通信原理习题答案 第二章 习题解答
通信原理简答题答案2(个人整理)
第一章绪论1-2何谓数字信号?何谓模拟信号?两者的根本区别是什么?答:数字信号:电信号的参量值仅可能取有限个值。
模拟信号:电信号的参量取值连续。
两者的根本区别是携带信号的参量是连续取值还是离散取值。
1-3何谓数字通信?数字通信偶哪些优缺点?答:利用数字信号来传输信息的通信系统为数字通信系统。
优点:抗干扰能力强,无噪声积累传输差错可控;便于现代数字信号处理技术对数字信息进行处理、变换、储存;易于集成,使通信设备微型化,重量轻;易于加密处理,且保密性好。
缺点:一般需要较大的传输带宽;系统设备较复杂。
1-4 数字通信系统的一般模型中各组成部分的主要功能是什么?答:信源编码:提高信息传输的有效性(通过数字压缩技术降低码速率),完成A/D转换。
信道编码/译码:增强数字信号的抗干扰能力。
加密与解密:认为扰乱数字序列,加上密码。
数字调制与解调:把数字基带信号的频谱搬移到高频处,形成适合在信道中传输的带通信号。
同步:使收发两端的信号在时间上保持步调一致。
1-5 按调制方式,通信系统如何分类?答:基带传输系统和带通传输系统。
1-6 按传输信号的特征,通信系统如何分类?答:模拟通信系统和数字通信系统。
1-7 按传输信号的复用方式,通信系统如何分类?答:FDM,TDM,CDM。
1-8 单工、半双工及全双工通信方式是按什么标准分类的?解释他们的工作方式。
答:按照消息传递的方向与时间关系分类。
单工通信:消息只能单向传输。
半双工:通信双方都能收发消息,但不能同时进行收和发的工作方式。
全双工通信:通信双方可以同时收发消息。
1-9 按数字信号码元的排列顺序可分为哪两种通信方式?他们的适用场合及特点?答:分为并行传输和串行传输方式。
并行传输一般用于设备之间的近距离通信,如计算机和打印机之间的数据传输。
串行传输使用与远距离数据的传输。
1-10 通信系统的主要性能指标是什么?答:有效性和可靠性。
1-11 衡量数字通信系统有效性和可靠性的性能指标有哪些?答:有效性:传输速率,频带利用率。
通信原理各章重要知识常考知识总结通信原理习题及详细答案(第六版)
第一部 通信原理部分习题答案第1章 绪论1—1 设英文字母E 出现的概率为0.105,x 出现的概率为0.002。
试求E 及x 的信息量。
解:英文字母E 的信息量为105.01log 2=E I =3.25bit 英文字母x 的信息量为002.01log 2=x I =8.97bit 1—2 某信息源的符号集由A 、B 、C 、D 和E 组成,设每一符号独立出现,其出现概率分别为1/4、l/8、l/8/、3/16和5/16。
试求该信息源符号的平均信息量。
解:平均信息量,即信息源的熵为∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-163log 1632-165log 1652- =2.23bit/符号1—3 设有四个消息A 、BC 、D 分别以概率1/4、1/8、1/8和l/2传送,每一消息的出现是相互独立的,试计算其平均信息量。
解:平均信息量∑=-=ni i i x P x P H 12)(log )(=41log 412-81log 812-81log 812-21log 212- =1.75bit/符号1—4 一个由字母A 、B 、C 、D 组成的字。
对于传输的每一个字母用二进制脉冲编码,00代替A ,01代替B ,10代替C ,11代替D ,每个脉冲宽度为5ms 。
(1)不同的字母是等可能出现时,试计算传输的平均信息速率。
(2)若每个字母出现的可能性分别为P A =l/5,P B =1/4,P C =1/4,P D =3/10 试计算传输的平均信息速率。
解:(1)不同的字母是等可能出现,即出现概率均为1/4。
每个字母的平均信息量为∑=-=ni i i x P x P H 12)(log )(=41log 4142⨯-=2 bit/符号因为每个脉冲宽度为5ms ,所以每个字母所占用的时间为 2×5×10-3=10-2s每秒传送符号数为100符号/秒 (2)平均信息量为∑=-=ni i i x P x P H 12)(log )(=51log 512-41log 412-41log 412-103log 1032-=1.985 bit/符号 平均信息速率为 198.5 比特/秒1—5 国际莫尔斯电码用点和划的序列发送英文字母,划用持续3单位的电流脉冲表示,点用持续1个单位的电流脉冲表示;且划出现的概率是点出现概率的l/3; (1)计算点和划的信息量; (2)计算点和划的平均信息量。
现代通信原理课后习题答案
现代通信原理课后习题答案第⼆章2.40 ⼆进制对称信道中的误⽐特率P e为0.2,若输⼊信道的符号速率为2000符号/s,求该信道的信道容量。
解:2000×(1-0.2)=1600 (b/s)2.41 已知某语⾳信道带宽为4kHz,若接收端的信噪⽐S/N =60dB,求信道容量。
若要求该信道传输56000b/s的数据,则接收端的信噪⽐最⼩应为多少?解:dB=10 lgN 60 = 10 lg S/N →S/N = 106C = wlog2 (1+S/N)=4×103log2(1+106) = 8 × 104 (bps)5.6 × 104 = 4 × 103log2(1+S/N)log2(1+S/N) = 14 → 1+S/N = 214→S/N = 214-12.42 若⿊⽩电视机的每幅图像含有3×105个像素,每个像素都有16个等概率出现的亮度等级,如果信道的输出信噪⽐为S/N = 40dB、信道带宽为1.4MHz,则该信道每秒可传送多少幅图像?解:每幅图的信息量:3×105×log216 = 1.2×106(b)40dB = 10log2 S/N →S/N = 104C = wlog2(1 + S/N)= 1.4×106log2(1+104)≈1.862×107(bps)1.862×107/1.2×106 = 15.5 (幅/s)第三章3.50 ⽤10KHz的单频正弦信号对1MHz的载波进⾏调制,峰值频偏为2KHz。
试求:(1)该调频信号的带宽。
(2)若调制信号的幅度加倍,再求该调频信号的带宽。
解:(1)B FM = 2 × ( 2+10 ) = 24 ( KHz)(2)B FM = 2 ×(2 + 2×10)= 44 (KHz)3.51 幅度1V的10MHz载波受到幅度1V、频率为100Hz的正弦信号调制,最⼤频偏为500Hz。
通信原理课后答案
第一章习题习题1.1 在英文字母中E 出现的概率最大,等于0.105,试求其信息量。
解:E 的信息量:()()b 25.3105.0log E log E 1log 222E =-=-==P P I习题1.2 某信息源由A ,B ,C ,D 四个符号组成,设每个符号独立出现,其出现的概率分别为1/4,1/4,3/16,5/16。
试求该信息源中每个符号的信息量。
解:b A P A P I A 241log )(log )(1log 222=-=-==b I B 415.2163log 2=-= b I C 415.2163log 2=-= b I D 678.1165log 2=-=习题1.3 某信息源由A ,B ,C ,D 四个符号组成,这些符号分别用二进制码组00,01,10,11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这四个符号等概率出现; (2)这四个符号出现概率如习题1.2所示。
解:(1)一个字母对应两个二进制脉冲,属于四进制符号,故一个字母的持续时间为2×5ms 。
传送字母的符号速率为Bd 100105213B =⨯⨯=-R等概时的平均信息速率为s b 2004log log 2B 2B b ===R M R R(2)平均信息量为比特977.1516log 165316log 1634log 414log 412222=+++=H则平均信息速率为 s b 7.197977.1100B b =⨯==H R R习题1.4 试问上题中的码元速率是多少? 解:311200 Bd 5*10B B R T -===习题1.5 设一个信息源由64个不同的符号组成,其中16个符号的出现概率均为1/32,其余48个符号出现的概率为1/96,若此信息源每秒发出1000个独立的符号,试求该信息源的平均信息速率。
解:该信息源的熵为96log 961*4832log 321*16)(log )()(log )()(22264121+=-=-=∑∑==i i i i Mi i x P x P x P x P X H=5.79比特/符号因此,该信息源的平均信息速率 1000*5.795790 b/s b R mH === 。
现代通信原理答案WORD版( 罗新民)指导书 第二章 确定信号分析 习题详解
第二章 确定信号分析2-1图E2.1中给出了三种函数。
图 E2.1①证明这些函数在区间(-4,4)内是相互正交的。
②求相应的标准正交函数集。
③用(2)中的标准正交函数集将下面的波形展开为标准正交级数:⎩⎨⎧≤≤=为其它值t t t s ,040,1)(④利用下式计算(3)中展开的标准正交级数的均方误差: ⎰∑-=-=44231])()([dt t u a t s k k k ε⑤对下面的波形重复(3)和(4):⎪⎩⎪⎨⎧≤≤-=为其它值t t t t s ,044),41cos()(π ⑥图E2.1中所示的三种标准正交函数是否组成了完备正交集?解:①证明:由正交的定义分别计算,得到12()()0u t u t dt +∞-∞⋅=⎰,23()()0u t u t dt +∞-∞⋅=⎰,31()()0u t u t dt +∞-∞⋅=⎰,得证。
②解:424()8,k C u t dt k -== =1,2,3⎰,对应标准正交函数应为()(),1,2,3k k q t t k ==因此标准正交函数集为123123{(),(),()}(),()()}q t q t q t t t t =③解:用标准正交函数集展开的系数为4()(),1,2,3k k a s t q t dt k =⋅ =⎰,由此可以得到4110()()a s t t dt ===⎰4220()()a s t t dt ===⎰4330()()0a s t t dt ==⎰。
所以,121211()()()()()22s t t t u t u t ==-④解:先计算得到312111()()()()()()022k k k t s t a u t s t u t u t ε==-=-+=∑ ⑤解:用标准正交集展开的系数分别为441141()())04a s t t dt t dt π--===⎰⎰,44224011()()cos()cos()044a s t t dt t dt t dt ππ--==-=⎰⎰⎰,433422442()()111cos()))444a s t t dtt dt t dt t dt ππππ----= =-+- =⎰⎰⎰⎰。
通信原理第二章(信道)习题及其答案
第二章(信道)习题及其答案【题2-1】设一恒参信道的幅频特性和相频特性分别为0()()d H K t ωϕωω⎧=⎨=-⎩其中,0,d K t 都是常数。
试确定信号()s t 通过该信道后的输出信号的时域表达式,并讨论之。
【答案2-1】 恒参信道的传输函数为:()0()()d j t j H H e K e ωϕωωω-==,根据傅立叶变换可得冲激响应为:0()()d h t K t t σ=-。
根据0()()()i V t V t h t =*可得出输出信号的时域表达式:000()()()()()()d d s t s t h t s t K t t K s t t δ=*=*-=-讨论:题中条件满足理想信道(信号通过无畸变)的条件:()d d H ωωφωωτττ⎧=⎨⎩常数()=-或= 所以信号在传输过程中不会失真。
【题2-2】设某恒参信道的幅频特性为[]0()1cos d j t H T e ωω-=+,其中d t 为常数。
试确定信号()s t 通过该信道后的输出表达式并讨论之。
【答案2-2】 该恒参信道的传输函数为()0()()(1cos )d j t j H H e T e ωϕωωωω-==+,根据傅立叶变换可得冲激响应为:0011()()()()22d d d h t t t t t T t t T δδδ=-+--+-+根据0()()()i V t V t h t =⊗可得出输出信号的时域表达式:0000011()()()()()()()2211 ()()()22d d d d d d s t s t h t s t t t t t T t t T s t t s t t T s t t T δδδ⎡⎤=⊗=⊗-+--+-+⎢⎥⎣⎦=-+--+-+讨论:和理想信道的传输特性相比较可知,该恒参信道的幅频特性0()(1cos )H T ωω=+不为常数,所以输出信号存在幅频畸变。
其相频特性()d t ϕωω=-是频率ω的线性函数,所以输出信号不存在相频畸变。
通信原理教程第二版 课后习题解答
《通信原理》习题第一章
M
64 2
H ( X ) P ( x i ) log
i 1
P ( x i ) P ( x i ) log
i 1
2
P ( x i ) 16 *
1 32
log
2
32 48 *
1 96
log
2
96
=5.79 比特/符号 因此,该信息源的平均信息速率 习题 1.6
1 0 PX ( f )
4
1
( )
RX
2
( )
设随机过程 X(t)=m(t) cos t ,其中 m(t)是广义平稳随机过程,且其自
f , 10 kH Z f 10 kH Z 0 ,其 它
2
(1)试画出自相关函数 R X ( ) 的曲线; (2)试求出 X(t)的功率谱密度 P X
试求 X(t)的功率谱密度 P X 解:详见例 2-12
(f )
并画出其曲线。
5
《通信原理》习题第一章
习题 2.12
已知一信号 x(t)的双边功率谱密度为
1 0 PX ( f )
4
f , 10 kH Z f 10 kH Z 0 ,其 它
2
试求其平均功率。 解: P
V
习题 1.8 解:由 D 2
设一条无线链路采用视距传输方式通信,其收发天线的架设高度都等
于 80 m,试求其最远的通信距离。
8rh
,得
D
8 r h
8 * 6 .3 7 * 1 0 * 8 0
6
6 3 8 4 9
k m
第二章习题
习题 2.1 设随机过程 X(t)可以表示成:
《通信原理》樊昌信__课后习题答案
解:(1)g1(t)=g(t) G(f)
g2(t)= -g(t) -G(f)
功率谱密度:
双极性二进制信号的功率谱:
(2)有。
故
5.7设一个基带传输系统接收滤波器的输出码元波形h(t)如图5.3所示。
(1)试求该基带传输系统的传输函数H(f);
第一章 概论
1.3某个信息源由A、B、C、D等4个符号组成。这些符号分别用二进制码组00、01、10、11表示。若每个二进制码元用宽度为5ms的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1)这4个符号等概率出现;
(2)这4个符号出现的概率分别为1/4、1/4、3/16、5/16。
解:每秒可传输的二进制位为:
(2) 若其信道传输函数C(f)=1,且发送滤波器和接收滤波器的传输函数相同,即GT(f)=GR(f),试求GT(f)和GR(f)的表示式。
解:(1)
(2)
故
5.8设一个基带传输系统的传输函数H(f)如图5.4所示。
(1)试求该系统接收滤波器输出码元波形的表示式;
(2) 若其中基带信号的码元传输RB=2f0,试用奈奎斯特准则衡量该系统能否保证无码间串扰传输。
解:信噪比为:r=2
解:输入信号码元序列:0 1 1 1 0 0 1 1 0 1 0 0 0
相对码元序列:0 0 1 0 1 1 1 0 1 1 0 0 0 0
相对相位序列:0π0πππ0ππ0 0 0 0
绝对相位序列:0πππ0 0ππ0π0 0 0
第七章同步
7.2设载波同步相位误差等于10o,信噪比r等于10dB。试求此时2PSK信号的误码率。
等效矩形带宽为:
通信原理课后答案
第一章习题习题1.1 在英文字母中E 出现的概率最大,等于0.105,试求其信息量。
解:E 的信息量:()()b 25.3105.0log E log E 1log 222E =-=-==P P I习题1.2 某信息源由A ,B ,C ,D 四个符号组成,设每个符号独立出现,其出现的概率分别为1/4,1/4,3/16,5/16。
试求该信息源中每个符号的信息量。
解:b A P A P I A 241log )(log )(1log 222=-=-==b I B 415.2163log 2=-= b I C 415.2163log 2=-= b I D 678.1165log 2=-=习题1.3 某信息源由A ,B ,C ,D 四个符号组成,这些符号分别用二进制码组00,01,10,11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这四个符号等概率出现; (2)这四个符号出现概率如习题1.2所示。
解:(1)一个字母对应两个二进制脉冲,属于四进制符号,故一个字母的持续时间为2×5ms 。
传送字母的符号速率为Bd 100105213B =⨯⨯=-R等概时的平均信息速率为s b 2004log log 2B 2B b ===R M R R(2)平均信息量为比特977.1516log 165316log 1634log 414log 412222=+++=H则平均信息速率为 s b 7.197977.1100B b =⨯==H R R习题1.4 试问上题中的码元速率是多少? 解:311200 Bd 5*10B B R T -===习题1.5 设一个信息源由64个不同的符号组成,其中16个符号的出现概率均为1/32,其余48个符号出现的概率为1/96,若此信息源每秒发出1000个独立的符号,试求该信息源的平均信息速率。
解:该信息源的熵为96log 961*4832log 321*16)(log )()(log )()(22264121+=-=-=∑∑==i i i i Mi i x P x P x P x P X H=5.79比特/符号因此,该信息源的平均信息速率 1000*5.795790 b/s b R mH === 。
通信原理教程(第三版)樊昌信部分课后习题答案
A
T
O
T
t
5
(1)由图 5-21 得
图 5-2 习题图 1
g (t)
A1
2 T
t
,
t
T 2
0
其他
g(t) 的频谱函数为:
G(w) AT Sa2 wT 2 4
由 题 意 , P0 P1 P 1/ 2 , 且 有 g1(t) = g(t) , g 2 (t) =0 , 所 以
第一章: 信息量、平均信息速率、码元速率、信息速率 第二章:
习题 设随机过程 X(t)可以表示成:
X (t) 2cos(2t ), t
式中, 是一个离散随机变量,它具有如下概率分布:P( =0)=,
P( = /2)=
试求 E[X(t)]和 RX (0,1) 。
解 E[X(t)]=P( =0)2 cos(2t) +P( = cost
T /2 T /
2
2
cos(2
t
)
*
2
cos
2
(t
)
dt
2 cos(2 ) e j2t e j2t
P( f )
RX
(
)e
j
2
f
d
(e
j
2
t
e j2t )e j2
f d
( f 1) ( f 1)
1
习题 试求 X(t)=A cost 的自相关函数,并根据其自相关函数求 出其功率。
(1) 试写出该信号序列功率谱密度的表达式,并画出其曲线; (2) 该序列中是否存在 f 1 的离散分量若有,试计算其功率。
gT(t)
1
T / 2 图/ 25-4 习0 题图 / 2 T / 2 t 解:(1)基带脉冲波形 g(t) 可表示为:
通信原理教程第二版 课后习题解答
《通信原理》习题第一章
M
64 2
H ( X ) P ( x i ) log
i 1
P ( x i ) P ( x i ) log
i 1
2
P ( x i ) 16 *
1 32
log
2
32 48 *
1 96
log
2
96
=5.79 比特/符号 因此,该信息源的平均信息速率 习题 1.6
《通信原理》习题第一章
第一章习题
习题 1.1 在英文字母中 E 出现的概率最大,等于 0.105,试求其信息量。
log 1
2
解:E 的信息量: I E
P E
log
2
P E log
2
0 . 105 3 . 25 b
习题 1.2 解:
I
A
某信息源由 A,B,C,D 四个符号组成,设每个符号独立出现,其出
试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。 解:它是能量信号。X(t)的傅立叶变换为:
X ( ) 4 1 j
x (t )e
j t
dt
0
4e e
t
j t
dt 4
0
e
(1 j ) t
dt
则能量谱密度
G(f)=
1 , 1 0, 1 0 0 1 其它
(f )
和功率 P。
解:(1) R x
其波形如图 2-1 所示。
R x
1 2
1
0
1
图 2-1 信号波形图 (2)因为 X
通信原理樊昌信课后习题答案
习题解答《通信原理教程》樊昌信第一章 概论某个信息源由A 、B 、C 、D 等4个符号组成。
这些符号分别用二进制码组00、01、10、11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这4个符号等概率出现;(2) 这4个符号出现的概率分别为1/4、1/4、3/16、5/16。
解: 每秒可传输的二进制位为:()20010513=⨯÷-每个符号需要2位二进制,故每秒可传输的符号数为:1002200=÷(1) 4个符号等概率出现时每个符号包含的平均信息量为: bit 24log 2=故平均信息速率为:s b R b /2002100=⨯=(2)每个符号包含的平均信息量为:bit 977.11651log 1651631log 163411log 41411log 412222=+++故平均信息速率为: s b R b /7.197977.1100=⨯=设一个信号源输出四进制等概率信号,其码元宽度为125s μ。
试求码元速率和信息速率。
解:码元速率为:()baud R B 80001012516=⨯÷=- 信息速率为:s kb R R B b /16280004log 2=⨯==第二章 信号设一个随机过程X (t )可以表示成:()()∞<<∞-+=t t t X θπ2cos 2其中θ在(0,2π)之间服从均匀分布,判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它的能量无限,功率有界,所以是一个功率信号。
`()[]()[]()()()πτθπτθππτπθπθπτπθπππ2cos 4224cos 2cos 22122cos 22cos 22020=+++=•+++=⎰⎰d t d t t由维纳-辛钦关系有:()()ττωωτd e R P j X -+∞∞-⎰=()()[]πωδπωδπ222++-=设有一信号可表示为:()()⎩⎨⎧>≥-=000exp 4t t t t x试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
通信原理 (樊昌信)1-7章所有习题答案02
《通信原理》习题第二章
解:(1)LC 低通滤波器的系统函数为 2 j 2π fC 2 + j 2π fL j 2π fC 1 1 − 4π 2 f 2 LC
2
H(f)=
=
n0 1 2 1 − ω 2 LC Cn C 对功率谱密度做傅立叶反变换,可得自相关函数为 R0 (τ ) = 0 exp(− τ ) 4L L (2) 输出亦是高斯过程,因此
−∞ < t < ∞
τ 1 + j 2π f τ
C R
Gy ( f ) = Y ( f ) = X ( f ) H ( f ) =
Rτ 图 2-3RC 高通滤波器 1 1 (R + )(1 + ) j 2π fC j 2π f τ 习题 2.14 设有一周期信号 x(t)加于一个线性系统的输入端,得到的输出信号为
2 2
sin π f 。试求此信号的自相关函数 πf
其自相关函数 RX (τ ) = ∫ G ( f )e
+∞ −∞
j 2π f τ
⎧1 + τ , ⎪ df = ⎨1 − τ ⎪0, ⎩
−1 ≤ τ ≤ 0 0 ≤τ <1 其它
k -k τ e ,k 为常数。 2 (1)试求其功率谱密度函数 Pn ( f ) 和功率 P;(2)画出 Rn (τ ) 和 Pn ( f ) 的曲线。
1
Pn ( f )
k 2
0 0
τ 图 2-2
f
习题 2.11 已知一平稳随机过程 X(t)的自相关函数是以 2 为周期的周期性函数:
5
《通信原理》习题第二章
R(τ ) = 1 − τ , − 1 ≤ τ < 1
试求 X(t)的功率谱密度 PX ( f ) 并画出其曲线。 解:详见例 2-12 习题 2.12 已知一信号 x(t)的双边功率谱密度为 ⎧10−4 f 2 , −10 kHZ < f < 10 kHZ PX ( f ) = ⎨ 0,其它 ⎩ 试求其平均功率。
通信原理1-8章习题及答案(哈工程版)
T = (3 ~ 5)τ m = (9 ~ 15)ms 。
【题 2-7】若两个电阻的阻值都为 1000 Ω ,它们的噪声温度分别为 300K 和
400K,试求两个电阻串连后两端的噪声功率谱密度。
【答案 2-7】 两个电阻的噪声功率普密度分别为
P 1 ( w) = 2kT 1 R1 P2 ( w) = 2kT2 R2
当 cos
ωτ
2
= 0 时,传输衰耗最大,此时
1 = n + π 即 2 2
1 所以, 当 f = n + kHz , n = 0,1, 2,L 时, 对传输信号衰耗最大; 当 f = nkHz , 2 n = 0,1, 2,L 时,对传输信号最有利。
1 ω 1 f = = 2 = (n + )kHz 。 2π 2 τ nt
字母 x 出现的概率为 p ( x) = 0.002 ,由信息量公式,可知其信息量为: I x = log 2 1 1 = log 2 ( ) = 8.97bit p ( x) 0.002
【题 1-2】某信息源的符号集由 A,B,C,D 和 E 组成,设每一符号独立出现,其 出现概率分别为 1/4,1/8,1/8,3/16 和 5/16。试求该信息源符号的平均信息量。 【答案 1-2】 直 接 利 用 公 式 H ( x) = −∑ p ( xi ) log 2 p ( xi ) ( bit/ 符 号 ) , 将 p ( A) = 1/ 4 ,
4
讨论:和理想信道的传输特性相比较可知,该恒参信道的幅频特性
H (ω ) = (1 + cos ωT0 ) 不 为 常 数 , 所 以 输 出 信 号 存 在 幅 频 畸 变 。 其 相 频 特 性
通信原理通信课后答案02
《通信原理》习题第二章3第二章习题习题2.1 设随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞式中,θ是一个离散随机变量,它具有如下概率分布:P (θ=0)=0.5,P (θ=π/2)=0.5试求E [X (t )]和X R (0,1)。
解:E [X (t )]=P (θ=0)2cos(2)t π+P (θ=/2)2cos(2)=cos(2)sin 22t t t ππππ+-cos t ω习题2.2 设一个随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:为功率信号。
[]/2/2/2/21()lim ()()1lim 2cos(2)*2cos 2()T X T T T T T R X t X t dtTt t dtTττπθπτθ→∞-→∞-=+=+++⎰⎰222cos(2)j t j t e e πππτ-==+2222()()()(1)(1)j f j t j t j f X P f R e d e e e d f f πτπππττττδδ∞-∞---∞-∞==+=-++⎰⎰习题2.3 设有一信号可表示为:4exp() ,t 0(){0, t<0t X t -≥=试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它是能量信号。
X (t )的傅立叶变换为:(1)004()()441j t t j t j tX x t edt e e dt e dt j ωωωωω+∞-+∞--+∞-+-∞====+⎰⎰⎰则能量谱密度 G(f)=2()X f =222416114j f ωπ=++习题2.4 X (t )=12cos 2sin 2x t x t ππ-,它是一个随机过程,其中1x 和2x 是相互统计独立的高斯随机变量,数学期望均为0,方差均为2σ。
通信原理答案第二章
《通信原理》习题参考答案第二章2-1.设随机过程ξ(t)可表示成ξ(t)=2cos(2πt+θ)式中θ是一个离散随机变量,且P(θ=0)=1/2、P(θ=π/2)=1/2,试求E[ξ(1)]及Rξ(0,1)。
解:求E[ξ(1)]就是计算t=1时ξ(1)的平均值:∵ξ(0)=2cos(0+θ)=2cosθξ(1)=2cos(2π+θ)=2cosθ∴E[ξ(1)]=P(θ=0)×2cos0+P(θ=π/2)×2cos(π/2)=(1/2)×2+0=1Rξ(0,1)=E[ξ(0)ξ(1)]=E[2cosθ×2cosθ]=E[4cos2θ]=P(θ=0)×4cos20+P(θ=π/2)×4cos2(π/2)=(1/2)×4=2题解:从题目可知,θ是一个离散的随机变量,因此采用数理统计的方法求出ξ(t)在不同时刻上的均值和相关函数就显得比较容易。
12-2. 设Z(t)=X 1cos ω0t -X 2sin ω0t 是一个随机过程,若X 1和X 2是彼此独立且具有均值为0,方差为σ2的正态随机变量,试求 (1) E[Z(t)]、E[Z 2(t)](2) Z(t)的一维分布密度函数f(z); (3) B(t 1,t 2)与R(t 1,t 2)。
解:(1)∵ E[X 1]=E[X 2]=0,且X 1和X 2彼此独立∴ E[Z(t)]=E[X 1cos ω0t -X 2sin ω0t] =E[X 1cos ω0t]-E[X 2sin ω0t] =E[X 1]×cos ω0t -E[X 2]×sin ω0t =0E[Z 2(t)]=E[(X 1cos ω0t -X 2sin ω0t)2]=E[X 12cos 2ω0t -2 X 1 X 2 cos ω0t sin ω0t +X 22sin 2ω0t]=E[X 12cos 2ω0t]-E[2 X 1 X 2 cos ω0t sin ω0t]+E[X 22sin 2ω0t] =cos 2ω0t E[X 12]-2 cos ω0t sin ω0tE[X 1]E[X 2]+sin 2ω0t E[X 22] =cos 2ω0t E[X 12] +sin 2ω0t E[X 22]又∵ E[X 12]=D[X 1]+E 2 [X 1]=D[X 1]=σ2 E[X 22]=D[X 2]+E 2 [X 2]=D[X 2]=σ2∴E[Z 2(t)]=σ2 cos 2ω0t +σ2 sin 2ω0t =σ2(cos 2ω0t +sin 2ω0t) =σ2(2)由于Z(t)=X 1cos ω0t -X 2sin ω0t 是由两个正态随机变量X 1和X 2叠加而成,因此它仍然服从正态分布,即它的其中: E[Z(t)]=0]2exp[21)(22)(σσπa x Z f --=3D[Z(t)]=E[Z 2(t)]-E 2 [Z(t)]=E[Z 2(t)]=σ2所以得一维分布密度函数f(Z)为:(3) B(t 1,t 2)=R(t 1,t 2)-E [Z(t 1)] E [Z(t 2)] =R(t 1,t 2)=E [Z(t 1) Z(t 2)]=E [(X 1cos ω0t 1-X 2sin ω0t 1)( X 1cos ω0t 2-X 2sin ω0t 2)] =E [X 12cos ω0t 1 cos ω0t 2-X 1 X 2cos ω0t 1 sin ω0t 2-X 1X 2sin ω0t 1cos ω0t 2+X 22sin ω0t 1 sin ω0t 2] =cos ω0t 1 cos ω0t 2E [X 12]-cos ω0t 1 sin ω0t 2 E [X 1 X 2]-sin ω0t 1cos ω0t 2 E [X 1 X 2]+sin ω0t 1 sin ω0t 2 E [X 22] =cos ω0t 1 cos ω0t 2E [X 12] +sin ω0t 1 sin ω0t 2 E [X 22] =σ2 (cos ω0t 1 cos ω0t 2+sin ω0t 1 sin ω0t 2) =σ2cos ω0(t 1-t 2)=σ2cos ω0τ 其中τ=∣t 1-t 2∣2-4. 若随机过程z(t)=m(t)cos(ω0t +θ),其中m(t)是宽平稳随机过程,且自相关函数R m (τ)为θ是服从均匀分布的随机变量,它与m(t)彼此统计独立。
《通信原理》课后习题答案
习题2.2设一个随机过程X(t)可以表示成:
判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:为功率信号。
习题2.3设有一信号可表示为:
试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它是能量信号。X(t)的傅立叶变换为:
则能量谱密度G(f)= =
习题2.4X(t)= ,它是一个随机过程,其中 和 是相互统计独立的高斯随机变量,数学期望均为0,方差均为 。试求:
(1)E[X(t)],E[ ];(2)X(t)的概率分布密度;(3)
解:(1)
因为 相互独立,所以 。
又因为 , ,所以 。
故
(2)因为 服从高斯分布, 的线性组合,所以 也服从高斯分布,其概率分布函数 。
第一章习题
习题1.1在英文字母中E出现的概率最大,等于0.105,试求其信息量。
解:E的信息量:
习题1.2某信息源由A,B,C,D四个符号组成,设每个符号独立出现,其出现的概率分别为1/4,1/4,3/16,5/16。试求该信息源中每个符号的信息量。
解:
习题1.3某信息源由A,B,C,D四个符号组成,这些符号分别用二进制码组00,01,10,11表示。若每个二进制码元用宽度为5ms的脉冲传输,试分别求出在下列条件下的率谱密度 和功率P。
解:
习题1.8设一条无线链路采用视距传输方式通信,其收发天线的架设高度都等于80 m,试求其最远的通信距离。
解:由 ,得
习题1.9设英文字母E出现的概率为 0.105, x出现的概率为0.002 。试求 E
和x的信息量。
解:
习题1.10信息源的符号集由 A,B,C,D 和E 组成,设每一符号独立1/4出现,其出现概率为1/4,1/8,1/8,3/16和5/16。试求该信息源符号的平均信息量。
《通信原理》樊昌信__课后习题答案
《通信原理》樊昌信__课后习题答案第⼀章概论1.3 某个信息源由A 、B 、C 、D 等4个符号组成。
这些符号分别⽤⼆进制码组00、01、10、11表⽰。
若每个⼆进制码元⽤宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1)这4个符号等概率出现;(2)这4个符号出现的概率分别为1/4、1/4、3/16、5/16。
解:每秒可传输的⼆进制位为:()20010513=?÷-每个符号需要2位⼆进制,故每秒可传输的符号数为: 1002200=÷ (1) 4个符号等概率出现时每个符号包含的平均信息量为: bit 24log 2=故平均信息速率为:s b R b /2002100=?=(2)每个符号包含的平均信息量为:bit 977.11651log 1651631log 163411log 41411log 412222=+++故平均信息速率为: s b R b /7.197977.1100=?=1.6 设⼀个信号源输出四进制等概率信号,其码元宽度为125s µ。
试求码元速率和信息速率。
解:码元速率为:()baud R B 80001012516=?÷=- 信息速率为:s kb R R B b /16280004log 2=?==第⼆章信号2.2 设⼀个随机过程X (t )可以表⽰成:()()∞<<∞-+=t t t X θπ2cos 2其中θ在(0,2π)之间服从均匀分布,判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它的能量⽆限,功率有界,所以是⼀个功率信号。
`()[]()[]()()()πτθπτθππτπθπθπτπθπππ2cos 4224cos 2cos 22122cos 22cos 22020=+++=+++=?d t d t t由维纳-⾟钦关系有:()()ττωωτd e R P j X -+∞∞-?=()()[]πωδπωδπ222++-=2.3 设有⼀信号可表⽰为:()()??>≥-=000exp 4t t t t x试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
通信原理课后答案
第一章习题习题1.1 在英文字母中E 出现的概率最大,等于0.105,试求其信息量。
解:E 的信息量:()()b 25.3105.0log E log E 1log 222E =-=-==P P I习题1.2 某信息源由A ,B ,C ,D 四个符号组成,设每个符号独立出现,其出现的概率分别为1/4,1/4,3/16,5/16。
试求该信息源中每个符号的信息量。
解:b A P A P I A 241log )(log )(1log 222=-=-==b I B 415.2163log 2=-= b I C 415.2163log 2=-= b I D 678.1165log 2=-=习题1.3 某信息源由A ,B ,C ,D 四个符号组成,这些符号分别用二进制码组00,01,10,11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这四个符号等概率出现; (2)这四个符号出现概率如习题1.2所示。
解:(1)一个字母对应两个二进制脉冲,属于四进制符号,故一个字母的持续时间为2×5ms 。
传送字母的符号速率为Bd 100105213B =⨯⨯=-R等概时的平均信息速率为s b 2004log log 2B 2B b ===R M R R(2)平均信息量为比特977.1516log 165316log 1634log 414log 412222=+++=H则平均信息速率为 s b 7.197977.1100B b =⨯==H R R习题1.4 试问上题中的码元速率是多少? 解:311200 Bd 5*10B B R T -===习题1.5 设一个信息源由64个不同的符号组成,其中16个符号的出现概率均为1/32,其余48个符号出现的概率为1/96,若此信息源每秒发出1000个独立的符号,试求该信息源的平均信息速率。
解:该信息源的熵为96log 961*4832log 321*16)(log )()(log )()(22264121+=-=-=∑∑==i i i i Mi i x P x P x P x P X H=5.79比特/符号因此,该信息源的平均信息速率 1000*5.795790 b/s b R mH === 。