2019届高考数学总复习基础与考点过关《第七章推理与证明》学案

合集下载

2019-2020年高考高考数学一轮总复习第7章不等式推理与证明第五节推理与证明课件理

2019-2020年高考高考数学一轮总复习第7章不等式推理与证明第五节推理与证明课件理

解析 (1)观察可知每一行右边的数字都是连续的奇数,且奇
数的个数等于所在的行数加1,每行的第一个数字为行数加1
的和的3次方减去所在的行数,设行数为n,用an1表示每行的 第一个数,则an1 =(n+1)3-n,因此第4行第一个数为(4+1)3 -4=121,则第4个等式为:54=121+123+125+127+129.

________(a,b 为正数,且 a>b).
解析 每一个不等式的右边是在不等式左边的分子,分母上各 加了相同的正数,因此猜测:ba<ba+ +mm,(a,b,m 均为正数, 且 a>b). 答案 ba+ +mm(a,b,m 均为正数,且 a>b)
(2)类比平面几何中“三角形任两边之和大于第三边”得空间相 应的结论为________.
►数学归纳法的两点注意 [①明确初始值 n0 的取值并验证 n=n0 时命题成立. ②由 n=k 证明 n=k+1 时,弄清增加的项,并明确变形目标] (4)用数学归纳法证明“1+a+a2+… +a2n+1=1-1-a2an+2(a≠1)” 在验证 n=1 时,左端计算所得项为________. 解析 将 n=1 代入 a2n+1 得 a3,所以应为 1+a+a2+a3. 答案 1+a+a2+a3
都具有这些特征的推理,或者由 一类对象也具有这些特征的推理
个别事实概括出一般结论的推理
由 部分到 整体 、由 个别 到 特点
一般 的推理
由 特殊 到 特殊的推理
(1)找出两类事物之间的相似性或一 (1)通过观察个别情况发现某些相
致性; 一般 同性质;
(2)用一类事物的性质去推测另一类 步骤 (2)从已知的相同性质中推出一个
知识点三 数学归纳法
1.数学归纳法的定义 (1)当 n 取第一个值 n0 时,证明命题成立; (2)假设当 n=k(k∈N*,k≥n0)时命题成立,并证明当__n_=__k_+__1___ 时,命题也成立.于是命题对一切 n∈N*,n≥n0,命题都成立. 这种证明方法叫做数学归纳法.

2019高考数学一轮复习第七章不等式推理与证明7.2基本不等式及其应用课件理新人教A版

2019高考数学一轮复习第七章不等式推理与证明7.2基本不等式及其应用课件理新人教A版

-12-
考点1 考点2 考点3
对点训练 1 已知 a>0,b>0,a+b=1,求证:
1
+
1 ������
1
+
1 ������
≥9.
证明:
(方法一)∵a>0,b>0,a+b=1,∴1+���1���
=1+������
+������ ������
=2+������������
.
同理,1+���1��� =2+������������ .
������ ������ ������
≥2(a+b+c),
即������������
������
+
������������ ������
+
������������ ������
≥a+b+c,当且仅当
a=b=c
时等号成立.
考点1 考点2 考点3
-10-
(2)∵a+b=1,
∴1
������
+
1 ������
A.2
B.
2 2
C. 3
D. 2
关闭
∵0<x<2,∴2-x>0,∴y=
������(4-2������) =
2 · ������(2-������) ≤
2 ·������+2-������ =
2
2,
当且仅当 x=2-x,即 x=1 时取等号.
关闭
D
解析 答案
-8-
知识梳理 考点自测
12345
5.(2017江苏,10)某公司一年购买某种货物600吨,每次购买x吨,运

(福建专用)2019高考数学一轮复习 第七章 不等式、推理与证明 7.3 合情推理与演绎推理 理 新人教A版

(福建专用)2019高考数学一轮复习 第七章 不等式、推理与证明 7.3 合情推理与演绎推理 理 新人教A版

关闭
(1)× (2)× (3)× (4)× (5)√
答案
-7-
知识梳理 考点自测
12345
2.(2017安徽滁州模拟)若大前提是:任何实数的平方都大于0,小前 提是:a∈R,结论是:a2>0,那么这个演绎推理出错在( )
A.大前提 B.小前提 C.推理过程 D.没有出错
本题中大前提是错误的,因为0的平方不大于0,故选A. A
解析 答案
考点1 考点2 考点3 考点4
-20-
思考类比推理的关键是什么? 解题心得类比推理的关键及类型 1.进行类比推理,应从具体问题出发,通过观察、分析、联想进行 对比,提出猜想.其中找到合适的类比对象是解题的关键. 2.类比推理常见的情形有:平面与空间类比;低维与高维类比;等 差数列与等比数列类比;运算类比(加与积,乘与乘方,减与除,除与开 方);数的运算与向量运算类比;圆锥曲线间的类比等.
-21-
考点1 考点2 考点3 考点4
对点训练 2(1)已知在等差数列{an}中,有������11+������121+0…+������20 =
������1+������2+30…+������30,则在等比数列{bn}中,会有类似的结论:
.
(2)设△ABC的三边长分别为a,b,c,△ABC的面积为S,内切圆半径 (为 分1)r别1,0则为������1rS1=���1���,���1S���2+22…,���S���������+3���,������S���2;04类,四=比面30这体������个1A������结B2…C论D������可3的0 知体,积四为面V体,内AB切C球D的半四径个为面R,则的面积 关闭 由R=等比数列的性质知 b1b3.0=b2b29=…=b11b20,所以10 b11b12…b20 =

【教育专用】高考数学一轮复习第七章推理与证明学案7

【教育专用】高考数学一轮复习第七章推理与证明学案7

第七章 推理与证明第1课时 合情推理与演绎推理1. 已知2+23=223,3+38=338,4+415=4415,…,类比这些等式,若6+a b =6ab(a ,b 均为正数),则a +b =________. 答案:41解析:观察等式2+23=223,3+38=338,4+415=4415,…,第n 个应该是n +1+n +1(n +1)2-1=(n +1)n +1(n +1)2-1,则第5个等式中a =6,b =a 2-1=35,a +b =41.2. 在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体PABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.答案:127解析:正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.3. 设等差数列{a n }的前n 项和为S n .若存在正整数m ,n(m<n),使得S m =S n ,则S m +n =0.类比上述结论,设正项等比数列{b n }的前n 项积为T n .若存在正整数m ,n(m<n),使T m =T n ,则T m +n =________.答案:1解析:因为T m =T n ,所以b m +1b m +2…b n =1,从而b m +1b n =1,T m +n =b 1b 2…b m b m +1…b n b n +1…b n +m -1b n +m =(b 1b n +m )·(b 2b n +m -1)…(b m b n +1)·(b m +1b n )=1.4. 观察下列等式: 21+2=4;21×2=4;32+3=92;32×3=92;43+4=163;43×4=163;…,根据这些等式,可以得出一个关于自然数n 的等式,这个等式可以表示为________________.答案:n +1n +(n +1)=n +1n×(n +1)(n∈N *)解析:由归纳推理得n +1n +(n +1)=n +1+(n 2+n )n =(n +1)2n , n +1n×(n +1)=(n +1)2n ,所以得出结论n +1n +(n +1)=n +1n×(n +1)(n∈N *). 5. 设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c.类比这个结论可知:四面体PABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体PABC 的体积为V ,则r =________.答案:3VS 1+S 2+S 3+S 4解析:由类比推理可知r =3VS 1+S 2+S 3+S 4.1. 归纳推理(1) 归纳推理的定义从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理. (2) 归纳推理的思维过程大致如图实验、观察―→概括、推广―→猜测一般性结论(3) 归纳推理的特点① 归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包含的范围.② 由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它不能作为数学证明的工具.③ 归纳推理是一种具有创造性的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2. 类比推理(1) 根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理.(2) 类比推理的思维过程大致如图观察、比较―→联想、类推―→猜测新的结论3. 演绎推理(1) 演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程.(2) 主要形式是三段论式推理. (3) 三段论的常用格式为 M — P(M 是P)① S_—_M(S 是M)② S — P(S 是P)③ 其中,①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般原理,对特殊情况作出的判断.[备课札记], 1 归纳推理), 1) 观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, ……据此规律,第n 个等式可为________________.答案:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n解析:等式左边的特征:第1个等式有2项,第2个等式有4项,第3个等式有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n;等式右边的特征:第1个等式有1项,第2个等式有2项,第3个等式有3项,故第n 个等式有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n.变式训练观察下列三角形数阵: 1 13 15 17 19 111 113 115 117 119 ……按照以上排列的规律,第16行从左到右的第2个数为______.答案:1243解析:前15行共有15×(15+1)2=120(个)数⇒所求为a 122=12×122-1=1243., 2 类比推理), 2) 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c ,内切圆半径为r ,则三角形面积S △ABC =12(a +b +c)r”,拓展到空间,类比上述结论,“若四面体ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________________”.答案:V 四面体ABCD =13(S 1+S 2+S 3+S 4)r解析:三角形面积类比为四面体的体积⇒三角形的边长类比为四面体四个面的面积⇒内切圆半径类比为内切球半径⇒二维图形中的12类比为三维图形中的13⇒得出结论.运用分割法思想,设四面体ABCD 的内切球的球心为O ,连结OD ,OA ,OB ,OC ,将四面体分成四个三棱锥,则V ABCD =V OABC +V OABD +V OBCD +V OACD =13S 1r +13S 2r +13S 3r +13S 4r =13(S 1+S 2+S 3+S 4)r.备选变式(教师专享)设a ,b ,c 是直角三角形的三边长,斜边上的高为h ,c 为斜边长,则给出四个命题:① a +b>c +h ;② a 2+b 2<c 2+h 2;③ a 3+b 3>c 3+h 3;④ a 4+b 4<c 4+h 4.其中真命题是________(填序号),进一步类比得到的一般结论是____________________.答案:②④ a n +b n <c n +h n (n∈N *) 解析:在直角三角形ABC 中,a =csin A ,b =ccos A ,ab =ch ,所以h =csin Acos A .于是a n +b n =c n (sin n A +cos n A),c n +h n =c n (1+sin n Acos nA).a n +b n -c n -h n =c n (sin n A +cos n A -1-sin n Acos n A)=c n (sin n A -1)(1-cos nA)<0,所以a n +b n <c n +h n., 3 演绎推理), 3) 设同时满足条件:①b n +b n +22≤b n +1(n∈N *);②b n ≤M (n∈N *,M 是与n 无关的常数)的无穷数列{b n }叫“特界” 数列.(1) 若数列{a n }为等差数列,S n 是其前n 项和,a 3=4,S 3=18,求S n ; (2) 判断(1)中的数列{S n }是否为“特界” 数列,并说明理由. 解:(1) 设等差数列{a n }的公差为d ,则a 1+2d =4,3a 1+3d =18,解得a 1=8,d =-2,S n =na 1+n (n -1)2d =-n 2+9n.(2) {S n }为“特界”数列.理由如下: 由S n +S n +22-S n +1=(S n +2-S n +1)-(S n +1-S n )2=a n +2-a n +12=d 2=-1<0,得S n +S n +22<S n +1,故数列{S n }满足条件①;而S n =-n 2+9n =-⎝ ⎛⎭⎪⎫n -922+814(n∈N *),则当n =4或5时,S n 有最大值20,即S n ≤20,故数列{S n }满足条件②. 综上,数列{S n }是“特界”数列. 变式训练数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n∈N *).证明:(1) 数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2) S n +1=4a n .证明:(1) ∵ a n +1=S n +1-S n ,a n +1=n +2nS n ,∴ (n +2)S n =n(S n +1-S n ),即nS n +1=2(n+1)S n .故S n +1n +1=2·S nn ,故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(2) 由(1)可知数列⎩⎨⎧⎭⎬⎫S n n 是等比数列,所以S n +1n +1=4·S n -1n -1(n≥2),即S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n≥2).又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1, 所以对于任意正整数n ,都有S n +1=4a n .1. (2017·课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息推断,下列结论正确的是________.(填序号)① 乙可以知道四人的成绩; ② 丁可以知道四人的成绩; ③ 乙、丁可以知道对方的成绩; ④ 乙、丁可以知道自己的成绩. 答案:④解析:由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,故选④.2. (2016·全国Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是__________.答案:1和3 解析: 由题意可知丙不拿2和3.若丙拿1和2,则乙拿2和3,甲拿1和3,满足题意;若丙拿1和3,则乙拿2和3,甲拿1和2,不满足题意.故甲的卡片上的数字是1和3.3. (2017·北京卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ① 男学生人数多于女学生人数; ② 女学生人数多于教师人数;③ 教师人数的两倍多于男学生人数.(1) 若教师人数为4,则女学生人数的最大值为________; (2) 该小组人数的最小值为________. 答案:(1) 6 (2) 12解析:设男学生数,女学生数,教师数分别为a ,b ,c ,则2c>a>b>c ,a ,b ,c ∈N *. (1) 8>a>b>4⇒b max =6.(2) c min =3,6>a>b>3⇒a =5,b =4⇒a +b +c =12.4. 已知a n =⎝ ⎛⎭⎪⎫13n ,把数列{a n }的各项排成如下的三角形: a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A(s ,t)表示第s 行的第t 个数,则A(11,12)=________.答案:⎝ ⎛⎭⎪⎫13112 解析:该三角形数阵每行所对应元素的个数为1,3,5,…,那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A(11,12)=⎝ ⎛⎭⎪⎫13112. 5. 某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是从一级分形图的每条线段末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,……,依此规律得到n 级分形图.n 级分形图中共有________条线段.答案:(3×2n -3)(n∈N *)解析:从分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图中有3=(3×2-3)条线段,二级分形图中有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律,n 级分形图中的线段条数为(3×2n -3)(n∈N *).1. 如图所示的三角形数阵叫“莱布尼茨调和三角形”,有11=12+12,12=13+16,13=14+112,…,则运用归纳推理得到第11行第2个数(从左往右数)为________.答案:1110解析:由“莱布尼茨调和三角形”中数的排列规律,我们可以推断:第10行的第一个数为110,第11行的第一个数为111,则第11行的第二个数为110-111=1110.2. 有一个游戏,将标有数字1,2,3,4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:这4人的预测都不正确,那么甲、乙、丙、丁4个人拿到的卡片上的数字依次为____,____,____,____.答案:4 2 1 3解析:由于4个人预测不正确,其各自的对立事件正确,即甲:乙、丙没拿到3;乙:甲、丙没拿到2;丙:甲没拿到1;丁:甲没拿到3.综上,甲没拿到1,2,3,故甲拿到了4,丁拿到了3,丙拿到了1,乙拿到了2.3. 观察下列等式: 13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,则第n 个等式为________.答案:13+23+33+43+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22 解析:因为13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,由此可以看出左边是连续的自然数的立方和,右边是左边的连续的自然数的和的平方,照此规律,第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n)2=⎣⎢⎡⎦⎥⎤n (n +1)22. 4. 传说古希腊毕达哥拉斯学派的数学家经常在沙滩上通过画点或用小石子来表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1) b 2 018是数列{a n }的第________项; (2) b 2k -1=________.(用k 表示)答案:(1) 5 045 (2) 5k (5k -1)2解析:(1) a n =1+2+…+n =n (n +1)2,b 1=4×52=a 4,b 2=5×62=a 5,b 3=9×(2×5)2=a 9,b 4=(2×5)×112=a 10,b 5=14×(3×5)2=a 14,b 6=(3×5)×162=a 15,…b 2 018=⎝ ⎛⎭⎪⎫2 0182×5⎝ ⎛⎭⎪⎫2 0182×5+12=a 5 045.(2) 由(1)知b 2k -1=⎝ ⎛⎭⎪⎫2k -1+12×5-1⎝ ⎛⎭⎪⎫2k -1+12×52=5k (5k -1)2.5. 某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A ,B ,C ,D ,E 五辆车,保证每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可知下列推测一定正确的是__________.(填序号)① 今天是周六;② 今天是周四; ③ A 车周三限行;④ C 车周五限行. 答案:②解析:因为每天至少有四辆车可以上路行驶,E 车明天可以上路,E 车周四限行,所以今天不是周三;因为B 车昨天限行,所以今天不是周一,也不是周日;因为A ,C 两车连续四天都能上路行驶,所以今天不是周五,周二和周六,所以今天是周四,所以①错误,②正确.因为B 车昨天限行,即B 车周三限行,所以③错误.因为从今天算起,A 、C 两车连续四天都能上路行驶,所以④错误.1. 合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新的结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路和方法.2. 合情推理的过程概括为:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想.3. 演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论,数学问题的证明主要通过演绎推理来进行.4. 合情推理仅是符合情理的推理,得到的结论不一定正确,而演绎推理得到的结论一定正确(在前提和推理形式都正确的前提下).[备课札记]第2课时 直接证明与间接证明(对应学生用书(文)、(理)104~105页)了解分析法、综合法、反证法,会用这些方法处理一些简单问题.① 了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程、特点.② 了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.1. 已知向量m =(1,1)与向量n =(x ,2-2x)垂直,则x =________. 答案:2解析:m ·n =x +(2-2x)=2-x.∵ m ⊥n ,∴ m ·n =0,即x =2.2. 用反证法证明命题“如果a>b ,那么3a>3b ”时,假设的内容应为______________. 答案:3a =3b 或3a<3b解析:根据反证法的步骤,假设是对原命题结论的否定,即3a =3b 或3a<3b. 3. 6-22与5-7的大小关系是______________. 答案:6-22>5-7解析: 由分析法可得,要证6-22>5-7,只需证6+7>5+22,即证13+242>13+410,即42>210.因为42>40,所以6-22>5-7成立.4. 定义集合运算:A·B={Z|Z =xy ,x ∈A ,y ∈B},设集合A ={-1,0,1},B ={sin α,cos α},则集合A·B 的所有元素之和为________.答案:0解析:依题意知α≠k π+π4,k ∈Z .① α=k π+3π4(k∈Z )时,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫22,-22,A ·B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,22,-22; ② α=2k π或α=2k π+π2(k∈Z )时,B ={0,1},A ·B ={0,1,-1}; ③ α=2k π+π或α=2k π-π2(k∈Z )时,B ={0,-1},A ·B ={0,1,-1};④ α≠k π2且α≠k π+3π4(k∈Z )时,B ={sin α,cos α},A ·B ={0,sin α,cosα,-sin α,-cos α}.综上可知,A ·B 中的所有元素之和为0.5. 设a ,b 为两个正数,且a +b =1,则使得1a +1b≥μ恒成立的μ的取值范围是________.答案:(-∞,4]解析:∵ a+b =1,且a ,b 为两个正数,∴ 1a +1b =(a +b)⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2b a ·a b=4.要使得1a +1b≥μ恒成立,只要μ≤4.1. 直接证明(1) 定义:直接从原命题的条件逐步推得命题成立的证明方法. (2) 一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒A ⇒B ⇒C ⇒…⇒本题结论.(3) 综合法① 定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法.② 推证过程已知条件⇒…⇒…⇒结论(4) 分析法① 定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件吻合为止.这种证明方法称为分析法.② 推证过程结论⇐…⇐…⇐已知条件2. 间接证明(1) 常用的间接证明方法有反证法、正难则反等. (2) 反证法的基本步骤① 反设——假设命题的结论不成立,即假定原结论的反面为真.② 归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.,1 直接证明(综合法和分析法)), 1) 对于定义域为[0,1]的函数f(x),如果同时满足: ① 对任意的x∈[0,1],总有f(x)≥0; ② f(1)=1;③ 若x 1≥0,x 2≥0,x 1+x 2≤1,都有f(x 1+x 2)≥f(x 1)+f(x 2)成立,则称函数f(x)为理想函数.(1) 若函数f(x)为理想函数,求证:f(0)=0;(2) 试判断函数f(x)=2x(x∈[0,1]),f(x)=x 2(x∈[0,1]),f(x)=x (x∈[0,1])是否为理想函数?(1) 证明:取x 1=x 2=0,则x 1+x 2=0≤1,∴ f(0+0)≥f(0)+f(0),∴ f (0)≤0. 又对任意的x∈[0,1],总有f(x)≥0,∴ f (0)≥0.于是f(0)=0.(2) 解:对于f(x)=2x ,x∈[0,1],f(1)=2不满足新定义中的条件②, ∴ f(x)=2x(x∈[0,1])不是理想函数.对于f(x)=x 2,x ∈[0,1],显然f(x)≥0,且f(1)=1.对任意的x 1,x 2∈[0,1],x 1+x 2≤1,f(x 1+x 2)-f(x 1)-f(x 2)=(x 1+x 2)2-x 21-x 22=2x 1x 2≥0,即f(x 1+x 2)≥f(x 1)+f(x 2).∴ f(x)=x 2(x∈[0,1])是理想函数.对于f(x)=x (x∈[0,1]),显然满足条件①②. 对任意的x 1,x 2∈[0,1],x 1+x 2≤1,有f 2(x 1+x 2)-[f(x 1)+f(x 2)]2=(x 1+x 2)-(x 1+2x 1x 2+x 2)=-2x 1x 2≤0,即f 2(x 1+x 2)≤[f(x 1)+f(x 2)]2.∴ f(x 1+x 2)≤f(x 1)+f(x 2),不满足条件③. ∴ f(x)=x (x∈[0,1])不是理想函数.综上,f(x)=x 2(x∈[0,1])是理想函数,f(x)=2x(x∈[0,1])与f(x)=x (x∈[0,1])不是理想函数.备选变式(教师专享)设首项为a 1的正项数列{a n }的前n 项和为S n ,q 为非零常数,已知对任意正整数n ,m ,S n +m =S m +q mS n 总成立.求证:数列{a n }是等比数列.证明:因为对任意正整数n ,m ,S n +m =S m +q mS n 总成立,令n =m =1,得S 2=S 1+qS 1,则a 2=qa 1.令m =1,得S n +1=S 1+qS n ①, 从而S n +2=S 1+qS n +1 ②,②-①得a n +2=qa n +1(n≥1),综上得a n +1=qa n (n≥1),所以数列{a n }是等比数列., 2) 已知m>0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m . 证明:因为m>0,所以1+m>0,所以要证原不等式成立,只需证明(a +mb)2≤(1+m)(a 2+mb 2),即证m(a 2-2ab +b 2)≥0,即证(a -b)2≥0,而(a -b)2≥0显然成立, 故原不等式得证. 变式训练已知函数f(x)=3x-2x ,试求证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22. 证明:要证明f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22,只要证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证明3x 1+3x 22≥3x 1+x 22,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立., 2 间接证明(反证法)), 3) 设{a n }是公比为q 的等比数列. (1) 推导{a n }的前n 项和公式;(2) 设q≠1,求证:数列{a n +1}不是等比数列.(1) 解:设{a n }的前n 项和为S n ,则S n =a 1+a 2+…+a n , 因为{a n }是公比为q 的等比数列,所以当q =1时,S n =a 1+a 1+…+a 1=na 1.当q≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1, ①qS n =a 1q +a 1q 2+…+a 1q n, ②①-②得,(1-q)S n =a 1-a 1q n,所以S n =a 1(1-q n)1-q ,所以S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2) 证明:假设{a n +1}是等比数列,则对任意的k∈N *,(a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1, a 21q 2k +2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1,因为a 1≠0,所以2q k =q k -1+q k +1.因为q≠0,所以q 2-2q +1=0,所以q =1,这与已知矛盾.所以假设不成立,故{a n +1}不是等比数列. 变式训练已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1) 求数列{a n }的通项公式;(2) 求证:数列{a n }中不存在三项按原来顺序成等差数列. (1) 解:当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2,两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2) 证明:反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p<q<r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p+1 ①.因为p<q<r ,所以r -q ,r -p∈N *.所以①式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证.1. 用反证法证明命题“a,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,假设的内容是____________.答案:a ,b 中没有一个能被5整除解析:“至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.2. 已知a ,b ,c ∈(0,+∞)且a <c ,b <c ,1a +9b=1.若以a ,b ,c 为三边构造三角形,则c 的取值范围是________.答案:(10,16)解析:要以a ,b ,c 为三边构造三角形,需要满足任意两边之和大于第三边,任意两边之差小于第三边,而a<c ,b<c ,所以a +b>c 恒成立.而a +b =(a +b)⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b ≥16,∴ c<16.又1a >1c ,1b >1c ,∴ 10c <1a +9b=1,∴ c>10,∴ 10<c<16.3. 已知a>0,求证:a 2+1a 2-2≥a +1a-2.证明:要证a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a+1a+ 2.因为a>0,故只需要证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2,从而只需要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a ,只需要证4⎝⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.4. 若f(x)的定义域为[a ,b],值域为[a ,b](a<b),则称函数f(x)是[a ,b]上的“四维光军”函数.(1) 设g(x)=12x 2-x +32是[1,b]上的“四维光军”函数,求常数b 的值.(2) 是否存在常数a ,b(a>-2),使函数h(x)=1x +2是区间[a ,b]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.解:(1) 由题设得g(x)=12(x -1)2+1,其图象的对称轴为直线x =1,区间[1,b]在对称轴的右边,所以函数在区间[1,b]上单调递增.由“四维光军”函数的定义可知,g(1)=1,g(b)=b ,即12b 2-b +32=b ,解得b =1或b =3.因为b>1,所以b =3. (2) 假设函数h(x)=1x +2在区间[a ,b] (a>-2)上是“四维光军”函数,因为h(x)=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎪⎨⎪⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾,故不存在.1. 用反证法证明结论“三角形的三个内角中至少有一个不大于60°”,应假设______________.答案:三角形的三个内角都大于60°解析:“三角形的三个内角中至少有一个不大于60°”即“三个内角至少有一个小于等于60°”,其否定为“三角形的三个内角都大于60°”.2. 凸函数的性质定理:如果函数f(x)在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n .已知函数y =sinx 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.答案:332解析:∵ f(x)=sin x 在区间(0,π)上是凸函数,且A ,B ,C ∈(0,π),∴ f (A )+f (B )+f (C )3≤f ⎝ ⎛⎭⎪⎫A +B +C 3=f ⎝ ⎛⎭⎪⎫π3, 即sin A +sin B +sin C ≤3sin π3=332,∴ sin A +sin B +sin C 的最大值为332.3. 定义:若存在常数k ,使得对定义域D 内的任意两个x 1,x 2(x 1≠x 2),均有|f(x 1)-f(x 2)|≤k|x 1-x 2| 成立,则称函数f(x)在定义域D 上满足利普希茨条件.若函数f(x)=x (x≥1)满足利普希茨条件,则常数k 的最小值为________.答案:12解析:若函数f(x)=x (x≥1)满足利普希茨条件,则存在常数k ,使得对定义域[1,+∞)内的任意两个x 1,x 2(x 1≠x 2),均有|f(x 1)-f(x 2)|≤k|x 1-x 2| 成立,设x 1>x 2,则k≥x 1-x 2x 1-x 2=1x 1+x 2.而0<1x 1+x 2<12,所以k 的最小值为12.4. 设函数f(x)=x 3+11+x ,x ∈[0,1].求证:(1) f(x)≥1-x +x 2;(2) 34<f(x)≤32.证明:(1) 因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x ,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f(x)≥1-x +x 2.(2) 由0≤x≤1得x 3≤x ,故f(x)=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f(x)≤32.由(1)得f(x)≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又f ⎝ ⎛⎭⎪⎫12=1924>34,所以f(x)>34. 综上,34<f(x)≤32.5. 已知数列{a n }满足a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n≥1),数列{b n }满足b n =a 2n +1-a 2n (n≥1).(1) 求数列{a n },{b n }的通项公式;(2) 求证:数列{b n }中的任意三项不可能成等差数列.(1) 解:由题意可知,1-a 2n +1=23(1-a 2n ).令c n =1-a 2n ,则c n +1=23c n .又c 1=1-a 21=34,则数列{c n }是首项为34,公比为23的等比数列,即c n =34·⎝ ⎛⎭⎪⎫23n -1.故1-a 2n =34·⎝ ⎛⎭⎪⎫23n -1⇒a 2n =1-34·⎝ ⎛⎭⎪⎫23n -1.又a 1=12>0,a n a n +1<0,故a n =(-1)n -11-34·⎝ ⎛⎭⎪⎫23n -1. b n =a 2n +1-a 2n=⎣⎢⎡⎦⎥⎤1-34·⎝ ⎛⎭⎪⎫23n -⎣⎢⎡⎦⎥⎤1-34·⎝ ⎛⎭⎪⎫23n -1 =14·⎝ ⎛⎭⎪⎫23n -1. (2) 证明:用反证法证明.假设数列{b n }中存在三项b r ,b s ,b t (r<s<t)按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b r >b s >b t ,则只能有2b s =b r +b t 成立.即2·14⎝ ⎛⎭⎪⎫23s -1=14⎝ ⎛⎭⎪⎫23r -1+14⎝ ⎛⎭⎪⎫23t -1,两边同乘3t -121-r,化简得3t -r +2t -r =2·2s -r 3t -s.由于r<s<t ,则上式左边为奇数,右边为偶数, 故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.[备课札记]第3课时 数学归纳法(对应学生用书(理)106~107页)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题.1. (选修22P 94习题7改编)用数学归纳法证明1+12+13+…+12n -1<n (n∈N *,n>1)时,第一步应验证________.答案:1+12+13<2解析:∵ n∈N *,n>1,∴ n 取的第一个数为2,左端分母最大的项为122-1=13.2. (选修22P 90练习3改编)用数学归纳法证明不等式“2n >n 2+1对于n≥n 0的自然数n 都成立”时,第一步证明中的起始值n 0应取为________.答案:5解析:当n≤4时,2n ≤n 2+1;当n =5时,25=32>52+1=26,所以n 0应取为5.3. (选修22P 103复习题13改编)在数列{a n }中,a 1=13,且S n =n(2n -1)a n ,通过求a 2,a 3,a 4,猜想a n 的表达式为________________.答案:a n =1(2n -1)(2n +1)解析:当n =2时,13+a 2=(2×3)a 2,∴ a 2=13×5;当n =3时,13+115+a 3=(3×5)a 3,∴ a 3=15×7;当n =4时,13+115+135+a 4=(4×7)a 4,∴ a 4=17×9;故猜想a n =1(2n -1)(2n +1).4. (选修22P 103复习题14改编)比较n n +1与(n +1)n (n∈N *)的大小时会得到一个一般性的结论,用数学归纳法证明这一结论时,第一步要验证________.答案:当n =3时,n n +1=34>(n +1)n =43解析:当n =1时,n n +1=1>(n +1)n =2不成立;当n =2时,n n +1=8>(n +1)n=9不成立;当n =3时,n n +1=34>(n +1)n =43,结论成立.5. (选修22P 105本章测试13改编)已知a 1=12,a n +1=3a na n +3,则a 2,a 3,a 4,a 5的值分别为________________.由此猜想a n =________.答案:37,38,39,310 3n +5解析:a 2=3a 1a 1+3=3×1212+3=37=32+5,同理a 3=3a 2a 2+3=38=33+5,a 4=39=34+5,a 5=310=35+5,a 1=31+5=12,符合以上规律. 故猜想a n =3n +5.1. 由一系列有限的特殊现象得出一般性的结论的推理方法,通常叫做归纳法.2. 对某些与正整数有关的数学命题常采用下面的方法来证明它们的正确性:先证明当n 取第1个值n 0时,命题成立;然后假设当n =k(k∈N *,k ≥n 0)时命题成立;证明当n =k +1时,命题也成立,这种证明方法叫做数学归纳法.3. 用数学归纳法证明一个与正整数有关的命题时,其步骤如下: (1) 归纳奠基:证明取第一个自然数n 0时命题成立;(2) 归纳递推:假设n =k(k∈N *,k ≥n 0)时命题成立,证明当n =k +1时,命题成立; (3) 由(1)(2)得出结论.[备课札记], 1 证明等式), 1) 用数学归纳法证明:12×4+14×6+16×8+…+12n (2n +2)=n 4(n +1)(n∈N *).证明:① 当n =1时,左边=12×1×(2×1+2)=18,右边=14(1+1)=18,左边=右边,所以等式成立.② 假设n =k(k∈N *)时等式成立,即有 12×4+14×6+16×8+…+12k (2k +2)=k 4(k +1), 则当n =k +1时,12×4+14×6+16×8+…+12k (2k +2)+12(k +1)[2(k +1)+2]=k 4(k +1)+14(k +1)(k +2)=k (k +2)+14(k +1)(k +2)=(k +1)24(k +1)(k +2)=k +14(k +2)=k +14(k +1+1). 所以当n =k +1时,等式也成立.由①②可知,对于一切n∈N *等式都成立.变式训练用数学归纳法证明:1-12+13-14+...+12n -1-12n =1n +1+1n +2+ (12)(n∈N *).证明:① 当n =1时,等式左边=1-12=12=右边,等式成立.② 假设当n =k(k∈N *)时,等式成立,即1-12+13-14+…+12k -1-12k =1k +1+1k +2+…+12k ,那么,当n =k +1时,有1-12+13-14+…+12k -1-12k +12k +1-12k +2=1k +1+1k +2+…+12k +12k +1-12k +2=1k +2+1k +3+…+12k +1+12k +2,所以当n =k +1时,等式也成立.由①②知,等式对任何n∈N *均成立., 2 证明不等式), 2) 用数学归纳法证明不等式:1n +1n +1+1n +2+ (1)2>1(n∈N *且n>1).证明:① 当n =2时,12+13+14=1312>1成立.② 设n =k 时,1k +1k +1+1k +2+…+1k 2>1成立.由于当k>1时,k 2-k -1>0,即k(2k +1)>k 2+2k +1,则当n =k +1时,1k +1+1k +2+1k +3+…+1(k +1)2=(1k +1k +1+1k +2+…+1k 2)+1k 2+1+1k 2+2+…+1k 2+2k +1-1k >1+1k 2+1+1k 2+2+…+1k 2+2k +1-1k>1+1k (2k +1)+1k (2k +1)+…+1k (2k +1)-1k =1+2k +1k (2k +1)-1k=1.综合①②可知,原不等式对n∈N *且n>1恒成立. 备选变式(教师专享)用数学归纳法证明:1+122+132+…+1n 2<2-1n (n∈N *,n ≥2).证明:① 当n =2时,1+122=54<2-12=32,命题成立.② 假设n =k 时命题成立,即1+122+132+…+1k 2<2-1k.当n =k +1时,1+122+132+…+1k 2+1(k +1)2<2-1k +1(k +1)2<2-1k +1k (k +1)=2-1k +1k -1k +1=2-1k +1,命题成立. 由①②知原不等式对n∈N *,n ≥2恒成立., 3 数列问题), 3) 数列{a n }满足S n =2n -a n (n∈N *). (1) 计算a 1,a 2,a 3,a 4,并由此猜想通项公式a n ; (2) 证明(1)中的猜想.(1) 解:当n =1时,a 1=S 1=2-a 1,∴ a 1=1;当n =2时,a 1+a 2=S 2=2×2-a 2,∴ a 2=32;当n =3时,a 1+a 2+a 3=S 3=2×3-a 3,∴ a 3=74;当n =4时,a 1+a 2+a 3+a 4=S 4=2×4-a 4,∴ a 4=158.由此猜想a n =2n-12n -1(n∈N *).(2) 证明:① 当n =1时,a 1=1,结论成立.② 假设n =k(k≥1且k∈N *)时,结论成立,即a k =2k-12k -1,那么n =k +1时,a k +1=S k +1-S k =2(k +1)-a k +1-2k +a k =2+a k -a k +1,所以2a k +1=2+a k .所以a k +1=2+a k 2=2+2k-12k -12=2k +1-12k.所以当n =k +1时,结论成立. 由①②知猜想a n =2n-12n -1(n∈N *)成立.变式训练在数列{a n }中,a 1=2,a n +1=λa n +λn +1+(2-λ)2n (n∈N *,λ>0). (1) 求a 2,a 3,a 4;(2) 猜想{a n }的通项公式,并加以证明.解:(1) a 2=2λ+λ2+2(2-λ)=λ2+22,a 3=λ(λ2+22)+λ3+(2-λ)22=2λ3+23,a 4=λ(2λ3+23)+λ4+(2-λ)23=3λ4+24.(2) 由(1)可猜想数列{a n }的通项公式为a n =(n -1)λn +2n. 下面用数学归纳法证明:① 当n =1,2,3,4时,等式显然成立,② 假设当n =k(k≥4,k ∈N *)时等式成立,即a k =(k -1)·λk +2k,那么当n =k +1时,a k +1=λa k +λk +1+(2-λ)2k =λ(k -1)·λk +λ2k +λk +1+2k +1-λ2k=(k -1)λk +1+λk +1+2k +1=[(k +1)-1]λk +1+2k +1, 所以当n =k +1时,猜想成立.由①②知数列{a n }的通项公式为a n =(n -1)λn +2n (n∈N *,λ>0)., 4 综合运用), 4) 设集合M ={1,2,3,…,n}(n ∈N ,n ≥3),记M 的含有三个元素的子集个数为S n ,同时将每一个子集中的三个元素由小到大排列,取出中间的数,所有这些中间的数的和记为T n .(1) 分别求T 3S 3,T 4S 4,T 5S 5,T 6S 6的值;(2) 猜想T nS n关于n 的表达式,并加以证明.解:(1) 当n =3时,M ={1,2,3},S 3=1,T 3=2,T 3S 3=2;当n =4时,M ={1,2,3,4},S 4=4,T 4=2+2+3+3=10,T 4S 4=52,T 5S 5=3,T 6S 6=72.(2) 猜想T n S n =n +12.下面用数学归纳法证明:① 当n =3时,由(1)知猜想成立.② 假设当n =k(k≥3)时,猜想成立,即T k S k =k +12,而S k =C 3k ,所以T k =k +12C 3k .则当n =k +1时,易知S k +1=C 3k +1,而当集合M 从{1,2,3,…,k}变为{1,2,3,…,k ,k +1}时,T k +1在T k 的基础上增加了1个2,2个3,3个4,…,(k -1)个k ,所以T k +1=T k +2×1+3×2+4×3+…+k(k -1) =k +12C 3k +2(C 22+C 23+C 24+…+C 2k )=k +12C 3k +2(C 33+C 23+C 24+…+C 2k ) =k -22C 3k +1+2C 3k +1=k +22C 3k +1=(k +1)+12S k +1,即T k +1S k +1=(k +1)+12. 所以当n =k +1时,猜想也成立. 综上所述,猜想成立. 备选变式(教师专享)已知过一个凸多边形的不相邻的两个端点的连线段称为该凸多边形的对角线. (1) 分别求出凸四边形,凸五边形,凸六边形的对角线的条数; (2) 猜想凸n 边形的对角线条数f(n),并用数学归纳法证明.解:(1) 凸四边形的对角线条数为2条;凸五边形的对角线条数为5条,凸六边形的对角线条数为9条.(2) 猜想:f(n)=n (n -3)2(n≥3,n ∈N *).证明如下:当n =3时,f(3)=0成立;设当n =k(k≥3)时猜想成立,即f(k)=k (k -3)2,则当n =k +1时,考察k +1边形A 1A 2…A k A k +1,①k 边形A 1A 2…A k 中原来的对角线都是k +1边形中的对角线,且边A 1A k 也成为k +1边形中的对角线;②在A k +1与A 1,A 2,…,A k 连结的k 条线段中,除A k +1A 1,A k +1A k 外,都是k +1边形中的对角线,共计有f(k +1)=f(k)+1+(k -2)=k (k -3)2+1+(k -2)=k 2-3k +2k -22=k 2-k -22=(k +1)(k -2)2=(k +1)(k +1-3)2(条),即当n =k +1时,猜想也成立. 综上,得f(n)=n (n -3)2对任何n≥3,n ∈N *都成立.1. (2017·苏锡常镇二模)已知f n (x)=C 0nx n -C 1n(x -1)n+…+(-1)k C k n (x -k)n+…+(-1)n C n n (x -n)n ,其中x ∈R ,n ∈N *,k ∈N ,k ≤n.(1) 试求f 1(x),f 2(x),f 3(x)的值;(2) 试猜测f n (x)关于n 的表达式,并证明你的结论.解:(1) f 1(x)=C 01x -C 11(x -1)=x -x +1=1,f 2(x)=C 02x 2-C 12(x -1)2+C 22(x -2)2=x 2-2(x 2-2x +1)+(x 2-4x +4)=2,f 3(x)=C 03x 3-C 13(x -1)3+C 23(x -2)3-C 33(x -3)3=x 3-3(x -1)3+3(x -2)3-(x -3)3=6. (2) 猜想:f n (x)=n !.证明:① 当n =1时,猜想显然成立;② 假设n =k 时猜想成立,即f k (x)=C 0k x k -C 1k (x -1)k +C 2k (x -2)k +…+(-1)k C k k (x -k)k=k !,则n =k +1时,f k +1(x)=C 0k +1x k +1-C 1k +1(x -1)k +1+C 2k +1(x -2)k +1+…+(-1)k +1C k +1k +1(x -k -1)k +1=xC 0k +1·x k -(x -1)C 1k +1(x -1)k +(x -2)C 2k +1(x -2)k +…+(-1)k (x -k)C k k +1(x -k)k+(-1)k +1C k +1k +1(x -k -1)k +1=x[C 0k +1x k -C 1k +1(x -1)k +C 2k +1(x -2)k +…+(-1)k C k k +1·(x -k)k]+[C 1k +1(x -1)k -2C 2k +1(x -2)k +…+(-1)k +1·kC k k +1(x -k)k ]+(-1)k +1C k +1k +1(x -k -1)k +1=x[C 0k x k -(C 0k +C 1k )(x -1)k +(C 1k +C 2k )(x -2)k +…+(-1)k (C k -1k +C k k )(x -k)k]+(k +1)[C 0k (x -1)k -C 1k (x -2)k +…+(-1)k +1C k -1k (x -k)k ]+(-1)k +1C k +1k +1(x -k -1)k +1=x[C 0k x k -C 1k (x -1)k +C 2k (x -2)k +…+(-1)k C k k (x -k)k ]-x[C 0k (x -1)k -C 1k (x -2)k+…+(-1)k -1C k -1k (x -k)k +(-1)k C k k (x -k -1)k ]+(k +1)[C 0k (x -1)k -C 1k ·(x -2)k +…+(-1)k+1C k -1k (x -k)k +(-1)k C k k (x -k -1)k]=xk !-xk !+(k +1)k !=(k +1)!. ∴ 当n =k +1时,猜想成立.综上所述,猜想成立.2. 设数列{a n }的前n 项和为S n ,且方程x 2-a n x -a n =0有一根为S n -1,n =1,2,3,…. (1) 求a 1,a 2;(2) 猜想数列{S n }的通项公式,并给出证明.解:(1) 当n =1时,x 2-a 1x -a 1=0有一根为S 1-1=a 1-1,于是(a 1-1)2-a 1(a 1-1)-a 1=0,解得a 1=12.当n =2时,x 2-a 2x -a 2=0有一根为S 2-1=a 2-12,于是⎝ ⎛⎭⎪⎫a 2-122-a 2⎝⎛⎭⎪⎫a 2-12-a 2=0,解得a 2=16. (2) 由题设知(S n -1)2-a n (S n -1)-a n =0,即S 2n -2S n +1-a n S n =0. 当n≥2时,a n =S n -S n -1,代入上式得S n -1S n -2S n +1=0. ①由(1)得S 1=a 1=12,S 2=a 1+a 2=12+16=23.由①可得S 3=34.由此猜想S n =nn +1,n =1,2,3,….下面用数学归纳法证明这个结论. (ⅰ) n=1时已知结论成立.(ⅱ) 假设n =k(k∈N *)时结论成立,即S k =k k +1,当n =k +1时,由①得S k +1=12-S k,即S k +1=k +1k +2,故n =k +1时结论也成立.综上,由(ⅰ)、(ⅱ)可知S n =nn +1对所有正整数n 都成立.3. 已知x 1,x 2,…,x n ∈R +,且x 1x 2…x n =1.求证:(2+x 1)(2+x 2)…(2+x n )≥(2+1)n.证明:(数学归纳法)① 当n =1时,2+x 1=2+1,不等式成立.② 假设n =k 时不等式成立,即(2+x 1)(2+x 2)…(2+x k )≥(2+1)k成立. 则n =k +1时,若x k +1=1,则命题成立;若x k +1>1,则x 1,x 2,…,x k 中必存在一个数小于1,不妨设这个数为x k ,从而(x k -1)(x k +1-1)<0,即x k +x k +1>1+x k x k +1.同理可得x k +1<1时,x k +x k +1>1+x k x k +1.所以(2+x 1)(2+x 2)…(2+x k )(2+x k +1) =(2+x 1)(2+x 2)…[2+2(x k +x k +1)+x k x k +1] ≥(2+x 1)(2+x 2)…[2+2(1+x k x k +1)+x k x k +1]=(2+x 1)(2+x 2)…(2+x k x k +1)(2+1)≥(2+1)k ·(2+1)=(2+1)k +1. 故n =k +1时,不等式也成立.由①②及数学归纳法原理知原不等式成立.4. 已知函数f 0(x)=x(sin x +cos x),设f n (x)为f n -1(x)的导数,n ∈N *. (1) 求f 1(x),f 2(x)的表达式;(2) 写出f n (x)的表达式,并用数学归纳法证明. 解:(1) 因为f n (x)为f n -1(x)的导数,所以f 1(x)=f 0′(x)=(sin x +cos x)+x(cos x -sin x)=(x +1)cos x +(x -1)(-sin x),同理,f 2(x)=-(x +2)sin x -(x -2)cos x.(2) 由(1)得f 3(x)=f 2′(x)=-(x +3)cos x +(x -3)sin x , 把f 1(x),f 2(x),f 3(x)分别改写为f 1(x)=(x +1)sin ⎝ ⎛⎭⎪⎫x +π2+(x -1)·cos ⎝ ⎛⎭⎪⎫x +π2,f 2(x)=(x +2)sin ⎝ ⎛⎭⎪⎫x +2π2+(x -2)·cos ⎝ ⎛⎭⎪⎫x +2π2,f 3(x)=(x +3)sin ⎝ ⎛⎭⎪⎫x +3π2+(x -3)·cos ⎝⎛⎭⎪⎫x +3π2,猜测f n (x)=(x +n)sin ⎝⎛⎭⎪⎫x +n π2+(x -n)·cos(x +n π2) (*).下面用数学归纳法证明上述等式.① 当n =1时,由(1)知,等式(*)成立; ② 假设当n =k 时,等式(*)成立,即f k (x)=(x +k)sin ⎝ ⎛⎭⎪⎫x +k π2+(x -k)cos ⎝⎛⎭⎪⎫x +k π2.则当n =k +1时,f k +1(x)=f k ′(x)=sin ⎝ ⎛⎭⎪⎫x +k π2+(x +k)cos(x +k π2)+cos(x +k π2)+(x -k)⎣⎢⎡⎦⎥⎤-sin ⎝⎛⎭⎪⎫x +k π2=(x +k +1)cos ⎝ ⎛⎭⎪⎫x +k π2+[x -(k +1)]⎣⎢⎡⎦⎥⎤-sin ⎝⎛⎭⎪⎫x +k π2=[x +(k +1)]sin ⎝ ⎛⎭⎪⎫x +k +12π+[x -(k +1)]·cos ⎝ ⎛⎭⎪⎫x +k +12π,即当n =k +1时,等式(*)成立.综上所述,当n∈N *时,f n (x)=(x +n)·sin ⎝ ⎛⎭⎪⎫x +n π2+(x -n)cos ⎝⎛⎭⎪⎫x +n π2成立.1. 设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15. (1) 求a 1,a 2,a 3的值;(2) 求数列{a n }的通项公式.解:(1) 由题意知S 2=4a 3-20,∴ S 3=S 2+a 3=5a 3-20. 又S 3=15,∴ a 3=7,S 2=4a 3-20=8. 又S 2=S 1+a 2=(2a 2-7)+a 2=3a 2-7, ∴ a 2=5,a 1=S 1=2a 2-7=3. 综上知,a 1=3,a 2=5,a 3=7.(2) 由(1)猜想a n =2n +1,下面用数学归纳法证明. ① 当n =1时,结论显然成立;② 假设当n =k(k≥1)时,a k =2k +1,则S k =3+5+7+…+(2k +1)=k[3+(2k +1)]2=k(k +2).又S k =2ka k +1-3k 2-4k ,∴ k(k +2)=2ka k +1-3k 2-4k ,解得2a k +1=4k +6, ∴ a k +1=2(k +1)+1,即当n =k +1时,结论成立.由①②知,∀n ∈N *,a n =2n +1. 2. 由下列式子: 1>12; 1+12+13>1; 1+12+13+14+15+16+17>32;1+12+13+…+115>2; …猜想第n 个表达式,并用数学归纳法给予证明.解:可以猜得第n 个式子是1+12+13+14+…+12n -1>n2(n≥1,n ∈N ).用数学归纳法证明如下:① 当n =1 时,1>12;② 假设当n =k(n≥1,n ∈N )时,命题成立,即1+12+13+14+…+12k -1>k2.当n =k +1时,1+12+13+…+12k -1+12k +12k +1+…+12k +1-1>k 2+12k +12k +1+…+12k +1-1,\s\do4(2k ))>k 2+12·2k +12·2k +…+12·2k ,\s\do4(2k )) =k 2+2k2·2k =k 2+12=k +12. 所以,对一切n≥1,n ∈N 命题都成立.3. 已知f(n)=1+123+133+143+…+1n 3,g(n)=32-12n2,n ∈N *.(1) 当n =1,2,3时,试比较f(n)与g(n)的大小关系; (2) 猜想f(n)与g(n)的大小关系,并给出证明.解:(1) 当n =1时,f(1)=1,g(1)=32-12×12=1,所以f(1)=g(1);当n =2时,f(2)=1+123=98,g(2)=32-12×22=118,所以f(2)<g(2); 当n =3时,f(3)=1+123+133=251216,g(3)=32-12×32=139,所以f(3)<g(3). (2) 由(1)猜想f(n)≤g(n),下面用数学归纳法给出证明. ① 当n =1时,不等式显然成立.② 假设当n =k(k∈N *)时不等式成立.即1+123+133+143+…+1k 3<32-12k 2,那么,当n =k +1时,f(k +1)=f(k)+1(k +1)3<32-12k 2+1(k +1)3.因为12(k +1)2-⎣⎢⎡⎦⎥⎤12k 2-1(k +1)3=k +32(k +1)3-12k 2=-3k -12(k +1)3k2<0,所以f(k +1)<32-12(k +1)2=g(k +1).由①②可知,对一切n∈N *,都有f(n)≤g(n)成立.4. 已知数列{a n }的各项都是正数,且满足:a 0=1,a n +1=12·a n ·(4-a n ),n ∈N .(1) 求a 1,a 2;(2) 证明:a n <a n +1<2,n ∈N .解:(1) a 0=1,a 1=12a 0·(4-a 0)=32,a 2=12·a 1(4-a 1)=158.(2) 用数学归纳法证明:。

2019版高考数学(理)一轮总复习课件:第七章 不等式及推理与证明 7-3

2019版高考数学(理)一轮总复习课件:第七章 不等式及推理与证明 7-3
第3课时 简单的线性规划
…2018 考纲下载… 1.会从实际情境中抽象出二元一次不等式组. 2.了解二元一次不等式的几何意义,能用平面区域表示二 元一次不等式组. 3.会从实际情境中抽象出一些简单的二元线性规划问题, 并能加以解决.
请注意 从考纲和考题中看,该部分内容难度不大,重点考查目标函 数在线性约束条件下的最大值和最小值问题——线性规划问题, 命题形式以选择、填空为主,但也有解答题以应用题的形式出现.
(5)z=x2+y2,则 z为点(x,y)与原点(0,0)的距离,结合不
等式的区域,易知 A 点到原点距离最小为 334,最大值为|OB|, |OC|,原点 O 到直线 3x+5y=30 距离三者之一,计算得,最大
值为|OC|=
754 5.
∴x2+y2 的取值范围为[394,72554].
【答案】 (1)7,-157
)
A.矩形
B.三角形
C.直角梯形
D.等腰梯形
答案 D 解 析 由 (x - y + 3)(x + y)≥0 , 得 xx-+yy+≥30≥0,或xx-+yy+≤30≤,0,且 0≤x≤4,表 示的区域如图阴影部分所示,故所求平面区域 为等腰梯形,故选 D.
2x+3y-3≤0, 4.(2017·课标全国Ⅱ)设 x,y 满足约束条件2x-3y+3≥0,
y+3≥0,
则 z=2x+y 的最小值是( )
A.-15
B.-9
C.1
D.9
答案 A 解析 作出可行域如图所示, 作出直线 l0:y=-2x, 平移 l0 经过点 A 时,z 有最小值, 此时,由y2+x-3=3y0+,3=0,得xy==--63,. 即 A(-6,-3), ∴zmin=2×(-6)-3=-15.

高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习第七章不等式、推理与证明7.6推理与证明考试要求 1.了解合情推理的含义,能进行简单的归纳推理和类比推理,体会并认识合情推理在数学发现中的作用.2.了解演绎推理的含义,掌握演绎推理的“三段论”,并能运用“三段论”进行一些简单的演绎推理.3.了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程和特点.4.了解反证法的思考过程和特点.知识梳理1.合情推理类型定义特点归纳推理由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理由部分到整体、由个别到一般类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理由特殊到特殊2.演绎推理(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理.简言之,演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括:①大前提——已知的一般原理;②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断.3.直接证明(1)综合法①定义:一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法.②框图表示:P⇒Q1―→Q1⇒Q2―→Q2⇒Q3―→…―→Q n⇒Q(其中P表示已知条件、已有的定义、公理、定理等,Q表示所要证明的结论).③思维过程:由因导果.(2)分析法①定义:一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法.②框图表示:Q⇐P1―→P1⇐P2―→P2⇐P3―→…―→得到一个明显成立的条件(其中Q表示要证明的结论).③思维过程:执果索因.4.间接证明反证法:一般地,假设原命题不成立(即在原命题的条件下,结论不成立),经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立的证明方法.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.(×)(2)“所有3的倍数都是9的倍数,某数m是3的倍数,则m一定是9的倍数”,这是三段论推理,但其结论是错误的.(√)(3)分析法是从要证明的结论出发,逐步寻找使结论成立的充要条件.(×)(4)用反证法证明结论“a>b”时,应假设“a<b”.(×)教材改编题1.已知在数列{a n}中,a1=1,当n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是()A.a n=3n-1 B.a n=4n-3C.a n=n2D.a n=3n-1答案 C解析a2=a1+3=4,a3=a2+5=9,a4=a3+7=16,a1=12,a2=22,a3=32,a4=42,猜想a n=n2.2.给出下列命题:“①正方形的对角线相等;②矩形的对角线相等,③正方形是矩形”,按照三段论证明,正确的是()A.①②⇒③B.①③⇒②C.②③⇒①D.以上都不对答案 C解析“矩形的对角线相等”是大前提,“正方形是矩形”是小前提,“正方形的对角线相等”是结论.所以②③⇒①.3.用反证法证明命题:“设a,b为实数,则方程x3+ax+b=0至少有一个实根”时,要作的假设是()A.方程x3+ax+b=0没有实根B.方程x3+ax+b=0至多有一个实根C.方程x3+ax+b=0至多有两个实根D.方程x3+ax+b=0恰好有两个实根答案 A解析方程x3+ax+b=0至少有一个实根的反面是方程x3+ax+b=0没有实根.题型一合情推理与演绎推理命题点1归纳推理例1如图,第1个图形由正三角形扩展而成,共12个顶点.第n个图形由正n+2边形扩展而来,其中n∈N*,则第n个图形的顶点个数是()A.(2n+1)(2n+2) B.3(2n+2)C.2n(5n+1) D.(n+2)(n+3)答案 D解析由已知中的图形可以得到:当n=1时,图形的顶点个数为12=3×4,当n=2时,图形的顶点个数为20=4×5,当n=3时,图形的顶点个数为30=5×6,当n=4时,图形的顶点个数为42=6×7,……由此可以推断,第n个图形的顶点个数为(n+2)(n+3).命题点2类比推理例2(2022·铜仁质检)在△ABC中,BC⊥AC,AC=a,BC=b,则△ABC的外接圆的半径r=a2+b22,将此结论类比推广到空间中可得:在四面体P-ABC中,P A,PB,PC两两垂直,P A=a,PB=b,PC=c,则四面体P-ABC的外接球的半径R=________.答案a2+b2+c22解析可以类比得到:在四面体P-ABC中,P A,PB,PC两两垂直,P A=a,PB=b,PC =c,四面体P-ABC的外接球的半径R=a2+b2+c22.下面进行证明:可将图形补成以P A,PB,PC为邻边的长方体,则四面体P-ABC的外接球即为长方体的外接球,所以半径R=a2+b2+c22.命题点3演绎推理例3下面是小明同学利用三段论模式给出的一个推理过程:①若{a n}是等比数列,则{a n+a n+1}是等比数列(大前提),②若b n=(-1)n,则数列{b n}是等比数列(小前提),③所以数列{b n +b n+1}是等比数列(结论),以上推理()A.结论正确B.大前提不正确C.小前提不正确D.全不正确答案 B解析大前提错误:当a n=(-1)n时,a n+a n+1=0,此时{a n+a n+1}不是等比数列;小前提正确:∵b n=(-1)n,∴b nb n-1=-1n-1n-1=-1(n≥2,n∈N*)为常数,∴数列{b n}是首项为-1,公比为-1的等比数列;结论错误:b n+b n+1=(-1)n+(-1)n+1=0,故数列{b n+b n+1}不是等比数列.教师备选1.观察下列各式:72=49,73=343,74=2 401,…,则72 023的末两位数字为()A.01 B.43 C.07 D.49答案 B解析∵72=49,73=343,74=2 401,75=16 807,76=117 649,78=823 543,…,∴7n(n≥2,n∈N*)的末两位数字具备周期性,且周期为4,∵2 023=4×505+3,∴72 023和73的末两位数字相同,故72 023的末两位数字为43.2.在等差数列{a n}中,若a10=0,则有等式a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,类比上述性质,在等比数列{b n}中,若b11=1,则有()A.b1·b2·…·b n=b1·b2·…·b19-n(n<19且n∈N*)B.b1·b2·…·b n=b1·b2·…·b21-n(n<21且n∈N*)C.b1+b2+…+b n=b1+b2+…+b19-n(n<19且n∈N*)D.b1+b2+…+b n=b1+b2+…+b21-n(n<21且n∈N*)答案 B解析在等差数列{a n}中,若s+t=p+q(s,t,p,q∈N*),则a s+a t=a p+a q,若a m=0,则a n+1+a n+2+…+a2m-2-n+a2m-1-n=0,所以a1+a2+…+a n=a1+a2+…+a2m-1-n成立,当m=10时,a1+a2+…+a n=a1+a2+…+a19-n(n<19且n∈N*)成立,在等比数列{b n}中,若s+t=p+q(s,t,p,q∈N*),则b s b t=b p b q,若b m=1,则b n+1b n+2·…·b2m-2-n b2m-1-n=1,所以b1b2·…·b n=b1b2·…·b2m-1-n成立,当m=11时,b1b2·…·b n=b1b2·…·b21-n(n<21且n∈N*)成立.3.“对数函数是非奇非偶函数,f(x)=log2|x|是对数函数,因此f(x)=log2|x|是非奇非偶函数”,以上推理()A.结论正确B.大前提错误C.小前提错误D.推理形式错误答案 C解析本命题的小前提是f(x)=log2|x|是对数函数,但是这个小前提是错误的,因为f(x)=log2|x|不是对数函数,它是一个复合函数,只有形如y=log a x(a>0且a≠1)的才是对数函数.故选C. 思维升华(1)归纳推理问题的常见类型及解题策略①与数字有关的等式的推理.观察数字特点,找出等式左右两侧的规律及符号.②与式子有关的推理.观察每个式子的特点,注意纵向对比,找到规律.③与图形变化有关的推理.合理利用特殊图形归纳推理出结论,并用赋值检验法验证其真伪性.(2)类比推理常见的情形有:平面与空间类比;低维与高维类比;等差与等比数列类比;运算类比;数的运算与向量运算类比;圆锥曲线间的类比等.跟踪训练1(1)(2022·南昌模拟)已知x>0,不等式x+1x≥2,x+4x2≥3,x+27x3≥4,…,可推广为x+ax n≥n+1,则a的值为()A.n2B.n n C.2n D.22n-2答案 B解析由题意,当分母的指数为1时,分子为11=1;当分母的指数为2时,分子为22=4;当分母的指数为3时,分子为33=27;据此归纳可得x+ax n≥n+1中,a的值为n n.(2)类比是学习探索中一种常用的思想方法,在等差数列与等比数列的学习中我们发现:只要将等差数列的一个关系式中的运算“+”改为“×”,“-”改为“÷”,正整数改为正整数指数幂,相应地就可以得到与等比数列的一个形式相同的关系式,反之也成立.在等差数列{a n}中有a n -k +a n +k =2a n (n >k ),借助类比,在等比数列{b n }中有________.答案 b n -k b n +k =b 2n (n >k )解析 由题设描述,将左式加改乘,则相当于a n -k +a n +k 改写为b n -k b n +k ;将右式正整数2改为指数,则相当于2a n 改写为b 2n ,∴等比数列{b n }中有b n -k b n +k =b 2n (n >k ).(3)(2022·银川模拟)一道四个选项的选择题,赵、钱、孙、李各选了一个选项,且选的恰好各不相同.赵说:“我选的是A.”钱说:“我选的是B ,C ,D 之一.”孙说:“我选的是C.”李说:“我选的是D.”已知四人中只有一人说了假话,则说假话的人可能是________.答案 孙、李解析 赵不可能说谎,否则由于钱不选A ,则孙和李之一选A ,出现两人说谎. 钱不可能说谎,否则与赵同时说谎;所以可能的情况是赵、钱、孙、李选择的分别为(A ,C ,B ,D)或(A ,D ,C ,B),所以说假话的人可能是孙、李.题型二 直接证明与间接证明命题点1 综合法例4 设a ,b ,c 均为正数,且a +b +c =1,证明:(1)ab +bc +ca ≤13; (2)a 2b +b 2c +c 2a≥1. 证明 (1)由a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,得a 2+b 2+c 2≥ab +bc +ca .由题设得(a +b +c )2=1,即a 2+b 2+c 2+2ab +2bc +2ca =1,所以3(ab +bc +ca )≤1,即ab +bc +ca ≤13, 当且仅当“a =b =c ”时等号成立.(2)因为a 2b +b ≥2a ,b 2c +c ≥2b ,c 2a+a ≥2c , 当且仅当“a 2=b 2=c 2”时等号成立,故a 2b +b 2c +c 2a+(a +b +c )≥2(a +b +c ), 则a 2b +b 2c +c 2a≥a +b +c . 所以a 2b +b 2c +c 2a≥1. 命题点2 分析法例5 用分析法证明:当x ≥0,y ≥0时,2y ≥x +2y -x .证明 要证不等式成立, 只需证x +2y ≥x +2y 成立,即证(x +2y )2≥(x +2y )2成立,即证x +2y +22xy ≥x +2y 成立, 即证2xy ≥0成立,因为x ≥0,y ≥0,所以2xy ≥0,所以原不等式成立.命题点3 反证法例6 已知非零实数a ,b ,c 两两不相等.证明:三个一元二次方程ax 2+2bx +c =0,bx 2+2cx +a =0,cx 2+2ax +b =0不可能都只有一个实根.证明 假设三个方程都只有一个实根,则⎩⎪⎨⎪⎧ b 2-ac =0, ①c 2-ab =0, ②a 2-bc =0. ③①+②+③,得a 2+b 2+c 2-ab -bc -ca =0,④ ④化为(a -b )2+(b -c )2+(c -a )2=0.⑤ 于是a =b =c ,这与已知条件相矛盾.因此,所给三个方程不可能都只有一个实根. 教师备选(2022·贵州质检)请在综合法、分析法、反证法中选择两种不同的方法证明:(1)如果a >0,b >0,则lg a +b 2≥lg a +lg b 2; (2)22-7>10-3.解 (1)方法一 (综合法)因为a >0,b >0,所以a +b 2≥ab , 所以lg a +b 2≥lg ab . 因为lg ab =12lg(ab )=12(lg a +lg b ), 所以lg a +b 2≥lg a +lg b 2. 方法二 (分析法)要证lg a +b 2≥lg a +lg b 2, 即证lg a +b 2≥12lg(ab )=lg ab , 即证a +b 2≥ab , 由a >0,b >0,上式显然成立,则原不等式成立.(2)方法一 (分析法)要证22-7>10-3,即证22+3>10+7,即证(22+3)2>(10+7)2.即证17+122>17+270,即证122>270,即证62>70.因为(62)2=72>(70)2=70,所以62>70成立.由上述分析可知22-7>10-3成立.方法二 (综合法)由22-7=122+7,且10-3=110+3, 由22<10,7<3, 可得22+7<10+3, 可得122+7>110+3, 即22-7>10-3成立.思维升华 (1)综合法证题从已知条件出发,分析法从要证结论入手,证明一些复杂问题,可采用两头凑的方法.(2)反证法适用于不好直接证明的问题,应用反证法证明时必须先否定结论.跟踪训练2 (1)已知a >0,b >0,求证:a +b 2≥2ab a +b; (2)已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0,c >0.证明 (1)∵a >0,b >0,要证a +b 2≥2ab a +b, 只要证(a +b )2≥4ab ,只要证(a +b )2-4ab ≥0,即证a 2-2ab +b 2≥0,而a 2-2ab +b 2=(a -b )2≥0恒成立,故a +b 2≥2ab a +b成立. (2)假设a ,b ,c 不全是正数,即至少有一个不是正数,不妨先设a ≤0,下面分a =0和a <0两种情况讨论,如果a =0,则abc =0与abc >0矛盾,所以a =0不可能,如果a <0,那么由abc >0可得,bc <0,又因为a +b +c >0,所以b +c >-a >0,于是ab +bc +ca =a (b +c )+bc <0,这和已知ab +bc +ca >0相矛盾,因此,a <0也不可能,综上所述,a >0,同理可证b >0,c >0,所以原命题成立.课时精练1.指数函数都是增函数(大前提),函数y =⎝⎛⎭⎫1e x 是指数函数(小前提),所以函数y =⎝⎛⎭⎫1e x 是增函数(结论).上述推理错误的原因是( )A .小前提不正确B .大前提不正确C .推理形式不正确D .大、小前提都不正确答案 B解析 大前提错误.因为指数函数y =a x (a >0,且a ≠1)在a >1时是增函数,而在0<a <1时为减函数.2.(2022·大庆联考)用反证法证明命题:“若a 2+b 2+c 2+d 2=0,则a ,b ,c ,d 都为0”.下列假设中正确的是( )A .假设a ,b ,c ,d 都不为0B .假设a ,b ,c ,d 至多有一个为0C .假设a ,b ,c ,d 不都为0D .假设a ,b ,c ,d 至少有两个为0答案 C解析 需假设a ,b ,c ,d 不都为0.3.若一个带分数的算术平方根等于带分数的整数部分乘以分数部分的算术平方根,则称该带分数为“穿墙数”,例如223=223.若一个“穿墙数”的整数部分等于log 28,则分数部分等于( )A.37B.49C.38D.716答案 C解析 因为log 28=3,所以可设这个“穿墙数”为3+n m, 则3+n m =3n m , 等式两边平方得3+n m =9n m , 即n m =38. 4.下面几种推理是合情推理的是( )①由圆的性质类比出球的有关性质;②由直角三角形、等腰三角形、等边三角形内角和是180°,归纳出所有三角形的内角和都是180°;③某次考试张军成绩是100分,由此推出全班同学成绩都是100分;④三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,归纳出n 边形内角和是(n -2)·180°.A .①②B .①③④C .①②④D .②④答案 C解析 ①为类比推理,从特殊到特殊,正确;②④为归纳推理,从特殊到一般,正确;③不符合类比推理和归纳推理的定义,错误.5.(2022·普宁模拟)有一个游戏,将标有数字1,2,3,4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4个人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:甲、乙、丙、丁4个人的预测都不正确,那么丁拿到卡片上的数字为( )A .1B .2C .3D .4答案 C解析 乙、丙、丁所说为假⇒甲拿4,甲、乙所说为假⇒丙拿1,甲所说为假⇒乙拿2, 故甲、乙、丙、丁4个人拿到的卡片上的数字依次为4,2,1,3.6.观察下列数的特点:1,2,2,3,3,3,4,4,4,4,…,则第2 023项是( )A .61B .62C .63D .64答案 D解析 由规律可得,数字相同的数的个数依次为1,2,3,4,…,n .由n n +12≤2 023,得n ≤63,且n ∈N *, 当n =63时,共有63×642=2 016项, 则第2 017项至第2 080项均为64,即第2 023项是64.7.观察下列各式:已知a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则归纳猜测a 7+b 7=________.答案 29解析 观察发现,1+3=4,3+4=7,4+7=11,又7+11=18,11+18=29,∴a 7+b 7=29.8.若三角形内切圆半径为r ,三边长为a ,b ,c ,则三角形的面积S =12(a +b +c )r ,利用类比思想:若四面体内切球半径为R ,四个面的面积为S 1,S 2,S 3,S 4,则四面体的体积V =________.答案 13R (S 1+S 2+S 3+S 4) 解析 设四面体的内切球的球心为O ,则球心O 到四个面的距离都是R ,所以四面体的体积等于以O 为顶点,分别以四个面为底面的4个三棱锥体积的和.9.选用恰当的证明方法,证明下列不等式.(1)证明:6+7>22+5;(2)设a ,b ,c 都是正数,求证:bc a +ac b +ab c≥a +b +c . 证明 (1)要证6+7>22+5,只需证明(6+7)2>(22+5)2,即证明242>240,也就是证明42>40,式子显然成立,故原不等式成立.(2)2⎝⎛⎭⎫bc a +ac b +ab c =⎝⎛⎭⎫bc a +ac b +⎝⎛⎭⎫bc a +ab c +⎝⎛⎭⎫ac b +ab c≥2abc 2ab +2acb 2ac +2bca 2bc=2c +2b +2a , 所以bc a +ac b +ab c≥a +b +c ,当且仅当a =b =c 时,等号成立. 10.若x ,y 都是正实数,且x +y >2,求证:1+x y <2与1+y x<2中至少有一个成立. 解 假设1+x y <2和1+y x<2都不成立, 即1+x y ≥2和1+y x≥2同时成立. ∵x >0且y >0,∴1+x ≥2y,1+y ≥2x .两式相加得2+x +y ≥2x +2y ,即x +y ≤2.此与已知条件x +y >2相矛盾, ∴1+x y <2和1+y x<2中至少有一个成立.11.我国古代数学名著《九章算术》中割圆术有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”其体现的是一种无限与有限的转化过程,比如在2+2+2+…中“…”即代表无限次重复,但原式却是个定值x ,这可以通过方程2+x =x 确定x =2,类比上述解决方法,则正数1+11+11+…等于( ) A.1+32B.1+52C.-1+52D.-1+32答案 B解析 依题意1+1x=x ,其中x 为正数, 即x 2-x -1=0,解得x =1+52(负根舍去). 12.大于1的正整数m 的三次幂可“分裂”成若干个连续奇数的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m 3分裂后,其中有一个奇数是103,则m 的值是( )A .9B .10C .11D .12答案 B解析 因为底数为2的分裂成2个奇数,底数为3的分裂成3个奇数,底数为4的分裂成4个奇数,所以m 3有m 个奇数,则从底数是2到底数是m 一共有2+3+4+…+m =2+m m -12个奇数,又2n +1=103时,有n =51,则奇数103是从3开始的第52个奇数, 因为9+29-12=44,10+210-12=54,所以第52个奇数是底数为10的数的立方分裂的奇数的其中一个,即m =10.13.在正整数数列中,由1开始依次按如下规则取它的项:第一次取1;第二次取2个连续偶数2,4;第三次取3个连续奇数5,7,9;第四次取4个连续偶数10,12,14,16;第五次取5个连续奇数17,19,21,23,25,按此规律取下去,得到一个子数列1,2,4,5,7,9,10,12,14,16,17,19,…,则在这个子数列中第2 022个数是( )A .3 976B .3 978C .3 980D .3 982答案 C解析 由题意可得,奇数次取奇数个数,偶数次取偶数个数,前n 次共取了1+2+3+…+n =n n +12个数,且第n 次取的最后一个数为n 2, 当n =63时,63×63+12=2 016, 即前63次共取了2 016个数,第63次取的数都为奇数,并且最后一个数为632=3 969, 即第2 016个数为3 969,所以当n =64时,依次取3 970,3 972,3 974,3 976,3 978,3 980,…,所以第2 022个数是3 980.14.(2022·平顶山模拟)某市为了缓解交通压力,实行机动车限行政策,每辆机动车每周一到周五都要限行一天,周六和周日不限行.某公司有A ,B ,C ,D ,E 五辆车,每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可推测出今天是星期________.答案 四解析 由题意,A ,C 只能在每周前三天限行,又昨天B 限行,E 车明天可以上路,因此今天不能是一周的前3天,因此今天是周四.这样周一、周二A ,C 限行,周三B 限行,周四E 限行,周五D 限行.满足题意.15.已知a ,b ,c ∈R ,若b a ·c a >1且b a +c a ≥-2,则下列结论成立的是( ) A .a ,b ,c 同号 B .b ,c 同号,a 与它们异号C .a ,c 同号,b 与它们异号D .b ,c 同号,a 与b ,c 的符号关系不确定答案 A解析 由b a ·c a >1知b a 与c a 同号,若b a >0且c a >0,不等式b a +c a ≥-2显然成立,若b a <0且c a <0,则-b a>0,-c a>0,⎝⎛⎭⎫-b a +⎝⎛⎭⎫-c a ≥2⎝⎛⎭⎫-b a ·⎝⎛⎭⎫-c a >2,即b a +c a <-2,这与b a +c a ≥-2矛盾,故b a >0且c a>0,即a ,b ,c 同号.16.已知α,β为锐角,求证:1cos 2α+1sin 2αsin 2βcos 2β≥9. 解 要证1cos 2α+1sin 2αsin 2βcos 2β≥9, 只需证1cos 2α+4sin 2αsin 22β≥9, ① 考虑到sin 22β≤1,可知4sin 2αsin 22β≥4sin 2α, 因而要证①应先证1cos 2α+4sin 2α≥9, 即证sin 2α+cos 2αcos 2α+4sin 2α+cos 2αsin 2α≥9,又sin2α+cos2αcos2α+4sin2α+cos2αsin2α=sin2αcos2α+4cos2αsin2α+5≥9,所以原不等式成立.。

2019届高考数学人教A版理科第一轮复习课件第七章不等式、推理与证明7.4

2019届高考数学人教A版理科第一轮复习课件第七章不等式、推理与证明7.4

-18-
考点1
考点2
考点3
(2)证明 ①在△PAB中,因为E,F分别为PA,AB的中点,所以EF∥PB. 又因为EF⊄平面PBC,PB⊂平面PBC, 所以直线EF∥平面PBC. ②如图,连接BD. 因为AB=AD,∠BAD=60°, 所以△ABD为正三角形. 因为F是AB的中点,所以DF⊥AB. 因为平面PAB⊥平面ABCD,DF⊂平面ABCD,平面PAB∩平面 ABCD=AB, 所以DF⊥平面PAB. 又因为DF⊂平面DEF, 所以平面DEF⊥平面PAB.
1 2
2.间接证明 间接证明是不同于直接证明的又一类证明方法 ,反证法是一种常用 的间接证明方法. 不成立 (即在原命题的条件下, (1)反证法的定义:假设原命题 矛盾,因此说明假设错 结论不成立),经过正确的推理,最后得出 误,从而证明 原命题成立 的证明方法. (2)用反证法证明的一般步骤:①反设——假设命题的结论不成立; ②归谬——根据假设进行推理,直到推出矛盾为止;③结论——断 言假设不成立,从而肯定原命题的结论成立.
-2-
知识梳理
双基自测
1 2
续 内容 综合法 证明 由因导果 思路 分析法 执果索因

证明 P⇒Q1 → Q1⇒Q2 →…→ Qn⇒Q 个明显 流程 成立的条件 文字 因为……所以…… 表达 或由……得……
Q⇐P1 → P1⇐P2 →…→ 得到一
要证……只需证…… 即证……
-3-
知识梳理
双基自测
关闭
因为“方程x3+ax+b=0至少有一个实根”等价于“方程x3+ax+b=0的实
根的个数大于或等于1”,所以要做的假设是“方程x3+ax+b=0没有实 A

高考数学一轮复习第7章不等式、推理与证明第4节归纳与类比教学案理北师大版

高考数学一轮复习第7章不等式、推理与证明第4节归纳与类比教学案理北师大版

第四节归纳与类比[最新考纲] 1.了解合情推理的含义,能利用归纳和类比进行简单的推理,体会合情推理在数学发现中的作用.2.了解演绎推理的含义.3.掌握演绎推理的基本模式,能运用它们进行一些简单的演绎推理.1.归纳推理(1)定义:根据一类事物中部分事物具有某种属性,推断该类事物中每一个都有这种属性的推理方式.(2)特点:①是由部分到整体,由个别到一般的推理.②利用归纳推理得出的结论不一定是正确的.2.类比推理(1)定义:由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征的推理过程.(2)特点:①是两类事物特征之间的推理,是由特殊到特殊的推理.②利用类比推理得出的结论不一定是正确的.3.合情推理(1)定义:是根据实验和实践的结果,个人的经验和直觉,已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.(2)归纳推理和类比推理是最常见的合情推理.一、思考辨析(正确的打“√”,错误的打“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确.( )(2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( )(3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( )[答案] (1)×(2)√(3)×二、教材改编1.已知数列{a n}中,a1=1,n≥2时,a n=a n-1+2n-1,依次计算a2,a3,a4后,猜想a n的表达式是( )A.a n=3n-1 B.a n=4n-3C.a n=n2D.a n=3n-1C[a1=1,a2=4,a3=9,a4=16,猜想a n=n2.]2.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( ) A.28 B.76C.123 D.199C[由题意可知,a6+b6=7+11=18;a7+b7=11+18=29;a8+b8=18+29=47;a9+b9=29+47=76;a10+b10=47+76=123.]3.如图(1)有面积关系:S△PA′B′S△PAB=PA′·PB′PA·PB,则由图(2)有体积关系:V P—A′B′C′V P—ABC=________.(1) (2)PA′·PB′·PC′PA·PB·PC[平面上的面积可类比到空间上的体积.V P—A′B′C′V P—ABC=13·S△PA′B′·h′13·S△PAB·h=PA′·PB′·PC′PA·PB·PC.]4.在等差数列{a n}中,若a10=0,则有a1+a2+…+a n=a1+a2+…+a19-n(n<19,n∈N +)成立,类比上述性质,在等比数列{b n}中,若b9=1,则存在的等式为________.b1b2…b n=b1b2…b17-n(n<17,n∈N+) [利用类比推理,借助等比数列的性质,b29=b1+n·b17-n,可知存在的等式为b1b2…b n=b1b2…b17-n(n<17,n∈N+).]考点1 归纳推理与数字或式子有关的推理(1)与数字有关的数阵(或数表)问题,要观察数字特征,数字与序号间的关系及其变化规律,一般要结合数列知识求解.(2)与式子有关的问题,要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律,归纳推理得出一般结论.(1)(2019·皖南八校月考)将正整数依次排列如下:12 34 5 67 8 9 1011 12 13 14 15 16 17 18 19 20 21 ………………由表知第5行第3列的数是13,若第2 020行第2列的数是a ,则a 的各位数字中,数字0的个数为( )A .0B .1C .2D .2(2)(2019·山东省实验中学等四校联考)观察下列式子,ln 2>13,ln 3>13+15,ln 4>13+15+17,…,根据上述规律,第n 个不等式应该为________. (1)B (2)ln(n +1)>13+15+…+12n +1[(1)由题前n 行中共有1+2+3+…+n =n n +12个整数,故第2 019行中最后一个数:2 019 2 019+12=2 039 190,第2020行中第2列的数为:2 039 190+2=2 039 192,故0的个数为1,故选B. (2)根据题意,对于第一个不等式,ln 2>13,则有ln(1+1)>12×1+1,对于第二个不等式,ln 3>13+15,则有ln(2+1)>13+12×2+1,对于第三个不等式,ln 4>13+15+17,则有ln(3+1)>13+15+12×3+1,依此类推:第n 个不等式为:ln(n +1)>13+15+…+12n +1.]与数字或式子有关的推理主要考查数列的通项的求法,即从题设信息中发现数式变化规律,运用归纳猜想可解,重视由特殊到一般的数学思想.1.(2019·安庆模拟)《周易》历来被人们视为儒家经典之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映了中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“”当做数字“1”,把阴爻“”当做数字“0”,则八卦代表的数表示如下:卦名符号表示的二进制数表示的十进制数坤0000震001 1坎010 2兑011 3以此类推,则六十四卦中的“屯”卦,符号“”表示的十进制数是( )A.18 B.17C.16 D.15B[由题意类推,可知六十四卦中的“屯”卦符号“”表示二进制数的010001,转化为十进制数的计算为1×20+0×21+0×22+0×23+1×24+0×25=17,故选B.] 2.对大于或等于2的自然数m的n次方幂有如下分解方式:22=1+3;32=1+3+5;42=1+3+5+7;23=3+5;33=7+9+11;43=13+15+17+19.根据上述分解规律,则52=1+3+5+7+9,若m3(m∈N+)的分解中最小的数是73,则m 的值为________.9[根据23=3+5;33=7+9+11;43=13+15+17+19,从23起,m3的分解规律恰为数列3,5,7,9…中若干连续项之和,23为前两项和,33为接下来三项和,故m3的首个数为m2-m+1.因为m3(m∈N+)的分解中最小的数是73,所以m2-m+1=73,解得m=9.]与图形变化有关的推理与图形变化有关的推理,其解题切入点:(1)从图形的数量规律入手,找到数值变化与序号的关系;(2)从图形的结构变化规律入手,找到图形的结构每发生一次变化后,与上一次比较,结构、数值发生了怎样的变化,探求规律.如图所示,第n个图形是由正n+2边形拓展而来(n=1,2,…),则第n-2(n≥3)个图形共有________个顶点.①②③④n2+n[第一个图有3+3×3=4×3个顶点;第二个图有4+4×4=5×4个顶点;第三个图有5+5×5=6×5个顶点;第四个图有6+6×6=7×6个顶点;……第n个图有(n+3)(n+2)个顶点,第n-2个图形共有n(n+1)=n2+n个顶点.]与图形变化有关的推理常借助特殊图形归纳推理得出结论,并用赋值检验法验证其真伪性.(2019·呼和浩特模拟)分形理论是当今世界十分风靡和活跃的新理论、新学科.其中,把部分与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象、图像或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已,谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,按照如下规律依次在一个黑色三角形内去掉小三角形,则当n=6时,该黑色三角形内去掉小三角形个数为( )n=1 n=2 n=3A.81 B.121C.364 D.1 093C[由题图可知,每一个图形中小三角形的个数等于前一个图形小三角形个数的3倍加1,所以,n=1时,a1=1;n=2时,a2=3+1=4;n=3时,a3=3×4+1=13;n=4时,a4=3×13+1=40;n=5时,a5=3×40+1=121;n=6时,a6=3×121+1=364,故选C.]考点2 类比推理类比推理的应用类型及解题方法类比在求解由某种熟悉的定义产生的类比推理型试题时,可以借助原定义来求定义 解类比 性质 从一个特殊式子的性质、一个特殊图形的性质入手,提出类比推理型问题,求解时要认真分析两者之间的联系与区别,深入思考两者的转化过程是求解的关键类比 方法有一些处理问题的方法具有类比性,我们可以把这种方法类比应用到其他问题的求解中,注意知识的迁移(1)(2019·太原模拟)我国古代数学名著《九章算术》的论割圆术中有:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”它体现了一种无限与有限的转化过程.比如在表达式1+11+11+…中“…”即代表无限次重复,但原式却是个定值,它可以通过方程1+1x =x (x >0)求得x =5+12.类比上述方法,则3+23+2…=( ) A .3 B.13+12C .6D .2 2(2)若点P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过点P 0作该椭圆的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程为x 0x a 2+y 0y b 2=1.那么对于双曲线x 2a 2-y 2b2=1(a >0,b >0),类似地,可以得到一个正确的切点弦方程为________.(1)A (2)x 0x a 2-y 0yb 2=1 [(1)由题意结合所给的例子类比推理可得3+2x =x (x ≥0),整理得(x +1)(x -3)=0,则x =3,x =-1(舍),即3+23+2…=3,故选A.(2)若点P 0(x 0,y 0)在双曲线x 2a 2-y 2b2=1(a >0,b >0)外,过点P 0作该双曲线的两条切线,切点分别为P 1,P 2,则切点弦P 1P 2所在直线的方程为x 0x a 2-y 0yb 2=1.] 类比推理的关键是找到合适的类比对象,推理的一般步骤为:先找出两类事物之间的相似性或一致性,再用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).[教师备选例题]1.我国古代称直角三角形为勾股形,并且直角边中较小者为勾,另一直角边为股,斜边为弦.若a ,b ,c 为直角三角形的三边,其中c 为斜边,则a 2+b 2=c 2,称这个定理为勾股定理.现将这一定理推广到立体几何中:在四面体O -ABC 中,∠AOB =∠BOC =∠COA =90°,S 为顶点O 所对面△ABC 的面积,S 1,S 2,S 3分别为侧面△OAB ,△OAC ,△OBC 的面积,则下列选项中对于S ,S 1,S 2,S 3满足的关系描述正确的为( )A .S 2=S 21+S 22+S 23 B .S 2=1S 21+1S 22+1S 23C .S =S 1+S 2+S 3D .S =1S 1+1S 2+1S 3A [如图,作OD ⊥BC 于点D ,连接AD ,则AD ⊥BC ,从而S 2=⎝ ⎛⎭⎪⎫12BC ·AD 2=14BC 2·AD 2=14BC 2·(OA 2+OD 2)=14(OB 2+OC 2)·OA 2+14BC 2·OD 2=⎝ ⎛⎭⎪⎫12OB ·OA 2+⎝ ⎛⎭⎪⎫12OC ·OA 2+⎝ ⎛⎭⎪⎫12BC ·OD 2=S 21+S 22+S 23.] 2.“求方程⎝ ⎛⎭⎪⎫35x +⎝ ⎛⎭⎪⎫45x =1的解”有如下解题思路:设f (x )=⎝ ⎛⎭⎪⎫35x +⎝ ⎛⎭⎪⎫45x,则f (x )在R上单调递减,且f (2)=1,所以原方程有唯一解x =2.类比上述解题思路,不等式x 6-(x +2)>(x +2)3-x 2的解集是________.(-∞,-1)∪(2,+∞) [不等式x 6-(x +2)>(x +2)3-x 2变形为x 6+x 2>(x +2)3+(x +2),令u =x 2,v =x +2,则x 6+x 2>(x +2)3+(x +2)转化为u 3+u >v 3+v . 设f (x )=x 3+x ,知f (x )在R 上为增函数, ∴由f (u )>f (v ),得u >v .不等式x 6+x 2>(x +2)3+(x +2)可化为x 2>x +2, 解得x <-1或x >2.∴所求解集为(-∞,-1)∪(2,+∞).]在平面几何中,若正方形ABCD 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=12,推广到立体几何中,若正方体ABCD -A 1B 1C 1D 1的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.39 [正方形ABCD 的内切圆的半径为r 1,外接圆的半径为r 2,半径比r 1r 2=12,面积比为半径比的平方,S 1S 2=12,正方体ABCD ­A 1B 1C 1D 1的内切球的半径为R 1,外接球的半径为R 2,半径比R 1R 2=13,所以体积比是半径比的立方,V 1V 2=39.]考点3 生活中的合情推理假设反证法解决逻辑推理问题:先假设题中给出的某种情况是正确的,并以此为起点进行推理.如果推理导致矛盾,则证明此假设是错误的,再重新提出一个假设继续推理,直到得到符合要求的结论为止.(2019·全国卷Ⅱ)在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.甲:我的成绩比乙高. 乙:丙的成绩比我和甲的都高. 丙:我的成绩比乙高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为( )A .甲、乙、丙B .乙、甲、丙C .丙、乙、甲D .甲、丙、乙A [若甲预测正确,则乙、丙预测错误,则甲比乙成绩高,丙比乙成绩低,故3人成绩由高到低依次为甲,乙,丙;若乙预测正确,则丙预测也正确,不符合题意;若丙预测正确,则甲必预测错误,丙比乙的成绩高,乙比甲成绩高,即丙比甲、乙成绩都高,即乙预测正确,不符合题意,故选A.]对于逻辑推理问题,求解的关键是以肯定某个事物(某句话等)为基准,推出矛盾,进而得出结论.(2019·东北三省三校一模)甲、乙、丙三人中,只有一个会弹钢琴,甲说:“我会”,乙说:“我不会”,丙说:“甲不会”,如果这三句话只有一句是真的,那么会弹钢琴的是_____.乙 [假设甲会,那么甲、乙说的都是真话,与题意矛盾,所以甲不会;假设乙会,那么甲、乙说的都是假话,丙说的是真话,符合题意;假设丙会,那么乙、丙说的都是真话,与题意矛盾.故答案是乙.]。

2019版高考数学一轮总复习第七章不等式及推理与证明专题研究2数学归纳法课件理

2019版高考数学一轮总复习第七章不等式及推理与证明专题研究2数学归纳法课件理

★状元笔记★ 证明整除问题的关键——“凑项”
证明整除问题的关键是“凑项”,即采用增项、减项、拆 项和因式分解等手段,将n=k+1时的式子凑出n=k时的情形, 从而利用归纳假设使问题获证.
思考题3 (2017·西安模拟)试证:当n∈N*时,f(n)=32n+ 2-8n-9能被64整除.
【证明】 (1)当n=1时,f(1)=64,命题显然成立. (2)假设当n=k(k∈N*,k≥1)时,f(k)=32k+2-8k-9能被64整 除.
(2)假设 n=k(k≥1,k∈N*)时等式成立.
即2×1 4+4×1 6+…+2k(21k+2)=4(kk+1)成立,那么当
n=k+1


1 2×4

1 4×6

1 6×8



1 2k(2k+2)

1 2(k+1)[2(k+1)+2]

k 4(k+1)

1 4(k+1)(k+2)

4(kk(+k1+)2()k++12)=4(k+(1k)+(1)k+2 2)=4[(kk++11)+1],
当n=k+1时,由于32(k+1)+2-8(k+1)-9 =9(32k+2-8k-9)+9·8k+9·9-8(k+1)-9 =9(32k+2-8k-9)+64(k+1), 即f(k+1)=9f(k)+64(k+1), ∴n=k+1时命题也成立. 根据(1)、(2)可知, 对于任意n∈N*,命题都成立. 【答案】 略
=k+1 2+k+1 3+…+2k1+1+2k1+2. 即当 n=k+1 时,等式也成立. 综合(1),(2)可知,对一切 n∈N*,等式成立. 【答案】 略
★状元笔记★ 用数学归纳法证明恒等式的方法

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案

2019高考数学(理)一轮复习全套学案目录第一章集合与常用逻辑用语第1节集合第2节命题及其关系、充分条件与必要条件第3节全称量词与存在量词、逻辑联结词“且”“或”“非”第二章函数、导数及其应用第1节函数及其表示第2节函数的单调性与最值第3节函数的奇偶性、周期性与对称性第4节二次函数与幂函数第5节指数与指数函数第6节对数与对数函数第7节函数的图像第8节函数与方程第9节函数模型及其应用第10节变化率与导数、计算导数第11节第1课时导数与函数的单调性第11节第2课时导数与函数的极值、最值学案第11节第3课时导数与函数的综合问题学案第12节定积分与微积分基本定理第三章三角函数、解三角形第1节任意角、弧度制及任意角的三角函数第2节同角三角函数的基本关系与诱导公式第3节三角函数的图像与性质第4节函数y=Asin(ωx+φ)的图像及应用学案第5节两角和与差及二倍角的三角函数第6节正弦定理和余弦定理第6节简单的三角恒等变换第7节正弦定理和余弦定理第8节解三角形实际应用举例第四章平面向量、数系的扩充与复数的引入第1节平面向量的概念及线性运算第2节平面向量的基本定理及坐标表示第3节平面向量的数量积与平面向量应用举例第4节数系的扩充与复数的引入第五章数列第1节数列的概念与简单表示法第2节等差数列及其前n项和第3节等比数列及其前n项和第4节数列求和第六章不等式、推理与证明第1节不等式的性质与一元二次不等式第2节基本不等式及其应用第3节二元一次不等式(组)与简单的线性规划问题第4节归纳与类比第5节综合法、分析法、反证法第6节数学归纳法第七章立体几何第1节简单几何体的结构及其三视图和直观图第2节空间图形的基本关系与公理第3节平行关系第4节垂直关系第5节简单几何体的表面积与体积第6节空间向量及其运算第7节第1课时利用空间向量证明平行与垂直第7节第2课时利用空间向量求空间角第八章平面解析几何第1节直线的倾斜角与斜率、直线的方程第2节两条直线的位置关系第3节圆的方程第4节直线与圆、圆与圆的位置关系第5节椭圆第6节抛物线第7节双曲线第8节曲线与方程第9节第1课时直线与圆锥曲线的位置关系第9节第2课时定点、定值、范围、最值问题第九章算法初步、统计与统计案例第1节算法与算法框图第2节随机抽样第3节统计图表、用样本估计总体学案第4节变量间的相关关系与统计案例第十章计数原理、概率、随机变量及其分布第1节分类加法计数原理与分步乘法计数原理第2节排列与组合第3节二项式定理第4节随机事件的概率学案第5节古典概型第6节几何概型第7节离散型随机变量及其分布列第8节二项分布与正态分布第9节离散型随机变量的均值与方差不等式选讲第1节绝对值不等式不等式选讲第2节不等式的证明坐标系与参数方程第1节坐标系坐标系与参数方程第2节参数方程第一节 集 合[考纲传真] 1.了解集合的含义,体会元素与集合的属于关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.2.理解集合之间包含与相等的含义,能识别给定集合的子集;在具体情境中,了解全集与空集的含义.3.(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合间的基本关系及集合的基本运算.[基础知识填充]1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性. (2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉. (3)集合的三种表示方法:列举法、描述法、Venn 图法. (4)常见数集的记法2.中至少有一AB3.A ∪BA ∩B∁A[(1)若有限集A 中有n 个元素,则A 的子集有2n个,真子集有2n-1个. (2)任何集合是其本身的子集,即:A ⊆A . (3)子集的传递性:A ⊆B ,B ⊆C ⇒A ⊆C . (4)A ⊆B ⇔A ∩B =A ⇔A ∪B =B .(5)∁U (A ∩B )=(∁U A )∪(∁U B ),∁U (A ∪B )=(∁U A )∩(∁U B ).[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)任何集合都有两个子集.( )(2){x |y =x 2}={y |y =x 2}={(x ,y )|y =x 2}.( ) (3)若{x 2,1}={0,1},则x =0,1.( ) (4){x |x ≤1}={t |t ≤1}.( )(5)对于任意两个集合A ,B ,关系(A ∩B )⊆(A ∪B )恒成立. (6)若A ∩B =A ∩C ,则B =C .( )[解析] (1)错误.空集只有一个子集,就是它本身,故该说法是错误的.(2)错误.三个集合分别表示函数y =x 2的定义域(-∞,+∞),值域[0,+∞),抛物线y =x 2上的点集.(3)错误.当x =1时,不满足互异性.(4)正确.两个集合均为不大于1的实数组成的集合. (5)正确.由交集、并集、子集的概念知,正确. (6)错误.当A =∅时,B ,C 可为任意集合.[答案] (1)× (2)× (3)× (4)√ (5)√ (6)×2.(教材改编)若集合A ={x ∈N |x ≤22},a =2,则下列结论正确的是( )A .{a }⊆AB .a ⊆AC .{a }∈AD .a ∉A D [由题意知A ={0,1,2},由a =2,知a ∉A .]3.若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( )A .{x |-2<x <-1}B .{x |-2<x <3}C .{x |-1<x <1}D .{x |1<x <3}A [∵A ={x |-2<x <1},B ={x |x <-1或x >3}, ∴A ∩B ={x |-2<x <-1}.故选A.]4.设全集U ={x |x ∈N +,x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )等于( )A .{1,4}B .{1,5}C .{2,5}D .{2,4}D [由题意得A ∪B ={1,3}∪{3,5}={1,3,5}.又U ={1,2,3,4,5},∴∁U (A ∪B )={2,4}.] 5.已知集合A ={x 2+x,4x },若0∈A ,则x =________.-1 [由题意,得⎩⎪⎨⎪⎧x 2+x =0,4x ≠0或⎩⎪⎨⎪⎧4x =0,x 2+x ≠0,解得x =-1.](第2页)(1)设集合A ={1,2,3},B ={4,5},M ={x |x =a +b ,a ∈A ,b ∈B },则M 中的元素个数为( ) A .3 B .4 C .5 D .6(2)已知a ,b ∈R ,若⎩⎨⎧⎭⎬⎫a ,b a,1={a 2,a +b,0},则a 2 019+b 2 019为( )A .1B .0C .-1D .±1(1)B (2)C [(1)因为集合M 中的元素x =a +b ,a ∈A ,b ∈B ,所以当b =4,a =1,2,3时,x =5,6,7. 当b =5,a =1,2,3时,x =6,7,8. 由集合元素的互异性,可知x =5,6,7,8. 即M ={5,6,7,8},共有4个元素. (2)由已知得a ≠0,则b a=0,所以b =0,于是a 2=1,即a =1或a =-1,又根据集合中元素的互异性可知a =1应舍去,因此a =-1,故a2 019+b2 019=(-1)2 019+02 019=-1.]确定集合中的元素是什么,即集合是数集还是点集看这些元素满足什么限制条件根据限制条件列式求参数的值或确定集合中元素的个数,要注意检验集合是否满足元素的互异性[跟踪训练A.92 B.98 C .0 D .0或98(2)已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.【79140001】(1)D (2)-32 [(1)若集合A 中只有一个元素,则方程ax 2-3x +2=0只有一个实根或有两个相等实根.当a =0时,x =23,符合题意;当a ≠0时,由Δ=(-3)2-8a =0得a =98,所以a 的取值为0或98.(2)因为3∈A ,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3, 此时集合A 中有重复元素3, 所以m =1不符合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3符合题意.所以m =-32.](1)已知集合A ={x |y =1-x 2,x ∈R },B ={x |x =m 2,m ∈A },则( ) A .A B B .B A C .A ⊆BD .B =A(2)已知集合A ={x |(x +1)(x -3)<0},B ={x |-m <x <m }.若B ⊆A ,则m 的取值范围为________. (1)B (2)m ≤1 [(1)由题意知A ={x |-1≤x ≤1}, 所以B ={x |x =m 2,m ∈A }={x |0≤x ≤1}, 因此B A .(2)当m ≤0时,B =∅,显然B ⊆A ,当m >0时,因为A ={x |(x +1)(x -3)<0}={x |-1<x <3}. 当B ⊆A 时,有所以⎩⎪⎨⎪⎧-m ≥-1,m ≤3,-m <m .所以0<m ≤1.综上所述,m 的取值范围为m ≤1.] 化简集合,从表达式中寻找两集合的关系用列举法或图示法等表示各个集合,从元素或图形中寻找关系2.根据集合间的关系求参数的方法已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素或区间端点间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、A ≠,应分[跟踪训练] (1)已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3 D .4(2)已知集合A ={x |-2≤x ≤7},B ={x |m +1<x <2m -1},若B ⊆A ,则实数m 的取值范围是________. (1)D (2)(-∞,4] [(1)由x 2-3x +2=0,得x =1或x =2,所以A ={1,2}. 由题意知B ={1,2,3,4},所以满足条件的C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}. (2)∵B ⊆A ,∴当B =∅时,有m +1≥2m -1,则m ≤2. 当B ≠∅时,若B ⊆A ,如图.则⎩⎪⎨⎪⎧m +1≥-2,2m -1≤7,m +1<2m -1,解得2<m ≤4.综上,m 的取值范围为m ≤4.]◎角度1 集合的运算(1)(2017·全国卷Ⅰ)已知集合A ={x |x <1},B ={x |3x<1},则( ) A .A ∩B ={x |x <0} B .A ∪B =R C .A ∪B ={x |x >1}D .A ∩B =∅(2)(2018·九江一中)设U =R ,A ={-3,-2,-1,0,1,2},B ={x |x ≥1},则A ∩(∁U B )=( ) A .{1,2}B .{-1,0,1,2}C .{-3,-2,-1,0}D .{2}(1)A (2)C [(1)∵B ={x |3x<1},∴B ={x |x <0}.又A ={x |x <1},∴A ∩B ={x |x <0},A ∪B ={x |x <1}.故选A. (2)由题意得∁U B ={x |x <1},∴A ∩(∁U B )={-3,-2,-1,0},故选C.] ◎角度2 利用集合的运算求参数(2018·合肥第二次质检)已知A =[1,+∞),B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12a ≤x ≤2a -1,若A ∩B ≠∅,则实数a 的取值范围是( )A .[1,+∞)B .⎣⎢⎡⎦⎥⎤12,1 C.⎣⎢⎡⎭⎪⎫23,+∞ D .(1,+∞)A [集合A ∩B ≠∅,则⎩⎪⎨⎪⎧12a ≤2a -1,2a -1≥1,解得a ≥1,故选A.] ◎角度3 新定义集合问题如果集合A 满足若x ∈A ,则-x ∈A ,那么就称集合A 为“对称集合”.已知集合A ={2x,0,x 2+x },且A 是对称集合,集合B 是自然数集,则A ∩B =______.{0,6} [由题意可知-2x =x 2+x ,所以x =0或x =-3.而当x =0时不符合元素的互异性,所以舍去.当x =-3时,A ={-6,0,6},所以A ∩B ={0,6}.]看元素组成,集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提看集合能否化简,集合能化简的先化简,再研究其关系并进行运算,可使问题简单明了,易于求解要借助用数轴表示,并注意端点值的取舍以集合为依托,对集合的定义、运算、性质加以创新,但最终应转化为原来的集合问题来解决[跟踪训练A .{1,-3} B .{1,0} C .{1,3}D .{1,5}(2)已知全集U =R ,集合M ={x |(x -1)(x +3)<0},N ={x ||x |≤1},则阴影部分(如图1­1­1)表示的集合是( )图1­1­1A .[-1,1)B .(-3,1]C .(-∞,-3)∪[-1,+∞)D .(-3,-1)(3)设A ,B 是非空集合,定义A ⊗B ={x |x ∈A ∪B 且x ∉A ∩B }.已知集合A ={x |0<x <2},B ={y |y ≥0},则A ⊗B =________.【79140002】(1)C (2)D (3){0}∪[2,+∞) [(1)∵A ∩B ={1}, ∴1∈B .∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.(2)由题意可知,M=(-3,1),N=[-1,1],∴阴影部分表示的集合为M∩(∁U N)=(-3,-1).(3)由已知A={x|0<x<2},B={y|y≥0},又由新定义A⊗B={x|x∈A∪B且x∉A∩B},结合数轴得A⊗B={0}∪[2,+∞).]第二节命题及其关系、充分条件与必要条件[考纲传真] 1.理解命题的概念;了解“若p,则q”形式的命题及其逆命题、否命题与逆否命题,会分析四种命题的相互关系.2.理解必要条件、充分条件与充要条件的意义.(第3页)[基础知识填充]1.四种命题及其相互关系(1)四种命题间的相互关系图1­2­1(2)四种命题的真假关系①两个命题互为逆否命题,它们有相同的真假性;②两个命题互为逆命题或互为否命题,它们的真假性没有关系.2.充分条件与必要条件(1)若p⇒q,则p是q的充分条件,q是p的必要条件;(2)若p⇒q,且⇒/p,则p是q的充分不必要条件;(3)若p⇒/q且q⇒p,则p是q的必要不充分条件;(4)若p⇔q,则p是q的充要条件;(5)若p⇒/q且q⇒/p,则p是q的既不充分也不必要条件.[知识拓展] 集合与充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若A B,则p是q的充分不必要条件.(2)若B⊆A,则p是q的必要条件,若B A,则p是q的必要不充分条件.(3)若A=B,则p是q的充要条件.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)“x 2+2x -3<0”是命题.( )(2)命题“若p ,则q ”的否命题是“若p ,则﹁q ”.( ) (3)四种形式的命题中,真命题的个数为0或2或4.( ) (4)当q 是p 的必要条件时,p 是q 的充分条件.( )(5)“若p 不成立,则q 不成立”等价于“若q 成立,则p 成立”.( ) [解析] (1)错误.该语句不能判断真假,故该说法是错误的. (2)错误.否命题既否定条件,又否定结论.(3)正确.因为两个命题互为逆否命题,它们有相同的真假性. (4)正确.q 是p 的必要条件说明p ⇒q ,所以p 是q 的充分条件. (5)正确.原命题与逆否命题是等价命题. [答案] (1)× (2)× (3)√ (4)√ (5)√2.(教材改编)命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4C [“若p ,则q ”的逆否命题是“若﹁q ,则﹁p ”,显然﹁q :tan α≠1,﹁p :α≠π4,所以该命题的逆否命题是“若tan α≠1,则α≠π4”.]3.“x =1”是“(x -1)(x +2)=0”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [若x =1,则(x -1)(x +2)=0显然成立,但反之不一定成立,即若(x -1)(x +2)=0,则x =1或-2.]4.命题“若a >-3,则a >-6”以及它的逆命题、否命题、逆否命题中真命题的个数为( )A .1B .2C .3D .4B [原命题正确,从而其逆否命题也正确;其逆命题为“若a >-6,则a >-3”是假命题,从而其否命题也是假命题.因此4个命题中有2个真命题.]5.(2017·天津高考)设x ∈R ,则“2-x ≥0”是“|x -1|≤1”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 B [∵2-x ≥0,∴x ≤2. ∵|x -1|≤1,∴0≤x ≤2.∵当x ≤2时不一定有x ≥0,当0≤x ≤2时一定有x ≤2, ∴“2-x ≥0”是“|x -1|≤1”的必要而不充分条件. 故选B.](第4页)(1)命题“若a 2>b 2,则a >b ”的否命题是( ) A .若a 2>b 2,则a ≤b B .若a 2≤b 2,则a ≤b C .若a ≤b ,则a 2>b 2D .若a ≤b ,则a 2≤b 2(2)(2017·河南开封二十五中月考)下列命题中为真命题的是( ) A .命题“若x >1,则x 2>1”的否命题 B .命题“若x >y ,则x >|y |”的逆命题 C .命题“若x =1,则x 2+x -2=0”的否命题 D .命题“若1x>1,则x >1”的逆否命题(1)B (2)B [(1)根据命题的四种形式可知,命题“若p ,则q ”的否命题是“若﹁p ,则﹁q ”.该题中,p 为a 2>b 2,q 为a >b ,故﹁p 为a 2≤b 2,﹁q 为a ≤b .所以原命题的否命题为:若a 2≤b 2,则a ≤b .(2)对于A ,命题“若x >1,则x 2>1”的否命题为“若x ≤1,则x 2≤1”,易知当x =-2时,x2=4>1,故为假命题;对于B ,命题“若x >y ,则x >|y |”的逆命题为“若x >|y |,则x >y ”,分析可知为真命题;对于C ,命题“若x =1,则x 2+x -2=0”的否命题为“若x ≠1,则x 2+x -2≠0”,易知当x =-2时,x 2+x -2=0,故为假命题;对于D ,命题“若1x>1,则x >1”的逆否命题为“若x ≤1,则1x≤1”,易知为假命题,故选B.]联系已有的数学公式、定理、结论进行正面直接判断利用原命题与逆否命题,逆命题与否命题的等价关系进行判断易错警示:写一个命题的其他三种命题时,需注意:判断一个命题为真命题,要给出推理证明;判断一个命题是假命题,只需举出反例[跟踪训练个等于0”,在该命题的逆命题、否命题、逆否命题中,真命题的个数为( )【79140007】A.0 B.1C.2 D.3D[原命题为真命题,逆命题为“已知a,b,c为实数,若a,b,c中至少有一个等于0,则abc=0”,也为真命题.根据命题的等价关系可知其否命题、逆否命题也是真命题,故在该命题的逆命题、否命题、逆否命题中,真命题的个数为3.](1)(2017·北京高考)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件(2)(2017·安徽百所重点高中二模)“a3>b3”是“ln a>ln b”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件(1)A(2)B[(1)法一:由题意知|m|≠0,|n|≠0.设m与n的夹角为θ.若存在负数λ,使得m=λn,则m与n反向共线,θ=180°,∴m·n=|m||n|cos θ=-|m||n|<0.当90°<θ<180°时,m·n<0,此时不存在负数λ,使得m=λn.故“存在负数λ,使得m=λn”是“m·n<0”的充分而不必要条件.故选A.法二:∵m=λn,∴m·n=λn·n=λ|n|2.∴当λ<0,n≠0时,m·n<0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝ ⎛⎦⎥⎤π2,π, 当〈m ,n 〉∈⎝⎛⎭⎪⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分而不必要条件. 故选A.(2)由a 3>b 3可得a >b ,当a <0,b <0时,ln a ,ln b 无意义;反之,由ln a >ln b 可得a >b ,故a 3>b 3.因此“a 3>b 3”是“ln a >ln b ”的必要不充分条件.]定义法:根据集合法:根据断问题.等价转化法:根据一个命题与其逆否命题的等价性,把判断的命题转化为其逆否命题进行判断,适用于条件和结论带有否定性词语的命题[跟踪训练] (1)(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-12<12”是“sin θ<2”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)(2018·合肥第一次质检)祖暅原理:“幂势既同,则积不容异”.它是中国古代一个涉及几何体体积的问题,意思是两个同高的几何体,如在等高处的截面积恒相等,则体积相等.设A ,B 为两个同高的几何体,p :A ,B 的体积不相等,q :A ,B 在等高处的截面积不恒相等,根据祖暅原理可知,p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(1)A (2)A [(1)∵⎪⎪⎪⎪⎪⎪θ-π12<π12,∴-π12<θ-π12<π12,即0<θ<π6.显然0<θ<π6时,sin θ<12成立.但sin θ<12时,由周期函数的性质知0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分而不必要条件.故选A.(2)由祖暅原理可得﹁q ⇒﹁p ,即p ⇒q ,则充分性成立;反之不成立,如将同一个圆锥正放和倒放,在等高处的截面积不恒相等,但体积相等,∴p 是q 的充分不必要条件,故选A.]m 的取值范围为________.[0,3] [由x 2-8x -20≤0得-2≤x ≤10, ∴P ={x |-2≤x ≤10},由x ∈P 是x ∈S 的必要条件,知S ⊆P . 则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≥-2,1+m ≤10,∴0≤m ≤3.即所求m 的取值范围是[0,3].]1.把本例中的“必要条件”改为“充分条件”,求m 的取值范围.[解] 由x ∈P 是x ∈S 的充分条件,知P ⊆S ,则⎩⎪⎨⎪⎧1-m ≤1+m ,1-m ≤-2,1+m ≥10,解得m ≥9,即所求m 的取值范围是[9,+∞).2.本例条件不变,问是否存在实数m ,使x ∈P 是x ∈S 的充要条件?并说明理由.[解] 不存在.理由:若x ∈P 是x ∈S 的充要条件,则P =S ,∴⎩⎪⎨⎪⎧1-m =-2,1+m =10,∴⎩⎪⎨⎪⎧m =3,m =9,无解,∴不存在实数m ,使x ∈P 是x ∈S 的充要条件. 组求解易错警示:求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象[跟踪训练] (1)已知p :x ≥k ,q :x +1<1,如果p 是q 的充分不必要条件,则实数k 的取值范围是( ) A .[2,+∞) B .(2,+∞) C .[1,+∞)D .(-∞,-1)(2)已知条件p :2x 2-3x +1≤0,条件q :a ≤x ≤a +1.若﹁p 是﹁q 的必要不充分条件,则实数a 的取值范围是________.【79140008】(1)B (2)⎣⎢⎡⎦⎥⎤0,12 [(1)∵3x +1<1,∴3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,∴x >2或x <-1, ∵p 是q 的充分不必要条件,∴k >2.(2)命题p 为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1, 命题q 为{x |a ≤x ≤a +1}.﹁p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, ﹁q 对应的集合B ={}x |x >a +1或x <a .∵﹁p 是﹁q 的必要不充分条件,∴⎩⎪⎨⎪⎧a +1>1,a ≤12或⎩⎪⎨⎪⎧a +1≥1,a <12,∴0≤a ≤12.]第三节 全称量词与存在量词、逻辑联结词“且”“或”“非”[考纲传真] 1.了解逻辑联结词“且”“或”“非”的含义.2.理解全称量词与存在量词的意义.3.能正确地对含有一个量词的命题进行否定.(第5页) [基础知识填充]1.简单的逻辑联结词(1)命题中的“且”“或”“非”叫作逻辑联结词. (2)命题p 且q ,p 或q ,﹁p 的真假判断2.(1)常见的全称量词有:“任意一个”“一切”“每一个”“任给”“所有的”等.(2)常见的存在量词有:“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等.3.全称命题与特称命题(1)含有全称量词的命题叫全称命题. (2)含有存在量词的命题叫特称命题.4.命题的否定(1)全称命题的否定是特称命题;特称命题的否定是全称命题. (2)p 或q 的否定为:﹁p 且﹁q ;p 且q 的否定为:﹁p 或﹁q .[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)命题“5>6或5>2”是假命题.( )(2)命题﹁(p 且q )是假命题,则命题p ,q 中至少有一个是假命题.( ) (3)“长方形的对角线相等”是特称命题.( )(4)命题“对顶角相等”的否定是“对顶角不相等”.( ) [解析] (1)错误.命题p 或q 中,p ,q 有一真则真. (2)错误.p 且q 是真命题,则p ,q 都是真命题.(3)错误.命题“长方形的对角线相等”可叙述为“所有长方形的对角线相等”,是全称命题. (4)错误.“对顶角相等”是全称命题,其否定为“有些对顶角不相等”. [答案] (1)× (2)× (3)× (4)×2.(教材改编)已知p :2是偶数,q :2是质数,则命题﹁p ,﹁q ,p 或q ,p 且q 中真命题的个数为( )A .1B .2C .3D .4B [p 和q 显然都是真命题,所以﹁p ,﹁q 都是假命题,p 或q ,p 且q 都是真命题.] 3.下列四个命题中的真命题为( )A .存在x 0∈Z,1<4x 0<3B .存在x 0∈Z,5x 0+1=0C .任意x ∈R ,x 2-1=0 D .任意x ∈R ,x 2+x +2>0D [选项A 中,14<x 0<34且x 0∈Z ,不成立;选项B 中,x 0=-15,与x 0∈Z 矛盾;选项C 中,x ≠±1时,x 2-1≠0;选项D 正确.]4.命题:“存在x 0∈R ,x 20-ax 0+1<0”的否定为________.任意x ∈R ,x 2-ax +1≥0 [因为特称命题的否定是全称命题,所以命题“存在x 0∈R ,x 20-ax 0+1<0”的否定是“任意x ∈R ,x 2-ax +1≥0”.]5.若命题“任意x ∈R ,ax 2-ax -2≤0”是真命题,则实数a 的取值范围是________.[-8,0] [当a =0时,不等式显然成立.当a ≠0时,依题意知⎩⎪⎨⎪⎧a <0,Δ=a 2+8a ≤0,解得-8≤a <0.综上可知-8≤a≤0.](第6页)(1)(2018·东北三省四市模拟(一))已知命题p:函数y=lg(1-x)在(-∞,1)上单调递减,命题q:函数y=2cos x是偶函数,则下列命题中为真命题的是( )A.p且q B.(﹁p)或(﹁q)C.(﹁p)且q D.p且(﹁q)(2)若命题“p或q”是真命题,“﹁p为真命题”,则( )A.p真,q真B.p假,q真C.p真,q假D.p假,q假(1)A(2)B[(1)命题p中,因为函数u=1-x在(-∞,1)上为减函数,所以函数y=lg(1-x)在(-∞,1)上为减函数,所以p是真命题;命题q中,设f(x)=2cos x,则f(-x)=2cos(-x)=2cos x=f(x),x∈R,所以函数y=2cos x是偶函数,所以q是真命题,所以p且q是真命题,故选A.(2)因为﹁p为真命题,所以p为假命题,又因为p或q为真命题,所以q为真命题.]确定命题的构成形式;判断依据“或”——一真即真,p”等形式命题的真假是y=|tan x| [跟踪训练] (2018·呼和浩特一调)命题p:x=2π是函数y=|sin x|的一条对称轴,q:2的最小正周期,下列命题①p或q;②p且q;③p;④﹁q,其中真命题有( )【79140013】A.1个B.2个C.3个D.4个C[由已知得命题p为真命题,命题q为假命题,所以p或q为真命题,p且q为假命题,﹁q为真命题,所以真命题有①③④,共3个,故选C.]◎角度1 全称命题、特称命题的真假判断下列命题中,真命题是( ) A .任意x ∈R ,x 2-x -1>0B .任意α,β∈R ,sin(α+β)<sin α+sin βC .存在x ∈R ,x 2-x +1=0D .存在α,β∈R ,sin(α+β)=cos α+cos βD [因为x 2-x -1=⎝ ⎛⎭⎪⎫x -122-54≥-54,所以A 是假命题.当α=β=0时,有sin(α+β)=sin α+sin β,所以B 是假命题.x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,所以C 是假命题.当α=β=π2时,有sin(α+β)=cos α+cos β,所以D 是真命题,故选D.] ◎角度2 含有一个量词的命题的否定命题“任意n ∈N +,f (n )∈N +且f (n )≤n ”的否定形式是( ) A .任意n ∈N +,f (n )∉N +且f (n )>n B .任意n ∈N +,f (n )∉N +或f (n )>n C .存在n 0∈N +,f (n 0)∉N +且f (n 0)>n 0 D .存在n 0∈N +,f (n 0)∉N +或f (n 0)>n 0D [写全称命题的否定时,要把量词“任意”改为“存在”,并且否定结论,注意把“且”改为“或”.]要判断一个全称命题是真命题,必须对限定集合x 成立;但要判断全称命题是假命题,只要能找出集合x 0不成立即可要判断一个特称命题是真命题,只要在限定集合中,至少能找到一个=x 0,使x 0成立即可,否则,这一特称命题就是假命题2.全称命题与特称命题的否定改写量词:确定命题所含量词的类型,省去量词的要结合命题的含义加上量词,再对量词进行改写否定结论:对原命题的结论进行否定[跟踪训练] (1)已知命题p :存在x ∈⎝⎭⎪⎫0,2,使得cos x ≤x ,则﹁p 为( )A .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x >xB .存在x ∈⎝ ⎛⎭⎪⎫0,π2,使得cos x <xC .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x >xD .任意x ∈⎝⎛⎭⎪⎫0,π2,总有cos x ≤x(2)下列命题中的假命题是( ) A .存在x 0∈R ,lg x 0=0 B .存在x 0∈R ,tan x 0= 3 C .任意x ∈R ,x 3>0D .任意x ∈R,2x>0(1)C (2)C [(1)原命题是一个特称命题,其否定是一个全称命题,而“cos x ≤x ”的否定是“cos x >x ”.故选C.(2)当x =1时,lg x =0,故命题“存在x 0∈R ,lg x 0=0”是真命题;当x =π3时,tan x =3,故命题“存在x 0∈R ,tan x 0=3”是真命题;由于x =-1时,x 3<0,故命题“任意x ∈R ,x 3>0”是假命题;根据指数函数的性质,对任意x ∈R,2x>0,故命题“任意x ∈R,2x>0”是真命题.]给定命题p :对任意实数x 都有ax 2+ax +1>0成立;q :关于x 的方程x 2-x +a =0有实数根.如果p 或q 为真命题,p 且q 为假命题,求实数a 的取值范围.[解] 当p 为真命题时,“对任意实数x 都有ax 2+ax +1>0成立”⇔a =0或⎩⎪⎨⎪⎧a >0,Δ<0,∴0≤a <4.当q 为真命题时,“关于x 的方程x 2-x +a =0有实数根”⇔Δ=1-4a ≥0,∴a ≤14.∵p 或q 为真命题,p 且q 为假命题, ∴p ,q 一真一假.∴若p 真q 假,则0≤a <4,且a >14,∴14<a <4;若p 假q 真,则⎩⎪⎨⎪⎧a <0或a ≥4,a ≤14,即a <0.故实数a 的取值范围为(-∞,0)∪⎝ ⎛⎭⎪⎫14,4.先求出每个简单命题是真命题时参数的取值范围再根据复合命题的真假确定各个简单命题的真假情况有时不一定只有一种情况最后由的结果求出满足条件的参数取值范围[跟踪训练] (1)(2018·太原模拟(二))若命题“任意x ∈(0,+∞),x +x≥m ”是假命题,则实数m 的取值范围是________.【79140014】(2)已知p :存在x 0∈R ,mx 20+1≤0,q :任意x ∈R ,x 2+mx +1>0,若p 或q 为假命题,则实数m 的取值范围为( ) A .m ≥2B .m ≤-2C .m ≤-2或m ≥2D .-2≤m ≤2(1)(2,+∞) (2)A [(1)由题意,知“存在x ∈(0,+∞),x +1x<m ”是真命题,又因为x ∈(0,+∞),所以x +1x≥2,当且仅当x =1时等号成立,所以实数m 的取值范围为(2,+∞).(2)依题意知,p ,q 均为假命题.当p 是假命题时,任意x ∈R ,mx 2+1>0恒成立,则有m ≥0;当q 是假命题时,则有Δ=m 2-4≥0,m ≤-2或m ≥2.因此,由p ,q 均为假命题得⎩⎪⎨⎪⎧m ≥0,m ≤-2或m ≥2,即m ≥2.]第一节 函数及其表示[考纲传真] 1.了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念.2.在实际情境中,会根据不同的需要选择恰当的方法(如图像法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).(第8页) [基础知识填充]1.函数与映射的概念2.(1)函数的定义域、值域:数集A 叫作函数的定义域;函数值的集合{f (x )|x ∈A }叫作函数的值域. (2)函数的三要素:定义域、对应关系和值域.(3)相等函数:如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. (4)函数的表示法:表示函数的常用方法有解析法、图像法和列表法. 3.分段函数若函数在其定义域内,对于定义域的不同取值区间,有着不同的对应关系,这样的函数通常叫作分段函数.分段函数是一个函数,分段函数的定义域是各段定义域的并集,值域是各段值域的并集.[知识拓展]1.函数与映射的本质是两个集合间的“多对一”和“一对一”关系.2.分段函数是高考必考内容,常考查(1)求最值;(2)求分段函数单调性;(3)分段函数解析式;(4)利用分段函数求值,解题的关键是分析用哪一段函数,一般需要讨论.[基本能力自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)函数是特殊的映射.( )(2)函数y =1与y =x 0是同一个函数.( )(3)与x 轴垂直的直线和一个函数的图像至多有一个交点.( ) (4)分段函数是两个或多个函数.( ) [答案] (1)√ (2)× (3)√ (4)×2.(教材改编)函数y =2x -3+1x -3的定义域为( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B .(-∞,3)∪(3,+∞) C.⎣⎢⎡⎭⎪⎫32,3∪(3,+∞) D .(3,+∞)C [由题意知⎩⎪⎨⎪⎧2x -3≥0,x -3≠0,解得x ≥32且x ≠3.]3.如图2­1­1所示,所给图像是函数图像的有( )图2­1­1A .1个B .2个C .3个D .4个B [(1)中,当x >0时,每一个x 的值对应两个不同的y 值,因此(1)不是函数图像;(2)中,当x =x 0时,y 的值有两个,因此(2)不是函数图像;(3)(4)中,每一个x 的值对应唯一的y 值,因此(3)(4)是函数图像,故选B.]4.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x,x >1,则f (f (3))=________.139 [f (3)=23,f (f (3))=⎝ ⎛⎭⎪⎫232+1=139.]5.(2015·全国卷Ⅱ)已知函数f (x )=ax 3-2x 的图像过点(-1,4),则a =________.-2 [∵f (x )=ax 3-2x 的图像过点(-1,4), ∴4=a ×(-1)3-2×(-1),解得a =-2.](第9页)(1)(2018·济南一模)函数f (x )=2x-12+3x +1的定义域为________.(2)若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是________.(1)(-1,+∞) (2)[0,1) [(1)由题意得⎩⎨⎧2x -12≥0,x +1≠0,解得x >-1,所以函数f (x )的定义域为(-1,+∞).(2)由0≤2x ≤2,得0≤x ≤1,又x -1≠0,即x ≠1,所以0≤x <1,即g (x )的定义域为[0,1).]已知函数解析式,构造使解析式有意义的不等式组求解实际问题:由实际意义及使解析式有意义构成的不等式组求解抽象函数:①若已知函数x 的定义域为g x 的定义域由不等式x b 求出;②若已知函数g x 的定义域为x 的定义域为x 在时的值域.x 定义域为[m x 定义域,先求φx 值域[a a ≤h xb ,.[跟踪训练] (1)函数f (x )=1-x+lg(3x +1)的定义域是( )A.⎝ ⎛⎭⎪⎫-13,1 B.⎝ ⎛⎭⎪⎫-13,+∞C.⎝ ⎛⎭⎪⎫-13,13 D.⎝⎛⎭⎪⎫-∞,-13 (2)已知函数f (2x)的定义域为[-1,1],则f (x )的定义域为________.【79140019】(1)A (2)⎣⎢⎡⎦⎥⎤12,2 [(1)由题意可知{ 1-x >0,x +1>0,解得⎩⎨⎧x <1,x >-13,∴-13<x <1,故选A.(2)∵f (2x)的定义域为[-1,1], ∴12≤2x ≤2,即f (x )的定义域为⎣⎢⎡⎦⎥⎤12,2.](1)已知f ⎝⎛⎭⎪⎫x +1x =x 2+1x2,求f (x )的解析式;(2)已知f ⎝ ⎛⎭⎪⎫2x+1=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数且f (0)=2,f (x +1)-f (x )=x -1,求f (x )的解析式;(4)已知f (x )+2f ⎝ ⎛⎭⎪⎫1x =x (x ≠0),求f (x )的解析式.[解] (1)由于f ⎝ ⎛⎭⎪⎫x +1x =x 2+1x2=⎝ ⎛⎭⎪⎫x +1x 2-2,令t =x +1x,当x >0时,t ≥2x ·1x=2,当且仅当x =1时取等号;当x <0时,t =-⎝ ⎛⎭⎪⎫-x -1x ≤-2,当且仅当x =-1时取等号,∴f (t )=t 2-2t ∈(-∞,-2]∪[2,+∞).综上所述.f (x )的解析式是f (x )=x 2-2,x ∈(-∞,-2]∪[2,+∞).(2)令2x +1=t ,由于x >0,∴t >1且x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (3)设f (x )=ax 2+bx +c (a ≠0),由f (0)=2,得c =2,f (x +1)-f (x )=a (x +1)2+b (x +1)-ax 2-bx =x -1,即2ax +a +b =x -1,∴{ 2a =1,a +b =-1,即⎩⎨⎧a =12,b =-32,∴f (x )=12x 2-32x +2.(4)∵f (x )+2f ⎝ ⎛⎭⎪⎫1x =x ,∴f ⎝ ⎛⎭⎪⎫1x+2f (x )=1x.联立方程组⎩⎨⎧fx +2f ⎝ ⎛⎭⎪⎫1x =x ,f ⎝ ⎛⎭⎪⎫1x +2f x =1x ,解得f (x )=23x -x3(x ≠0).待定系数法:若已知函数的类型,可用待定系数法换元法:已知复合函数gx 的解析式,可用换元法,此时要注意新元的取值范围构造法:已知关于x 与f ⎝ ⎛⎭⎪⎫1x 或f -x 的表达式,可根据已知条件再构造出另外一个等式,通过解方程组求出x已知f x +1)=,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式. [解] (1)法一:(换元法)设x +1=t (t ≥1),则x =t -1,所以f (t )=(t -1)2+2(t -1)=t 2-1(t ≥1),所以f (x )=x 2-1(x ≥1).法二:(配凑法)f (x +1)=x +2x =(x +1)2-1, 又x +1≥1,所以f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, 所以a =1,b =2,f (x )=x 2+2x +c . 又因为方程f (x )=0有两个相等的实根, 所以Δ=4-4c =0,c =1, 故f (x )=x 2+2x +1.◎角度1 求分段函数的函数值(2015·全国卷Ⅱ)设函数f (x )={ 1+log 2-x ,x <1,x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12C [∵-2<1,∴f (-2)=1+log 2(2+2)=1+log 24=1+2=3. ∵log 212>1,∴f (log 212)=2log 212-1=122=6.∴f (-2)+f (log 212)=3+6=9.故选C.]。

2019届高考数学人教A版理科第一轮复习课件:第七章+不等式、推理与证明+7.3

2019届高考数学人教A版理科第一轮复习课件:第七章+不等式、推理与证明+7.3
为乙知道丙的成绩,所以乙知道自己的成绩.又因为乙、丙的成绩是一位
优秀一位良好,所以甲、丁的成绩也是一位优秀一位良好.又因为丁知道
甲的成绩,所以丁也知道自己的成绩,故选D. D
-9解析 关闭
答案
知识梳理
双基自测
1 2 3 4 5
5.(教材习题改编P7T2)在平面内,若两个正三角形的边长的比为 1∶2,则它们的面积比为1∶4.类似地,在空间中,若两个正四面体的 棱长的比为1∶2,则它们的体积比为 .
-5-
知识梳理
双基自测
1 2 3 4 5
1.下列结论正确的打“√”,错误的打“×”. (1)归纳推理得到的结论不一定正确,类比推理得到的结论一定 正确.( ) (2)归纳推理与类比推理都是由特殊到一般的推理.( ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比 对象较为合适.( ) (4)演绎推理是由特殊到一般再到特殊的推理.( ) (5)演绎推理在大前提、小前提和推理形式都正确时,得到的结 论一定正确.( )
考点2
考点3
答案: (1)B (2)1 051 解析: (1)依题意,用(t,s)表示2t+2s,题中的等式的规律为:第一行为 3(0,1);第二行为5(0,2),6(1,2);第三行为9(0,3),10(1,3),12(2,3);第四行 为17(0,4),18(1,4),20(2,4),24(3,4);……,又因为 99=(1+2+3+…+13)+8,因此第99个等式应位于第14行的从左至右 的第8个位置,即是27+214=16 512,故选B. (2)先求第30行的第1个数,再求第30行的第3个数.观察每一行的 第一个数,由归纳推理可得第30行的第1个数是 1+4+6+8+10+…+60= 30× (2+60)-1=929.又第n行从左到右的第2个 2 数比第1个数大2n,第3个数比第2个数大2n+2,所以第30行从左到右 的第2个数比第1个数大60,第3个数比第2个数大62,故第30行从左 到右第3个数是929+60+62=1 051.

高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习 第七章 不等式、推理与证明7.1 等式性质与不等式性质 考试要求 1.掌握等式性质.2.会比较两个数的大小.3.理解不等式的性质,并能简单应用. 知识梳理1.两个实数比较大小的方法作差法⎩⎪⎨⎪⎧ a -b >0⇔a >b ,a -b =0⇔a =b ,a -b <0⇔a <b . (a ,b ∈R )2.等式的性质性质1 对称性:如果a =b ,那么b =a ;性质2 传递性:如果a =b ,b =c ,那么a =c ;性质3 可加(减)性:如果a =b ,那么a ±c =b ±c ;性质4 可乘性:如果a =b ,那么ac =bc ;性质5 可除性:如果a =b ,c ≠0,那么a c =b c. 3.不等式的性质性质1 对称性:a >b ⇔b <a ;性质2 传递性:a >b ,b >c ⇒a >c ;性质3 可加性:a >b ⇔a +c >b +c ;性质4 可乘性:a >b ,c >0⇒ac >bc ;a >b ,c <0⇒ac <bc ;性质5 同向可加性:a >b ,c >d ⇒a +c >b +d ;性质6 同向同正可乘性:a >b >0,c >d >0⇒ac >bd ;性质7 同正可乘方性:a >b >0⇒a n >b n (n ∈N ,n ≥2).常用结论1.若ab >0,且a >b ⇔1a <1b . 2.若a >b >0,m >0⇒b a <b +ma +m ; 若b >a >0,m >0⇒b a >b +ma +m .思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)两个实数a ,b 之间,有且只有a >b ,a =b ,a <b 三种关系中的一种.(√ )(2)若ba >1,则b >a .( × )(3)若x >y ,则x 2>y 2.( × )(4)若1a >1b ,则b <a .( × )教材改编题1.设b >a >0,c ∈R ,则下列不等式不正确的是( )A .12a <12b B.1a >1bC.a +2b +2>ab D .ac 3<bc 3答案 D解析 因为y =12x 在(0,+∞)上单调递增,所以12a <12b ,A 正确;因为y =1x 在(0,+∞)上单调递减,所以1a >1b ,B 正确;因为a +2b +2-a b =2b -ab +2b >0,所以a +2b +2>ab ,C 正确;当c =0时,ac 3=bc 3,所以D 不正确.2.已知M =x 2-3x ,N =-3x 2+x -3,则M ,N 的大小关系是________.答案 M >N解析 M -N =(x 2-3x )-(-3x 2+x -3)=4x 2-4x +3=(2x -1)2+2>0,∴M >N .3.已知-1<a <2,-3<b <5,则a +2b 的取值范围是______.答案 (-7,12)解析 ∵-3<b <5,∴-6<2b <10,又-1<a <2,∴-7<a +2b <12.题型一 比较两个数(式)的大小例1 (1)若a <0,b <0,则p =b 2a +a 2b与q =a +b 的大小关系为( ) A .p <q B .p ≤q C .p >q D .p ≥q答案 B解析 p -q =b 2a +a 2b-a -b =b 2-a 2a +a 2-b 2b=(b 2-a 2)·⎝⎛⎭⎫1a -1b =b 2-a 2b -a ab =b -a 2b +aab ,因为a <0,b <0,所以a +b <0,ab >0.若a =b ,则p -q =0,故p =q ;若a ≠b ,则p -q <0,故p <q .综上,p ≤q .(2)若a =ln 33,b =ln 44,c =ln 55,则( ) A .a <b <cB .c <b <aC .c <a <bD .b <a <c 答案 B解析 令函数f (x )=ln x x ,则f ′(x )=1-ln x x 2, 易知当x >e 时,f ′(x )<0,函数f (x )单调递减,因为e<3<4<5,所以f (3)>f (4)>f (5),即c <b <a .教师备选已知M =e 2 021+1e 2 022+1,N =e 2 022+1e 2 023+1,则M ,N 的大小关系为________. 答案 M >N解析 方法一 M -N =e 2 021+1e 2 022+1-e 2 022+1e 2 023+1=e 2 021+1e 2 023+1-e 2 022+12e 2 022+1e 2 023+1=e 2 021+e 2 023-2e 2 022e 2 022+1e 2 023+1=e 2 021e -12e 2 022+1e 2 023+1>0. ∴M >N .方法二 令f (x )=e x +1e x +1+1=1e e x +1+1+1-1e e x +1+1=1e +1-1e e x +1+1, 显然f (x )是R 上的减函数,∴f (2 021)>f (2 022),即M >N .思维升华 比较大小的常用方法(1)作差法:①作差;②变形;③定号;④得出结论.(2)作商法:①作商;②变形;③判断商与1的大小关系;④得出结论.(3)构造函数,利用函数的单调性比较大小.跟踪训练1 (1)已知0<a <1b ,且M =11+a +11+b,N =a 1+a +b 1+b ,则M ,N 的大小关系是( ) A .M >N B .M <NC .M =ND .不能确定答案 A解析 ∵0<a <1b ,∴1+a >0,1+b >0,1-ab >0. ∴M -N =1-a 1+a +1-b 1+b =21-ab1+a 1+b >0,∴M >N .(2)e π·πe 与e e ·ππ的大小关系为________.答案 e π·πe <e e ·ππ解析 e π·πe e e ·ππ=e π-eππ-e =⎝⎛⎭⎫eππ-e ,又0<eπ<1,0<π-e<1,∴⎝⎛⎭⎫eππ-e <1,即e π·πee e ·ππ<1,即e π·πe <e e ·ππ.题型二 不等式的性质例2 (1)(2022·滨州模拟)下列命题为真命题的是() A .若a >b ,则ac 2>bc 2B .若a <b <0,则a 2<ab <b 2C .若c >a >b >0,则a c -a <bc -bD .若a >b >c >0,则a b >a +c b +c 答案 D 解析 对于A 选项,当c =0时,显然不成立,故A 选项为假命题; 对于B 选项,当a =-3,b =-2时,满足a <b <0,但不满足a 2<ab <b 2,故B 选项为假命题;对于C 选项,当c =3,a =2,b =1时,a c -a =23-2>b c -b =12,故C 选项为假命题; 对于D 选项,由于a >b >c >0,所以a b -a +c b +c=a b +c -b a +c b b +c =ac -bc b b +c=a -b c b b +c>0,即a b >a +c b +c ,故D 选项为真命题. (2)若1a <1b<0,则下列不等式正确的是________.(填序号) ①1a +b <1ab ; ②|a |+b >0; ③a -1a >b -1b; ④ln a 2>ln b 2.答案 ①③解析 由1a <1b <0,可知b <a <0. ①中,因为a +b <0,ab >0,所以1a +b <0,1ab >0.故有1a +b <1ab,即①正确; ②中,因为b <a <0,所以-b >-a >0.故-b >|a |,即|a |+b <0,故②错误;③中,因为b <a <0,又1a <1b<0, 则-1a >-1b >0,所以a -1a >b -1b,故③正确; ④中,因为b <a <0,根据y =x 2在(-∞,0)上单调递减,可得b 2>a 2>0,而y =ln x 在定义域 (0,+∞)上单调递增,所以ln b 2>ln a 2,故④错误.教师备选若a ,b ,c ∈R ,a >b ,则下列不等式恒成立的是( )A.1a <1b B .a 2>b 2C .a |c |>b |c | D.a c 2+1>bc 2+1答案 D解析 对于A ,若a >0>b ,则1a >1b ,故A 错误;对于B ,取a =1,b =-2,则a 2<b 2,故B 错误;对于C ,若c =0,a |c |=b |c |,故C 错误;对于D ,因为c 2+1≥1,所以1c 2+1>0,又a >b ,所以a c 2+1>bc 2+1,故D 正确.思维升华 判断不等式的常用方法(1)利用不等式的性质逐个验证.(2)利用特殊值法排除错误选项.(3)作差法.(4)构造函数,利用函数的单调性.跟踪训练2 (1)(2022·珠海模拟)已知a ,b ∈R ,满足ab <0,a +b >0,a >b ,则() A.1a <1b B.b a +a b >0C .a 2>b 2D .a <|b |答案 C解析 因为ab <0,a >b ,则a >0,b <0,1a >0,1b <0,A 不正确;b a <0,a b <0,则b a +a b <0,B 不正确;又a+b>0,即a>-b>0,则a2>(-b)2,a2>b2,C正确;由a>-b>0得a>|b|,D不正确.(2)设a>b>1>c>0,下列四个结论正确的是________.(填序号)①1ac>1bc;②ba c>ab c;③(1-c)a<(1-c)b;④log b(a+c)>log a(b+c).答案③④解析由题意知,a>b>1>c>0,所以对于①,ac>bc>0,故1ac<1bc,所以①错误;对于②,取a=3,b=2,c=1 2,则ba c=23,ab c=32,所以ba c<ab c,故②错误;对于③,因为0<1-c<1,且a>b,所以(1-c)a<(1-c)b,故③正确;对于④,a+c>b+c>1,所以log b(a+c)>log b(b+c)>log a(b+c),故④正确.题型三不等式性质的综合应用例3(1)已知-1<x<4,2<y<3,则x-y的取值范围是________,3x+2y的取值范围是________.答案(-4,2)(1,18)解析∵-1<x<4,2<y<3,∴-3<-y <-2,∴-4<x -y <2.由-1<x <4,2<y <3,得-3<3x <12,4<2y <6,∴1<3x +2y <18.(2)已知3<a <8,4<b <9,则a b的取值范围是________. 答案 ⎝⎛⎭⎫13,2解析 ∵4<b <9,∴19<1b <14, 又3<a <8,∴19×3<a b <14×8, 即13<a b<2. 延伸探究 若将本例(1)中条件改为-1<x +y <4,2<x -y <3,求3x +2y 的取值范围. 解 设3x +2y =m (x +y )+n (x -y ),则⎩⎪⎨⎪⎧ m +n =3,m -n =2,∴⎩⎨⎧ m =52,n =12.即3x +2y =52(x +y )+12(x -y ), 又∵-1<x +y <4,2<x -y <3,∴-52<52(x +y )<10,1<12(x -y )<32, ∴-32<52(x +y )+12(x -y )<232, 即-32<3x +2y <232,∴3x +2y 的取值范围为⎝⎛⎭⎫-32,232. 教师备选已知0<β<α<π2,则α-β的取值范围是________. 答案 ⎝⎛⎭⎫0,π2 解析 ∵0<β<π2,∴-π2<-β<0, 又0<α<π2,∴-π2<α-β<π2, 又β<α,∴α-β>0,即0<α-β<π2. 思维升华 求代数式的取值范围,一般是利用整体思想,通过“一次性”不等关系的运算求得整体范围.跟踪训练3 (1)已知a >b >c ,2a +b +c =0,则c a的取值范围是( ) A .-3<c a<-1 B .-1<c a <-13 C .-2<c a<-1 D .-1<c a <-12 答案 A解析 因为a >b >c ,2a +b +c =0,所以a >0,c <0,b =-2a -c ,因为a >b >c ,所以-2a -c <a ,即3a >-c ,解得c a>-3, 将b =-2a -c 代入b >c 中,得-2a -c >c ,即a <-c ,得c a <-1,所以-3<c a <-1. (2)已知1<a <b <3,则a -b 的取值范围是________,a b的取值范围是________. 答案 (-2,0) ⎝⎛⎭⎫13,1解析 ∵1<b <3,∴-3<-b <-1,又1<a <3,∴-2<a -b <2,又a <b ,∴a -b <0,∴-2<a -b <0,又13<1b <1a ,∴a3<ab <1,又a3>13,∴13<ab <1.综上所述,a -b 的取值范围为(-2,0);a b 的取值范围为⎝⎛⎭⎫13,1.课时精练1.已知a >0,b >0,M =a +b ,N =a +b ,则M 与N 的大小关系为() A .M >NB .M <NC .M ≤ND .M ,N 大小关系不确定答案 B解析 M 2-N 2=(a +b )-(a +b +2ab )=-2ab <0,∴M <N .2.已知非零实数a ,b 满足a <b ,则下列命题成立的是( )A .a 2<b 2B .ab 2<a 2bC.1ab 2<1a 2b D.b a <a b答案 C解析 若a <b <0,则a 2>b 2,故A 不成立;若⎩⎪⎨⎪⎧ ab >0,a <b ,则a 2b <ab 2,故B 不成立;若a =1,b =2,则b a =2,a b =12,b a >a b ,故D 不成立,由不等式的性质知,C 正确.3.已知-3<a <-2,3<b <4,则a 2b 的取值范围为( )A .(1,3) B.⎝⎛⎭⎫43,94C.⎝⎛⎭⎫23,34D.⎝⎛⎭⎫12,1答案 A解析 因为-3<a <-2,所以a 2∈(4,9),而3<b <4,故a 2b 的取值范围为(1,3).4.若a >1,m =log a (a 2+1),n =log a (a +1),p =log a (2a ),则m ,n ,p 的大小关系是() A .n >m >p B .m >p >nC .m >n >pD .p >m >n答案 B解析 由a >1知,a 2+1-2a =(a -1)2>0,即a 2+1>2a ,而2a -(a +1)=a -1>0,即2a >a +1,∴a 2+1>2a >a +1,而y =log a x 在定义域上单调递增,∴m >p >n .5.已知a ,b ∈R ,则“|a |>|b |”是“a b >1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 B解析 不妨令a =1,b =0,故|a |>|b |不能推出a b >1,若a b >1,故a ,b 同号,若a ,b 都大于0,则a >b >0,从而|a |>|b |;若a ,b 都小于0,则a <b <0,从而|a |>|b |,故a b >1能推出|a |>|b |,从而“|a |>|b |”是“a b >1”成立的必要不充分条件.6.(2022·济宁模拟)已知x >y >z ,x +y +z =0,则下列不等式恒成立的是() A .xy >yz B .xy >xzC .xz >yzD .x |y |>|y |z答案 B解析 因为x >y >z ,x +y +z =0,所以x >0,z <0,y 的符号无法确定,对于A ,因为x >0>z ,若y <0,则xy <0<yz ,故A 错误;对于B ,因为y >z ,x >0,所以xy >xz ,故B 正确;对于C ,因为x >y ,z <0,所以xz <yz ,故C 错误;对于D ,因为x >z ,当|y |=0时,x |y |=|y |z ,故D 错误.7.设a ,b ,c ,d 为实数,且a >b >0>c >d ,则下列不等式正确的是( )A .c 2>cdB .a -c <b -dC .ac <bdD.c a -d b >0 答案 D解析 因为a >b >0>c >d ,所以a >b >0,0>c >d ,对于A ,因为0>c >d ,由不等式的性质可得c 2<cd ,故选项A 错误;对于B ,取a =2,b =1,c =-1,d =-2,则a -c =3,b -d =3,所以a -c =b -d ,故选项B 错误;对于C ,取a =2,b =1,c =-1,d =-2,则ac =-2,bd =-2,所以ac =bd ,故选项C 错误;对于D ,因为a >b >0,d <c <0,则ad <bc ,所以c a >d b, 故c a -d b>0,故选项D 正确. 8.若0<a <1,b >c >1,则( )A.⎝⎛⎭⎫b c a <1B.c -a b -a >c b C .c a -1<b a -1D .log c a <log b a答案 D解析 对于A ,∵b >c >1,∴b c>1. ∵0<a <1,则⎝⎛⎭⎫b c a >⎝⎛⎭⎫b c 0=1,故选项A 错误;对于B ,若c -a b -a >c b, 则bc -ab >bc -ac ,即a (c -b )>0,这与0<a <1,b >c >1矛盾,故选项B 错误;对于C ,∵0<a <1,∴a -1<0.∵b >c >1,∴c a -1>b a -1,故选项C 错误;对于D ,∵0<a <1,b >c >1,∴log c a <log b a ,故选项D 正确.9.已知M =x 2+y 2+z 2,N =2x +2y +2z -π,则M ________N .(填“>”“<”或“=”) 答案 >解析 M -N =x 2+y 2+z 2-2x -2y -2z +π=(x -1)2+(y -1)2+(z -1)2+π-3≥π-3>0,故M >N .10.(2022·宜丰模拟)若1a <1b <0,已知下列不等式:①a +b <ab ;②|a |>|b |;③a <b ;④b a +a b>2.其中正确的不等式的序号为________.答案 ①④解析 因为1a <1b<0, 所以b <a <0,故③错误;所以a +b <0<ab ,故①正确;所以|a |<|b |,故②错误;所以b a >0,a b >0且均不为1,b a +a b ≥2b a ·a b =2,当且仅当b a =a b =1时,等号成立,所以b a +a b>2,故④正确. 11.若0<a <b ,且a +b =1,则将a ,b ,12,2ab ,a 2+b 2从小到大排列为________________. 答案 a <2ab <12<a 2+b 2<b 解析 方法一 令a =13,b =23, 则2ab =49,a 2+b 2=19+49=59, 故a <2ab <12<a 2+b 2<b . 方法二 ∵0<a <b 且a +b =1,∴a <12<b <1,∴2b >1且2a <1, ∴a <2b ·a =2a (1-a )=-2a 2+2a=-2⎝⎛⎭⎫a -122+12<12, 即a <2ab <12. 又a 2+b 2=(a +b )2-2ab =1-2ab >1-12=12, 即a 2+b 2>12.∵12<b <1, ∴(a 2+b 2)-b =[(1-b )2+b 2]-b =2b 2-3b +1=(2b -1)(b -1)<0,即a 2+b 2<b ,综上可知a <2ab <12<a 2+b 2<b . 12.若α,β满足-π2<α<β<π2,则2α-β的取值范围是________. 答案 ⎝⎛⎭⎫-3π2,π2 解析 ∵-π2<α<π2,∴-π<2α<π.∵-π2<β<π2,∴-π2<-β<π2, ∴-3π2<2α-β<3π2. 又α-β<0,α<π2,∴2α-β<π2. 故-3π2<2α-β<π2.13.(2022·长沙模拟)设实数a ,b ,c 满足b +c =6-4a +3a 2,c -b =4-4a +a 2,则下列不等式恒成立的是( )A .c <bB .b ≤1C .b ≤aD .a <c 答案 D解析 ∵⎩⎪⎨⎪⎧ b +c =6-4a +3a 2,c -b =4-4a +a 2, 两式相减得2b =2a 2+2,即b =a 2+1,∴b ≥1.又b -a =a 2+1-a =⎝⎛⎭⎫a -122+34>0, ∴b >a .而c -b =4-4a +a 2=(a -2)2≥0,∴c ≥b ,从而c ≥b >a .14.实数a ,b ,c ,d 满足下列三个条件:①d >c ;②a +b =c +d ;③a +d <b +c .那么a ,b ,c ,d 的大小关系是________.答案 b >d >c >a解析 由题意知d >c ①,②+③得2a +b +d <2c +b +d ,化简得a <c ④,由②式a +b =c +d及a <c 可得到,要使②成立,必须b >d ⑤成立,综合①④⑤式得到b >d >c >a .15.已知函数f (x )=ax 2+bx +c 满足f (1)=0,且a >b >c ,则c a的取值范围是________. 答案 ⎝⎛⎭⎫-2,-12 解析 因为f (1)=0,所以a +b +c =0,所以b =-(a +c ).又a >b >c ,所以a >-(a +c )>c ,且a >0,c <0,所以1>-a +c a >c a ,即1>-1-c a >c a. 所以⎩⎨⎧ 2c a <-1,c a >-2,解得-2<c a <-12. 即c a的取值范围为⎝⎛⎭⎫-2,-12. 16.某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(1)男学生人数多于女学生人数;(2)女学生人数多于教师人数;(3)教师人数的两倍多于男学生人数.①若教师人数为4,则女学生人数的最大值为________.②该小组人数的最小值为________.答案 ①6 ②12解析 设男学生人数为x ,女学生人数为y ,教师人数为z ,由已知得⎩⎪⎨⎪⎧ x >y ,y >z ,2z >x ,且x ,y ,z均为正整数.①当z =4时,8>x >y >4,∴x 的最大值为7,y 的最大值为6,故女学生人数的最大值为6.②x >y >z >x 2,当x =3时,条件不成立,当x =4时,条件不成立,当x =5时,5>y >z >52,此时z =3,y =4.∴该小组人数的最小值为12.。

高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习 第七章 不等式、推理与证明7

高考数学一轮复习第七章不等式、推理与证明7.3二元一次不等式(组)与简单的线性规划问题考试要求 1.会从实际情境中抽象出二元一次不等式组.2.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.3.会从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.知识梳理1.二元一次不等式(组)表示的平面区域不等式表示区域Ax+By+C>0 直线Ax+By+C=0某一侧所有点组成的平面区域不包括边界Ax+By+C≥0包括边界不等式组各个不等式表示的平面区域的公共部分2.线性规划中的基本概念名称意义约束条件由变量x,y组成的不等式(组)线性约束条件由x,y的一次不等式(或方程)组成的不等式组目标函数关于x,y的函数解析式,如z=2x+3y等线性目标函数关于x,y的一次解析式可行解满足线性约束条件的解(x,y)可行域所有可行解组成的集合最优解使目标函数取得最大值或最小值的可行解线性规划问题在线性约束条件下求线性目标函数的最大值或最小值问题思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)二元一次不等式组所表示的平面区域是各个不等式所表示的平面区域的交集.( √ ) (2)不等式Ax +By +C >0表示的平面区域一定在直线Ax +By +C =0的上方.( × ) (3)点(x 1,y 1),(x 2,y 2)在直线Ax +By +C =0同侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )>0,在异侧的充要条件是(Ax 1+By 1+C )(Ax 2+By 2+C )<0.( √ )(4)目标函数z =ax +by (b ≠0)中,z 的几何意义是直线ax +by -z =0在y 轴上的截距.( × )教材改编题1.某校对高三美术生划定录取分数线,专业成绩x 不低于95分,文化课总分y 高于380分,体育成绩z 超过45分,用不等式表示就是( ) A.⎩⎪⎨⎪⎧ x ≥95,y ≥380,z >45 B.⎩⎪⎨⎪⎧ x ≥95,y >380,z ≥45 C.⎩⎪⎨⎪⎧x >95,y >380,z >45 D.⎩⎪⎨⎪⎧x ≥95,y >380,z >45答案 D解析 “不低于”即“≥”,“高于”即“>”,“超过”即“>”, ∴x ≥95,y >380,z >45.2.不等式组⎩⎪⎨⎪⎧x -y +1<0,x +y -3≥0表示的区域(阴影部分)是( )答案 D解析 将点(0,0)代入x -y +1<0不成立,则点(0,0)不在不等式x -y +1<0所表示的平面区域内, 将点(0,0)代入x +y -3≥0不成立,则点(0,0)不在不等式x +y -3≥0所表示的平面区域内, 所以表示的平面区域不包括原点,排除A ,C ;x -y +1<0不包括边界,用虚线表示,x +y -3≥0包括边界,用实线表示,故选D. 3.设变量x ,y 满足约束条件:⎩⎪⎨⎪⎧x +y -3≤0,x -y ≥0,y ≥0,则目标函数z =x +2y 的最大值为________.答案 92解析 根据不等式组作出可行域,如图中阴影部分(含边界)所示,当目标函数z =x +2y 经过点⎝⎛⎭⎫32,32时,z 取最大值为92.题型一 二元一次不等式(组)表示的平面区域 例1 (1)(2022·新乡模拟)不等式组⎩⎪⎨⎪⎧x +y ≤2,2x -y ≥1,y +1≥0表示的平面区域的面积为______.答案 3解析 画出可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x +y =2,2x -y =1,解得⎩⎪⎨⎪⎧x =1,y =1,即A (1,1), 联立⎩⎪⎨⎪⎧2x -y =1,y =-1,解得⎩⎪⎨⎪⎧x =0,y =-1,即B (0,-1), 联立⎩⎪⎨⎪⎧ x +y =2,y =-1, 解得⎩⎪⎨⎪⎧x =3,y =-1,即C (3,-1), S △ABC =12×|3-0|×|1-(-1)|=3.(2)已知不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0,x >m 表示的平面区域为三角形,则实数m 的取值范围为____________. 答案 (-∞,3)解析 根据题意,先作出不等式组⎩⎪⎨⎪⎧x -y +1≥0,2x -y -2≤0表示的平面区域,如图中阴影部分所示,由⎩⎪⎨⎪⎧y =2x -2,y =x +1,可得A (3,4), 要使不等式组表示的平面区域为三角形,只需m <3, 所以m 的取值范围为(-∞,3).教师备选已知点A (3,0),B (-3,2),若直线ax -y -1=0与线段AB 总有公共点,则a 的取值范围是( ) A.⎣⎡⎦⎤-1,13 B .(-∞,-1]∪⎣⎡⎭⎫13,+∞ C.⎣⎡⎦⎤-13,1 D.⎝⎛⎦⎤-∞,-13∪[1,+∞) 答案 B解析 因为直线ax -y -1=0与线段AB 总有公共点, 所以点A 和点B 不同在直线的一侧, 所以(3a -0-1)(-3a -2-1)≤0, 解得a ≤-1或a ≥13.即a 的取值范围是(-∞,-1]∪⎣⎡⎭⎫13,+∞. 思维升华 平面区域的形状问题主要有两种题型(1)确定平面区域的形状,求解时先作出满足条件的平面区域,然后判断其形状.(2)根据平面区域的形状求解参数问题,求解时通常先作出满足条件的平面区域,但要注意对参数进行必要的讨论.跟踪训练1 (2022·西安模拟)若不等式组⎩⎪⎨⎪⎧x ≥0,x +y ≥2,3x +y ≤5所表示的平面区域被直线y =kx +2分成面积相等的两个部分,则实数k 的值为( ) A .1 B .2 C .3 D .4 答案 A解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,B (0,5),因为直线y =kx +2过定点C (0,2), 所以C 点在可行域内,要使直线y =kx +2将可行域分成面积相等的两部分, 则直线y =kx +2必过线段AB 的中点D .由⎩⎪⎨⎪⎧x +y =2,3x +y =5,解得⎝⎛⎭⎫32,12,即A ⎝⎛⎭⎫32,12, 所以AB 的中点D ⎝⎛⎭⎫34,114,将D 的坐标代入直线y =kx +2,得114=34k +2,解得k =1.题型二 求目标函数的最值问题 命题点1 求线性目标函数的最值例2 (2021·浙江)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +1≥0,x -y ≤0,2x +3y -1≤0,则z =x -12y 的最小值是( )A .-2B .-32C .-12 D.110答案 B解析 作出可行域如图中阴影部分(含边界)所示,作出直线y =2x 并平移,数形结合可知,当平移后的直线经过点A 时z 取得最小值.由⎩⎪⎨⎪⎧ 2x +3y -1=0,x +1=0,得⎩⎪⎨⎪⎧x =-1,y =1, 所以A (-1,1),z min =-1-12=-32.命题点2 求非线性目标函数的最值例3 (1)如果点P (x ,y )在平面区域⎩⎪⎨⎪⎧2x -y +2≥0,x -2y +1≤0,x +y -2≤0上,则y +1x -2的取值范围是( )A.⎣⎡⎦⎤-2,-13 B.⎣⎡⎦⎤-2,-32 C.⎣⎡⎦⎤-2,13 D.⎣⎡⎦⎤-13,2 答案 A解析 作出点P (x ,y )所在的平面区域,如图中阴影部分(含边界)所示,y +1x -2表示动点P 与定点Q (2,-1)连线的斜率. 联立⎩⎪⎨⎪⎧ x -2y +1=0,x +y -2=0,解得⎩⎪⎨⎪⎧x =1,y =1.于是k QE =1+11-2=-2,k QF =0+1-1-2=-13.因此-2≤y +1x -2≤-13.(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y ≤0,x +y -3≤0,x ≥0,则(x -1)2+y 2的最小值为( )A .1 B.45 C.255 D .2答案 B解析 结合题意作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,而(x -1)2+y 2的几何意义是可行域内的点与(1,0)的距离的平方, 又(1,0)到直线2x -y =0的距离为25, 故(x -1)2+y 2的最小值为45.命题点3 求参数值或取值范围例4 已知k >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x -2≥0,x +y -3≤0,y ≥k x -3,若z =2x +y 的最小值为1,则k 等于( )A .3B .5 C.12 D.14答案 A解析 由不等式组知可行域只能是图中△ABC 内部阴影部分(含边界)所示,作直线l :2x +y =0,平移直线l ,只有当l 过点B 时,z =2x +y 取得最小值, 易知B (2,-k ), ∴4-k =1,解得k =3. 教师备选1.(2022·六安模拟)已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -1≥0,y -2≥0,x +y -5≤0,则z =2x +y 的最大值为( )A .4B .5C .8D .10 答案 C解析 不等式组表示的可行域,如图中阴影部分(含边界)所示,由z =2x +y ,得y =-2x +z , 作出直线y =-2x ,向上平移过点C 时,z =2x +y 取得最大值,由⎩⎪⎨⎪⎧ y -2=0,x +y -5=0,得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 所以z =2x +y 的最大值为2×3+2=8. 2.已知实数x ,y 满足不等式⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,则z =x 2+y 2的最大值为________.答案 10解析 根据约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +y -5≤0,y ≥1,画出可行域,如图中阴影部分(含边界)所示,z =x 2+y 2是指可行域内的动点(x ,y )与定点(0,0)之间的距离的平方, 由图可知,点P 到原点O 的距离的平方最大,又因为⎩⎪⎨⎪⎧x -y +2=0,2x +y -5=0,即⎩⎪⎨⎪⎧x =1,y =3,所以P (1,3), 故z max =12+32=10.3.设x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥a ,x -y ≤-1,且z =x +ay 的最小值为7,则a =________.答案 3解析 作出不等式组对应的平面区域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x -y =-1,x +y =a ,解得⎩⎨⎧x =a -12,y =a +12,∴A ⎝⎛⎭⎫a -12,a +12.①当a =0时,A ⎝⎛⎭⎫-12,12,x =z 无最小值,不满足题意; ②当a <0时,由z =x +ay 得y =-1a x +za,要使z 最小,则直线y =-1a x +za 在y 轴上的截距最大,满足条件的最优解不存在;③当a >0时,由z =x +ay 得y =-1a x +za,由图可知,当直线过点A 时直线在y 轴上的截距最小,z 最小,此时,-1a ≥-1,即a ≥1,此时z =a -12+a ·a +12=a 2+2a -12=7.即a 2+2a -15=0, 解得a =3或a =-5(舍). 思维升华 常见的三类目标函数 (1)截距型:形如z =ax +by . (2)距离型:形如z =(x -a )2+(y -b )2. (3)斜率型:形如z =y -bx -a.跟踪训练2 (1)已知A (1,2),点B (x ,y )的坐标x ,y 满足⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1,则OA →·OB →的取值范围是________. 答案 [1,5]解析 作不等式组⎩⎪⎨⎪⎧x +y ≤3,2x -y -2≤0,x ≥1的可行域,如图中阴影部分(含边界)所示.设z =OA →·OB →,则z =x +2y , 将z =x +2y 化为y =-12x +z 2,由图象可得,当直线y =-12x +z2过点A (1,2)时,z 取最大值,最大值为5.当直线y =-12x +z2过点C (1,0)时,z 取最小值,最小值为1.∴OA →·OB →的取值范围是[1,5].(2)(2022·平顶山模拟)若实数x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -5≤0,y -2≥0,x -1≥0,则z =x +2y +3x +1的最小值是______. 答案 52解析 作出可行域,如图中阴影部分(含边界)所示,z =x +2y +3x +1=1+2y +1x +1,其中k =y +1x +1表示可行域内点P (x ,y )与定点Q (-1,-1)连线的斜率,由⎩⎪⎨⎪⎧ x +y -5=0,y =2得⎩⎪⎨⎪⎧x =3,y =2,即C (3,2), 由图可得k min =k CQ =2+13+1=34, 所以z min =1+2×34=52.(3)(2022·金华模拟)已知x ,y 满足⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一,则a 的值为________. 答案 -1或2解析 作出可行域,如图中阴影部分(含边界)所示,作直线l :y -ax =0,在z =y -ax 中,y =ax +z ,a 是斜率,z 是纵截距,直线向上平移,z 增大,因此要使最大值的最优解不唯一,则直线l 与AB 或AC 平行, 所以a =-1或a =2.题型三 实际生活中的线性规划问题例5 (2022·新乡模拟)快递行业的高速发展极大地满足了人们的购物需求,也提供了大量的就业岗位,出现了大批快递员.某快递公司接到甲、乙两批快件,基本数据如下表:体积(立方分米/件)重量(千克/件)快递员工资(元/件)甲批快件 20108乙批快件102010快递员小马接受派送任务,小马的送货车载货的最大容积为350立方分米,最大载重量为250千克,小马一次送货可获得的最大工资额为( ) A .150元 B .170元 C .180元 D .200元答案 B解析 设一次派送甲批快件x 件、乙批快件y 件,则x ,y 满足⎩⎪⎨⎪⎧20x +10y ≤350,10x +20y ≤250,x ≥0,y ≥0,x ,y ∈N ,即⎩⎪⎨⎪⎧2x +y ≤35,x +2y ≤25,x ≥0,y ≥0,x ,y ∈N ,小马派送完毕获得的工资z =8x +10y (元), 画出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧2x +y =35,x +2y =25,解得x =15,y =5, 所以目标函数在点M (15,5)处取得最大值, 故z max =8×15+10×5=170(元).所以小马一次送货可获得的最大工资额为170元. 教师备选某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B 需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时,生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为( ) A .180 000元 B .216 000元 C .189 000元 D .256 000元答案 B解析 设生产产品A 为x 件,产品B 为y 件,获利z 元. ∴⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ∈N ,y ∈N ,目标函数z =2 100x +900y ,作出可行域,如图中阴影部分(含边界)所示.将z =2 100x +900y 化为y =-73x +z900,由图象可得,当直线y =-73x +z900过点M 时,在y 轴上的截距最大,即z 最大.联立⎩⎪⎨⎪⎧x +0.3y =90,5x +3y =600,得M (60,100),∴z max =2 100×60+900×100=216 000(元), ∴利润最大为216 000元.思维升华 解线性规划应用题的步骤(1)转化——设元,写出约束条件和目标函数,从而将实际问题转化为线性规划问题; (2)求解—— 解这个纯数学的线性规划问题;(3)作答——将线性规划问题的答案还原为实际问题的答案.跟踪训练3 某企业在“精准扶贫”行动中,决定帮助一贫困山区将水果运出销售.现有8辆甲型车和4辆乙型车,甲型车每次最多能运6吨且每天能运4次,乙型车每次最多能运10吨且每天能运3次,甲型车每天费用320元,乙型车每天费用504元.若需要一天内把180吨水果运输到火车站,则通过合理调配车辆,运送这批水果的费用最少为( ) A .2 400元 B .2 560元 C .2 816元 D .4 576元答案 B解析 设甲型车x 辆,乙型车y 辆,运送这批水果的费用为z 元, 则⎩⎪⎨⎪⎧0≤x ≤8,0≤y ≤4,24x +30y ≥180,x ∈N ,y ∈N目标函数z =320x +504y , 作出不等式组⎩⎪⎨⎪⎧x ∈N ,y ∈N ,0≤x ≤8,0≤y ≤4,24x +30y ≥180所表示的平面区域,如图所示的阴影部分(含边界).作直线320x +504y =0,并平移,结合实际情况分析可得当直线过整点(8,0)时,z 取得最小值, 即z min =8×320+0×504=2 560(元).课时精练1.将不等式组⎩⎪⎨⎪⎧x -2y +2≥0,x +y <0表示的平面区域记为F ,则属于F 的点是( )A .(1,1)B .(-1,1)C .(-1,-1)D .(1,-1)答案 C解析 将点(1,1)代入方程组得⎩⎪⎨⎪⎧1≥0,2>0,故不在区域F 内,将点(-1,1)代入方程组得⎩⎪⎨⎪⎧-1<0,0=0,故不在区域F 内,将点(-1,-1)代入方程组得⎩⎪⎨⎪⎧3≥0,-2<0,故在区域F 内,将点(1,-1)代入方程组得⎩⎪⎨⎪⎧5≥0,0=0,故不在区域F 内.2.(2022·合肥质检)不等式组⎩⎪⎨⎪⎧x -3≤0,x +y ≥0,x -y ≥0围成的封闭图形的面积是( )A .12B .6C .9D .15 答案 C解析 作出可行域,如图中阴影部分(含边界)所示,由⎩⎪⎨⎪⎧ x -3=0,x -y =0得A (3,3), 由⎩⎪⎨⎪⎧x -3=0,x +y =0得B (3,-3), 所以可行域的面积为12×3×6=9.3.(2021·全国乙卷)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥4,x -y ≤2,y ≤3,则z =3x +y 的最小值为( )A .18B .10C .6D .4 答案 C解析 方法一 (数形结合法)作出可行域,如图中阴影部分(含边界)所示,作出直线y =-3x ,并平移,数形结合可知,当平移后的直线经过点A 时,直线y =-3x +z 在y 轴上的截距最小,即z 最小.解方程组⎩⎪⎨⎪⎧ x +y =4,y =3得⎩⎪⎨⎪⎧x =1,y =3,即点A 的坐标为(1,3).从而z =3x +y 的最小值为3×1+3=6.方法二 (代点比较法)画图易知,题设不等式组对应的可行域是封闭的三角形区域,所以只需要比较三角形区域三个顶点处的z 的大小即可.易知直线x +y =4与y =3的交点坐标为(1,3),直线x +y =4与x -y =2的交点坐标为(3,1),直线x -y =2与y =3的交点坐标为(5,3),将这三个顶点的坐标分别代入z =3x +y 可得z 的值分别为6,10,18,所以比较可知z min =6.方法三 (巧用不等式的性质)因为x +y ≥4,所以3x +3y ≥12. ① 因为y ≤3,所以-2y ≥-6.②于是,由①+②可得3x +3y +(-2y )≥12+(-6),即3x +y ≥6,当且仅当x +y =4且y =3,即x =1,y =3时不等式取等号,易知此时不等式x -y ≤2成立. 4.不等式(x -2y +1)(x +y -3)≤0在直角坐标平面内表示的区域(用阴影部分表示),应是下列图形中的( )答案 C解析 (x -2y +1)(x +y -3)≤0等价于⎩⎪⎨⎪⎧ x -2y +1≥0,x +y -3≤0或⎩⎪⎨⎪⎧x -2y +1≤0,x +y -3≥0,即不等式表示的区域是同时在两直线的上方部分或同时在两直线的下方部分,只有选项C 符合题意.5.(2022·长沙模拟)若x ,y 满足⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1,则z =2x -y 的取值范围是( )A .[0,3]B .[1,3]C .[-3,0]D .[-3,-1]答案 A解析 作出⎩⎪⎨⎪⎧x +y ≥0,x -y ≥0,x ≤1表示的可行域,如图中阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧ x =1,x +y =0,解得⎩⎪⎨⎪⎧x =1,y =-1,即B (1,-1),化目标函数z =2x -y 为y =2x -z ,由图可知,当直线y =2x -z 过原点时,直线在y 轴上的截距最大,z 有最小值,为2×0-0=0;当直线y =2x -z 过点B 时,直线在y 轴上的截距最小,z 有最大值,为2×1-(-1)=3, ∴z =2x -y 的取值范围是[0,3].6.一小商贩准备用50元钱在某批发市场购买甲、乙两种小商品,甲每件进价4元,乙每件进价7元,甲商品每卖出去1件可赚1元,乙商品每卖出去1件可赚1.8元.该商贩若想获取最大收益,则购买甲、乙两种商品的件数应分别为( ) A .甲7件,乙3件 B .甲9件,乙2件 C .甲4件,乙5件 D .甲2件,乙6件答案 D解析 设购买甲、乙两种商品的件数应分别x ,y 件,利润为z 元,由题意⎩⎪⎨⎪⎧4x +7y ≤50,x ,y ∈N ,z =x +1.8y ,画出可行域,如图中阴影部分(含边界)所示,结合实际情况,显然当y =-59x +59z 经过整点A (2,6)时,z 最大.7.设x ,y 满足约束条件⎩⎪⎨⎪⎧x -6≤0,x +y -1≥0,2x -y +1≥0,则z =y -1x +1的最大值是( )A.127 B.12 C .1 D .2答案 A解析 作出约束条件表示的可行域,如图中阴影部分(含边界)所示,z =y -1x +1表示可行域中的点(x ,y )与点P (-1,1)的连线的斜率, 由图可知z =y -1x +1的最大值在A 点取得,由⎩⎪⎨⎪⎧x -6=0,2x -y +1=0, 得A (6,13), 所以z max =13-16+1=127.8.在某校冬季长跑活动中,学校要给获得一、二等奖的学生购买奖品,要求花费总额不得超过200元.已知一等奖和二等奖奖品的单价分别为20元、10元,一等奖人数与二等奖人数的比值不得高于13,且获得一等奖的人数不能少于2人,那么下列说法中错误的是( )A .最多可以购买4份一等奖奖品B .最多可以购买16份二等奖奖品C .购买奖品至少要花费100元D .共有20种不同的购买奖品方案 答案 D解析 设获得一等奖和二等奖的人数分别为x ,y (x ,y ∈N *),由题意得⎩⎪⎨⎪⎧20x +10y ≤200,3x ≤y ,x ≥2,作出该不等式组对应的平面区域,如图中阴影部分(含边界)所示,由图可知,2≤x ≤4,6≤y ≤16,故x 可取2,3,4,故最多可以购买4份一等奖奖品,最多可以购买16份二等奖奖品, 购买奖品至少要花费2×20+6×10=100(元),故A ,B ,C 正确; 当x =2时,y 可取6,7,8,9,10,11,12,13,14,15,16,共有11种, 当x =3时,y 可取9,10,11,12,13,14,共6种, 当x =4时,y 可取12,共1种, 故共有11+6+1=18(种),故D 不正确.9.已知点(1,1)在直线x +2y +b =0的下方,则实数b 的取值范围是________. 答案 (-∞,-3)解析 因为点(1,1)在直线x +2y +b =0的下方,所以1+2+b <0,解得b <-3. 10.已知实数x ,y 满足⎩⎪⎨⎪⎧x -y ≤0,x +y -2≥0,x -3y +6≥0,则2y4x 的最小值为________. 答案 18解析 画出可行域,如图中阴影部分(含边界)所示,2y 4x =2y -2x,若使2y -2x 最小,需y -2x 最小. 令z =y -2x ,则y =2x +z , z 表示直线在y 轴上的截距,根据平移知,当x =3,y =3时,z =y -2x 有最小值为-3, 则2y 4x 的最小值为2-3=18. 11.已知实数x ,y 满足⎩⎪⎨⎪⎧2x -y +4≥0,x +y -1≥0,x ≤1,若直线y =k (x -1)将可行域分成面积相等的两部分,则实数k 的值为________. 答案 -4解析 画出可行域,如图中阴影部分(含边界)所示,其中A (1,6),B (1,0),C (-1,2).由于直线y =k (x -1)过定点B (1,0)且将可行域分成面积相等的两部分,所以当直线y =k (x -1)过线段AC 的中点D (0,4)时,△ABD 和△BCD 的面积相等, 此时k =k BD =4-00-1=-4.12.现某小型服装厂锁边车间有锁边工10名,杂工15名,有7台电脑机,每台电脑机每天可给12件衣服锁边;有5台普通机,每台普通机每天可给10件衣服锁边.如果一天至少有100件衣服需要锁边,用电脑机每台需配锁边工1名,杂工2名,用普通机每台需要配锁边工1名,杂工1名,用电脑机给一件衣服锁边可获利8元,用普通机给一件衣服锁边可获利6元,则该服装厂锁边车间一天最多可获利________元. 答案 780解析 设每天安排电脑机和普通机各x ,y 台, 则一天可获利z =12×8x +10×6y =96x +60y , 线性约束条件为⎩⎪⎨⎪⎧x +y ≤10,2x +y ≤15,12x +10y ≥100,0<x ≤7,0<y ≤5,画出可行域(图略),可知当目标函数经过(5,5)时,z max =780.13.(2022·郑州模拟)已知M (x ,y )是不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的平面区域内的任意一点,且M (x ,y )满足x 2+y 2≤a ,则a 的最小值为( ) A .3 B .4 C .9 D .10 答案 D解析 作出不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +y +2≥0,y ≤1所表示的可行域,如图中的阴影部分(含边界)所示,联立⎩⎪⎨⎪⎧x +y +2=0,y =1,可得⎩⎪⎨⎪⎧x =-3,y =1,即点A (-3,1),同理可得B (3,1),C (0,-2), 且OA =OB =10,OC =2,x 2+y 2的几何意义为原点O 与可行域内的点M (x ,y )的距离的平方,由图可知,当点M 与点A 或点B 重合时,OM 取最大值,故x 2+y 2的最大值为10, ∴a ≥10,即a 的最小值为10.14.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧x +y -2≤0,x ≥a ,x ≤y ,且z =2x -y 的最大值是最小值的2倍,则a 等于( ) A.34 B.56 C.65 D.43 答案 B解析 根据题中所给的约束条件,画出相应的可行域,如图中阴影部分(含边界)所示,作出直线l :y =2x ,平移直线l ,由图可知,当直线经过点D 时,直线在y 轴上的截距最小, 此时z =2x -y 取得最大值,由⎩⎪⎨⎪⎧x +y -2=0,x =y ,可得D (1,1), 所以z =2x -y 的最大值是1;当直线经过点B 时,直线在y 轴上的截距最大, 此时z =2x -y 取得最小值,由⎩⎪⎨⎪⎧x +y -2=0,x =a ,可得B (a ,2-a ), 所以z =2x -y 的最小值是3a -2, 因为z =2x -y 的最大值是最小值的2倍, 所以6a -4=1,解得a =56.15.实数对(x ,y )满足不等式组⎩⎪⎨⎪⎧x -y -2≤0,x +2y -5≥0,y -2≤0,且目标函数z =kx -y 当且仅当x =3,y =1时取最大值,则k 的取值范围为( ) A.⎝⎛⎭⎫-12,+∞ B.⎣⎡⎭⎫-12,1 C.⎝⎛⎭⎫-12,1 D .(-∞,1]答案 C解析 作出可行域,如图中阴影部分(含边界)所示,其中A (1,2),B (4,2),C (3,1),由z =kx -y ,将直线l :y =kx -z 进行平移可得直线在y 轴上的截距为-z , 因此直线在y 轴上截距最小时,目标函数z 达到最大值. 因为当且仅当l 经过点C (3,1)时,目标函数z 达到最大值, 所以直线l 的斜率应介于直线AC 的斜率与直线BC 的斜率之间, k AC =1-23-1=-12,k BC =2-14-3=1,所以k 的取值范围是⎝⎛⎭⎫-12,1. 16.(2022·宜春模拟)设实数x ,y 满足约束条件⎩⎪⎨⎪⎧2x +y -6≥0,x +2y -6≤0,y ≥0,则2y 2-xy x 2的最小值是________. 答案 -18解析 作出不等式组对应的平面区域如图中阴影部分(含边界)所示,k =yx 的几何意义为可行域内的点到原点的斜率, 由图象可知,OA 的斜率最大,由⎩⎪⎨⎪⎧2x +y -6=0,x +2y -6=0得A (2,2), ∴0≤k ≤1,∴2y 2-xy x 2=2⎝⎛⎭⎫y x 2-y x=2k 2-k =2⎝⎛⎭⎫k -142-18≥-18⎝⎛⎭⎫当且仅当k =14时,取到最小值.。

2019版高考(江苏专版)大一轮数学(文)复习配套课件:第七章 数列、推理与证明 (6份打包)5

2019版高考(江苏专版)大一轮数学(文)复习配套课件:第七章  数列、推理与证明 (6份打包)5
①反证法; ②分析法; ③综合法.
第7页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第七章 数列、推理与证明
知识梳理 1. 推理一般包括合情推理和 演绎推理 .其中合情推理又包括 归纳推理 和 类比推理 . “三段论”是演绎推理的一般模式,包括: 大前提 、 小前提 、 结论 . 2. 归纳推理是由 部分 到整体,由特殊到 一般 的推理; 类比推理是由 特殊 到 特殊 的推理; 演绎推理是由 一般 到 特殊 的推理.
图④中有 7 层,以第 4 层为对称轴,有 1+3+5+7+5+3+1=25 个小正方形, 得 f(4)=25.
(2) 因为 f(1)=1,f(2)=5,f(3)=13,f(4)=25,所以 f(2)-f(1)=4=4×1,f(3)- f(2)=8=4×2,f(4)-f(3)=12=4×3,
第14页
第9页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
研题型 ·技法通关
第七章 数列、推理与证明
第10页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第七章 数列、推理与证明
目标 1 合情推理
课堂导学
一种十字绣作品由相同的小正方形构成,如图,图①②③④分别是制 作该作品前四步时对应的图案,按照如此规律,第 n 步完成时对应图案中所包含小正 方形的个数记为 f(n).
第11页
栏目导航
高考总复习 一轮复习导学案 ·数学文科
第七章 数列、推理与证明
(1) 求出 f(2),f(3),f(4)的值; (2) 利用归纳推理,归纳出 f(n+1)与 f(n)的关系式; (3) 猜想 f(n)的表达式,并写出推导过程.
第12页
栏目导航
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 推理与证明第1课时 合情推理与演绎推理1. 已知2+23=223,3+38=338,4+415=4415,…,类比这些等式,若6+a b =6ab(a ,b 均为正数),则a +b =________. 答案:41解析:观察等式2+23=223,3+38=338,4+415=4415,…,第n 个应该是n +1+n +1(n +1)2-1=(n +1)n +1(n +1)2-1,则第5个等式中a =6,b =a 2-1=35,a +b =41.2. 在平面几何中有如下结论:正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14,推广到空间可以得到类似结论;已知正四面体PABC 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.答案:127解析:正四面体的内切球与外接球的半径之比为1∶3,故V 1V 2=127.3. 设等差数列{a n }的前n 项和为S n .若存在正整数m ,n(m<n),使得S m =S n ,则S m +n =0.类比上述结论,设正项等比数列{b n }的前n 项积为T n .若存在正整数m ,n(m<n),使T m =T n ,则T m +n =________.答案:1解析:因为T m =T n ,所以b m +1b m +2…b n =1,从而b m +1b n =1,T m +n =b 1b 2…b m b m +1…b n b n +1…b n +m -1b n +m =(b 1b n +m )·(b 2b n +m -1)…(b m b n +1)·(b m +1b n )=1.4. 观察下列等式: 21+2=4;21×2=4;32+3=92;32×3=92;43+4=163;43×4=163;…,根据这些等式,可以得出一个关于自然数n 的等式,这个等式可以表示为________________.答案:n +1n +(n +1)=n +1n×(n +1)(n∈N *)解析:由归纳推理得n +1n +(n +1)=n +1+(n 2+n )n =(n +1)2n , n +1n×(n +1)=(n +1)2n ,所以得出结论n +1n +(n +1)=n +1n×(n +1)(n∈N *). 5. 设△ABC 的三边长分别为a ,b ,c ,△ABC 的面积为S ,内切圆半径为r ,则r =2Sa +b +c.类比这个结论可知:四面体PABC 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,四面体PABC 的体积为V ,则r =________.答案:3VS 1+S 2+S 3+S 4解析:由类比推理可知r =3VS 1+S 2+S 3+S 4.1. 归纳推理(1) 归纳推理的定义从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理. (2) 归纳推理的思维过程大致如图实验、观察―→概括、推广―→猜测一般性结论(3) 归纳推理的特点① 归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包含的范围.② 由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验,因此,它不能作为数学证明的工具.③ 归纳推理是一种具有创造性的推理,通过归纳法得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2. 类比推理(1) 根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理.(2) 类比推理的思维过程大致如图观察、比较―→联想、类推―→猜测新的结论3. 演绎推理(1) 演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等),按照严格的逻辑法则得到新结论的推理过程.(2) 主要形式是三段论式推理. (3) 三段论的常用格式为 M — P(M 是P)① S_—_M(S 是M)② S — P(S 是P)③ 其中,①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般原理,对特殊情况作出的判断.[备课札记], 1 归纳推理), 1) 观察下列等式: 1-12=12, 1-12+13-14=13+14, 1-12+13-14+15-16=14+15+16, ……据此规律,第n 个等式可为________________.答案:1-12+13-14+…+12n -1-12n =1n +1+1n +2+…+12n解析:等式左边的特征:第1个等式有2项,第2个等式有4项,第3个等式有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n;等式右边的特征:第1个等式有1项,第2个等式有2项,第3个等式有3项,故第n 个等式有n 项,且由前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n.变式训练观察下列三角形数阵: 1 13 15 17 19 111 113 115 117 119 ……按照以上排列的规律,第16行从左到右的第2个数为______.答案:1243解析:前15行共有15×(15+1)2=120(个)数⇒所求为a 122=12×122-1=1243., 2 类比推理), 2) 在平面几何里,有“若△ABC 的三边长分别为a ,b ,c ,内切圆半径为r ,则三角形面积S △ABC =12(a +b +c)r”,拓展到空间,类比上述结论,“若四面体ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,内切球的半径为r ,则四面体的体积为________________”.答案:V 四面体ABCD =13(S 1+S 2+S 3+S 4)r解析:三角形面积类比为四面体的体积⇒三角形的边长类比为四面体四个面的面积⇒内切圆半径类比为内切球半径⇒二维图形中的12类比为三维图形中的13⇒得出结论.运用分割法思想,设四面体ABCD 的内切球的球心为O ,连结OD ,OA ,OB ,OC ,将四面体分成四个三棱锥,则V ABCD =V OABC +V OABD +V OBCD +V OACD =13S 1r +13S 2r +13S 3r +13S 4r =13(S 1+S 2+S 3+S 4)r.备选变式(教师专享)设a ,b ,c 是直角三角形的三边长,斜边上的高为h ,c 为斜边长,则给出四个命题:① a +b>c +h ;② a 2+b 2<c 2+h 2;③ a 3+b 3>c 3+h 3;④ a 4+b 4<c 4+h 4.其中真命题是________(填序号),进一步类比得到的一般结论是____________________.答案:②④ a n +b n <c n +h n (n∈N *) 解析:在直角三角形ABC 中,a =csin A ,b =ccos A ,ab =ch ,所以h =csin Acos A .于是a n +b n =c n (sin n A +cos n A),c n +h n =c n (1+sin n Acos nA).a n +b n -c n -h n =c n (sin n A +cos n A -1-sin n Acos n A)=c n (sin n A -1)(1-cos nA)<0,所以a n +b n <c n +h n., 3 演绎推理), 3) 设同时满足条件:①b n +b n +22≤b n +1(n∈N *);②b n ≤M (n∈N *,M 是与n 无关的常数)的无穷数列{b n }叫“特界” 数列.(1) 若数列{a n }为等差数列,S n 是其前n 项和,a 3=4,S 3=18,求S n ; (2) 判断(1)中的数列{S n }是否为“特界” 数列,并说明理由. 解:(1) 设等差数列{a n }的公差为d ,则a 1+2d =4,3a 1+3d =18,解得a 1=8,d =-2,S n =na 1+n (n -1)2d =-n 2+9n.(2) {S n }为“特界”数列.理由如下: 由S n +S n +22-S n +1=(S n +2-S n +1)-(S n +1-S n )2=a n +2-a n +12=d 2=-1<0,得S n +S n +22<S n +1,故数列{S n }满足条件①;而S n =-n 2+9n =-⎝ ⎛⎭⎪⎫n -922+814(n∈N *),则当n =4或5时,S n 有最大值20,即S n ≤20,故数列{S n }满足条件②. 综上,数列{S n }是“特界”数列. 变式训练数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n∈N *).证明:(1) 数列⎩⎨⎧⎭⎬⎫S n n 是等比数列;(2) S n +1=4a n .证明:(1) ∵ a n +1=S n +1-S n ,a n +1=n +2nS n ,∴ (n +2)S n =n(S n +1-S n ),即nS n +1=2(n+1)S n .故S n +1n +1=2·S nn ,故⎩⎨⎧⎭⎬⎫S n n 是以2为公比,1为首项的等比数列.(2) 由(1)可知数列⎩⎨⎧⎭⎬⎫S n n 是等比数列,所以S n +1n +1=4·S n -1n -1(n≥2),即S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n≥2).又a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1, 所以对于任意正整数n ,都有S n +1=4a n .1. (2017·课标Ⅱ)甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩,老师说,你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩,看后甲对大家说:我还是不知道我的成绩,根据以上信息推断,下列结论正确的是________.(填序号)① 乙可以知道四人的成绩; ② 丁可以知道四人的成绩; ③ 乙、丁可以知道对方的成绩; ④ 乙、丁可以知道自己的成绩. 答案:④解析:由甲的说法可知乙、丙一人优秀一人良好,则甲、丁一人优秀一人良好,乙看到丙的成绩则知道自己的成绩,丁看到甲的成绩则知道自己的成绩,故选④.2. (2016·全国Ⅱ)有三张卡片,分别写有1和2,1和3,2和3.甲、乙、丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是__________.答案:1和3 解析: 由题意可知丙不拿2和3.若丙拿1和2,则乙拿2和3,甲拿1和3,满足题意;若丙拿1和3,则乙拿2和3,甲拿1和2,不满足题意.故甲的卡片上的数字是1和3.3. (2017·北京卷)某学习小组由学生和教师组成,人员构成同时满足以下三个条件: ① 男学生人数多于女学生人数; ② 女学生人数多于教师人数;③ 教师人数的两倍多于男学生人数.(1) 若教师人数为4,则女学生人数的最大值为________; (2) 该小组人数的最小值为________. 答案:(1) 6 (2) 12解析:设男学生数,女学生数,教师数分别为a ,b ,c ,则2c>a>b>c ,a ,b ,c ∈N *. (1) 8>a>b>4⇒b max =6.(2) c min =3,6>a>b>3⇒a =5,b =4⇒a +b +c =12.4. 已知a n =⎝ ⎛⎭⎪⎫13n ,把数列{a n }的各项排成如下的三角形: a 1 a 2 a 3 a 4 a 5 a 6 a 7 a 8 a 9……记A(s ,t)表示第s 行的第t 个数,则A(11,12)=________.答案:⎝ ⎛⎭⎪⎫13112 解析:该三角形数阵每行所对应元素的个数为1,3,5,…,那么第10行的最后一个数为a 100,第11行的第12个数为a 112,即A(11,12)=⎝ ⎛⎭⎪⎫13112. 5. 某种平面分形图如图所示,一级分形图是由一点出发的三条线段,长度相等,两两夹角为120°;二级分形图是从一级分形图的每条线段末端出发再生成两条长度为原来13的线段,且这两条线段与原线段两两夹角为120°,……,依此规律得到n 级分形图.n 级分形图中共有________条线段.答案:(3×2n -3)(n∈N *)解析:从分形图的每条线段的末端出发再生成两条线段,由题图知,一级分形图中有3=(3×2-3)条线段,二级分形图中有9=(3×22-3)条线段,三级分形图中有21=(3×23-3)条线段,按此规律,n 级分形图中的线段条数为(3×2n -3)(n∈N *).1. 如图所示的三角形数阵叫“莱布尼茨调和三角形”,有11=12+12,12=13+16,13=14+112,…,则运用归纳推理得到第11行第2个数(从左往右数)为________.答案:1110解析:由“莱布尼茨调和三角形”中数的排列规律,我们可以推断:第10行的第一个数为110,第11行的第一个数为111,则第11行的第二个数为110-111=1110.2. 有一个游戏,将标有数字1,2,3,4的四张卡片分别随机发给甲、乙、丙、丁4个人,每人一张,并请这4人在看自己的卡片之前进行预测:甲说:乙或丙拿到标有3的卡片;乙说:甲或丙拿到标有2的卡片;丙说:标有1的卡片在甲手中;丁说:甲拿到标有3的卡片.结果显示:这4人的预测都不正确,那么甲、乙、丙、丁4个人拿到的卡片上的数字依次为____,____,____,____.答案:4 2 1 3解析:由于4个人预测不正确,其各自的对立事件正确,即甲:乙、丙没拿到3;乙:甲、丙没拿到2;丙:甲没拿到1;丁:甲没拿到3.综上,甲没拿到1,2,3,故甲拿到了4,丁拿到了3,丙拿到了1,乙拿到了2.3. 观察下列等式: 13=12,13+23=32,13+23+33=62,13+23+33+43=102,…,根据上述规律,则第n 个等式为________.答案:13+23+33+43+…+n 3=⎣⎢⎡⎦⎥⎤n (n +1)22 解析:因为13=12,13+23=(1+2)2,13+23+33=(1+2+3)2,13+23+33+43=(1+2+3+4)2,…,由此可以看出左边是连续的自然数的立方和,右边是左边的连续的自然数的和的平方,照此规律,第n 个等式为13+23+33+43+…+n 3=(1+2+3+…+n)2=⎣⎢⎡⎦⎥⎤n (n +1)22. 4. 传说古希腊毕达哥拉斯学派的数学家经常在沙滩上通过画点或用小石子来表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{a n },将可被5整除的三角形数按从小到大的顺序组成一个新数列{b n },可以推测:(1) b 2 018是数列{a n }的第________项; (2) b 2k -1=________.(用k 表示)答案:(1) 5 045 (2) 5k (5k -1)2解析:(1) a n =1+2+…+n =n (n +1)2,b 1=4×52=a 4,b 2=5×62=a 5,b 3=9×(2×5)2=a 9,b 4=(2×5)×112=a 10,b 5=14×(3×5)2=a 14,b 6=(3×5)×162=a 15,…b 2 018=⎝ ⎛⎭⎪⎫2 0182×5⎝ ⎛⎭⎪⎫2 0182×5+12=a 5 045.(2) 由(1)知b 2k -1=⎝ ⎛⎭⎪⎫2k -1+12×5-1⎝ ⎛⎭⎪⎫2k -1+12×52=5k (5k -1)2.5. 某市为了缓解交通压力,实行机动车辆限行政策,每辆机动车每周一到周五都要限行一天,周末(周六和周日)不限行.某公司有A ,B ,C ,D ,E 五辆车,保证每天至少有四辆车可以上路行驶.已知E 车周四限行,B 车昨天限行,从今天算起,A ,C 两车连续四天都能上路行驶,E 车明天可以上路,由此可知下列推测一定正确的是__________.(填序号)① 今天是周六;② 今天是周四; ③ A 车周三限行;④ C 车周五限行. 答案:②解析:因为每天至少有四辆车可以上路行驶,E 车明天可以上路,E 车周四限行,所以今天不是周三;因为B 车昨天限行,所以今天不是周一,也不是周日;因为A ,C 两车连续四天都能上路行驶,所以今天不是周五,周二和周六,所以今天是周四,所以①错误,②正确.因为B 车昨天限行,即B 车周三限行,所以③错误.因为从今天算起,A 、C 两车连续四天都能上路行驶,所以④错误.1. 合情推理主要包括归纳推理和类比推理.数学研究中,在得到一个新的结论前,合情推理能帮助猜测和发现结论,在证明一个数学结论之前,合情推理常常能为证明提供思路和方法.2. 合情推理的过程概括为:从具体问题出发→观察、分析、比较、联想→归纳、类比→提出猜想.3. 演绎推理是从一般的原理出发,推出某个特殊情况的结论的推理方法,是由一般到特殊的推理,常用的一般模式是三段论,数学问题的证明主要通过演绎推理来进行.4. 合情推理仅是符合情理的推理,得到的结论不一定正确,而演绎推理得到的结论一定正确(在前提和推理形式都正确的前提下).[备课札记]第2课时 直接证明与间接证明(对应学生用书(文)、(理)104~105页)1. 已知向量m =(1,1)与向量n =(x ,2-2x)垂直,则x =________. 答案:2解析:m ·n =x +(2-2x)=2-x.∵ m ⊥n ,∴ m ·n =0,即x =2.2. 用反证法证明命题“如果a>b ,那么3a>3b ”时,假设的内容应为______________. 答案:3a =3b 或3a<3b解析:根据反证法的步骤,假设是对原命题结论的否定,即3a =3b 或3a<3b. 3. 6-22与5-7的大小关系是______________. 答案:6-22>5-7解析: 由分析法可得,要证6-22>5-7,只需证6+7>5+22,即证13+242>13+410,即42>210.因为42>40,所以6-22>5-7成立.4. 定义集合运算:A·B={Z|Z =xy ,x ∈A ,y ∈B},设集合A ={-1,0,1},B ={sin α,cos α},则集合A·B 的所有元素之和为________.答案:0解析:依题意知α≠k π+π4,k ∈Z .① α=k π+3π4(k∈Z )时,B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫22,-22,A ·B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫0,22,-22; ② α=2k π或α=2k π+π2(k∈Z )时,B ={0,1},A ·B ={0,1,-1}; ③ α=2k π+π或α=2k π-π2(k∈Z )时,B ={0,-1},A ·B ={0,1,-1};④ α≠k π2且α≠k π+3π4(k∈Z )时,B ={sin α,cos α},A ·B ={0,sin α,cosα,-sin α,-cos α}.综上可知,A ·B 中的所有元素之和为0.5. 设a ,b 为两个正数,且a +b =1,则使得1a +1b≥μ恒成立的μ的取值范围是________.答案:(-∞,4]解析:∵ a+b =1,且a ,b 为两个正数,∴ 1a +1b =(a +b)⎝ ⎛⎭⎪⎫1a +1b =2+b a +a b ≥2+2b a ·a b=4.要使得1a +1b≥μ恒成立,只要μ≤4.1. 直接证明(1) 定义:直接从原命题的条件逐步推得命题成立的证明方法. (2) 一般形式⎭⎪⎬⎪⎫本题条件已知定义已知公理已知定理⇒A ⇒B ⇒C ⇒…⇒本题结论.(3) 综合法① 定义:从已知条件出发,以已知的定义、公理、定理为依据,逐步下推,直到推出要证明的结论为止.这种证明方法称为综合法.② 推证过程已知条件⇒…⇒…⇒结论(4) 分析法① 定义:从问题的结论出发,追溯导致结论成立的条件,逐步上溯,直到使结论成立的条件和已知条件吻合为止.这种证明方法称为分析法.② 推证过程结论⇐…⇐…⇐已知条件2. 间接证明(1) 常用的间接证明方法有反证法、正难则反等. (2) 反证法的基本步骤① 反设——假设命题的结论不成立,即假定原结论的反面为真.② 归谬——从反设和已知条件出发,经过一系列正确的逻辑推理,得出矛盾结果.③存真——由矛盾结果,断定反设不真,从而肯定原结论成立.,1 直接证明(综合法和分析法)), 1) 对于定义域为[0,1]的函数f(x),如果同时满足: ① 对任意的x∈[0,1],总有f(x)≥0; ② f(1)=1;③ 若x 1≥0,x 2≥0,x 1+x 2≤1,都有f(x 1+x 2)≥f(x 1)+f(x 2)成立,则称函数f(x)为理想函数.(1) 若函数f(x)为理想函数,求证:f(0)=0;(2) 试判断函数f(x)=2x(x∈[0,1]),f(x)=x 2(x∈[0,1]),f(x)=x (x∈[0,1])是否为理想函数?(1) 证明:取x 1=x 2=0,则x 1+x 2=0≤1,∴ f(0+0)≥f(0)+f(0),∴ f (0)≤0. 又对任意的x∈[0,1],总有f(x)≥0,∴ f (0)≥0.于是f(0)=0.(2) 解:对于f(x)=2x ,x∈[0,1],f(1)=2不满足新定义中的条件②, ∴ f(x)=2x(x∈[0,1])不是理想函数.对于f(x)=x 2,x ∈[0,1],显然f(x)≥0,且f(1)=1.对任意的x 1,x 2∈[0,1],x 1+x 2≤1,f(x 1+x 2)-f(x 1)-f(x 2)=(x 1+x 2)2-x 21-x 22=2x 1x 2≥0,即f(x 1+x 2)≥f(x 1)+f(x 2).∴ f(x)=x 2(x∈[0,1])是理想函数.对于f(x)=x (x∈[0,1]),显然满足条件①②. 对任意的x 1,x 2∈[0,1],x 1+x 2≤1,有f 2(x 1+x 2)-[f(x 1)+f(x 2)]2=(x 1+x 2)-(x 1+2x 1x 2+x 2)=-2x 1x 2≤0,即f 2(x 1+x 2)≤[f(x 1)+f(x 2)]2.∴ f(x 1+x 2)≤f(x 1)+f(x 2),不满足条件③. ∴ f(x)=x (x∈[0,1])不是理想函数.综上,f(x)=x 2(x∈[0,1])是理想函数,f(x)=2x(x∈[0,1])与f(x)=x (x∈[0,1])不是理想函数.备选变式(教师专享)设首项为a 1的正项数列{a n }的前n 项和为S n ,q 为非零常数,已知对任意正整数n ,m ,S n +m =S m +q mS n 总成立.求证:数列{a n }是等比数列.证明:因为对任意正整数n ,m ,S n +m =S m +q mS n 总成立,令n =m =1,得S 2=S 1+qS 1,则a 2=qa 1.令m =1,得S n +1=S 1+qS n ①, 从而S n +2=S 1+qS n +1 ②,②-①得a n +2=qa n +1(n≥1),综上得a n +1=qa n (n≥1),所以数列{a n }是等比数列., 2) 已知m>0,a ,b ∈R ,求证:⎝ ⎛⎭⎪⎫a +mb 1+m 2≤a 2+mb 21+m . 证明:因为m>0,所以1+m>0,所以要证原不等式成立,只需证明(a +mb)2≤(1+m)(a 2+mb 2),即证m(a 2-2ab +b 2)≥0,即证(a -b)2≥0,而(a -b)2≥0显然成立, 故原不等式得证. 变式训练已知函数f(x)=3x-2x ,试求证:对于任意的x 1,x 2∈R ,均有f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22. 证明:要证明f (x 1)+f (x 2)2≥f ⎝ ⎛⎭⎪⎫x 1+x 22,只要证明(3x 1-2x 1)+(3x 2-2x 2)2≥3x 1+x 22-2·x 1+x 22,因此只要证明3x 1+3x 22-(x 1+x 2)≥3x 1+x 22-(x 1+x 2),即证明3x 1+3x 22≥3x 1+x 22,因此只要证明3x 1+3x 22≥3x 1·3x 2,由于x 1,x 2∈R 时,3x 1>0,3x 2>0,由基本不等式知3x 1+3x 22≥3x 1·3x 2显然成立,故原结论成立., 2 间接证明(反证法)), 3) 设{a n }是公比为q 的等比数列. (1) 推导{a n }的前n 项和公式;(2) 设q≠1,求证:数列{a n +1}不是等比数列.(1) 解:设{a n }的前n 项和为S n ,则S n =a 1+a 2+…+a n , 因为{a n }是公比为q 的等比数列,所以当q =1时,S n =a 1+a 1+…+a 1=na 1.当q≠1时,S n =a 1+a 1q +a 1q 2+…+a 1q n -1, ①qS n =a 1q +a 1q 2+…+a 1q n, ②①-②得,(1-q)S n =a 1-a 1q n,所以S n =a 1(1-q n)1-q ,所以S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q,q ≠1.(2) 证明:假设{a n +1}是等比数列,则对任意的k∈N *,(a k +1+1)2=(a k +1)(a k +2+1),a 2k +1+2a k +1+1=a k a k +2+a k +a k +2+1, a 21q 2k +2a 1q k =a 1q k -1·a 1q k +1+a 1q k -1+a 1q k +1,因为a 1≠0,所以2q k =q k -1+q k +1.因为q≠0,所以q 2-2q +1=0,所以q =1,这与已知矛盾.所以假设不成立,故{a n +1}不是等比数列. 变式训练已知数列{a n }的前n 项和为S n ,且满足a n +S n =2. (1) 求数列{a n }的通项公式;(2) 求证:数列{a n }中不存在三项按原来顺序成等差数列. (1) 解:当n =1时,a 1+S 1=2a 1=2,则a 1=1. 又a n +S n =2,所以a n +1+S n +1=2,两式相减得a n +1=12a n ,所以{a n }是首项为1,公比为12的等比数列,所以a n =12n -1.(2) 证明:反证法:假设存在三项按原来顺序成等差数列,记为a p +1,a q +1,a r +1(p<q<r ,且p ,q ,r ∈N *),则2·12q =12p +12r ,所以2·2r -q =2r -p+1 ①.因为p<q<r ,所以r -q ,r -p∈N *.所以①式左边是偶数,右边是奇数,等式不成立. 所以假设不成立,原命题得证.1. 用反证法证明命题“a,b ∈R ,ab 可以被5整除,那么a ,b 中至少有一个能被5整除”,假设的内容是____________.答案:a ,b 中没有一个能被5整除解析:“至少有n 个”的否定是“最多有n -1个”,故应假设a ,b 中没有一个能被5整除.2. 已知a ,b ,c ∈(0,+∞)且a <c ,b <c ,1a +9b=1.若以a ,b ,c 为三边构造三角形,则c 的取值范围是________.答案:(10,16)解析:要以a ,b ,c 为三边构造三角形,需要满足任意两边之和大于第三边,任意两边之差小于第三边,而a<c ,b<c ,所以a +b>c 恒成立.而a +b =(a +b)⎝ ⎛⎭⎪⎫1a +9b =10+b a +9a b ≥16,∴ c<16.又1a >1c ,1b >1c ,∴ 10c <1a +9b=1,∴ c>10,∴ 10<c<16.3. 已知a>0,求证:a 2+1a 2-2≥a +1a-2.证明:要证a 2+1a 2-2≥a +1a -2,只需要证a 2+1a 2+2≥a+1a+ 2.因为a>0,故只需要证⎝ ⎛⎭⎪⎫a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a +22,即a 2+1a2+4a 2+1a 2+4≥a 2+2+1a 2+22⎝ ⎛⎭⎪⎫a +1a +2,从而只需要证2a 2+1a 2≥2⎝ ⎛⎭⎪⎫a +1a ,只需要证4⎝⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2,而上述不等式显然成立,故原不等式成立.4. 若f(x)的定义域为[a ,b],值域为[a ,b](a<b),则称函数f(x)是[a ,b]上的“四维光军”函数.(1) 设g(x)=12x 2-x +32是[1,b]上的“四维光军”函数,求常数b 的值.(2) 是否存在常数a ,b(a>-2),使函数h(x)=1x +2是区间[a ,b]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.解:(1) 由题设得g(x)=12(x -1)2+1,其图象的对称轴为直线x =1,区间[1,b]在对称轴的右边,所以函数在区间[1,b]上单调递增.由“四维光军”函数的定义可知,g(1)=1,g(b)=b ,即12b 2-b +32=b ,解得b =1或b =3.因为b>1,所以b =3. (2) 假设函数h(x)=1x +2在区间[a ,b] (a>-2)上是“四维光军”函数,因为h(x)=1x +2在区间(-2,+∞)上单调递减,所以有⎩⎪⎨⎪⎧h (a )=b ,h (b )=a ,即⎩⎪⎨⎪⎧1a +2=b ,1b +2=a ,解得a =b ,这与已知矛盾,故不存在.1. 用反证法证明结论“三角形的三个内角中至少有一个不大于60°”,应假设______________.答案:三角形的三个内角都大于60°解析:“三角形的三个内角中至少有一个不大于60°”即“三个内角至少有一个小于等于60°”,其否定为“三角形的三个内角都大于60°”.2. 凸函数的性质定理:如果函数f(x)在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f (x 1)+f (x 2)+…+f (x n )n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n .已知函数y =sinx 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.答案:332解析:∵ f(x)=sin x 在区间(0,π)上是凸函数,且A ,B ,C ∈(0,π),∴ f (A )+f (B )+f (C )3≤f ⎝ ⎛⎭⎪⎫A +B +C 3=f ⎝ ⎛⎭⎪⎫π3, 即sin A +sin B +sin C ≤3sin π3=332,∴ sin A +sin B +sin C 的最大值为332.3. 定义:若存在常数k ,使得对定义域D 内的任意两个x 1,x 2(x 1≠x 2),均有|f(x 1)-f(x 2)|≤k|x 1-x 2| 成立,则称函数f(x)在定义域D 上满足利普希茨条件.若函数f(x)=x (x≥1)满足利普希茨条件,则常数k 的最小值为________.答案:12解析:若函数f(x)=x (x≥1)满足利普希茨条件,则存在常数k ,使得对定义域[1,+∞)内的任意两个x 1,x 2(x 1≠x 2),均有|f(x 1)-f(x 2)|≤k|x 1-x 2| 成立,设x 1>x 2,则k≥x 1-x 2x 1-x 2=1x 1+x 2.而0<1x 1+x 2<12,所以k 的最小值为12.4. 设函数f(x)=x 3+11+x ,x ∈[0,1].求证:(1) f(x)≥1-x +x 2;(2) 34<f(x)≤32.证明:(1) 因为1-x +x 2-x 3=1-(-x )41-(-x )=1-x 41+x ,由于x ∈[0,1],有1-x 41+x ≤1x +1,即1-x +x 2-x 3≤1x +1,所以f(x)≥1-x +x 2.(2) 由0≤x≤1得x 3≤x ,故f(x)=x 3+1x +1≤x +1x +1=x +1x +1-32+32=(x -1)(2x +1)2(x +1)+32≤32,所以f(x)≤32.由(1)得f(x)≥1-x +x 2=⎝ ⎛⎭⎪⎫x -122+34≥34,又f ⎝ ⎛⎭⎪⎫12=1924>34,所以f(x)>34. 综上,34<f(x)≤32.5. 已知数列{a n }满足a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0(n≥1),数列{b n }满足b n =a 2n +1-a 2n (n≥1).(1) 求数列{a n },{b n }的通项公式;(2) 求证:数列{b n }中的任意三项不可能成等差数列.(1) 解:由题意可知,1-a 2n +1=23(1-a 2n ).令c n =1-a 2n ,则c n +1=23c n .又c 1=1-a 21=34,则数列{c n }是首项为34,公比为23的等比数列,即c n =34·⎝ ⎛⎭⎪⎫23n -1.故1-a 2n =34·⎝ ⎛⎭⎪⎫23n -1⇒a 2n =1-34·⎝ ⎛⎭⎪⎫23n -1.又a 1=12>0,a n a n +1<0,故a n =(-1)n -11-34·⎝ ⎛⎭⎪⎫23n -1. b n =a 2n +1-a 2n=⎣⎢⎡⎦⎥⎤1-34·⎝ ⎛⎭⎪⎫23n -⎣⎢⎡⎦⎥⎤1-34·⎝ ⎛⎭⎪⎫23n -1 =14·⎝ ⎛⎭⎪⎫23n -1. (2) 证明:用反证法证明.假设数列{b n }中存在三项b r ,b s ,b t (r<s<t)按某种顺序成等差数列,由于数列{b n }是首项为14,公比为23的等比数列,于是有b r >b s >b t ,则只能有2b s =b r +b t 成立.即2·14⎝ ⎛⎭⎪⎫23s -1=14⎝ ⎛⎭⎪⎫23r -1+14⎝ ⎛⎭⎪⎫23t -1,两边同乘3t -121-r,化简得3t -r +2t -r =2·2s -r 3t -s.由于r<s<t ,则上式左边为奇数,右边为偶数, 故上式不可能成立,导致矛盾.故数列{b n }中任意三项不可能成等差数列.[备课札记]。

相关文档
最新文档