2020高考数学刷题首选第六章立体几何考点测试41空间几何体的表面积和体积文含解析5

合集下载

2020高考数学总复习空间几何体的表面积和体积PPT课件

2020高考数学总复习空间几何体的表面积和体积PPT课件
空间几何体的表面积和体积
1.圆柱、圆锥、圆台的侧面展开图及侧面积公式
圆柱
圆锥
圆台
侧面 展开图
侧面积公式 S 圆柱侧=2πrl S 圆锥侧=πrl
S = 圆台侧 π(r+r′)l
2.多面体的侧面积和表面积 因为多面体的各个面都是平面,所以多面体的侧面积就是侧 面展开图的面积,表面积是侧面积与底面积的和.
A.17 27
B.5 C.10 D.1
9
27
3
(2)若某几何体的三视图(单位:cm)如图所示,则此几何体的 体积等于________cm3.
(3)三棱锥 P-ABC 中,D,E 分别为 PB,PC 的中点,记三棱

D-ABE
的体积为
V 1,P-A B C
的体积为
V
2,则VV
1=________.
2
又∵长方体表面积重叠一部分, ∴几何体的表面积为232+152-2×6×2=360.
1.空间几何体的体积是每年高考的热点,题型为选择题和填 空题.
2.高考对空间几何体的体积的考查常有以下几个命题角度: (1)求简单几何体的体积; (2)求组合体的体积; (3)求以三视图为背景的几何体的体积.
[例 2] (1)如图,网格纸上正方形小格的边长为 1(表示 1 cm), 图中粗线画出的是某零件的三视图,该零件由一个底面半径为 3 cm,高为 6 cm 的圆柱体毛坯切削得到,则切削掉部分的体积与 原来毛坯体积的比值为( )
2.直角三角形两直角边 AB=3,AC=4,以 AB 为轴旋转一
周所得的几何体的体积为( )
A.12π
B.16π
C.9π
D.24π
解析:选 B 以 AB 为轴旋转一周所得到的几何体为圆

2020高考数学刷题首秧第六章立体几何考点测试41空间几何体的表面积和体积文含解析

2020高考数学刷题首秧第六章立体几何考点测试41空间几何体的表面积和体积文含解析

考点测试41 空间几何体的表面积和体积高考概览高考中本考点常见题型为选择题、填空题,分值为5分,中等难度 考纲研读球体、柱体、锥体、台体的表面积和体积计算公式一、基础小题1.若球的半径扩大为原来的2倍,则它的体积扩大为原来的( ) A .2倍 B .4倍 C .8倍 D .16倍 答案 C解析 设原来球的半径为r ,则现在球的半径为2r ,则V 原=43πr 3,V 现=43π·(2r )3,故V 现=8V 原.故选C .2.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π 答案 C解析 设正方体的棱长为a ,则a 3=8,∴a =2.而此正方体的内切球直径为2,∴S 表=4πr 2=4π.3.如图,一个空间几何体的正视图、侧视图都是面积为32,一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为( )A .2 3B .4 3C .8D .4 答案 D解析 由三视图知,原几何体为两个四棱锥的组合体,其中四棱锥的底面边长为1,斜高为1,所以这个几何体的表面积为S =12×1×1×8=4.4.一个直三棱柱的三视图如图所示,其中俯视图是正三角形,则此三棱柱的体积为( )A .32B . 3C .2D .4 答案 B解析 由侧视图可知直三棱柱底面正三角形的高为3,容易求得正三角形的边长为2,所以底面正三角形面积为12×2×3=3.再由侧视图可知直三棱柱的高为1,所以此三棱柱的体积为3×1=3.故选B .5.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A .a 2B .3πa 3πC .23πa 3πD .23a 3π答案 C解析 设圆锥的底面半径为r ,母线长为l ,由题意知,2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3答案 B解析 由三视图可知,该几何体是一个直三棱柱ABC -A 1B 1C 1截去一个三棱锥B 1-ABC ,则该几何体的体积为V =12×3×4×5-13×12×3×4×5=20(cm 3).故选B .7.某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163 D .6答案 B解析 依题意,所求几何体是一个四棱台,其中上底面是边长为1的正方形、下底面是边长为2的正方形,高是2,因此其体积等于13×(12+22+1×4)×2=143.故选B .8.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的表面积为( )A .24+(2-1)πB .24+(22-2)πC .24+(5-1)πD .24+(23-2)π 答案 B解析 如图,由三视图可知,该几何体是棱长为2的正方体挖出两个圆锥体所得.由图中知圆锥的半径为1,母线为2,该几何体的表面积为S =6×22-2π×12+2×12×2π×1×2=24+(22-2)π,故选B .9.已知一个几何体的三视图如图所示,则其体积为( )A .10+πB .2+π2C .2+π12D .2+π4答案 D解析 根据几何体的三视图还原其直观图如图所示,显然可以看到该几何体是一个底面长为2,宽为1,高为1的正棱柱与一个底面半径为1,高为1的14圆柱组合而成,其体积为V =2×1×1+14×π×12×1=2+π4,故选D .10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 答案 3解析 由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V142π=588π196π=3(寸). 11.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.答案26解析 易知该几何体是正四棱锥.连接BD ,设正四棱锥P -ABCD ,由PD =PB =1,BD =2,则PD ⊥PB .设底面中心O ,则四棱锥高PO =22,则其体积是V =13Sh =13×12×22=26. 12.如图,在平面四边形ABCD 中,已知AB ⊥AD ,AB =AD =1,BC =CD =5,以直线AB 为轴,将四边形ABCD 旋转一周,则所得旋转体的体积为________.答案 12π解析 由题意,该旋转体是一圆台内部挖去一个圆锥,如图1所示:如图2,过点C 作CE ⊥AB ,连接BD .在等腰直角三角形ABD 中,BD =AD 2+AB 2=2. 在△BDC 中,CD 2=BD 2+BC 2-2BD ·BC cos ∠DBC , 所以25=2+25-102cos ∠DBC ,所以cos ∠DBC =210,所以sin ∠DBC =1-cos 2∠DBC=7210. 因为∠CBE =180°-∠ABD -∠DBC =135°-∠DBC ,所以sin ∠CBE =sin(135°-∠DBC )=22cos ∠DBC +22sin ∠DBC =45.在Rt △BCE 中,CE =BC sin ∠CBE =4,所以BE =BC 2-CE 2=3,AE =4.所以圆台上、下底面圆的面积分别为S 上=π,S 下=16π,圆台体积V 1=13(S 上+S 下+S 上S 下)·AE =28π,圆锥体积V 2=13×16π×3=16π,所以旋转体体积V =V 1-V 2=12π.二、高考小题13.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π 答案 B解析 由三视图可知两个同样的几何体可以拼成一个底面直径为6,高为14的圆柱,所以该几何体的体积V =12×32×π×14=63π.故选B .14.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 答案 C解析 由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上、下底边的长分别为1 cm,2 cm ,高为2 cm ,直四棱柱的高为2 cm .故直四棱柱的体积V =1+22×2×2=6 cm 3.15.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π 答案 B解析 根据题意,可得截面是边长为22的正方形,结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为S =2π(2)2+2π×2×22=12π.故选B .16.(2018·全国卷Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3 答案 C解析 在长方体ABCD -A 1B 1C 1D 1中,连接BC 1,根据线面角的定义可知∠AC 1B =30°,因为AB =2,AB BC 1=tan30°,所以BC 1=23,从而求得CC 1=BC 21-BC 2=22,所以该长方体的体积为V =2×2×22=82.故选C .17.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3答案 B解析 如图所示,点M 为三角形ABC 的重心,E 为AC 的中点,当DM ⊥平面ABC 时,三棱锥D -ABC 体积最大,此时,OD =OB =R =4.∵S △ABC =34AB 2=93, ∴AB =6,∵点M 为三角形ABC 的重心,∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=183.故选B .18.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若△SAB 的面积为8,则该圆锥的体积为________.答案 8π解析 如图所示,∠SAO =30°,∠ASB =90°,又S △SAB =12SA ·SB =12SA 2=8,解得SA =4,所以SO =12SA =2,AO =SA 2-SO 2=23,所以该圆锥的体积为V =π3·OA 2·SO =8π. 19.(2018·天津高考)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.答案112解析 由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M -EFGH 的体积V =13×12×12=112.20.(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案 43解析 多面体由两个完全相同的正四棱锥组合而成,其中正四棱锥的底面边长为2,高为1,∴其体积为13×(2)2×1=23,∴多面体的体积为43.三、模拟小题21.(2018·邯郸摸底)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n 个面是矩形,体积为V ,则( )A .n =4,V =10B .n =5,V =12C .n =4,V =12D .n =5,V =10答案 D解析 由三视图可知,该几何体为直五棱柱,其直观图如图所示,故n =5,体积V =2×22+12×2×1=10.故选D .22.(2018·福州模拟)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D解析 如图,可知球的半径R =OH 2+AH 2=12+(3)2=2,进而这个球的表面积为4πR 2=16π.故选D .23.(2018·合肥质检一)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6 答案 C解析 该几何体的表面积是由球的表面积、球的大圆面积、半个圆柱的侧面积以及圆柱的纵切面面积组成.从而该几何体的表面积为4π×12+π×12+12×2π×3+3×2=8π+6.故选C .24.(2018·石家庄质检二)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A .83B .3C .8D .53 答案 A解析 根据三视图还原该几何体的直观图,如图中四棱锥P -ABCD 所示,则V P -ABCD =V P-AFGD+(V AFB -DEC -V G -ECD )=13×(1+2)×22×1+12×1×2×2-13×12×1×2×1=83.故选A .25.(2018·合肥质检三)我国古代的《九章算术》中将上、下两面为平行矩形的六面体称为“刍童”.如图所示为一个“刍童”的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该“刍童”的表面积为( )A .12 5B .40C .16+12 3D .16+12 5 答案 D解析 易得侧面梯形的高为22+12=5,所以一个侧面梯形的面积为12×(2+4)×5=35.故所求为4×35+2×(2×4)=125+16.故选D .26.(2018·福建质检)已知底面边长为42,侧棱长为25的正四棱锥S -ABCD 内接于球O 1.若球O 2在球O 1内且与平面ABCD 相切,则球O 2的直径的最大值为________.答案 8解析 如图,正四棱锥S -ABCD 内接于球O 1,SO 1与平面ABCD 交于点O .在正方形ABCD 中,AB =42,AO =4.在Rt △SAO 中,SO =SA 2-OA 2=(25)2-42=2.设球O 1的半径为R ,则在Rt △OAO 1中,(R -2)2+42=R 2,解得R =5,所以球O 1的直径为10.当球O 2与平面ABCD 相切于点O 且与球O 1相切时,球O 2的直径最大.又因为SO =2,所以球O 2的直径的最大值为10-2=8.一、高考大题1.(2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大? 解 (1)由PO 1=2知,O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3).正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a m ,PO 1=h m , 则0<h <6,O 1O =4h . 连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎪⎫22a 2+h 2=36, 即a 2=2(36-h 2). 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h=263(36h -h 3),0<h <6, 从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 m 时,仓库的容积最大.2.(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解 (1)证明:由已知可得∠BAC =90°,即AB ⊥AC . 又AB ⊥DA ,且AC ∩DA =A ,所以AB ⊥平面ACD . 又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =AC =3,DA =32. 又BP =DQ =23DA ,所以BP =22.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q -ABP 的体积为V 三棱锥Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin45°=1.二、模拟大题3.(2018·武昌调研)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由PA 1=PD 1=2,A 1D 1=AD =2,可得PA 1⊥PD 1. 故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).4.(2018·浙江杭州一模)已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,各侧面是全等的等腰梯形,且各侧面的面积之和等于两底面面积之和,求棱台的体积.解 如图所示,在三棱台ABC -A ′B ′C ′中,O ′,O 分别为上、下底面的中心,D ,D ′分别是BC ,B ′C ′的中点,则DD ′是等腰梯形BCC ′B ′的高,又C ′B ′=20 cm ,CB =30 cm ,所以S 侧=3×12×(20+30)×DD ′=75DD ′.S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75DD ′=3253, 所以DD ′=1333(cm),又因为O ′D ′=36×20=1033(cm), OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm),由棱台的体积公式,可得棱台的体积为V =h3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30 =1900(cm 3).故棱台的体积为1900 cm 3.。

2020版高考数学 立体几何第1讲空间几何体的三视图、表面积及体积练习(文)(含解析)

2020版高考数学 立体几何第1讲空间几何体的三视图、表面积及体积练习(文)(含解析)

第1讲 空间几何体的三视图、表面积及体积A 级 基础通关一、选择题1.半径为R 的半圆卷成一个圆锥,则它的体积为( ) A.525πR 3B.324πR 3C.58πR 3D.38πR 3 解析:设圆锥的底面圆的半径为r ,高为h , 由2πr =πR ,得r =R2,因此h =R 2-r 2=32R . 所以V 圆锥=13πr 2·h =13π·⎝ ⎛⎭⎪⎫R 22·32R =324πR 3.答案:B2.(2018·北京卷)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为( )A .1B .2C .3D .4解析:由三视图得到空间几何体,如图所示,则PA ⊥平面ABCD ,平面ABCD 为直角梯形,PA =AB =AD =2,BC =1,所以PA ⊥AD ,PA ⊥AB ,PA ⊥BC .又BC ⊥AB ,AB ∩PA =A ,所以BC ⊥平面PAB ,所以BC ⊥PB .在△PCD 中,PD =22,PC =3,CD =5,所以△PCD 为锐角三角形.所以侧面中的直角三角形为△PAB ,△PAD ,△PBC ,共3个.答案:C3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .8+3πB .8+4πC .8+5πD .8+6π解析:由题图可知,几何体为半圆柱挖去半球体,几何体的表面积为2×π2×4+π+2×4-π+4π2=8+6π.答案:D4.中国古代数学名著《九章算术》中,将底面是直角三角形的直棱柱称为“堑堵”.已知“堑堵”的正视图和俯视图如图所示,则该“堑堵”的侧视图的面积为( )A .18 6B .18 3C .18 2D.2722解析:在俯视图Rt △ABC 中,作AH ⊥BC 交于点H .由三视图的意义,则BH =6,HC =3,根据射影定理,AH 2=BH ·HC ,所以AH =3 2.易知该“堑堵”的侧视图是矩形,长为6,宽为AH =32,故侧视图的面积S =6×32=18 2.答案:C5.(2019·青岛二中检测)某几何体的三视图如图所示,则该几何体的体积为( )A .6B .4C.223D.203解析:由三视图知该几何体是边长为2的正方体挖去一个三棱柱(如图),且挖去的三棱柱的高为1,底面是等腰直角三角形,等腰直角三角形的直角边长为2,故几何体体积V =23-12×2×2×1=6.答案:A6.(2017·全国卷Ⅲ)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB.3π4C.π2D.π4解析:设圆柱的底面半径为r ,球的半径为R ,且R =1, 由圆柱两个底面的圆周在同一个球的球面上可知,r ,R 及圆柱的高的一半构成直角三角形.所以r =12-⎝ ⎛⎭⎪⎫122=32.所以圆柱的体积为V =πr 2h =34π×1=3π4.故选B.答案:B 二、填空题7.(2019·江苏卷)如图,长方体ABCD-A 1B 1C 1D 1的体积是120,E 为CC 1的中点,则三棱锥E-BCD 的体积是________.解析:设长方体中BC =a ,CD =b ,CC 1=c ,则abc =120,所以V EBCD =13×12ab ×12c =112abc =10.答案:108.(2018·浙江卷改编)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)为________.解析:由三视图可知,该几何体是一个底面为直角梯形的直四棱柱,所以该几何体的体积V =12×(1+2)×2×2=6.答案:69.(2017·北京卷改编)某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为________.解析:根据三视图可得该四棱锥的直观图(四棱锥P-ABCD)如图所示,将该四棱锥放入棱长为2的正方体中.由图可知该四棱锥的最长棱为PD,PD=22+22+22=2 3.答案:2 310.(2019·惠州调研)已知一张矩形白纸ABCD,AB=10,AD=102,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,使A,C重合于点P,则三棱锥PDEF的外接球的表面积为________.解析:三棱锥P-DEF中,PD2+PF2=CD2+CF2=DF2,所以∠DPF=90°,且DF2=102+(52)2=150.又∠DEF=90°,所以DF的中点为三棱锥PDEF的外接球的球心,则2R=DF,故球的表面积S=4πR2=150π.答案:150πB级能力提升11.(2019·雅礼中学质检)一个几何体的三视图如图所示,则该几何体的体积为( )A.5π3B .5C.2π3D .π解析:由三视图可知,该几何体是一个组合体,它由半个圆锥与四分之一球体组成,其中圆锥的底面半径为1,高为2,体积为12×13×π×12×2=π3;球的半径为1,体积为14×43π×13=π3.所以该几何体的体积V =π3+π3=2π3.答案:C12.我国齐梁时代的数学家祖暅提出了一条原理:“幂势既同,则积不容异”.意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体的体积相等.椭球体是椭圆绕其轴旋转所成的旋转体.如图,将底面直径都为2b ,高皆为a 的椭半球体和已被挖去了圆锥体的圆柱放置于同一平面β上,用平行于平面β且与平面β任意距离d 处的平面截这两个几何体,可横截得到S 圆及S 环两截面.可以证明S 圆=S 环总成立.据此,半短轴长为1,半长轴长为3的椭球体的体积是________.解析:因为S 圆=S 环总成立,则半椭球体的体积为πb 2a -13πb 2a =23πb 2a .所以椭球体的体积V =43πb 2a .因为椭球体半短轴长为1,半长轴长为3即b =1,a =3. 故椭球体的体积V =43πb 2a =4π.答案:4π13.在《九章算术》中,将底面为矩形且有一条侧棱与底面垂直的四棱锥称之为阳马.如图,若四棱锥P-ABCD 为阳马,侧棱PA ⊥底面ABCD ,且PA =3,BC =AB =4,设该阳马的外接球半径为R ,内切球半径为r ,则R =________,内切球的体积V =________.解析:在四棱锥P-ABCD 中,侧棱PA ⊥底面ABCD ,且底面为矩形,将该“阳马”补成长方体,则(2R )2=AB 2+AD 2+AP 2=16+16+9=41. 因此R =412. 依题意Rt △PAB ≌Rt △PAD ,则内切球O 在侧面PAD 内的正视图是△PAD 的内切圆,且该内切圆与△PAB 的内切圆全等.故内切球的半径r =12(3+4-5)=1,则V =43πr 3=43π.答案:412 43π 14.(2017·全国卷Ⅰ)已知三棱锥S ­ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S ­ABC 的体积为9,则球O 的表面积为________.解析:如图,连接OA ,OB .由SA =AC ,SB =BC ,SC 为球O 的直径,知OA ⊥SC ,OB ⊥SC . 由平面SCA ⊥平面SCB , 平面SCA ∩平面SCB =SC , 所以OA ⊥平面SCB . 设球O 的半径为r ,则OA =OB =r ,SC =2r ,所以三棱锥S ­ABC 的体积V =13×⎝ ⎛⎭⎪⎫12SC ·OB ·OA =r 33, 即r 33=9,所以r =3,所以S 球表=4πr 2=36π. 答案:36π。

2020届高考数学专题:立体几何计算问题(答案不全)

2020届高考数学专题:立体几何计算问题(答案不全)

立体几何中的计算问题1.三视图——是观察者从三个不同位置观察同一个空间几何体而画出的图形;2.直观图——是观察着站在某一点观察一个空间几何体而画出的图形。

直观图通常是在平行投影下画出的空间图形。

3斜二测法:1.画直观图时,把它画成对应的轴'',''o x o y ,取'''45(135)x o y o r ∠=︒︒,它们确定的平面表示水平平面;2.在坐标系'''x o y 中画直观图时,已知图形中平行于数轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。

结论:一般地,采用斜二测法作出的直观图面积是原平面图形面积的4倍. 例1.下列命题:①如果一个几何体的三视图是完全相同的,那么这个几何体是正方体;②如果一个几何体的主视图和俯视图都是矩形,那么这个几何体是长方体; ③如果一个几何体的三视图都是矩形,那么这个几何体是长方体;④如果一个几何体的主视图和左视图都是等腰梯形,那么这个几何体是圆台.其中正确的是( )A .①②B .③C .②③D .④ 2、异面直线所成的角(1)定义:a 、b 是两条异面直线,经过空间任意一点O ,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a 和b 所成的角.(2)取值范围:0°<θ≤90°. (3)求解方法①根据定义,通过平移,找到异面直线所成的角θ; ②解含有θ的三角形,求出角θ的大小.例2.在长方体1111ABCD A B C D -中,11BC CC ==,13AD B π∠=,则直线1AB 与1BC 所成角的余弦值为( )ABCD【答案】D例3.直三棱柱ABC ﹣A 1B 1C 1中,若∠BAC=90°,AB=AC=AA 1,则异面直线 BA 1与AC 1所成的角为( ) A .60°B .90°C .120°D .150°例4.在四面体ABCD 中,AC 与BD 的夹角为30°,2AC =,BD =M ,N 分别是AB ,CD 的中点,则线段MN 的长度为________. 【答案】13.二面角 找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法 (iii)三垂线法(Ⅳ)根据特殊图形的性质 (4)求二面角大小的常见方法先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.例5.已知正三棱锥底面边长为2,侧棱长为3,则它的侧面与底面所成二面角的余弦值为________.【答案】12例6.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,E .F 分别为1A B ,1A C 的中点,D 为11B C 上的点,且11A D B C ⊥.(1)求证://EF 平面ABC . (2)求证:平面1A FD ⊥平面11BCC B .(3)若三棱柱所有棱长都为a ,求二面角111A B C C --的平面角的余弦值.【答案】(1)见解析;(2)见解析;(3)74.空间几何体的表面积、体积棱柱、棱锥的表面积:各个面面积之和圆柱的表面积 :222S rl r ππ=+ 圆锥的表面积:2S rl r ππ=+圆台的表面积:22Srl r Rl Rππππ=+++扇形的面积公式2211=36022n R S lr r πα==扇形(其中l 表示弧长,r 表示半径,α表示弧度) 空间几何体的体积柱体的体积 :V S h =⨯底,锥体的体积 :13V S h =⨯底台体的体积 :1)3V S S h =+⨯下上( ,球体的体积:343V R π= 点到平面的距离(1)定义 面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法: 1)直接利用定义求①找到(或作出)表示距离的线段; ②抓住线段(所求距离)所在三角形解之.2)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.例8.在长、宽、高分别为a b c ,,的长方体中,以它的各面的中心为顶点可得到一个八面体,则该八面体的体积为________.【答案】16abc例9.如图,在上、下底面对应边的比为1:2的三棱台中,过上底面的一边作一个平行于棱的平面11A B EF ,则这个平面分三棱台成两部分的体积之比为( ).A .1:2B .2:3C .3:4D .4:5【答案】C例10.如图,在四棱锥P —ABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,PA=AD=4,AB=2,以BD 的中点O 为球心、BD 为直径的球面交PD 于点M.⑴求证:平面ABM ⊥平面PCD ; (2)求点O 到平面ABM 的距离.【答案】(1)见解析(2)3例11.如图,已知多面体EABCDF的底面ABCD是边长为2的正方形,EA⊥底面ABCD,//FD EA,且112FD EA==.(1)求多面体EABCDF的体积;(2)记线段BC的中点为K,在平面ABCD内过点K作一条直线与平面ECF平行,要求保留作图痕迹,但不要求证明.【答案】(1)103V=多面体;(2)见解析.5.与球有关的组合体7-2 球的结构特征⑴球心与截面圆心的连线垂直于截面;⑵截面半径等于球半径与截面和球心的距离的平方差:r2 = R2– d2★7-3 球与其他多面体的组合体的问题球体与其他多面体组合,包括内接和外切两种类型,解决此类问题的基本思路是:⑴根据题意,确定是内接还是外切,画出立体图形;⑵找出多面体与球体连接的地方,找出对球的合适的切割面,然后做出剖面图;⑶将立体问题转化为平面几何中圆与多边形的问题;例11.已知棱长为a的正四面体,其内切球的半径为r,外接球的半径为R,则:r R= ________.【答案】1:3例12.已知棱长为a的正方体,甲球是正方体的内切球,乙球是正方体的外接球,丙球与正方体的各棱都相切,则甲、乙、丙三球的表面积之比为().A.91:3:4B.1:3:2C.D.31:2【答案】B例13.已知,,,S A B C是球O表面上的点,SA⊥平面,,1,ABC AB BC SA AB BC⊥===则球O的体积为__________.例14.已知一个高为16的圆锥内接于一个体积为972π的球,在圆锥内又有一个内切球.求:圆锥内切球的体积.(2)2563Vπ=立体几何中的计算问题一、三视图1.将正方形(如图1所示)截去两个三棱锥,得到图2所示的几何体,则该几何体的左视图为()A.B.C.D.【答案】B2.如图所示,A O B '''∆表示水平放置的AOB ∆的直观图,B '在x '轴上,A O ''与x '轴垂直,且2A O ''=,则AOB ∆的OB 边上的高为______.【答案】二、线线角3.已知直三棱柱111ABC A B C -的所有棱长都相等,M 为11A C 的中点,则AM 与1BC 所成角的余弦值为( ) A.3B.3C.4D.4【答案】D4.如图所示为一个正方体的展开图.对于原正方体,给出下列结论: ①AB 与EF 所在直线平行; ②AB 与CD 所在直线异面; ③MN 与BF 所在直线成60︒角;④MN 与CD 所在直线互相垂直. 其中正确结论的序号是________. 【答案】②④5.如图,在三棱柱111ABC A B C -中,1AA ⊥平面ABC ,1AA AB AC ==,AB AC ⊥,M 是1CC 的中点,Q 是BC 的中点,点P 在11A B 上,则直线PQ 与直线AM 所成的角为( ). A .30° B .45︒C .60︒D .90︒【答案】D 三、二面角问题二面角:关键是找出二面角的平面角。

高考数学专题《空间几何体的表面积和体积》习题含答案解析

高考数学专题《空间几何体的表面积和体积》习题含答案解析

专题8.2 空间几何体的表面积和体积1.(2021·湖南高一期末)已知圆柱1OO 及其展开图如图所示,则其体积为( )A .πB .2πC .3πD .4π【答案】D【解析】 结合展开图求出圆柱的底面半径与高,进而结合体积公式即可求出结果.【详解】设底面半径为r ,高为h ,根据展开图得422h r ππ=⎧⎨=⎩,则41h r =⎧⎨=⎩,所以圆柱的体积为22144r h πππ=⨯⨯=, 故选:D.2.(2021·宁夏大学附属中学高一月考)已知圆柱的上、下底面的中心分别为,O O ',过直线OO '的平面截该圆柱所得的面是面积为8的正方形,则该圆柱的表面积为( )A .B .12πC .D .10π【答案】B【解析】根据圆柱的轴截面面积求出圆柱的底面半径和母线长,利用圆柱的表面积公式,即可求解.【详解】设圆柱的轴截面的边长为x ,因为过直线OO '的平面截该圆柱所得的面是面积为8的正方形,所以28x =,解得x = 即圆柱的底面半径为r =l =所以圆柱的表面积为222222212S S S r rl πππππ=+=+=⨯+侧底. 练基础故选:B.3.(2021·浙江高二期末)某几何体的三视图如图所示,则该几何体的体积是()A.13B.16C.12D.14【答案】D【解析】首先把三视图转换为几何体的直观图,进一步求出几何体的体积.【详解】解:根据几何体的三视图转换为直观图为:该几何体为底面为直角梯形,高为1的四棱锥体;如图所示:所以:1111(1)113224V=⨯⨯+⨯⨯=.故选:D.4.(2021·辽宁高一期末)已知一平面截一球得到直径为,则该球的体积为()3cmA .12πB .36πC .D .108π【答案】B【解析】 由球的截面性质求得球半径后可得体积.【详解】由题意截面圆半径为r =3R =, 体积为334433633V R πππ==⨯=. 故选:B .5.(2020·浙江省高考真题)某几何体的三视图(单位:cm )如图所示,则该几何体的体积(单位:cm 3)是( )A .73B .143C .3D .6【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为:11117211212232233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+= ⎪ ⎪⎝⎭⎝⎭. 故选:A6.(2018·全国高考真题(文))已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .B .12πC .D .10π【答案】B【解析】根据题意,可得截面是边长为的圆,且高为所以其表面积为22212S πππ=+=,故选B.7.(2020·江苏省高考真题)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是____cm.【答案】2π【解析】正六棱柱体积为262⨯圆柱体积为21()222ππ⋅=所求几何体体积为2π故答案为: 2π9.(2019·北京高考真题(文))某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40.【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,几何体的体积()3142424402V =-+⨯⨯=. 10.(2019·全国高考真题(理))中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.【答案】共26个面..【解析】由图可知第一层与第三层各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有个面.如图,设该半正多面体的棱长为,则,延长与交于点,延长交正方体棱于,由半正多面体对称性可知,为等腰直角三角形,,.1.(2021·浙江高一期末)我国古代数学名著《九章算术》中记载“今有羡除,下广六尺,上广一丈,深三尺,118826+=x AB BE x ==BC FE G BC H BGE ∆,21)122BG GE CH x GH x x x ∴===∴=⨯+==1x ∴==1练提升末广八尺,无深,袤七尺.问积几何?”这里的“羡除”,是指由三个等腰梯形和两个全等的三角形围成的五面体.在图1所示羡除中,////AB CD EF ,10AB =,8CD =,6EF =,等腰梯形ABCD 和等腰梯形ABFE 的高分别为7和3,且这两个等腰梯形所在的平面互相垂直.按如图2的分割方式进行体积计算,得该“羡除”的体积为( )A .84B .66C .126D .105【答案】A【解析】 由图可知,中间部分为棱柱,两侧为两个全等的四棱锥,再由柱体和锥体的体积公式可求得结果.【详解】按照图2中的分割方式,中间为直三棱柱,直三棱柱的底面为直角三角形,两条直角边长分别为7、3,直三棱柱的高为6, 所以,直三棱柱的体积为11736632V =⨯⨯⨯=. 两侧为两个全等的四棱锥,四棱锥的底面为直角梯形,直角梯形的面积为()1272122S +⨯==,四棱锥的高为3h =, 所以,两个四棱锥的体积之和为2121232132V =⨯⨯⨯=, 因此,该“羡除”的体积为1284V V V =+=.故选:A.2.(2021·河北巨鹿中学高一月考)蹴鞠(如图所示),又名蹴球、蹴圆、筑球、踢圆等,蹴有用脚蹴、踢的含义,鞠最早系外包皮革、内实米糠的球.因而蹴鞠就是指古人以脚蹴、塌、踢皮球的活动,类似今日的足球.2006年5月20日,蹴鞠已作为非物质文化遗产经国务院批准列入第一批国家非物质文化遗传名录.已知某蹴鞠(近似看作球体)的表面上有四个点S 、A 、B 、C ,满足S ABC -为正三棱锥,M 是SC 的中点,且AM SB ⊥,侧棱1SA =,则该蹴鞠的表面积为( )A .3πB .6πC .12πD .16π【答案】A【解析】 若ASB θ∠=,N 为BC 中点易得AM MN ⊥,再应用余弦定理、勾股定理求得2πθ=,即S ABC -为直三棱锥,即可求外接球半径,进而求表面积.【详解】如下图,若N 为BC 中点,则//MN SB ,又AM SB ⊥,∴AM MN ⊥,又S ABC -为正三棱锥且侧棱1SA =,∴1,2MN AN AB ==,若ASB θ∠=,则25cos 4AM θ=-,222cos AB θ=-, 在Rt AMN △中,222AM MN AN +=,即()33cos 22cos 24θθ-=-,可得cos 0θ=,0θπ<<,∴2πθ=,即S ABC -为直三棱锥,易得外接球半径R ∴该蹴鞠的表面积为243R ππ=.故选:A3.【多选题】(2021·江苏高一期末)已知圆台上、下底面的圆心分别为1O ,2O ,半径为2,4,圆台的母线与下地面所成角的正切值为3,P 为12O O 上一点,则( )A .圆台的母线长为6B .当圆锥的1PO 圆锥2PO 的体积相等时,124PO PO =C .圆台的体积为56πD .当圆台上、下底面的圆周都在同一球面上,该球的表面积为80π【答案】BCD【解析】转化求解圆台的母线长判断Q ;利用比例关系判断B ;求解体积判断C ;取得球的表面积判断D .【详解】解:圆台上、下底面的圆心分别为1O ,2O ,半径为2,4,圆台的母线与下底面所成角的正切值为3,P 为12O O 上一点,3(42)6h =⨯-=,母线l =6矛盾,所以A 错误;1212r r =,124PO PO =,B 正确;16(416)563V πππ=⨯⨯=,C 正确; 设球心到上底面的距离为x ,则22222(6)4x x +=-+,解得4x =,r =80S π=,D 正确;故选:BCD .4.(2020·全国高考真题(文))已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,其中2,3BC AB AC ===,且点M 为BC 边上的中点,设内切圆的圆心为O ,由于AM =122S =⨯⨯△ABC 设内切圆半径为r ,则: ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯ ()13322r =⨯++⨯=解得:22r ,其体积:3433V r π==.. 5.(2020届浙江省杭州市高三3月模拟)在《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称为“阳马”.现有一“阳马”P ABCD -,PA ⊥底面ABCD ,2PA AB ==,1AD =,则该“阳马”的最长棱长等于______;外接球表面积等于______.【答案】3 9π【解析】如图,PA ⊥底面ABCD ,底面ABCD 为长方形,且2PA AB ==,1AD =,所以PB PD ==3PC ===. 最长棱为:3. 该几何体可以通过补体得长方体,所以其外接球的半径为1322PC =. 则其外接球的表面积为23492ππ⎛⎫⨯= ⎪⎝⎭,故答案为:3;9π.6.(2020·山东省仿真联考3)在三棱锥中,平面,,,,P ABC -PA ⊥ABC 23BAC π∠=3AP =AB =是上的一动点,且直线与平面所成角的最大值为,则________,三棱锥的外接球的表面积为________.【答案】6【解析】 设直线与平面所成的角为,三棱锥外接球的球心为,半径为,如图所示,则, 所以,则的最小值为,即点到.因为, 所以,所以所以, 所以.取的外接圆的圆心为,则圆的半径连接,作于点, 则点为的中点,所以, 故三棱锥的外接球的表面积.故答案为:6;.Q BCPQ ABC 3πBC =P ABC -57πPQ ABC θP ABC -O R 30sin 2PA PQ PQ θ<==≤PQ ≥PQ AQ A BC 3BAQ π∠=23BAC π∠=3CAQ π∠=AB AC ==2222222cos 23BC AB AC AB AC π=+-⋅⋅=+-⨯1362⎛⎫⨯-= ⎪⎝⎭6BC =ABC O 'O '1622sin 3r π=⨯=OO 'OM PA ⊥M M PA 2222235724R OA OP ⎛⎫===+= ⎪⎝⎭P ABC -O 2457S R ππ==57π7.(广东省汕尾市2020-2021学年高一下学期期末数学试题)已知某圆柱的轴截面是一个正方形,且该圆柱表面积(底面和侧面面积之和)为1S ,其外接球的表面积为2S ,则该圆柱的表面积与其外接球的表面积的比值12S S =________. 【答案】34【解析】 设圆柱的底面半径为r ,高为h ,则2h r =,上下底面圆圆心连线的中点即为该圆柱外接球的球心,可得外接球的半径R =,再由圆柱的表面积公式和球的表面积公式分别计算1S 、2S 即可得比值.【详解】设圆柱的底面半径为r ,高为h ,因为圆柱的轴截面是一个正方形,所以2h r =,所以圆柱表面积22212π2π2π2π26πS r r h r r r r =+⋅=+⋅=,其外接球的球心在上下底面圆圆心连线的中点位置, 可知球心到上底面圆的距离为12h r =,由勾股定理可得:外接球的半径R =,所以外接球的表面积)22224π4π8πS R r ===, 所以该圆柱的表面积与其外接球的表面积的比值22126ππ348S r r S ==, 故答案为:34. 8.(2021·重庆市杨家坪中学高一月考)学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为在一正三棱柱中挖去一个圆柱后的剩余部分(圆柱的上下两底面圆与三棱柱的底面各边相切),圆柱底面直径为,高为4cm .打印所用原料密度为31g /cm ,不考虑打印损耗,制作该模型所需原料的质量为______g. 1.73=,π 3.14=,精确到0.1).【答案】24.6【解析】由正三棱柱的性质,结合已知求其底面面积,再由棱柱的体积公式求其体积V ,并求圆柱的体积为V ',则模型体积为V V '-,即可求制作该模型所需原料的质量.【详解】由题意,正三棱柱底面(等边三角形)如上图有AE OE AD DC =且2AC AE DC ==,AD AC =,OE ==6AC =,故底面面积1662S =⨯⨯=∴正三棱柱的体积462.3V Sh ===.而圆柱的体积为21237.7V r h ππ'==≈,∴制作该模型所需原料的质量为()124.6V V '-⨯=克.故答案为:24.69.(2021·上海高二期末)五月五是端午,门插艾,香满堂,吃粽子,蘸白糖,粽子古称“角黍”,是我国南北各地的节令食品,因各地风俗不同,粽子的形状和食材也会不同,有一种各面都是正三角形的正四面体形粽子,若该正四面体粽子的棱长为8cm ,则现有1立方米体积的食材,最多可以包成这种粽子_______个.【答案】16572【解析】根据题意,利用棱锥的体积公式求得正四面体粽子的体积,进而求得答案.【详解】如图所示,正四面体ABCD 的棱长为8cm ,设底面正三角形BCD 的中心为O ,连接AO ,则AO ⊥平面BCD ,连接BO,则23BO ==AO ==所以一个粽子的体积为:31188)32V cm =⨯⨯⨯=, 由3311000000m cm =16572.8≈ 所以1立方米体积的食材,最多可以包成这种粽子16572个.故答案为:16572.10.(2021·浙江高二期末)在四面体ABCD 中,AB BC ⊥,CD BC ⊥,AB CD ⊥,2BC =,若四面体ABCDABCD 的体积的最大值为___________. 【答案】83【解析】根据题意可以将此四面体放入一个长方体中,则易求四面体高与底面长的关系,再根据体积公式写出其体积表达式,最后利用基本不等式即可.【详解】如图所示,不妨将四面体ABCD 放入下图中的长方体中,则长方体的宽为2,设长方体的长为a ,高为h . 因为四面体ABCD则r==2216a h+=,所以四面体ABCD的体积22111833323BCDa hV S AB ah+=⋅=≤⋅=△,当且仅当a h==面体ABCD的体积最大值为8 3 .故答案为:8 31.(2021·全国高考真题)正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20+B.C.563D【答案】D【解析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高h练真题下底面面积116S =,上底面面积24S =,所以该棱台的体积((121116433V h S S =+=+= 故选:D.2.(2020·天津高考真题)若棱长为 )A .12πB .24πC .36πD .144π 【答案】C【解析】【分析】求出正方体的体对角线的一半,即为球的半径,利用球的表面积公式,即可得解.【详解】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C.3.(2021·全国高考真题(理))已如A ,B ,C 是半径为1的球O 的球面上的三个点,且,1AC BC AC BC ⊥==,则三棱锥O ABC -的体积为( )A B C D 【答案】A【解析】由题可得ABC 为等腰直角三角形,得出ABC 外接圆的半径,则可求得O 到平面ABC 的距离,进而求得体积. 【详解】,1AC BC AC BC ⊥==,ABC ∴为等腰直角三角形,AB ∴=,则ABC 2,又球的半径为1, 设O 到平面ABC 的距离为d ,则d ==所以11111332212O ABC ABC V S d -=⋅=⨯⨯⨯⨯=. 故选:A.4.(2020·全国高考真题(理))埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .14B .12C .14D .12【答案】C【解析】如图,设,CD a PE b ==,则PO ==, 由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得14b a +=(负值舍去). 故选:C.5.(2018·全国高考真题(文))设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为,则三棱锥D ABC -体积的最大值为( )A .B .C .D .【答案】B【解析】如图所示,点M 为三角形ABC 的中心,E 为AC 中点,当DM ⊥平面ABC 时,三棱锥D ABC -体积最大此时,OD OB R 4===2ABC S AB == AB 6∴=,点M 为三角形ABC 的中心2BM 3BE ∴==Rt OMB ∴中,有OM 2==DM OD OM 426∴=+=+=()max 163D ABC V -∴=⨯=故选B.6.(2019·全国高考真题(理))已知三棱锥P -ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .B .C . D【答案】D【解析】解法一:,PA PB PC ABC ==∆为边长为2的等边三角形,P ABC ∴-为正三棱锥, PB AC ∴⊥,又E ,F 分别为PA 、AB 中点,//EF PB ∴,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥平面PAC ,PB ⊥平面PAC ,APB PA PB PC ∴∠=90︒,∴===,P ABC ∴-为正方体一部分,2R ==34433R V R =∴=π==π,故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 中点,//EF PB ∴,且12EF PB x ==,ABC ∆为边长为2的等边三角形,CF ∴=又90CEF ∠=︒1,2CE AE PA x ∴===AEC ∆中余弦定理()2243cos 22x x EAC x +--∠=⨯⨯,作PD AC ⊥于D ,PA PC =, D 为AC 中点,1cos 2AD EAC PA x ∠==,2243142x x x x+-+∴=,22121222x x x ∴+=∴==,PA PB PC ∴======2AB BC AC ,,,PA PB PC ∴两两垂直,2R ∴==R ∴=,34433V R ∴=π==,故选D.。

高考数学空间几何体体积与表面积选择题

高考数学空间几何体体积与表面积选择题

高考数学空间几何体体积与表面积选择题1. 设长方体的长、宽、高分别为a、b、c,那么长方体的体积V 和表面积S分别是:A. V = a * b * c, S = 2(ab + ac + bc)B. V = a * b * c, S = 2ab + 2ac + 2bcC. V = a * b * c, S = ab + ac + bcD. V = ab * c, S = 2(ab + ac + bc)2. 计算球体的体积V和表面积S,已知球的半径为r,那么:A. V = 4/3πr^3, S = 4πr^2B. V = πr^3, S = 4πr^2C. V = πr^3, S = 2πr^2D. V = 4/3πr^3, S = 2πr^23. 计算圆柱体的体积V和表面积S,已知圆柱的高为h,底面半径为r,那么:A. V = πr^2h, S = 2πrh + 2πr^2B. V = πr^2h, S = 2πr^2 + 2πrhC. V = πr^2h, S = 2πrh + 2πr^2D. V = πr^2h, S = 2πr^2 + 2πrh4. 计算圆锥体的体积V和表面积S,已知圆锥的高为h,底面半径为r,那么:A. V = 1/3πr^2h, S = πr^2 + πrhB. V = 1/3πr^2h, S = πr^2 + πrhC. V = 1/3πr^2h, S = πr^2 + πrhD. V = 1/3πr^2h, S = πr^2 + πrh5. 计算棱柱的体积V和表面积S,已知棱柱的高为h,底面积为A,那么:A. V = Ah, S = 2A + 2PhB. V = Ah, S = 2A + 2PhC. V = Ah, S = 2A + 2PhD. V = Ah, S = 2A + 2Ph6. 计算圆台的体积V和表面积S,已知圆台的高为h,上底半径为r1,下底半径为r2,那么:A. V = π(r1^2 - r2^2)h, S = πr1^2 + πr2^2 + π(r1^2 - r2^2)hB. V = π(r1^2 - r2^2)h, S = πr1^2 +πr2^2 + π(r1^2 - r2^2)hC. V = π(r1^2 - r2^2)h, S = πr1^2 + πr2^2 + π(r1^2 - r2^2)hD. V = π(r1^2 - r2^2)h, S = πr1^2 + πr2^2 + π(r1^2 - r2^2)h7. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^28. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^29. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^210. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^211. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^212. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^213. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^214. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^215. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^216. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^217. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^218. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^219. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^220. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^221. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^222. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^223. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^224. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^225. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^226. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^227. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^228. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2D. V = a^3, S = 6a^229. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^230. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^231. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^232. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^233. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^234. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^235. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^236. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^237. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^238. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^239. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^240. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^241. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^242. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^243. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^244. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^245. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^246. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^247. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^248. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^249. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2C. V = a^3, S = 6a^2D. V = a^3, S = 6a^250. 计算正方体的体积V和表面积S,已知正方体的边长为a,那么:A. V = a^3, S = 6a^2B. V = a^3, S = 6a^2D. V = a^3, S = 6a^2。

高中数学空间几何体的表面积与体积练习题及答案

高中数学空间几何体的表面积与体积练习题及答案

空间几何体的表面积与体积专题一、选择题1.棱长为2的正四面体的表面积是( C ).A. 3 B .4 C .4 3 D .16解析 每个面的面积为:12×2×2×32= 3.∴正四面体的表面积为:4 3.2.把球的表面积扩大到原来的2倍,那么体积扩大到原来的 ( B ). A .2倍 B .22倍 C.2倍 D.32倍解析 由题意知球的半径扩大到原来的2倍,则体积V =43πR 3,知体积扩大到原来的22倍.3.如图是一个长方体截去一个角后所得多面体的三视图,则该多面体的体积为( B ). A.1423 B.2843 C.2803D.1403解析 根据三视图的知识及特点,可画出多面体 的形状,如图所示.这个多面体是由长方体截去 一个正三棱锥而得到的,所以所求多面体的体积V =V 长方体-V 正三棱锥=4×4×6-13×⎝ ⎛⎭⎪⎫12×2×2×2=2843. 4.某几何体的三视图如下,则它的体积是( A) A .8-2π3 B .8-π3C .8-2πD.2π3解析 由三视图可知该几何体是一个边长为2的正方体内部挖去一个底面半径为1,高为2的圆锥,所以V =23-13×π×2=8-2π3.5.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为( A)A .24-32π B .24-π3 C .24-π D .24-π2据三视图可得几何体为一长方体内挖去一个半圆柱,其中长方体的棱长分别为:2,3,4,半圆柱的底面半径为1,母线长为3,故其体积V =2×3×4-12×π×12×3=24-3π2.6.某品牌香水瓶的三视图如图 (单位:cm),则该几何体的表面积为( C )A.⎝ ⎛⎭⎪⎫95-π2 cm 2B.⎝ ⎛⎭⎪⎫94-π2 cm 2C.⎝ ⎛⎭⎪⎫94+π2 cm 2D.⎝⎛⎭⎪⎫95+π2 cm 2解析 这个空间几何体上面是一个四棱柱、中间部分是一个圆柱、下面是一个四棱柱.上面四棱柱的表面积为2×3×3+12×1-π4=30-π4;中间部分的表面积为2π×12×1=π,下面部分的表面积为2×4×4+16×2-π4=64-π4.故其表面积是94+π2.7.已知球的直径SC =4,A ,B 是该球球面上的两点,AB =3,∠ASC =∠BSC =30°,则棱锥S-ABC 的体积为( C).A .3 3B .2 3 C. 3 D .1解析 由题可知AB 一定在与直径SC 垂直的小圆面上,作过AB 的小圆交直径SC 于D ,设SD =x ,则DC =4-x ,此时所求棱锥即分割成两个棱锥S-ABD 和C-ABD ,在△SAD 和△SBD 中,由已知条件可得AD =BD =33x ,又因为SC 为直径,所以∠SBC =∠SAC =90°,所以∠DCB =∠DCA =60°,在△BDC 中 ,BD =3(4-x ),所以33x =3(4-x ),所以x =3,AD =BD =3,所以三角形ABD 为正三角形,所以V =13S △ABD ×4= 3.二、填空题8.三棱锥PABC 中,PA ⊥底面ABC ,PA =3,底面ABC 是边长为2的正三角形,则三棱锥PABC 的体积等于__3______.解析 依题意有,三棱锥PABC 的体积V =13S △ABC ·|PA |=13×34×22×3= 3.9.一个圆柱的轴截面是正方形,其侧面积与一个球的表面积相等,那么这个圆柱的体积与这个球的体积之比为_ 3∶2_______.解析 设圆柱的底面半径是r ,则该圆柱的母线长是2r ,圆柱的侧面积是2πr ·2r =4πr 2,设球的半径是R ,则球的表面积是4πR 2,根据已知4πR 2=4πr 2,所以R =r .所以圆柱的体积是πr 2·2r =2πr 3,球的体积是43πr 3,所以圆柱的体积和球的体积的比是2πr 343πr 3=3∶2.10.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是___26_____.解析由题知该多面体为正四棱锥,底面边长为1,侧棱长为1,斜高为32,连接顶点和底面中心即为高,可求得高为22,所以体积V=13×1×1×22=26.11.如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是____2πR2____.解析由球的半径为R,可知球的表面积为4πR2.设内接圆柱底面半径为r,高为2h,则h2+r2=R2.而圆柱的侧面积为2πr·2h=4πrh≤4πr2+h22=2πR2(当且仅当r=h时等号成立),即内接圆柱的侧面积最大值为2πR2,此时球的表面积与内接圆柱的侧面积之差为2πR2.12.如图,已知正三棱柱ABCA1B1C1的底面边长为2 cm,高为5 cm,则一质点自点A出发,沿着三棱柱的侧面绕行两周到达点A1的最短路线的长为___13_____cm. 解析根据题意,利用分割法将原三棱柱分割为两个相同的三棱柱,然后将其展开为如图所示的实线部分,则可知所求最短路线的长为52+122=13 (cm).三、解答题13.某高速公路收费站入口处的安全标识墩如图1所示,墩的上半部分是正四棱锥PEFGH,下半部分是长方体ABCDEFGH.图2、图3分别是该标识墩的正视图和俯视图.(1)请画出该安全标识墩的侧视图;(2)求该安全标识墩的体积.解析(1)侧视图同正视图,如图所示:(2)该安全标识墩的体积为V=VPEFGH +V ABCDEFGH=13×402×60+402×20=64 000(cm3).14 .一个几何体的三视图如图所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为3,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.(1)求该几何体的体积V;(2)求该几何体的表面积S.解析 (1)由三视图可知,该几何体是一个平行六面体(如图),其底面是边长为1的正方形,高为3,所以V =1×1×3= 3.(2)由三视图可知,该平行六面体中,A1D ⊥平面ABCD ,CD ⊥平面BCC1B1, 所以AA1=2,侧面ABB1A1,CDD1C1均为矩形, S =2×(1×1+1×3+1×2)=6+2 3.15.已知某几何体的俯视图是如右图所示的矩形,正视图(或称主视图)是一个底边长为8、高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6、高为4的等腰三角形.(1)求该几何体的体积V ;(2)求该几何体的侧面积S .解析 由题设可知,几何体是一个高为4的四棱锥,其底面是长、宽分别为8和6的矩形,正侧面及其相对侧面均为底边长为8,高为h 1的等腰三角形,左、 右侧面均为底边长为6,高为h 2的等腰三角形,如右图所示. (1)几何体的体积为:V =13·S 矩形·h =13×6×8×4=64.(2)正侧面及相对侧面底边上的高为:h 1=42+32=5.左、右侧面的底边上的高为:h 2=42+42=4 2.故几何体的侧面面积为:S =2×⎝ ⎛⎭⎪⎫12×8×5+12×6×42=40+24 2. 1.一个圆柱的侧面展开图是一个正方形,这个圆柱的全面积与侧面积的比是( ). .解:设展开图的正方形边长为a ,圆柱的底面半径为r ,则2πr =a ,2ar π=,底面圆的面积是24a π,于是全面积与侧面积的比是2221222a a a πππ++=, 2.在棱长为 1 的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去与8个顶点相关的8个三棱锥后 ,剩下的几何体的体积是( ).2.解:正方体的体积为1,过共顶点的三条棱中点的平面截该正方体截得的三棱锥的体积是111111()3222248⨯⨯⨯⨯=,于是8个三棱锥的体积是61,剩余部分的体积是65, 3.一个直棱柱(侧棱垂直于底面的棱柱)的底面是菱形,对角线长分别是6cm 和8cm ,高是5cm ,则这个直棱柱的全面积是 。

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题

高三数学空间几何体的表面积与体积试题1.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8,高为4的等腰三角形,侧视图(或称左视图)是一个底边长为6,高为4的等腰三角形.(1)求该几何体的体积V;(2)求该几何体的侧面积S.【答案】(1)64 (2)40+24【解析】解:本题考查由三视图求几何体的侧面积和体积,由正视图和侧视图的三角形结合俯视图可知该几何体是一个底面为矩形,高为4,顶点在底面的射影是矩形中心的四棱锥,如图.(1)V=×(8×6)×4=64.(2)四棱锥的两个侧面VAD、VBC是全等的等腰三角形,取BC的中点E,连接OE,VE,则△VOE为直角三角形,VE为△VBC边上的高,VE==4.同理侧面VAB、VCD也是全等的等腰三角形,AB边上的高h==5.∴S=2×(×6×4+×8×5)=40+24.侧2.一个圆柱和一个圆锥的底面直径和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为 .【答案】【解析】设底面半径为,则它们的高,,,,所以.【考点】旋转体的体积.3.如图,在四棱柱中,底面ABCD和侧面都是矩形,E是CD的中点,,.(1)求证:;(2)若,求三棱锥的体积.【答案】(1)证明过程详见解析;(2).【解析】本题主要考查线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由已知得,,所以利用线面平行的判定得平面,再利用线面垂直的性质,得;第二问,利用和中的边长和角的关系,得到,由于,所以平面,所以利用线面垂直的性质得,利用线面垂直的判定得平面,由于平面平行平面,所以得到平面,所以是三棱锥的高,最后利用三棱锥的体积公式计算. (1)证明:∵底面和侧面是矩形,∴,又∵∴平面 3分∵平面∴. 6分(2)解法一:,,∴△为等腰直角三角形,∴连结,则,且由(1)平面,∴平面∴∴平面∴平面 9分∴. 12分解法二:∵,且∴在△中,,,得 9分∴三棱锥的体积:. 12分【考点】线线垂直、线面垂直、面面垂直、三棱锥的体积.4.已知三棱锥中,,,直线与底面所成角为,则此时三棱锥外接球的表面积为()A.B.C.D.【答案】B【解析】如下图所示,取的中点,连接、,易证,所以,易证,,且,、平面,平面,过点在平面内作,由于平面,,由于,,、平面,平面因此,为直线与平面所成的角,所以,由于,所以为等边三角形,,,且,由勾股定理得,易知,所以为三棱锥外接球的球心,其半径为,所以其外接球的表面积为,故选B.【考点】1.直线与平面垂直;2.外接球5.正四棱锥的五个顶点在同一球面上,若该正四棱锥的底面边长为2,侧棱长为,则这个球的表面积为_________.【答案】【解析】如图是正四棱锥外接球的球心,是底面中心,,,设球半径为,在中,,解得,所以.【考点】正棱锥的外接球.6.如图,在四棱锥中,底面为直角梯形,且,,平面底面,为的中点,是棱的中点,.(1)求证:平面;(2)求三棱锥的体积.【答案】(1)见解析(2)【解析】(1)由题意知四边形BCDE为平行四边形,故连结CE交BD于O,知O是EC的中点,又M是PC的中点,根据中位线定理知MO∥PE,根据线面平行判定定理可得PE∥面BDM;(2)三棱锥P-MBD就是三棱锥P-BCD割去一个三棱锥M-BCD,故三棱锥P-MBD体积就是三棱锥P-BCD体积减去一个三棱锥M-BCD的体积,由PA=PD=AD=2及为的中点知,PE垂直AD,由面面垂直的性质定理知PE⊥面ABCD,故PE是三棱锥P-BCD的高,由M是PC的中点知三棱锥M-BCD的高为PE的一半,故三棱锥P-MBD体积为三棱锥P-BCD体积的一半,易求出三棱锥P-BCD即可求出三棱锥P-MBD体积.试题解析:(1)连接,因为,,所以四边形为平行四边形,连接交于,连接,则,又平面,平面,所以平面.(2),由于平面底面,底面所以是三棱锥的高,且由(1)知是三棱锥的高,,,所以,则.【考点】1.线面平行的判定;2.简单几何体体积计算;3.逻辑推理能力;4.空间想象能力.7.如图,四棱锥P ABCD中,PA⊥底面ABCD,PA=2,BC="CD=2," ∠ACB=∠ACD=.(1)求证:BD⊥平面PAC;(2)若侧棱PC上的点F满足PF=7FC,求三棱锥P BDF的体积.【答案】(1)见解析 (2)【解析】(1)证明:因为BC=CD,所以△BCD为等腰三角形,又∠ACB=∠ACD,故BD⊥AC.因为PA⊥底面ABCD,所以PA⊥BD.从而BD与平面PAC内两条相交直线PA,AC都垂直,所以BD⊥平面PAC.(2)解:三棱锥P BCD的底面BCD的面积S△BCD=BC·CD·sin∠BCD=×2×2×sin =. 由PA⊥底面ABCD,得=·S△BCD·PA=××2=2.由PF=7FC,得三棱锥F BCD的高为PA,故=·S△BCD·PA=×××2=,所以=-=2-=.8.如图所示,三棱柱ABC A1B1C1中,AA1⊥平面ABC,D、E分别为A1B1、AA1的中点,点F在棱AB上,且AF=AB.(1)求证:EF∥平面BC1D;(2)在棱AC上是否存在一个点G,使得平面EFG将三棱柱分割成的两部分体积之比为1∶15,若存在,指出点G的位置;若不存在,说明理由.【答案】(1)见解析 (2) 不存在.理由见解析【解析】(1)证明:取AB的中点M,∵AF=AB,∴F为AM的中点,又∵E为AA1的中点,∴EF∥A1M.在三棱柱ABC A1B1C1中,D、M分别为A1B1、AB的中点,∴A1D∥BM,A1D=BM,∴四边形A1DBM为平行四边形,∴A1M∥BD,∴EF∥BD,∵BD⊆平面BC1D,EF⊄平面BC1D,∴EF∥平面BC1D.(2)解:设AC上存在一点G,使得平面EFG将三棱柱分割成两部分的体积之比为1∶15, 则∶=1∶16,∵==×××=·.∴·=,∴=,∴AG=AC>AC.所以符合要求的点G不存在.9.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB⊥BC,D为AC的中点,AA1=AB=2,BC=3.(1)求证:AB1∥平面BC1D;(2)求四棱锥B-AA1C1D的体积.【答案】(1)见解析(2)3【解析】(1)证明:如图,连接B1C,设B1C与BC1相交于点O,连接OD,∵四边形BCC1B1是平行四边形,∴点O为B1C的中点.∵D为AC的中点,∴OD为△AB1C的中位线,∴OD∥AB1,∵OD⊂平面BC1D,AB1⊄平面BC1D,∴AB1∥平面BC1D.(2)∵AA1⊥平面ABC,AA1⊂平面AA1C1C,∴平面ABC⊥平面AA1C1 C,作BE⊥AC,垂足为E,则BE⊥平面AA1C1 C.在Rt△ABC中,AC=,BE==,∴四棱锥B-AA1C1D的体积V=× (A1C1+AD)·AA1·BE=××2×=3.10.某几何体的三视图如图所示,则该几何体的表面积为()A.180B.200C.220D.240【答案】D【解析】几何体为直四棱柱,其高为10,底面是上底为2,下底为8,高为4,腰为5的等腰梯形,故两个底面面积的和为×(2+8)×4×2=40,四个侧面面积的和为(2+8+5×2)×10=200,所以直四棱柱的表面积为S=40+200=240,故选D.11.如图,在棱长为2的正方体ABCD -A1B1C1D1中,E,F分别是棱AB,BC中点,则三棱锥B-B1EF的体积为________.【答案】【解析】VB-B1EF=VE-B1FB=S△B1BF·EB=××2×1×1=.12.已知棱长为的正方体,则以该正方体各个面的中心为顶点的多面体的体积为________.【答案】【解析】以正方体各个面的中心为顶点的多面体是两个全等的正四棱锥的组合体,如图,一个正四棱锥的高是正方体的高的一半,故所求的多面体的体积为2××××=.13. 在等腰梯形ABCD 中,AB ∥CD ,AB =BC =AD =2,CD =4,E 为边DC 的中点,如图1.将△ADE 沿AE 折起到△AEP 位置,连PB 、PC ,点Q 是棱AE 的中点,点M 在棱PC 上,如图2.(1)若PA ∥平面MQB ,求PM ∶MC ;(2)若平面AEP ⊥平面ABCE ,点M 是PC 的中点,求三棱锥A -MQB 的体积. 【答案】(1)1∶2(2)【解析】(1)连AC 、BQ ,设AC ∩BQ =F ,连MF .则平面PAC ∩平面MQB =MF ,因为PA ∥平面MQB ,PA ⊂平面PAC ,所以PA ∥MF .(2分) 在等腰梯形ABCD 中,E 为边DC 的中点,所以由题设,AB =EC =2. 所以四边形ABCE 为平行四边形,则AE ∥BC .(4分) 从而△AFQ ∽△CFB ,AF ∶FC =AQ ∶CB =1∶2.又PA ∥MF ,所以△FMC ∽△APC ,所以PM ∶MC =AF ∶FC =1∶2.(7分) (2)由(1)知,△AED 是边长为2的正三角形,从而PQ ⊥AE .因为平面AEP ⊥平面ABCE ,交线为AE ,所以PQ ⊥平面ABCE ,PQ ⊥QB ,且PQ =. 因为PQ ⊂平面PQC ,所以平面PQC ⊥平面ABCE ,交线为QC .(9分) 过点M 作MN ⊥QC 于N ,则MN ⊥平面ABCE ,所以MN 是三棱锥M -ABQ 的高.因为PQ ⊥平面ABCE ,MN ⊥平面ABCE ,所以PQ ∥MN . 因为点M 是PC 的中点,所以MN =PQ =.(11分)由(1)知,△ABE 为正三角形,且边长为2.所以,S △ABQ =.三棱锥A -MQB 的体积V A -MQB =V M -ABQ =××=.(14分)14. 将某个圆锥沿着母线和底面圆周剪开后展开,所得的平面图是一个圆和扇形,己知该扇形的半径为24cm ,圆心角为,则圆锥的体积是________.【答案】【解析】本题考查圆锥的侧面展开图问题,我们知道圆锥侧面展开图的半径就是圆锥的母线,扇形的弧长就是圆锥底面周长,因此有,故,那么圆锥的高为,所以体积为.【考点】圆锥侧面展开图与圆锥体积.15. 如图1,一个密闭圆柱体容器的底部镶嵌了同底的圆锥实心装饰块,容器内盛有升水.平放在地面,则水面正好过圆锥的顶点,若将容器倒置如图2,水面也恰过点.以下命题正确的是( ).A.圆锥的高等于圆柱高的;B.圆锥的高等于圆柱高的;C.将容器一条母线贴地,水面也恰过点;D.将容器任意摆放,当水面静止时都过点.【答案】C【解析】本题考查体积公式与空间想象能力,设圆锥的高为,圆柱的高为,则利用倒置前后水的体积不变这个性质知,化简得,均错,现在水的容积正好是圆柱内部空间的一半,因此把圆柱的母线贴地,则水面过点,但过点的平面不可能总是平分圆柱内部除去圆锥的那部分,故错误.【考点】体积公式.16.如图,在三棱锥中,,,D为AC的中点,.(1)求证:平面平面;(2)如果三棱锥的体积为3,求.【答案】(1)证明过程详见解析;(2).【解析】本题主要以三棱锥为几何背景考查线线垂直、平行的判定,线面垂直,面面垂直的判定以及用空间向量法求二面角的余弦值,考查空间想象能力和计算能力.第一问,根据已知条件,取中点,连结,得出,再利用,根据线面垂直的判定证出平面,从而得到垂直平面内的线,再利用为中位线,得出平面,最后利用面面垂直的判定证明平面垂直平面;第二问,根据已知进行等体积转换,利用三棱锥的体积公式列出等式,解出的值.试题解析:(Ⅰ)取中点为,连结,.因为,所以.又,,所以平面,因为平面,所以. 3分由已知,,又,所以,因为,所以平面.又平面,所以平面⊥平面. 5分(Ⅱ)由(Ⅰ)知,平面.设,因为为的中点,所以, 10分由解得,即. 12分【考点】1.线面垂直的判定和性质;2.面面垂直的判定;3.锥体的体积公式.17.如图,在三棱柱中,侧棱底面,,为的中点,.(Ⅰ)求证://平面;(Ⅱ)设,求四棱锥的体积.【答案】(Ⅰ)详见解析;(Ⅱ)体积为3.【解析】(Ⅰ)为了证明//平面,需要在平面内找一条与平行的直线,而要找这条直线一般通过作过且与平面相交的平面来找.在本题中联系到为中点,故连结,这样便得一平面,接下来只需证与平面和平面的交线平行即可.(Ⅱ)底面为一直角梯形,故易得其面积,本题的关键是求出点B到平面的距离.由于平面,所以易得平面平面.平面平面.根据两平面垂直的性质定理知,只需过B作交线AC的垂线即可得点B到平面的距离,从而求出体积.试题解析:(Ⅰ)连接,设与相交于点,连接,∵四边形是平行四边形,∴点为的中点.∵为的中点,∴为△的中位线,∴.∵平面,平面,∴平面. 6分(Ⅱ)∵平面,平面,∴平面平面,且平面平面.作,垂足为,则平面,∵,,在Rt△中,,,∴四棱锥的体积12分【考点】1、直线与平面的位置关系;2、多面体的体积.18.如图,四棱锥的底面是正方形,底面,,,点、分别为棱、的中点.(1)求证:平面;(2)求证:平面平面;(3)求三棱锥的体积.【答案】(1)详见解析;(2)详见解析;(3)三棱锥的体积为.【解析】(1)取的中点,连接、,证明四边形为平行四边形,得到,再利用直线平面平行的判定定理得到平面;(2)先证明平面,利用(1)中的条件得到平面,再利用平面与平面垂直的判定定理证明平面平面,在证明平面的过程中,在等腰三角形中利用三线合一得到,通过证明平面得到,然后利用直线与平面垂直的判定定理即可证明平面;(3)利用题中的条件平面,在计算三棱锥的体积中,选择以点为顶点,所在平面为底面的三棱锥来计算其体积,则该三棱锥的高为,最后利用锥体的体积计算公式即可. 试题解析:(1)取的中点,连结、,∴为的中位线,,∵四边形为矩形,为的中点,∴,,∴四边形是平行四边形,,又平面,平面,∴平面;(2)底面,,,又,,平面,又平面,,直角三角形中,,为等腰直角三角形,,是的中点,,又,平面,,平面,又平面,平面平面;(3)三棱锥即为三棱锥,是三棱锥的高,中,,,三棱锥的体积,.【考点】1.直线与平面平行;2.平面与平面垂直;3.等体积法求三棱锥的体积19.如图所示是一个几何体的三视图,则该几何体的体积为( )A.B.C.D.【答案】B【解析】由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此. 故选B.【考点】三视图.20.一个棱长都为的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为( ) A.B.C.D.【答案】A【解析】如图:设、为棱柱两底面的中心,球心为的中点. 又直三棱柱的棱长为,可知,,所以,因此该直三棱柱外接球的表面积为,故选A.【考点】球与球的内接几何体中基本量的关系,球表面积公式21.一个直角梯形的上底比下底短,该梯形绕它的上底旋转一周所得旋转体的体积为,该梯形绕它的下底旋转一周所得旋转体的体积为,该梯形绕它的直角腰旋转一周所得旋转体的体积为,则该梯形的周长为__________【答案】【解析】先设梯形的上底、下底和高,然后利用圆柱和圆锥的体积公式求出以这三边旋转得到的几何体的体积,联立得到的式子可解出上底、下底和高,结合勾股定理,另一腰也可求出,故梯形的周长可以得到。

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析1.如图, 四棱柱的底面ABCD是正方形, O为底面中心, ⊥平面ABCD,.(1)证明: // 平面;(2)求三棱柱的体积.【答案】(1)证明详见解析;(2)体积为1.【解析】本题主要考查线线平行、面面平行、线面垂直、柱体的体积等基础知识,考查学生的空间想象能力、逻辑推理能力、计算能力.第一问,由图象可得到,,,所以得到四边形为平行四边形,所以,利用面面平行的判定得证;第二问,由面ABCD,所以得到是三棱柱的高,利用体积转化法,得到三棱柱的体积.试题解析:(1)设线段的中点为,∵BD和是的对应棱,∴,同理,∵AO和是棱柱的对应线段,∴,且,且四边形为平行四边形且,面面.(2)∵面ABCD,∴是三棱柱的高,在正方形ABCD中,,在中,,,所以,.【考点】线线平行、面面平行、线面垂直、柱体的体积.2.(正四棱锥与球体积选做题)棱长为1的正方体的外接球的体积为________.【答案】.【解析】正方体的体对角线,就是正方体的外接球的直径,所以球的直径为:所以球的半径为:,∴正方体的外接球的体积V=.【考点】1.球的体积;2.球内接多面体.3.如图,ABCD是边长为2的正方形,ED⊥平面ABCD,ED=1,EF∥BD且EF=BD.(1)求证:BF∥平面ACE;(2)求证:平面EAC⊥平面BDEF(3)求几何体ABCDEF的体积.【答案】(1)见解析;(2)见解析;(3)2【解析】(1)利用线线平行,推证线面平行;(2)利用一个面内一条直线与另一个平面垂直,则这两个平面垂直,证明面面垂直;(3)将不规则几何体转化为主题或椎体的体积求解.试题解析:(1)证明:记AC与BD的交点为O,则DO=BO=BD,连接EO,∵EF∥BD且EF=BD,∴EF∥BO且EF=BO,则四边形EFBO是平行四边形,∴BF∥EO,又∵面ACE,面ACE,∴BF∥平面ACE;(2)证明:∵ED⊥平面ABCD,平面ABCD,∴ED⊥AC.∵ABCD为正方形,∴BD⊥AC,又ED∩BD=D,∴AC⊥平面BDEF,又平面EAC,∴平面EAC⊥平面BDEF;(3)解:∵ED⊥平面ABCD,∴ED⊥BD,又∵EF∥BD且EF=BD,∴BDEF是直角梯形,又∵ABCD是边长为2的正方形,BD=2,EF=,∴题型BDEF的面积为,由(1)知AC⊥平面BDEF,∴几何体的体积VABCDEF =2VA-BDEF=2×S BDEF·AO=.【考点】空间直线与平面位置关系,几何体的体积4.如图,多面体的直观图及三视图如图所示,分别为的中点.(1)求证:平面;(2)求多面体的体积.【答案】(1)证明:见解析;(2)多面体的体积.【解析】(1)由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,由三角形中位线定理得,得证.(2)利用平面,得到,再据⊥,得到⊥平面,从而可得:四边形是矩形,且侧面⊥平面. 取的中点得到,且平面.利用体积公式计算.所以多面体的体积. 12分试题解析:(1)证明:由多面体的三视图知,三棱柱中,底面是等腰直角三角形,,平面,侧面都是边长为的正方形.连结,则是的中点,在△中,,且平面,平面,∴∥平面. 6分(2)因为平面,平面,,又⊥,所以,⊥平面,∴四边形是矩形,且侧面⊥平面 8分取的中点,,且平面. 10分所以多面体的体积. 12分【考点】三视图,平行关系,垂直关系,几何体的体积.5.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.6.棱长为的正四面体的外接球半径为.【答案】【解析】记正四面体棱长为,外接球半径为,在正四面体中,利用棱,与棱共顶点的高及这条棱在对面上的射影构成的直角三角形可解得,因此中本题中.【考点】正四面体(正棱锥的性质).7.如图,已知平面,,,且是的中点,.(1)求证:平面;(2)求证:平面平面;(3)求此多面体的体积.【答案】(1)详见解析;(2)详见解析;(3).【解析】(1)取的中点,连结、,利用中位线证明,利用题中条件得到,进而得到,于是说明四边形为平行四边形,得到,最后利用直线与平面平行的判定定理证明平面;(2)由平面得到,再利用等腰三角形三线合一得到,利用直线与平面垂直的判定定理证明平面,结合(1)中的结论证明平面,最后利用平面与平面垂直的判定定理证明平面平面;(3)利用已知条件得到平面平面,然后利用平面与平面垂直的性质定理求出椎体的高,最后利用椎体的体积公式计算该几何体的体积.(1)取中点,连结、,为的中点,,且,又,且,且,为平行四边形,,又平面,平面,平面;(2),,所以为正三角形,,平面,,平面,又平面,,又,,平面,又,平面,又平面,平面平面;(3)此多面体是一个以为定点,以四边形为底边的四棱锥,,平面平面,等边三角形边上的高就是四棱锥的高,.【考点】1.直线与平面平行;2.平面与平面垂直;3.椎体体积的计算8.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以. (1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.9.棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为 .【答案】【解析】 .【考点】几何体的表面积.10.已知等腰梯形PDCB中(如图),PB=3,DC=1,PD=BC=,A为PB边上一点,且PA=1,将△PAD沿AD折起,使平面PAD⊥平面ABCD(如图).(1)证明:平面PAD⊥平面PCD.(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分VPDCMA ∶VMACB=2∶1.(3)在M满足(2)的情况下,判断直线PD是否平行平面AMC.【答案】(1)见解析(2)M为线段PB的中点时(3)不平行【解析】(1)因为PDCB为等腰梯形,PB=3,DC=1,PA=1,则PA⊥AD,CD⊥AD.又因为面PAD⊥面ABCD,面PAD∩面ABCD=AD,CD⊂面ABCD,故CD⊥面PAD. 又因为CD⊂面PCD,所以平面PAD⊥平面PCD.(2)所求的点M即为线段PB的中点.证明如下:设三棱锥M-ACB的高为h1,四棱锥P-ABCD的高为h2,当M为线段PB的中点时,==,所以===,所以截面AMC把几何体分成的两部分VPDCMA ∶VMACB=2∶1.(3)当M为线段PB的中点时,直线PD与面AMC不平行.证明如下:(反证法)假设PD∥面AMC,连接DB交AC于点O,连接MO.因为PD⊂面PBD,且面AMC∩面PBD=MO,所以PD∥MO.因为M为线段PB的中点时,则O为线段BD的中点,即=,而AB∥DC,故==,故矛盾.所以假设不成立,故当M为线段PB的中点时,直线PD与平面AMC不平行.11.棱长为2的三棱锥的外接球的表面积为()A.6πB.4πC.2πD.π【答案】A【解析】由题意知,此三棱锥为正四面体,以此正四面体的各棱为正方形的对角线拓展出一个正方体,则三棱锥外接球的半径为正方体外接球的半径.因三棱锥棱长为2,所以正方体棱长为,其外接球的直径为所以三棱锥的外接球的表面积为6π.12.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。

高考数学知识点-空间几何体的表面积和体积知识解析

高考数学知识点-空间几何体的表面积和体积知识解析

高考数学知识点:空间几何体的表面积和体积知
识解析
一、柱、锥、台和球的侧面积和体积
典型例题1:
1、几何体的侧面积和全面积:
几何体侧面积是指(各个)侧面面积之和,而全面积是侧面积与所有底面积之和.对侧面积公式的记忆,最好结合几何体的侧面展开图来进行.
2、求体积时应注意的几点:
(1)、求一些不规则几何体的体积常用割补的方法转化成已知体积公式的几何体进行解决.
(2)、与三视图有关的体积问题注意几何体还原的准确性及数据的准确性.
3、求组合体的表面积时注意几何体的衔接部分的处理.
典型例题2:
1、以三视图为载体的几何体的表面积问题,关键是分析三视图确定几何体中各元素之间的位置关系及数量.
2、多面体的表面积是各个面的面积之和;组合体的表面积注意衔接部分的处理.
3、旋转体的表面积问题注意其侧面展开图的应用.
典型例题3:
1、计算柱、锥、台体的体积,关键是根据条找出相应的底面面积和高,应注意充分利用多面体的截面和旋转体的轴截面,将空间问题转化为平面问题求解.
2、注意求体积的一些特殊方法:分割法、补体法、转化法等,它们是解决一些不规则几何体体积计算常用的方法,应熟练掌握.
3、等积变换法:利用三棱锥的任一个面可作为三棱锥的底面.①求体积时,可选择容易计算的方式来计算;②利用“等积法”可求“点到面的距离”.。

2020届高考数学(文)总复习讲义: 空间几何体的表面积与体积

2020届高考数学(文)总复习讲义: 空间几何体的表面积与体积

第二节空间几何体的表面积与体积一、基础知识批注——理解深一点1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S 圆柱侧=2πrlS 圆锥侧=πrlS 圆台侧=π(r +r ′)l①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和. ②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式名称 几何体 表面积 体积 柱体(棱柱和圆柱) S 表面积=S 侧+2S 底 V =Sh 锥体(棱锥和圆锥)S 表面积=S 侧+S 底V =13Sh台体(棱台和圆台) S 表面积=S 侧+S 上+S 下V =13(S 上+S 下+S 上S 下)h球S =4πR 2V =43πR 3二、常用结论汇总——规律多一点几个与球有关的切、接常用结论(1)正方体的棱长为a ,球的半径为R , ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1.三、基础小题强化——功底牢一点(一)判一判(对的打“√”,错的打“×”)(1)圆柱的一个底面积为S ,侧面展开图是一个正方形,那么这个圆柱的侧面积是2πS .( )(2)锥体的体积等于底面面积与高之积.( ) (3)台体的体积可转化为两个锥体的体积之差.( ) (4)球的体积之比等于半径之比的平方.( ) 答案:(1)× (2)× (3)√ (4)× (二)选一选1.一个球的表面积是16π,那么这个球的体积为( ) A.163π B.323π C .16πD .24π解析:选B 设球的半径为R ,则由4πR 2=16π,解得R =2,所以这个球的体积为43πR 3=323π. 2.正三棱柱ABC -A 1B 1C 1的底面边长为2,侧棱长为3,D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )A .3 B.32 C .1D.32解析:选C 由题意可知AD ⊥BC ,由面面垂直的性质定理可得AD ⊥平面DB 1C 1,又AD =2·sin 60°=3,所以V A -B 1DC 1=13AD ·S △B 1DC 1=13×3×12×2×3=1,故选C. 3.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π解析:选C 设圆柱底面圆半径为r ,周长为c ,圆锥母线长为l ,圆柱高为h .由图得r =2,c =2πr =4π,h =4,由勾股定理得:l =22+(23)2=4,S 表=πr 2+ch +12cl =4π+16π+8π=28π.(三)填一填4.某几何体的三视图如图所示,则该几何体的体积为________.解析:由三视图可知,该几何体是一个直三棱柱,其底面为侧视图,该侧视图是底边长为2,高为3的三角形,正视图的长为三棱柱的高,故h =3,所以该几何体的体积V =S ·h =⎝⎛⎭⎫12×2×3×3=3 3. 答案:3 35.一个六棱锥的体积为23,其底面是边长为2的正六边形,侧棱长都相等,则该六棱锥的侧面积为________.解析:设六棱锥的高为h ,斜高为h ′,则由体积V =13×⎝⎛⎭⎫12×2×2×sin 60°×6×h =23,得h =1,h ′=(3)2+h 2=2.所以侧面积为12×2×h ′×6=12.答案:12考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是()A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中PA ⊥底面ABCD ,四边形ABCD 是正方形,且PA =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A[解题技法] 求解几何体表面积的类型及求法[题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B.考点二 空间几何体的体积求空间几何体的体积常用的方法有直接法、割补法、等体积法[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A1-BB1D1D =V B-A1DD1+V B-A1B1D1=13×12×1×1×1+13×12×1×1×1=13.[答案](1)B(2)13[解题技法]1.处理体积问题的思路2.求体积的常用方法[题组训练]1.(等体积法)如图所示,已知三棱柱ABC-A1B1C1的所有棱长均为1,且AA1⊥底面ABC,则三棱锥B1-ABC1的体积为()A.312 B.34C.612 D.64解析:选A三棱锥B1-ABC1的体积等于三棱锥A-B1BC1的体积,三棱锥A-B1BC1的高为32,底面积为12,故其体积为13×12×32=312.2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是()A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π.考点三 与球有关的切、接问题 考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[解题技法]1.“切”“接”问题的处理规律(1)“切”的处理:球的内切问题主要是球内切于多面体或旋转体.解答时要找准切点,通过作截面来解决.(2)“接”的处理:把一个多面体的顶点放在球面上即球外接于该多面体.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.2.巧用外接球组合体作图的方法口诀外接球,有难题,作图技巧要牢记; 大圆正视小圆平,对称图形抓对称; 内接图形坐小圆,力求顶点大圆圈; 小圆垂直连心线,位置关系细查看.[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V=14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD ·SD =13,故选C. 法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32.答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.。

2020年高考数学 专题四 立体几何题型分析 理

2020年高考数学 专题四 立体几何题型分析 理

2020专题四:立体几何题型分析考点一三视图、直观图与表面积、体积1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系S直观图=24S原图形,S原图形=22S直观图.2.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r+r′)l2名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S =4πR 2 V =43πR 3例1.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.例2.(2020·重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240例3.(1)如图所示,已知三棱柱ABC ­A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 ­ABC 1的体积为( )A.312 B.34 C.612D.64(2)(2020·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π考点二 球与空间几何体的“切”“接”问题 方法主要是“补体”和“找球心” 方法一:直接法例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为 .练习:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ) A. 16π B. 20π C. 24π D. 32π 方法二:构造法(构造正方体或长方体)例2(2020年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 练习 (2020年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A. 3π B. 4π C. 33π D. 6π 三、确定球心位置法例3、在矩形ABCD 中,AB=4,BC=3,AC 沿将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为( )四、构造直角三角形例4、正四面体的棱长为a ,则其内切球和外接球的半径是多少,体积是多少?练习: 角度一 直三棱柱的外接球1.(2020·辽宁高考)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310角度二 正方体的外接球2.(2020·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示 (图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________. 角度三 正四面体的内切球3.(2020·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 角度四 四棱锥的外接球4.四棱锥P ­ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( ) A .9π B .3π C .22π D .12π考点三 利用空间向量求角和距离 1.两条异面直线所成角的求法π12125.A π9125.B π6125.C π3125.D设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).2.直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.3.求二面角的大小(1)如图①,AB ,CD 是二面角α ­l ­β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图②③,n 1,n 2分别是二面角α ­l ­β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).4.点到平面的距离的求法设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==u u u r r u u u r g r 易错点:1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝⎛⎦⎥⎤0,π2.2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值.3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cosθ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.一、线线角问题1.(2020·沈阳调研)在直三棱柱A 1B 1C 1 ­ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.3010 B.12 C.3015D.15102.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.二、线面角的问题3、(2020·湖南高考)如图,在直棱柱ABCD ­A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.[针对训练](2020·福建高考改编)如图,在四棱柱ABCD ­A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.三、二面角问题4、(2020·新课标卷Ⅱ)如图,直三棱柱ABC ­A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D ­A 1C ­E 的正弦值.[针对训练](2020·杭州模拟)如图,已知平面QBC 与直线PA 均垂直于Rt△ABC 所在平面, 且PA =AB =AC .(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q ­PB ­A 的余弦值.四、 利用空间向量解决探索性问题.(2020·江西模拟)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F ­BE ­D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.[针对训练]已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P ­ABC 的体积为________.五、近三年新课标高考试题立体几何(三视图1小+1小1大:(1)三视图(2)线面关系(3)与球有关的组合体(4)证明、求体积与表面积(注意规范性),作辅助线的思路(5)探索性问题的思考方法)(11)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值。

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析

高三数学空间几何体的表面积与体积试题答案及解析1.(本题满分12分)底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.【答案】边长为4,体积为.【解析】由于展开图是,分别是所在边的中点,根据三角形的性质,是正三角形,其边长为4,原三棱锥的侧棱也是2,要求棱锥的体积需要求出棱锥的高,由于是正棱锥,顶点在底面上的射影是底面的中心,由相应的直角三角形可求得高,得到体积.试题解析:由题意中,,,所以是的中位线,因此是正三角形,且边长为4.即,三棱锥是边长为2的正四面体∴如右图所示作图,设顶点在底面内的投影为,连接,并延长交于∴为中点,为的重心,底面∴,,【考点】图象的翻折,几何体的体积.2.设甲,乙两个圆柱的底面面积分别为,体积为,若它们的侧面积相等且,则的值是 .【答案】【解析】设甲、乙两个圆柱的底面和高分别为,,则,,又,所以,则.【考点】圆柱的侧面积与体积.3.正三棱柱的底面边长为,侧棱长为,为中点,则三棱锥的体积为A.B.C.D.【答案】C【解析】如下图所示,连接,因为是正三角形,且为中点,则,又因为面,故,且,所以面,所以是三棱锥的高,所以.【考点】1、直线和平面垂直的判断和性质;2、三棱锥体积.4.如图,在三棱锥中,,,°,平面平面,,分别为,中点.(1)求证:∥平面;(2)求证:;(3)求三棱锥的体积.【答案】(1)证明过程详见解析;(2)证明过程详见解析;(3).【解析】本题主要考查线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积等基础知识,考查学生的空间想象能力、逻辑推理能力.第一问,由于D、E分别为AB、AC中点,所以利用三角形的中位线得出∥,再利用线面平行的判定直接得到结论;第二问,由,而∥得,而D为AB中点,PA=PB,得,所以利用线面垂直的判定得平面,再利用线面垂直的性质得;第三问,由于,利用面面垂直的性质得平面,所以PD是三棱锥的高,而,所以.(1)因为,分别为,中点,所以∥,又平面,平面,所以∥平面. 4分(2)连结,因为∥,又°,所以.又,为中点,所以.所以平面,所以. 9分(3)因为平面平面,有,所以平面,所以. 14分【考点】线线平行、线面平行、线线垂直、线面垂直、面面垂直、三棱锥的体积.5.如图,四棱锥P-ABCD中,底面ABCD为正方形,DA⊥面ABP,AB=1,PA=2,∠PAB=60°.(1)求证:平面PBC⊥面PDC(2)设E为PC上一点,若二面角B-EA-P的余弦值为-,求三棱锥E-PAB的体积.【答案】(1)见解析(2)【解析】(1)∵AB=1,PA=2,∠PAB=60°,∴在△PAB中,由余弦定理得PB2=PA2+AB2-2AB·PAcos600=4+1-2×1×2×=3∴PA2=PB2+AB2,即AB⊥PB∵DA⊥面ABP,CB∥DA∴CB⊥面ABP CB⊥AB ,∴AB⊥面PBC又DC∥AB,∴DC∥面PBC∵DC面PDC,∴平面PBC⊥面PDC(2)如图建立空间直角坐标系则A(0,1,0),P(,0,0),C(0,0,1)设E(x,y,z),= (0<<1)则(-,0,1)=(x-,y,z)x=(1-),y=0,z=设面ABE的法向量为n=(a,b,c),则令c=n=(,0,)同理可求平面PAE的法向量为m=(1,,)∵cos<n,m>====∴=或=1(舍去)∴E(,0,)为PC的中点,其竖坐标即为点E到底面PAB的距离∴V=××1××=E-PAB6.某圆锥体的侧面展开图是半圆,当侧面积是时,则该圆锥体的体积是 .【答案】【解析】设圆锥的母线长为,底面半径为,则,,,,所以圆锥的高为,体积为.【考点】圆锥的侧面展开图与体积.7.如图,在三棱锥中,,,平面平面,为中点,点分别为线段上的动点(不含端点),且,则三棱锥体积的最大值为________.【答案】【解析】因为且为中点,所以,因为平面平面,由面面垂直的性质定理可得,即。

空间几何体表面积和体积—小题狂刷2020年高考数学(理)(含解析)

空间几何体表面积和体积—小题狂刷2020年高考数学(理)(含解析)

狂刷33空间几何体的表面积和体积1.若圆锥的高扩大为原来的3倍,底面半径缩短为原来的12,则圆锥的体积A.缩小为原来的34B.缩小为原来的23C.扩大为原来的2倍D.不变2.球的体积是32π3,则此球的表面积是A.12πB.16πC.16π3D.64π33.某几何体的三视图如图所示,则该几何体的体积为A.43B.53C.73D.524.将边长为2的正ΔABC沿高AD折成直二面角B−AD−C,则三棱锥B−ACD的外接球的表面积是A.20πB.10πC.203πD.5π5.某几何体的三视图如图所示,则它的表面积为A .2831)π+B .32π+C .32(31)π+D .283π+6.如图,在三棱锥V −ABC 中,平面VAB ⊥平面ABC,ΔVAB 为等边三角形,AC ⊥BC, AC =BC =√2,其中O,M 分别为AB,VA 的中点,则三棱锥B −MOC 的体积为A 3B 3C 3D 37.已知各顶点都在一个球面上的正四棱柱的高为4,体积为8,则这个球的表面积为________.8.如图,网络纸上小正方形的边长为1.粗实线画出的是某几何体的三视图,则该几何体的体积为__________.9.如图,直角梯形ABCD 中,AD DC ⊥,∥AD BC ,222BC CD AD ===,若将直角梯形绕BC 边旋转一周,则所得几何体的表面积为__________.10.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造的一种标准量器——商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x 为__________.11.一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为A .4B .8C .16D .2412.已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点.若三棱锥O ABC -的体积的最大值为36,则球O 的表面积为A .36πB .64πC .144πD .256π13.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如下图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的表面积为A .4+4√2B .4+6√2C .6+4√2D .6+6√214.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为A .3500πcm 3 B .3866πcm 3 C .31372πcm 3D .32048πcm 315.如图画出的是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为A .25π3 B .26π3 C .22π3D .23π316.某几何体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积不可能是A .πB .2C .4D .617.如图,网格纸上小正方形的边长为a ,粗实线画出的是某几何体的三视图,若该几何体的表面积为32,则a 的值为A .14 B .13C .12D .118.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为A .17π4B .21π4C .4πD .5π19.如图①,矩形ABCD 的边7BC =BCM 的边2BM =,3CM =,沿BC 把三角形BCM 折起,构成四棱锥M ABCD -,使得M 在平面ABCD 内的射影落在线段AD 上,如图②,则这个四棱锥的体积的最大值为__________.20.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68π B .6π C .6πD 6π21.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .32422.【2018年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是A .2B .4C .6D .823.【2018年高考全国Ⅲ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93D ABC -体积的最大值为 A .123 B .183 C .243D .54324.【2017年高考全国Ⅲ卷理数】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π25.【2017年高考全国Ⅲ卷理数】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为 A .πB .3π4 C .π2D .π426.【2017年高考浙江卷】某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm 3)是俯视图正视图2211A .12π+ B .32π+ C .312π+D .332π+ 27.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.28.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.29.【201925底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________.30.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD的体积是 ▲ .31.【2018年高考江苏卷】如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.32.【2018年高考天津卷理数】已知正方体1111ABCD A B C D -的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M EFGH -的体积为 .33.【2018年高考全国II 卷理数】已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB △的面积为515__________.34.【2017年高考全国I 卷理数】如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC的中心为O .D ,E ,F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC ,CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为 .35.【2017年高考山东卷理数】由一个长方体和两个圆柱体构成的几何体的三视图如图,则该几何体的体积为 .36.【2017年高考天津卷理数】已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为___________.37.【2017年高考江苏卷】如图,在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12V V 的值是 .141.若圆锥的高扩大为原来的3倍,底面半径缩短为原来的12,则圆锥的体积 A .缩小为原来的34B .缩小为原来的23C .扩大为原来的2倍D .不变【答案】A【解析】设原来的圆锥底面半径为r ,高为h ,该圆锥的体积为21π3V r h =, 变化后的圆锥底面半径为12r ,高为3h , 该圆锥的体积为221131π3π3243V r h r h ⎛⎫'=⨯⨯=⨯ ⎪⎝⎭,变化后的圆锥的体积缩小到原来的34.故选A.【名师点睛】本题考查圆锥体积的计算,考查变化后的圆锥体积的变化,解题关键就是圆锥体积公式的应用,考查计算能力,属于中等题.设原来的圆锥底面半径为r ,高为h ,可得出变化后的圆锥的底面半径为12r ,高为3h ,利用圆锥的体积公式可得出结果. 2.球的体积是32π3,则此球的表面积是A .12πB .16πC .16π3 D .64π3【答案】B【解析】设球的半径为R ,则3432ππ33V R ==,∴R =2,∴此球的表面积S =4πR 2=16π. 故选B.3.某几何体的三视图如图所示,则该几何体的体积为A .43 B .53C .73D .52【答案】A【解析】该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,底面三角形的面积为12112S =⨯⨯=,三棱柱和三棱锥的高均为1,则三棱柱的体积为1111V =⨯=,三棱锥的体积为2111133V =⨯⨯=, 故该几何体的体积为14133V =+=. 故选A.【名师点睛】本题考查了空间组合体的三视图,考查了学生的空间想象能力,属于基础题.该空间几何体是由具有相同底面和高的三棱柱和三棱锥组合而成,分别求出体积即可.4.将边长为2的正ΔABC 沿高AD 折成直二面角B −AD −C ,则三棱锥B −ACD 的外接球的表面积是 A .20π B .10π C .203πD .5π【答案】D【解析】根据题意可知三棱锥B -ACD 的三条侧棱BD 、DC 、DA 两两互相垂直, 所以它的外接球就是它扩展为长方体的外接球, 又长方体的体对角线的长为√1+1 +(√3)2=√5, 所以球的直径是√5,半径为√52, 则球的表面积为4π(√52)2=5π.故选D .5.某几何体的三视图如图所示,则它的表面积为A .2831)π+B .32π+C .32(31)π+D .283π+【答案】B【解析】由三视图可知该几何体是组合体,下面是长、宽、高分别为2,2,3的长方体,上面是底面半径为1、母线长为2的圆锥,其表面积等于长方体的表面积加上圆锥的侧面积,再减去圆锥的底面积.所以该几何体的表面积为12222342π2π32π2⨯⨯+⨯⨯+⨯⨯-=+. 故选B.【名师点睛】本题考查三视图、几何体的表面积计算.根据三视图得几何体,再利用面积公式求表面积.借助长方体还原该几何体的直观图,由正视图和侧视图知该组合体只有一个顶点在正方体的上表面,所以组合体的上方是一个锥体.6.如图,在三棱锥V −ABC 中,平面VAB ⊥平面ABC,ΔVAB 为等边三角形,AC ⊥BC, AC =BC =√2,其中O,M 分别为AB,VA 的中点,则三棱锥B −MOC 的体积为A .33B .34C 3D3【答案】D【解析】在等腰直角三角形ACB中,AC=BC=√2,∴AB=2,OC=1,∴等边三角形VAB的边长为2,S△VAB=√3,∵O,M分别为AB,VA的中点,∴S△BMO=14S△VAB=√34.又∵平面VAB⊥平面ABC,平面VAB∩平面ABC=AB,OC⊥AB,∴OC⊥平面VAB,∴三棱锥V B−MOC=V C−MOB=13×√34×1=√312.故选D.7.已知各顶点都在一个球面上的正四棱柱的高为4,体积为8,则这个球的表面积为________.【答案】20π【解析】正四棱柱的高为4,体积为8,则底面积为22,正四棱柱的体对角线长即球的直径为25∴球的半径为5R=24π20πS R==,故答案为20π.【名师点睛】本题考查学生的空间想象能力,四棱柱的体积,球的表面积,容易疏忽的地方是几何体的体对角线是外接球的直径,属于基础题.先求正四棱柱的底面边长,然后求其对角线,就是球的直径,再求其表面积.8.如图,网络纸上小正方形的边长为1.粗实线画出的是某几何体的三视图,则该几何体的体积为__________.【答案】π83 +【解析】根据三视图知,该几何体是三棱柱与半圆锥的组合体,如图所示:结合图中数据,计算它的体积为2111π224π1282233半圆锥三棱柱V V V =+=⨯⨯⨯+⨯⨯⨯⨯=+. 故答案为π83+. 【名师点睛】本题以三视图为载体考查几何体的体积,解题的关键是对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系,然后结合相应的公式求解.9.如图,直角梯形ABCD 中,AD DC ⊥,∥AD BC ,222BC CD AD ===,若将直角梯形绕BC 边旋转一周,则所得几何体的表面积为__________.【答案】(32)π+【解析】由题意知所得几何体为一个圆锥与圆柱的组合体, 则表面积为2π2πππ122π11π12π3πrl rh r ++=⨯⨯+⨯⨯+⨯=+.10.中国古代数学名著《九章算术》中记载了公元前344年商鞅制造的一种标准量器——商鞅铜方升,其三视图(单位:寸)如图所示,若π取3,其体积为12.6(立方寸),则图中的x 为__________.【答案】3【解析】由三视图知,商鞅铜方升由一圆柱和一长方体组合而成. 由题意得:()215.4 1.61π() 1.612.62x -⋅⋅+⋅⋅=,则x =3. 故答案为3.11.一个三棱锥的正视图和侧视图如图所示(均为真角三角形),则该三棱锥的体积为A .4B .8C .16D .24【答案】B【解析】由三视图知三棱锥的侧棱AO 与底面OCB 垂直,其直观图如图,可得其俯视图是直角三角形,直角边长分别为2,4,且6OA =,∴该三棱锥的体积11246832V =⨯⨯⨯⨯=,故选B.【名师点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于中档题.三视图问题是考查学生空间想象能力的最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.12.已知A ,B 是球O 的球面上两点,90AOB ∠=︒,C 为该球面上的动点.若三棱锥O ABC -的体积的最大值为36,则球O 的表面积为 A .36π B .64π C .144πD .256π【答案】C【解析】设球O 的半径为R ,则212△AOB S R =, 当三棱锥O ABC -的体积最大时,C 到平面AOB 的距离为R , 则2113632R R ⨯⨯=,解得:6R =, ∴球O 的表面积为:24π144πS R ==.本题正确选项为C.【名师点睛】本题考查球的表面积的求解问题,关键是能够明确三棱锥体积最大时顶点到底面的距离为R .对于本题,当三棱锥O ABC -的体积最大时,C 到平面AOB 的距离为R ;利用棱锥体积公式可求得6R =;代入球的表面积公式即可得到结果.13.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如下图所示,俯视图中间的实线平分矩形的面积,则该“堑堵”的表面积为A .4+4√2B .4+6√2C .6+4√2D .6+6√2【答案】C【解析】由三视图可知,三棱柱空间结构如下图所示:由左视图和主视图可知,主视图为等腰直角三角形,且直角边长为√2,斜边长为2 所以两个底面面积为S 底=2×12×(√2)2=2,侧面由三个面组成,其中两个面是全等的,底为2,高为√2; 另外一个面底为2,高为2,侧棱与底面垂直, 所以S 侧=2×2×√2+2×2=4+4√2, 所以表面积为S 表=6+4√2.所以选C.14.如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为A .3500πcm 3 B .3866πcm 3 C .31372πcm 3D .32048πcm 3【答案】A【解析】设球的半径为R ,由题意知R ,2R -,正方体棱长的一半可构成直角三角形,即OBA △为直角三角形,如图所示.则2BC=,4BA =,2OB=R -,OA =R ,由2222(4)R =R -+,得5R=, 所以球的体积为34500π5π33⨯=(cm 3),故选A. 15.如图画出的是某几何体的三视图,网格纸上小正方形的边长为1,则该几何体的体积为A .25π3 B .26π3 C .22π3D .23π3【答案】A【解析】由三视图还原几何体,如图所示,可知原几何体为组合体,是半径为2的球的34与半径为1的球的14, 则该组合体的体积33341425π2π1π43433V =⨯⨯+⨯⨯=. 故选A .【名师点睛】本题考查了三视图还原几何体的图形,求球的组合体的体积,属于中档题.求解时,由三视图还原几何体,可知原几何体为球的组合体,是半径为2的球的34与半径为1的球的14,再由球的体积公式计算即可.16.某几何体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积不可能是A .πB .2C .4D .6【答案】D【解析】几何体可能是圆锥,底面半径为1,高为3,几何体的体积为:13×12×π×3=π,排除A ;几何体如果是正四棱锥,底面正方形边长为2,高为3,几何体的体积为:13×22×3=4,排除C ; 几何体如果是三棱锥,底面是腰长为2的等腰直角三角形,三棱锥的高为3,几何体的体积为:13×12×2×2×3=2,排除B .故选D . 17.如图,网格纸上小正方形的边长为a ,粗实线画出的是某几何体的三视图,若该几何体的表面积为32,则a 的值为A .14 B .13C .12D .1【答案】B【解析】由三视图可知,该几何体为如图所示的直三棱柱ABE DCF -,其中3AB BC BE a ===,2232AE AB BE a =+=,则292△△ABE CDF S S a ==,292ADFE S a =长方形,29正方形正方形ABCD BCFE S S a ==,所以该几何体的表面积为22227929(32)32a a a +=+=+,得13a =. 故选B.【名师点睛】本小题主要考查三视图还原几何体,考查几何体表面积的计算,考查空间想象能力,属于基础题.根据三视图还原为几何体,利用几何体的表面积列方程,解方程求得a 的值.18.已知一个三棱锥的三视图如图所示,其中三视图的长、宽、高分别为2,a ,b ,且()520,02a b a b +=>>,则此三棱锥外接球表面积的最小值为A .17π4B .21π4C .4πD .5π【答案】B【解析】由已知条件及三视图得,此三棱锥的四个顶点位于长方体1111ABCD A B C D -的四个顶点,即为三棱锥11A CB D -,且长方体1111ABCD A B C D -的长、宽、高分别为2,,a b ,∴此三棱锥的外接球即为长方体1111ABCD A B C D -的外接球,且球半径为2222224a b a b R ++++==,∴三棱锥外接球的表面积为()()222222421π4ππ45π124a b a b a ⎛⎫++=++=-+⎪ ⎪⎝⎭, ∴当且仅当1a =,12b =时,三棱锥外接球的表面积取得最小值21π4.故选B .19.如图①,矩形ABCD 的边7BC =BCM 的边2BM =,3CM =,沿BC 把三角形BCM 折起,构成四棱锥M ABCD -,使得M 在平面ABCD 内的射影落在线段AD 上,如图②,则这个四棱锥的体积的最大值为__________.27【解析】因为M 在矩形内ABCD 的射影落在线段AD 上, 所以平面MAD 垂直于平面ABCD ,因为BA AD ⊥,所以BA ⊥平面MAD ,BA MA ⊥, 同理CD MD ⊥,设AB x =,则24MA x =-,23MD x =-在△MAD 中,()()222222cos 243MA MD AD AMD MA MDx x +-∠==⋅--,()()222127sin 43x AMD xx -∠=--所以21127sin 2△MADx S MA MD AMD -=⋅⋅∠=所以四棱锥M ABCD -的体积221272233△M ABD B AMDAMD x V V V S BA ---===⋅=.因为22242636127127777x x x x x ⎛⎫-=-=--+ ⎪⎝⎭,所以当42x =,即42AB =时,体积V 27,故答案为77. 【名师点睛】本题主要考查面面垂直的性质,余弦定理的应用以及锥体的体积公式,考查了配方法求最值,属于难题.解决立体几何中的最值问题一般有两种方法:一是几何意义,特别是用空间点、线、面位置关系和平面几何的有关结论来解决,非常巧妙;二是将立体几何中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法求解.20.【2019年高考全国Ⅰ卷理数】已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为 A .68π B .6π C .6πD 6π【答案】D【解析】解法一:,PA PB PC ABC ==Q △为边长为2的等边三角形,P ABC ∴-为正三棱锥,PB AC ∴⊥,又E ,F 分别为PA ,AB 的中点,EF PB ∴∥,EF AC ∴⊥,又EF CE ⊥,,CE AC C EF =∴⊥I 平面PAC ,∴PB ⊥平面PAC ,2APB PA PB PC ∴∠=90︒,∴===P ABC ∴-为正方体的一部分,22226R =++=6R =34466π6338V R ∴=π=⨯=π. 故选D .解法二:设2PA PB PC x ===,,E F 分别为,PA AB 的中点,EF PB ∴∥,且12EF PB x ==,ABC Q △为边长为2的等边三角形,3CF ∴=,又90CEF ∠=︒,213,2CE x AE PA x ∴=-==, AEC △中,由余弦定理可得()2243cos 22x x EAC x+--∠=⨯⨯,作PD AC ⊥于D ,PA PC =Q ,D \为AC 的中点,1cos 2AD EAC PA x ∠==,2243142x x x x +-+∴=, 221221222x x x ∴+=∴==,,,2PA PB PC ∴===, 又===2AB BC AC ,,,PA PB PC ∴两两垂直,22226R ∴=++=62R ∴=,344666338V R ∴=π=π⨯=π,故选D.【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.21.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示(单位:cm),则该柱体的体积(单位:cm3)是A.158 B.162C.182 D.324【答案】B【解析】由三视图得该棱柱的高为6,底面可以看作是由两个直角梯形组合而成的,其中一个上底为4,下底为6,高为3,另一个的上底为2,下底为6,高为3,则该棱柱的体积为2646336162 22++⎛⎫⨯+⨯⨯=⎪⎝⎭.故选B.【名师点睛】本题首先根据三视图,还原得到几何体——棱柱,根据题目给定的数据,计算几何体的体积,常规题目.难度不大,注重了基础知识、视图用图能力、基本计算能力的考查.易错点有二,一是不能正确还原几何体;二是计算体积有误.为避免出错,应注重多观察、细心算.22.【2018年高考浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A .2B .4C .6D .8【答案】C【解析】根据三视图可得几何体为一个直四棱柱,高为2,底面为直角梯形,上、下底分别为1,2,梯形的高为2,因此几何体的体积为()112226,2⨯+⨯⨯= 故选C.【名师点睛】先由几何体的三视图还原几何体的形状,再在具体几何体中求体积或表面积等.23.【2018年高考全国Ⅲ卷理数】设A B C D ,,,是同一个半径为4的球的球面上四点,ABC △为等边三角形且其面积为93D ABC -体积的最大值为 A .123 B .183 C .243D .543【答案】B【解析】如图所示,设点M 为三角形ABC 的重心,E 为AC 中点,当点D 在平面ABC 上的射影为M 时,三棱锥D ABC -的体积最大,此时,4OD OB R ===,俯视图正视图221123934ABCS AB ==Q △,6AB ∴=,Q 点M 为三角形ABC 的重心,2233BM BE ∴== Rt OBM ∴△中,有222OM OB BM =-=,426DM OD OM ∴=+=+=,()max 19361833D ABC V -∴=⨯= B.【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当点D 在平面ABC 上的射影为三角形ABC 的重心时,三棱锥D ABC -体积最大很关键,由M 为三角形ABC 的重心,计算得到2233BM BE ==OM ,进而得到结果,属于较难题型.24.【2017年高考全国Ⅲ卷理数】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A .90πB .63πC .42πD .36π【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积213436V =π⨯⨯=π,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积221(36)272V =⨯π⨯⨯=π,故该组合体的体积12362763V V V =+=π+π=π.故选B .【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.25.【2017年高考全国Ⅲ卷理数】已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为A.πB.3π4C.π2D.π4【答案】B【解析】绘制圆柱的轴截面如图所示:由题意可得:11,2AC AB==,结合勾股定理,底面半径221312r⎛⎫=-=⎪⎝⎭由圆柱的体积公式,可得圆柱的体积是2233ππ1π24V r h⎛⎫==⨯⨯=⎪⎪⎝⎭.故选B.【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.26.【2017年高考浙江卷】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm3)是A .12π+B .32π+ C .312π+D .332π+【答案】A【解析】根据所给三视图可还原几何体为半个圆锥和半个棱锥拼接而成的组合体,所以,几何体的体积为21113(21)13222V π⨯π=⨯⨯+⨯⨯=+.故选A .【名师点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:(1)首先看俯视图,根据俯视图画出几何体地面的直观图; (2)观察正视图和侧视图找到几何体前、后、左、右的高度; (3)画出整体,然后再根据三视图进行调整.27.【2019年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D -挖去四棱锥O —EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =, AA =,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.【答案】118.8【解析】由题意得,214642312cm 2EFGH S =⨯-⨯⨯⨯=四边形, ∵四棱锥O −EFGH 的高为3cm , ∴3112312cm 3O EFGH V -=⨯⨯=. 又长方体1111ABCD A B C D -的体积为32466144cm V =⨯⨯=,所以该模型体积为3214412132cm O EFGH V V V -=-=-=,其质量为0.9132118.8g ⨯=.故答案为118.8.【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质量即可.28.【2019年高考北京卷理数】某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示.如果网格纸上小正方形的边长为1,那么该几何体的体积为__________.【答案】40【解析】如图所示,在棱长为4的正方体中,三视图对应的几何体为正方体去掉棱柱1111MPD A NQC B -之后余下的几何体,则几何体的体积()3142424402V =-⨯+⨯⨯=.【名师点睛】本题首先根据三视图,还原得到几何体,再根据题目给定的数据,计算几何体的体积.属于中等题.(1)求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、补形法等方法进行求解.29.【201925底面的圆周经过四棱锥四条侧棱的中点,另一个底面的圆心为四棱锥底面的中心,则该圆柱的体积为_____________. 【答案】π425512-=.若圆柱的一个底面的圆周经过四棱锥四条侧棱的中点,一个底面的圆心为四棱锥底面的中心,故圆柱的高为1,圆柱的底面半径为12, 故圆柱的体积为21ππ124⎛⎫⨯⨯= ⎪⎝⎭. 【名师点睛】根据棱锥的结构特点,确定所求的圆柱的高和底面半径.注意本题中圆柱的底面半径是棱锥底面对角线长度的一半、不是底边棱长的一半.30.【2019年高考江苏卷】如图,长方体1111ABCD A B C D -的体积是120,E 为1CC 的中点,则三棱锥E −BCD的体积是 ▲ .【答案】10【解析】因为长方体1111ABCD A B C D -的体积为120,所以1120AB BC CC ⋅⋅=, 因为E 为1CC 的中点,所以112CE CC =,。

2020高考数学刷题首选第六章立体几何考点测试41空间几何体的表面积和体积文含解析

2020高考数学刷题首选第六章立体几何考点测试41空间几何体的表面积和体积文含解析

考点测试41 空间几何体的表面积和体积高考概览高考中本考点常见题型为选择题、填空题,分值为5分,中等难度 考纲研读球体、柱体、锥体、台体的表面积和体积计算公式一、基础小题1.若球的半径扩大为原来的2倍,则它的体积扩大为原来的( ) A .2倍 B .4倍 C .8倍 D .16倍 答案 C解析 设原来球的半径为r ,则现在球的半径为2r ,则V 原=43πr 3,V 现=43π·(2r )3,故V 现=8V原.故选C .2.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π 答案 C解析 设正方体的棱长为a ,则a 3=8,∴a =2.而此正方体的内切球直径为2,∴S 表=4πr 2=4π. 3.如图,一个空间几何体的正视图、侧视图都是面积为32,一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为( )A .2 3B .4 3C .8D .4 答案 D解析 由三视图知,原几何体为两个四棱锥的组合体,其中四棱锥的底面边长为1,斜高为1,所以这个几何体的表面积为S =12×1×1×8=4.4.一个直三棱柱的三视图如图所示,其中俯视图是正三角形,则此三棱柱的体积为( )A .32B . 3C .2D .4 答案 B解析 由侧视图可知直三棱柱底面正三角形的高为3,容易求得正三角形的边长为2,所以底面正三角形面积为12×2×3=3.再由侧视图可知直三棱柱的高为1,所以此三棱柱的体积为3×1=3.故选B .5.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A .a 2B .3πa 3πC .23πa 3πD .23a 3π答案 C解析 设圆锥的底面半径为r ,母线长为l ,由题意知,2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π. 6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3答案 B解析 由三视图可知,该几何体是一个直三棱柱ABC -A 1B 1C 1截去一个三棱锥B 1-ABC ,则该几何体的体积为V =12×3×4×5-13×12×3×4×5=20(cm 3).故选B .7.某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163 D .6答案 B解析 依题意,所求几何体是一个四棱台,其中上底面是边长为1的正方形、下底面是边长为2的正方形,高是2,因此其体积等于13×(12+22+1×4)×2=143.故选B .8.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的表面积为( )A .24+(2-1)πB .24+(22-2)πC .24+(5-1)πD .24+(23-2)π 答案 B解析 如图,由三视图可知,该几何体是棱长为2的正方体挖出两个圆锥体所得.由图中知圆锥的半径为1,母线为2,该几何体的表面积为S =6×22-2π×12+2×12×2π×1×2=24+(22-2)π,故选B .9.已知一个几何体的三视图如图所示,则其体积为( )A .10+πB .2+π2C .2+π12D .2+π4答案 D解析 根据几何体的三视图还原其直观图如图所示,显然可以看到该几何体是一个底面长为2,宽为1,高为1的正棱柱与一个底面半径为1,高为1的14圆柱组合而成,其体积为V =2×1×1+14×π×12×1=2+π4,故选D .10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 答案 3解析 由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r中r下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V 142π=588π196π=3(寸).11.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.答案26解析 易知该几何体是正四棱锥.连接BD ,设正四棱锥P -ABCD ,由PD =PB =1,BD =2,则PD ⊥PB .设底面中心O ,则四棱锥高PO =22,则其体积是V =13Sh =13×12×22=26. 12.如图,在平面四边形ABCD 中,已知AB ⊥AD ,AB =AD =1,BC =CD =5,以直线AB 为轴,将四边形ABCD 旋转一周,则所得旋转体的体积为________.答案 12π解析 由题意,该旋转体是一圆台内部挖去一个圆锥,如图1所示:如图2,过点C 作CE ⊥AB ,连接BD .在等腰直角三角形ABD 中,BD =AD 2+AB 2=2. 在△BDC 中,CD 2=BD 2+BC 2-2BD ·BC cos ∠DBC , 所以25=2+25-102cos ∠DBC ,所以cos ∠DBC =210,所以sin ∠DBC =1-cos 2∠DBC =7210. 因为∠CBE =180°-∠ABD -∠DBC =135°-∠DBC ,所以sin ∠CBE =sin(135°-∠DBC )=22cos ∠DBC +22sin ∠DBC =45.在Rt △BCE 中,CE =BC sin ∠CBE =4,所以BE =BC 2-CE 2=3,AE =4.所以圆台上、下底面圆的面积分别为S 上=π,S 下=16π,圆台体积V 1=13(S 上+S 下+S 上S 下)·AE =28π,圆锥体积V 2=13×16π×3=16π,所以旋转体体积V =V 1-V 2=12π.二、高考小题13.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π 答案 B解析 由三视图可知两个同样的几何体可以拼成一个底面直径为6,高为14的圆柱,所以该几何体的体积V =12×32×π×14=63π.故选B .14.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 答案 C解析 由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上、下底边的长分别为1 cm,2 cm ,高为2 cm ,直四棱柱的高为2 cm .故直四棱柱的体积V =1+22×2×2=6 cm 3.15.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π 答案 B解析 根据题意,可得截面是边长为22的正方形,结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为S =2π(2)2+2π×2×22=12π.故选B .16.(2018·全国卷Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3 答案 C解析 在长方体ABCD -A 1B 1C 1D 1中,连接BC 1,根据线面角的定义可知∠AC 1B =30°,因为AB =2,AB BC 1=tan30°,所以BC 1=23,从而求得CC 1=BC 21-BC 2=22,所以该长方体的体积为V =2×2×22=82.故选C .17.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3答案 B解析 如图所示,点M 为三角形ABC 的重心,E 为AC 的中点,当DM ⊥平面ABC 时,三棱锥D -ABC 体积最大,此时,OD =OB =R =4.∵S △ABC =34AB 2=93, ∴AB =6,∵点M 为三角形ABC 的重心,∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=183.故选B .18.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若△SAB 的面积为8,则该圆锥的体积为________.答案 8π解析 如图所示,∠SAO =30°,∠ASB =90°,又S △SAB =12SA ·SB =12SA 2=8,解得SA =4,所以SO =12SA =2,AO =SA 2-SO 2=23,所以该圆锥的体积为V =π3·OA 2·SO =8π.19.(2018·天津高考)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.答案112解析 由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M -EFGH 的体积V =13×12×12=112.20.(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案 43解析 多面体由两个完全相同的正四棱锥组合而成,其中正四棱锥的底面边长为2,高为1,∴其体积为13×(2)2×1=23,∴多面体的体积为43. 三、模拟小题21.(2018·邯郸摸底)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n 个面是矩形,体积为V ,则( )A .n =4,V =10B .n =5,V =12C .n =4,V =12D .n =5,V =10答案 D解析 由三视图可知,该几何体为直五棱柱,其直观图如图所示,故n =5,体积V =2×22+12×2×1=10.故选D .22.(2018·福州模拟)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D解析 如图,可知球的半径R =OH 2+AH 2=12+(3)2=2,进而这个球的表面积为4πR 2=16π.故选D .23.(2018·合肥质检一)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6 答案 C解析 该几何体的表面积是由球的表面积、球的大圆面积、半个圆柱的侧面积以及圆柱的纵切面面积组成.从而该几何体的表面积为4π×12+π×12+12×2π×3+3×2=8π+6.故选C .24.(2018·石家庄质检二)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A .83B .3C .8D .53 答案 A解析 根据三视图还原该几何体的直观图,如图中四棱锥P -ABCD 所示,则V P -ABCD =V P -AFGD +(V AFB -DEC -V G-ECD)=13×(1+2)×22×1+12×1×2×2-13×12×1×2×1=83.故选A .25.(2018·合肥质检三)我国古代的《九章算术》中将上、下两面为平行矩形的六面体称为“刍童”.如图所示为一个“刍童”的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该“刍童”的表面积为( )A .12 5B .40C .16+12 3D .16+12 5 答案 D解析 易得侧面梯形的高为22+12=5,所以一个侧面梯形的面积为12×(2+4)×5=35.故所求为4×35+2×(2×4)=125+16.故选D .26.(2018·福建质检)已知底面边长为42,侧棱长为25的正四棱锥S -ABCD 内接于球O 1.若球O 2在球O 1内且与平面ABCD 相切,则球O 2的直径的最大值为________.答案 8解析 如图,正四棱锥S -ABCD 内接于球O 1,SO 1与平面ABCD 交于点O .在正方形ABCD 中,AB =42,AO =4.在Rt △SAO 中,SO =SA 2-OA 2=(25)2-42=2.设球O 1的半径为R ,则在Rt △OAO 1中,(R -2)2+42=R 2,解得R =5,所以球O 1的直径为10.当球O 2与平面ABCD 相切于点O 且与球O 1相切时,球O 2的直径最大.又因为SO =2,所以球O 2的直径的最大值为10-2=8.一、高考大题1.(2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大? 解 (1)由PO 1=2知,O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3).正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a m ,PO 1=h m , 则0<h <6,O 1O =4h . 连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎪⎫22a 2+h 2=36, 即a 2=2(36-h 2). 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h=263(36h -h 3),0<h <6, 从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 m 时,仓库的容积最大.2.(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解 (1)证明:由已知可得∠BAC =90°,即AB ⊥AC .又AB ⊥DA ,且AC ∩DA =A ,所以AB ⊥平面ACD . 又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =AC =3,DA =32. 又BP =DQ =23DA ,所以BP =22.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1. 因此,三棱锥Q -ABP 的体积为V 三棱锥Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin45°=1.二、模拟大题3.(2018·武昌调研)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由PA 1=PD 1=2,A 1D 1=AD =2,可得PA 1⊥PD 1.故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).4.(2018·浙江杭州一模)已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,各侧面是全等的等腰梯形,且各侧面的面积之和等于两底面面积之和,求棱台的体积.解 如图所示,在三棱台ABC -A ′B ′C ′中,O ′,O 分别为上、下底面的中心,D ,D ′分别是BC ,B ′C ′的中点,则DD ′是等腰梯形BCC ′B ′的高,又C ′B ′=20 cm ,CB =30 cm ,所以S 侧=3×12×(20+30)×DD ′=75DD ′.S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75DD ′=3253, 所以DD ′=1333(cm),又因为O ′D ′=36×20=1033(cm), OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm),由棱台的体积公式,可得棱台的体积为V =h3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30 =1900(cm 3).故棱台的体积为1900 cm 3.。

2020版高考数学一轮复习课后限时集训41简单几何体的表面积与体积文含解析北师大版

2020版高考数学一轮复习课后限时集训41简单几何体的表面积与体积文含解析北师大版
三、解答题
9.如图,从正方体 ABCD- A1B1C1D1 的 8 个顶点中选出的 4 个点恰为一个正四面体的顶点.
(1) 若选出 4 个顶点包含点 A,请在图中画出这个正四面体;
(2) 求棱长为 a 的正四面体外接球的半径. [ 解] (1) 如图所示,选取的四个点分别为
A, D1,B1, C.
1 故 S 四边形 A1EHA= ×(4 +10) ×8= 56,
2
1 S四边形 EB1BH= 2×(12 +6) ×8= 72.
因为长方体被平面 α 分成两个高为 10 的直棱柱, 97
所以其体积的比值为 7 9也正确 .
B 组 能力提升 1.(2019 ·青岛模拟 ) 如图为某个几何体的三视图,则该几何体的体积为
成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为
______ .
7 [ 设新的底面半径为 r ,由题意得
1 3×
π
2
×5×4+
π
2
×2×
8=
1 3×
π
×r
2
×
4+
π×
r
2
×8,
∴r 2= 7,∴ r = 7.]
7.一个六棱锥的体积为 2 3,其底面是边长为 2 的正六边形, 侧棱长都相等, 则该六棱锥的侧面积为 ________. 12 [ 设正六棱锥的高为 h,棱锥的斜高为 h′.
圆锥的体积
V2=
1 ×
2
π 3
r
2
h=
π 6
×12×
3=
π 2
,所以该几何体的体积
V=
V1-
V2=
12-
π 2
.]

2020新课标高考艺术生数学复习:空间几何体的表面积与体积含解析

2020新课标高考艺术生数学复习:空间几何体的表面积与体积含解析
2.正方体与球
(1)正方体的内切球:截面图为正方形EFHG的内切圆、如图所示.设正方体的棱长为a、则|OJ|=r= (r为内切球半径).
(2)与正方体各棱相切的球:截面图为正方形EFHG的外接圆、则|GO|=R= a.
3.正四面体与球
如图、设正四面体的棱长为a、内切球的半径为r、外接球的半径为R、取AB的中点为D、连接CD、SE为正四面体的高、在截面三角形SDC内作一个与边SD和DC相切、圆心在高SE上的圆.因为正四面体本身的对称性、内切球和外接球的球心同为O.此时、CO=OS=R、OE=r、SE= a、CE= a、则有R+r= a、R2-r2=|CE|2= 、解得R= a、r= a.
2.圆台的母线长扩大到原来的n倍、两底面半径都缩小为原来的 、那么它的侧面积为原来的________倍.
解析:设改变之前圆台的母线长为l、上底半径为r、下底半径为R、则侧面积为π(r+R)l、改变后圆台的母线长为nl、上底半径为 、下底半径为 、则侧面积为π nl=π(r+R)l、故它的侧面积为原来的1倍.
提醒:求一些不规则几何体的体积常用割补的方法将几何体转化成已知体积公式的几何体进行解决.
[跟踪训练]
(20xx·全国Ⅰ卷)如图、圆形纸片的圆心为O、半径为5 cm、该纸片上的等边三角形ABC的中心为O、D、E、F为圆O上的点、△DBC、△ECA、△FAB分别是以BC、CA、AB为底边的等腰三角形.沿虚线剪开后、分别以BC、CA、AB为折痕折起△DBC、△ECA、△FAB、使得D、E、F重合、得到三棱锥.当△ABC的边长变化时、所得三棱锥体积(单位:cm3)的最大值为________.
2020新课标高考艺术生数学复习:空间几何体的表面积与体积含解析
编 辑:__________________
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点测试41 空间几何体的表面积和体积高考概览高考中本考点常见题型为选择题、填空题,分值为5分,中等难度 考纲研读球体、柱体、锥体、台体的表面积和体积计算公式一、基础小题1.若球的半径扩大为原来的2倍,则它的体积扩大为原来的( ) A .2倍 B .4倍 C .8倍 D .16倍 答案 C解析 设原来球的半径为r ,则现在球的半径为2r ,则V 原=43πr 3,V 现=43π·(2r )3,故V 现=8V 原.故选C .2.一个正方体的体积是8,则这个正方体的内切球的表面积是( ) A .8π B .6π C .4π D .π 答案 C解析 设正方体的棱长为a ,则a 3=8,∴a =2.而此正方体的内切球直径为2,∴S 表=4πr 2=4π.3.如图,一个空间几何体的正视图、侧视图都是面积为32,一个内角为60°的菱形,俯视图为正方形,那么这个几何体的表面积为( )A .2 3B .4 3C .8D .4 答案 D解析 由三视图知,原几何体为两个四棱锥的组合体,其中四棱锥的底面边长为1,斜高为1,所以这个几何体的表面积为S =12×1×1×8=4.4.一个直三棱柱的三视图如图所示,其中俯视图是正三角形,则此三棱柱的体积为( )A .32B . 3C .2D .4 答案 B解析 由侧视图可知直三棱柱底面正三角形的高为3,容易求得正三角形的边长为2,所以底面正三角形面积为12×2×3=3.再由侧视图可知直三棱柱的高为1,所以此三棱柱的体积为3×1=3.故选B .5.已知圆锥的表面积为a ,且它的侧面展开图是一个半圆,则这个圆锥的底面直径是( )A .a 2B .3πa 3πC .23πa 3πD .23a 3π答案 C解析 设圆锥的底面半径为r ,母线长为l ,由题意知,2πr =πl ,∴l =2r ,则圆锥的表面积S 表=πr 2+12π(2r )2=a ,∴r 2=a 3π,∴2r =23πa 3π.6.若某几何体的三视图(单位:cm)如图所示,则该几何体的体积等于( )A .10 cm 3B .20 cm 3C .30 cm 3D .40 cm 3答案 B解析 由三视图可知,该几何体是一个直三棱柱ABC -A 1B 1C 1截去一个三棱锥B 1-ABC ,则该几何体的体积为V =12×3×4×5-13×12×3×4×5=20(cm 3).故选B .7.某四棱台的三视图如图所示,则该四棱台的体积是( )A .4B .143C .163 D .6答案 B解析 依题意,所求几何体是一个四棱台,其中上底面是边长为1的正方形、下底面是边长为2的正方形,高是2,因此其体积等于13×(12+22+1×4)×2=143.故选B .8.某几何体的三视图如图所示,图中三个正方形的边长均为2,则该几何体的表面积为( )A .24+(2-1)πB .24+(22-2)πC .24+(5-1)πD .24+(23-2)π 答案 B解析 如图,由三视图可知,该几何体是棱长为2的正方体挖出两个圆锥体所得.由图中知圆锥的半径为1,母线为2,该几何体的表面积为S =6×22-2π×12+2×12×2π×1×2=24+(22-2)π,故选B .9.已知一个几何体的三视图如图所示,则其体积为( )A .10+πB .2+π2C .2+π12D .2+π4答案 D解析 根据几何体的三视图还原其直观图如图所示,显然可以看到该几何体是一个底面长为2,宽为1,高为1的正棱柱与一个底面半径为1,高为1的14圆柱组合而成,其体积为V =2×1×1+14×π×12×1=2+π4,故选D .10.我国古代数学名著《数书九章》中有“天池盆测雨”题:在下雨时,用一个圆台形的天池盆接雨水,天池盆盆口直径为二尺八寸,盆底直径为一尺二寸,盆深一尺八寸,若盆中积水深九寸,则平地降雨量是________寸.(注:①平地降雨量等于盆中积水体积除以盆口面积;②一尺等于十寸) 答案 3解析 由题意知,圆台中截面圆的半径为十寸,圆台内水的体积为V =13πh (r 2中+r 2下+r中r 下)=π3×9×(102+62+10×6)=588π(立方寸),降雨量为V142π=588π196π=3(寸). 11.如图所示,已知一个多面体的平面展开图由一个边长为1的正方形和4个边长为1的正三角形组成,则该多面体的体积是________.答案26解析 易知该几何体是正四棱锥.连接BD ,设正四棱锥P -ABCD ,由PD =PB =1,BD =2,则PD ⊥PB .设底面中心O ,则四棱锥高PO =22,则其体积是V =13Sh =13×12×22=26. 12.如图,在平面四边形ABCD 中,已知AB ⊥AD ,AB =AD =1,BC =CD =5,以直线AB 为轴,将四边形ABCD 旋转一周,则所得旋转体的体积为________.答案 12π解析 由题意,该旋转体是一圆台内部挖去一个圆锥,如图1所示:如图2,过点C 作CE ⊥AB ,连接BD .在等腰直角三角形ABD 中,BD =AD 2+AB 2=2. 在△BDC 中,CD 2=BD 2+BC 2-2BD ·BC cos ∠DBC , 所以25=2+25-102cos ∠DBC ,所以cos ∠DBC =210,所以sin ∠DBC =1-cos 2∠DBC=7210. 因为∠CBE =180°-∠ABD -∠DBC =135°-∠DBC ,所以sin ∠CBE =sin(135°-∠DBC )=22cos ∠DBC +22sin ∠DBC =45.在Rt △BCE 中,CE =BC sin ∠CBE =4,所以BE =BC 2-CE 2=3,AE =4.所以圆台上、下底面圆的面积分别为S 上=π,S 下=16π,圆台体积V 1=13(S 上+S 下+S 上S 下)·AE =28π,圆锥体积V 2=13×16π×3=16π,所以旋转体体积V =V 1-V 2=12π.二、高考小题13.(2017·全国卷Ⅱ)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π 答案 B解析 由三视图可知两个同样的几何体可以拼成一个底面直径为6,高为14的圆柱,所以该几何体的体积V =12×32×π×14=63π.故选B .14.(2018·浙江高考)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm 3)是( )A .2B .4C .6D .8 答案 C解析 由三视图可知该几何体是直四棱柱,其中底面是直角梯形,直角梯形上、下底边的长分别为1 cm,2 cm ,高为2 cm ,直四棱柱的高为2 cm .故直四棱柱的体积V =1+22×2×2=6 cm 3.15.(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π 答案 B解析 根据题意,可得截面是边长为22的正方形,结合圆柱的特征,可知该圆柱的底面为半径是2的圆,且高为22,所以其表面积为S =2π(2)2+2π×2×22=12π.故选B .16.(2018·全国卷Ⅰ)在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AC 1与平面BB 1C 1C 所成的角为30°,则该长方体的体积为( )A .8B .6 2C .8 2D .8 3 答案 C解析 在长方体ABCD -A 1B 1C 1D 1中,连接BC 1,根据线面角的定义可知∠AC 1B =30°,因为AB =2,AB BC 1=tan30°,所以BC 1=23,从而求得CC 1=BC 21-BC 2=22,所以该长方体的体积为V =2×2×22=82.故选C .17.(2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .12 3B .18 3C .24 3D .54 3答案 B解析 如图所示,点M 为三角形ABC 的重心,E 为AC 的中点,当DM ⊥平面ABC 时,三棱锥D -ABC 体积最大,此时,OD =OB =R =4.∵S △ABC =34AB 2=93, ∴AB =6,∵点M 为三角形ABC 的重心,∴BM =23BE =23,∴在Rt △OMB 中,有OM =OB 2-BM 2=2. ∴DM =OD +OM =4+2=6,∴(V 三棱锥D -ABC )max =13×93×6=183.故选B .18.(2018·全国卷Ⅱ)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30°,若△SAB 的面积为8,则该圆锥的体积为________.答案 8π解析 如图所示,∠SAO =30°,∠ASB =90°,又S △SAB =12SA ·SB =12SA 2=8,解得SA =4,所以SO =12SA =2,AO =SA 2-SO 2=23,所以该圆锥的体积为V =π3·OA 2·SO =8π. 19.(2018·天津高考)已知正方体ABCD -A 1B 1C 1D 1的棱长为1,除面ABCD 外,该正方体其余各面的中心分别为点E ,F ,G ,H ,M (如图),则四棱锥M -EFGH 的体积为________.答案112解析 由题意知四棱锥的底面EFGH 为正方形,其边长为22,即底面面积为12,由正方体的性质知,四棱锥的高为12.故四棱锥M -EFGH 的体积V =13×12×12=112.20.(2018·江苏高考)如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.答案 43解析 多面体由两个完全相同的正四棱锥组合而成,其中正四棱锥的底面边长为2,高为1,∴其体积为13×(2)2×1=23,∴多面体的体积为43.三、模拟小题21.(2018·邯郸摸底)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,已知该几何体的各个面中有n 个面是矩形,体积为V ,则( )A .n =4,V =10B .n =5,V =12C .n =4,V =12D .n =5,V =10答案 D解析 由三视图可知,该几何体为直五棱柱,其直观图如图所示,故n =5,体积V =2×22+12×2×1=10.故选D . 22.(2018·福州模拟)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4πB .16π3C .32π3D .16π答案 D解析 如图,可知球的半径R =OH 2+AH 2=12+(3)2=2,进而这个球的表面积为4πR 2=16π.故选D .23.(2018·合肥质检一)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为( )A .5π+18B .6π+18C .8π+6D .10π+6 答案 C解析 该几何体的表面积是由球的表面积、球的大圆面积、半个圆柱的侧面积以及圆柱的纵切面面积组成.从而该几何体的表面积为4π×12+π×12+12×2π×3+3×2=8π+6.故选C .24.(2018·石家庄质检二)如图,网格纸上小正方形的边长为1,粗实线及粗虚线画出的是某多面体的三视图,则该多面体的体积为( )A .83B .3C .8D .53 答案 A解析 根据三视图还原该几何体的直观图,如图中四棱锥P -ABCD 所示,则V P -ABCD =V P-AFGD+(V AFB -DEC -V G -ECD )=13×(1+2)×22×1+12×1×2×2-13×12×1×2×1=83.故选A .25.(2018·合肥质检三)我国古代的《九章算术》中将上、下两面为平行矩形的六面体称为“刍童”.如图所示为一个“刍童”的三视图,其中正视图及侧视图均为等腰梯形,两底的长分别为2和4,高为2,则该“刍童”的表面积为( )A .12 5B .40C .16+12 3D .16+12 5 答案 D解析 易得侧面梯形的高为22+12=5,所以一个侧面梯形的面积为12×(2+4)×5=35.故所求为4×35+2×(2×4)=125+16.故选D .26.(2018·福建质检)已知底面边长为42,侧棱长为25的正四棱锥S -ABCD 内接于球O 1.若球O 2在球O 1内且与平面ABCD 相切,则球O 2的直径的最大值为________.答案 8解析 如图,正四棱锥S -ABCD 内接于球O 1,SO 1与平面ABCD 交于点O .在正方形ABCD 中,AB =42,AO =4.在Rt △SAO 中,SO =SA 2-OA 2=(25)2-42=2.设球O 1的半径为R ,则在Rt △OAO 1中,(R -2)2+42=R 2,解得R =5,所以球O 1的直径为10.当球O 2与平面ABCD 相切于点O 且与球O 1相切时,球O 2的直径最大.又因为SO =2,所以球O 2的直径的最大值为10-2=8.一、高考大题1.(2016·江苏高考)现需要设计一个仓库,它由上下两部分组成,上部的形状是正四棱锥P -A 1B 1C 1D 1,下部的形状是正四棱柱ABCD -A 1B 1C 1D 1(如图所示),并要求正四棱柱的高O 1O 是正四棱锥的高PO 1的4倍.(1)若AB =6 m ,PO 1=2 m ,则仓库的容积是多少?(2)若正四棱锥的侧棱长为6 m ,则当PO 1为多少时,仓库的容积最大? 解 (1)由PO 1=2知,O 1O =4PO 1=8. 因为A 1B 1=AB =6,所以正四棱锥P -A 1B 1C 1D 1的体积V 锥=13·A 1B 21·PO 1=13×62×2=24(m 3).正四棱柱ABCD -A 1B 1C 1D 1的体积V 柱=AB 2·O 1O =62×8=288(m 3).所以仓库的容积V =V 锥+V 柱=24+288=312(m 3).(2)设A 1B 1=a m ,PO 1=h m , 则0<h <6,O 1O =4h . 连接O 1B 1.因为在Rt △PO 1B 1中,O 1B 21+PO 21=PB 21, 所以⎝⎛⎭⎪⎫22a 2+h 2=36, 即a 2=2(36-h 2). 于是仓库的容积V =V 柱+V 锥=a 2·4h +13a 2·h =133a 2h=263(36h -h 3),0<h <6, 从而V ′=263(36-3h 2)=26(12-h 2).令V ′=0,得h =23或h =-23(舍). 当0<h <23时,V ′>0,V 是单调增函数; 当23<h <6时,V ′<0,V 是单调减函数. 故h =23时,V 取得极大值,也是最大值. 因此,当PO 1=2 3 m 时,仓库的容积最大.2.(2018·全国卷Ⅰ)如图,在平行四边形ABCM 中,AB =AC =3,∠ACM =90°,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB ⊥DA .(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且BP =DQ =23DA ,求三棱锥Q -ABP 的体积.解 (1)证明:由已知可得∠BAC =90°,即AB ⊥AC . 又AB ⊥DA ,且AC ∩DA =A ,所以AB ⊥平面ACD . 又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC . (2)由已知可得,DC =CM =AB =AC =3,DA =32. 又BP =DQ =23DA ,所以BP =22.作QE ⊥AC ,垂足为E ,则QE 綊13DC .由已知及(1)可得DC ⊥平面ABC , 所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q -ABP 的体积为V 三棱锥Q -ABP =13×QE ×S △ABP =13×1×12×3×22sin45°=1.二、模拟大题3.(2018·武昌调研)如图,已知某几何体的三视图如下(单位:cm).(1)画出这个几何体的直观图(不要求写画法); (2)求这个几何体的表面积及体积. 解 (1)这个几何体的直观图如图所示.(2)这个几何体可看成是正方体AC 1及直三棱柱B 1C 1Q -A 1D 1P 的组合体. 由PA 1=PD 1=2,A 1D 1=AD =2,可得PA 1⊥PD 1. 故所求几何体的表面积S =5×22+2×2×2+2×12×(2)2=22+42(cm 2),所求几何体的体积V =23+12×(2)2×2=10(cm 3).4.(2018·浙江杭州一模)已知一个三棱台的上、下底面分别是边长为20 cm 和30 cm 的正三角形,各侧面是全等的等腰梯形,且各侧面的面积之和等于两底面面积之和,求棱台的体积.解 如图所示,在三棱台ABC -A ′B ′C ′中,O ′,O 分别为上、下底面的中心,D ,D ′分别是BC ,B ′C ′的中点,则DD ′是等腰梯形BCC ′B ′的高,又C ′B ′=20 cm ,CB =30 cm ,所以S 侧=3×12×(20+30)×DD ′=75DD ′.S 上+S 下=34×(202+302)=3253(cm 2). 由S 侧=S 上+S 下,得75DD ′=3253, 所以DD ′=1333(cm),又因为O ′D ′=36×20=1033(cm), OD =36×30=53(cm), 所以棱台的高h =O ′O =D ′D 2-(OD -O ′D ′)2=⎝ ⎛⎭⎪⎫13332-⎝⎛⎭⎪⎫53-10332=43(cm),由棱台的体积公式,可得棱台的体积为V =h3(S 上+S 下+S 上S 下)=433×⎝ ⎛⎭⎪⎫3253+34×20×30 =1900(cm 3).故棱台的体积为1900 cm 3.。

相关文档
最新文档