高中数学必修二平面解析几何知识点梳理

合集下载

高中数学必修2立体几何常考题型:平面

高中数学必修2立体几何常考题型:平面

平面【知识梳理】1.平面的概念几何里所说的“平面”,是从课桌面、黑板面、海面这样的一些物体中抽象出来的.几何里的平面是无限延展的.2.平面的画法(1)水平放置的平面通常画成一个平行四边形,它的锐角通常画成45°,且横边长等于其邻边长的2倍.如图①.(2)如果一个平面被另一个平面遮挡住,为了增强它的立体感,把被遮挡部分用虚线画出来.如图②.3.平面的表示法图①的平面可表示为平面α、平面ABCD 、平面AC 或平面BD . 4.平面的基本性质题型一、文字语言、图形语言、符号语言的相互转化【例1】 根据图形用符号表示下列点、直线、平面之间的关系. (1)点P 与直线AB ; (2)点C 与直线AB ; (3)点M 与平面AC ;(4)点A1与平面AC;(5)直线AB与直线BC;(6)直线AB与平面AC;(7)平面A1B与平面AC.[解](1)点P∈直线AB;(2)点C∉直线AB;(3)点M∈平面AC;(4)点A1∉平面AC;(5)直线AB∩直线BC=点B;(6)直线AB⊂平面AC;(7)平面A1B∩平面AC=直线AB.【类题通法】三种语言的转换方法(1)用文字语言、符号语言表示一个图形时,首先仔细观察图形有几个平面、几条直线且相互之间的位置关系如何,试着用文字语言表示,再用符号语言表示.(2)根据符号语言或文字语言画相应的图形时,要注意实线和虚线的区别.【对点训练】1.根据下列符号表示的语句,说明点、线、面之间的位置关系,并画出相应的图形:(1)A ∈α,B∉α;(2)l⊂α,m∩α=A,A∉l;(3)P∈l,P∉α,Q∈l,Q∈α.解:(1)点A在平面α内,点B不在平面α内,如图(1);(2)直线l在平面α内,直线m与平面α相交于点A,且点A不在直线l上,如图(2);(3)直线l经过平面α外一点P和平面α内一点Q,如图(3).题型二、点、线共面问题【例2】证明两两相交且不共点的三条直线在同一平面内.[解]已知:如图所示,l∩l2=A,l2∩l3=B,l1∩l3=C.求证:直线l1、l2、l3在同一平面内.证法1:(纳入平面法)∵l1∩l2=A,∴l1和l2确定一个平面α.∵l2∩l3=B,∴B∈l2.又∵l2⊂α,∴B∈α.同理可证C∈α.又∵B∈l3,C∈l3,∴l3⊂α.∴直线l1、l2、l3在同一平面内.证法2:(辅助平面法)∵l1∩l2=A,∴l1、l2确定一个平面α.∵l2∩l3=B,∴l2、l3确定一个平面β.∵A∈l2,l2⊂α,∴A∈α.∵A∈l2,l2⊂β,∴A∈β.同理可证B∈α,B∈β,C∈α,C∈β.∴不共线的三个点A、B、C既在平面α内,又在平面β内.∴平面α和β重合,即直线l1、l2、l3在同一平面内.【类题通法】证明点、线共面问题的理论依据是公理1和公理2,常用方法有(1)先由部分点、线确定一个面,再证其余的点、线都在这个平面内,即用“纳入法”;(2)先由其中一部分点、线确定一个平面α,其余点、线确定另一个平面β,再证平面α与β重合,即用“同一法”;(3)假设不共面,结合题设推出矛盾,用“反证法”.【对点训练】2.下列说法正确的是()①任意三点确定一个平面②圆上的三点确定一个平面③任意四点确定一个平面④两条平行线确定一个平面A.①②B.②③C.②④D.③④解析:选C不在同一条直线上的三点确定一个平面.圆上三个点不会在同一条直线上,故可确定一个平面,∴①不正确,②正确.当四点在一条直线上时不能确定一个平面,③不正确.根据平行线的定义知,两条平行直线可确定一个平面,故④正确.题型三、共线问题【例3】已知△ABC在平面α外,其三边所在的直线满足AB∩α=P,BC∩α=Q,AC∩α=R,如图所示.求证:P,Q,R三点共线.[证明]法一:∵AB∩α=P,∴P∈AB,P∈平面α.又AB⊂平面ABC,∴P∈平面ABC.∴由公理3可知:点P在平面ABC与平面α的交线上,同理可证Q,R也在平面ABC与平面α的交线上.∴P,Q,R三点共线.法二:∵AP∩AR=A,∴直线AP与直线AR确定平面APR.又∵AB∩α=P,AC∩α=R,∴平面APR∩平面α=PR.∵B∈平面APR,C∈平面APR,∴BC⊂平面APR.∵Q∈BC,∴Q∈平面APR,又Q∈α,∴Q∈PR,∴P,Q,R三点共线.【类题通法】点共线:证明多点共线通常利用公理3,即两相交平面交线的唯一性,通过证明点分别在两个平面内,证明点在相交平面的交线上,也可选择其中两点确定一条直线,然后证明其他点也在其上.【对点训练】3.如图所示,在正方体ABCD-A1B1C1D1中,设线段A1C与平面ABC1D1交于点Q,求证:B,Q,D1三点共线.证明:如下图所示,连接A1B,CD1.显然B∈平面A1BCD1,D1∈平面A1BCD1.∴BD1⊂平面A1BCD1.同理BD1⊂平面ABC1D1.∴平面ABC1D1∩平面A1BCD1=BD1.∵A1C∩平面ABC1D1=Q,∴Q∈平面ABC1D1.又∵A1C⊂平面A1BCD1,∴Q∈平面A1BCD1.∴Q∈BD1,即B,Q,D1三点共线.【练习反馈】1.若点Q在直线b上,b在平面β内,则Q,b,β之间的关系可记作()A.Q∈b∈βB.Q∈b⊂βC.Q⊂b⊂βD.Q⊂b∈β解析:选B∵点Q(元素)在直线b(集合)上,∴Q∈b.又∵直线b(集合)在平面β(集合)内,∴b⊂β,∴Q∈b⊂β.2.两个平面若有三个公共点,则这两个平面()A.相交B.重合C.相交或重合D.以上都不对解析:选C若三个点在同一直线上,则两平面可能相交;若这三个点不在同一直线上,则这两个平面重合.3.下列对平面的描述语句:①平静的太平洋面就是一个平面;②8个平面重叠起来比6个平面重叠起来厚;③四边形确定一个平面;④平面可以看成空间中点的集合,它当然是一个无限集.其中正确的是________.解析:答案:④4.设平面α与平面β交于直线l,A∈α,B∈α,且直线AB∩l=C,则直线AB∩β=________. 解析:∵α∩β=l,AB∩l=C,∴C∈β,C∈AB,∴AB∩β=C.答案:C5.将下列符号语言转化为图形语言.(1)a⊂α,b∩α=A,A∉a.(2)α∩β=c,a⊂α,b⊂β,a∥c,b∩c=P.解:(1)(2)。

必修二数学知识点整理

必修二数学知识点整理

必修二数学知识点整理一、立体几何初步。

(一)空间几何体。

1. 结构特征。

- 棱柱。

- 有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。

- 棱柱的底面、侧面、侧棱、顶点等概念。

按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等。

- 棱锥。

- 有一个面是多边形,其余各面都是有一个公共顶点的三角形。

- 棱锥的底面、侧面、侧棱、顶点等概念。

按底面多边形的边数可分为三棱锥(四面体)、四棱锥等。

- 棱台。

- 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。

- 棱台的上底面、下底面、侧面、侧棱、顶点等概念。

- 圆柱。

- 以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

- 圆柱的轴、底面、侧面、母线等概念。

- 圆锥。

- 以直角三角形的一条直角边所在直线为轴旋转,其余两边旋转所成的曲面所围成的几何体。

- 圆锥的轴、底面、侧面、母线等概念。

- 圆台。

- 用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分。

- 圆台的上底面、下底面、侧面、母线等概念。

- 球。

- 以半圆的直径所在直线为轴,半圆面旋转一周形成的几何体。

- 球心、半径、直径等概念。

2. 三视图和直观图。

- 三视图。

- 正视图(主视图)、侧视图(左视图)、俯视图的概念。

- 画三视图的规则:长对正、高平齐、宽相等。

- 通过三视图还原空间几何体的方法:先根据视图的轮廓想象出基本的几何体形状,再根据视图中的线段长度等确定几何体的具体尺寸。

- 直观图。

- 斜二测画法的步骤:- 在已知图形中取互相垂直的x轴和y轴,两轴相交于点O。

画直观图时,把它们画成对应的x'轴和y'轴,两轴相交于点O',且∠x'O'y' = 45°(或135°)。

- 已知图形中平行于x轴或y轴的线段,在直观图中分别画成平行于x'轴或y'轴的线段。

- 已知图形中平行于x轴的线段,在直观图中长度不变;平行于y轴的线段,长度变为原来的一半。

高中数学必修二平面解析几何知识点梳理教学内容

高中数学必修二平面解析几何知识点梳理教学内容

高中数学必修二平面解析几何知识点梳理平面解析几何1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角.倾斜角)180,0[︒∈α,︒=90α斜率不存在.(2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =.(2)斜截式:b kx y += (b 为直线l 在y 轴上的截距).(3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+by a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y --=,即,直线的斜率:BA k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =.已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =.已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =.(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距相等....⇔直线的斜率为1-或直线过原点.(2)直线两截距互为相反数.......⇔直线的斜率为1或直线过原点.(3)直线两截距绝对值相等.......⇔直线的斜率为1±或直线过原点.4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-.(2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=.线段21P P 的中点是),(00y x M ,则⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200B A C By Ax d +++=. 7.两平行直线间的距离:两条平行直线002211=++=++C By Ax l C By Ax l :,:距离:2221B A C C d +-=.8.直线系方程:(1)平行直线系方程:① 直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程..② 与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=.③ 过点00(,)P x y 与直线:0l Ax By C ++=平行的直线可表示为:00()()0A x x B y y -+-=.(2)垂直直线系方程:① 与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.② 过点00(,)P x y 与直线:0l Ax By C ++=垂直的直线可表示为:00()()0B x x A y y ---=.(3)定点直线系方程:① 经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数.② 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(4)共点直线系方程:经过两直线0022221111=++=++C y B x A l C y B x A l :,:交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ (除2l ),其中λ是待定的系数.9.曲线1:(,)0C f x y =与2:(,)0C g x y =的交点坐标⇔方程组{(,)0(,)0f x y g x y ==的解.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x .(3)圆的直径式方程:若),(),(2211y x B y x A ,,以线段AB 为直径的圆的方程是:0))(())((2121=--+--y y y y x x x x .注:(1)在圆的一般方程中,圆心坐标和半径分别是)2,2(E D --,F E D r 42122-+=. (2)一般方程的特点:① 2x 和2y 的系数相同且不为零;② 没有xy 项; ③ 0422>-+F E D(3)二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的等价条件是:① 0≠=C A ; ② 0=B ; ③ 0422>-+AF E D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l =+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,,则||11||1||22B A B A y y k x x k AB -+=-+= (其中|||,|2121y y x x --的求法是将直线和圆的方程联立消去y 或x ,利用韦达定理求解)12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔.②P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P 到圆心距离2200()()d a x b y =-+-】13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA CBb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ;条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .15.圆系方程:)04(02222>-+=++++F E D F Ey Dx y x(1)过直线0=++C By Ax l :与圆C :022=++++F Ey Dx y x 的交点的圆系方程:0)(22=+++++++C By Ax F Ey Dx y x λ,λ是待定的系数.(2)过圆1C :011122=++++F y E x D y x 与圆2C :022222=++++F y E x D y x 的交点的圆系方程:0)(2222211122=+++++++++F y E x D y x F y E x D y x λ,λ是待定的系数.特别地,当1λ=-时,2222111222()0x y D x E y F x y D x E y F λ+++++++++=就是 121212()()()0D D x E E y F F -+-+-=表示两圆的公共弦所在的直线方程,即过两圆交点的直线.16.圆的切线方程:(1)过圆222r y x =+上的点),(00y x P 的切线方程为:200r y y x x =+.(2)过圆222)()(r b y a x =-+-上的点),(00y x P 的切线方程为:200))(())((r b y b y a x a x =--+-- .(3)当点),(00y x P 在圆外时,可设切方程为)(00x x k y y -=-,利用圆心到直线距离等于半径,即r d =,求出k ;或利用0=∆,求出k .若求得k 只有一值,则还有一条斜率不存在的直线0x x =.17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D .18.对称问题:(1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程.(2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1 . ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点.若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程.(3)点(a , b )关于x 轴对称:(a ,- b )、关于y 轴对称:(-a , b )、关于原点对称:(-a ,- b )、点(a , b )关于直线y=x 对称:(b , a )、关于y=- x 对称:(-b ,- a )、关于y = x +m 对称:(b -m 、a +m )、关于y=-x+m 对称:(-b+m 、-a+m ) .19.若),(),(),(332211y x C y x B y x A ,,,则△ABC 的重心G 的坐标是⎪⎭⎫ ⎝⎛++++33321321y y y x x x ,. 20.各种角的范围:直线的倾斜角 ︒<≤︒1800α 两条相交直线的夹角 ︒≤<︒900α两条异面线所成的角︒0α︒90<≤。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结一、平面解析几何在平面解析几何中,我们主要研究平面上的点、直线、圆、曲线等几何对象。

平面解析几何的基本思想是用代数方法研究几何问题,通过建立坐标系和引入坐标变量的方法,将几何问题转化为代数问题进行研究。

在平面解析几何中,有一些重要的知识点需要掌握,下面我们将逐一进行讲解。

1. 坐标系坐标系是平面解析几何的基本工具,它通过数轴的方式将平面上的点和几何对象进行了定位。

常见的坐标系有直角坐标系和极坐标系两种。

直角坐标系是由水平轴和垂直轴组成的,水平轴称为x轴,垂直轴称为y轴。

平面上的每个点通过它的横坐标x和纵坐标y来确定,就可以唯一确定一个点的位置。

例如,点A(x,y)表示了点A在坐标系中的位置。

极坐标系是以原点O和一条射线作为坐标轴,用点到原点的距离r和与射线的夹角θ来表示点的位置。

在极坐标系中,点的坐标表示为(r,θ)。

2. 直线的方程在直角坐标系中,直线可以用方程y=ax+b或者y=kx+b来表示,其中a、b、k为常数。

当a≠0时,直线的方程为y=ax+b,a称为直线的斜率,b称为直线的截距;当a=0时,直线的方程为y=b,其斜率为0,直线与y轴平行。

另外,直线还可以用斜截式、截距式、两点式等来表示,学生需要灵活掌握不同表示方法,并能够相互转化。

3. 圆的方程在平面解析几何中,圆是一个重要的几何对象,它的方程可以用不同的形式表示。

在直角坐标系中,圆的方程一般写为(x-a)²+(y-b)²=r²,其中(a,b)为圆心的坐标,r为圆的半径。

4. 曲线的方程除了直线和圆之外,学生还需要学习其他曲线的方程,如抛物线、椭圆、双曲线等。

这些曲线都有各自的方程形式,在解析几何中有着重要的应用。

5. 解析几何的基本性质和定理在学习平面解析几何时,学生还需要掌握一些基本的性质和定理,如两点间的距离公式、直线的斜率公式、直线与圆的位置关系、圆与圆的位置关系等。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结平面解析几何是高中数学的重要组成部分,它将代数与几何巧妙地结合在一起,通过建立坐标系,用代数方法研究几何图形的性质。

下面我们来详细总结一下这部分的重要知识点。

一、直线1、直线的倾斜角直线倾斜角的范围是0, π),倾斜角α的正切值叫做直线的斜率,记为 k =tanα。

当倾斜角为 90°时,直线的斜率不存在。

2、直线的方程(1)点斜式:y y₁= k(x x₁),其中(x₁, y₁)是直线上的一点,k 是直线的斜率。

(2)斜截式:y = kx + b,其中 k 是斜率,b 是直线在 y 轴上的截距。

(3)两点式:(y y₁)/(y₂ y₁) =(x x₁)/(x₂ x₁),其中(x₁, y₁),(x₂, y₂)是直线上的两点。

(4)截距式:x/a + y/b = 1,其中 a 是直线在 x 轴上的截距,b 是直线在 y 轴上的截距。

(5)一般式:Ax + By + C = 0(A、B 不同时为 0)3、两条直线的位置关系(1)平行:两条直线斜率相等且截距不相等,即 k₁= k₂且 b₁ ≠ b₂。

(2)垂直:两条直线斜率的乘积为-1,即 k₁k₂=-1(当一条直线斜率为 0,另一条直线斜率不存在时也垂直)。

4、点到直线的距离公式点 P(x₀, y₀)到直线 Ax + By + C = 0 的距离 d =|Ax₀+ By₀+ C| /√(A²+ B²)二、圆1、圆的方程(1)标准方程:(x a)²+(y b)²= r²,其中(a, b)是圆心坐标,r是半径。

(2)一般方程:x²+ y²+ Dx + Ey + F = 0(D²+ E² 4F > 0),圆心坐标为(D/2, E/2),半径 r =√(D²+ E² 4F) / 22、直线与圆的位置关系(1)相交:圆心到直线的距离小于半径,d < r。

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结

高中数学中的平面解析几何知识点总结高中数学中的平面解析几何是一个重要的知识板块,它将代数与几何巧妙地结合在一起,为我们解决几何问题提供了全新的思路和方法。

下面就让我们一起来详细梳理一下平面解析几何的相关知识点。

一、直线1、直线的方程点斜式:若直线过点\((x_0,y_0)\),斜率为\(k\),则直线方程为\(y y_0 = k(x x_0)\)。

斜截式:若直线斜率为\(k\),在\(y\)轴上的截距为\(b\),则直线方程为\(y = kx + b\)。

两点式:若直线过点\((x_1,y_1)\)和\((x_2,y_2)\),则直线方程为\(\frac{y y_1}{y_2 y_1} =\frac{x x_1}{x_2 x_1}\)。

截距式:若直线在\(x\)轴、\(y\)轴上的截距分别为\(a\)、\(b\)(\(a\neq 0\),\(b\neq 0\)),则直线方程为\(\frac{x}{a} +\frac{y}{b} = 1\)。

一般式:\(Ax + By + C = 0\)(\(A\)、\(B\)不同时为\(0\))。

2、直线的位置关系平行:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)平行,当且仅当\(k_1 = k_2\)且\(b_1 \neq b_2\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)平行,当且仅当\(A_1B_2 A_2B_1 = 0\)且\(A_1C_2 A_2C_1 \neq0\)。

垂直:两条直线\(y_1 = k_1x + b_1\)和\(y_2 = k_2x + b_2\)垂直,当且仅当\(k_1k_2 =-1\);对于一般式直线\(A_1x + B_1y + C_1 = 0\)和\(A_2x + B_2y + C_2 = 0\)垂直,当且仅当\(A_1A_2 + B_1B_2 = 0\)。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结解析几何是高中数学中的重要内容之一,掌握解析几何的知识点对于学习数学和理解几何概念有着重要的作用。

本文将对高中数学中常见的解析几何知识点进行总结,并简要介绍其相关概念和应用。

一、坐标系与向量在解析几何中,我们通常使用笛卡尔坐标系来描述平面上的点和向量。

笛卡尔坐标系由两条互相垂直的坐标轴组成,其中横轴称为x轴,纵轴称为y轴。

平面上的每一个点都可以用一个有序数对(x, y)来表示,其中x为横坐标,y为纵坐标。

向量是解析几何中另一个重要的概念,它由起点和终点组成,可以表示平面上的位移和方向。

向量的表示通常使用有向线段来表示,我们可以将有向线段的起点放在坐标原点,并表示为一个有序数对(x, y)。

向量的模表示了有向线段的长度,方向与有向线段的方向相同。

“向量A”通常用符号→A表示。

二、直线与曲线的方程在解析几何中,直线和曲线可以通过方程来表示。

对于直线而言,它通常可以使用一次方程的形式来表示,即y = kx + b,其中k为直线的斜率,b为直线与y轴的交点。

曲线的方程则复杂一些,常见的曲线方程包括二次方程、圆的方程等。

例如,二次曲线的方程一般形式为Ax^2 + By^2 + Cxy + Dx + Ey + F = 0,其中A、B、C、D、E、F为常数。

三、点与线的位置关系解析几何中,点与直线之间有着不同的位置关系。

常见的位置关系包括点在线上、点在直线上方或下方、点在线段上等。

判断点在线上的方法是将点的坐标代入直线方程,若等式成立,则点在线上。

同时,当点与直线之间的距离为零时,也可认为点在线上。

四、直线与直线的位置关系在解析几何中,直线与直线之间有着不同的位置关系。

常见的位置关系包括平行、垂直、相交等。

若两条直线的斜率相等,则它们平行;若两条直线的斜率乘积为-1,则它们垂直。

两条直线相交的条件是它们不平行且不重合。

五、圆的方程与性质圆是解析几何中一个重要的曲线,它由平面上到一个定点的距离等于定长的点的集合构成。

解析几何知识点总结高中

解析几何知识点总结高中

解析几何知识点总结高中几何学是数学的一部分,涵盖了从平面到空间的所有形状和大小的研究。

解析几何是几何学的一个分支,它利用代数运算和坐标系来描述各种形状和位置。

在高中数学的学习中,解析几何是一个重要的知识点。

在本文中,将详细介绍一些高中解析几何的知识点。

1. 二元一次方程二元一次方程是运用解析几何的基本方法之一。

我们可以通过它来描述到两个物体之间的空间位置关系。

下面是二元一次方程的一般式子:ax + by + c = 0。

其中,a、b、和c是常数,x和y是未知数。

在解析几何中,二元一次方程代表一条直线。

该直线的斜率(k)和截距(b)可以得出如下公式:k = -a/b,b = -c/b。

直线的一般式子可以根据两个点或点与斜率之间的关系来确定。

如果已知直线上的两个点A(x1, y1)和B(x2, y2),可以通过计算斜率和截距来得出该直线的一般式子:k = (y2 – y1) / (x2 – x1),b = y – kx。

其中,k为直线的斜率,b为直线的截距。

另一种方法是给定点和斜率的值。

如果直线上有一个点P(x0, y0)和斜率k,可以使用如下公式:y – y0 = k(x – x0)。

这种表示形式称为点斜式。

2. 圆的方程在解析几何中,圆的方程描述了圆的位置和半径。

标准方程如下:(x – a)^2 + (y – b)^2 = r^2。

其中,a和b是圆心的坐标,r是圆的半径。

通过对圆的方程进行简单的变形,可以从常数中得出圆的标准方程。

该变形将方程写成如下形式:x^2 + y^2 + Dx + Ey + F = 0。

其中,D、E和F是常数。

该表达式描述的圆方程称为一般圆方程。

3. 空间几何解析几何不仅适用于平面几何,还可以用于空间几何。

在空间几何中,一个点由三个坐标表示。

直线可以通过两点或点和向量表示,而平面可以通过三个点或点和两条直线表示。

空间几何中的一些重要概念包括向量,对称和距离。

向量是大小和方向的量,可以使用两点之间的差值来描述。

_新教材高中数学第二章平面解析几何2

_新教材高中数学第二章平面解析几何2

1.设l是平面直角坐标系中的一条直线,且倾斜角为45°,你能写出该直线的方 向向量吗? 提示:(1,1).
2.如果a =(-1,2)是直线l的一个方向向量,你能写出l的一个法向量吗? 提示:(2,1).
已知直线l经过点A(-1,3)与B(2,0),则直线l的一个方向向量为________,斜 率k=________,倾斜角θ=________. 解析:―A→B =(3,-3)=3(1,-1),
知识点一 直线的倾斜角与斜率 1.直线的倾斜角 (1)定义:给定平面直角坐标系中的一条直线,如果这条直线与x轴 相交 ,
将x轴绕着它们的交点按 逆时针 方向旋转到与直线重合时所转的 最小正角 记为 θ,则称θ为这条直线的倾斜角;
(2)范围:直线的倾斜角θ的取值范围是0°~180°,并规定与x轴平行或重合 的直线的倾斜角为0°.
2.2 直线及其方程
2.2.1 直线的倾斜角与斜率
新课程标准解读
核心素养
1.在平面直角坐标系中,结合具体图形,探索确定直线位置 数学抽象
的几何要素
2.理解直线的倾斜角和斜率的概念,经历用代数方法刻画直 直观想象
线斜率的过程,掌握过两点的直线斜率的计算公式
3.理解直线的方向向量及法向量,并能利用直线的方向向量 数学运算
求直线的方向向量或法向量
[例4] 已知直线l经过点A(1,2),B(4,5),求直线l的一个方向向量和法向
量,并确定直线l的斜率与倾斜角.
[解]
―→ AB
=(4-1,5-2)=(3,3)是直线l的一个方向向量.由法向量与方
向向量垂直,法向量可以为(-1,1).因此直线的斜率k=1,直线的倾斜角θ满
1.利用斜率公式求直线的斜率应注意的事项

高中数学第二章平面解析几何2.2直线及其方程2.2.2直线的方程第2课时直线的两点式方程与一般式方程

高中数学第二章平面解析几何2.2直线及其方程2.2.2直线的方程第2课时直线的两点式方程与一般式方程
-2
提示由
7-2
=
-3
,整理得
4-3
5x-y-13=0.
.
)
3.两点式表示直线方程的条件是什么?两点式怎样变形就能适用于所有过
两点的直线了?
提示两点式除了不适用于斜率为0与斜率不存在的直线,其他情况均可表
-1
-1
示;只需将 - = - 变形为(x-x1)(y2-y1)=(y-y1)(x2-x1)的形式,就能适用
x
并化简为
a
+
y
=1 的形式,这一方程形式通常称为直线的截距式方程,其中 a 是
b
直线在 x 轴上的截距,b 是直线在 y 轴上的截距.
(2)若直线 l
x
的方程为a
+
y
=1,则
b
①直线与坐标轴围成的三角形的周长为|a|+|b|+ a2 + b 2 ;
②直线与坐标轴围成的三角形的面积为
1
S=2|ab|;
-5-0
所以得5x-3y-25=0.
=
-5
,
2-5
)
2.过点A(1,2)的直线在两坐标轴上的截距之和为0,则该直线方程为(
A.x-y+1=0
B.x+y-3=0
x-y=0或x+y-3=0
x-y=0或x-y+1=0
)
答案 D
解析 当直线过原点时,可得斜率为
2-0
k= =2,
1-0
所以直线方程为 y=2x,即 2x-y=0;
用两点式方程求直线方程.
2.由于减法的顺序性,一般用两点式方程求直线方程时常会将字母或数字
的顺序错位而导致错误,在记忆和使用两点式方程时,必须注意坐标的对应

人教版高中数学【必修二】[知识点整理及重点题型梳理]_平面_基础

人教版高中数学【必修二】[知识点整理及重点题型梳理]_平面_基础

人教版高中数学必修二知识点梳理重点题型(常考知识点)巩固练习平面【学习目标】1.利用生活中的实物对平面进行描述;理解平面的概念,掌握平面的画法及表示方法.2.重点掌握平面的基本性质.3.能利用平面的性质解决有关问题.【要点梳理】【空间点线面之间的位置关系知识讲解】要点一、平面的基本概念1.平面的概念:“平面”是一个只描述而不定义的原始概念,常见的桌面、黑板面、平静的水面等都给我们以平面的形象.几何里的平面就是从这些物体中抽象出来的,但是,几何里的平面是无限延展的.要点诠释:(1)“平面”是平的(这是区别“平面”与“曲面”的依据);(2) “平面”无厚薄之分;(3)“平面”无边界,它可以向四周无限延展,这是区别“平面”与“平面图形”的依据.2.平面的画法:通常画平行四边形表示平面.要点诠释:(1)表示平面的平行四边形,通常把它的锐角画成45,横边长是其邻边的两倍;(2)两个相交平面的画法:当一个平面的一部分被另一个平面遮住时,把被遮住的部分的线段画为虚线或者不画;3.平面的表示法:(1)用一个希腊字母表示一个平面,如平面α、平面β、平面γ等;(2)用表示平面的平行四边形的四个字母表示,如平面ABCD;(3)用表示平面的平行四边形的相对两个顶点的两个字母表示,如平面AC或者平面BD;4.点、直线、平面的位置关系:(1)点A 在直线a 上,记作A a ∈;点A 在直线a 外,记作A a ∉;(2)点A 在平面α上,记作A α∈;点A 在平面α外,记作A α∉;(3)直线l 在平面α内,记作l α⊂;直线l 不在平面α内,记作l α⊄.要点二、平面的基本性质平面的基本性质即书中的三个公理,它们是研究立体几何的基本理论基础.1.公理1:(1)文字语言表述:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内;(2)符号语言表述:A l ∈,B l ∈,A α∈,B l αα∈⇒⊂;(3)图形语言表述:要点诠释:公理1是判断直线在平面内的依据.证明一条直线在某一平面内,只需证明这条直线上有两个不同的点在该平面内.“直线在平面内”是指“直线上的所有点都在平面内”.2.公理2:(1)文字语言表述:过不在一条直线上的三点,有且只有一个平面;(2)符号语言表述:A 、B 、C 三点不共线⇒有且只有一个平面α,使得A α∈,B α∈,C α∈;(3)图形语言表述:要点诠释:公理2的作用是确定平面,是把空间问题化归成平面问题的重要依据.它还可用来证明“两个平面重合”.特别要注意公理2中“不在一条直线上的三点”这一条件.“有且只有一个”的含义可以分开来理解.“有”是说明“存在”,“只有一个”说明“唯一”,所以“有且只有一个”也可以说成“存在”并且“唯一”,与确定同义.(4)公理2的推论:①过一条直线和直线外一点,有且只有一个平面;②过两条相交直线,有且只有一个平面;③过两条平行直线,有且只有一个平面.(5)作用:确定一个平面的依据.3.公理3:(1)文字语言表述:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线;(2)符号语言表述:P l αβαβ∈⇒=且P l ∈;(3)图形语言表述:要点诠释:公理3的作用是判定两个平面相交及证明点在直线上的依据.要点三、证明点线共面所谓点线共面问题就是指证明一些点或直线在同一个平面内的问题.1.证明点线共面的主要依据:(1)如果一条直线上的两点在一个平面内,那么这条直线上的所有点都在这个平面内(公理1);②经过不在同一条直线上的三点,有且只有一个平面(公理2及其推论).2.证明点线共面的常用方法:(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面a、β重合;(3)反证法.3.具体操作方法:(1)证明几点共面的问题可先取三点(不共线的三点)确定一个平面,再证明其余各点都在这个平面内;(2)证明空间几条直线共面问题可先取两条(相交或平行)直线确定一个平面,再证明其余直线均在这个平面内.要点四、证明三点共线问题所谓点共线问题就是证明三个或三个以上的点在同—条直线上.1.证明三点共线的依据是公理3:如果两个不重合的平面有一个公共点,那么它们还有其他的公共点,且所有这些公共点的集合是一条过这个公共点的直线.也就说一个点若是两个平面的公共点,则这个点在这两个平面的交线上.对于这个公理应进一步理解下面三点:①如果两个相交平面有两个公共点,那么过这两点的直线就是它们的交线;②如果两个相交平面有三个公共点,那么这三点共线;③如果两个平面相交,那么一个平面内的直线和另一个平面的交点必在这两个平面的交线上.2.证明三点共线的常用方法方法1:首先找出两个平面,然后证明这三点都是这两个平面的公共点.根据公理3知,这些点都在交线上.方法2:选择其中两点确定一条直线,然后证明另一点也在其上.要点五、证明三线共点问题所谓线共点问题就是证明三条或三条以上的直线交于一点.1.证明三线共点的依据是公理3.2.证明三线共点的思路:先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上的问题.【经典例题】类型一、平面的概念及其表示例1.下面的说法中正确的是().A .平行四边形是一个平面B .任何一个平面图形都是一个平面C .平静的太平洋面就是一个平面D .圆和平行四边形都可以表示平面【答案】D【解析】 利用平面的基本特征以及平面与平面图形的区别进行判断.A 不正确.我们用平行四边形来表示平面,但不能说平行四边形是一个平面.平行四边形仅是平面上四条线段构成的图形,它是不能无限延展的.B 不正确,平面图形和平面是完全不同的两个概念,平面图形是有大小的,它是不可以无限延展的.C 不正确,太平洋再大也会有边际,也不可能是绝对平面.D 正确.在需要时,除用平行四边形表示平面外,还能用三角形、梯形、圆等来表示平面.【总结升华】 平面与平面图形既有区别又有联系.平面没有角度、绝对平展、无边界,是一种理想的图形.平面可以用三角形、正方形、梯形、圆等平面图形来表示.但平面图形如三角形、正方形、梯形等,它们是有大小之分的,不能说三角形、正方形、梯形等是平面.举一反三:【变式1】下列命题:(1)书桌面是平面;(2)8个平面重叠起来要比6个平面重叠起来厚;(3)有一个平面的长是50 m ,宽是20 m ;(4)平面是绝对的平、无厚度、可以无限延展的抽象的数学概念.其中正确命题的个数为( ).A .1B .2C .3D .4【答案】A例2.平面α内的直线a 、b 相交于点P ,用符号语言概述为“a b P =,且P ∈α ”,是否正确?【答案】不正确【解析】不正确.应表示为:a α⊂,b α⊂,且a ∩b=P .相交于点P 的直线a 、b 都在平面α内,也可以说,平面α经过相交于点P 的直线a 、b .题中的符号语言只描述了直线a 、b 交于点P ,点P 在平面α内,而没有描述直线a 、b 也都在平面内,下图也是题中的符号语言所表示的情形.【总结升华】用符号语言来叙述时,必须交代清楚所有元素的位置关系,不能有半点遗漏.立体几何中的三种语言(文字语言、符号语言、图形语言组成立体几何语言,我们强须准确地把握它们.其中文字语言比较自然、生动,能将问题研究的对象的含义更明确地叙述出来.图形语言给人以清晰的视觉形象,有助于空间想象力的培养;而符号语言更精练、简洁.三种语言的互译有助于我们在更广阔的思维领域里寻找解决问题的途径,有利于对思维广阔性的培养.举一反三:【变式1】指出图中的图形画法是否正确,如不正确,请改正.(1)如图1,直线a 在平面α内.(2)如图2,直线a 和平面α相交.(3)如图3,直线a和平面α平行.【答案】详见解析【解析】(1)(2)(3)的图形画法都不正确.正确画法如下图:(1)直线a在平面α内:(2)直线a与平面α相交:(3)直线a与平面α平行:类型二、平面的确定例3.判断下列说法是否正确,并说明理由:(1)一点和一条直线确定一个平面;(2)经过一点的两条直线确定一个平面:(3)两两相交的三条直线确定一个平面;(4)首尾依次相接的4条线段在同一平面内.【答案】不正确正确不正确不正确【解析】(1)不正确.如果点在直线上,可以确定无数个平面;如果点不在直线上,在已知直线上任取两个不同的点,由公理2知,有且只有一个平面,或直接由公理2的推论1知,有且只有一个平面.(2)正确.经过同一点的两条直线是相交直线,由公理2的推论2知,有且只有一个平面.(3)不正确.3条直线可能交于同一点,也可能有三个不同交点,如下图(1)、(2)所示.前者,由公理2的推论2知.可以确定1个或3个平面;后者,由公理2的推论2及公理1知,能确定一个平面.(4)不正确.四边形中三点可确定一个平面,而第4点不一定在此平面内,如上图(3),因此这4条线段不一定在同一平面内.【总结升华】公理2及其3个推论都是确定平面的依据,对涉及这方面的应用问题,务必分清它们的条件.立体几何研究的对象是空间点、线、面的位置关系问题,要有一定的空间想象能力.对于问题中的点、线,要注意它们各种不同的位置关系,以及由此产生的不同结果.举一反三:【变式1】正方体的八个顶点一共可以确定个平面.【答案】20例4.三个互不重合的平面,能把空间分成n部分,则n的所有可能值为______________.【思路点拨】将互不重合的三个平面的位置关系分为:三个平面互相平行;三个平面有两个平行,第三个平面与其它两个平面相交;三个平面交于一线;三个平面两两相交且三条交线平行;三个平面两两相交且三条交线交于一点;五种情况并分别讨论,即可得到答案.【答案】4,6,7,8【解析】若三个平面互相平行,则可将空间分为4部分;若三个平面有两个平行,第三个平面与其它两个平面相交,则可将空间分为6部分;若三个平面交于一线,则可将空间分为6部分;若三个平面两两相交且三条交线平行(联想三棱柱三个侧面的关系),则可将空间分为7部分; 若三个平面两两相交且三条交线交于一点(联想墙角三个墙面的关系),则可将空间分为8部分; 故n 等于4,6,7或8类型三、平面的基本性质的应用例5.如右图,在正方体ABCD-A 1B 1C 1D 1中,判断下列命题是否正确,并说明理由.(1)直线AC 1在平面CC 1B 1B 内;(2)设正方形ABCD 与正方形A 1B 1C 1D 1的中心分别为O 、O 1,则平面AA 1C 1C与平面BB 1D 1D 的交线为OO 1;(3)由点A 、D 、C 可以确定一个平面;(4)由点A 、C 1、B 1确定的平面为ADC 1B 1;(5)由点A 、C 1、B 1确定的平面与由点A 、C 1、D 确定的平面是同一个平面.【解析】(1)错误.因为点A ∉平面CC 1B 1B ,所以AC 1不在平面CC 1B 1B 内.(2)正确.因为点O ∈直线AC ,直线AC ⊂平面AA 1C 1C ,所以点O ∈平面AA 1C 1C .同理,点O 1∈平面AA 1C 1C ,所以直线OO 1⊂平面AA 1C 1C .同理,直线OO 1⊂平面BB 1D 1D .故OO 1为平面AA 1C 1C 与平面BB 1D 1D 的交线.(3)错误.因为点A 、O 、C 在同一直线上,故不能确定—个平面(4)正确.因为点A 、C 1、B 1不共线,故可确定一个平面,又AD ∥B 1C 1,所以点D ∈平面AB 1C 1,故由点A 、C 1、B 1确定的平面为ADC 1B 1.(5)正确.因为点A 、C 1、B 1确定的平面为平面ADC 1B 1,而由点A 、C 1、D 确定的平面也是平面ADC 1B 1,故它们确定的是同一个平面.【总结升华】正确地运用三个公理和有关概念的推理是解决此类题目的依据.例6.已知直线a ∥b ,直线l 与a ,b 都相交,求证:过a ,b ,l 有且只有一个平面.证明 证法一:如下图所示.由已知a ∥b ,所以过a ,b 有且只有一个平面α.设l A α=,b l B =,∴A ∈α,B ∈α,且A ∈l ,B ∈l ,∴l α⊂.即过a ,b ,l 有且只有一个平面.证法二:由已知可设la A =,lb B =. ∵l a A =,过l 与a 有且只有一个平面β.∵a ∥b ,∴过a ,b 有且只有一个平面α,∴B ∈α,B ∈β,a α⊂,a β⊂.又B∉a,∴平面α与β重合.=⇒过a,b,l有且只有一个平面.即a∥b,.a l A=,b l B【总结升华】在证明多线共面时,可用下面的两种方法来证明:(1)纳入法:先由部分直线确定一个平面,再证明其他直线在这个平面内.确定一个平面的方法:①直线和直线外一点确定一个平面;②两条平行线确定一个平面;③两条相交直线确定一个平面.(2)重合法:先说明一些直线在一个平面内,另一些直线在另一个平面内,再证明两个平面重合.举一反三:【空间点线面之间的位置关系例2】【变式】(1)空间两两相交的四条直线能确定几个平面?(2)证明空间不共点且两两相交的四条直线在同一平面内.【答案】(1)1或6;(2)略【解析】(1)略(2)分两种情形,有三条交于一个点,没有三条交于一个点.已知:直线AB、BC、CD、DA两两相交,且不过同一点.求证:直线AB、BC、CD、DA共面.证明:如图(左),AB、BC、CD、DA两两相交,且无三条直线相交于一点.设AD、BC交于点M,AB、CD交于点N.∴AB、CD确定一个平面α.又∵C∈CD,B∈AB,D∈CD,A∈AB.∴A、B、C、D∈α.由公理1,知AD、BC∈α.故AB、BC、CD、DA四条直线共面.如图(右),AB、BC、CD、DA两两相交,且有三直线交于一点D.∵AB∩CD=C.∴AB、CD确定一个平面β.又∵A∈AB,D∈CD,∴A、D∈β,B∈AB,D∈CD,∴B、D∈β.∴AD⊂β,BD⊂β(公理1).∴AB、BC、CD、DA四直线共面.例7.如下图,已知△ABC的三个顶点都不在平面α内,它的三边AB、BC、AC延长后分别交平面α于点P、Q、R.求证:P、Q、R在同一条直线上.证明由已知AB的延长线交平面α于点P,根据公理3,平面ABC与平面α必相交于一条直线,设为L.∵P∈直线AB,∴P∈平面ABC.又AB∩α=P,∴P∈平面α,∴P是平面ABC与平面α的公共点.∵平面ABC∩α=l,∴P∈l,同理,Q∈l,R∈l.∴点P、Q、R在同一条直线l上.【总结升华】多点共线中的这条线一定是两个平面的交线,因此这类问题实际为两平面的相交问题.举一反三:【空间点线面之间的位置关系 例3】【变式1】已知E,F,G,H 分别是空间四边形各边AB ,AD ,BC ,CD 上的点,且直线EF 与GH 交于点P .求证:B ,D ,P 在同一直线上.【解析】P EF P ABD P EF GH P GH P BCD ∈⇒∈⎧⎫∈⇒⎨⎬∈⇒∈⎩⎭平面平面P ABD BCD BD P BD ⇒∈=⇒∈平面平面例8.(2016 甘肃天水月考)在正方体1111ABCD A B C D -中,E 为AB 的中点,F 为1AA 的中点,求证:CE ,1D F ,DA 三线共点.【思路点拨】延长1D F 、DA 交于P ,连结EP ,由已知条件得△P AE ≌△P AF ,从而得到∠PEA +∠AEC =180°,由此能证明CE 、1D F 、DA 三线共点于P .【答案】略【解析】延长1D F 、DA 交于P ,连结EP∵AE =AF ,P A =P A ,∠P AE =∠P AF =90°,∴△P AE ≌△P AF ,∴∠PF A =∠PEA ,∵∠PEA =1PD D ∠,1PD D ∠=∠DCE (11A D F ∠=∠BCE ),∴∠PEA =∠DCE ,又∵∠DCE +∠AEC =180°,∴∠PEA +∠AEC =180°,即点P 、E 、C 共线,∴CE ,1D F ,DA 三线共点于P .【总结升华】本题考查三线共点的证明,题时要认真审题,注意空间思维能力的培养.举一反三:【变式1】 如下图,已知空间四边形ABCD (即四个点不在同一平面内的四边形)中,E 、H 分别是边AB 、AD 的中点,F 、G 分别是边BC 、CD 上的点,且23CF CG CB CD ==.求证:直线EF、GH、AC相交于一点.证明:∵E、H分别是边AB、AD的中点,∴EH∥BD且12EH BD=.∵F、G分别是边BC、CD上的点,且23 CF CGCB CD==,∴FG∥BD且23FG BD=.故知EH∥FGE且EH≠FG,即四边形EFGH为梯形,从而EF与GH必相交,设交点为P.∵P∈EF,EF⊂平面ABC,∴P∈平面ABC.同理P∈平面ADC.∵平面ADC∩平面ABC=AC,∴P∈AC.即EF、GH、AC交于一点P。

高中数学必修二平面解析几何知识点梳理

高中数学必修二平面解析几何知识点梳理

平面解析几何1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[︒∈α,︒=90α斜率不存在. (2)直线的斜率:αtan ),(211212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ).2.直线方程的五种形式:(1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ).注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:121121x x x x y y y y --=-- (12y y ≠,12x x ≠).注:① 不能表示与x 轴和y 轴垂直的直线;② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线.(4)截距式:1=+bya x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:0=++C By Ax (其中A 、B 不同时为0).一般式化为斜截式:B C x B A y --=,即,直线的斜率:BAk -=. 4.两条直线的平行和垂直:(1)若111:l y k x b =+,222:l y k x b =+① 212121,//b b k k l l ≠=⇔; ② 12121l l k k ⊥⇔=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有① 1221122121//C A C A B A B A l l ≠=⇔且.② 0212121=+⇔⊥B B A A l l .5.平面两点距离公式:(111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=. 21P P 的中点是),(00y x M ,⎪⎪⎩⎪⎪⎨⎧+=+=22210210y y y x x x . 6.点到直线的距离公式:点),(00y x P 到直线0=++C By Ax l :的距离:2200BA CBy Ax d +++=.7.两平行直线间的距离: 002211=++=++C By Ax l C By Ax l :,:距离:2221BA C C d +-=.8.直线系方程:(1)平行直线系方程:与直线:0l Ax By C ++=平行的直线可表示为10Ax By C ++=. (2)垂直直线系方程:与直线:0l Ax By C ++=垂直的直线可表示为10Bx Ay C -+=.10.圆的方程:(1)圆的标准方程:222)()(r b y a x =-+-(0>r ).(2)圆的一般方程:)04(02222>-+=++++F E D F Ey Dx y x . 11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,则:“半弦长2+弦心距2=半径2”——222)2(r d l=+;(2)代数法:设l 的斜率为k ,l 与圆交点分别为),(),(2211y x B y x A ,||11||1||22B A B A y y kx x k AB -+=-+= 12.点与圆的位置关系:点),(00y x P 与圆222)()(r b y a x =-+-的位置关系有三种 ①P 在在圆外22020)()(r b y a x r d >-+-⇔>⇔. ②P 在在圆内22020)()(r b y a x r d <-+-⇔<⇔.③P 在在圆上22020)()(r b y a x r d =-+-⇔=⇔. 【P到圆心距离d =13.直线与圆的位置关系:直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(22BA C Bb Aa d +++=):圆心到直线距离为d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为∆.0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d .14.两圆位置关系:设两圆圆心分别为21,O O ,半径分别为21,r r ,d O O =21条公切线外离421⇔⇔+>r r d ; 无公切线内含⇔⇔-<21r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线内切121⇔⇔-=r r d ; 条公切线相交22121⇔⇔+<<-r r d r r .17.把两圆011122=++++F y E x D y x 与022222=++++F y E x D y x 方程相减即得相交弦所在直线方程:0)()()(212121=-+-+-F F y E E x D D . 18.对称问题: (1)中心对称:① 点关于点对称:点),(11y x A 关于),(00y x M 的对称点)2,2(1010y y x x A --.② 直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程. 法2:求出一个对称点,在利用21//l l 由点斜式得出直线方程. (2)轴对称:① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点 A A '、关于直线l 对称⎩⎨⎧''⇔上中点在⊥l A A l A A ⎩⎨⎧'-=⇔'方程中点坐标满足·l A A k k l A A 1 . ② 直线关于直线对称:(设b a ,关于l 对称)法1:若b a ,相交,求出交点坐标,并在直线a 上任取一点,求该点关于直线l 的对称点.若l a //,则l b //,且b a ,与l 的距离相等.法2:求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程.。

高中数学必修二平面解析几何知识点梳理

高中数学必修二平面解析几何知识点梳理

x x0 .
18.对称问题:
( 1)中心对称:
① 点关于点对称:点 A( x1 , y 1 ) 关于 M ( x 0 , y 0 ) 的对称点 A ( 2 x0 x1 , 2 y 0 y1 ) . ② 直线关于点对称: 法 1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程. 法 2:求出一个对称点,在利用 l 1 // l 2 由点斜式得出直线方程. ( 2)轴对称: ① 点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.
平面解析几何
1.直线的倾斜角与斜率:
( 1 )直线的倾斜角:在平面直角坐标系中,对于一条与
x 轴相交的直线,如果把 x 轴绕着交点按逆时针
方向旋转到和直线重合时所转的最小正角记为
叫做直线的倾斜角 .
倾斜角
[ 0,180 ) ,
90 斜率不存在 .
( 2 )直线的斜率: k
2.直线方程的五种形式: ( 1)点斜式: y y1
0 , λ 是待定的系数.
特别地,当
1 时,
2
x
2
y
D1x
E1 y
F1
2
(x
2
y
D 2x
E2 y
F2 )
0 就是
( D 1 D 2 ) x ( E 1 E 2 ) y ( F1 F 2 ) 0 表示两圆的公共弦所在的直线方程,即过两圆交点的直线.
16.圆的切线方程:
( 1)过圆
2
x
2
y
r 2 上的点 P ( x 0 , y 0 ) 的切线方程为 : x0 x y 0 y
即 d r ,求出 k ;或利用

[高中数学必修2]第二章 平面解析几何初步 知识梳理

[高中数学必修2]第二章  平面解析几何初步 知识梳理

第二章 平面解析几何初步2.1 平面直角坐标系中的基本公式1.数轴上的基本公式(1)数轴上的点与实数的对应关系直线坐标系:一条给出了原点、度量单位和正方向的直线叫做数轴,或说在这条直线上建立了直线坐标系。

数轴上的点与实数的对应法则:点P ←−−−→一一对应实数x 。

记法:如果点P 与实数x 对应,则称点P 的坐标为x ,记作P(x),当点P(x)中x >0时,点P 位于原点右侧,且点P 与原点O 的距离为|OP|=x ;当点P 的坐标P(x)中x <0时,点P 位于原点左侧,且点P 与原点O 的距离|OP|=-x 。

可以通过比较两点坐标的大小来判定两点在数轴上的相对位置。

(2)向量位移是一个既有大小又有方向的量,通常叫做位移向量,简称为向量。

从点A 到点B的向量,记作AB 。

线段AB 的长叫做向量AB 的长度,记作|AB|。

我们可以用实数表示数轴上的一个向量AB ,这个实数叫做向量AB 的坐标或数量。

例如:O 是原点,点A 的坐标为x 1,点B 的坐标为x 2,则AB=OB-OA ,所以AB=x 2-x 1。

注:①向量AB 的坐标用AB 表示,当向量AB 与其所在的数轴(或与其平行的数轴)的方向相同时,规定AB=|AB |;方向相反时,规定AB=-|AB |;②注意向量的长度与向量的坐标之间的区别:向量的长度是一个非负数,而向量的坐标是一个实数,可以是正数、负数、零。

③对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC ,可理解为AC 的坐标等于首尾相连的两向量AB ,BC 的坐标之和。

(3)数轴上的基本公式在数轴上,如果点A 作一次位移到点B ,接着由点B 再作一次位移到点C ,则位移AC叫做位移AB 与位移BC 的和,记作:AC AB BC =+ 。

对数轴上任意三点A 、B 、C ,都有关系AC=AB+BC 。

已知数轴上两点A(x 1),B(x 2)则AB=x 2-x 1,d(A,B)=|x 2-x 1|。

高中数学解析几何总结非常全

高中数学解析几何总结非常全

高中数学解析几何总结非常全解析几何是数学中一个非常重要的分支,它凭借着坐标系的引入和解析法的运用,把几何图形的特征用精确的数学语言描述。

本篇文章主要围绕高中数学解析几何的知识点进行总结,旨在帮助读者更好的掌握该学科。

一、平面直角坐标系平面直角坐标系指由二维直角坐标系(x,y) 和坐标平面上给定的一个原点(O) 共同构成的平面。

坐标系的基础知识对解析几何的学习至关重要,因此我们需要掌握如下概念:1. 笛卡尔坐标系平面直角坐标系又称为笛卡尔坐标系,是二维空间中的一种坐标系。

该坐标系中,平面上的任意一点P的坐标(x,y) 是由P点在x轴、y轴上的投影所确定的。

2. 坐标轴平面直角坐标系中的两条坐标轴分别是x轴和y轴,它们相交于坐标系的原点O。

3. 坐标变化在平面直角坐标系中,任意一点P(x,y) 关于x轴、y轴、原点O的对称点分别是P'(x,-y)、P'(-x,y) 和P'(-x,-y)。

二、直线及其方程解析几何中的直线是平面上的一种基本几何元素,由于它们的性质非常重要,因此直线及其方程的知识点也是解析几何中的核心内容。

我们需要掌握以下知识点:1. 直线的方程直线的一般式和斜截式是解析几何中最为常用的两种方程。

(1)直线的一般式:Ax+By+C=0在直线的一般式中,A、B、C 均为实数,其中 A 和 B 不同时为零。

(2)直线的斜截式:y=kx+b在直线的斜截式中,k 为直线的斜率,即斜线的倾斜程度。

斜率为0的直线是水平线,斜率为正数的直线是上升的,斜率为负数的直线是下降的。

2. 直线的截距式直线的截距式比较简单,它是指直线在x、y轴上截距所组成的一种方程形式,可以用来求解直线的截距。

3. 直线之间的关系直线之间的关系有平行、垂直等多种情况,我们需要掌握这些关系的性质和求解方法。

三、圆与圆的方程圆是解析几何中的另一个重要几何元素,它可以用一个点和一个距离来描述。

在本篇文章中,我们需要掌握以下知识点:1. 圆的一般式圆的一般式为(x-a)²+(y-b)²=r²,其中(a,b)为圆心坐标,r为圆的半径。

高中数学知识点归纳平面解析几何的性质与运算

高中数学知识点归纳平面解析几何的性质与运算

高中数学知识点归纳平面解析几何的性质与运算高中数学知识点归纳——平面解析几何的性质与运算一、引言在高中数学学习中,平面解析几何是一门重要的数学分支,它将代数和几何相结合,通过运用坐标系的方法来研究平面上的几何性质和相互关系。

本文将对平面解析几何的性质与运算进行归纳总结。

二、平面解析几何的基本概念1. 坐标系平面解析几何中,常使用直角坐标系来描述平面上的点。

直角坐标系由两个相互垂直的轴组成,分别称为x轴和y轴。

点在坐标系中的位置可由其坐标表示,标有符号的数对(x, y)即表示点的坐标,其中x 表示横坐标,y表示纵坐标。

2. 距离公式在平面解析几何中,计算两点之间的距离是常见的操作。

根据勾股定理,可以得到点A(x₁, y₁)和点B(x₂, y₂)之间的距离公式:d = √((x₂ - x₁)² + (y₂ - y₁)²)3. 斜率公式斜率是平面解析几何中的重要概念,表示直线的倾斜程度。

对于直线上的两点A(x₁, y₁)和B(x₂, y₂),可以使用斜率公式计算斜率:斜率k = (y₂ - y₁) / (x₂ - x₁)4. 中点公式平面解析几何中,中点是指线段的中点,可以通过中点公式求得。

对于线段的两个端点A(x₁, y₁)和B(x₂, y₂),中点的坐标为:中点M(x, y) = ((x₁+ x₂)/2 , (y₁+ y₂)/2)三、平面解析几何的性质1. 平行性质平面解析几何中,两条直线平行的判断条件之一是它们的斜率相等。

若两条直线的斜率分别为k₁和k₂,则当k₁= k₂时,两条直线平行。

2. 垂直性质两条直线垂直的判断条件之一是它们的斜率之积为-1。

若两条直线的斜率分别为k₁和k₂,则当k₁ * k₂ = -1时,两条直线垂直。

3. 距离性质平面解析几何中,根据距离公式可得,点P(x, y)到直线Ax + By +C = 0的距离为:d = |Ax + By + C| / √(A² + B²)4. 判定点是否在直线上对于直线Ax + By + C = 0和点P(x₀, y₀),若Ax₀ + By₀ + C = 0,则表明点P在直线上。

高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案

高中数学必修2(人教B版)第二章平面解析几何初步2.2知识点总结含同步练习题及答案

|a| = |b|
⋯⋯②
由 ①② 解得 a = b = 5 或 a = −1 ,b = 1 ,所以直线方程为 x + y − 5 = 0 或 x − y + 1 = 0. (ii)当 a = b = 0 时,直线过原点和 P (2, 3) ,所以直线方程为 3x − 2y = 0 . 综上可知,所求直线方程为 x + y − 5 = 0 或 x − y + 1 = 0 或 3x − 2y = 0 . 已知三角形的顶点是 A(−5, 0) ,B(3, −3) ,C (0, 2) ,求 AC 边所在直线的方程,以及该边上的 中线所在直线的方程. 解:过点 A(−5, 0) ,C (0, 2) 的两点式方程为
直线的基本量与方程 直线与直线的位置关系 直线的相关计算
三、知识讲解
1.直线的基本量与方程 描述: 直线的倾斜角 当直线l 与x 轴相交时,我们取 x 轴作为基准,x 轴正向与直线 l 向上方向之间所成的角α叫做直 线l 的倾斜角(angle of inclination).直线倾斜角α 的取值范围为0 ∘ ≤ α < 180 ∘ .
2 y − (−3) x−3 由两点式得直线 BD 的方程为 ,整理可得 8x + 11y + 9 = 0 ,这就是 = 1 − (−3) −5 − 3 2 AC 边上的中线所在直线的方程.
⎪ ⎩
2.直线与直线的位置关系 描述: 直线 l 1 :y = k1 x + b 1 ,l 2 :y = k2 x + b 2 . 当 l 1 与 l 2 平行时,则 k1 = k2 且 b 1 ≠ b 2 ; 当 l 1 与 l 2 重合时,则 k1 = k2 且 b 1 = b 2 ; 当 l 1 与 l 2 相交时,则 k1 ≠ k2 ,特别地,若两直线垂直,则 k1 ⋅ k2 =#43; B 1 y + C1 = 0, A 2 1 + B 1 ≠ 0 ,l 2 :A 2 x + B 2 y + C2 = 0, A 2 + B 2 ≠ 0 . 当 l 1 与 l 2 平行时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 ≠ B 2 C1 ; 当 l 1 与 l 2 重合时,则 A 1 B 2 = A 2 B 1 且 B 1 C2 = B 2 C1 ; 当 l 1 与 l 2 相交时,则 A 1 B 2 ≠ A 2 B 1 ,特别地,若两直线垂直,则 A 1 A 2 + B 1 B 2 = 0 . 例题: 直线 3x − 2y + m = 0 和 (m 2 + 1)x + 3y − 3m = 0 的位置关系是( A.平行 B.重合 C.相交 D.不确定 解:两直线的斜率分别为 交. )

必修二数学知识点归纳

必修二数学知识点归纳

必修二数学知识点归纳高中数学必修二的内容主要包括立体几何初步、平面解析几何初步。

以下是对这些知识点的详细归纳:一、立体几何初步1、空间几何体多面体:由若干个平面多边形围成的几何体叫做多面体。

旋转体:一条平面曲线绕着它所在的平面内的一条定直线旋转所形成的曲面叫作旋转面,封闭的旋转面围成的几何体叫作旋转体。

2、棱柱、棱锥、棱台棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。

棱锥:有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥。

棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分叫做棱台。

3、圆柱、圆锥、圆台、球圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫做圆柱。

圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体叫做圆锥。

圆台:用一个平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台。

球:以半圆的直径所在直线为轴,半圆面旋转一周形成的旋转体叫做球体,简称球。

4、中心投影与平行投影中心投影:光由一点向外散射形成的投影,叫做中心投影。

平行投影:在一束平行光线照射下形成的投影,叫做平行投影。

5、直观图斜二测画法:建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 x 轴和 y 轴,两轴相交于点 O。

画直观图时,把它们画成对应的 x'轴和 y'轴,两轴交于点 O',且使∠x'O'y' = 45°(或 135°),它们确定的平面表示水平平面。

已知图形中平行于 x 轴或 y 轴的线段,在直观图中分别画成平行于 x'轴或 y'轴的线段。

已知图形中平行于 x 轴的线段,在直观图中长度不变;平行于 y 轴的线段,长度变为原来的一半。

6、三视图正视图:光线从几何体的前面向后面正投影得到的投影图。

高中数学平面解析几何知识点归纳

高中数学平面解析几何知识点归纳

高中数学平面解析几何知识点归纳高中数学平面解析几何知识点有哪些你知道吗?近年的高中数学解答题多呈现为多问渐难式的“梯度题”,解答时不必一气审到底,应走一步解决一步,一起来看看高中数学平面解析几何知识点,欢迎查阅!高中数学平面解析几何知识点平面解析几何初步:①直线与方程是解析几何的基础,是高考重点考查的内容,单独考查多以选择题、填空题出现;间接考查则以直线与圆、椭圆、双曲线、抛物线等知识综合为主,多为中、高难度试题,往往作为把关题出现在高考题目中。

直接考查主要考查直线的倾斜角、直线方程,两直线的位置关系,点到直线的距离,对称问题等,间接考查一定会出现在高考试卷中,主要考查直线与圆锥曲线的综合问题。

②圆的问题主要涉及圆的方程、直线与圆的位置关系、圆与圆的位置关系以及圆的'集合性质的讨论,难度中等或偏易,多以选择题、填空题的形式出现,其中热点为圆的切线问题。

③空间直角坐标系是平面直角坐标系在空间的推广,在解决空间问题中具有重要的作业,空间向量的坐标运算就是在空间直角坐标系下实现的。

空间直角坐标系也是解答立体几何问题的重要工具,一般是与空间向量在坐标运算结合起来运用,也不排除出现考查基础知识的选择题和填空题。

高中数学平面解析几何知识点平面解析几何,又称解析几何(英语:Analytic geometry)、坐标几何(英语:Coordinate geometry)或卡氏几何(英语:Cartesian geometry),早先被叫作笛卡儿几何,是一种借助于解析式进行图形研究的几何学分支。

解析几何通常使用二维的平面直角坐标系研究直线、圆、圆锥曲线、摆线、星形线等各种一般平面曲线,使用三维的空间直角坐标系来研究平面、球等各种一般空间曲面,同时研究它们的方程,并定义一些图形的概念和参数。

平面解析几何基本理论坐标在解析几何当中,平面给出了坐标系,即每个点都有对应的一对实数坐标。

最常见的是笛卡儿坐标系,其中,每个点都有x-坐标对应水平位置,和y-坐标对应垂直位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

平面解析几何
1.直线的倾斜角与斜率:
(1)直线的倾斜角:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做直线的倾斜角.
②经过定点的直线系方程为,其中是待定的系数.
(4)共点直线系方程:经过两直线交点的直线系方程为 (除),其中λ是待定的系数.
9.曲线与的交点坐标方程组的解.
10.圆的方程:
(1)圆的标准方程:().
(2)圆的一般方程:.
(3)圆的直径式方程:
若,以线段为直径的圆的方程是:.
注:(1)在圆的一般方程中,圆心坐标和半径分别是,.
(2)一般方程的特点:
①和的系数相同且不为零;②没有项;③
(3)二元二次方程表示圆的等价条件是:
①;②;③.
11.圆的弦长的求法:
(1)几何法:当直线和圆相交时,设弦长为,弦心距为,半径为,
则:“半弦长+弦心距=半径”——;
(2)代数法:设的斜率为,与圆交点分别为,则
(其中的求法是将直线和圆的方程联立消去或,利用韦达定理求解)
12.点与圆的位置关系:点与圆的位置关系有三种
①在在圆外.
②在在圆内.
③在在圆上.【到圆心距离】
13.直线与圆的位置关系:
直线与圆的位置关系有三种():
圆心到直线距离为,由直线和圆联立方程组消去(或)后,所得一元二次方程的判别式为.;;.
14.两圆位置关系:设两圆圆心分别为,半径分别为,
;;
;;

15.圆系方程:
(1)过直线与圆:的交点的圆系方程:,λ是待定的系数.
(2)过圆:与圆:的交点的圆系方程:,λ是待定的系数.
特别地,当时,就是
表示两圆的公共弦所在的直线方程,即过两圆交点的直线.
16.圆的切线方程:
(1)过圆上的点的切线方程为:.
(2)过圆上的点的切线方程为: .
(3)当点在圆外时,可设切方程为,利用圆心到直线距离等于半径,
即,求出;或利用,求出.若求得只有一值,则还有一条斜率不存在的直线.
17.把两圆与方程相减
即得相交弦所在直线方程: .
平面解析几何
1.直线的倾斜角与斜率:
(1)直线的倾斜角:在平面直角坐标系中,对于一条与轴相交的直线,如果把轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做直线的倾斜角.
18.对称问题:
(1)中心对称:
①点关于点对称:点关于的对称点.
②直线关于点对称:
法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法2:求出一个对称点,在利用由点斜式得出直线方程.
(2)轴对称:
①点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.
点关于直线对称.
②直线关于直线对称:(设关于对称)
法1:若相交,求出交点坐标,并在直线上任取一点,求该点关于直线的对称点.
若,则,且与的距离相等.
法2:求出上两个点关于的对称点,在由两点式求出直线的方程.
(3)点(a, b)关于x轴对称:(a,- b)、关于y轴对称:(-a, b)、关于原点对称:(-a,- b)、点(a, b)关于直线y=x对称:(b, a)、关于y=- x对称:(-b,- a)、
关于y= x +m对称:(b -m、a+m)、关于y=-x+m对称:(-b+m、- a+m) .19.若,则△ABC的重心G的坐标是.
20.各种角的范围:
直线的倾斜角两条相交直线的夹角
两条异面线所成的角。

相关文档
最新文档