灰色预测模型资料
第七章灰色预测
• 部分信尽知可信息能息发的挥作现用有。已
已知,部分
信息未知
• 灰色系统
•白
• 信息完 全已知
• 白色系 统
13
2020年7月23日星期四 greytheory@
灰色预测第一篇论文
邓聚龙,灰色动态模型(GM)及在粮食长期预测中的应用[J], 大自然探索,1984年第3期,37-43.
2 灰色预测基 本思想
3 累加生成建 模思想
4 五步建模思 想
24
2020年7月23日星期四 greytheory@
➢灰色预测模型是通过数据处理来分析和对待随机量,也就是通过数据到数据 的”映射”,时间序列到时间序列的”映射”来处理和发现规律, 称之为灰色 序列生成;
➢累加生成是一种有• 效邓的的聚优弱龙化化数.信累据息加序处生列理随成机问的性题灰的[指J方].数法华.律中—工灰学色院控学制报系,19统87.
• 建立系统模型,一般要经历思想开发、因素分析、量化、动态化、 优化五个步骤,故称为五步建模。
语言模型 网络模型 量化模型 动态模型
优化模型
开发思想,形 成概念,通过 定性分析、研 究,明确研究 的方向、目标 、途径、措施 ,并将结果用 准确简练的语 言加以表达。
对语言模型 中的因素及 各因素之间 的关系进行 剖析,找出 影响事物发 展的前因、 后果,并将 这种因果关 系用框图表 示。
• 公理2 解的非唯一性原理
•
信息不完全、不确定的解是非唯一的。该原理是灰色
系统理论解决实际问题所遵循的基本法则。
• 公理3 最少信息原理
•
灰色系统理论的特点是充分利用已占有的“最少信
息”。
10
2020年7月23日星期四 greytheory@
灰色预测模型讲义
可见图7.1上的曲线有明显的摆动,图7.2呈现逐渐 递增的形式,说明原始数据的起伏已显著弱化.可以 设想用一条指数曲线乃至一条直线来逼近累加生成 数列 x (1) .
7.2 灰色系统的模型
图7.1
图7.2
为了把累加数据列还原为原始数列,需进行后减运算
灰色预测模型讲义
灰色预测模型(Gray Forecast Model)是通过 少量的、不完全的信息,建立数学模型并做出 预测的一种预测方法.当我们应用运筹学的思想 方法解决实际问题,制定发展战略和政策、进 行重大问题的决策时,都必须对未来进行科学 的预测. 预测是根据客观事物的过去和现在的 发展规律,借助于科学的方法对其未来的发展 趋势和状况进行描述和分析,并形成科学的假 设和判断.
2. 灰色系统的特点
(1)用灰色数学处理不确定量,使之量化. (2)充分利用已知信息寻求系统的运动规律. (3)灰色系统理论能处理贫信息系统.
7.1灰色系统的定义和特点
常用的灰色预测有五种:
(1)数列预测,即用观察到的反映预测对象特征的时间序列来 构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征 量的时间。
6 3+8+10+7 34.
于是得到一个新数据序列
x(1) {6, 9, 17, 27, 34}
7.2 灰色系统的模型
归纳上面的式子可写为
i
x(( 1) i) { x(0) ( j) i 1, 2 , N} j 1
称此式所表示的数据列为原始数据列的一次累加生 成,简称为一次累加生成.显然有 x(1) (1) x(0) (1).
• 灰色系统理论是研究解决灰色系统分析、建模、 预测、决策和控制的理论.灰色预测是对灰色 系统所做的预测.目前常用的一些预测方法 (如回归分析等),需要较大的样本.若样本 较小,常造成较大误差,使预测目标失效.灰 色预测模型所需建模信息少,运算方便,建模 精度高,在各种预测领域都有着广泛的应用, 是处理小样本预测问题的有效工具.
灰色预测
用最小二乘法估计为
Uˆ
aˆ uˆ
(BT
B)1 BT
y
将a与u的估计值代入微分方程可得
xˆ(1) (k 1) [x(1) (1) uˆ ]eaˆk uˆ
aˆ
aˆ
GM(1,1)模型
求模拟值 x(1) 并累减还原出 x(0) 的模拟值。 对其做累减还原即可得到原始数列的灰色预测 模型为:
Xˆ (0) (k) Xˆ (1) (k 1) Xˆ (1) (k)
灰色生成
将原始数据列中的数据,按某种要求作数据处 理称为生成.对原始数据的生成就是企图从杂 乱无章的现象中去发现内在规律.
常用的灰色生成方式有: 累加生成,累减生 成,均值生成,级比生成等
灰色生成
累加生成
累加前的数列称原始数列,累加后的数列称为生成数 列.累加生成是使灰色过程由灰变白的一种方法,它在 灰色系统理论中占有极其重要地位,通过累加生成可 以看出灰量积累过程的发展态势,使离乱的原始数据 中蕴含的积分特性或规律加以显化.累加生成是对原 始数据列中各时刻的数据依次累加,从而生成新的序 列的一种手段.
常用到的灰色预测模型
• GM(1,1)模型——是1阶方程,包含有1个变量 的灰色模型
• GM(1,N)模型——是1 阶方程,包含有N 个 变量的灰色模型。
• GM(0,1)模型——是0 阶方程,包含有N 个变 量的灰色模型。表达式上相当于统计回归
• GM(2,1)模型——是2阶方程,包含有1 个变 量的灰色模型。
模型精度检验
+ 相对误差大小检验法(最常用) + 后验差检验法 + 关联度检验法
模型精度检验
相对误差大小检验法
相对误差大小检验法,它是一种直观的逐点进 行比较的算术检验方法,它是把预测数据与实 际数据相比较,观测其相对误差是否满足实际 要求。 设按该模型以求出Xˆ (1) ,并将 Xˆ (1) 做一次累 减转化为Xˆ (0) ,即
灰色预测模型
灰色系统模型(Grey Model,GM)一:解决的关键问题 (所谓灰色系统是指部分信息已知而部分信息未知的系统,灰色系统所要考察和研究的是对信息不完备的系统,通过已知信息来研究和预测未知领域从而达到了解整个系统的目的)灰色系统模型作为一种预测方法广泛应用于工程控制,经济管理,社会系统等众多领域。
二:GM(1,1)模型(一):对原始序列累加处理一次累加生产序列②(即1-AGO序列),表示为其中,一次累加序列(1)X 的第k 项由原序列的前k 项和产生,即: 由(1)X 的相邻项平均得到(1)X 的紧邻均值生成序列(1)z ,表示为:根据上述序列,有灰色系统模型GM(1,1)的基本形式:(二)构造GM(1,1)模型方程组的矩阵形式,并求解参数 GM(1,1)模型的微分方程基本形式:(三)求的时间响应序列,累减得到原序列的预测值(四)模型检验残差的均值、方差分别为:21S C S 称为均方差比值,对于给定的00C ,当0C C 时,称模型为均方差比合格模型;1(()0.6745)p p k S 称为小误差概率,对于给定的00P ,当0P P 时,称模型为小误差概率合格模型。
一般均方差比值C 越小越好(因为C 小说明S 小,1S 大,即残差方差小,原始数据方差大,说明残差比较集中,摆动幅度小,原始数据比较分散,摆动幅度大,所以模拟效果好,要求2S 与1S 相比尽可能小),以及小误差概率p 越大越好,给定000,,,C p 的一组取值,就确定了检验模型模拟精度的一个等级,常用的精度等级见表1。
软件DPS 的分析结果也提供了C 、p 的检验结果。
(五)残差修正模型(六)建立新陈代谢GM(1,1)进行动态预测在实际建模过程中,原始数据序列的数据不一定全部用来建模。
我们在原始数据序列中取出一部分数据,就可以建立一个模型。
一般说来,取不同的数据,建立的模型也不一样,即使都建立同类的GM(1,1)模型,选择不同的数据,参数a,b的值也不一样。
关于“灰色预测模型”讲解
7.8205 11.184
1
14.7185
1
1
1 1
y = [x (0)(2), x (0)(3), x (0)(4), x (0)(5)]T
= [3.278, 3.337, 3.390, 3.679]T
谢谢观赏!
有不足之处,请老师和同 学指正。若有疑问之处 ,请课后交流!
由于
涉及到累加列
(1) 的两个时刻的值,因此,
(1)
t
取前后两个时刻的平均代替更为合理,即将 x(i) (i) 替换为
1 [x(i) (i) x(i) (i 1)], (i 2,3,..., N ). 2
将(7.5)写为矩阵表达式
xxx(((000))M)(((N23)))xxx(((000))M)(((N12231212 [[[))x)xx(((111)))
概率统计、模糊数学和灰色系统理论是三种最常用的不确定性 系统研究方法。其研究对象都具有某种不确定性。
模糊数学着重研究“认知不确定”问题,其研究对象具有“内 涵明确,外延不明确”的特点问题,主要是凭经验借助于隶 属函数进行处理。例:年轻人
概率统计研究的是“随机不确定”现象,着重于考察“随机不 确定”现象的历史统计规律,考察具有多种可能发生的结果 之“随机不确定”现象中每一种结果发生的可能性大小。其 出发点是大样本,并要求对象服从某种典型分布。
灰色系统理论的研究内容 灰哲学、灰哲学、灰生成、灰分析、灰建模、灰预 测、灰决策、灰控制、灰评估、灰数学等。
灰色系统理论的应用领域 农业科学、经济管理、环境科学、医药卫生、矿业 工程、教育科学、水利水电、图像信息、生命科 学、控制科学等。
灰色系统的模型
通过下面的数据分析、处理过程,我们将了解 到,有了一个时间数据序列后,如何建立一个基 于模型的灰色预测。 1. 数据的预处理 首先我们从一个简单例子来考察问题. 【例】 设原始数据序列
数学建模之灰色预测模型
简介
特点:模型使用的不就是原始数据列,而就是生成的数据列。
优点:不需要很多数据,一般只用4个数据就能解决历史数据少,序列的完整性与可靠性低的问题。
缺点:只适用于中短期的预测与指数增长的预测。
1
GM(1,1)表示模型为一阶微分方程,且只含有一个变量的灰色模型。
1、1模型的应用
①销售额预测
②交通事故次数的预测
3
波形预测,就是对一段时间内行为特征数据波形的预测。当原始数据频频摆动且摆动幅度较大时,可以考虑根据原始数据的波形预测未来的行为数据发展变化,以便进行决策。从本质上来瞧,波形预测就是对一个变化不规则的行为数据列的整体发展进的预测。
3、1模型的应用
①区域降水量预测(下载文档)
②运量需求不平衡航线下客流量预测(下载文档)
光滑比为
若序列满足
则序列为准光滑序列。
否则,选取常数c对序列 做如下平移变换
序列 的级比
②对原始数据 作一次累加得
建立模型:
(1)
③构造数据矩阵B及数据向量Y
其中:
④由
求得估计值 = =
⑤由微分方程(1)得生成序列预测值为
则模型还原值为
⑥精度检验与预测
残差
相对误差
相对误差精度等级表
级比偏差
若 <0、2则可认为达到一般要求;若 <0、1,则可认为达到较高要求。
③某地区火灾发生次数的预测
④灾变与异常值预测,如对旱灾,洪灾广州市人口预测与分析(下载的文档)
⑥网络舆情危机预警(下载的文档)
1、2步骤
①级比检验与判断
由原始数据列 计算得序列的级比为
若序列的级比 ∈ ,则可用 作令人满意的GM(1,1)建模。
灰色预测模型介绍.
数学模型与数学实验数课程报告题目:灰色预测模型介绍专业:班级:姓名:学号:二0一一年六月1. 模型功能介绍预测模型为一元线性回归模型,计算公式为Y=a+b。
一元非线性回归模型:Y=a+blx+b2x2+…+bmxm。
式中:y为预测值;x为自变量的取值;a,b1,b2……bm为回归系数。
当自变量x与因变量y之间的关系是直线上升或下降时,可采用一元线性预测模型进行预测。
当自变量x和因变量y之间呈曲线上升或下降时,可采用一元非线性预测模型中的y=a+b1x+b2x2+…+bmxm这个预测模型。
当自变量x和因变量y之间关系呈上升一下降一再上升一再下降这种重复关系时,可采用一元线性预测模型中的Y=a+bx这个模型来预测。
其中我要在这里介绍灰色预测模型。
灰色预测是就灰色系统所做的预测,灰色系统(Grey System)理论[]1是我国著名学者邓聚龙教授20世纪80年代初创立的一种兼备软硬科学特性的新理论[95]96]。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰色系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
灰色系统的基本原理公理1:差异信息原理。
“差异”是信息,凡信息必有差异。
公理2:解的非唯一性原理。
信息不完全,不明确地解是非唯一的。
公理3:最少信息原理。
灰色系统理论的特点是充分开发利用已有的“最少信息”。
灰色预测模型
灰色预测模型1.模型建立灰色系统是指部分信息已知,部分信息未知的系统。
灰色系统的理论实质是将无规律的原始数据进行累加生成数列,再重新建模。
由于生成的模型得到的数据通过累加生成的逆运算――累减生成得到还原模型,再有还原模型作为预测模型。
预测模型,是拟合参数模型,通过原始数据累加生成,得到规律性较强的序列,用函数曲线去拟合得到预测值。
灰色预测模型建立过程如下:1) 设原始数据序列()0X 有n 个观察值,()()()()()()(){}n X X X X 0000,...,2,1=,通过累加生成新序列 ()()()()()()(){}n X X X X 1111,...,2,1=,利用新生成的序列()1X 去拟和函数曲线。
2) 利用拟合出来的函数,求出新生序列()1X 的预测值序列(1)X 3) 利用(0)(1)(1)()()(1)X k X k X k =--累减还原:得到灰色预测值序列: ()()(){}00001,2,...,X X X X n m =+ (共n +m 个,m 个为未来的预测值)。
将序列()0X 分为0Y 和0Z ,其中0Y 反映()0X 的确定性增长趋势,0Z 反映()0X 的平稳周期变化趋势。
利用灰色GM (1,1)模型对()0X 序列的确定增长趋势进行预测 2 模型求解根据2006全国统计年鉴数据整理得到全国历年年度人口统计表如表1.根据上述数据,建立含有20个观察值原始数据序列()0X :()[]09625998705105851112704127627128453129988130756X = 如表2:表2:新数列()1X 误差和误差率1、利用表2,拟合函数,如下:0.011624(1)92800439183784t x t e +=- 2、精度检验值c =0.3067 (很好) P =0.9474 (好)3、得到未来20年的预测值:。
关于“灰色预测模型”讲解
集成学习可以通过组合多个基模型的预测结果来提高整体 预测性能。可以将灰色预测模型作为基模型之一,与其他 预测方法一起构建集成学习模型。
与模糊逻辑融合
模糊逻辑能够处理不确定性和模糊性问题,可以与灰色预 测模型相结合,提高模型在处理不确定信息时的预测性能 。
THANKS
感谢观看
灰色差分方程
灰色预测模型的核心是建立灰色差分方程,通过对原始数据序列进行累加或累减 生成,构造出具有指数规律的数据序列,进而建立相应的微分方程进行求解。
适用范围及优势
适用范围
小样本建模
适应性强
预测精度高
灰色预测模型适用于数据量较 少、信息不完全、具有不确定 性和动态性的系统。它可以在 数据序列较短、波动较大、趋 势不明显的情况下,进行有效 的预测和分析。
04
灰色预测模型检验与评 估
残差检验法
01
02
03
残差计算
通过比较实际值与预测值 之间的差异,计算残差序 列。
残差分析
对残差序列进行统计分析 ,包括计算均值、方差等 指标,以评估模型的预测 精度。
残差图
绘制实际值与预测值的散 点图,以及残差序列的折 线图,直观展示模型的拟 合效果。
后验差检验法
金融市场分析
灰色预测模型可以用于分析金融市场的波动性和 趋势,帮助投资者做出更明智的投资决策。
3
物价水平预测
利用灰色预测模型可以对物价水平进行短期和长 期预测,为政府制定物价调控政策提供依据。
社会领域应用案例
人口数量预测
通过收集历史人口数据,利用灰色预测模型可以对未来人 口数量进行预测,为政府制定人口政策提供参考。
关于“灰色预测模型 ”讲解
灰色预测模型GM
灰色预测模型GM (1,1)§1 预备知识灰色预测是就灰色系统所做的预测。
所谓灰色系统是介于白色系统和黑箱系统之间的过渡系统,其具体的含义是:如果某一系统的全部信息已知为白色系统,全部信息未知为黑箱系统,部分信息已知,部分信息未知,那么这一系统就是灰箱系统。
一般地说,社会系统、经济系统、生态系统都是灰色系统。
例如物价系统,导致物价上涨的因素很多,但已知的却不多,因此对物价这一灰色系统的预测可以用灰色预测方法。
灰色系统理论认为对既含有已知信息又含有未知或非确定信息的系统进行预测,就是对在一定方位内变化的、与时间有关的灰色过程的预测。
尽管过程中所显示的现象是随机的、杂乱无章的,但毕竟是有序的、有界的,因此这一数据集合具备潜在的规律,灰色预测就是利用这种规律建立灰色模型对灰色系统进行预测。
平面上有数据序列()()(){}n n y x y x y x ,,,,,,2211 ,大致分布在一条直线上。
设回归直线为:b ax y +=,要使所有点到直线的距离之和最小(最小二乘),即使误差平方和()∑=--=ni i i b ax y J 12最小。
J 是关于a , b的二元函数。
由()()()()⎪⎪⎩⎪⎪⎨⎧=-⋅--⋅=∂∂=-⋅--⋅=∂∂∑∑==0120211ni ii i ni i i i i b x a y b J x b x a y a J()()⎪⎪⎩⎪⎪⎨⎧=--=--⇒∑∑==00112ni i i n i i i i i b a y bx ax y x 则得使J 取极小的必要条件为:⎪⎩⎪⎨⎧=+=+⋅∑∑∑∑∑=i iii n i i i y nb x a y x x b x a 12(*)()()()()()()()⎪⎪⎩⎪⎪⎨⎧--=--=∑∑∑∑∑∑∑∑∑∑∑22222i i i i i i i i i i i i i x x n y x x x y b x x n y x y x n a (1) 以上是我们熟悉的最小二乘计算过程。
灰色预测模型
dx
(t)
(1)
ax
(t)b,
dt
解为
b
a
(
t
1
) b
x(
t)
(
x(
1
))
e
.
a
a
(
1
)
(
0
)
(3)
于是得到预测值
b
b
(
1
)
(
0
)
ak
ˆ
x(
k
1
)
(
x(
1
)
)
e
,
k
1
,
2
,
,
n
1
,
a
a
从而相应地得到预测值:
(
0
)
(
1
)
(
1
)
ˆ
ˆ
ˆ
x
(
k
1
)
x
(
k
1
)
x
(
k
lim
dt
t
t 0
而 ( 1)( x ( k )) x ( k ) x ( k 1 ), 相当于
t 1
(3)加权邻值生成
(
0
)
(
0
)
(
0
)
(
0
)
x
(
x
(
1
),
x
(
2
),
,
x
(
n
))
设原始数列为
(完整版)灰色预测模型
我们说X (1)是X (0)的AGO序列,并记为
当且仅当
X (1) AGO X (0)
X (1) x(1) 1, x(1) 2,L , x(1) n
k
并满足 x(1) (k) x(0) (m) (k 1, 2,L , n) m1
例1 摆动序列为:X (0) 1, 2, 1.5, 3
3、灰数及其运算
只知道大概范围而不知道其确切值的数称为灰 数,通常记为:“”。
例如: 1. 头发的多少才算是秃子。应该是个区间范
围。模糊 2.多少层的楼房算高楼,中高楼,低楼。 3.多么重才算胖子?。
灰数的种类:
a、仅有下界的灰数。 有下界无上界的灰数记为: ∈[a, ∞] b、仅有上界的灰数。 有上界无下界的灰数记为: ∈[-∞ ,b] c、区间灰数 既有上界又有下界的灰数: ∈ [a, b] d、连续灰数与离散灰数 在某一区间内取有限个值的灰数称为离散灰 数,取值连续地充满某一区间的灰数称为连续 灰数。
这表明
IAGO X (1) IAGO(பைடு நூலகம்AGO X (0) ) X (0)
3. 均值生成算子(MEAN)
定义 它是将AGO序列中前后相邻两数取平均数, 以获得生成序列。令X (1)为X (0)的AGO序列
X (1) x(1) 1, x(1) 2,L , x(1) n
称Z (1)为X (1) 的MEAN序列,并记为
定义 它是对AGO生成序列中相邻数据依次累 减,又称累减生成。令X (0)为原序列
X (0) x(0) 1, x(0) 2,L , x(0) n
称Y是 X (0)的IAGO序列,并记为
当且仅当
Y IAGO X (0)
Y y(1), y(2),L , y(n)
预测方法——灰色预测模型
预测⽅法——灰⾊预测模型灰⾊预测模型主要特点是模型使⽤的不是原始数据序列,⽽是⽣成的数据序列,核⼼体系为灰⾊模型(GM),即对原始数据作做累加⽣成(累减⽣成,加权邻值⽣成)得到近似指数规律再进⾏建模。
优点:不需要很多数据;将⽆规律原始数据进⾏⽣成得到规律性较强的⽣成序列。
缺点:只适⽤于中短期预测,只适合指数增长的预测。
GM(1,1)预测模型GM(1,1)模型是⼀阶微分⽅程,且只含⼀个变量。
1. 模型预测⽅法2. 模型预测步骤1. 数据检验与处理为保证建模⽅法可⾏,需要对已知数据做必要的检验处理。
设原始数据列为x(0)=(x0(1),x0(2),….x0(n)),计算数列的级⽐λ(k)=x(0)(k−1)x(0)(k),k=2,3,...,n如果所有的级⽐都落在可容覆盖区间X=(e−2n+1,e2n+1)内,则数列可以建⽴GM(1,1)模型且可以进⾏灰⾊预测。
否则,对数据做适当的变换处理,如平移变换:y(0)(k)=x(0)(k)+c,k=1,2,...,n取c使得数据列的级⽐都落在可容覆盖内。
2. 建⽴模型根据1中⽅程的解,进⼀步推断出预测值ˆx(1)(k+1)=(x(0)(1)−ba)e−ak+ba,k=1,2,...,n−13. 检验预测值1. 残差检验ε(k)=x(0)(k)−ˆx(0)(k)x(0)(k),k=1,2,...,n如果对所有的|ε(k)|<0.1|ε(k)|<0.1,则认为到达较⾼的要求;否则,若对所有的|ε(k)|<0.2|ε(k)|<0.2,则认为达到⼀般要求。
2. 级⽐偏差值检验ρ(k)=1−1−0.5a1+0.5aλ(k)如果对所有的|ρ(k)|<0.1,则认为达到较⾼的要求;否则,若对于所有的|ρ(k)|<0.2,则认为达到⼀般要求。
4. 预测预报根据问题需要给出预测预报。
3. py实现import numpy as npimport pandas as pddata=[71.1,72.4,72.4,72.1,71.4,72.0,71.6] # 数据来源len=len(data) # 数据量# 数据检验lambdas=[]for i in range(1,len):lambdas.append(data[i-1]/data[i])X_Min=np.e**(-2/(len+1))X_Max=np.e**(2/(len+1))l_min,l_max=min(lambdas),max(lambdas)if l_min<X_Min or l_max> X_Max:print("该组数据为通过数据检验,不能建⽴GM模型!")else:print("改组数据通过检验")# 建⽴GM(1,1)模型data_1=[] # 累加数列z_1=[]data_1.append(data[0])for i in range(1,len):data_1.append(data[i]+data_1[i-1])z_1.append(-0.5*(data_1[i]+data_1[i-1]))B=np.array(z_1).reshape(len-1,1)one=np.ones(len-1)B=np.c_[B,one]Y=np.array(data[1:]).reshape(len-1,1)a,b=np.dot(np.dot(np.linalg.inv(np.dot(B.T,B)),B.T),Y)print('a='+str(a))print('b='+str(b))## 数据预测data_1_prd=[]data_1_prd.append(data[0])data_prd=[] # 预测datadata_prd.append(data[0])for i in range(1,len):data_1_prd.append((data[0]-b/a)*np.e**(-a*i)+b/a)data_prd.append(data_1_prd[i]-data_1_prd[i-1])# 模型检验## 残差检验e=[]for i in range(len):e.append((data[i]-data_prd[i])/data[i])e_max=max(e)if e_max<0.1:print("数据预测达到较⾼要求!")elif e_max<0.2:print("数据预测达到⼀般要求!")# 输出预测数据for i in range(len):print(data_prd[i])灰⾊Verhulst预测模型主要⽤于描述具有饱和状体的过程,即S型过程,常⽤于⼈⼝预测,⽣物⽣长,繁殖预测及产品经济寿命预测等。
灰色系统战略预测模型
i?1
对于非负数据,累加次数越多,则随机性弱化越多, 当累加次数足够大后,可认为时间序列已有随机序列变 为非随机序列了。一般随机序列的多次累加序列,大多 可用指数曲线逼近。
上标0表示原始时间序列,记生成列为:X(1)={X(1)(1), X(1)(2), X(1)(3), ... ,X(1)(n)}
? ? ? k
式中: X ?1??k ?? X ?0??i? ? X (1) (k ? 1) ? X (0) (k )
? ? ? i?1
k
上标1表示一次累加,同理,可作m次累加,有: X ?m ??k ?? ?? X ?m?1? i
灰色系统理论研究宗旨为强调信息优化,研究现实规律;概率与 数理统计:强调统计数据与历史关系,研究历史的统计规律;模糊理论 则是强调先验信息,依赖人的经验,研究经验认知的表达规律。
灰色系统理论与概率、模糊理论的对 比
“灰色”“概率”“模糊”理论的区别
指标 内涵 基础 依据 手段 特点 要求 目标 思维方式 信息标准
灰色系统理论的提出
灰色系统 (Greysystem) 是邓聚龙在 20世纪 70年代末、 80年代初体提出的。人们通过概率与 数理统计,解决样本量大、数据多但缺乏明显规 律的问题,即“大样本不确定性”问题;人们用 模糊数学处理人的经验与认知先验信息的不确定 性问题,即“认知不确定性”问题。而灰色系统 理论(简称灰理论 Greysystem) 则是针对既无经验, 数据又少的不确定性问题,即“少数据不确定性” 问题提出的。
灰色系统 小样本不确定
灰朦胧集 信息覆盖
生成 少数据 允许任意分布 现实规律 多角度 最少信息
概率论 大样本不确定
康托集 概率分布
统计 多数据 要求典型分布 历史统计规律 重复再现 无限信息
灰色预测模型
西南民族大学管理学院 汪虹
本讲介绍
灰色预测模型
灰色预测的基本思想 GM(1,1)模型的建立 GM(1,1)模型用于预测 冲击扰动与缓冲算子 灾变预测
系统工程理论
灰色预测模型
灰色预测的基本思想
当一时间序列无明显趋势时,采用累加方法可生 成趋势明显的时间序列。
比如 X 0 32,38,36,35, 40, 42
n
x1 n x0 t t 1
系统工程理论
灰色数据序列的生成
可得到原始数据序列的一次累加生成数列(1-AGO):
其中,
X 1 x1 1, x1 2,, x1 n
x1 t x0 1
x1
t
t
x0 i
i 1
t 2,3,, n
系统工程理论
灰色数据序列的生成
类似可得原始数据序列的 r 次累加生成数列(r-AGO):
系统工程理论
GM(1,1)模型例题
1-AGO生成数据序列:
X 1 383.3775, 776.4179, 1175.7811, 1581.7882
X 1 的紧邻均值生成序列:
Z1 579.8977, 976.0995, 1378.7847
最小二乘参数估计:
a bT 0.016232, 383.591412T
系统工程理论
灰色预测的类型
按应用对象的不同,灰色预测可分为:
数列预测 —— 对表征系统行为的指标值的发展变化进行预 测
灾变预测 —— 对表征系统行为的指标值超过阈值的异常值 将于何时再现进行预测
……
系统工程理论
灰色模型机理
一般建模是利用数据序列建立差分方程,灰色建 模是将原始数据进行生成处理后建立微分方程。
数学建模-灰色预测模型(讲解
(3)季节灾变与异常值预测,即通过灰色模型预测灾变值发生 在一年内某个特定的时区或季节的灾变预测。
(4)拓扑预测,将原始数据作曲线,在曲线上按定值寻找该定 值发生的所有时点,并以该定值为框架构成时点数列,然后建立模 型预测该定值所发生的时点。
一、灰色系统的定义和特点
1. 灰色系统的定义
灰色系统是黑箱概念的一种推广。我们把既含有已知信 息又含有未知信息的系统称为灰色系统.作为两个极端, 我们将称信息完全未确定的系统为黑色系统; 称信息完全确定的系统为白色系统. 区别白色系统与黑色系统的重要标志是系统各因素之间是 否具有确定的关系。
1灰色系统的定义和特点
1 灰色系统的定义和特点 2 灰色系统的模型 3 Sars 疫情 4 销售额预测 5 城市道路交通事故次数的灰色预测 6 城市火灾发生次数的灰色预测 7灾变与异常值预测
1 灰色系统的定义和特点
灰色系统的定义和特点
灰色系统理论是由华中理工大学邓聚龙教授于 1982年提出并加以发展的。二十几年来,引起了不 少国内外学者的关注,得到了长足的发展。目前, 在我国已经成为社会、经济、科学技术在等诸多领 域进行预测、决策、评估、规划控制、系统分析与 建模的重要方法之一。特别是它对时间序列短、统 计数据少、信息不完全系统的分析与建模,具有独 特的功效,因此得到了广泛的应用.在这里我们将简 要地介绍灰色建模与预测的方法.
灰色系统理论是研究解决灰色系统分析、建模、 预测、决策和控制的理论.灰色预测是对灰色系统 所做的预测.目前常用的一些预测方法(如回归分 析等),需要较大的样本.若样本较小,常造成较 大误差,使预测目标失效.灰色预测模型所需建模 信息少,运算方便,建模精度高,在各种预测领 域都有着广泛的应用,是处理小样本预测问题的 有效工具.
第三章 灰色预测模型汇总
可见图3.1上的曲线有明显的摆动,图3.2呈现逐渐 递增的形式,说明原始数据的起伏已显著弱化.可以 设想用一条指数曲线乃至一条直线来逼近累加生成 数列 x (1) .
图3.1
图3.2
为了把累加数据列还原为原始数列,需进行后减运算
或称相减生成,它是指后前两个数据之差,如上例中
第三章 灰色预测模型及其应用
灰色预测模型(Gray Forecast Model)是通过少量 的、不完全的信息,建立数学模型并做出预测的 一种预测方法.当我们应用运筹学的思想方法解决 实际问题,制定发展战略和政策、进行重大问题 的决策时,都必须对未来进行科学的预测. 预测 是根据客观事物的过去和现在的发展规律,借助 于科学的方法对其未来的发展趋势和状况进行描 述和分析,并形成科学的假设和判断.
常用的灰色预测有五种:
(1)数列预测,即用观察到的反映预测对象特征的时间序列来 构造灰色预测模型,预测未来某一时刻的特征量,或达到某一特征 量的时间。
(2)灾变与异常值预测,即通过灰色模型预测异常值出现的时 刻,预测异常值什么时候出现在特定时区内。
(3)季节灾变与异常值预测,即通过灰色模型预测灾变值发生 在一年内某个特定的时区或季节的灾变预测。
x(1) (5) x(1) (5) x(1) (4) 34 27 7, x(1) (4) x(1) (4) x(1) (3) 27 17 10, x(1) (3) x(1) (3) x(1) (2) 17 9 8, x(1) (2) x(1) (2) x(1) (1) 9 6 3, x(1) (1) x(1) (1) x(1) (0) 6 0 6. 归纳上面的式子得到如下结果:一次后减 x(1) (i) x(1) (i) x(1) (i 1) x(0) (i)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统便是一个灰色系统。
数学建模
❖
灰色预测是对既含有已知信息又含有不确定信息的系统,
即灰色系统进行预测。尽管灰色系统表象复杂,数据散乱,信息
不充分,但作为一个系统,必然有其整体功能和潜在的规律,必
然是有序的。灰色预测法把影响系统变化的随机变量看作是在一
定范围内变化的灰色量,通过对原始数据的生成处理,生成具有
dt
式中,a称为发展灰数;b称为内生控制灰数。式(8.2.1)实 际是一个线性动态模型。参数向量记为B=(a,b)T,可按下述步骤,
用最小二乘法加以估计:
将式(8.2.1)离散化得如下差分方程:
△X(1)(t)+aX(1)(t)=b
而
△X(1)(t)=X(1)(t)–X(1)(t-1)=X(0)(t),
❖ 2)累减生成 就是将原始序列前后两个数据相减,
得到累减生成序列。累减生成序列的第t项为:
X (1) (t) X (0) (t) X (0) (t 1), t 1,2,, n.其中X (0) (0) 0
显然,累减是累加的逆运算。累减可将累加生成序列 还原为原始序列。
3)邻均值生成 就是对等时距序列,用相邻数据的平均值构造新的序列。 邻均值生成序列的第t项为:Z(t) 1 [X (0) (t) X (0) (t 1)],t 2,3,, n.
数学建模
灰色预测法
主讲人:肖文平
内容提要
1. 灰色预测理论 2. GM(1,1)模型 3. 残差GM(1,1)模型
数学建模
§1 灰色预测理论
数学建模
❖ 一、灰色预测概述
❖
灰色预测法是近年来发展起来的一种新方法,在预测领域发挥着越来越
重要的作用。“灰 色” 一词来源于控制理论。在控制论中用颜色的深浅表示
Байду номын сангаас
要求n≥4 。通过累加生成 了新序列:X (1) X (1) (1), X (1) (2), X (1) (3),, X (1) (n)
可以证明,原始序列X(0) 作一次累加生成 的序列X(1)具有近似的
指数规律,称为灰指数律。于是把生成 序列X(1) 视为t的连续函数, 可建立如下微分方程: dX (1) aX (1) b8.2.1
xˆ (1) (k 1) x (0) (1) b eak b
a
a
⑥ 还原x(0)(k)=x(1)(k+1)-x(1)(k)
(k 1,2,, n 1)
5
一、生成序列
❖ 为了弱化原始时间序列的随机性,为建立数灰学色建预模 测 模型提供信息,需要对原始时间序列进行数据处理,处
理后的序列称为生成序列。常用的数据生成处理法有累 加生成、累减生成及邻均值生成等。
信息量的多少,如黑色表示信息全无,白色表示信息完全,灰色则表示信息
不完全。一个系统内,如果一部分信息是已知的,另一部分信息是未知的,
则称之为灰色系统,其重要特征是系统内各因素间不具有确定的关系。社会
系统、经济系统、生态系统等都可看作灰色系统。比如,产销系统,在计划
经济体制下,产品由商业部门包销,价格由国家物价部门制定,基本不变,
❖ 1)累加生成(白化处理)
❖ 就是将原始序列通过累加得到生成序列。
❖ 记原始序列为:X (0) X (0) (1), X (0) (2), X (0) (3),, X (0) (n)
记生成序列为:X (1) X (1) (1), X (1) (2), X (1) (3),, X (1) (n)
2
§2 GM(1,1)模型及预测应用
数学建模
❖ GM是英文Grey Model的缩写。GM(1,1)表示由一阶、一个变 量的线性微分方程导出的灰色预测模型。
❖ 一、 GM(1,1)模型的建立
❖
设时间序列X(0) 有n个观测值:X (0) X (0) (1), X (0) (2), X (0) (3),, X (0) (n)
产量和销售产值之间存在确定的对应关系,生产和销售系统的结构都是明确
的,这时的产销系统可称之为白色系统。而社会主义市场经济条件下的产销
系统便不再有上述确定的对应关系了,企业要根据市场信息来决定生产,产
销不对路,生产出来的产品便无法实现销售价值;市场价格又是多变的,获
得完备的市场信息和价格信息对企业来讲,几乎是不可能的。此时的产销系
式中:
t
X (1) (t) X (0) (i) X (1) (t 1) X (0) (t), t 1,2,, n i 1
上标(1)表示一次累加生成。其中X (1)(0) 0
同理可作m次累加生成,有:X
(m)
(t)
t
X
( m 1)
(i),
t
1,2,,
n
i 1
对于非负序列,累加次数越多,则随机性弱化越多,当累加次 数足够大后,可认为时间序列已由随机序列变为非随机序列了。一 般随机序列的累加序列,大多可用指数曲线逼近。
加生成例序6-列1 。某县皮棉产量时间序列如下表所列,试数求学其建一模次累
某县皮棉产量时间序列数据 (单位:万担)
序号t
123 45 6
产量X(0)(t) 26.7 31.5 32.8 34.1 35.8 37.5
解 一次累加生成序列: X (1) 26.7,58.2,91,125 .1,160 .9,198 .4
较强规律性的生成序列,来寻找系统变动的内在规律,进而建立
相应的微分方程,解得预测事物未来发展状况的预测模型。
❖ 已有的预测方法,大多依据过去的大量数据,按照统计方法
分析其规律,这样不仅受数据量的限制,而且要作出某种假定,
准确程度不高。而灰色预测法不需要任何假定,也不必寻找随机
变量的概率分布和统计特征,所需数据也不多。这就突破了概率
统计法的局限性,便于从系统自身挖掘信息并充分利用信息。
❖ 灰色预测法既可用于宏观系统,也可用于微观系统;既可用
于短期预测,也可用于长期预测。灰色预测可分为:灰色时间序
列预测;畸(灾)变预测;波形预测(也称拓扑预测)和系统预
测四类。我们只介绍灰色时间序列预测和畸变预测。
数学建模
❖ 灰色建模的方法
① 累加生成原数据列x(0)得到x(1) ② 均值生成x(1)得到z(1) ③ 写出灰微分模型 x(0) (k) az(1) (k) b ④ 回带数据利用最小二乘法求得参数a,b的估计值 ⑤ 代入a,b的估计值解出相应的白微分方程可得: