数学人教版七年级下册加减消元法

合集下载

七年级下册数学人教版【课堂练】第2课时 用加减消元法解方程组

七年级下册数学人教版【课堂练】第2课时 用加减消元法解方程组

4.解方程组:
(1)3xx
2y 2y
8 ,① 4. ②
(2)3x
x
y y
8 ,① 4. ②
解:①-②,得2x=4,x=2. 解:①+②得4x=12,x=3.
把x=2代入②,得2+2y=4, 把x=3代入②得3+y=4,
解得y=1.
x 2,
所以方程组的解是
y
1.
解得y=1.
x 3,
所以方程组的解是
15%+25%=40×20%.②
解:把对①两代个入方②程,分得别2整0y理1化60简,,解得得ቊy3xx8+=.55yy=,160.
把y8代入①,得x40.
所以这个方程组的解是ቊx=y4=08,.
探究新知
例3 2台大收割机和5台小收割机同时工作2小时 共收割小麦3.6 hm2,3台大收割机和2台小收割同时 工作5小时共收割小麦8 hm2.1台大收割机和1台小收 割机每小时各收割小麦多少公顷?
4
− −
y+2 4
y−3 3
=0,①
=
1 12
.②
解:①12,整理化简,得4x3y2,③
先化简,再计算.
②12,整理化简,得3x4y2,④
③+④,得7x7y0,即 y=x.
把y=x代入③,得y2,∴y=x=2.
∴这个方程组的解是ቊxy==22,.
拓展延伸
解方程组:ቐ
2x+y 2
=
5x−3y 4
,①
学习重难点
学习重点:用加减消元法解二元一次方程组的基本 步骤. 学习难点:对加减消元法解方程组过程的理解;在 解题过程中进一步体会“消元”思想和“化未知为 已知”的化归思想.

人教版数学七年级下册第八章《8.2加减消元法解二元一次方程组》优质课课件(21张PPT)

人教版数学七年级下册第八章《8.2加减消元法解二元一次方程组》优质课课件(21张PPT)
解:由②-①得: x=6
把x=6代入①,得 6+y=10
解得
y=4
所以这个方程组的解是
x
y
6 4
3x +10 y=2.8 ①
15x -10 y=8 ②
解:把 ①+②得: 18x=10.8 x=0.6
把x=0.6代入①,得: 3×0.6+10y=2.8
解得:y=0.1
所以这个方程组的解是
x
y
0.6 0.1
解得 x = 1
把x= 1 代入①得 1+3y=4
解得 y = 1
x 1
所以这个方程组的解是
y
1
2、已知
a 2b 4 3a 2b 8
①②,
则a+b等于_3__

分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
1、已知 5x3y2 3 (x 3y 7 )20,求 x- y 的值。
1
(3)3xx22yy91
① ②
解:①+②,得 4x=8
解得 x=2
把x =2 代入①得 2+2y=9
解得 y=3.5
所以这个方程组的解是
x 2
y
3.5
(4)xx
y7 3y 17
① ②
解:②-①,得 2y=10
解得 y = 5
把y= 5 代入①得 x+5=7
解得 x = 2
x 2
所以这个方程组的解是
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7

课件人教版七年级数学下册8.加减消元法课件

课件人教版七年级数学下册8.加减消元法课件

消去未知数___x___.
3
用加减法解方程组 2x 2x
3y 8y
5, ① 时, 3②
①-②得( A )
A.5y=2
B.-11y=8
C.-11y=2
D.5y=8
3x-3 y=4,①
4 解方程组 2x+3y=1② 时,用加减消元法 最简便的是( A ) A.①+② B.①-② C.①×2-②×3 D.①×3+②×2
①×3,得6x+15y=24.③
②×2,得6x+4y=10.④
③-④,得11y=14,y= 1 4 .
把y=
1 1
4 1
11 代入①,得2x+5×
1 1
x=
4 1
=8,x= 9,
1
9
1
.
因此,这个方程组的解是 1 1
y= 1 4 . 11
2x+3y 6, (4)
3x 2y 2.
2x+3y=6,① 解: (4) 3x-2y=-2.②
1.用加减消元法解二元一次方程组的一般步骤: 答:每节火车车厢平均装50 t化肥, 麦x hm2和y hm2, 那么2台大收割机和5台小收割
把②变形得5y=2x+11,
A.9
B.7
次方程,然后解答方程即可.
可以直接代入①呀!
(1)变形:看其中一个未知数的系数是否相等或互为相反数,若既不相等也不互为相反数,则利用等式的性质把某个
③方程组中任一个未知数的系数的绝对值既不相等, 也不成倍数关系,可利用最小公倍数的知识,把两 个方程都适当地乘一个数,使某个未知数的系数的 绝对值相等,然后再利用加减法求解.
巩固新知
1 一条船顺流航行,每小时行20 km;逆流航行,每
小时行16 km. 求轮船在静水中的速度与水的流速.

人教版数学七年级下册8.2《加减消元法》教案

人教版数学七年级下册8.2《加减消元法》教案
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“加减消元法在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解加减消元法的基本概念。加减消元法是一种解决二元一次方程组的方法,通过相互加减方程来消去一个未知数,从而求解方程组。它在解决实际问题中具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用加减消元法解决实际问题,以及它如何帮助我们求解方程组。
-掌握在实际问题中,如何将描述问题的文字语言转化为数学语言,建立方程组。
-在进行消元操作时,如何处理可能出现的计算错误,如符号错误、计算顺序错误等。
-难点举例:当面对方程组$$\begin{cases}2x + 5y = 1\\3x + 2y = 4\end{cases}$$,学生可能会在将第一个方程乘以3,第二个方程乘以2时出现计算错误,或者在相减时忘记改变符号。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《加减消元法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数的问题?”(例如,两个物品的价格和数量问题)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索加减消元法的奥秘。
-理解如何从消元后的结果中恢复出方程组的解,特别是当消元后得到的是一个方程关于一个未知数的表达式时,如何找到另一个未知数的值。

人教版七年级数学下册复习说课稿:8.2.2用加减消元法解方程组

人教版七年级数学下册复习说课稿:8.2.2用加减消元法解方程组
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.引入加减消元法:首先,通过具体的方程组实例,引导学生观察、思考,发现消元的原理。
2.演示步骤:利用PPT、板书等方式,逐步演示加减消元法的步骤,让学生清晰地了解整个解题过程。
3.解释原理:讲解加减消元法背后的数学原理,使学生知其然也知其所以然。
1.正确判断何时使用加法消元,何时使用减法消元。
2.理解并掌握加减消元法在实际问题中的应用。
3.培养学生总结、归纳解题方法的能力。
二、学情分析导
(一)学生特点
本节课面向的是七年级学生,他们正处于青春期初期,具有好奇、好动、求知欲强的特点。在认知水平上,他们已经具备了一定的逻辑思维能力,但抽象思维能力尚在发展之中。学习兴趣方面,学生对新鲜事物充满好奇,喜欢探索和实践,但对于复杂的数学问题可能会感到畏惧。在学习习惯上,部分学生可能还未养成良好的学习习惯,如课前预习、课后复习等,需要教师进行引导和培养。
4.适时给予学生表扬和鼓励,增强他们的自信心,培养积极向上的学习态度。
5.结合学生的兴趣,开展趣味数学活动,如解方程组竞赛等,提高学生的学习积极性。
三、教学方法与手段
(一)教学策略
在本节课中,我将采用以下教学方法:问题驱动的探究学习、分组合作学习和启发式教学。选择这些方法的理论依据如下:
1.问题驱动的探究学习:该方法能够激发学生的好奇心,引导学生主动探究新知识,培养其独立思考和解决问题的能力。
3.实践活动:布置一道实际生活中的问题,要求学生运用加减消元法求解,让学生在实际操作中感受数学的魅力。
(四)总结反馈
在总结反馈阶段,我将采取以下方式引导学生自我评价并提供有效的反馈和建议:
1.创设情境:以现实生活中的一组实际问题为例,如“小明和小红去超市购物,已知小明比小红多花了10元,两人一共花了150元,求小明和小红各花了多少钱。”让学生感受到数学知识在实际生活中的应用,激发学习兴趣。

二元一次方程组的解法---加减消元法(课件)七年级数学下册(人教版)

二元一次方程组的解法---加减消元法(课件)七年级数学下册(人教版)


x 1
1 0.3 y 2 5
(2)
y 1 4x 9 1
4
20
3 2 x 1 5 y 11
(1)
3 x 2 y 3 10
解: (1)方程组整理,得
6 + 5 = 14 ①
3 − 2 = 16 ②
x=10
= 10
所以这个方程组的解是
= −2
2x 3 y 1 ①
(3)
4x 7 y 5 ②
11.选择适合的解法解下列方程组.
x 4y 2

(1)
3 x 5 y 20 ②
2x 3 y 3 ①
(2)
5 x 3 y 2 ②
解:(2)①+②,得
运输360t化肥,装载了6节火车车厢与15辆汽车;运输440t化肥,装载了8节
火车车厢与10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?
解:设每节火车车厢与每辆汽车平均各装 x t和 y t.列方程组得
6 x 15 y 360



8 x 10 y 440
①×2,得 12x+30y=720 ③
②左边-①左边=②右边-①右边
2x+y-(x+y)=16-10
解这个方程得 x=6
把x=6代入①,得 y=4
x 6
所以这个方程组的解是
y 4
联系前面的解法,想一想怎样解方程组
3 x 10 y 2.8

15 x 10 y 8


解:①+②,得 18x=10.8
x=0.6

七年级数学下册(加减消元法解二元一次方程)教案 (新版)新人教版 教案

七年级数学下册(加减消元法解二元一次方程)教案 (新版)新人教版 教案

消元---二元一次方程组的解法
练习和归纳: 解方程组:1、⎩

⎧==+115y -3x 33
y 2x
2、⎩⎨
⎧=+=+7
2y 3x 15y 2x
3、思考:已知a 、b 满足方程组
,则a+b=
六、小结归纳:
上面这些方程组的特点是什么? 解这类方程组基本思路是什么? 主要步骤有哪些?
特点:同一个未知数的系数相同或互为相反数
基本思路:加减消元:二元变一元 主要步骤:加减消去一个元 求解分别求出两个未知数的值 写解写出原方程组的解
七、作业:教材第98页第3题。

学生分组讨论后请代表板演过程,然后教师和学生一起分析有没
有过错,或写的好的地方在哪?
师生共同归纳方程特点和解题
过程,而且特别强调整体性及去括号的注意事项。

通过练习强化使
得当堂学习有所得,这
样相对不容易忘记。

七、教学评价设计 1、课堂理解度多少? 2、作业反馈情况如何?。

人教版数学七年级下册8.2.2 加减消元法2 课件

人教版数学七年级下册8.2.2 加减消元法2 课件

+ +
=8
=7
+
2 x 3 y 7 3 x 2 y 8
上一节课我们学习了用直接加减法解二 元一次方程组,这个方程组能否用呢?
那么如何用简单的方法解这个方程组呢?
8.2.4消元——二元一次方程组 的解法(加减法2)
学习目标 1.掌握用加减法解二元一次方程组,并 能根据不同类型的二元一次方程组选择 合适的方法。 2.进一步理解加减消元法解二元一次方 程组所体现的化归思想。
求出一个未知数的值
代入原方程求出另一个未知数的值 写出方程组的解
回代
写解
返回
一、导引研学
5 x 2 y 25 (1) 3 x 4 y 15
4 x 3 y 3 (2) 3 x 2 y 15
1.以上两个题可以用直接加减消元法求解吗? 2.直接使用加减法解二元一次方程组的条件是什么? 3.请你观察(1)中两个方程中未知数的系数有何特点? 你能使两个方程中某一未知数的系数相等或相反呢?如何 消掉y? 4.请你观察(2)中两个方程中未知数的系数是否具有(1 )中系数的特点?如果不具备的话,你还能使两个方程中 某一未知数的系数相等或相反呢?如何消掉x,y? 你能总结出变形后加减消元法的一般步骤吗?
点评教师:
凉水河镇 中学数学教师 张学琴
组织单位:湖北省丹江口市教育局
录制单位:凉水河镇中学 录制人员:马彬彬 录制时间:2016.5.20
• • • • • • • • • • • • • • • • • • • •
1、快乐总和宽厚的人相伴,财富总与诚信的人相伴,聪明总与高尚的人相伴,魅力总与幽默的人相伴,健康总与阔达的人相伴。 2、人生就有许多这样的奇迹,看似比登天还难的事,有时轻而易举就可以做到,其中的差别就在于非凡的信念。 3、影响我们人生的绝不仅仅是环境,其实是心态在控制个人的行动和思想。同时,心态也决定了一个人的视野和成就,甚至一生。 4、无论你觉得自己多么了不起,也永远有人比更强;无论你觉得自己多么不幸,永远有人比你更不幸。 5、也许有些路好走是条捷径,也许有些路可以让你风光无限,也许有些路安稳又有后路,可是那些路的主角,都不是我。至少我会觉得,那些路不是自己想要的。 6、在别人肆意说你的时候,问问自己,到底怕不怕,输不输的起。不必害怕,不要后退,不须犹豫,难过的时候就一个人去看看这世界。多问问自己,你是不是已经为了梦想而竭尽全力了? 7、人往往有时候为了争夺名利,有时驱车去争,有时驱马去夺,想方设法,不遗余力。压力挑战,这一切消极的东西都是我进取成功的催化剂。 8、真想干总会有办法,不想干总会有理由;面对困难,智者想尽千方百计,愚者说尽千言万语;老实人不一定可靠,但可靠的必定是老实人;时间,抓起来是黄金,抓不起来是流水。 9、成功的道路上,肯定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更失败。 10、一句简单的问候,是不简单的牵挂;一声平常的祝福,是不平常的感动;条消息送去的是无声的支持与鼓励,愿你永远坚强应对未来,胜利属于你! 11、行为胜于言论,对人微笑就是向人表明:我喜欢你,你使我快乐,我喜欢见到你。最值得欣赏的风景,就是自己奋斗的足迹。 12、人生从来没有真正的绝境。无论遭受多少艰辛,无论经历多少苦难,只要一个人的心中还怀着一粒信念的种子,那么总有一天,他就能走出困境,让生命重新开花结果。 13、当机会呈现在眼前时,若能牢牢掌握,十之八九都可以获得成功,而能克服偶发事件,并且替自己寻找机会的人,更可以百分之百的获得成功。 14、相信自己,坚信自己的目标,去承受常人承受不了的磨难与挫折,不断去努力去奋斗,成功最终就会是你的! 15、相信你做得到,你一定会做到。不断告诉自己某一件事,即使不是真的,最后也会让自己相信。 16、当你感到悲哀痛苦时,最好是去学些什么东西。领悟会使你永远立于不败之地。 17、出发,永远是最有意义的事,去做就是了。当一个人真正觉悟的一刻,就是他放弃追寻外在世界的财富,开始追寻他内心世界的真正财富。 18、幻想一步成功者突遭失败,会觉得浪费了时间,付出了精力,却认为没有任何收获;在失败面前,懦弱者痛苦迷茫,彷徨畏缩;而强者却坚持不懈,紧追不舍。 19、进步和成长的过程总是有许多的困难与坎坷的。有时我们是由于志向不明,没有明确的目的而碌碌无为。但是还有另外一种情况,是由于我们自己的退缩,与自己“亲密”的妥协没有坚持到底的意志,才使得机会逝去,颗粒无收。 20、任何人都不可以随随便便的成功,它来自完全的自我约束和坚韧不拔的毅力。永远别放弃自己,哪怕所有人都放弃了你。

数学人教版七年级下册《8.2.2加减消元法——解二元一次方程组》说课稿

数学人教版七年级下册《8.2.2加减消元法——解二元一次方程组》说课稿

《8.2.2加减消元法---解二元一次方程组》说课稿尊敬的各位领导,各位老师:大家好!我今天说课的题目是《加减消元法---解二元一次方程组》,下面我将从以下五个板块展开说课,分别是说教材分析、说教法学法、说教学过程、说板书设计等五个板块进行说课。

一、说教材分析1、教材的地位和作用本课选自人民教育出版社中学数学七年级下册第八章第二节第二课时,本课是初中数学的重点内容之一,是一元一次方程知识的延续和提高,又是学习其他数学知识的基础。

本节课是在学生学习了代入法解二元一次方程组的基础上,继续学习另一种消元的方法---加减消元,它是学生系统学习二元一次方程组知识的前提和基础。

通过加减来达到消元的目的,让学生从中充分体会化未知为已知的转化过程,理解并掌握解二元一次方程组的最常用的基本方法,为以后函数等知识的学习打下基础。

2、教学目标通过对新课程标准的研究与学习,结合我校学生的实际情况,我把本节课的三维教学目标确定如下:(一)知识与技能目标:会用加减消元法解简单的二元一次方程组。

理解加减消元法的基本思想,体会化未知为已知的化归思想方法。

(二)过程与方法目标:通过经历加减消元法解方程组,让学生体会消元思想的应用,经过引导、讨论和交流让学生理解根据加减消元法解二元一次方程组的一般步骤。

(三)情感态度及价值观:通过交流、合作、讨论获取成功体验,感受加减消元法的应用价值,激发学生的学习兴趣,培养学生养成认真倾听他人发言的习惯和勇于克服困难的意志。

3、教学重点、难点:由于七年级的学生年龄较小,在学习解二元一次方程组的过程中容易进行简单的模仿,往往不注意方程组解法的形成过程更无法真正理解消元的思想方法。

而大家都知道,数学的思想与方法才是数学的精髓,是联系各类数学知识的纽带,所以我将本节课的重点和难点确定如下:重点:用加减法解二元一次方程组。

难点: 灵活运用加减消元法的技巧,把“二元”转化为“一元”二、说教法结合七年级学生的年龄特征和认知特点,这一阶段的学生有极强的求知欲,在教学中我主要评价激励法,对学生所反馈的学习情况,我将予以点评,并给予鼓励。

人教版七年级数学下册第八章8.2 第2课时 用加减消元法解方程组

人教版七年级数学下册第八章8.2 第2课时 用加减消元法解方程组

知识点 用加减法解二元一次方程组
1.
(2018·怀化)二 Nhomakorabea元





x+y=2,

x-y=-2
的解是
( B)
A.x=y=0,-2
B.x=y=0,2
C.x=y=2,0
D.x=y=-02,
2. 用“加减消元法”解方程组33xx+ -75yy= =- 1620,① ②的步骤 如下:(1)由①-②得 12y=-36,y=-3,(2)由①×5+②×7 得 36x=12,x=13,则下列说法正确的是( B )
A.(1)①-②
B.(2)②-①
C.(3)①-②
D.(4)②-①
10. 用加减法解方程组23xx+-32yy==18,时,要使两个方程中 同一未知数的系数相等或互为相反数,有以下四种变形结果:
①66xx+ -94yy= =18, ;②49xx+-66yy==18,; ③6-x+6x9+y=4y3=,-16;④49xx+-66yy==22,4. 其中变形正确的是( B )
9. 用加减法解下列四个方程组:
2.5x+3y=1①, 3x-4y=7①, (1)-2.5x+2y=4②;(2)4x-4y=8②;
(3)y12-x+0.55yx==321①0., 5②;(4)33xx--56yy==78①②,.
其中方法正确且最合适的是( B )
第八章 二元一次方程组 8.2 消元——解二元一次方程组
第2课时 用加减消元法解方程组
1. 代入消元法 和 加减消元法 是解二元一次方程组的 基本方法,其基本思想是“ 消元 ”,运用 消元 的思想 把方程组逐渐转化为 一元一次方程 求解.
2. 消元时一般选取系数较为简单的未知数作为消元对 象.

数学人教版七年级下册加减消元法

数学人教版七年级下册加减消元法

3 x 4 y 16 ,① 5 x 6 y 33. ②
⑴① 3 、② 2 后两方程相加,消去未知数 y ;
⑵① 5 、② 3 后两方程相减,消去未知数 x . 用加减法解二元一次方程组的一般步骤:
⑴变形;⑵加减求解; ⑶回代求解; ⑷写解.
四、巩固练习
【活动四】用加减法下列解方程组:
① ②
二、合作探究
【活动二】 在这个方程组的两个方程中,未知数 y
的系数有什么特点?利用这种关系你能发现新的消 元方法吗? 3x 10y 2.8①
15 x 10y 8 ②
7x 3y 27① 再观察方程组 的系数有何特点? 7x 5 y 11 ②
想一想怎样解这个方程组
4x8 x 2
7 y 2
三、拓展提高
3x 4 y 16 ① 【活动三】用加减法解方程组 5x 6 y 33 ②
(1)本题可以直接用加减法求解吗?
(2)直接使用加减法解二元一次方程组的条件是什么?
(3)怎样才能使两个方程中某一未知数的系数相等或相反呢?
【活动三】用加减法解方程组
2 x 3 y 6 5x 2 y 25 ⑴ ⑵ 3 x 2 y 4 3 x 4 y 15
五、课堂总结
请谈谈这节课有什么收获? ⑴解二元一次方程组有哪几种方法? ⑵解二元一次方程组的基本思想是什么?
⑶具有什么特点的二元一次方程组能直接使用 加减法求解? ⑷用加减法解二元一次方程组的步骤是: (1)变形;(2)加减求解;(3)回代求解;(4)写解.
某一个未知数的系数相等或互为相反数
(3)在什么条件下用加法?什么条件下用减法 ? 某一个未知数的系数互为相反数时用加法,系 数相等时用减法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.2 消元----二元一次方程组的解法(三) 课型:新课 主备教师: 审核:七年级数学集备组 班级: 时间:2017年 4月
一、教学内容:教材课题 P94-96 加减消元
二、教学目标:1、掌握用加减法解二元一次方程组;
2、理解加减消元法所体现的“化未知为已知”的化归思想方法;
3、体验数学学习的乐趣,在探索过程中品尝成功的喜悦,树立信心.
三、自学探究:
1、复习旧知
解方程组22240x y x y +=⎧⎨+=⎩
有没有其它方法来解呢?
2
、思考y
的系数有什么关系?•利用这种关系你能发现新的消元方法吗?
两个方程中未知数y 的系数相同,②-①可消去未知数y ,得 - =40-22 即x=18,把x=18代入①得y=4。

另外,由①-②也能消去未知数y ,得 - =22-40 即-x=-18,x=18,把x=18代入①得y=4.
3、探究 想一想:联系上面的解法,想一想应怎样解方程组410 3.615108
x y x y +=⎧⎨-=⎩这两个方程中未知数y 的系数 ,•因此由①+②可消去未知数y ,从而求出未知数x 的值。

4、归纳:加减消元法的概念
从上面两个方程组的解法可以发现,把两个二元一次方程的两边分别进行相加或者相减,就可以消去一个未知数,得到一个一元一次方程。

两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。

5、拓展应用:
用加减法解方程组34165633x y x y +=⎧⎨-=⎩
元,试一试,能否对方程变形,使得两个方程中某个未知数的系数相反或相同。

①×3,得 9x+12y=48 ③
②×2,得 10x-12y=66 ④
这时候y 的系数互为相反数,③+④就可以消去y ,
思考:用加减法消去x 应如何解?解得结果与上面一样吗?
四、自我检测:
教材p96-97练习1 1)、2)、3)、4)
五、学习小结:
用加减法解二元一次方程组的基本思想是什么?
这种方法的适用条件是什么?步骤又是怎样的?
六、反馈检测:
1.用加减法解下列方程组
3415
2410
x y
x y
+=


-=

较简便的消元方法是:将两个方程_______,
消去未知数_______.
2.已知方程组
23
32
x y
x
-


+

,,用加减法消x的方法是__________;用加减法消y
的方法是________.
3.用加减法解下列方程时,你认为先消哪个未知数较简单,填写消元的过程.
(1)
3215
5423
x y
x y
-=


-=

消元方法___________.
(2)
731
232
m n
n m
-=


+=-

消元方法_____________.
4、解方程组
2312 3417
x y
x y
+=⎧

+=⎩
5、已知(3x+2y-5)2与│5x+3y-8│互为相反数,则x=______,y=________.。

相关文档
最新文档