解析几何公式大全
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析几何中的基本公式
1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=
2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++
则:2
2
21B
A C C d +-=
注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++
则P 到l 的距离为:2
2
B
A C
By Ax d +++=
4、 直线与圆锥曲线相交的弦长公式:⎩
⎨
⎧=+=0)y ,x (F b
kx y
消y :02
=++c bx ax ,务必注意.0>∆
若l 与曲线交于A ),(),,(2211y x B y x
则:2122))(1(x x k AB -+=
5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ,
则⎪⎪⎩
⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧
+=+=2221
21y y y x x x
变形后:y
y y y x x x x --=λ--=
λ21
21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα
适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2
11
21tan k k k k +-=
α
若l 1与l 2的夹角为θ,则=
θtan 2
1211k k k k +-,]2,0(π
∈θ
注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角=
2
π
。
(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。
7、 (1)倾斜角α,),0(π∈α;
(2)]0[,π∈θθ→
→,,夹角b a ;
(3)直线l 与平面]2
0[π∈ββα,,的夹角;
(4)l 1与l 2的夹角为θ,∈θ]2
0[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,,
8、 直线的倾斜角α与斜率k 的关系
a) 每一条直线都有倾斜角α,但不一定有斜率。
b) 若直线存在斜率k ,而倾斜角为α,则k=tan α。 9、 直线l 1与直线l 2的的平行与垂直
(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2⇔ k 1=k 2
②l 1⊥l 2⇔ k 1k 2=-1 (2)若0:,0:22221111=++=++C y B x A l C y B x A l
若A 1、A 2、B 1、B 2都不为零
① l 1//l 2⇔
2
1
2121C C B B A A ≠
=; ② l 1⊥l 2⇔ A 1A 2+B 1B 2=0; ③ l 1与l 2相交⇔
2
121B B A A ≠ ④ l 1与l 2重合⇔
2
1
2121C C B B A A =
=; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情况。
10、 直线方程的五种形式
名称 方程 注意点
斜截式: y=kx+b 应分①斜率不存在 ②斜率存在
点斜式: )( x x k y y -=- (1)斜率不存在: x x =
(2)斜率存在时为)( x x k y y -=- 两点式: 1
21
121x x x x y y y y --=--
截距式:
1=+b
y
a x 其中l 交x 轴于)0,(a ,交y 轴于),0(
b 当直线l 在坐标轴上,截距相等时应分:
(1)截距=0 设y=kx (2)截距=0≠a 设1=+a
y
a x 即x+y=a
一般式: 0=++C By Ax (其中A 、B 不同时为零) 10、确定圆需三个独立的条件
圆的方程 (1)标准方程: 2
2
2
)()(r b y a x =-+-, 半径圆心,----r b a ),(。 (2)一般方程:02
2
=++++F Ey Dx y x ,()042
2
>-+F E D
,)2
,2(圆心----E
D 2
422F
E D r -+=
11、直线0=++C By Ax 与圆2
2
2
)()(r b y a x =-+-的位置关系有三种
若2
2
B
A C Bb Aa d +++=
,0<∆⇔⇔>相离r d
0=∆⇔⇔=相切r d 0>∆⇔⇔<相交r d 12、两圆位置关系的判定方法
设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21
条公切线外离421⇔⇔+>r r d 条公切线外切321⇔⇔+=r r d
条公切线相交22121⇔⇔+<<-r r d r r 条公切线内切121⇔⇔-=r r d 无公切线内含⇔⇔-<<210r r d