000多人.其中光明区占13,中心区占27,朝阳区占15,剩余的全是远郊区的学生.比赛结果,光明区有去的学生得奖,中心区有116的学生得奖,朝阳区有118的学生得奖,全部获奖者的号17远郊区的学生.那么参赛学生有多少名?获奖学生有多少名?【例 17】 如图⑴,线段MN 将长方形纸分成面积相等的两部分.沿MN 将这张长方形纸对折后得到图⑵,将图⑵沿对称轴对折,得到图⑶,已知图⑶所覆盖的面积占长方形纸面积的310,阴影部分面积为6平方厘米.长方形的面积是多少?(3)MNNM (2)(1)。
(完整word版)小学六年级奥数专项:分数应用题
1 是原来总数的 3 。求现在书架上放着多少本书?
1 分析: 借出总数的 75%之后,还剩下 25%,又放上 60 本,这时架上的书是原来总数的 3 ,
这就可以找出 60 本书相当于故事书总数的几分之几了,问题也就可以求出来了。还可以画
找量率对应。如下图:
解答:( 1) 60 本书相当于故事书总数的几分之几?
1 ,或可注满乙容器及甲 2
14、有三堆棋子,每堆棋子一样多, 并且都只有黑白两种棋子。第一堆里的黑子数与第二堆
里的白子数一样多,第三堆里的黑子为全部黑子的
2 。把三堆棋子集中在一起,白子为全 5
部棋子的几分之几?
7
二、练习
1、一项工程,甲单独做 10 天完成,乙单独做 8 天完成,甲每天比乙少做(
13 公顷,稻
分析: 通过读题,将题目中的条件列成文字等式:
1
1
1
1
菜地的 2 +稻田的 3 =13 公顷+菜地的 3 +稻田的 2 =12 公顷
5
5
菜地的 6 +稻田的 6 =25 公顷
这就是说,菜地和稻田的
5 6 与 25 公顷相对应,因此可以求出两种地一共有多少公顷,
再求稻田有多少公顷。 解答: 两种地共有
1
1
总数的 8 + 16 本+总数的 2 - 8 本+余下的 67 本 =“单位 1”
将等式变形,量率分别放在等号的两边:
1
1
16 本- 8 本+余下的 67 本 =“单位 1”-总数的 8 -总数的 2
1 13 从上面的式子中可以看出, (67 - 8+16) 就是这批图书的 1- 8 - 2 = 8 ,因此列式为:
6
8、庆丰文具店运来的毛笔比钢笔多 店共运来多少万支笔?
小学奥数分数应用题专题
1、经济关系计算
2、代数分析计算
3、变价比较计算
4、变价整体计算
5、经济综合计算
5
1、浓度计算
2、浓度十字交叉法
3、多次混合浓度问题
4、多种溶液浓度问题
5、浓度中的倒推法
6、浓度问题的应用
1
1、分数关系问题
2、量率对应计算
3、条件对比计算
4、和差倍分计算
5、抓不变量计算
6、倒推法应用
7、方程法应用
2
1、比的关系问题
2、比的份数关系(一)
3、比的份数关系(二)ຫໍສະໝຸດ 4、抓不变量计算5、方程法应用
3
1、简单工程问题
2、工程中的等量代换
3、工程中的整体分析
4、排水工程问题
5、轮流工程问题
6、变速工程问题
(完整word版)六年级奥数分数应用题练习
六年级奥数分数应用题练习1.一桶油, 第一次用去, 正好是4升, 第二次用去这桶油的, 还剩多少升?2.某工厂计划生产一批零件, 第一次完成计划的, 第二次完成计划的, 第三次完成450个, 结果超过计划的, 计划生产零件多少个?3.王师傅四天做完一批零件, 第一天和第二天共做了54个, 第二、第三和第四天共做了90个, 已知第二天做的个数占这批零件的。
这批零件一共多少个?4.六(1)班男生的一半和女生的共16人, 女生的一半和男生的共14人。
六(1)班共有学生多少人?5.甲、乙、丙、丁四人共植树60棵。
甲植树的棵数是其余三人的, 乙植树的棵数是其余三人的, 丙植树棵数是其余三人的, 丁植树多少棵?6.五(1)班原计划抽调的人参加“义务劳动”, 临时又有两人主动参加, 使实际参加劳动的人数是余下人数的, 原计划抽调多少人参加“义务劳动”?7、玩具厂三个车间共同做一批玩具。
第一车间做了总数的, 第二车间做了1600个, 第三车间做的个数是一、二车间总和的一半, 这批玩具共有多少个?8、有五个连续偶数, 已知第三个数比第一个数与第五个数的和的多18, 这五个偶数的和是多少?9、甲、乙两组共有54人, 甲组人数的与乙组人数的相等, 甲组比乙组少多少人?10、一个长方形的周长是130厘米。
如果长增加, 宽减少, 得到新的长方形的周长不变。
求原来长方形的长、宽各是多少?11.学校图书馆原有文艺书和科技书共5400本, 其中科技书比文艺书少, 最近又买来一批科技书, 这时科技书和文艺书本数的比是9 : 10。
图书馆买来科技书多少本?12、甲、乙两人原来的钱数的比是3 : 4, 后来甲给乙50元, 这时甲的钱数是乙的。
甲、乙原来各有多少元钱?13、甲、乙两种商品的价格比是7 :3, 如果它们的价格分别上涨70元, 那么, 它们的价格之比是7 :4。
甲商品原来的价格是多少元?14.一个最简分数的分子、分母之和为49, 分子加上4, 分母减去4后, 得到新的分数可以约简为, 求原来的分数。
(完整版)六年级奥数分数应用题.docx
六年级奥数分数应用题【指点迷津】解答较复杂的分数应用题时,我们往往从题目中找出不变的量,把不变的量看作单位“1”,将已知条件进行转化,找出所求数量相当于单位“ 1”的几分之几,再列式解答。
【经典例题】 1、54有两筐苹果。
乙筐是甲筐的7,从甲筐取出 6 千克放入乙筐后 ,乙筐的苹果是甲筐的5。
甲、乙两筐苹果共重多少千克?【思路导航】由于是从甲重取出 6 千克放入乙筐的 ,所以两筐苹果的总质量没有变,7把两筐苹果的总质量看作单位“1”,则原来甲筐苹果占总重量的5+7 ,后来甲筐苹果占5751总重量的5+4。
所以 6 千克苹果相当于总重量的5+7—5+4 =36。
756÷(5+7—5+4 )=216(千克 )答:甲、乙两筐苹果共重216 千克。
【举一反三】 1、32 1、乙队原来有的人数是甲队的7 ,现在甲队派30人到乙队,则乙队人数是甲队的3。
甲、乙两队共有多少人 ?2、有甲、乙两个粮仓 ,原来甲粮仓存粮的吨数是乙粮仓的7。
如果从甲粮仓调 5 吨到54乙粮仓 ,甲粮仓的吨数就是乙粮仓的 5 。
原来甲、乙粮仓各存粮多少吨?【经典例题】 2、在阅览室看书的学生中 ,男生人数是女生的23 5,又来了 3 名女生后 ,男生人数是女生的8。
阅览室有男生多少人 ?23【思路导航】原来“男生人数是女生的5”,后来“ 男生人数是女生的8”,虽然都是女生的几分之几 ,但女生人数前后发生了变化。
在解答时 ,只能抓住不变的量 ,即男生人数。
可以这样看 ,原来女生人数是男生的58 2,后来增加了 3 名女生 ,女生人教是男生的3,3 名8 5女生对应的分率就是3—2。
853÷(3—2)=18(人)答:阅览室有男生 18 人。
【举一反三】 2、36 1、某学校舞蹈队男生人数是女生的5,调来了 3 名女生后 ,男生人数是女生的11。
该学校舞蹈队有男生多少人?52、水果店运来苹果和梨两种水果,苹果的重量是梨的6 ,卖出 20 千克梨后 ,幸果的重量5是梨的4 ,运来苹果多少千克 ?【经典例题】 3、4在阅览室看书的学生中,女生占7 ,后来又来了 5 个女生 ,这时女生占阅览室看书人数的35。
六年级第一学期奥数分数应用题(很详细)
小学六年级第一学期数学培优练习题(一)一、还原应用题1. 一堆煤,第一次运走总的21多3吨,第二次运走余下的21多6吨,第三次运走8吨刚好运完,求这堆煤原有多少吨?2. 一堆苹果,小明分得总的21多5个,小华分得余下的21多10个,小东分得余下的21多16个,结果还剩下4个,这堆苹果原有多少个?3. 一袋大米,吃去它的101后又放回101,这时重99千克,这袋大米原重多少千克?4. 一种电视机,先降价101,后又提价101出售价是1980元,这种电视机原价多少元?5.一辆汽车从甲地到乙地,平均每小时行驶60千米,行了98小时,刚好行了全程的154,甲地到乙地有多少千米?6.一桶油,第一次用去51千克,第二次用去余下的43,这时桶内还有油51千克。
这桶油原来有多少千克?7.用绳子测井深,先垂下它的32,再垂下剩余的107,才刚好到底,这时井外还余0.5米。
井深是多少米?8.名智学校原有学生720人,本学期初转进的学生人数相当于原来男生人数的201,这时全校比原来多了18人,这个学校原来有男生多少人?二、混合应用:1、A 、B 两地相距90千米,甲、乙两人同时从A 、B 两地相向而行,甲每小时行18千米,相当于乙每小时所行路程的32,经过几小时甲、乙两人相遇?2、有两包糖,甲包中有30颗,如果从乙包中拿出51放入甲包,乙包比甲包还多3颗,乙包原来有多少颗糖?3、加工一批零件,原计划每天加工200个,18天完成。
由于改进技术,加工的天数缩短了61。
实际每天加工多少个?4、甲乙两人从相距5千米的A 、B 两地相向而行,甲的速度比乙快,在距中点52千米处两人相遇。
相遇时甲比乙多行多少千米?5、骆驼寿命的51相当于猴子寿命的61,猴子寿命的31相当于乌龟寿命的101,已知骆驼的寿命是25年,猴子和乌龟的寿命各是多少年?6、小军看一本故事书,第一天看了全书的81还多21页,第二天看了全书的61少4页,还剩102页,这本书共有多少页?二、抓住不变量解应用题1. 某工厂原有工人450人,其中女工占259,今年又招进一部分女工,这时女工人数占全厂人数的52,求今年招进女工多少人?2. 某校六年级有学生50人,其中女生占52,后来又转入几名女生,这时女生人数和男生人数比是5︰6,求转入几名女生?3. 图书室有一批科技书和文艺书共1500本,其中科技书占52,后来又买回部分科技书,这时,文艺书占总数的52,求买回科技书多少本?小学六年级第一学期数学培优练习题(二)三、不同单位“1”的转化应用题(一) 1. 甲乙两堆煤共有330吨,甲堆的32等于乙堆的41,求甲乙两堆煤原来各有多少吨?2. 甲乙两人共生产零件140个,已知甲生产个数的41等于乙生产个数的31,求甲乙各生产零件多少?3. 甲乙两个书架共有书270本,从甲书架借走54,又从乙书架借走43,这时两书架余下的书相等,求两书架原有书多少本?4. 甲乙两数和是190,甲数小数点向左移动一位后等于乙数的83,甲乙两数原来各是多少?5. 甲乙两数和是110,甲数减少51,乙数增加52后相等,求甲乙两数原来各是多少?6. 有A 、B 两个粮仓,A 仓比B 仓存粮少30吨,运走A 仓的53,又运走B 仓的43后,两仓余下的粮相等,求A 、B 两仓原有粮多少吨?7. 甲乙两个粮仓,甲仓重量的43与乙仓重量的53相等,如果从乙仓调出10吨到甲仓,这时两仓存粮相等,求原来甲乙两仓存粮各有多少吨?小学六年级第一学期数学培优练习题(三)四、不同单位“1”的转化应用题(二) 1. 六年级(1)班女生是全班人数的103,后来又转来10名女生,这时女生是全班人数的52,求原来六年级班有多少人?2. 某车间女职工人数占车间总人数的31,后来增加了22名女职工,这时女职工人数占车间总人数的107,求这个车间原有多少人?3. 学校体育队中女生人数是男生的43,后来又增加了4名男生,这时女生人数是男生的32,求体育队现在有多少人?4. 小明读一本故事书,第一天读了120页,第二天读了余下的103,这时两天共读的页数占总页数的52,这本书有多少页?5. 某工程队修一条路公路,第一天修了160米,第二天修了余下的41,修了两天后,已修的长度与剩下的长度比是3︰5,这条公路长多少米?6 .一个车间,男女职工人数比是5︰7,后来又调进男职工20人,这时男女职工人数比是7︰9,这个车间现有男职工多少人?1、 小军看一本故事书,第一天看了全书的81还多21页,第二天看了全书的61少4页,还剩102页,这本书共有多少页?(6分)2、 国庆节期间,君宁商城的李宁运动鞋降价81以后,现价比原价少了32元,李宁运动鞋原价是多少元?小学六年级第一学期数学培优练习题(四)五、不同单位“1”的转化应用题(三) 1.甲乙两书架共有书1000册,已知甲书架上书的31比乙书架上书的21多50册,问甲乙书架一原来各有书多少本?2. 有甲乙两个粮仓欠存粮210吨,甲仓存粮的21比乙仓存粮的52多60吨,求甲乙两仓原存粮各多少吨?3. 甲乙两个班共有62人参加科技活动,甲班参加人数的51比乙班参加人数的41少2人,求甲乙两个班原来各有多少人参加科技活动?4. 光明小学有学生1600人,男生人数的51比女生人数的41少40人,求男女生人数各有多少人?5. 东风小学有学生360人,男生人数的52比女生人数的41多40人,求男、女生名有多少人?小学六年级第一学期数学培优练习题(五)六、不同单位“1”的转化应用题(四) 1. 有一堆煤,已运的占未运53,如果再运40吨,已运的和未运的一样多,这堆煤有多少吨?2. 小英读一本书,已读的是未读的52,如果再30页,已读的是未读的53,这本书有多少页?3. 李师傅加工一批零件,已加工的是没有加工的83,如果再加工84个,恰好完成任务的52,李师傅已加工了多少个零件?4. 六(1)班参加课外活动,参加航模的人数是其他活动人数的51,后来又有2人参加航模活动,这时航模人数是其他活动人数的41,求这次活动有多少人参加?5. 幼儿园四个班分一堆苹果,一班分得是其他三班的21,二班分得是其他三班的31,三班分得是其他三班的41,四班分得26包,这堆苹果有多少包?6. 一个商店三天卖完一批电视,第一天卖的是余下的31,第二卖了21部,第三天卖的和总数比是2︰5,这批电视有多少部?小学六年级第一学期数学培优练习题(六)七、用假设法解分数应用题1. 甲乙两个工程队共有336人,抽调甲队人数的75和乙队人数的73共188人支援另外工程,求甲乙工程队原来各有多少人?2. 有文艺和科技两个兴趣小组共90人,文艺组人数的74与科技组人数的32共54人,文艺小组和科技小组各有多少人?3. 东风小学举行数学竞赛,参赛有150人,获奖有26人,男生获奖人数占男生参加人数的51,女生获奖人数占女生人数的203,求参加竞赛的男、女生各有多少人?4. 中夏化工总厂有两堆煤,共重2268千克,取出甲堆的25 和乙堆的14 共重708千克。
六年级上册奥数分数应用题专项训练
题目:六年级上册奥数分数应用题专项训练一、概述六年级上册的奥数课程中,分数应用题一直是学生们头疼的难题,但只要掌握了一定的技巧和方法,分数应用题也并不难以解决。
本文将通过专项训练,针对六年级上册奥数分数应用题进行系统的训练,帮助学生们掌握解决这类题目的方法和技巧。
二、基础概念回顾1. 分数的加减乘除分数的加减乘除是解决分数应用题的基础,需要学生们熟练掌握分数的加减乘除法则,特别是带分数的加减乘除。
2. 分数化简分数应用题中经常涉及到分数的化简,学生们需要掌握将分数化简为最简形式的方法,以便更好地解题。
三、分数应用题类型及解题技巧1. 分数的比较(1)同分母比较同分母比较的技巧是直接比较分子的大小,学生们需要注意将分数化为相同分母再进行比较。
(2)异分母比较异分母比较需要学生们找到最小公倍数,将分数化为相同分母再进行比较。
2. 分数的加减乘除问题(1)分数的加减加减法需要将分数化为相同分母再进行运算,学生们需要注意确保计算过程的准确性。
(2)分数的乘法乘法需要将分数分子和分母分别相乘,然后化简结果。
(3)分数的除法除法需要将第二个分数取倒数,然后转化为乘法运算再进行计算。
3. 分数的应用分数应用题往往涉及到实际生活中的问题,学生们需要通过分数的加减乘除来解决实际问题,例如物品的分配、比例问题等。
四、专项训练练习1. 试题一有一块长方形土地,长为1 1/2 千米,宽为4/5 千米,求其面积。
解:面积 = 长× 宽= 1 1/2 × 4/5 = (3/2)×(4/5)= 12/10 = 11/5答:面积为1 1/5 平方千米。
2. 试题二小明和小红合伙做家务,小明做了3/4,小红做了1/3,问小明做了多少?解:小明做的比例 = 小明做的 / (小明做的 + 小红做的)= 3/4 /(3/4 + 1/3)= 3/7小明做了(3/7)×(3/4 + 1/3)= 9/28 + 7/21 = 89/84 = 15/12答:小明做了1 5/12。
六年级奥数分数应用题
六年级奥数分数应用题1.小华看一本书,每天看15页,4天后还剩全书的3/5没看,这本故事书是多少页?2.A有若干本书,B借走一半加一本,剩下的书,C借走一半加两本,再剩下的书,D借走一半加3本,最后A还有2本书,问A原有多少本书。
3.第三修路队修一条路,第一天修了全长的1/4,第二天与第一天所修路程的比是4:3,还剩500米没修,这条路全长多少米?4.有两袋米,甲袋比乙袋少18千克。
如果再从甲袋倒入乙袋6千克,这时甲袋的米相当于乙袋的5/8。
两袋米原来各有多少千克?5.一本书,已看了130页,剩下的准备8天看完。
如果每天看的页数相等,3天看的页数恰好是全书的5/22,这本书共有多少页?6.工地需要一批水泥,从仓库第一次运走全部的2/5,第二次运走余下的1/3,第三次运走(前二次运后)又余下的3/4,这时还剩下15吨水泥没运走,这批水泥共是多少吨?7.小华看一本故事书,第一天看了全书的1/8还多21页,第二天看了全书的1/6少6页,还剩下172页,这本故事书一共有多少页?8.电视机厂五月份生产一批电视机,上旬生产的台数占总数的3/11,下旬比中旬多生产中旬产量的1/5,正好是40台,这个厂五月份生产电视机多少台?9.妈妈买了一些苹果,第一天吃去1/3又1/3个,第二天吃去剩下的1/4又1/4个,第三天吃去再剩下的1/3又1/3个,这时剩下3个苹果。
问妈妈买了多少苹果?每天各吃了几个苹果?10.菜园里西红柿获得丰收,收下全部的3/8时,装满3筐还多24千克,收完其余部分时,又刚好装满6筐,求共收西红柿多少千克?11.某车间男工人数比女工人数多2/5,女工人数比男工人数少几分之几?。
小学奥数6-2-3 分数应用题(三).专项练习及答案解析
1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=. 二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
知识点拨教学目标分数应用题(三)解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
学而思资料_奥数_08分数应用题(三)
分数应用题(三)一、知识点概述通过前面的学习,相信大家分析分数应用题的数量关系以及解答分数应用题的能力一定有所提高。
我们在解答分数应用题时,经常碰到有的分数应用题中含有不同的单位“1”,解答时需要统一单位“1”,今天我们就来探讨这类分数应用题的解答方法。
二、重点知识归纳及讲解(一)这类分数应用题的特点:是含有两个或两个以上的分率和单位“1”,解答时需要先转化部分单位“1”,达到统一题中单位“1”的目的。
(二)这类分数应用题仍然用到三量基本关系为:对应量÷单位“1”的量=分率单位“1”的量×分率=对应量对应量÷分率=单位“1”的量(三)解答这类分数应用题常用的方法:假设法、转化单位“1”、列方程解答等。
三、难点知识剖析例1、数学兴趣小组四年级学生比三年级学生多,五年级学生比四年级学生少,六年级学生比五年级学生多,如果六年级学生比三年级学生多38人,那么四年级学生有多少人?分析:要求四年级数学兴趣小组人数,应求出三年级参加数学兴趣小组人数,而题中有三个单位“1”的量,如下图,需要转化单位“1”,把三年级学生人数当作单位“1”,则六年级学生人数为三年级的(1+)×(1-)×(1+)=,(-1)与38人对应,可求出三年级人数,从而解决问题。
解:(1+)×(1-)×(1+)=三年级人数:38÷(-1)=160(人) 四年级人数:160×(1+)=200(人) 答:四年级学生有200人。
例2、学校科技小组中的女生占全组人数的,后来增加16名男生后,女生人数占全组人数的,那么这个活动小组的女生有多少人?分析:由于学校科技小组成员中男生人数发生了变化,所以前后全组的总人数也发生了变化,但女生人数是没有变化的,以不变量为单位“1”,男生开始占女生人数的,后来男生占女生人数的。
如下图:解:16÷(-)=9(人)答:活动小组的女生有9人。
陕西省铜川市数学小学奥数系列6-2-1分数应用题专练3
陕西省铜川市数学小学奥数系列6-2-1分数应用题专练3姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、分数应用题专练 (共23题;共99分)1. (5分)甲、乙、丙三人一起买了八个面包平分着吃,甲拿出五个面包的钱,乙付了三个面包的钱,丙没带钱,等吃完后一算,丙应该拿出四元钱,问:甲应收回多少钱?(以角为单位)2. (1分)(2018·浙江模拟) 小明打一篇文章,已打了900个字,还剩没有打完,这篇文章一共有多少字?3. (5分) (2019六上·山亭期末) 为了绿化校园,某校购买了一批树苗,由四、五、六三个年级共同植,五年级种植了这批树苗的多2棵,六年级种植了这批树苗的少1棵,四年级种植了剩下的10棵。
五、六年级分别种植了多少棵?4. (5分)(2019·蜀山) 某通讯员开车从A地到B地取一份重要文件,到了B地立刻按原路返回A地,这样往返共用小时。
已知去时每小时行63千米,是返回时速度的。
AB两地相距多少千米?5. (5分)(2011·广州模拟) 某人工作一年酬金是1800元和一台全自动洗衣机.他干了7个月,得到490元和一台洗衣机,问这台洗衣机为多少元?6. (5分)小明的体重原来是妈妈的.后来,小明的体重增加了5k,而妈妈的体重不变,小明与妈妈的体重之比变成了2∶3.妈妈的体重是多少千克?7. (5分) (2018六上·温州期末) “十一”国庆期间,小芳妈妈去龙湾万达商场购买一套衣服用去560元,其中裤子的价格是上衣的,一件上衣多少元?(1)我会分析:根据题意,请将下面的线段图补充完整。
(2)我会解答:8. (5分) (2019六上·榆树期末) 建筑一条水坭路,甲队独做要12天,乙队独做要15天,乙队先独做工程的,剩下的再由甲、乙两队合做,还要多少天修完?9. (5分) (2018六上·西宁月考) 某渔业队六月份捕鱼3000吨,比五月份多捕了,五月份捕鱼多少吨?10. (5分)蓄水池有甲、丙两条进水管和乙、丁两条排水管,要灌满一池水,单开甲管需小时,单开丙管需要小时,要排光一池水,单开乙管需要小时,单开丁管需要小时,现在池内有的水,若按甲、乙、丙、丁、甲、乙、丙、丁……的顺序轮流打开小时,问多少时间后水开始溢出水池?11. (5分) (2013·黔南) 库房有一批货物,第一天运走,第二天比第一天多运8吨,还剩这批货物总重量的,这批货物有多少吨?12. (5分)(2018·天津模拟) 图①是一个三角形,沿虚线折叠后得到图②,这个多边形的面积是原三角形面积的,已知图②中阴影部分的面积和为15平方厘米,那么原三角形的面积是多少平方厘米?13. (5分)某肥料厂接到一批化肥的生产任务,如果甲车间单独完成要20天,乙车间单独完成要30天,两车间一共生产15天,超过任务定额150吨。
陕西省铜川市小学数学小学奥数系列6-2-1分数应用题专练3
陕西省铜川市小学数学小学奥数系列6-2-1分数应用题专练3姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、分数应用题专练 (共23题;共99分)1. (5分)(2010·南京模拟) 一辆汽车从甲地开往乙地,每分钟行750米,预计50分钟达到。
但汽车行驶到路程时出了故障,用5分钟修理完毕,如果仍需在预定时间内到达乙地,汽车行驶余下路程时,平均每分钟行多少米?2. (1分) (2019六下·南海期中) 甲、乙两汽车从A、B两地相向而行,相遇时所行路程比是5:3,这时乙车距两地的中点还有80千米,求两地相距多少千米?3. (5分)一只猴子摘了一堆桃子,第一天它吃了这堆桃子的七分之一;第二天它吃了余下桃子的六分之一;第三天它吃了余下桃子的五分之一;第四天它吃了余下桃子的四分之一;第五天它吃了余下桃子的三分之一;第六天它吃了余下桃子的二分之一,这时还剩12只桃子.那么第一天和第二天猴子所吃桃子的总数是多少?4. (5分) (2019六上·高密期中) 王叔叔家里的菜地共800平方米,他准备用种西红柿,剩下的按2:1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米?5. (5分)光明小学有学生人,其中女生的与男生的参加了课外活动小组,剩下的人没有参加.这所小学有男、女生各多少人?6. (5分) (2019六上·四川月考) 修一条公路,第一月修了全长的,第二月修了全长的,第一月比第二月少修了800米,这条公路全长多少千米?7. (5分) (2019六上·桑植期末) 张村加入“养殖种植兴村”农业合作社.张叔叔家种植观赏桃树120棵,是种植橘树棵数的,种植的橘树是梨树的,张叔叔家种植梨树多少棵?8. (5分) (2019六下·江宁月考) 甲乙两列火车从相距600千米的两地同时相对开出,甲车每小时行80千米,2.4小时后两车还相距全程的,乙车每小时行多少千米?9. (5分)修一条水渠,已经修了,剩下18千米,这条水渠有多长?10. (5分)今有桃个,分给甲、乙两班学生吃,甲班分到的桃有是坏的,其他是好的;乙班分到的桃有是坏的,其他是好的.甲、乙两班分到的好桃共有几个?11. (5分)一项工程,甲、乙合作需要天完成,乙、丙合作需要天完成,由乙单独做需要天完成,那么如果甲、乙、丙合作,完成这项工程需要多少天?12. (5分)(2018·天津模拟) 图①是一个三角形,沿虚线折叠后得到图②,这个多边形的面积是原三角形面积的,已知图②中阴影部分的面积和为15平方厘米,那么原三角形的面积是多少平方厘米?13. (5分)一次数学竞赛均是填空题,小明答错的恰是题目总数的,小亮答错5题,两人都答错的题目占总题数的 .已知小明、小亮都答对的题目数超过了试题总数的一半,问他们都答对多少题?14. (5分)甲、乙一起完成一项工作,由于配合得好,甲的工作效率比单独做时提高了,乙的工作效率比单独做时提高了,甲、乙一起做8小时完成了这项工作。
绍兴市上虞区数学小学奥数系列6-2-1分数应用题专练3
绍兴市上虞区数学小学奥数系列6-2-1分数应用题专练3姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、分数应用题专练 (共23题;共99分)1. (5分) (2020六上·西安期末) 甲、乙、丙三个修路队合修一条45千米的公路,完工时甲队修了这条公路的,乙队和丙队所修公路长度之比为3:2,三个队各修了多少千米?2. (1分)中国文学家莫言,医学家屠呦呦都获得了诺贝尔奖。
屠呦呦获奖感言约有3500字,比莫言的获奖感言少了,莫言的获奖感言约有多少字?3. (5分)甲乙丙三人现在岁数的和是113岁,当甲的岁数是乙的岁数的一半时,丙是38岁,当乙的岁数是丙的岁数的一半时,甲是17岁,那么乙现在是多少岁?4. (5分) (2020五上·烟台期末) 水果店运来一批水果,其中香蕉360千克,菠萝的质量是香蕉的,橘子的质量比菠萝的少15千克。
水果店运来橘子多少千克?(先画线段图分析数量关系,再列式计算)5. (5分)抄一份书稿,一人抄,甲要12小时,乙要15小时。
两人合抄2小时后,剩下的由甲抄,还要几小时抄完?6. (5分)一盒饼干,连盒子共重500克,壮壮吃了这盒饼干的,剩下的饼干连盒子共重340克,饼干和盒子各重多少克?7. (5分)打字比赛。
(1)淘淘每分打多少个字?(2)壮壮每分打多少个字?8. (5分)(2018·长沙) 建造两座房子,其中第一座造价比第二座造价的3倍少32万元,而第二座房子的造价占两座房子总造价的,问第二座房子的造价是多少万元?9. (5分)看图列式计算。
(1)(2)10. (5分)小胖有一盒巧克力饼干,他第一天吃掉了全部的的七分之一;第二天吃了余下的六分之一;第三天吃了余下的五分之一;第四天吃了余下的四分之一;第五天吃了余下的三分之一;第六天吃了余下的二分之一;这时还剩下12块巧克力饼干,那么共有多少块巧克力饼干?11. (5分) (2018六上·福州期中) 有三包同样数量的糖果。
浙江省绍兴市小学数学小学奥数系列6-2-1分数应用题专练3
浙江省绍兴市小学数学小学奥数系列6-2-1分数应用题专练3姓名:________ 班级:________ 成绩:________亲爱的小朋友们,这一段时间的学习,你们收获怎么样呢?今天就让我们来检验一下吧!一、分数应用题专练 (共23题;共99分)1. (5分)五年级上学期男、女生共有人,这一学期男生增加,女生增加,共增加了人.这一学年六年级男、女生各有多少人?2. (1分)一辆汽车耗汽油,可以行千米。
耗1升汽油可以行多少千米?行1千米要耗多少升汽油?3. (5分)食堂有一桶油,第一天吃掉一半多1千克,第二天吃掉剩下的油的一半多2千克,第三天又吃掉剩下的油的一半多3千克,最后桶里还剩下2千克油,问桶里原有油多少千克?4. (5分)一杯饮料300毫升,小铭、小华、小丰每人买了一杯.小铭喝了一杯饮料的,小华喝了一杯饮料的,小丰喝了一杯饮料的.谁的杯子里剩下的饮料最多?5. (5分)一个运输队运输一批货物,第一天运了全部货物的,第二天运了剩下货物的,第二天比第一天多运35吨。
这批货物共有多少吨?6. (5分)盒子里有红,黄两种玻璃球,红球为黄球个数的,如果每次取出个红球,个黄球,若干次后,盒子里还剩个红球,个黄球,那么盒子里原有________个玻璃球.7. (5分)一套学生专用课桌椅售价220元,其中桌子的价格比椅子贵,一张桌子售价多少元?8. (5分)一批零件,甲单独做8小时完成,甲做了2小时后,乙来参加,甲、乙两人又合作了4小时才完成任务。
乙单独做完这批零件要几小时?9. (5分) (2019六上·天等期中) 小芳看一本故事书,第一天看了20页,第二天又看了25页,正好看完全书的,这本故事书一共有多少页?10. (5分) (2019六上·京山期中) 一项工程,甲单独做需要8天完成,甲做了2天后,乙来参加,甲、乙又合作了4天才完成任务。
问乙单独完成这项工程要多少天?11. (5分) (2019六下·合肥期中) 先把线段图补充完整,再列式解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 分析题目确定单位“1”2. 准确找到量所对应的率,利用量÷对应率=单位“1”解题3. 抓住不变量,统一单位“1”一、知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。
在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系 例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=.二、怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。
例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。
解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。
(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。
有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。
在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。
例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相当于”谁的,“是”谁的几分之几。
这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。
(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。
这类分数应用题的单位“1”比较难找。
需要将题目文字完善成我们熟悉的类似带“比”的文字,然后在分析。
例如:水结成冰后体积增加了,冰融化成水后,体积减少了。
完善后:水结成冰后体积增加了→ “水结成冰后体积比原来增加了” →原来的水是单位“1”冰融化成水后,体积减少了→ “冰融化成水后,体积比原来减少了” →原来的冰是单位“1”解题关键:要结合语文知识将题目简化的文字丰富后在分析知识点拨教学目标分数应用题(三)|初一·数学·基础-提高-精英·学生版| 第1讲 第页2单位“1”变化【例 1】 养殖专业户王老伯养了许多鸡鸭,鸡的只数是鸭的只数的114倍.鸭比鸡少几分之几?【巩固】 某校男生比女生多37,女生比男生少几分之几?【例 2】 一炉铁水凝成铁块 ,其体积缩小了134,那么这个铁块又熔化成铁水(不计损耗),其中体积增加了几分之几?【巩固】 水结成冰后体积增大它的110. 问:冰化成水后体积减少它的几分之几?【例 3】 磁悬浮列车的能耗很低。
它的每个座位的平均能耗是汽车的70%,而汽车每个座位的平均能耗是飞机的1021,则飞机每个座位的平均能耗是磁悬浮列车每个座位的平均能耗的________倍。
【例 4】 在下降的电梯中称重,显示的重量比实际体重减少17;在上升的电梯中称重,显示的重量比实际体重增加16.小明在下降的电梯中与小刚在上升的电梯中称得的体重相同,小明和小刚实际体重的比是 .例题精讲【例5】学校阅览室里有36名学生在看书,其中女生占49,后来又有几名女生来看书,这时女生人数占所有看书人数的919.问后来又有几名女生来看书?【巩固】工厂原有职工128人,男工人数占总数的14,后来又调入男职工若干人,调入后男工人数占总人数的25,这时工厂共有职工人.【巩固】学校派出60名选手参加2008年“华罗庚金杯小学数学邀请赛”,其中女选手占14.正式比赛时有几名女选手因故缺席,这样就使女选手人数变为参赛选手总数的211.正式参赛的女选手有多少名?【巩固】某公司有15的职员参加新产品的开发工作,后来又有2名职工主动参加,这样参加新产品开发的职工人数是其余人数的13,原来有多少职工参加开发工作?【例6】春天幼儿园中班小朋友的平均身高是115厘米,其中男孩比女孩多15,女孩的平均身高比男孩高10%,这个班男孩的平均身高是厘米。
【例7】有甲、乙两桶油,甲桶油的质量是乙桶的52倍,从甲桶中倒出5千克油给乙桶后,甲桶油的质|初一·数学·基础-提高-精英·学生版| 第1讲 第页4量是乙桶的43倍,乙桶中原有油 千克.【例 8】 (1)某工厂二月份比元月份增产10%,三月份比二月份减产10%.问三月份比元月份增产了还是减产了?(2)一件商品先涨价15%,然后再降价15%,问现在的价格和原价格比较升高、降低还是不变?【巩固】 某工厂二月份比元月份增产110,三月份比二月份减产110.问三月份比元月份增产了还是减产了?【巩固】 一件商品先涨价15,然后再降价15,问现在的价格和原价格比较升高、降低还是不变?【例 9】 某校三年级有学生240人,比四年级多14 ,比五年级少15.四年级、五年级各多少人?【巩固】 把100个人分成四队,一队人数是二队人数的113倍,一队人数是三队人数的114倍,那么四队有多少个人?【例 10】 新光小学有音乐、美术和体育三个特长班,音乐班人数相当于另外两个班人数的25,美术班人数相当于另外两个班人数的37,体育班有58人,音乐班和美术班各有多少人?【巩固】 王先生、李先生、赵先生、杨先生四个人比年龄,王先生的年龄是另外三人年龄和的12,李先生的年龄是另外三人年龄和的13,赵先生的年龄是其他三人年龄和的14,杨先生26岁,你知道王先生多少岁吗?【巩固】 四只小猴吃桃,第一只小猴吃的是另外三只的总数的13,第二只小猴吃的是另外三只吃的总数的14,第三只小猴吃的是另外三只的总数的15,第四只小猴将剩下的46个桃全吃了.问四只小猴共吃了多少个桃?【巩固】 兄弟四人去买电视,老大带的钱是另外三人的一半,老二带的钱是另外三人的1/3,老三带的钱是另外三人总钱数的1/4,老四带91元,兄弟四人一共带了多少钱?【例 11】 小刚给王奶奶运蜂窝煤,第一次运了全部的38,第二次运了50块,这时已运来的恰好是没运来的57.问还有多少块蜂窝煤没有运来?【巩固】 五(一)班原计划抽15的人参加大扫除,临时又有2个同学主动参加,实际参加扫除的人数是其余人数的13.原计划抽多少个同学参加大扫除?【巩固】 某校学生参加大扫除的人数是未参加大扫除人数的14,后来又有20名同学参加大扫除,实际参加的人数是未参加人数的13,这个学校有多少人?|初一·数学·基础-提高-精英·学生版| 第1讲 第页6【例 12】 小莉和小刚分别有一些玻璃球,如果小莉给小刚24个,则小莉的玻璃球比小刚少37;如果小刚给小莉24个,则小刚的玻璃球比小莉少58,小莉和小刚原来共有玻璃球多少个?【例 13】 某班一次集会,请假人数是出席人数的19,中途又有一人请假离开,这样一来,请假人数是出席人数的322,那么,这个班共有多少人?【巩固】 小明是从昨天开始看这本书的,昨天读完以后,小明已经读完的页数是还没读的页数19,他今天比昨天多读了14页,这时已经读完的页数是还没读的页数的13,问题是,这本书共有多少页?”【例 14】 某校四年级原有两个班,现在要重新编为三个班,将原一班的13与原二班的14组成新一班,将原一班的14与原二班的13组成新二班,余下的30人组成新三班.如果新一班的人数比新二班的人数多110,那么原一班有多少人?【巩固】 某工厂对一、二两个车间的职工进行重组,将原来的一车间人数的12和二车间人数的13分到一车间,将原来的一车间人数的13和二车间人数的12分到二车间,两个车间剩余的140人组成劳动服务公司,现在二车间人数比一车间人数多117,现在一车间有 人,二车间有人.【例 15】 林林倒满一杯纯牛奶,第一次喝了13,然后加入豆浆,将杯子斟满并搅拌均匀,第二次林林又喝了13,继续用豆浆将杯子斟满并搅拌均匀,重复上述过程,那么第四次后,林林共喝了一杯纯牛奶总量的 (用分数表示)。
【例 16】 参加迎春杯数学竞赛的人数共有2000多人.其中光明区占13,中心区占27,朝阳区占15,剩余的全是远郊区的学生.比赛结果,光明区有去的学生得奖,中心区有116的学生得奖,朝阳区有118的学生得奖,全部获奖者的号17远郊区的学生.那么参赛学生有多少名?获奖学生有多少名?【例 17】 如图⑴,线段MN 将长方形纸分成面积相等的两部分.沿MN 将这张长方形纸对折后得到图⑵,将图⑵沿对称轴对折,得到图⑶,已知图⑶所覆盖的面积占长方形纸面积的310,阴影部分面积为6平方厘米.长方形的面积是多少?(3)MNNM (2)(1)。