课件_二、三阶行列式

合集下载

二阶与三阶行列式

二阶与三阶行列式

a 3a b 6a 3b c 10a 6b 3c d
解 从倒数的二行开始,把前一行的(-1)倍加到后 一行上去.
ab
c
d
a ab abc abcd D
a 2a b 3a 2b c 4a 3b 2c d
a 3a b 6a 3b c 10a 6b 3c d
得 D D1 O
注意:
* D2 D1 D2 .
O D
D2
D1 * * D2
D1 O
(1)mn
| D1 || D2
|.
以上的几个式子可作rmonde)行列式
11
1
x1 x2 Dn x12 x22
xn
xn2
(xj xi ), (1)


0 x2n2 x2 x1 x3n2 x3 x1 xnn2 xn x1
1 11
x2 x1x3 x1xn x1
x2
x3 xn


(x2 x1)(x3 x1)
xi xj . ni j1
ab
c
d
0 a ab abc
0 a 2a b 3a 2b c
0 a 3a b 6a 3b c
同理,可得
ab c
d
0 a ab abc

00 a
2a b
00 a
3a b
ab c
d
0
a
ab
a b c a4.
00 a
2a b
00 0
a
例5.4 计算 1234 2341 . 3412 4123

第一节 二阶与三阶行列式

第一节 二阶与三阶行列式

a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 .
n 阶行列式定义
将n2个数排成n行n列的数表,按下列规
则计算出的数,即
D ( 1) a1 p1 a 2 p2 a np n n! a n1 a nn
2 D1 ( 1) ( 1) 1 x1 , 2 D ( 1) ( 2) 2
( 1) D2 x2 2 ( 1) ( 2) D
2
1 , 2
2 2 ( 1) ( 1) D3 x3 2 D ( 1) ( 2)
ci 2 ai 1b12 ai 2b22 ainbn 2 , (i 1,2,, n)
D
a11 a 21 a n1 1
a12 a1n a 22 a 2 n a n 2 a nn 1 1
再证唯一性.假设
x j c j , j 1,2,, n 也是(1)的解.
在(2)两端同时乘以cj
a11 a1 j c j a1n cjD an1 anj c j ann
a11 (a11c1 a1 j c j a1n cn ) a1n an1 (an1c1 anj c j anncn ) ann
例6.2 问λ在什么条件下,方程组
ì λx1 + x2 = 0, ï ï í ï ï î x1 + λx2 = 0
有非零解?
解 由定理6.5知,若方程组有非零解,则其系数行列
式必为零.
D

1
1

0 2 1 0,

二阶与三阶行列式线性代数PPT课件

二阶与三阶行列式线性代数PPT课件
19 世纪末美国数学物理学家吉布斯( Willard Gibbs ) 发表了关于《向量分析基础》 的著名论述。
14
第14页/共49页
其后英国物理学家狄拉克 ( P. A. M. Dirac 19021984)提出了行向量和列向量的乘积为标量。
我们习惯的列矩阵和向量都是在 20 世纪由物理学家给 出的。
16
第16页/共49页
阿贝尔(Abel) 与伽罗瓦(Galois)
挪威数学家阿贝尔(1802.8.5—1829.4.6),以证明 五次元方程的根式解的不可能性而闻名。 法国数学家厄米特(Hermite 1822—1901)在谈 到阿贝尔的贡献时曾说过:“阿贝尔留下的工作, 可以使以后的数学家足够忙碌150年!” 在和阿贝尔同时期的一个法国少年读到了他的著作, 于是在不到20岁的时候在代数方程论推陈出新创立了 一门新的数学理论——伽罗瓦理论,这个发现者伽罗 瓦还建立了群论的基础理论。
7
第7页/共49页
范德蒙( Vandermonde ) 是第一个对行列式 理论进行系统的阐述(即把行列式理论与线 性方程组求解相分离)的人。并且给出了一 条法则,用二阶子式和它们的余子式来展开 行列式。就对行列式本身进行研究这一点而 言,他是这门理论的奠基人。
8
第8页/共49页
拉世 界体系的探讨》中 , 证明了 Vandermonde 的一些 规则 , 并推广了他的展开行列式的方法 , 用 r 行中所 含的子式和它们的余子式的集合来展开行列式,这 个方法现在仍然以他的名字命名。
23
第23页/共49页
对于二元线性方程组
aa1211xx11
a12 x2 a22 x2
b1 , b2 .
若记
D a11 a12 ,

§1_二阶与三阶行列式共22页文档

§1_二阶与三阶行列式共22页文档

1
0








审容膝之易安。
41、学问是异常珍贵的东西,从任何源泉吸 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
§1_二阶与三阶行列式
6













7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8













9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
45、自己的饭量自己知道。——苏联

二阶和三阶行列式

二阶和三阶行列式

a11 D
a12
a13 a23 a33 a43
a12
a14 a24 a34 a44
a13 a23 a33
a21 a22 a31 a32 a41 a42
a11
a21 a23 M 12 a31 a33 a41 a43
1 2
a24 a34 a44
A12 1 M 12 M 12
M 44 a21 a22 a31 a32
a41 a42 a43 a44
a 32 的代数余子式 A32 ( 1)32 M 32 a13 的代数余子式 A ( 1)13 M 13 13
a21 a31 a41

a22b1 a12 a21b1 x2 a11a22 a12a21
a11 a12 D a11a22 a12a21 , a21 a22
a12 a22
主对角线 a11 a21 称 D 为二阶行列式。 副对角线
(-)
a13 a11 a33 a31
(+)
a12 a32
(+) (+)
a23 a21 a22
(-)
(-)
三元线性方程组
a11 x1 a12 x2 a13 x3 b1 设有三元线性方程组 a21 x1 a22 x2 a23 x3 b2 , a x a x a x b 31 1 32 2 33 3 3
解 计算二阶行列式
D
2 1 3 2
7 , D1
5 11
1 2
21 , D2
2
5
3 11
7 .
由 D 7 0 知方程组有唯一解:
D1 D2 x1 3 , x2 1. D D

第一讲 二阶、三阶、N阶行列式

第一讲  二阶、三阶、N阶行列式

第一讲Ⅰ 授课题目(章节):§1.1 二阶、三阶行列式;§1.2 n 阶行列式 Ⅱ 教学目的与要求:理解排列的概念,以及逆序数的计算方法;了解行列式的定义和性质,会用行列式的定义及性质计算一些较简单的行列式; 掌握二、三阶行列式的计算法;Ⅲ 教学重点与难点:重点:n 阶行列式的定义 难点:n 阶行列式的定义 Ⅳ 讲授内容: §1.1 二阶、三阶行列式一、二元线性方程组与二阶行列式二元一次方程组的代入消元解法:⎩⎨⎧=+=+)2.....()1.....(2222111211b y a x a b y a x a 1211a a 、不可能同时为0,不妨设011≠a ,则: )()1(1121a a -⨯得:)3.........(1121111211221a ab y a a a x a -=-- )3()2(+得(消去x ):112111121121122211a ab a b y a a a a a -=-即:)4( (21)122211211211a a a a a b b a y --=将(4)代入(1)得:21122211212221a a a a b a a b x --=可见,方程组的解完全可由方程组中的未知数系数22211211,,,a a a a 以及常数项21,b b 表示出来⎪⎪⎩⎪⎪⎨⎧--=--=2112221121121121122211212221a a a a a b b a y a a a a b a a b x ,如果规定记号2112221122211211a a a a a a a a -=,则有:222121212221a b a b b a a b =-,221111211211b a b a a b b a =-因此二元一次方程组的解可以表示为:⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==2221121122111122211211222121a a a a b a b a y a a a a a b a b x定义1. 1 记号22211211a a a a 表示代数和21122211a a a a -,称为二阶行列式。

线性代数 课件

线性代数 课件

例5 写出四阶行列式中含有因子 a11a23 的项。
解: 1) (13 pq ) a11a23a3 p a4 q , pq为24的全排列 ( 所以: 1) (1324) a11a23a32 a44 a11a23a32 a44 ( ( 1) (1342) a11a23a34 a42 a11a23a34 a42 例6 若 a13a2i a32 a4 k , a11a22 a3i a4 k , ai 2 a31a43ak 4 为四阶行列式的项,试确定i与k,使前两项带正号, 后一项带负号。
n(n 1) ( p1 p2 ... pn ) ( pn pn1... p1 ) C 2 n(n 1) ( pn pn1... p1 ) k 2
2 n
例4 求排列(2k ) k 1)2(2k 2)...( k 1) k 1(2 的逆序数, 并讨论奇偶性。 解:2k 的逆序数为 2k 1 ; 的逆序数为 0 1 (2k 1) 的逆序数为 2k 3 ; 的逆序数为0 2 (2k 2) 的逆序数为 2k 5 ; 的逆序数为0 3 ............ (k 1) 的逆序数为 1 ;k的逆序数为0
( p1 p2 ... pn ) (n, n 1,..., 2,1)
1 2 ... ( n 2) ( n 1)
n
0 0 12 ...n ...
n (n 1) 2
1
0 (1) ... 0
n ( n 1) 2
12 ...n
2.三角行列式 1) 下三角行列式 a11 a21 ... an1 2) 上三角行列式 a11 0 ... 0
自然数的一个排列,考虑元素 pi(i=1,2,…n),如 果比 pi大的且排在 pi 前面的元素有τi个,就说

1-1 二阶与三阶行列式

1-1  二阶与三阶行列式
aij ( i 1ቤተ መጻሕፍቲ ባይዱ2 ; j 1,2) 称为元素. 其中:
ai j
行标
即元素 aij 位于第 i 行第 j 列.
列标
二阶行列式的计算 —— 对角线法则
主对角线 副对角线
a11 a12 a11a22 a12a21 a21 a22
例1 计算行列式 D
5 10
29 8
.
解 D 5 8 29 ( 10) 330 例2 当 a 为何值时,行列式 解 因为
三阶行列式的计算 —— 对角线法则
a11 D a21 a31
a12 a22 a32
a13 a23 a33
实线上的三个元素的乘积冠正号, 虚线上的三个元素的乘积冠负号.
a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32
a2 3 a 1 a
2
a 1
3
的值不为 0?
a 3a a(a 3),
2
要使行列式的值不为 0,必有 a 0 且 a 3.
二、三阶行列式
定义2 设有 9 个数排成 3 行 3 列的数表 a11 a12 a13 a21 a22 a23 , a31 a32 a33 记 a11 a12 a13 a21 a22 a23 a11a22a33 a12a23a31 a13a21a32 a31 a32 a33 a13a22a31 a12a21a33 a11a23a32 , 称为该数表所确定的三阶行列式.
注意 对角线法则仅适用于二阶与三阶行列式的计算,但 对于三阶以上的行列式则不适用.
1
2 4
例3 计算行列式 D 2 2 1 . 3 4 2

线性代数完整版ppt课件

线性代数完整版ppt课件
a 31 a 32 a 33 a13a22a31a12a21a33a11a23a32
规律:
1. 三阶行列式共有6项,即3!项.
2. 每一项都是位于不同行不同列的三个元素的乘积.
3. 每一项可以写成 a1p1a2p2(a3正p3负号除外),其中
是1、2、3的某个排列.
p1 p2 p3
4. 当 p1 p2 是p3偶排列时,对应的项取正号;
(方程组的系数行列式)
D1
b1 b2
a12 a22
D2
a11 a 21
b1 b2
则上述二元线性方程组的解可表示为
x1
b1a22 a11a22
a12b2 a12a21
D1 D
x2
a11b2b1a21 a11a22a12a21.
D2 D
10
例1
求解二元线性方程组
32x1x1 2xx22
12 1
3 2
1.4
.
14
例3 求解方程 1 1 1
2 3 x 0. 4 9 x2
解 方程左端 D 3 x 2 4 x 1 9 x 8 2 x 2 12 x25x6,
由 x25x60得
x2或 x3.
.
15
§2 全排列及其逆序数
问题 把 n 个不同的元素排成一列,共有多少种不同的 排法?
定义 把 n 个不同的元素排成一列,叫做这 n 个元素 的全排列. n 个不同元素的所有排列的种数,通常用 Pn 表示.
相减而得.
.
7
二元线性方程组
a11x1 a12x2 b1 a21x1 a22x2 b2
其求解公式为
x1
x
2
b1a 22 a11a 22 a11b2 a11a 22

§1 二阶与三阶行列式

§1 二阶与三阶行列式
线上三元素的乘积冠以正号, 蓝线上三元素的乘积冠以负号. 蓝线上三元素的乘积冠以负号.
说明: 对角线法则只适用于二阶与三阶行列式. 说明 (1) 对角线法则只适用于二阶与三阶行列式. (2) 三阶行列式包括 项,每一项都是位于不同行 三阶行列式包括3!项 每一项都是位于不同行 每一项都是位于不同行, 不同列的三个元素的乘积,其中三项为正 三项为负 不同列的三个元素的乘积 其中三项为正,三项为负 其中三项为正 三项为负.
3. 利用三阶行列式求解三元线性方程组
a11 x1 + a12 x2 + a13 x3 = b1 , 三元线性方程组 a21 x1 + a22 x2 + a23 x3 = b2 , a x + a x + a x = b ; 31 1 32 2 33 3 3 a11 a12 a13 a23 a33
2. 二阶行列式的计算 二阶行列式的计算——对角线法则 对角线法则 主对角线 副对角线
a11 a21
a12 a22
= a 1 1a 2 2 − a 1 2 a 2 1 .
a11 x1 + a12 x2 = b1 , 对于二元线性方程组 a21 x1 + a22 x2 = b2 . a11 a12 D= , 称为其系数行列式 称为其系数行列式 a21 a22
称为其系数行列式 称为其系数行列式
D = a21 a22 a31 a32
例1 解
x1 − 2 x2 + x3 = −2, 解线性方程组 2 x1 + x2 − 3 x3 = 1, − x + x − x = 0. 1 2 3
1
−2 1 D= 2 1 − 3 = −1 − 6 + 2 − ( −1) − 4 − ( −3) = −5 ≠ 0 , −1 1 −1

线性代数二阶与三阶行列式

线性代数二阶与三阶行列式
D 2 1 3 11 1 2 3 1
1 1 1
1 2 1 11 1 2 2 1 1 31
5 0,
同理可得
2 2 1
1 2 1
D1 1 1 3 5, D2 2 1 3 10,
0 1 1
1 0 1
1 2 2
D3 2 1 1 5, 1 1 0
故方程组的解为:
得一个关于未知数 a, b, c 的线性方程组, 又 D 20 0, D1 40, D2 60, D3 20. 得 a D1 D 2, b D2 D 3, c D3 D 1
故所求多项式为
f x 2x2 3x 1.
副对角线
a21
a22
对于二元线性方程组
aa1211
x1 x1
a12 x2 a22 x2
b1 , b2 .
若记
D a11 a12 ,
系数行列式
a21 a22
aa1211
x1 x1
a12 x2 a22 x2
b1 , b2 .
D a11 a12 , a21 a22
aa1211
x1 x1
a12 x2 a22 x2
称列)的数表
a11 a12
a21 a22
(4)
表达式 a11a22 a12a21称为数表(4)所确定的二阶
行列式,并记作 a11 a12
(5)
a21 a22

D a11 a21
a12 a22
a11a22 a12a21.
二阶行列式的计算 对角线法则
主对角线 a11
a12
a11a22 a12a21.
D2
a11 a21
b1 . b2
则二元线性方程组的解为

二、三阶行列式

二、三阶行列式

则三元线性方程组的解为: 则三元线性方程组的解为
D1 x1 = , D
D2 x2 = , D
D3 x3 = . D

解线性方程组 x1 − 2 x2 + x3 = −2, 2 x1 + x2 + −3 x3 = 1, − x + x − x = 0. 1 2 3
由于方程组的系数行列式 1 −2 1 D= 2 1 − 3 = 1 × 1 × ( − 1) + ( − 2 ) × ( − 3 ) × ( − 1) −1 1 −1
f (1) = 0, f (2 ) = 3, f (− 3 ) = 28.
思考题解答
解 设所求的二次多项式为
1
2 3
D= 4 0 5 −1 0 6
= 1× 0 × 6 − 2× 4× 6
+ 2 × 5 × ( − 1)
+ 3 × 4 × 0 − 3 × 0 × ( −1) = −58
− 1× 5 × 0
例4
实数 a , b 满足什么条件时有
a
b 0
D= −b a 0 =0 1 0 1
a 1
b 0 0 1
a11 a12 D = a21 a22 a31 a32
三阶行列式的计算
a13 a23 .列标 a33 行标
对角线法则 a11 a12
a13 a23 a33
a21 a31
a22 a32
= a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a12a21a33 − a11a23a32.
− 1 × 1 × 4 − 2 × ( −2 ) × ( −2 ) − ( −4 ) × 2 × ( −3 )

§1二阶与三阶行列式共17页文档

§1二阶与三阶行列式共17页文档

6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank y、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档