2016-2017学年浙江宁波董玉娣中学九上期中数学试卷

合集下载

【5套打包】宁波市初三九年级数学上期中考试测试题(含答案解析)

【5套打包】宁波市初三九年级数学上期中考试测试题(含答案解析)

新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y=2x2-1的顶点坐标是(A)A.(0,-1) B.(0,1) C.(-1,0) D.(1,0)2.如果x=-1是方程x2-x+k=0的解,那么常数k的值为(D)A.2 B.1 C.-1 D.-23.将抛物线y=x2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A.y=(x+2)2+1 B.y=(x-2)2+1 C.y=(x+2)2-1 D.y=(x-2)2-1 4.小明在解方程x2-4x-15=0时,他是这样求解的:移项,得x2-4x=15,两边同时加4,得x2-4x+4=19,∴(x-2)2=19.∴x-2=±19.∴x1=2+19,x2=2-19.这种解方程的方法称为(B)A.待定系数法 B.配方法 C.公式法 D.因式分解法5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y=-2x2+x经过A(-1,y1)和B(3,y2)两点,那么下列关系式一定正确的是(C)A.0<y2<y1 B.y1<y2<0 C.y2<y1<0 D.y2<0<y17.已知a,b,c分别是三角形的三边长,则方程(a+b)x2+2cx+(a+b)=0的根的情况是(D)A.有两个不相等的实数根 B.有两个相等的实数根C.可能有且只有一个实数根 D.没有实数根8.如图,将矩形ABCD绕点A顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(D)A .68°B .20°C .28°D .22°9.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是(D) A .a >b >c B .c >a >b C .c >b >a D .b >a >c10.如图,将△ABC 绕着点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ.若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2016年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a ≠0)中x ,y 的部分对应值如下表:则当x =-2时,y 的值为11.15.如图,射线OC 与x 轴正半轴的夹角为30°,点A 是OC 上一点,AH ⊥x 轴于H ,将△AOH 绕着点O 逆时针旋转90°后,到达△DOB 的位置,再将△DOB 沿着y 轴翻折到达△GOB 的位置.若点G恰好在抛物线y=x2(x>0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分)(1)解方程:x(x+5)=5x+25;解:x(x+5)=5(x+5),x(x+5)-5(x+5)=0,∴(x-5)(x+5)=0.∴x-5=0或x+5=0.∴x1=5,x2=-5.(2)已知点(5,0)在抛物线y=-x2+(k+1)x-k上,求出抛物线的对称轴.解:将点(5,0)代入y=-x2+(k+1)x-k,得0=-52+5×(k+1)-k,解得k=5.∴y=-x2+6x-5.∴该抛物线的对称轴为直线x=-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y=ax2.由图象可知,点B(10,-4)在函数图象上,代入y=ax2,得100a=-4,解得a=-125,∴该抛物线的解析式为y=-125x2.18.(本题7分)如图,在平面直角坐标系中,有一Rt△ABC,已知△A1AC1是由△ABC绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A1AC1顺时针旋转90°,180°后的三角形.解:如图,△B 1A 1C 2,△BB 1C 3即为所求作图形.19.(本题7分)(1)求二次函数y =x 2+x -2与x 轴的交点坐标; (2)若二次函数y =-x 2+x +a 与x 轴只有一个交点,求a 的值. 解:(1)令y =0,则有x 2+x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴只有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形. 解:(1)FG ⊥DE ,理由如下:∵把△ABC 绕点B 顺时针旋转90°至△DBE ,∴∠DEB =∠ACB. ∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A.∵∠ABC =90°,∴∠A +∠ACB =90°.∴∠DEB +∠GFE =90°.∴∠FHE =90°. ∴FG ⊥DE.(2)证明:根据旋转和平移可得∠GEF =90°,∠CBE =90°,CG ∥EB ,CB =BE , ∵CG ∥EB ,∴∠BCG =∠CBE =90°.∴四边形CBEG 是矩形.又∵CB=BE,∴四边形CBEG是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均每天可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意,得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理,得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y=600时,600=-2x2+20x+400,整理,得x2-10x+100=0,∵Δ=(-10)2-4×1×100=-300<0,∴方程没有实数根.故该专卖店平均每天盈利不可能为600元.问题情境:(1)如图1,两块等腰直角三角板△ABC 和△ECD 如图所示摆放,其中∠ACB =∠DCE =90°,点F ,H ,G 分别是线段DE ,AE ,BD 的中点,A ,C ,D 和B ,C ,E 分别共线,则FH 和FG 的数量关系是FH =FG ,位置关系是FH ⊥FG ; 合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A ,C ,E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(2)(1)中的结论还成立.证明:延长AD 交BE 于点M.∵CD =CE ,AC =BC ,∠ACD =∠BCE =90°, ∴△ACD ≌△BCE(SAS).∴AD =BE ,∠CAD =∠CBE.∵∠CBE +∠CEB =90°,∴∠CAD +∠CEB =90°.∴∠AME =90°.∴AD ⊥BE. ∵F ,H ,G 分别是DE ,AE ,BD 的中点,∴FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∴FH =FG.∵AD ⊥BE ,∴FH ⊥FG.∴(1)中结论还成立. (3)(1)中的结论仍成立.证明:连接AD ,BE ,两线交于点Z ,AD 交BC 于点X. 同(2)可得FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∵△ECD ,△ACB 都是等腰直角三角形,∠ECD =∠ACB =90°,∴CE =CD ,AC =BC. ∴∠ACD =∠BCE.∴△ACD ≌△BCE(SAS).∴AD =BE ,∠EBC =∠DAC.∴FH =FG. ∵∠DAC +∠CXA =90°,∠CXA =∠DXB ,∴∠DXB +∠EBC =90°.∴∠BZA =180°-90°=90°.∴AD ⊥BE. ∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG.∴(1)中的结论仍成立.如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B新人教版九年级第一学期期中模拟数学试卷(含答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求)1.抛物线y =2x 2-1的顶点坐标是(A)A .(0,-1)B .(0,1)C .(-1,0)D .(1,0) 2.如果x =-1是方程x 2-x +k =0的解,那么常数k 的值为(D) A .2 B .1 C .-1 D .-23.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是(B)A .y =(x +2)2+1 B .y =(x -2)2+1 C .y =(x +2)2-1 D .y =(x -2)2-1 4.小明在解方程x 2-4x -15=0时,他是这样求解的:移项,得x 2-4x =15,两边同时加4,得x 2-4x +4=19,∴(x -2)2=19.∴x -2=±19.∴x 1=2+19,x 2=2-19.这种解方程的方法称为(B)A .待定系数法B .配方法C .公式法D .因式分解法 5.下列图形中,既是轴对称图形,又是中心对称图形的是(C)A B C D6.已知抛物线y =-2x 2+x 经过A(-1,y 1)和B(3,y 2)两点,那么下列关系式一定正确的是(C)A .0<y 2<y 1B .y 1<y 2<0C .y 2<y 1<0D .y 2<0<y 17.已知a ,b ,c 分别是三角形的三边长,则方程(a +b)x 2+2cx +(a +b)=0的根的情况是(D)A .有两个不相等的实数根B .有两个相等的实数根C .可能有且只有一个实数根D .没有实数根8.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB ′C ′D ′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是(D) A .68°B .20°C .28°D .22°9.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论正确的是(D) A .a >b >c B .c >a >b C .c >b >a D .b >a >c10.如图,将△ABC 绕着点B 顺时针旋转60°得到△DBE ,点C 的对应点E 恰好落在AB 的延长线上,连接AD ,AC 与DB 交于点P ,DE 与CB 交于点Q ,连接PQ.若AD =5 cm ,PB AB =25,则PQ 的长为(A)A .2 cm B.52 cm C .3 cm D.72cm二、填空题(本大题共5个小题,每小题3分,共15分)11.在平面直角坐标系中,点A(0,1)关于原点对称的点是(0,-1). 12.方程x(x +1)=0的根为x 1=0,x 2=-1.13.某楼盘2016年房价为每平方米8 100元,经过两年连续降价后,2018年房价为7 600元.设该楼盘这两年房价平均降低率为x ,根据题意可列方程为8__100(1-x)2=7__600. 14.二次函数y =ax 2+bx +c(a ≠0)中x ,y 的部分对应值如下表:则当x =-2时,y 的值为11.15.如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH 绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置.若点G恰好在抛物线y=x2(x>0)上,则点A三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤) 16.(共题共2个小题,每小题5分,共10分)(1)解方程:x(x+5)=5x+25;解:x(x+5)=5(x+5),x(x+5)-5(x+5)=0,∴(x-5)(x+5)=0.∴x-5=0或x+5=0.∴x1=5,x2=-5.(2)已知点(5,0)在抛物线y=-x2+(k+1)x-k上,求出抛物线的对称轴.解:将点(5,0)代入y=-x2+(k+1)x-k,得0=-52+5×(k+1)-k,解得k=5.∴y=-x2+6x-5.∴该抛物线的对称轴为直线x=-62×(-1)=3.17.(本题6分)如图所示的是一桥拱的示意图,它的形状类似于抛物线,在正常水位时,该桥下面宽度为20米,拱顶距离水面4米,建立平面直角坐标系如图所示.求抛物线的解析式.解:设该抛物线的解析式为y=ax2.由图象可知,点B(10,-4)在函数图象上,代入y=ax2,得100a=-4,解得a=-125,∴该抛物线的解析式为y=-125x2.18.(本题7分)如图,在平面直角坐标系中,有一Rt△ABC,已知△A1AC1是由△ABC绕某点顺时针旋转90°得到的.(1)请你写出旋转中心的坐标是(0,0);(2)以(1)中的旋转中心为中心,画出△A 1AC 1顺时针旋转90°,180°后的三角形.解:如图,△B 1A 1C 2,△BB 1C 3即为所求作图形.19.(本题7分)(1)求二次函数y =x 2+x -2与x 轴的交点坐标; (2)若二次函数y =-x 2+x +a 与x 轴只有一个交点,求a 的值. 解:(1)令y =0,则有x 2+x -2=0. 解得x 1=1,x 2=-2.∴二次函数y =x 2+x -2与x 轴的交点坐标为(1,0),(-2,0). (2)∵二次函数y =-x 2+x +a 与x 轴只有一个交点, ∴令y =0,即-x 2+x +a =0有两个相等的实数根. ∴Δ=1+4a =0,解得a =-14.20.(本题7分)如图,已知在Rt △ABC 中,∠ABC =90°,先把△ABC 绕点B 顺时针旋转90°至△DBE 后,再把△ABC 沿射线AB 平移至△FEG ,DE ,FG 相交于点H.(1)判断线段DE ,FG 的位置关系,并说明理由; (2)连接CG ,求证:四边形CBEG 是正方形. 解:(1)FG ⊥DE ,理由如下:∵把△ABC 绕点B 顺时针旋转90°至△DBE ,∴∠DEB =∠ACB. ∵把△ABC 沿射线平移至△FEG ,∴∠GFE =∠A.∵∠ABC =90°,∴∠A +∠ACB =90°.∴∠DEB +∠GFE =90°.∴∠FHE =90°. ∴FG ⊥DE.(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°.∴四边形CBEG是矩形.又∵CB=BE,∴四边形CBEG是正方形.21.(本题12分)我市某童装专卖店在销售中发现,一款童装每件进价为40元,若销售价为60元,每天可售出20件,为迎接“双十一”,专卖店决定采取适当的降价措施,以扩大销售量,经市场调查发现,如果每件童装降价1元,那么平均每天可多售出2件.设每件童装降价x元(x>0)时,平均每天可盈利y元.(1)写出y与x的函数关系式;(2)根据(1)中你写出的函数关系式,解答下列问题:①当该专卖店每件童装降价5元时,平均每天盈利多少元?②当该专卖店每件童装降价多少元时,平均每天盈利400元?③该专卖店要想平均每天盈利600元,可能吗?请说明理由.解:(1)根据题意,得y=(20+2x)(60-40-x)=(20+2x)(20-x)=400+40x-20x-2x2=-2x2+20x+400.∴y=-2x2+20x+400.(2)①当x=5时,y=-2×52+20×5+400=450,∴当该专卖店每件童装降价5元时,平均每天盈利450元.②当y=400时,400=-2x2+20x+400,整理,得x2-10x=0,解得x1=10,x2=0(不合题意,舍去),∴当该专卖店每件童装降价10元时,平均每天盈利400元.③该专卖店平均每天盈利不可能为600元.理由:当y=600时,600=-2x2+20x+400,整理,得x2-10x+100=0,∵Δ=(-10)2-4×1×100=-300<0,∴方程没有实数根.故该专卖店平均每天盈利不可能为600元.22.(本题12分)综合与实践:问题情境:(1)如图1,两块等腰直角三角板△ABC 和△ECD 如图所示摆放,其中∠ACB =∠DCE =90°,点F ,H ,G 分别是线段DE ,AE ,BD 的中点,A ,C ,D 和B ,C ,E 分别共线,则FH 和FG 的数量关系是FH =FG ,位置关系是FH ⊥FG ;合作探究:(2)如图2,若将图1中的△DEC 绕着点C 顺时针旋转至A ,C ,E 在一条直线上,其余条件不变,那么(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若将图1中的△DEC 绕着点C 顺时针旋转一个锐角,那么(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由.解:(2)(1)中的结论还成立.证明:延长AD 交BE 于点M.∵CD =CE ,AC =BC ,∠ACD =∠BCE =90°,∴△ACD ≌△BCE(SAS).∴AD =BE ,∠CAD =∠CBE.∵∠CBE +∠CEB =90°,∴∠CAD +∠CEB =90°.∴∠AME =90°.∴AD ⊥BE.∵F ,H ,G 分别是DE ,AE ,BD 的中点,∴FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE.∴FH =FG. ∵AD ⊥BE ,∴FH ⊥FG.∴(1)中结论还成立.(3)(1)中的结论仍成立.证明:连接AD ,BE ,两线交于点Z ,AD 交BC 于点X.同(2)可得FH =12AD ,FH ∥AD ,FG =12BE ,FG ∥BE. ∵△ECD ,△ACB 都是等腰直角三角形,∠ECD =∠ACB =90°,∴CE =CD ,AC =BC. ∴∠ACD =∠BCE.∴△ACD ≌△BCE(SAS).∴AD =BE ,∠EBC =∠DAC.∴FH =FG.∵∠DAC +∠CXA =90°,∠CXA =∠DXB ,∴∠DXB +∠EBC =90°.∴∠BZA =180°-90°=90°.∴AD ⊥BE.∵FH ∥AD ,FG ∥BE ,∴FH ⊥FG.∴(1)中的结论仍成立.23.(本题14分)综合与探究:如图,二次函数y =-14x 2+32x +4的图象与x 轴交于点B新人教版九年级第一学期期中模拟数学试卷(答案)一、选择题(共30分,每小题3分)1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点( )A .(2,﹣3)B .(﹣3,﹣3)C .(2,3)D .(﹣4,6)2.如图,△ABC 中,DE ∥BC ,=,AE =2cm ,则AC 的长是( )A .2cmB .4cmC .6cmD .8cm3.已知1是关于x 的一元二次方程(m ﹣1)x 2+x +1=0的一个根,则m 的值是( )A .1B .﹣1C .0D .无法确定4.右面的三视图对应的物体是( )A .B .C .D .5.若点(﹣2,y 1),(﹣1,y 2),(3,y 3)在双曲线y =(k <0)上,则y 1,y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 2<y 1<y 3D .y 3<y 1<y 26.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.547.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.208.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.69.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.二、填空题(共12分,每小题3分)11.方程x2=x的根是.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN=.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.25.(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.参考答案一、选择题1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)【分析】将(﹣2,3)代入y=即可求出k的值,再根据k=xy解答即可.解:设反比例函数解析式为y=,将点(﹣2,3)代入解析式得k=﹣2×3=﹣6,符合题意的点只有点A:k=2×(﹣3)=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm【分析】根据平行线分线段成比例定理得出=,代入求出即可.解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的线段对应成比例.3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定【分析】把x=1代入方程,即可得到一个关于m的方程,即可求解.解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选:B.【点评】本题主要考查了方程的解的定义,正确理解定义是关键.4.右面的三视图对应的物体是()A.B.C.D.【分析】因为主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.所以可按以上定义逐项分析即可.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点,故选:D.【点评】本题主要考查学生对图形的三视图的了解及学生的空间想象能力.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.6.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【分析】由△ABC∽△DEF,S△ABC:S△DEF=9,根据相似三角形的面积比等于相似比的平方,即可求得△ABC与△DEF的相似比,又由相似三角形的周长的比等于相似比,即可求得△ABC与△DEF的周长比为:3:1,又由△ABC的周长为18厘米,即可求得△DEF 的周长.解:∵△ABC∽△DEF,S△ABC:S△DEF=9,∴△ABC与△DEF的相似比为:3:1,∴△ABC与△DEF的周长比为:3:1,∵△ABC的周长为18厘米,∴,∴△DEF的周长为6厘米.故选:C.【点评】此题考查了相似三角形的性质.解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形的周长的比等于相似比定理的应用.7.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.20【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.解:根据题意得,=,解得,m=20.故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.8.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.6【分析】由矩形的性质和已知条件可求出∠AFE=∠AEF,进而推出AE=AF,求出BE,根据勾股定理求出AE,即可求出AF,即可求出答案.解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,A B=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.【点评】本题考查了矩形性质,勾股定理的运用,平行线性质,等腰三角形的性质和判定的应用,注意:矩形的对边相等且平行是解题的关键.9.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对【分析】首先由四边形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE =CE,FC=BC,证出△ADE∽△ECF,然后根据相似三角形的对应边成比例与相似三角形的对应角相等,证明出△AEF∽△ADE,则可得△AEF∽△ADE∽△ECF,进而可得出结论.解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故选:C.【点评】此题考查了相似三角形的判定与性质,以及正方形的性质.此题难度适中,解题的关键是证明△ECF∽△ADE,在此基础上可证△AEF∽△ADE.10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.【分析】AF交GC于点K.根据△ADK∽△FGK,求出KF的长,再根据△CHK∽△FGK,求出CH的长.解:∵CD=BC=1,∴GD=3﹣1=2,∵△ADK∽△FGK,∴,即,∴DK=DG,∴DK=2×=,GK=2×=,∴KF=,∵△CHK∽△FGK,∴,∴,∴CH=.方法二:连接AC、CF,利用面积法:CH=;故选:A.【点评】本题考查了勾股定理,利用勾股定理求出三角形的边长,再构造相似三角形是解题的关键.二、填空题(共12分,每小题3分)11.方程x2=x的根是x 1=0,x2=.【分析】方程整理后,利用因式分解法求出解即可.解:方程整理得:x(x﹣)=0,可得x=0或x﹣=0,解得:x 1=0,x2=.故答案为:x 1=0,x2=【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为 4 .【分析】在Rt△AEB中,由∠AEB=90°,AB=2BE,推出∠EAB=30°,设BE=a,则AB=2a,由题意2a×a=8,推出a2=,可得k=a2=4.解:在Rt△AEB中,∵∠AEB=90°,AB=2BE,∴∠EAB=30°,设BE=a,则AB=2a,OE=a,由题意2a×a=8,∴a2=,∴k=a2=4,故答案为4.【点评】本题考查反比例函数系数的几何意义、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN= 3 .【分析】首先证明△ACB∽△AMN,可得AC:CB=AM:MN,代入数值求解即可.解:∵∠C=∠AMN=90°,∠A为△ACB和△AMN的公共角,∴△ACB∽△AMN,∴AC:CB=AM:MN,在直角△ABC中,由勾股定理得AB2=AC2+BC2,即AB=10;又∵AC=8,CB=6,AM=AB﹣6=4,∴=,即MN=3.【点评】本题主要考查相似三角形的判定和性质,涉及到勾股定理的运用.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是3+.【分析】作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.利用勾股定理求出PQ″即可解决问题;解:作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.在Rt△PHQ″中,PQ″==,∴PM+MN+NQ的最小值=3+.故答案为3+.【点评】本题考查轴对称﹣最短问题,矩形的性质等知识,解题的关键是正确寻找PM+MN+NQ最小时点M的位置,属于中考常考题型.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.【分析】此题可以采用配方法和公式法,解题时要正确理解运用每种方法的步骤.解法一:原式可以变形为,,,∴,∴,.解法二:a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=.【点评】公式法和配方法适用于任何一元二次方程,解题时要细心.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.【分析】直接利用已知路灯的影子得出灯的位置,进而得出EF的影长.解:如图所示:【点评】此题主要考查了中心投影,正确得出灯的位置是解题关键.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.【分析】(1)利用位似图形的性质得出C,D两点坐标在A,B坐标的基础上,同乘以﹣2,进而得出坐标画出图形即可;(2)利用位似图形的性质得出C,D点坐标.解:(1)如图所示:;(2)如图所示:D(﹣4,2),C(﹣6,﹣2).【点评】此题主要考查了位似变换,得出对应点坐标是解题关键.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.【分析】由二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出结论.解:∵关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,∴,解得:k=﹣2.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)如图,作FH⊥BC交BC的延长线于H.在Rt△BFH中,根据勾股定理计算即可.(1)证明:∵AF∥CD,∴∠EAF=∠ECD,∵E是AC中点,∴AE=EC,在△AEF和△CED中,,∴△AEF≌△CED,∴AF=CD,∴四边形AFCD是平行四边形,∵∠ACB=90°,AD=DB,∴CD=AD=BD,∴四边形AFCD是菱形.(2)解:如图,作FH⊥BC交BC的延长线于H.∵四边形AFCD是菱形,∴AC⊥DF,EF=DE=BC=,∴∠H=∠ECH=∠CEF=90°,∴四边形FHCE是矩形,∴FH=EC=2,EF=CH=,BH=CH+BC=,在Rt△BHF中,BF==.【点评】本题考查菱形的判定和性质、三角形的中位线定理、直角三角形斜边中线的性质、。

(宁波)2017学年第一学期九年级期中测试-数学试题卷参考答案及评分建议

(宁波)2017学年第一学期九年级期中测试-数学试题卷参考答案及评分建议

三、解答题(6+8+8+10+10+10+12+14=78分)19.如图所示,即为所求20.解:(1)根据题意得:抽取的数字为正数的情况有1个,则14P=;(2)∵方程ax2﹣2ax+a+3=0有实数根,∴△=4a2﹣4a(a+3)=﹣12a ≥0,且a≠0,解得a<0,则关于x的一元二次方程ax2﹣2ax+a+3=0有实数根的概率为23;(3)所有等可能的情况有12种,其中点(x ,y )落在第二象限内的情况有2种, 则21126P ==. 21. 解:(1)∵二次函数228y x x =--可化为()219y x =--, ∴顶点坐标(1,﹣9),对称轴直线x =1, ∵令x =0,则y =﹣8,∴抛物线与y 坐标轴交点的坐标(0,﹣8),∵令y =0,则x 2﹣2x ﹣8=0,解得x 1=4,x 2=﹣2, ∴抛物线与x 坐标轴交点的坐标(4,0),(﹣2,0); (2)如图所示:由图可知,x <﹣2或x >4时y >0.解:(1)∵AB ⊥CD ,CD =16, ∴CE =DE =8, 设OB =x , 又∵BE =4,∴()22248x x =-+, 解得:x =10,∴⊙O 的直径是20.(2)∵12M BOD =∠∠,∠M =∠D ,∴12D BOD =∠∠,∵AB ⊥CD , ∴∠D =30°.23.(1)证明:∵AD 平分∠BAC , ∴∠BAD =∠DAC , ∵∠EAD =∠ADE , ∴∠BAD =∠ADE , ∴AB ∥DE ,∴△DCE ∽△BCA ; (2)解:∵∠EAD =∠ADE , ∴AE =DE , 设DE =x ,∴CE =AC ﹣AE =AC ﹣DE =4﹣x , ∵△DCE ∽△BCA , ∴DE :AB =CE :AC , 即x :3=(4﹣x ):4,解得:127x =, ∴DE 的长是127.(1)()()2302050010104005000y x x x x =+--=-++(2)∵y =8000,∴2104005000=8000x x -++,∴110x =,230x =, ∴10+30=40(元/件)或30+30=60(元/件) 答:销售单价为每件40元或每件60元. (3)()2210400500010209000y x x x =-++=--+∵30220x +4且0x ³,∴010x #, ∵当010x #时,y 随x 的增大而增大,∴x =10时,y 最大=8000元. 答:此时商场获得的最大月利润是8000元.25. 解:(1)如图1所示:(2)△AEF 是否为“智慧三角形”, 理由如下:设正方形的边长为4a , ∵E 是DC 的中点, ∴DE =CE =2a , ∵BC :FC =4:1,∴FC =a ,BF =4a ﹣a =3a ,在Rt △ADE 中,AE 2=(4a )2+(2a )2=20a 2, 在Rt △ECF 中,EF 2=(2a )2+a 2=5a 2, 在Rt △ABF 中,AF 2=(4a )2+(3a )2=25a 2, ∴AE 2+EF 2=AF 2,∴△AEF 是直角三角形,∵斜边AF 上的中线等于AF 的一半, ∴△AEF 为“智慧三角形”; (3)如图3所示:由“智慧三角形”的定义可得△OPQ 为直角三角形, 根据题意可得一条直角边为1,当斜边最短时,另一条直角边最短,则面积取得最小值, 由垂线段最短可得斜边最短为3,由勾股定理可得PQ =13PM =⨯=13OM ,故点P 的坐标(3-13),(3,13).解:(1)∵抛物线()230y ax x a =-+≠的对称轴为直线2x =-. ∴122a --=-,∴14a =-,∴2134y x x =--+. ∴D (-2,4)(2)探究一:当04t <<时,W 有最大值.∵抛物线2134y x x =--+交x 轴于A 、B 两点,交y 轴于点C , ∴A (-6,0),B (2,0),C (0,3), ∴OA =6,OC =3.当04t <<时,作DM ⊥y 轴于M ,则DM =2,OM =4. ∵P (0,t ),∴OP =t ,MP =OM -OP =4-t . ∵PAD AOP DMP OADM S S S S =--△△△梯形()111222DM OA OM OA OP DM MP =+⋅-⋅-⋅ ()()111264624222t t =+⨯-⨯⨯-⨯⨯- 122t =-∴()()21222318W t t t =-=--+ ∴当t =3时,W 有最大值,18W =最大值. 探究二:存在.分三种情况:①当190PDA =︒∠时,作DE ⊥x 轴于E ,则OE =2,DE =4,∠DEA =90°, ∴AE =OA -OE =6-2=4=DE .∴∠DAE =∠ADE =45°,AD ==,∴11904545PDE PDA ADE =-=︒-︒=︒∠∠∠. ∵DM ⊥y 轴,OA ⊥y 轴,∴DM ∥OA ,∴∠MDE =∠DEA =90°,∴11904545MDP MDE PDE =-=︒-︒=︒∠∠∠.∴12PM DM ==,1PD =此时1OC OA PD AD =,又因为190AOC PDA ==︒∠∠, ∴1Rt Rt ADP AOC △△,∴11422OP OM PM =-=-=, ∴P 1(0,2).∴当190PDA =︒∠时,存在点P 1,使1Rt Rt ADP AOC △△,此时P 1点的坐标为(0,2).②当290P AD =︒∠时,则245P AO =︒∠,∴2P A =2P A OA ==∵AD OC =2P AAD OC OA≠. ∴2P AD △与△AOC 不相似,此时点P 2不存在.③当390AP D =︒∠时,以AD 为直径作⊙O 1,则⊙O 1的半径2ADr == 圆心O 1到y 轴的距离d =4. ∵d >r ,∴⊙O 1与y 轴相离.不存在点P 3,使390AP D =︒∠.∴综上所述,只存在一点P (0,2)使Rt △ADP 与Rt △AOC 相似.。

浙江省宁波市九年级上学期期中数学试卷

浙江省宁波市九年级上学期期中数学试卷

浙江省宁波市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题. (共10题;共20分)1. (2分)如果一元二次方程x2﹣2x﹣3=0的两根为x1、x2 ,则x12x2+x1x22的值等于()A . ﹣6B . 6C . ﹣5D . 52. (2分)关于x的一元二次方程:x2﹣4x﹣m2=0有两个实数根x1、x2 ,则m2()=()A .B .C . 4D . ﹣43. (2分)如图,有一圆弧形门拱,拱高AB=1m,跨度CD=4m,那么这个门拱的半径为()A . 2mB . 2.5mC . 3mD . 5m4. (2分) (2018九上·东湖期中) 抛物线y=﹣x2向上平移2个单位,再向左平移3个单位得到的抛物线解析式为()A . y=﹣(x+3)2+2B . y=﹣(x﹣3)2+2C . y=﹣(x+3)2﹣2D . y=﹣(x﹣3)2﹣25. (2分)如图,正方形PQMN的边PQ在x轴上,点M坐标为(2,1),将正方形PQMN沿x轴连续翻转,则经过点(2015,)的顶点是()A . 点PB . 点QC . 点MD . 点N6. (2分)用配方法解下列方程,配方正确的是()A . 3x2﹣6x=9可化为(x﹣1)2=4B . x2﹣4x=0可化为(x+2)2=4C . x2+8x+9=0可化为(x+4)2=25D . 2y2﹣4y﹣1=0可化为2(y+1)2=37. (2分)用锤子以均匀的力敲击铁钉入木板。

随着铁钉的深入,铁钉所受的阻力会越来越大,使得每次钉入木板的钉子的长度后一次为前一次的k倍(0<k<1).已知一个钉子受击3次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的,设铁钉的长度为1,那么符合这一事实的一个方程是()A .B .C .D .8. (2分)已知二次函数y=2x2+9x+34,当自变量x取两个不同的值x1 , x2时函数值相等,则当自变量x 取x1+x2时函数值与()A . x=1时的函数值相等B . x=0时的函数值相等C . x=时的函数值相等D . x=时的函数值相等9. (2分) (2018九上·梁子湖期末) 如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为()A . 2B .C .D .10. (2分)如图,△ABC是等腰直角三角形,∠ACB=90°,若CD⊥AB,DE⊥BC垂足分别是D,E.则图中全等的三角形共有()A . 2对B . 3对C . 4对D . 5对二、填空题 (共6题;共6分)11. (1分)点A的坐标为(2,﹣3),它关于坐标原点O对称的点的坐标为________ .12. (1分)方程的根是________13. (1分)(2020·江苏模拟) 若二次函数(为常数)的图象在的部分与轴有两个公共点,则的取值范围是________.14. (1分)已知ΔABC,AB=AC=8,∠BAC=120°,则ΔABC的外接圆面积为________。

【5套打包】宁波市初三九年级数学上期中考试检测试题(解析版)

【5套打包】宁波市初三九年级数学上期中考试检测试题(解析版)

新九年级上册数学期中考试试题及答案一、选择题(每小题4分,共48分)1.(4分)﹣6的绝对值是()A.﹣6B.﹣C.D.62.(4分)如图所示的几何体,它的左视图是()A.B.C.D.3.(4分)为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体B.样本C.个体D.样本容量4.(4分)计算(x﹣1)÷(1﹣)•x的结果是()A.﹣x2B.﹣1C.x2D.15.(4分)下列命题是真命题的是()A.对角线相互垂直的四边形是平行四边形B.对角线相等且相互垂直的四边形是菱形C.四条边相等的四边形是正方形D.对角线相等且相互平分的四边形是矩形6.(4分)把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,……,按此规律排列下去,则第⑤个图案中三角形的个数为()A.14个B.15个C.16个D.17个7.(4分)抛物线y=2(x﹣2)2﹣1关于x轴对称的抛物线的解析式为()A.y=2(x﹣2)2+1B.y=﹣2(x﹣2)2+1C.y=﹣2(x﹣2)2﹣1D.y=﹣(x﹣2)2﹣18.(4分)如图,在等腰△ABC中,AB=AC,tan C=2,BD⊥AC于点D,点G是底边BC上一点,过点G向两腰作垂线段,垂足分别为E、F,若BD=4,GE=1.5,则BF的长度为()A.0.75B.0.8C.1.25D.1.359.(4分)如图,MN是垂直于水平面的一棵树,小马(身髙1.70米)从点A出发,先沿水平方向向左走10米到B点,再经过一段坡度i=4:3,坡长为5米的斜坡BC到达C点,然后再沿水平方向向左行走5米到达N点(A、B、C、N在同一平面内),小马在线段AB的黄金分割点P处()测得大树的顶端M的仰角为37°,则大树MN的高度约为()米(参考数据:tan37°≈0.75,sin37°≈0.60,≈2.236,≈1.732).A.7.8米B.8.0米C.8.1米D.8.3米10.(4分)抛物线y=ax2+bx+c(a≠0)的图象如图所示,抛物线经过点(﹣1,0),则下列结论:①abc>0;②2a﹣b=0;③3a+c>0;④a+b>am2+bm(m为一切实数);⑤b2>4ac;正确的个数有()A.1个B.2个C.3个D.4个11.(4分)如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC 中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣612.(4分)已知关于x的二次函数y=(k﹣1)x2+(2k﹣3)x+k+2的图象在x轴上方,关于m的分式方程有整数解,则同时满足两个条件的整数k值个数()A.2个B.3个C.4个D.5个二、填空题(每小题4分,共24分)13.(4分)计算:﹣10+=.14.(4分)函数y=x2+图象上的点P(x,y)一定在第象限.15.(4分)在二次函数y=ax2+2ax+4(a<0)的图象上有两点(﹣2,y1)、(1,y2),则y1﹣y20(填“>”、“<”或“=”).16.(4分)如图,Rt△ABC中,∠A=90°,AB=4,AC=6,D、E分别是AB、AC边上的动点,且CE=3BD,则△BDE面积的最大值为.17.(4分)周末秋高气爽,阳光明媚,小赵带爷爷到滨江路去散步,祖孙俩在长度为600米的A、B路段上往返行走,他们从A地出发,小赵陪爷爷走了两圈一同回到A地后,就开始匀速跑步,爷爷继续匀速散步,如图反映了他们距离A地的路程s(米)与小赵跑步的时间t(分钟)的部分关系图(他们各自到达A地或B地后立即掉头,调头转身时间忽略不计),则小赵跑步过程中祖孙第四次与第五次相遇地点间距为米.18.(4分)重庆一中乘持“尊重自由、激发自觉”的教育理念,开展了丰富多彩的第二课堂及各种有趣有益的竟赛活动.其中“小棋王”争霸赛得到同学们的涵跃参与,经过初选、复试最后十位同学进入决赛这十位同学进行单循环比赛(每两人均赛一局),胜一局得2分、平局得1分、负一局得0分,最后按照每人的累计得分的多少进行排名,得分最高者就是第一名,以此类推.赛完后发现每人最后得分均不相同,第一名和第二名的同学均没负一局,他们两人的得分之和比第三名同学多20分,第四名同学的得分刚好是最后四名同学得分的总和,则第五名的同学得分为分.三、解答题(每小题8分,共16分)19.(8分)如图,AB∥CD,点E在线段AB上,连接EC、ED、AD,且ED平分∠CEB,AD⊥EF,若∠ADC=42°,∠A﹣∠B=8°,求∠BDE的度数.20.(8分)在大课间活动中,同学们积极参加体育锻炼,小段同学就本班同学“我最擅长的体育项目”进行了一次调查统计,下面是她通过收集数据后,绘制的两幅不完整的统计图,请你根据图中提供的信息,解答以下问题:(1)该班共有名学生;补全条形统计图;在扇形统计图中,“其他”部分所对应的圆心角度数为度;(2)学校将举办冬季运动会,该班已推选5位同学参加乒乓球活动,其中有2位男同学(A,B)和3位女同学(C,D,E),现从中选取两名同学组成双打组合,用树状图或列表法求恰好选出一男一女组成混合双打组合的概率.四、解答题(每小题10分,共50分)21.(10分)计算:(1)因式分解:(x﹣2y)2﹣(2x+5y)2;(2)解方程:(公式法)2x(x﹣3)=x2﹣1.22.(10分)在目前万物互联的时代,人工智能正掀起一场影响深刻的技术革命.谷歌、苹果,BAT,华为……巨头们纷纷布局人工智能,有人猜测,互联网+过后,我们可能会迎来机器人+,教育从幼儿抓起,近年来我国国内幼儿教育机器人发展趋势迅猛,市场上出现了满足各类要求的幼教机器人产品.“双十一“当天,某品牌幼教机器人专卖店抓住机遇,对最畅销的A款幼教机器人进行促销.一台A款幼教机器人的成本价为850元,标价为1300元.(1)一台A款幼教机器人的价格最多降价多少元,才能使利润率不低于30%;(2)该专卖店以前每周共售出A款幼教机器人100个,“双十一“狂购夜中每台A款幼教机器人在标价的基础上降价2m元,结果这天晚上卖出的A款幼教机器人的数量比原来一周卖出的A款幼教机器人的数量增加了m%,同时这天晚上的利润比原来一周的利润增加了m%,求m的值.23.(10分)在▱ABCD中,点E为CD边上一点,点F为BC中点,连接BE,DF交于点G,且GA=GD:(1)如图1,若AB=AE=BG=6,AE⊥CD,求AG2的值;(2)如图2,若EM平分∠BEC,且EM∥DF,过点G作GN⊥BE交AE于点N且GN=GE,求证:AE⊥CD.24.(10分)阅读材料:若关于x的一元二次方程ax2+bx+c=0(a≠0,a、b、c为常数)的根均为整数,称该方程为“快乐方程”,我们发现任何一个“快乐方程”的判别式△=b2﹣4ac一定为完全平方数规定F(a,b,c)=为该“快乐方程”的“快乐数”,若有另一个“快乐方程”px2+qx+r=0(p≠0,(p、q、r为常数)的“快乐数”为F (p,q,r)且满足|rF(a,b,c)﹣cF(p,q,r)|=0,则称F(a,b,c)与F(p,q,r)互为“乐呵数”例如“快乐方程”x2﹣2x﹣3=0的两根均为整数,其判别式△=(﹣2)2﹣4×1×(﹣3)=16=42其“快乐数”F(1,﹣2,﹣3)=(1)“快乐方程”x2﹣4x+3=0的“快乐数”为,若关于x的一元二次方程x2﹣(2m﹣3)x+m2﹣4m﹣5=0(m 为整数,且5<m<22)是“快乐方程”,求其“快乐数”(2)若关于x的一元二次方程x2﹣(m﹣1)x+m+1=0与x2﹣(n+2)x+2n=0(m,n均为整数)都是“快乐方程”,且其“快乐数”互为“乐呵数”,求n的值.五、解答题(共12分)25.(12分)在平面直角坐标系中,二次函数y=ax2+bx﹣8的图象与x轴交于A、B两点,与y轴交于点C,直线y=kx+(k≠0)经过点A,与抛物线交于另一点R,已知OC=2OA,OB=3OA.(1)求抛物线与直线的解析式;(2)如图1,若点P是x轴下方抛物线上一点,过点P做PH⊥AR于点H,过点P做PQ∥x轴交抛物线于点Q,过点P做PH′⊥x轴于点H′,K为直线PH′上一点,且PK=2PQ,点I为第四象限内一点,且在直线PQ上方,连接IP、IQ、IK,记l=PQ,m=IP+IQ+IK,当l取得最大值时,求出点P的坐标,并求出此时m的最小值.(3)如图2,将点A沿直线AR方向平移13个长度单位到点M,过点M做MN⊥x轴,交抛物线于点N,动点D为x轴上一点,连接MD、DN,再将△MDN沿直线MD翻折为△MDN′(点M、N、D、N′在同一平面内),连接AN、AN′、NN′,当△ANN′为等腰三角形时,请直接写出点D的坐标.2018-2019学年重庆一中九年级(上)期中数学试卷参考答案与试题解析一、选择题(每小题4分,共48分)1.【解答】解:|﹣6|=6.故选:D.2.【解答】解:从左边看第一层是两个小正方形,第二层左边一个小正方形,故选:C.3.【解答】解:抽出的500名考生的数学成绩是样本,故选:B.4.【解答】解:原式=(x﹣1)÷•x=(x﹣1)••x=x2,故选:C.5.【解答】解:A、对角线相互垂直的四边形是平行四边形,不是真命题;B、对角线相等且相互垂直的四边形是菱形,也可能是正方形,所以,不是真命题;C、四条边相等的四边形是正方形,也可能是菱形,所以,不是真命题;D、对角线相等且相互平分的四边形是矩形,正确,是真命题,故选:D.6.【解答】解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个,则第⑤个图中三角形的个数是4×(5﹣1)=16个,故选:C.7.【解答】解:抛物线y=2(x﹣2)2﹣1的顶点坐标为(2,﹣1),而(2,﹣1)关于x轴对称的点的坐标为(2,1),所以所求抛物线的解析式为y=﹣2(x﹣2)2+1.故选:B.8.【解答】解:连接AG,∵S△CGA+S△BGA=S△ABC,∴+=×AC×BD,∵AC=AB,∴GE+GF=BD,∵BD=4,GE=1.5,∴GF=2.5,∵tan C=2=,BD=4,∴CD=2,由勾股定理得:BC==新九年级(上)期中考试数学试题及答案一、选择题(本大题共10小题,每小题4分,满分40分)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=22.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣33.若a=5cm,b=10mm,则的值是()A.B.C.2 D.54.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣27.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s的速度向右运动,若直线l 在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.二、填空题(本大题共4大题,每小题5分,满分20分)11.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:,使△ABC∽△AED.12.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为.13.如图,正方形OAPB,矩形ADFE的顶点O,A,D,B在坐标轴上,点E是AP的中点,点P,F在函数y=(x>0)图象上,则点F的坐标是.14.如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A'BE,点A'落在矩形ABCD的内部,且∠AA'G=90°,若以点A'、G、C为顶点的三角形是直角三角形,则AE=.三、(本大题共2小题,每小题8分,满分16分)15.已知,求的值.16.已知二次函数y=x2+2x﹣3.(1)用配方法求该二次函数图象的顶点坐标;(2)指出y随x的变化情况.四、(本大题共2小题,每小题8分,满分16分)17.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC 的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.18.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.五、(本大题共2小题,每小题10分,满分20分)19.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.求证:(1)求证:AC2=AD•AB;(2)利用相似形的知识证明AB2=AC2+BC2.六、(本题满分12分)21.根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?七、(本题满分12分)22.定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是;(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图象经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.八、(本题满分14分)23.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.参考答案与试题解析一.选择题(共10小题)1.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选:C.2.将抛物线y=2x2向左平移3个单位,所得抛物线的解析式是()A.y=2(x+3)2B.y=2(x﹣3)2C.y=2x2+3 D.y=2x2﹣3【分析】按照“左加右减”的规律即可求得.【解答】解:将抛物线y=2x2向左平移3个单位,得y=2(x+3)2;故所得抛物线的解析式为y=2(x+3)2.故选:A.3.若a=5cm,b=10mm,则的值是()A.B.C.2 D.5【分析】根据比例线段计算即可.【解答】解:因为a=5cm,b=10mm,所以的值=,故选:D.4.函数y=﹣的图象位于()A.第一、二象限B.第三、四象限C.第一、三象限D.第二、四象限【分析】根据反比例函数的图象和性质,k=﹣2<0,函数位于二、四象限.【解答】解:y=﹣中k=﹣2<0,根据反比例函数的性质,图象位于第二、四象限.故选:D.5.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.【分析】根据相似图形的定义,结合图形,对选项一一分析,排除不符合要求答案.【解答】解:A:形状相同,符合相似形的定义,对应角相等,所以三角形相似,故A选项不符合要求;B:形状相同,符合相似形的定义,故B选项不符合要求;C:形状相同,符合相似形的定义,故C选项不符合要求;D:两个矩形,虽然四个角对应相等,但对应边不成比例,故D选项符合要求;故选:D.6.下列关于二次函数y=x2﹣2x﹣1的说法中,正确的是()A.抛物线的开口向下B.抛物线的点点坐标是(1,﹣1)C.当x>1时,y随x的增大而减小D.当x=1时,函数y的最小值是﹣2【分析】根据二次函数的图象性质即可判断.【解答】解:由二次函数y=x2﹣2x﹣1=(x﹣1)2﹣2可知a=﹣2<0,∴二次函数开口向下,顶点为(1,﹣2),对称轴为:直线x=1,当x=1时,函数y的最小值是﹣2,当x>1时,y随x的增大而增大,故选:D.7.如图所示,点P是▱ABCD的对角线AC上的一点,过点P分别作PE∥BC,PF∥CD,交AB,AD于点E,F,则下列式子中不成立的是()A.=B.=C.=D.=【分析】根据相似三角形的判定和性质,以及平行线分线段成比例定理即可得到结论.【解答】解:∵PF∥CD,PE∥BC,∴△APF∽△ACD,△AEP∽△ABC,∴=,=,∴;=,故A、D正确;∵PE∥BC,PF∥CD,∴四边形AEPF是平行四边形,∴PF=AE,∵=,∴;故B正确;同理,故C错误;故选:C.8.反比例函数y=(k≠0)与二次函数y=x2+kx﹣k的大致图象是()A.B.C.D.【分析】首先根据反比例函数所在象限确定k的符号,再根据k的符号确定抛物线的开口方向和对称轴,即可选出答案.【解答】解:A、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0,此时函数y=x2+kx﹣k的对称轴为y=﹣<0,对称轴在y轴的左侧,与所示图象不符,故本选项错误;B、反比例函数y=(k≠0)的图象经过第一、三象限,则k>0,此时函数y=x2+kx﹣k的对称轴为y=﹣<0,对称轴在y轴的左侧,﹣k<0,与y轴交于负半轴,与所示图象相符,故本选项正确;C、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0,此时函数y=x2+kx﹣k的对称轴为y=﹣>0,对称轴在y轴的右侧,与所示图象不符,故本选项错误;D、反比例函数y=(k≠0)的图象经过第二、四象限,则k<0,此时,﹣k>0,函数y=x2+kx﹣k的与y轴交于正半轴,与所示图象不符,故本选项错误;故选:B.9.如图,将矩形纸片ABCD折叠,使点A与点C重合,折痕为EF,若AB=4,BC=2,那么线段EF的长为()A.2B.C.D.【分析】首先利用勾股定理计算出AC的长,进而得到CO的长,然后证明△DAC∽△OFC,根据相似三角形的性质可得,然后代入具体数值可得FO的长,进而得到答案.【解答】解:∵将矩形纸片ABCD折叠,使点C与点A重合,∴AC⊥EF,AO=CO,在矩形ABCD,∠D=90°,∴△ACD是Rt△,由勾股定理得AC==2,∴CO=,∵∠EOC=∠D=90°,∠ECO=∠DCA,∴△DAC∽△OFC,∴,∴,∴EO=,∴EF=2×=.故选:B.10.如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s的速度向右运动,若直线l 在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A.B.C.D.【分析】根据题意可以分别得到各段y与x的函数解析式,从而可以解答本题.【解答】解:点M从点A到点D的过程中,y==x,(x≤3),故选项A、B、C错误,当点M从D点使点N到点B的过程中,y=4,(3<x≤5),点M到C的过程中,y=4﹣=﹣x+,(x>5),故选项D正确,故选:D.二.填空题(共4小题)11.如图,在△ABC中点D、E分别在边AB、AC上,请添加一个条件:∠AED=∠B(答案不唯一),使△ABC∽△AED.【分析】根据∠AED=∠B和∠A=∠A可以求证△AED∽△ABC,故添加条件∠AED=∠B即可以求证△AED∽△ABC.【解答】解:∵∠AED=∠B,∠A=∠A,∴△AED∽△ABC,故添加条件∠AED=∠B即可以使得△AED∽△ABC,故答案为:∠AED=∠B(答案不唯一).12.若抛物线y=x2﹣2x﹣3与x轴分别交于A,B两点,则AB的长为 4 .【分析】先求出二次函数与x轴的2个交点坐标,然后再求出2点之间的距离.【解答】解:二次函数y=x2﹣2x﹣3与x轴交点A、B的横坐标为一元二次方程x2﹣2x﹣3=0的两个根,求得x1=﹣1,x2=3,则AB=|x2﹣x1|=4.13.如图,正方形OAPB,矩形ADFE的顶点O,A,D,B在坐标轴上,点E是AP的中点,点P,F在函数y=(x>0)图象上,则点F的坐标是(2,).【分析】根据题意可以求得点A的坐标,从而可以求得点F的坐标,本题得以解决.【解答】解:设点P的坐标为(a,),∵a=,得a=1或a=﹣1(舍去),∴点P的坐标为(1,1),∵点E是AP的中点,四边形ADFE是矩形,∴AE=DF,AE=,∴DF=,当y=时,,得x=2,∴点F的坐标为(2,).14.如图,矩形ABCD中,AB=3,AD=9,将△ABE沿BE翻折得到△A'BE,点A'落在矩形ABCD的内部,且∠AA'G=90°,若以点A'、G、C为顶点的三角形是直角三角形,则AE=1或.【分析】分两种情况,根据相似三角形的判定和性质以及翻折的性质解答即可.【解答】解:①如图1所示,∠GA'C=90°,∵四边形ABCD是矩形,∴∠BAE=∠D=90°,CD=AB=3,∵∠AA'G=90°,∴点A、A'、C在同一直线上,∠BAE=∠ADC=90°,∠ABE=∠DAC,∴△ABE∽△DAC,∴=,即=,解得:x=1;②如图2所示,∠A'GC=90°,∴∠DGC=∠GAA'=∠ABE,∴△ABE∽△DGC,∴=,设AE=EA'=EG=x,∴=,解得:x=,或x=3(舍去),∴AE=;综上所述,x=1或;故答案为:1或.三.解答题(共2小题)15.已知,求的值.【分析】设=k,得到a=3k.b=4k,c=6k,代入即可得到结论.【解答】解:设=k,则a=3k.b=4k,c=6k,∴==.16.已知二次函数y=x2+2x﹣3.(1)用配方法求该二次函数图象的顶点坐标;(2)指出y随x的变化情况.【分析】(1)根据配方法的要求把一般式转化为顶点式,根据顶点式的坐标特点,写出顶点坐标;(2)当a>0时,抛物线开口向上,根据二次函数的性质求解即可.【解答】解:(1)∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标(﹣1,﹣4);(2)∵函数图象开口向上,其对称轴是直线x=﹣1,∴当x>﹣1时,y随x的增大而增大,当x<﹣1时,y随x的增大而减小.四.解答题(共7小题)17.如图,矩形OABC的顶点A、C分别在x轴和y轴上,点B的坐标为(2,3).双曲线y=(x>0)的图象经过BC 的中点D,且与AB交于点E,连接DE.(1)求k的值及点E的坐标;(2)若点F是OC边上一点,且△FBC∽△DEB,求直线FB的解析式.【分析】(1)首先根据点B的坐标和点D为BC的中点表示出点D的坐标,代入反比例函数的解析式求得k值,然后将点E的横坐标代入求得E点的纵坐标即可;(2)根据△FBC∽△DEB,利用相似三角形对应边的比相等确定点F的坐标后即可求得直线FB的解析式.【解答】解:(1)∵BC∥x轴,点B的坐标为(2,3),∴BC=2,∵点D为BC的中点,∴CD=1,∴点D的坐标为(1,3),代入双曲线y=(x>0)得k=1×3=3;∵BA∥y轴,∴点E的横坐标与点B的横坐标相等,为2,∵点E在双曲线上,∴y=∴点E的坐标为(2,);(2)∵点E的坐标为(2,),B的坐标为(2,3),点D的坐标为(1,3),∴BD=1,BE=,BC=2∵△FBC∽△DEB,∴即:∴FC=∴点F的坐标为(0,)设直线FB的解析式y=kx+b(k≠0)则解得:k=,b=∴直线FB的解析式y=18.如图是一个3×8的网格图,每个小正方形的边长均为1,三个顶点都在小正方形的顶点上的三角形叫做格点三角形,图中格点△ABC的三边长分别为,2、,请在网格图中画出三个与△ABC相似但不全等的格点三角形,并求与△ABC相似的格点三角形的最大面积.【分析】依据格点△ABC的三边长分别为,2、,将该三角形的各边扩大一定倍数,即可画出与△ABC相似但不全等的格点三角形,进而得出与△ABC相似的格点三角形的最大面积.【解答】解:如图所示:如图所示,格点三角形的面积最大,S=2×8﹣×2×3﹣×1×5﹣×1×8=6.519.已知抛物线y=(x﹣m)2﹣(x﹣m),其中m是常数.(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.【分析】(1)先把抛物线解析式化为一般式,再计算△的值,得到△=1>0,于是根据△=b2﹣4ac决定抛物线与x 轴的交点个数即可判断不论m为何值,该抛物线与x轴一定有两个公共点;(2)①根据对称轴方程得到=﹣=,然后解出m的值即可得到抛物线解析式;②根据抛物线的平移规律,设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,再利用抛物线与x轴的只有一个交点得到△=52﹣4(6+k)=0,然后解关于k的方程即可.【解答】(1)证明:y=(x﹣m)2﹣(x﹣m)=x2﹣(2m+1)x+m2+m,∵△=(2m+1)2﹣4(m2+m)=1>0,∴不论m为何值,该抛物线与x轴一定有两个公共点;(2)解:①∵x=﹣=,∴m=2,∴抛物线解析式为y=x2﹣5x+6;②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2﹣5x+6+k,∵抛物线y=x2﹣5x+6+k与x轴只有一个公共点,∴△=52﹣4(6+k)=0,∴k=,即把该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点.20.如图,在Rt△ABC中,∠ACB=90°,CD是边AB上的高.求证:(1)求证:AC2=AD•AB;(2)利用相似形的知识证明AB2=AC2+BC2.【分析】(1)证明△ACB∽△ADC,根据相似三角形的性质证明结论;(2)证明△ACB∽△CDB,得到BC2=BD•AB,与(1)中两式相加,得到答案.【解答】证明(1)∵∠A=∠A,∠ACB=∠ADC=90°,∴△ACB∽△ADC,∴=,∴AC2=AD•AB;(2)∵∠B=∠B,∠ACB=∠ADC=90°,∴△ACB∽△CDB,∴=,∴BC2=BD•AB,∴AC2+BC2=AD•AB+BD•AB=AB×(AD+BD)=AB2.21.根据对宁波市相关的市场物价调研,某批发市场内甲种水果的销售利润y1(千元)与进货量x(吨)近似满足函数关系y1=0.25x,乙种水果的销售利润y2(千元)与进货量x(吨)之间的函数y2=ax2+bx+c的图象如图所示.(1)求出y2与x之间的函数关系式;(2)如果该市场准备进甲、乙两种水果共8吨,设乙水果的进货量为t吨,写出这两种水果所获得的销售利润之和W(千元)与t(吨)之间的函数关系式,并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?【分析】(1)利用待定系数法即可解决问题;(2)销售利润之和W=甲种水果的利润+乙种水果的利润,利用配方法求得二次函数的最值即可.【解答】解:(1)∵函数y2=ax2+bx+c的图象经过(0,0),(1,2),(4,5),∴,解得,∴y2=﹣x2+x.(2)w=(8﹣t)﹣t2+t=﹣(t﹣4)2+6,∴t=4时,w的值最大,最大值为6,∴两种水果各进4吨时获得的销售利润之和最大,最大利润是6千元.22.定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是y=(x﹣2)2+3 ;(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图象经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.【分析】(1)根据“反簇二次函数”定义写出所求即可;(2)把A坐标代入y1,求出m的值,进而表示出y1+y2,根据y1+y2与y1互为“反簇二次函数”,求出a,b,c的值,确定出y2,写出满足题意的范围即可.【解答】解:(1)y=(x﹣2)2+3;故答案为:y=(x﹣2)2+3;(2)∵y1的图象经过点A(1,1),∴2﹣2m+m+2=2,解得:m=2,∴y1=2x2﹣4x+3=2(x﹣1)2+1,∴y1+y2=2x2﹣4x+3+ax2+bx+c=(a+2)x2+(b﹣4)x+c+3,∵y1+y2与y1为“反簇二次函数”,∴y1+y2=﹣2(x﹣1)2+1=﹣2x2+4x﹣1,∴,解得:,∴函数y2的表达式为:y2=﹣4x2+8x﹣4,当0≤x≤3时,y2的最小值为﹣16.23.二次函数y=ax2+bx+c的图象经过点(﹣1,4),且与直线y=﹣x+1相交于A、B两点(如图),A点在y轴上,过点B作BC⊥x轴,垂足为点C(﹣3,0).(1)求二次函数的表达式;(2)点N是二次函数图象上一点(点N在AB上方),过N作NP⊥x轴,垂足为点P,交AB于点M,求MN的最大值;(3)在(2)的条件下,点N在何位置时,BM与NC相互垂直平分?并求出所有满足条件的N点的坐标.【分析】方法一:(1)首先求得A、B的坐标,然后利用待定系数法即可求得二次函数的解析式;(2)设M的横坐标是x,则根据M和N所在函数的解析式,即可利用x表示出M、N的坐标,利用x表示出MN的长,利用二次函数的性质求解;(3)BM与NC互相垂直平分,即四边形BCMN是菱形,则BC=MC,据此即可列方程,求得x的值,从而得到N的坐标.方法二:(1)略.(2)求出点M,N的参数坐标,并得到MN的长度表达式,从而求出MN的最大值.。

浙江省宁波市九年级上学期数学期中考试试卷

浙江省宁波市九年级上学期数学期中考试试卷

浙江省宁波市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列方程中,关于x的一元二次方程是()A .B .C .D .2. (2分) (2019八下·泰兴期中) 下列图形中,是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分) (2016九上·临沭期中) 抛物线y= (x+1)2﹣2的顶点坐标是()A . (1,2)B . (1,﹣2)C . (﹣1,2)D . (﹣1,﹣2)4. (2分) (2018九上·番禺期末) 如果2是方程的一个根,则常数k的值为()A . 1B . ﹣2C . 2D . ﹣15. (2分)已知a、b为实数,且 +b2+4=4b,则a2015b2016的值是()A .B . ﹣C . 2D . ﹣26. (2分)(2017·延边模拟) 将一副三角板如图方式放置,则∠1的度数是()A . 15°B . 20°C . 25°D . 30°7. (2分)设是三个互不相同的正数,如果,那么()A .B .C .D .8. (2分)将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是()A . y=(x-1)2+2B . y=(x+1)2+2C . y=(x-1)2-2D . y=(x+1)2-29. (2分) (2017七下·东营期末) 甲、乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°;乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°对于两人的做法,下列判断正确的是()A . 甲乙都对B . 甲对乙错C . 甲错乙对D . 甲乙都错10. (2分)二次函数y=ax2+bx+1(a≠0)的图象的顶点在第一象限,且过点(﹣1,0).设t=a+b+1,则t 值的变化范围是()A . 0<t<2B . 0<t<1C . 1<t<2D . ﹣1<t<1二、填空题 (共6题;共6分)11. (1分) (2016九上·义马期中) 一元二次方程x2+4x﹣3=0的两根为x1 , x2 ,则x1•x2的值是________.12. (1分)如图是二次函数y=a(x+1)2+2图象的一部分,该图在y轴右侧与x轴交点的坐标是________.13. (1分)某种型号的电脑,原售价7200元/台,经连续两次降价后,现售价为4608元/台,则平均每次降价的百分率为________%。

【初三数学】宁波市九年级数学上期中考试单元检测试卷(含答案解析)

【初三数学】宁波市九年级数学上期中考试单元检测试卷(含答案解析)

新人教版九年级第一学期期中模拟数学试卷(答案)一、选择题(共30分,每小题3分)1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定4.右面的三视图对应的物体是()A.B.C.D.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y26.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.547.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.208.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.69.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.二、填空题(共12分,每小题3分)11.方程x2=x的根是.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN=.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.25.(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.参考答案一、选择题1.某反比例函数的图象经过点(﹣2,3),则此函数图象也经过点()A.(2,﹣3)B.(﹣3,﹣3)C.(2,3)D.(﹣4,6)【分析】将(﹣2,3)代入y=即可求出k的值,再根据k=xy解答即可.解:设反比例函数解析式为y=,将点(﹣2,3)代入解析式得k=﹣2×3=﹣6,符合题意的点只有点A:k=2×(﹣3)=﹣6.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,只要点在函数的图象上,则一定满足函数的解析式.反之,只要满足函数解析式就一定在函数的图象上.2.如图,△ABC中,DE∥BC,=,AE=2cm,则AC的长是()A.2cm B.4cm C.6cm D.8cm【分析】根据平行线分线段成比例定理得出=,代入求出即可.解:∵DE∥BC,∴=,∵,AE=2cm,∴=,∴AC=6(cm),故选:C.【点评】本题考查了平行线分线段成比例定理的应用,注意:一组平行线截两条直线,所截的线段对应成比例.3.已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1 B.﹣1 C.0 D.无法确定【分析】把x=1代入方程,即可得到一个关于m的方程,即可求解.解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选:B.【点评】本题主要考查了方程的解的定义,正确理解定义是关键.4.右面的三视图对应的物体是()A.B.C.D.【分析】因为主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.所以可按以上定义逐项分析即可.解:从俯视图可以看出直观图的下面部分为三个长方体,且三个长方体的宽度相同.只有D 满足这两点,故选:D.【点评】本题主要考查学生对图形的三视图的了解及学生的空间想象能力.5.若点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y2【分析】先分清各点所在的象限,再利用各自的象限内利用反比例函数的增减性解决问题.解:∵点(﹣2,y1),(﹣1,y2),(3,y3)在双曲线y=(k<0)上,∴(﹣2,y1),(﹣1,y2)分布在第二象限,(3,y3)在第四象限,每个象限内,y随x的增大而增大,∴y3<y1<y2.故选:D.【点评】此题主要考查了反比例函数的性质,正确掌握反比例函数增减性是解题关键,注意:反比例函数的增减性要在各自的象限内.6.已知△ABC∽△DEF,S△ABC:S△DEF=9,且△ABC的周长为18,则△DEF的周长为()A.2 B.3 C.6 D.54【分析】由△ABC∽△DEF,S△ABC:S△DEF=9,根据相似三角形的面积比等于相似比的平方,即可求得△ABC与△DEF的相似比,又由相似三角形的周长的比等于相似比,即可求得△ABC与△DEF的周长比为:3:1,又由△ABC的周长为18厘米,即可求得△DEF 的周长.解:∵△ABC∽△DEF,S△ABC:S△DEF=9,∴△ABC与△DEF的相似比为:3:1,∴△ABC与△DEF的周长比为:3:1,∵△ABC的周长为18厘米,∴,∴△DEF的周长为6厘米.故选:C.【点评】此题考查了相似三角形的性质.解题的关键是掌握相似三角形的面积比等于相似比的平方与相似三角形的周长的比等于相似比定理的应用.7.在一个不透明的纸箱中放入m个除颜色外其他都完全相同的球,这些球中有4个红球,每次将球摇匀后任意摸出一个球,记下颜色再放回纸箱中,通过大量的重复摸球实验后发现摸到红球的频率稳定在,因此可以估算出m的值大约是()A.8 B.12 C.16 D.20【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出等式解答.解:根据题意得,=,解得,m=20.故选:D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.8.如图,在矩形ABCD中,已知AB=3,AD=8,点E为BC的中点,连接AE,EF是∠AEC的平分线,交AD于点F,则FD=()A.3 B.4 C.5 D.6【分析】由矩形的性质和已知条件可求出∠AFE=∠AEF,进而推出AE=AF,求出BE,根据勾股定理求出AE,即可求出AF,即可求出答案.解:∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∴∠AFE=∠FEC,∵EF平分∠AEC,∴∠AEF=∠FEC,∴∠AFE=∠AEF,∴AE=AF,∵E为BC中点,BC=8,∴BE=4,在Rt△ABE中,A B=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD﹣AF=8﹣5=3,故选:A.【点评】本题考查了矩形性质,勾股定理的运用,平行线性质,等腰三角形的性质和判定的应用,注意:矩形的对边相等且平行是解题的关键.9.如图,在正方形ABCD中,E是CD的中点,点F在BC上,且FC=BC.图中相似三角形共有()A.1对B.2对C.3对D.4对【分析】首先由四边形ABCD是正方形,得出∠D=∠C=90°,AD=DC=CB,又由DE =CE,FC=BC,证出△ADE∽△ECF,然后根据相似三角形的对应边成比例与相似三角形的对应角相等,证明出△AEF∽△ADE,则可得△AEF∽△ADE∽△ECF,进而可得出结论.解:图中相似三角形共有3对.理由如下:∵四边形ABCD是正方形,∴∠D=∠C=90°,AD=DC=CB,∵DE=CE,FC=BC,∴DE:CF=AD:EC=2:1,∴△ADE∽△ECF,∴AE:EF=AD:EC,∠DAE=∠CEF,∴AE:EF=AD:DE,即AD:AE=DE:EF,∵∠DAE+∠AED=90°,∴∠CEF+∠AED=90°,∴∠AEF=90°,∴∠D=∠AEF,∴△ADE∽△AEF,∴△AEF∽△ADE∽△ECF,即△ADE∽△ECF,△ADE∽△AEF,△AEF∽△ECF.故选:C.【点评】此题考查了相似三角形的判定与性质,以及正方形的性质.此题难度适中,解题的关键是证明△ECF∽△ADE,在此基础上可证△AEF∽△ADE.10.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH的长是()A.B.C.D.【分析】AF交GC于点K.根据△ADK∽△FGK,求出KF的长,再根据△CHK∽△FGK,求出CH的长.解:∵CD=BC=1,∴GD=3﹣1=2,∵△ADK∽△FGK,∴,即,∴DK=DG,∴DK=2×=,GK=2×=,∴KF=,∵△CHK∽△FGK,∴,∴,∴CH=.方法二:连接AC、CF,利用面积法:CH=;故选:A.【点评】本题考查了勾股定理,利用勾股定理求出三角形的边长,再构造相似三角形是解题的关键.二、填空题(共12分,每小题3分)11.方程x2=x的根是x 1=0,x2=.【分析】方程整理后,利用因式分解法求出解即可.解:方程整理得:x(x﹣)=0,可得x=0或x﹣=0,解得:x 1=0,x2=.故答案为:x 1=0,x2=【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.12.如图,菱形ABCD的面积为8,边AD在x轴上,边BC的中点E在y轴上,反比例函数y=的图象经过顶点B,则k的值为 4 .【分析】在Rt△AEB中,由∠AEB=90°,AB=2BE,推出∠EAB=30°,设BE=a,则AB=2a,由题意2a×a=8,推出a2=,可得k=a2=4.解:在Rt△AEB中,∵∠AEB=90°,AB=2BE,∴∠EAB=30°,设BE=a,则AB=2a,OE=a,由题意2a×a=8,∴a2=,∴k=a2=4,故答案为4.【点评】本题考查反比例函数系数的几何意义、菱形的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13.如图,在△ABC中,∠C=90°,AC=8,CB=6,在斜边AB上取一点M,使MB=CB,过M作MN⊥AB交AC于N,则MN= 3 .【分析】首先证明△ACB∽△AMN,可得AC:CB=AM:MN,代入数值求解即可.解:∵∠C=∠AMN=90°,∠A为△ACB和△AMN的公共角,∴△ACB∽△AMN,∴AC:CB=AM:MN,在直角△ABC中,由勾股定理得AB2=AC2+BC2,即AB=10;又∵AC=8,CB=6,AM=AB﹣6=4,∴=,即MN=3.【点评】本题主要考查相似三角形的判定和性质,涉及到勾股定理的运用.14.如图,矩形ABCD中,AB=6,MN在边AB上运动,MN=3,AP=2,BQ=5,PM+MN+NQ 最小值是3+.【分析】作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.利用勾股定理求出PQ″即可解决问题;解:作QQ′∥AB,使得QQ′=MN=3,作点Q′关于直线AB的对称点Q″,连接PQ″交AB于M,此时PM+MN+NQ的值最小.作Q″H⊥DA于H.在Rt△PHQ″中,PQ″==,∴PM+MN+NQ的最小值=3+.故答案为3+.【点评】本题考查轴对称﹣最短问题,矩形的性质等知识,解题的关键是正确寻找PM+MN+NQ最小时点M的位置,属于中考常考题型.二、解答题(共11小题,计78分)15.(5分)解方程:2x2﹣2x﹣1=0.【分析】此题可以采用配方法和公式法,解题时要正确理解运用每种方法的步骤.解法一:原式可以变形为,,,∴,∴,.解法二:a=2,b=﹣2,c=﹣1,∴b2﹣4ac=12,∴x==,∴x1=,x2=.【点评】公式法和配方法适用于任何一元二次方程,解题时要细心.16.(5分)如图,AB、CD、EF是与路灯在同一直线上的三个等高的标杆,已知AB、CD 在路灯光下的影长分别为BM、DN,在图中作出EF的影长.【分析】直接利用已知路灯的影子得出灯的位置,进而得出EF的影长.解:如图所示:【点评】此题主要考查了中心投影,正确得出灯的位置是解题关键.17.(5分)如图,已知O是坐标原点,A、B的坐标分别为(3,1),(2,﹣1).(1)在y轴的左侧以O为位似中心作△OAB的位似△OCD,使新图与原图的相似比为2:1;(2)分别写出A、B的对应点C、D的坐标.【分析】(1)利用位似图形的性质得出C,D两点坐标在A,B坐标的基础上,同乘以﹣2,进而得出坐标画出图形即可;(2)利用位似图形的性质得出C,D点坐标.解:(1)如图所示:;(2)如图所示:D(﹣4,2),C(﹣6,﹣2).【点评】此题主要考查了位似变换,得出对应点坐标是解题关键.18.(5分)若关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,求实数k的值.【分析】由二次项系数非零及根的判别式△=0,即可得出关于k的一元一次不等式及一元二次方程,解之即可得出结论.解:∵关于x的一元二次方程(k﹣1)x2﹣(2k﹣2)x﹣3=0有两个相等的实数根,∴,解得:k=﹣2.【点评】本题考查了根的判别式以及一元二次方程的定义,牢记“当△=0时,方程有两个相等的实数根”是解题的关键.19.(7分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别是边AB、AC的中点,延长DE至F,使得AF∥CD,连接BF、CF.(1)求证:四边形AFCD是菱形;(2)当AC=4,BC=3时,求BF的长.【分析】(1)根据邻边相等的平行四边形是菱形即可证明;(2)如图,作FH⊥BC交BC的延长线于H.在Rt△BFH中,根据勾股定理计算即可.(1)证明:∵AF∥CD,∴∠EAF=∠ECD,∵E是AC中点,∴AE=EC,在△AEF和△CED中,,∴△AEF≌△CED,∴AF=CD,∴四边形AFCD是平行四边形,∵∠ACB=90°,AD=DB,∴CD=AD=BD,∴四边形AFCD是菱形.(2)解:如图,作FH⊥BC交BC的延长线于H.∵四边形AFCD是菱形,∴AC⊥DF,EF=DE=BC=,∴∠H=∠ECH=∠CEF=90°,∴四边形FHCE是矩形,∴FH=EC=2,EF=CH=,BH=CH+BC=,在Rt△BHF中,BF==.【点评】本题考查菱形的判定和性质、三角形的中位线定理、直角三角形斜边中线的性质、矩形的判定和性质、勾股定理、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造直角三角形解决问题.20.(7分)太原双塔寺又名永祚寺,是国家级文物保护单位,由于双塔(舍利塔、文峰塔)耸立,被人们称为“文笔双塔”,是太原的标志性建筑之一,某校社会实践小组为了测量舍利塔的高度,在地面上的C处垂直于地面竖立了高度为2米的标杆CD,这时地面上的点E,标杆的顶端点D,舍利塔的塔尖点B正好在同一直线上,测得EC=4米,将标杆CD向后平移到点C处,这时地面上的点F,标杆的顶端点H,舍利塔的塔尖点B正好在同一直线上(点F,点G,点E,点C与塔底处的点A在同一直线上),这时测得FG=6米,GC=53米.请你根据以上数据,计算舍利塔的高度AB.【分析】易知△EDC∽△EBA,△FHG∽△FBA,可得=,=,因为DC=HG,推出=,列出方程求出CA=106(米),由=,可得=,由此即可解决问题.解:∵△EDC∽△EBA,△FHG∽△FBA,∴=,=,∵DC=HG,∴=,∴=,∴CA=106(米),∵=,∴=,∴AB=55(米),答:舍利塔的高度AB为55米.【点评】本题考查解直角三角形的应用、相似三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,学会构建方程解决问题,属于中考常考题型.21.(7分)某花圃用花盆培育某种花苗,经过实验发现每盆的盈利与每盆的株数构成一定的关系.每盆植入3株时,平均单株盈利4元;以同样的栽培条件,若每盆每增加1株,平均单株盈利就减少0.5元.要使每盆的盈利达到14元,且尽可能地减少成本,每盆应该植多少株?【分析】根据已知假设每盆花苗增加x株,则每盆花苗有(x+3)株,得出平均单株盈利为(4﹣0.5x)元,由题意得(x+3)(4﹣0.5x)=14求出即可.解:设每盆应该多植x株,由题意得(3+x)(4﹣0.5x)=14,解得:x1=1,x2=4.因为要且尽可能地减少成本,所以x2=4舍去,x+3=4.答:每盆植4株时,每盆的盈利14元.【点评】此题考查了一元二次方程的应用,根据每盆花苗株数×平均单株盈利=总盈利得出方程是解题关键.22.(7分)如图①,▱OABC的边OC在x轴的正半轴上,OC=5,反比例函数y=(x>0)的图象经过点A(1,4).(1)求反比例函数的关系式和点B的坐标;(2)如图②,过BC的中点D作DP∥x轴交反比例函数图象于点P,连接AP、OP,求△AOP的面积;【分析】(1)由点A的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数关系式,再根据平行四边形的性质结合点A、O、C的坐标即可求出点B的坐标;(2)延长DP交OA于点E,由点D为线段BC的中点,可求出点D的坐标,再令反比例函数关系式中y=2求出x值即可得出点P的坐标,由此即可得出PD、EP的长度,根据三角形的面积公式即可得出结论.解:(1)∵反比例函数y=(x>0)的图象经过点A(1,4).∴m=1×4=4,∴反比例函数的关系式为y=(x>0).∵四边形OABC为平行四边形,且点O(0,0),OC=5,点A(1,4),∴点C(5,0),∴点B(6,4).(2)延长DP交OA于点E,如图②所示.∵点D为线段BC的中点,点C(5,0)、B(6,4),∴点D(,2).令y=中y=2,则x=2,∴点P(2,2),∴PD=﹣2=,EP=ED﹣PD=,∴S△AOP=EP•(y A﹣y O)=××(4﹣0)=3.【点评】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式、平行四边形的性质,解题的关键是:根据反比例函数图象上点的坐标特征求出反比例函数解析式.23.(8分)小红有青、白、黄、黑四件衬衫,又有米色、白色、蓝色三条裙子,她最喜欢的搭配是白色衬衫配米色裙子,最不喜欢青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子.(1)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配的概率是多少?(2)黑暗中,她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会是否相等?画树状图加以分析说明.【分析】(1)列举出所有情况,看白色衬衫配米色裙子的总数即可得出答案;(2)列举出青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子的情况数占所有情况数的多少即可.解:(1)共有8种情况,白色衬衫米色裙子的情况数有1种,所以他最喜欢的搭配的概率为;(2)青色衬衫配蓝色裙子或者黑色衬衫配蓝色裙子的情况数有2种,所以他最不喜欢的搭配的概率为,故她随机拿出一套衣服正是她最喜欢的搭配,这样的巧合发生的机会与黑暗中她随机拿出一套衣服正是她最不喜欢的搭配的机会不相等.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.(10分)如图,已知在△ABC中,∠BAC=2∠B,AD平分∠BAC,DF∥BE,点E在线段BA的延长线上,联结DE,交AC于点G,且∠E=∠C.(1)求证:AD2=AF•AB;(2)求证:AD•BE=DE•AB.【分析】(1)只要证明△FAD∽△DAB,可得=,延长即可解决问题;(2)只要证明△CAD≌△EBD,可得AC=BE,再证明△EBD∽△CBA,可得=,由BD=AD,AC=BE,可得AD•BE=DE•AB;证明:(1)∵∠BAC=2∠B,∠DAB=∠DAC,∴∠B=∠DAB,∵DF∥AB,∴∠ADF=∠BAD,∴∠FAD=∠FDA=∠B=∠BAD,∴△FAD∽△DAB,∴=,∴AD2=AF•AB.(2)∵∠B=∠DAB,∴DA=DB,∵∠E=∠C,∠CAD=∠B,∴△CAD≌△EBD,∴AC=BE,∵∠E=∠C,∠B=∠B,∴△EBD∽△CBA,∴=,∵BD=AD,AC=BE,∴AD•BE=DE•AB.【点评】本题考查相似三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找相似三角形或全等三角形解决问题,属于中考常考题型.25.(12分)如图,已知矩形ABCD,AD=4,CD=10,P是AB上一动点,M、N、E分别是PD、PC、CD的中点.(1)求证:四边形PMEN是平行四边形;(2)请直接写出当AP为何值时,四边形PMEN是菱形;(3)四边形PMEN有可能是矩形吗?若有可能,求出AP的长;若不可能,请说明理由.【分析】(1)根据三角形的中位线的性质和平行四边形的判定定理可证明.(2)当DP=CP时,四边形PMEN是菱形,P是AB的中点,所以可求出AP的值.(3)四边形PMEN是矩形的话,∠DPC必需为90°,判断一下△DPC是不是直角三角形就行.解:(1)∵M、N、E分别是PD、PC、CD的中点,∴ME是PC的中位线,NE是PD的中位线,∴ME∥PC,EN∥PD,∴四边形PMEN是平行四边形;(2)当AP=5时,在Rt△PAD和Rt△PBC中,,∴△PAD≌△PBC,∴PD=PC,∵M、N、E分别是PD、PC、CD的中点,∴NE=PM=PD,ME=PN=PC,∴PM=ME=EN=PN,∴四边形PMEN是菱形;(3)四边形PMEN可能是矩形.若四边形PMEN是矩形,则∠DPC=90°设PA=x,PB=10﹣x,DP=,CP=.DP2+CP2=DC216+x2+16+(10﹣x)2=102x2﹣10x+16=0x=2或x=8.故当AP=2或AP=8时,四边形PMEN是矩形.【点评】本题考查平行四边形的判定,菱形的判定定理,以及矩形的判定定理和性质,知道矩形的四个角都是直角,对边相等等性质.新九年级上学期期中考试数学试题及答案一、选择题(本大题共10小题,每小题3分,共30分)1.在下列图形中,既是轴对称图形又是中心对称图形的是( C )2.用配方法解方程x2+10x+9=0,配方后可得(A)A.(x+5)2=16 B.(x+5)2=1C.(x+10)2=91 D.(x+10)2=1093.(2018·济宁)如图,在平面直角坐标系中,点A,C在x 轴上,点C的坐标为(-1,0),AC=2,将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点的坐标是( A)A.(2,2) B.(1,2) C.(-1,2) D.(2,-1)4.(雅安中考)将抛物线y=(x-1)2+3向左平移1个单位长度,再向下平移3个单位长度后所得抛物线的解析式为(D)A.y=(x-2)2B.y=(x-2)2+6C.y=x2+6 D.y=x25.某商品原售价为50元,10月份下降了10%,从11月份起售价开始增长,12月份售价为64.8元,设11、12月份每个月的平均增长率为x,则下列结论正确的是(D)A.10月份的售价为50(1+10%)元B.11月份的售价为50(1+10%)元C.50(1+x)2=64.8D.50(1-10%)(1+x)2=64.86.已知a≥2,m,n为x2-2ax+2=0的两个根,则(m-1)2+(n-1)2的最小值是( A )A.6 B.3 C.-3 D.07.(呼和浩特中考)在同一平面直角坐标系中,函数y=mx +m和函数y=-mx2+2x+2(m是常数,且m≠0)的图象可能是(D)8.如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△A1B1C,当A1落在AB边上时,连接B1B,取BB1的中点D,连接A1D,则A1D的长度是( A )A.7 B.2 2 C.3 D.2 3第8题图第9题图第10题图9.如图,小明家的住房平面图呈长方形,被分割成3个正方形和2个长方形后仍是中心对称图形,若只知道原住房平面图长方形的周长,则分割后不用测量就能知道周长的图形的标号为( A)A.①②B.②③C.①③D.①②③10.(2018·达州)如图,二次函数y =ax 2+bx +c 的图象与x 轴交于点A(-1,0),与y 轴的交点B 在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x =2.下列结论:①abc<0; ②9a +3b +c>0;③若点M ⎝ ⎛⎭⎪⎫12,y 1、点N ⎝ ⎛⎭⎪⎫52,y 2是函数图象上的两点,则y 1<y 2; ④-35<a<-25.其中正确结论有( D ) A .1个 B .2个C .3个D .4个二、填空题(本大题共8小题,每小题3分,共24分) 11.如图,对称轴平行于y 轴的抛物线与x 轴交于(1,0),(3,0)两点,则它的对称轴为直线x =2.第11题图第15题图第18题图12.一元二次方程(x+3)2-x=2(x2+3)化成一般形式为x2-5x-3=0,方程根的情况为有两个不相等的实数根.13.等边三角形绕中心点至少旋转120度后能与自身重合,正方形绕中心点至少旋转90度后能与自身重合.14.平面直角坐标系中有一个点A(-2,6),则与点A关于原点对称的点的坐标是(2,-6),经过这两点的直线的解析式为y=-3x.15.(原创)如图,直线y=x+m和抛物线y=x2+bx+c都经过点A(1,0)和B(3,2),不等于x2+bx+c>x+m的解集为x <1或x> 3.16.一位运动员投掷铅球的成绩是14 m,当铅球运行的水平距离是6 m时达到最大高度4 m,若铅球运行的路线是抛物线,则铅球出手时距地面的高度是1.75 m.17.已知方程(p-2)x2-x+p2-3p+2=0的一个根为0,则实数p的值是1.18.如图,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B三、解答题(本大题共7小题,共66分)19.(8分)(1)解方程3x2-x-1=0;解:∵a=3,b=-1,c=-1∴b2-4ac=(-1)2-4× 3×(-1)=13>0,∴x=-(-1)±132× 3=1±136,∴x1=1+136,x2=1-136;(2)通过配方,写出抛物线y=1+6x-x2的开口方向、对称轴和顶点坐标.解:y=1+6x-x2=-(x-3)2+10,开口向下,对称轴是直线x=3,顶点坐标是(3,10).20.(8分)如图所示,△ABC是直角三角形,BC是斜边,将△ABP绕点A逆时针旋转后,能与△ACP′重合,AP=5,则PP′的长是多少?解:由旋转易知AP′=AP=5,∠BAP=∠CAP′,∵∠BAC =90°,∴∠PAP′=∠CAP+∠CAP′=∠CAP+∠BAP=90°,则在Rt△PAP′中,由勾股定理得PP′=AP2+AP′2=5 2.21(8分)(眉山中考)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(-3,2),B(-1,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;(2)平移△ABC,若A的对应点A2的坐标为(-5,-2),画出平移后的△A2B2C2;(3)若将△A 2B 2C 2绕某一点旋转可以得到△A 1B 1C ,请直接写出旋转中心的坐标.解:(1)如图; (2)如图;(3)旋转中心的坐标为(-1,0).22.(8分)如图,经过原点O 的抛物线y =ax 2+bx(a ≠0)与x 轴交于另一点A ⎝ ⎛⎭⎪⎫32,0,在第一象限内与直线y =x 交于点B(2,t).(1)求抛物线的解析式;(2)若点M 在抛物线上,且∠MBO =∠ABO ,求点M 的坐标.新人教版数学九年级上册期中考试试题及答案一、细心选一选。

宁波市九年级上学期数学期中考试试卷

宁波市九年级上学期数学期中考试试卷

宁波市九年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共9题;共9分)1. (1分) (2019七下·云梦期末) 一个一元一次不等式组的解集在数轴上表示如图,则此不等式组的解集是()A .B .C .D .2. (1分)若方程是二元一次方程,则满足()A .B .C .D .3. (1分)(2020·渠县模拟) 数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a>2,那么a2>4.下列命题中,具有以上特征的命题是()A . 两直线平行,同位角相等B . 如果|a|=1,那么a=1C . 全等三角形的对应角相等D . 如果x>y ,那么mx>my4. (1分) (2017九上·辽阳期中) 如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=()A . 7B . 7.5C . 8D . 8.55. (1分) (2016九上·苍南月考) 某小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是()A . 在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B . 一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃C . 暗箱中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一个球是黄球D . 掷一个质地均匀的正方体骰子,向上的面的点数是46. (1分) (2017九上·辽阳期中) 如图,AB∥CD, ,则△AOB与△DOC的面积比是()A .B .C .D .7. (1分) (2017九上·辽阳期中) 如图,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CE交AD于E,点F是AB的中点,则S△AEF:S四边形BDEF为()A . 3:4B . 1:2C . 2:3D . 1:38. (1分) (2017九上·辽阳期中) 如图,矩形ABCG(AB<BC)与矩形CDEF全等,点B,C,D在同一条直线上,∠APE的顶点P在线段BD上移动,使∠APE为直角的点P的个数是()A . 0B . 1C . 2D . 39. (1分)如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD于点M,过M作MN⊥AQ交BC于点N,作NP⊥BD于点P,连接NQ,下列结论:①AM=MN;②MP=BD;③BN+DQ=NQ;④为定值.其中一定成立的是()A . ①②③B . ①②④C . ②③④D . ①②③④二、填空题 (共8题;共8分)10. (1分)若单项式2xym﹣1与﹣x2n﹣3y3和仍是单项式,则m﹣n的值是________11. (1分) (2017九下·六盘水开学考) 在实数范围内定义运算“★”,其规则为a★b=a2-b 2 ,则方程(2★3)★x=9的根为________。

浙江宁波董玉娣中学2017九年级上期中考试试题--数学

浙江宁波董玉娣中学2017九年级上期中考试试题--数学
16.如图,点A、B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A、B不重合),连结AP、PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=.
17.当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4,则实数m的值为
18.已知:如图,矩形 中, 是 的两个点, , ,垂足分别为 ,若 , , ,且 ,则 .
(1)请写出两个为“同簇二次函数”的函数.
(2)已知关于x的二次函数 和 ,其中 的图象经过点 , 与 为“同簇二次函数”,
①求 的值及函数 的表达式.
②如图点 和点 是函数 上的点,点 和点 是函数 上的点,且都在对称轴右侧,若 ∥ ∥ 轴, ,求 的值(只需直接答案).
26(本小题14分)如图,已知抛物线y=ax2﹣ x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y= x﹣2与y轴的交点,连接AC.
A. 20厘米B. 8π厘米C. 厘米D. 厘米
第10题第11题第12题
12.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:
①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.
(1)求B、C两点坐标以及抛物线的解析式;
(2)证明:△ABC为直角三角形;
(3)△ABC内部能否截出面积最大的矩形DEFG?(顶点D、E、F、G在△ABC各边上)若能,求出最大面积;若不能,请说明理由.
董玉娣中学
第一学期期中测试
2016学 年
初三年级 数学参考答案

浙江省宁波市九年级上学期期中数学试卷

浙江省宁波市九年级上学期期中数学试卷

浙江省宁波市九年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2017·七里河模拟) 有15张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这15张卡片中任意抽取一张正面的图形既是轴对称图形,又是中心对称图形的概率是,则正面画有正三角形的卡片张数为()A . 3B . 5C . 10D . 152. (2分)关于x的方程是一元二次方程,则a满足()A . a>0B . a=1C . a≥0D . a≠03. (2分)在函数①y=3x2;②y=x2;③y=−x2中,图象开口按从大到小的顺序排列的是()A . ①②③B . ③②①C . ②③①D . ②①③4. (2分)解下面方程:(1)(x-2)2=5,(2)x2-3x-2=0,(3)x2+x-6=0,较适当的方法分别为()A . (1)直接开平法方(2)因式分解法(3)配方法B . (1)因式分解法(2)公式法(3)直接开平方法C . (1)公式法(2)直接开平方法(3)因式分解法D . (1)直接开平方法(2)公式法(3)因式分解法5. (2分) (2016八上·沂源开学考) 对于抛物线y=﹣(x﹣5)2+3,下列说法正确的是()A . 开口向下,顶点坐标(5,3)B . 开口向上,顶点坐标(5,3)C . 开口向下,顶点坐标(﹣5,3)D . 开口向上,顶点坐标(﹣5,3)6. (2分)在平面直角坐标系中有三个点A(1,2),B(﹣1,2)和C(1,﹣2),其中关于原点O的对称的点是()A . 点A与点BB . 点A与点CC . 点B与点CD . 不存在7. (2分) (2018八下·宁远期中) 如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将△BCE绕着正方形的中心O按逆时针方向旋转到△CDF的位置,则旋转角是()A . 45°B . 60°C . 90°D . 120°8. (2分)已知a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于()A . ﹣1B . 1C . ±8﹣1D . ±8+19. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②2a+b=0;③a ﹣b+c<0;④4a+2b+c>0;其中正确的结论有()A . 4个B . 3个10. (2分)已知反比例函数y=的图象如图,则一元二次方程x2-(2k-1)x+k2-1=0根的情况是()A . 有两个不等实根B . 有两个相等实根C . 没有实根D . 无法确定。

宁波市九年级上学期期中数学试题

宁波市九年级上学期期中数学试题

宁波市九年级上学期期中数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)若抛物线y=x2﹣x﹣1与x轴的交点坐标为(m , 0),则代数式m2﹣m+2017的值为()A . 2019B . 2018C . 2017D . 20162. (2分)(2017·锡山模拟) 现有A、B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A立方体朝上的数字为x小明掷B立方体朝上的数字为y来确定点P(x,y),那么它们各掷一次所确定的点P落在已知抛物线y=﹣x2+4x上的概率为()A .B .C .D .3. (2分) (2017九上·深圳期中) 下列命题正确的是()A . 方程x2-4x+2=0无实数根;B . 两条对角线互相垂直且相等的四边形是正方形C . 甲、乙、丙三人站成一排合影留念,则甲、乙二人相邻的概率是D . 若是反比例函数,则k的值为2或-1。

4. (2分) (2019九上·宁波期中) 把抛物线向上平移1个单位长度得到的抛物线的表达式为()A .B .C .D .5. (2分) (2019九上·宁波期中) 已知圆弧的度数为120°,弧长为6πcm,则圆的半径为()A . 6cmB . 9cm6. (2分) (2019九上·宁波期中) 把一个小球以20米/秒的速度竖起向上弹出,它在空中的高度h(米)与时间t(秒),满足关系h=20t-5t ,当小球达到最高点时,小球的运动时间为()A . 1秒B . 2秒C . 4秒D . 20秒7. (2分)(2017·兰州模拟) 如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于()A . 116°B . 32°C . 58°D . 64°8. (2分) (2019九上·宁波期中) 设A(-2, ),B(-1, ),C(1, )是抛物线上的三点,则,,的大小关系为()A . > >B . > >C . > >D . > >9. (2分) (2019九上·吴兴期末) 如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度是()A . 4cmD . 1cm10. (2分) (2019九上·宁波期中) 如图,已知抛物线的顶点为(2,-1),抛物线与y轴的交点为(0,3),当函数值时,自变量x的取值范围是()A .B .C .D .11. (2分) (2019九上·宁波期中) 如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为x=﹣1.给出四个结论:①b2>4ac;②2a+b=0;③a﹣b+c=0;④5a<b .其中正确的有()A . 1个B . 2个C . 3个D . 4个12. (2分) (2019九上·宁波期中) 如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=4 ,D是线段BC 上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为()A .B .C .D .二、填空题 (共6题;共7分)13. (1分)从大村到黄岛的距离为60千米,一辆摩托车以平均每小时35千米的速度从大村出发到黄岛,则摩托车距黄岛的距离y(千米)与行驶时间t(时)的函数表达式为________.14. (1分)如图,O是坐标原点,菱形OABC的顶点A的坐标为(-3,4),顶点C在x轴的负半轴上,函数y= (x<0)的图象经过顶点B,则k的值为________.15. (1分) (2019九上·宁波期中) 已知二次函数的部分图象如图所示,则关于的一元二次方程的根为________.16. (1分) (2019九上·慈溪期中) 抛物线y=(m﹣1)x2+2x+ m图象与坐标轴有且只有2个交点,则m =________.17. (1分) (2019九上·宁波期中) 如图,AD是△ABC的高,且AB= ,AC=5,AD=4,则⊙ 的直径AE是________.<4的范围内有解,则t的取值范围是________ .三、解答题 (共8题;共74分)19. (6分) (2018九上·二道月考) 图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)20. (10分) (2019九上·宁波期中) 已知关于x的二次函数,其图像经过点(1,8).(1)求k的值.(2)求出函数图像的顶点坐标.21. (10分) (2019九上·宁波期中) 已知:如图,在⊙O中,AB=CD,AB与CD相交于点M,(1)求证:=(2)求证:AM=DM22. (10分) (2016九上·瑞安期中) 为了在校体育节的排球比赛上取得好成绩,甲、乙、丙、丁四人一起训练传接球.传接球规则如下:接球者把球随机传给另外三人中的一人.现由甲开始传球,请回答下列问题(假设每次传球都能接到球):(1)写出第一次接球者是乙的概率;(2)用列表或画树状图的方法求第二次接球者是甲的概率.23. (15分) (2019九上·宁波期中) 如图,直线与x轴,y轴分别交于B , C两点,抛物线(1)求出点B和点C的坐标.(2)求此抛物线的函数解析式.(3)在抛物线x轴上方存在一点P(不与点C重合),使,请求出点P的坐标.24. (15分) (2018九上·滨州期中) 某商品的进价为每件40元,售价为每件50元,每个月可卖出210件;如果每件商品的售价每上涨1元,则每个月少卖10件(每件售价不能高于65元),设每件商品的售价上涨元( 为正整数),每个月的销售利润为元.(1)求与的函数关系式并直接写出自变量的取值范围;(2)每件商品的售价定为多少元时,每个月可获得最大利润?最大月利润是多少元?(3)每件商品的售价定为多少元时,每个月的利润恰为2 200元?25. (2分) (2014九上·宁波月考) 如图:三角形ABC内接于圆O,∠BAC与∠ABC的角平分线AE,BE相交于点E,延长AE交外接圆O于点D,连接BD,DC,且∠BCA=60°(1)求∠BED的大小;(2)证明:△BED为等边三角形;(3)若∠ADC=30°,圆O的半径为r,求等边三角形BED的边长.26. (6分) (2019九上·宁波期中) 在平面直角坐标系中,正方形ABCD的四个顶点坐标分别为A(-2,4),B(-2,-2),C(4,-2),D(4,4).(1)填空:正方形的面积为________;当双曲线(k≠0)与正方形ABCD有四个交点时,k的取值范围是________.(2)已知抛物线L: (a>0)顶点P在边BC上,与边AB,DC分别相交于点E,F,过点B的双曲线(k≠0)与边DC交于点N.①点Q(m,-m2-2m+3)是平面内一动点,在抛物线L的运动过程中,点Q随m运动,分别求运动过程中点Q在最高位置和最低位置时的坐标.②当点F在点N下方,AE=NF,点P不与B,C两点重合时,求的值.③求证:抛物线L与直线的交点M始终位于轴下方.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共7分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共74分)19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、26-1、。

董玉娣中学九年级数学中考第一次阶段性测试卷附答题纸参考答案

董玉娣中学九年级数学中考第一次阶段性测试卷附答题纸参考答案

董玉娣中学九年级数学第一次阶段性测试卷时间:120分钟 分值:150分温馨提示:请认真审题,看清要求,仔细答题..............,祝你成功! 一.选择题(本题有12小题,每小题4分,共48分)1.下列函数中,图象经过点(-2,1)的反比例函数解析式是( ) A .1y x=B .1y x-=C .2y x=D .2y x-=2. 钟面上的分针的长为4,从9点到9点30分,分针在钟面上扫过的面积是 ( )A .2πB .4πC . 8πD . 16π3. 抛物线y=2(x ﹣1)2﹣3的对称轴是直线( )A. x=2B. x=﹣1C. x=1D.x=﹣34.反比例函数6y x=-的图象大致是( )5如图,AB 是⊙O 的直径,AB 垂直于弦CD ,∠BOC=70°,则∠ABD=( ) A .20°B .46°C .55°D .70°6若M (12-,y 1)、N (14-,y 2)、P (12,y 3)三点都在函数ky x=(k>0)的图象上,则y l 、y 2、y 3的大小关系是( )A . y 3>y 1>y 2B . y 2>y 1>y 3C . y 2>y 3>y 1 D. y 3>y 2>y 17. 如图:AB 是AB 所对的弦,AB 的中垂线CD 分别交AB 于C ,交AB 于D ,AD 的中垂线EF 分别交AB 于E ,交AB 于F ,DB 的中垂线GH 分别交AB 于G ,交AB 于H ,下列结论中不正确的是( )A. AC =CBB. EC = CGC. AE =ECD. EF =GH8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图,则下列结论中正确的是( ) A .a >0 B .当x ≥1时,y 随x 的增大而增大 C .c <0 D .3是方程ax 2+bx +c =0的一个根第8题图9.如图,点A 在反比例函数()3y=x 0x>的图象上, 点B 在反比例函数()ky=x 0x>的图象上,AB⊥x 轴于点M , 且AM :MB=1:2,则k 的值为( )A . -3B .-6C .2D .610数形结合是数学中常用的思想方法,试运用这一思想方法确定函数y=x 2+1与y= 3x的交点的横坐标x 0的取值范围是( ) A .0<x 0<1B .1<x 0<2C .2<x 0<3D .-1<x 0<011如图所示,在直角坐标系中放置一个边长为1的正方形ABCD , 将正方形ABCD 沿x 轴的正方向无滑动的在x 轴上滚动,当点A 离开原点后第一次落在x 轴上时,点A 运动的路径线与 x 轴围成的面积为( )A.122π+B. 12π+C. 1π+ D 12π+ 12已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x 1,0)且1<x 1<2,与y·轴正半轴的交点在点(0,2)的下方,下列结论:①a <b <0;②2a+c >0;③4a+c< 0,④2a -b+l >0.其中的有正确的结论有几个( ) A .1 B .2 C .3 D .4 二、填空题 (本题有6小题,每小题4分,共24分)13.二次函数522-+=x x y 顶点坐标是 .14.已知一个扇形的半径为60cm ,圆心角为150°,用它围成一个圆锥的侧面,那么圆锥的底面 半径为 cm .15. 如图,正比例函数y 1=k 1x 和反比例函数y 2=的图象交于A (﹣1,2)、B (1,﹣2)两点,若y 1<y 2,则x 的取值范围是 .16如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为 厘米.17. 如图,反比例函数y=3x(x >0)的图象与矩形OABC 的边长AB 、BC 分别交于点E 、F 且AE=BE ,则△OEF 的面积的值为 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年浙江宁波董玉娣中学九年级上学期数学期中考试试卷一、选择题(共12小题;共60分)1. 若ab =34,则a+bb= A. 2B. 74C. 54D. 322. 分别写有数字0,−1,−2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是 A. 15B. 25C. 35D. 453. 把抛物线y=3x2向右平移一个单位,则所得抛物线的解析式为 A. y=3x+12B. y=3x−12C. y=3x2+1D. y=3x2−14. 如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于A. 3:2B. 3:1C. 1:1D. 1:25. 如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50∘,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是 A. 45∘B. 85∘C. 90∘D. 95∘6. 根据下列表格的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解的范围是 x 3.23 3.24 3.25 3.26ax2+bx+c−0.06−0.020.030.09A. 3<x<3.23B. 3.23<x<3.24C. 3.24<x<3.25D. 3.25<x<3.267. 圆中与半径相等的弦所对的圆周角度数是 A. 30∘B. 60∘C. 150∘D. 30∘或150∘8. 小颖在二次函数y=2x2+4x+5的图象上,依横坐标找到三点−1,y1,12,y2, −312,y3,则你认为y1,y2,y3的大小关系应为 A. y1>y2>y3B. y2>y3>y1C. y3>y1>y2D. y3>y2>y19. 下列命题中:①长度相等的弧是等弧;②平分弦的直径垂直于弦;③直径是弦;④同弧或等弧所对的圆心角相等;⑤相等的圆周角所对的弧相等.其中不正确的命题有 A. 1个B. 2个C. 3个D. 4个10. 如图,△ABC是边长为12 cm的等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积为 A. 16 cm2B. 8 3 cm2C. 16 3 cm2D. 12 3 cm211. 如图,小明使一长为8厘米,宽为6厘米的长方形木板在桌面上作无滑动的滚动(顺时针方向),木板上的点A位置变化为A→A1→A2,其中第二次翻滚时被桌面上一小木块挡住,使木块与桌面成30∘角,则点A翻滚到A2位置时共走过的路径长为 A. 20厘米B. 8π厘米C. 7π厘米D. 5π厘米12. 抛物线y=ax2+bx+c的顶点为D−1,2,与x轴的一个交点A在点−3,0和−2,0之间,其部分图象如图,则以下结论:①b2−4ac<0;②a+b+c<0;③c−a=2;④方程ax2+bx+c−2=0有两个相等的实数根.其中正确结论的个数为 A. 1个B. 2个C. 3个D. 4个二、填空题(共6小题;共30分)13. 抛物线y=2x2+1的顶点坐标是.14. 已知线段a=3,b=27,则a,b的比例中项线段长等于.15. 如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120∘,AB长为30 cm,贴纸部分的宽为20 cm,则贴纸部分的面积为cm2.16. 如图,点A,B是⊙O上两点,AB=10,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥AP于E,OF⊥PB于F,则EF=.17. 当−2≤x≤1时,二次函数y=−x−m2+m2+1有最大值4,则实数m的值为.18. 已知:如图,矩形ABCD中,E,F是CD的两个点,EG⊥AC,FH⊥AC,垂足分别为G,H,若AD=2,DE=1,CF=2,且AG=CH,则EG+FH=.三、解答题(共8小题;共104分)19. 点P是Rt△ABC的斜边AB上异于A,B的一点,过P点作直线PE截△ABC,使截得的三角形与△ABC相似,请你在图中画出满足条件的直线,并标出必要的标记.20. 一个不透明的口袋里装有分别标有汉字“美”、“丽”、“宁”、“波”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“宁”的概率为多少.(2)若从中任取一球,不放回,再从中任取一球,请用画树状图的方法,求取出的两个球上的汉字恰能组成“美丽”或“宁波”的概率.21. 已知:如图,AD∥BC,∠A=∠BDC.(1)求证:△ABD∽△DCB.(2)若AD=5,BC=8,求BD的长.22. 如图,AB是⊙O的直径,弦CD⊥AB,垂足为点P,若AB=4,AC=23,求:(1)∠A的度数;(2)弦CD的长;(3)弓形CBD的面积.23. 如图,已知二次函数y=a x−ℎ2+3的图象经过原点O0,0,A2,0.(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60∘到OAʹ,试判断点Aʹ是否为该函数图象的顶点?24. 已知:如图,△ABC中,BC=12,点O是BC上的一个动点,连接AO,点P也是AO上的一个动点,过点P作PD∥AB交BC于D,PE∥AC交BC于E.(1)若点O是BC上的中点,点P也是AO的中点时,求DE的长.(2)若AP=2PO,求DE的长.25. 若两个二次函数图象的顶点、开口方向都相同,则称这两个二次函数为“同簇二次函数”.(1)请写出两个为“同簇二次函数”的函数.(2)已知关于x的二次函数y1=2x2−4mx+2m2+1和y2=ax2+bx+5,其中y1的图象4经过点P1,1,y2与y1为“同簇二次函数”,①求m的值及函数y2的表达式.②如图点A和点C是函数y1上的点,点B和点D是函数y2上的点,且都在对称轴右侧,若AB∥CD∥x轴,BC⊥AB,求CDAB的值(只需直接写答案).26. 如图,已知抛物线y=ax2−32x+c与x轴相交于A,B两点,并与直线y=12x−2交于B,C两点,其中点C是直线y=12x−2与y轴的交点,连接AC.(1)求B,C两点坐标以及抛物线的解析式;(2)证明:△ABC为直角三角形;(3)△ABC内部能否截出面积最大的矩形DEFG(顶点D,E,F,G在△ABC各边上)?若能,求出最大面积;若不能,请说明理由.答案第一部分1. B2. B3. B4. D5. B6. C7. D8. D9. C 10. D11. C 12. C第二部分13. 0,114. 915. 800π316. 517. 2或−318.第三部分19. 如图1,作PE⊥AC交AC于E,则△APE∽△ABC;如图2,作PE⊥BC交BC于E,则△BPE∽△BAC;如图3,作PE⊥AB交AC于E,则△APE∽△ACB.20. (1)从中任取一个球,球上的汉字刚好是“宁”的概率=14.(2)画树状图为(用A,B,C,D分别表示标有汉字“美”、“丽”、“宁”、“波”的四个小球):共有12种等可能的结果,其中取出的两个球上的汉字恰能组成“美丽”或“宁波”的结果数为4,∴取出的两个球上的汉字恰能组成“美丽”或“宁波”的概率=412=13.21. (1)∵AD∥BC,∴∠ADB=∠DBC,又∵∠A=∠BDC,∴△ABD∽△DCB.(2)∵△ABD∽△DCB,∴AD:BD=BD:BC,∵AD=5,BC=8,∴BD=40=210.22. (1)连接CB,如图1,∵AB是⊙O的直径,∴∠ACB=90∘;∴CB2=AB2−AC2=42−232=16−12=4,∴CB=2=12AB,∴sin A=0.5,∴∠A=30∘.(2)∵∠A=30∘,CD⊥AB,∴CP=12AC=3,CD=2CP=AC=23.(3)连接CO,OD,如图2,∵CO=AO,∴∠A=∠ACO=30∘,∠COB=2∠A=60∘,∴∠COD=120∘,∴S扇形COD =120×π×22360=43π,∵OP=12OC=1,∴S△COD=12CD⋅OP=3,∴弓形CBD的面积=S扇形COD −S△COD=43π−3.23. (1)∵二次函数y=a x−ℎ2+3的图象经过原点O0,0,A2,0.∴抛物线的对称轴为直线x=1.(2)点Aʹ是该函数图象的顶点.理由如下:如图,作AʹB⊥x轴于点B.∵线段OA绕点O逆时针旋转60∘到OAʹ,∴OAʹ=OA=2,∠AʹOA=60∘.在Rt△AʹOB中,∠OAʹB=30∘,∴OB=12OAʹ=1,∴AʹB=3OB=3,∴Aʹ点的坐标为1,3,∴点Aʹ为抛物线y=−3x−12+3的顶点.24. (1)∵点O是BC上的中点,点P也是AO的中点,PD∥AB交BC于D,PE∥AC交BC于E,∴OD=12BO,OE=12CO,∴DE=12BC=12×12=6.(2)∵PD∥AB交BC于D,PE∥AC交BC于E,∴ODOB =OPOA,OEOC=OPOA,∵AP=2PO,∴OPOA =13,∴OD=13OB,OE=13OC,∴DE=13BC=4.25. (1)∵y=x2和y=2x2的顶点均为0,0,且开口向上,∴y=x2和y=2x2为“同簇二次函数”.(2)①把P1,1代入y1=2x2−4mx+2m2+1,得:1=2−4m+2m2+1,解得:m=1,∴y1=2x2−4x+3=2x−12+1.∵y2与y1为“同簇二次函数”,∴顶点一样为1,1,即y2=a x−12+1,∴a+1=54,∴a=14,∴函数y2的表达式为y2=14x−12+1=14x2−12x+54.②CDAB=22.26. (1)∵直线y=12x−2交x轴、y轴于B,C两点,∴B4,0,C0,−2,∵y=ax2−32x+c过B,C两点,∴16a−6+c=0,c=−2,解得a=12,c=−2,∴y=12x2−32x−2.(2)如图1,连接AC,∵y=12x2−32x−2与x负半轴交于A点,∴A−1,0,在Rt△AOC中,∵AO=1,OC=2,∴AC=5,在Rt△BOC中,∵BO=4,OC=2,∴BC=25,∵AB=AO+BO=1+4=5,∴AB2=AC2+BC2,∴△ABC为直角三角形.(3)△ABC内部可截出面积最大的矩形DEFG,面积为52,理由如下:①如图2中,当四边形EFGC是矩形时,此时△AGF∽△ACB∽△FEB.设GC=x,AG=5−x,∵AGAC =FGCB,∴5−x5=25,∴GF=25−2x,∴S=GC⋅GF=x⋅25−2x =−2x2+25x=−2 x−522+52,即当x=52时,S最大,为52.②如图3,第11页(共11页)当四边形 EFGD 是矩形时,此时 △CDE ∽△CAB ∽△GAD , 设 GD =x ,∵AD AB =GD CB , ∴AD 5=2 5, ∴AD = 52x , ∴CD =CA −AD = 5−52x , ∵CD AC =DE AB , ∴ 5− 52x 5=DE5, ∴DE =5−52x ,∴S =GD ⋅DE =x ⋅ 5−52x =−52x 2+5x =−52 x −1 2+52, 即 x =1 时,S 最大,为 52. 综上所述,△ABC 内部可截出面积最大的矩形 DEFG ,面积为 52.。

相关文档
最新文档