高中数学解析几何中的基本公式

合集下载

高中数学平面解析几何知识点总结

高中数学平面解析几何知识点总结

平面解析几何一、直线与圆1.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; < ②1212120l l A A B B ⊥⇔+=;4.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心⎪⎭⎫ ⎝⎛--2,2E D ,半径r=2422F E D -+. 6.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种: .若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 7.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22B A CBb Aa d +++=.8.两圆位置关系的判定方法#设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .$二、圆锥曲线1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|).2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上); (2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上). 3.圆锥曲线的几何性质&(1)椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.长轴长为2a ,短轴长为2b ,焦距为2c ,三者满足a 2=b 2+c 2,顶点为(a,0),(0,b),焦点为(c,0),离心率e=ac ,准线c a 2±=x (X 型). (2)双曲线22221(0,0)x y a b a b-=>>,实轴长为2a ,虚轴长为2b ,焦距为2c ,三者满足a 2+b 2=c 2,顶点为(a,0),焦点为(c,0),离心率e=a c (e>1),渐近线为x ab y ±=. 4.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=. (2)共轭双曲线: 12222=-b y ax 与1-2222=a x b y 渐近线一样. (3)等轴双曲线:若双曲线与12222=-by a x 中a=b ,(e=2,渐近线为y=x ±). 5.抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.准线:x=2p ,离心率为e=1.(点到焦点的距离等于点到准线的距离).。

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。

2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。

3. 一般式:Ax + By + C = 0,其中A、B、C是常数。

二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。

2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。

三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。

2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。

六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。

如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。

2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。

七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。

高中数学所有公式大总结

高中数学所有公式大总结

高中数学所有公式大总结高中数学涉及的公式很多,不同的章节和知识点都有对应的公式,掌握这些公式是解题的基础。

下面将对高中数学中常用的各个章节的公式进行总结。

1. 代数基本公式:- 二次方程的根公式:对于二次方程ax^2+bx+c=0,根的公式为x=(-b±√(b^2-4ac))/(2a)。

- 一次方程求解公式:对于一次方程ax+b=0,解为x=-b/a。

- 直线的斜率公式:对于直线y=kx+b,其斜率为k。

- 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中an表示第n个数,a1表示首项,d表示公差。

- 等比数列通项公式:对于等比数列an=a1*r^(n-1),其中an表示第n个数,a1表示首项,r表示公比。

2. 平面几何公式:- 长方形面积公式:面积为长乘以宽,即A=lw。

- 正方形面积公式:面积为边长的平方,即A=s^2。

- 三角形面积公式:面积为底乘以高的一半,即A=1/2bh。

- 三角形海伦公式:对于已知三角形三边长a、b、c,其面积可以由海伦公式计算:A=√(s(s-a)(s-b)(s-c)),其中s为半周长(s=(a+b+c)/2)。

- 直角三角形勾股定理:直角三角形两直角边的平方和等于斜边的平方,即a^2+b^2=c^2。

3. 解析几何公式:- 两点之间的距离公式:对于平面上两点的坐标分别为(x1, y1)和(x2, y2),两点之间的距离为d=√((x2-x1)^2+(y2-y1)^2)。

- 点到直线的距离公式:对于直线Ax+By+C=0和平面上的点P(x0, y0),点P 到直线的距离为d=|Ax0+By0+C|/√(A^2+B^2)。

- 两直线夹角的余弦公式:对于直线y=k1x+b1和直线y=k2x+b2,两直线夹角的余弦为cosθ=(k1k2+1)/√((k1^2+1)(k2^2+1))。

4. 概率与统计公式:- 事件的概率公式:对于事件A,其概率表示为P(A)。

高中数学概念公式大全

高中数学概念公式大全

高中数学概念公式大全1.代数与函数:- 一次函数的方程:y = kx + b- 二次函数的方程:y = ax² + bx + c- 三次函数的方程:y = ax³ + bx² + cx + d-指数函数的方程:y=a^x- 对数函数的方程:y = logₐ(x)-幂函数的方程:y=x^a-绝对值函数的方程:y=,x- 正弦函数的方程:y = A sin(Bx + C) + D- 余弦函数的方程:y = A cos(Bx + C) + D-反比例函数的方程:y=k/x2.平面解析几何:-直线的一般式方程:Ax+By+C=0- 直线的斜截式方程:y = kx + b-直线的点斜式方程:y-y₁=k(x-x₁)-直线的两点式方程:(y-y₁)/(y₂-y₁)=(x-x₁)/(x₂-x₁) -圆的标准方程:(x-h)²+(y-k)²=r²-椭圆的标准方程:(x-h)²/a²+(y-k)²/b²=1-双曲线的标准方程:(x-h)²/a²-(y-k)²/b²=1- 抛物线的标准方程:y = ax² + bx + c-平行线的判定:两直线的斜率相等-垂直线的判定:两直线的斜率的乘积为-13.空间解析几何:- 空间直线的参数方程:x = x₁ + at, y = y₁ + bt, z = z₁ + ct -空间直线的对称式方程:(x-x₁)/a=(y-y₁)/b=(z-z₁)/c-空间平面的一般式方程:Ax+By+Cz+D=0-空间平面的点法式方程:(x-x₀)/A=(y-y₀)/B=(z-z₀)/C-两直线的位置关系:平行、异面、交于一点-直线与平面的位置关系:相交、平行、共面、垂直-两平面的位置关系:平行、重合、相交4.三角函数与解三角形:- 任意角的辅助角公式:sin(π - θ) = sinθ, cos(π - θ) = -cosθ, tan(π - θ) = -tanθ-任意角的和差公式:sin(θ₁ ± θ₂) = sinθ₁cosθ₂ ± cosθ₁sinθ₂cos(θ₁ ± θ₂) = cosθ₁cosθ₂∓ sinθ₁sinθ₂tan(θ₁ ± θ₂) = (tanθ₁ ± tanθ₂)/(1 ∓ tanθ₁tanθ₂)-二倍角公式:sin2θ = 2sinθcosθcos2θ = cos²θ - sin²θtan2θ = (2tanθ)/(1 - tan²θ)-三角函数的诱导公式:sin(π ± θ) = ±sinθ, cos(π ± θ) = -cosθ, tan(π ± θ) = ±tanθ-等腰三角形的性质:两底角相等,底边平分顶角,底边上的高相等- 直角三角形的性质:勾股定理(a² + b² = c²),正弦定理(sinθ = a/c),余弦定理(cosθ = b/c),正切定理(tanθ = a/b)。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。

下面我们来详细总结一下这部分的重要知识点。

一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。

当倾斜角为 90°时,直线的斜率不存在。

2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。

(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。

(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。

(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。

(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。

4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。

(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。

高中数学解析几何解题技巧

高中数学解析几何解题技巧

高中数学解析几何解题技巧解析几何是高中数学中的一大难点,也是考试中的重点内容之一。

掌握解析几何的解题技巧,不仅可以提高解题效率,还能够在考试中获得更好的成绩。

本文将从直线、圆和曲线三个方面介绍解析几何的解题技巧,并通过具体题目的分析来说明每个考点。

一、直线的解析几何解题技巧直线是解析几何中最基础的图形,其解题技巧主要包括确定直线的方程和求直线的性质。

在确定直线的方程时,常用的方法有点斜式和两点式。

例如,已知直线过点A(1,2)且斜率为3,求直线的方程。

根据点斜式的公式y-y₁ = k(x-x₁),代入已知条件,可以得到直线的方程为y-2=3(x-1)。

在求直线的性质时,常用的方法有平行和垂直关系的判断。

例如,已知直线l₁的方程为y=2x+1,直线l₂与l₁平行且过点(2,3),求l₂的方程。

根据平行关系的性质可知,l₂的斜率与l₁的斜率相等,因此l₂的方程为y=2x+b。

代入过点(2,3)的条件,可以解得b=-1,所以l₂的方程为y=2x-1。

二、圆的解析几何解题技巧圆是解析几何中的另一个重要图形,其解题技巧主要包括确定圆的方程和求圆的性质。

在确定圆的方程时,常用的方法有标准式和一般式。

例如,已知圆心为(2,-3)且经过点(1,2),求圆的方程。

根据标准式的公式(x-a)²+(y-b)²=r²,代入已知条件,可以得到圆的方程为(x-2)²+(y+3)²=18。

在求圆的性质时,常用的方法有判断点与圆的位置关系和求切线的斜率。

例如,已知圆的方程为(x-2)²+(y+3)²=18,点P(4,-1)在圆上,求点P处切线的斜率。

根据点与圆的位置关系的性质可知,点P处切线的斜率等于圆的斜率,即-(x-2)/(y+3)。

代入点P的坐标,可以求得点P处切线的斜率为-2/4=-1/2。

三、曲线的解析几何解题技巧曲线是解析几何中的较为复杂的图形,其解题技巧主要包括确定曲线的方程和求曲线的性质。

高中文科数学解析几何部分整理例题详解

高中文科数学解析几何部分整理例题详解

高中文科数学解析几何部分整理考点:平面直角坐标系,直线方程与圆的方程,两点间距离公式与点到直线的距离公式 一、 知识点 1.直线的方程1)倾斜角:范围0≤α<180,0l x l x α=︒ 若轴或与轴重合时,。

90l x α⊥=︒若轴时,。

2)tan k α=斜率: ()()2111122221,,,y y P x y P x y k x x -=⇒=-已知平面上两点1290,x x k α==︒当时,不存在,0;0k k αα><为锐角时,为钝角时, 3)直线方程的几种形式斜截式:y=kx+b 不含y 轴和平行于y 轴的直线点斜式:()11y y k x x -=- 不含y 轴和平行于y 轴的直线两点式:121121x x x x y y y y --=--不含坐标轴,平行于坐标轴的直线截距式:1=+by ax 不含坐标轴、平行于坐标轴和过原点的直线一般式:Ax+By+C=0 A 、B 不同时为0几种特殊位置的直线:①x 轴:y=0②y 轴:x=0③平行于x 轴:y=b ④平行于y 轴:x=a 原点:y=kx 或x=04)直线系:(待定系数法的应用)(1)共点直线系方程:p0(x0,y0)为定值,k 为参数y-y0=k (x-x0) 特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴) 注意:运用斜率法时注意斜率不存在的情形。

(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。

②Ax+By+入=0表示与Ax+By+C=0 平行的直线系 Bx-Ay+入=0表示与Ax+By+C 垂直的直线系2.两直线的位置关系L1:y=k1x+b1 L2:y=k2x+b2L1:A1X+B1Y+C1=0 L2:A2X+B2Y+C2=0L1与L2组成的方程组平行⇔k1=k2且b1≠b2212121C C B B A A ≠=无解重合⇔k1=k2且b1=b2212121C C B B A A == 有无数多解相交⇔k1≠k22121B B A A ≠有唯一解垂直⇔ k1·k2=-1 A1A2+B1B2=0有唯一解3.几个距离公式:1)点到直线距离:2200B A cBy Ax d +++=(已知点(p0(x0,y0),L :Ax+By+C=0)注:若直线为00()y y k x x -=-,即000kx y y kx -+-=2)点(),a b 到直线的距离为0021ka b y kx d k -+-=+(这是斜率法经常用到的)3)两行平线间距离:L1=Ax+By+C1=0 L2:Ax+By+C2=0⇒2221B A c c d +-=4)点间的距离公式()()22121212PP x x y y =-+-4.圆 1)圆的方程一般式:22x y a y 0x b c ++++=配方得:22224(x+)(y+)224aba b c+-+=圆心为:(2a,2b),半径为2242a b c+- 标准式:22200(x-x )(y )y r +-=, 圆心为(x ,y ),r 为该圆半径。

解析几何中的基本公式

解析几何中的基本公式

解析几何中的基本公式解析几何是高中数学中的一门重要学科,它研究几何图形的坐标表示方法和相关性质。

在解析几何中,使用了一系列经典的基本公式,本文将对这些公式进行详细解析。

一、两点间距离公式在解析几何中,经常需要计算两点之间的距离。

对于平面直角坐标系中的两个点 $P(x_1,y_1)$ 和 $Q(x_2,y_2)$,它们之间的距离可以用以下公式表示:$$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$其中 $d$ 表示两点之间的距离。

这个公式的计算方法非常简单,只需要将两点横、纵坐标的差值平方相加,再开方即可。

二、两点间中点公式在解析几何中,还需要计算两点间的中点。

对于平面直角坐标系中的两个点 $P(x_1,y_1)$ 和 $Q(x_2,y_2)$,它们的中点可以用以下公式表示:$$(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$$这个公式的计算方法也非常简单,只需要将两点横、纵坐标分别求出平均值,即可得到中点的坐标。

三、点到直线距离公式在解析几何中,还需要计算一个点到一条直线的距离。

对于一条直线 $ax+by+c=0$ 和一个点 $P(x_0,y_0)$,它们之间的距离可以用以下公式表示:$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$其中 $d$ 表示点 $P$ 到直线的距离。

这个公式的计算方法稍微有些复杂,但是可以通过向量的方法来简化计算。

四、直线的斜截式方程公式在解析几何中,我们经常需要用一条直线的方程表示它的位置关系。

在平面直角坐标系中,如果直线的斜率为$k$,截距为$b$,则这条直线的方程可以用以下公式表示:$$y=kx+b$$这个公式非常简单明了,如果已知一条直线的斜率和截距,则可以用这个公式求出它的方程。

五、两条直线的交点公式在解析几何中,我们经常需要求出两条直线的交点,以确定它们的位置关系。

对于一条直线 $y=k_1x+b_1$ 和另一条直线$y=k_2x+b_2$,它们的交点可以用以下公式表示:$$(\frac{b_2-b_1}{k_1-k_2},\frac{k_1b_2-k_2b_1}{k_1-k_2})$$这个公式的计算方法稍微有些复杂,需要将两条直线的方程联立后,解出它们的交点坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解析几何中的基本公式1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴, 则=AB 。

y //AB 轴, 则=AB 。

2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221B A C C d +-=注意点:x ,y 对应项系数应相等。

3、 点到直线的距离:0C By Ax :l ),y ,x (P =++则P 到l 的距离为:22BA CBy Ax d +++=4、 直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F bkx y消y :02=++c bx ax ,务必注意.0>∆若l 与曲线交于A ),(),,(2211y x B y x则:2122))(1(x x k AB -+=5、 若A ),(),,(2211y x B y x ,P (x ,y )。

P 在直线AB 上,且P 分有向线段AB 所成的比为λ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x 变形后:yy y y x x x x --=λ--=λ2121或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα适用范围:k 1,k 2都存在且k 1k 2≠-1 , 21121tan k k k k +-=α若l 1与l 2的夹角为θ,则=θtan 21211k k k k +-,]2,0(π∈θ注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。

(2)l 1⊥l 2时,夹角、到角=2π。

(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

7、 (1)倾斜角α,),0(π∈α;(2)]0[,π∈θθ→→,,夹角b a ;(3)直线l 与平面]20[π∈ββα,,的夹角;(4)l 1与l 2的夹角为θ,∈θ]20[π,,其中l 1//l 2时夹角θ=0;(5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,,8、 直线的倾斜角α与斜率k 的关系a) 每一条直线都有倾斜角α,但不一定有斜率。

b) 若直线存在斜率k ,而倾斜角为α,则k=tan α。

9、 直线l 1与直线l 2的的平行与垂直(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2⇔ k 1=k 2②l 1⊥l 2⇔ k 1k 2=-1(2)若0:,0:22221111=++=++C y B x A l C y B x A l若A 1、A 2、B 1、B 2都不为零① l 1//l 2⇔212121C C B B A A ≠=; ② l 1⊥l 2⇔ A 1A 2+B 1B 2=0; ③ l 1与l 2相交⇔2121B B A A ≠ ④ l 1与l 2重合⇔212121C C B B A A ==; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情况。

10、 直线方程的五种形式名称 方程 注意点斜截式: y=kx+b 应分①斜率不存在 ②斜率存在点斜式: )( x x k y y -=- (1)斜率不存在: x x =(2)斜率存在时为)( x x k y y -=-两点式: 121121x x x x y y y y --=--截距式:1=+bya x 其中l 交x 轴于)0,(a ,交y 轴于),0(b 当直线l 在坐标轴上,截距相等时应分:(1)截距=0 设y=kx (2)截距=0≠a 设1=+aya x 即x+y=a一般式: 0=++C By Ax (其中A 、B 不同时为零) 10、确定圆需三个独立的条件圆的方程 (1)标准方程: 222)()(r b y a x =-+-, 半径圆心,----r b a ),(。

(2)一般方程:022=++++F Ey Dx y x ,()0422>-+F E D,)2,2(圆心----ED 2422FE D r -+=11、直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种若22BA C Bb Aa d +++=,0<∆⇔⇔>相离r d0=∆⇔⇔=相切r d 0>∆⇔⇔<相交r d 12、两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d 条公切线外切321⇔⇔+=r r d条公切线相交22121⇔⇔+<<-r r d r r 条公切线内切121⇔⇔-=r r d 无公切线内含⇔⇔-<<210r r d外离 外切相交 内切 内含13、圆锥曲线定义、标准方程及性质 (一)椭圆定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。

定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0<e<1),则P 点的轨迹是椭圆。

标准方程:12222=+by a x )0(>>b a定义域:}{a x a x ≤≤-值域:}{b y b x ≤≤- 长轴长=a 2,短轴长=2b焦距:2c准线方程:ca x 2±=焦半径:)(21ca x e PF +=,)(22x ca e PF -=,212PF a PF -=,c a PF c a +≤≤-1等(注意涉及焦半径①用点P 坐标表示,②第一定义。

) 注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A +==等等。

顶点与准线距离、焦点与准线距离分别与c b a ,,有关。

(2)21F PF ∆中经常利用余弦定理....、三角形面积公式.......将有关线段1PF 、2PF 、2c ,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系(3)椭圆上的点有时常用到三角换元:⎩⎨⎧θ=θ=sin cos b y a x ;(4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相应的性质。

二、双曲线(一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。

Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。

(二)图形:(三)性质方程:12222=-b y a x )0,0(>>b a 12222=-bx a y )0,0(>>b a定义域:}{a x a x x ≤≥或; 值域为R ; 实轴长=a 2,虚轴长=2b焦距:2c准线方程:ca x 2±=焦半径:)(21c a x e PF +=,)(22x ca e PF -=,a PF PF 221=-;注意:(1)图中线段的几何特征:=1AF a c BF -=2,=2AF c a BF +=1顶点到准线的距离:c a a c a a 22+-或;焦点到准线的距离:ca c c a c 22+-或 两准线间的距离=ca 22(2)若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x aby ±=若渐近线方程为x aby ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)(3)特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;(4)注意21F PF ∆中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来。

(5)完成当焦点在y 轴上时,标准方程及相应性质。

二、抛物线(一)定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线。

即:到定点F 的距离与到定直线l 的距离之比是常数e (e=1)。

(二)图形:(三)性质:方程:焦参数-->=p p px y ),0(,22;焦点: )0,2(p,通径p AB 2=; 准线: 2px -=;焦半径:,2p x CF += 过焦点弦长p x x px p x CD ++=+++=212122注意:(1)几何特征:焦点到顶点的距离=2p;焦点到准线的距离=p ;通径长=p 2顶点是焦点向准线所作垂线段中点。

(2)抛物线px y 22=上的动点可设为P ),2(2y py或或)2,2(2pt pt P P px y y x 2),(2=其中。

相关文档
最新文档