宝鸡市2020版九年级上学期数学期末考试试卷C卷

合集下载

陕西省宝鸡市金台区2019-2020学年九年级上学期期末考试数学试题精品

陕西省宝鸡市金台区2019-2020学年九年级上学期期末考试数学试题精品

第1题图九年级(上)数学期末质量检测试题(卷)2020.01一、选择题(每题3分,共计30分;每道题只有一个选项是符合题意的,请将正确答案填涂在答题卡上)1. 一个几何体的三视图如图所示,那么这个几何体是( )A. B. C. D.2. 下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分.其中正确的有( )个.A. 4B. 3C. 2D. 13. 若a ,b 是方程x 2+2x-2016=0的两根,则a 2+3a+b=( )A. 2016B. 2015C. 2014D. 20124. 一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球( )A. 32个B. 36个C. 40个D. 42个5. 如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是0.8m ,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m ,又测得地面的影长为2.6m ,请你帮她算一下,树高是( )A. 4.25mB.4.45mC. 4.60mD.4.75m6. 把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是( )2:1B. 4:1C. 3:1D. 2:17. 如图,在正方形ABCD 中,E 为AB 的中点,G ,F 分别为AD 、BC 边上的点,若AG =1,BF =2,∠GEF =90°,则GF 的长为( )A. 2B. 3C. 4D. 58. 某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可列方程为( ) A. 560+(1+x)2=1850 B. 560+560(1+x)2=1850C. 560(1+x)+560(1+x)2=1850D. 560+560(1+x)+560(1+x)2=18509. 如图,E 为平形四边形ABCD 的边AB 延长线上的一点,且BE :AB=2:3,△BEF 的面积为4,则平形四边形ABCD 的面积为( ) A. 30B. 27C. 14D. 3210. 如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数ky x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则的值是( )A.92B.74 C. 245D. 12 二、填空题(本大题共8小题,共24分) 11. 已知2b 33a b 4=-,则ab=______. 第9题图第5题图第7题图第10题图12. 若3是关于x 的方程x 2-x+c=0的一个根,则方程的另一个根等于______. 13. 国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是______.14. 在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同.搅匀后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是______. 15. 如图,E 是矩形ABCD 的对角线的交点,点F 在边AE 上,且DF=DC ,若∠ADF=25°,则∠BEC= .16. 如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △DOE :S △AOC 的值为______.第18题图17. 小明家的客厅有一张直径为1.1米,高0.75米的圆桌BC ,在距地面2米的A 处有一盏灯,圆桌的影子为DE ,依据题意建立平面直角坐标系,其中点D 的坐标为(2,0),则点E 的坐标是 . 18. 如图,反比例函数ky x的图象经过平形四边形ABCD 对角线的交点P ,已知点A ,C ,D 在坐标轴上,BD ⊥DC ,平形四边形ABCD 的面积为6,则k =__________. 三、解答题(共66分,注意写出必要的解题步骤) 19.(每题5分,共15分)选用合适的方法解下列方程:(1)x 2-7x+10=0. (2)3x 2-4x-1=0, (3)(x +3)2=(1-3x)2.第15题图 第16题图第17题图20.(6分)如图所示,请画出这个几何体的三视图.21.(7分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,蓝球1个.若从中随机摸出一个球,摸到蓝球的概率是14.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.22.(8分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?23.(8分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.第23题图24.(10分)如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD 上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD 的面积.第24题图25.(12分)如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数kyx(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=34OB=3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤kx的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由第25题图九年级(上)数学期末质量检测试题答案一、选择题(每题3分,共计30分)1.D2.C3.C4.A5.B6.A7.B8.D9.A 10.C二、填空题(每空3分,共计24分)11.12.-2 13.10% 14.15.115°16.1:16 17.(3.76,0)18.-3三、解答题(共66分)19.(每题5分,共15分)解:(1)x2-7x+10=0.(x-2)(x-5)=0,x-2=0或x-5=0,解得x1=2,x2=5.(2)△=(-4)2-4×3×(-1)=28,x===,(3)∵(x+3)2=(1-3x)2,∴x+3=1-3x或x+3=-1+3x,解得:x=-0.5或x=2.20.(6分)解:如图所示:21.(7分)解:(1)设红球有x个,根据题意得:=,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个;(3分)(2)列表如下:红黄黄蓝红---(黄,红)(黄,红)(蓝,红)黄(红,黄)---(黄,黄)(蓝,黄)黄(红,黄)(黄,黄)---(蓝,黄)蓝(红,蓝)(黄,蓝)(黄,蓝)---由上表可知,共有12种等可能性的结果,其中两次摸到的球恰是一黄一蓝的情况有4种,则P==.(8分)22.(8分)解:设该单位这次共有x名员工去风景区旅游.(1分)因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500-10(x-15)]x=10500,(3分)整理,得x2-65x+1050=0,解得x1=35,x2=30.(6分)当x1=35时,500-10(x-15)=300<320,故舍去x1;当x2=30时,500-10(x-15)=350>320,符合题意.(7分)答:该单位这次共有30名员工去风景区旅游.(8分)23.(8分)【答案】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,(2分)∴,,又∵CD=EF,∴,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,(5分)∴BD=9,BF=9+3=12,∴,解得,AB=6.4m.(8分)因此,路灯杆AB的高度6.4m。

2020年宝鸡市九年级数学上期末模拟试卷(含答案)

2020年宝鸡市九年级数学上期末模拟试卷(含答案)

2020年宝鸡市九年级数学上期末模拟试卷(含答案)一、选择题1.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<12.下列图形中既是轴对称图形又是中心对称图形的是( )A.正三角形B.平行四边形C.正五边形D.正六边形3.把抛物线y=2(x﹣3)2+k向下平移1个单位长度后经过点(2,3),则k的值是( )A.2B.1C.0D.﹣14.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣15.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是( )A.4个B.3个C.2个D.1个6.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6B.8C.10D.127.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形AEFG,AE,FG 分别交射线CD 于点 PH,连结 AH,若 P 是 CH 的中点,则△APH 的周长为()A .15B .18C .20D .24 8.若关于x 的一元二次方程()26230a x x --+=有实数根,则整数a 的最大值是( )A .4B .5C .6D .79.如图,某中学计划靠墙围建一个面积为280m 的矩形花圃(墙长为12m ),围栏总长度为28m ,则与墙垂直的边x 为( )A .4m 或10mB .4mC .10mD .8m 10.二次函数y=3(x –2)2–5与y 轴交点坐标为( ) A .(0,2)B .(0,–5)C .(0,7)D .(0,3) 11.若关于x 的方程x 2﹣2x +m =0的一个根为﹣1,则另一个根为( )A .﹣3B .﹣1C .1D .3 12.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( )A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=150二、填空题13.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为_____.14.如图,将半径为6的半圆,绕点A 逆时针旋转60°,使点B 落到点B′处,则图中阴影部分的面积是_____.15.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).16.若直角三角形两边分别为6和8,则它内切圆的半径为_____.17.半径为2的圆被四等分切割成四条相等的弧,将四个弧首尾顺次相连拼成如图所示的恒星图型,那么这个恒星的面积等于______.18.关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,则实数a 的取值范围是______.19.两块大小相同,含有30°角的三角板如图水平放置,将△CDE 绕点C 按逆时针方向旋转,当点E 的对应点E′恰好落在AB 上时,△CDE 旋转的角度是______度.20.已知在同一坐标系中,抛物线y 1=ax 2的开口向上,且它的开口比抛物线y 2=3x 2+2的开口小,请你写出一个满足条件的a 值:_____.三、解答题21.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根.(1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根.22.如图,四边形 ACDE 是证明勾股定理时用到的一个图形,a 、b 、c 是 Rt ∆ABC 和 Rt ∆BED 的边长,已知2=AE c ,这时我们把关于 x 的形如220++=ax cx b 二次方程称为“勾系一元二次方程”.请解决下列问题:(1)写出一个“勾系一元二次方程”;(2)求证:关于 x 的“勾系一元二次方程”220+=ax cx b ,必有实数根;(3)若x=-1是“勾系一元二次方程” 220ax cx b的一个根,且四边形ACDE的++=周长是62,求∆ABC的面积.23.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB 上,点B的对应点为E,连接BE.(Ⅰ)求证:∠A=∠EBC;(Ⅱ)若已知旋转角为50°,∠ACE=130°,求∠CED和∠BDE的度数.24.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?25.为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->V ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键. 2.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A. 是轴对称图形,不是中心对称图形,故错误;B. 不是轴对称图形,是中心对称图形,故错误;C. 是轴对称图形,不是中心对称图形,故错误;D. 是轴对称图形,也是中心对称图形,故正确.故答案选:D.【点睛】本题考查的知识点是中心对称图形, 轴对称图形,解题的关键是熟练的掌握中心对称图形, 轴对称图形.3.A解析:A【解析】【分析】把点坐标代入y=2(x-3)2+k-1解方程即可得到结论.【详解】解:设抛物线y=2(x-3)2+k 向下平移1个单位长度后的解析式为y=2(x-3)2+k-1,把点(2,3)代入y=2(x-3)2+k-1得,3=2(2-3)2+k-1,∴k=2,故选A .本题考查二次函数的图象与几何变换,熟练掌握抛物线的平移规律是解题关键.4.B解析:B【解析】【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B .【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.5.B解析:B【解析】【分析】【详解】解:∵抛物线与x 轴有2个交点,∴b 2﹣4ac >0,所以①正确;∵抛物线的对称轴为直线x =1,而点(﹣1,0)关于直线x =1的对称点的坐标为(3,0),∴方程ax 2+bx +c =0的两个根是x 1=﹣1,x 2=3,所以②正确;∵x =﹣2b a=1,即b =﹣2a ,而x =﹣1时,y =0,即a ﹣b +c =0,∴a +2a +c =0,所以③错误; ∵抛物线与x 轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x <3时,y >0,所以④错误;∵抛物线的对称轴为直线x =1,∴当x <1时,y 随x 增大而增大,所以⑤正确. 故选:B .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左;当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac =0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.6.D解析:D【解析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.C解析:C【解析】【分析】连结AC,先由△AGH≌△ADH得到∠GHA=∠AHD,进而得到∠AHD=∠HAP,所以△AHP是等腰三角形,所以PH=PA=PC,所以∠HAC是直角,再在Rt△ABC中由勾股定理求出AC的长,然后由△HAC∽△ADC,根据=求出AH的长,再根据△HAC∽△HDA求出DH的长,进而求得HP和AP的长,最后得到△APH的周长.【详解】∵P是CH的中点,PH=PC,∵AH=AH,AG=AD,且AGH与ADH都是直角,∴△AGH≌△ADH,∴∠GHA=∠AHD,又∵GHA=HAP,∴∠AHD=∠HAP,∴△AHP是等腰三角形,∴PH=PA=PC,∴∠HAC是直角,在Rt△ABC中,AC==10,∵△HAC∽△ADC,∴=,∴AH===7.5,又∵△HAC∽△HAD,=,∴DH=4.5,∴HP==6.25,AP=HP=6.25,∴△APH的周长=AP+PH+AH=6.25+6.25+7.5=20.【点睛】本题主要考查直角三角形的性质以及相似三角形的性质,解题的关键是清楚直角三角形斜边上的中线是斜边的一半以及会运用相似三角形线段成比例求出各边长的长.8.B解析:B【解析】【分析】根据一元二次方程的定义和判别式的意义得到a-6≠0且△=(-2)2-4×(a-6)×3≥0,再求出两不等式的公共部分得到a≤193且a≠6,然后找出此范围内的最大整数即可.【详解】根据题意得a-6≠0且△=(-2)2-4×(a-6)×3≥0,解得a≤193且a≠6,所以整数a的最大值为5.故选B.【点睛】本题考查一元二次方程的定义和跟的判别式,一元二次方程的二次项系数不能为0;当一元二次方程有实数根时,△≥0.9.C解析:C【解析】【分析】设与墙相对的边长为(28-2x)m,根据题意列出方程x(28-2x)=80,求解即可.【详解】设与墙相对的边长为(28-2x)m,则0<28-2x≤12,解得8≤x<14,根据题意列出方程x(28-2x)=80,解得x1=4,x2=10因为8≤x<14∴与墙垂直的边x为10m故答案为C.【点睛】本题考查一元二次方程的应用,根据题意列出方程并求解是解题的关键,注意题中限制条件,选取适合的x值.10.C解析:C【解析】【分析】由题意使x=0,求出相应的y的值即可求解.【详解】∵y=3(x﹣2)2﹣5,∴当x=0时,y=7,∴二次函数y=3(x﹣2)2﹣5与y轴交点坐标为(0,7).故选C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是二次函数图象上的点满足其解析式.11.D解析:D【解析】【分析】设方程另一个根为x1,根据一元二次方程根与系数的关系得到x1+(-1)=2,解此方程即可.【详解】解:设方程另一个根为x1,∴x1+(﹣1)=2,解得x1=3.故选:D.【点睛】本题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根分别为x1,x2,则x1+x2=-ba,x1•x2=ca.12.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)2=150,故选:B.【点睛】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“-”.二、填空题13.3【解析】【分析】根据旋转的性质知AB=AE在直角三角形ADE中根据勾股定理求得AE长即可得【详解】∵四边形ABCD是矩形∴∠D=90°BC=AD=3∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG解析:【解析】【分析】根据旋转的性质知AB=AE,在直角三角形ADE中根据勾股定理求得AE长即可得.【详解】∵四边形ABCD是矩形,∴∠D=90°,BC=AD=3,∵将矩形ABCD绕点A逆时针旋转得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴,∴,故答案为.【点睛】本题考查矩形的性质和旋转的性质,熟知旋转前后哪些线段是相等的是解题的关键.14.24π【解析】【分析】根据整体思想可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′再利用扇形面积公式计算即可【详解】解:∵S阴影=S半圆AB ′+S扇形ABB′﹣S半圆AB而根据旋解析:24π【解析】【分析】根据整体思想,可知S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′,再利用扇形面积公式计算即可.【详解】解:∵S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB而根据旋转的性质可知S半圆AB′=S半圆AB∴S阴影=S半圆AB′+S扇形ABB′﹣S半圆AB=S扇形ABB′而由题意可知AB=12,∠BAB′=60°即:S阴影=2 6012360π⋅⋅=24π故答案为24π.本题考查了扇形面积的相关计算,根据整体思想求出表示阴影部分面积的方法,再用公式计算扇形的面积即可.15.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.16.2或-1【解析】【分析】根据已知题意求第三边的长必须分类讨论即8是斜边或直角边的两种情况然后利用勾股定理求出另一边的长再根据内切圆半径公式求解即可【详解】若8是直角边则该三角形的斜边的长为:∴内切圆解析:2-1【解析】【分析】根据已知题意,求第三边的长必须分类讨论,即8是斜边或直角边的两种情况,然后利用勾股定理求出另一边的长,再根据内切圆半径公式求解即可.【详解】若8,∴内切圆的半径为:6+810=22-;若8=1.故答案为2【点睛】本题考查了勾股定理,三角形的内切圆,以及分类讨论的数学思想,分类讨论是解答本题的关键.17.16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积依此列式计算即可【详解】解:如图2+2=4恒星的面积=4×4-4π=16-4π故答案为16-4π【点睛】本题考查了扇形面解析:16﹣4π【解析】【分析】恒星的面积=边长为4的正方形面积-半径为2的圆的面积,依此列式计算即可.【详解】2+2=4,恒星的面积=4×4-4π=16-4π. 故答案为16-4π.【点睛】本题考查了扇形面积的计算,关键是理解恒星的面积=边长为4的正方形面积-半径为2的圆的面积.18.且【解析】【分析】由关于x 的一元二次方程有两个不相等的实数根即可得判别式继而可求得a 的范围【详解】关于x 的一元二次方程有两个不相等的实数根解得:方程是一元二次方程的范围是:且故答案为:且【点睛】本题 解析:1a 4>-且a 0≠ 【解析】【分析】由关于x 的一元二次方程2ax x 10++=有两个不相等的实数根,即可得判别式0V >,继而可求得a 的范围.【详解】 Q 关于x 的一元二次方程2ax x 10+-=有两个不相等的实数根,()22b 4ac 14a 114a 0∴=-=-⨯⨯-=+>V ,解得:1a 4>-, Q 方程2ax 2x 10-+=是一元二次方程,a 0∴≠,a ∴的范围是:1a 4>-且a 0≠, 故答案为:1a 4>-且a 0≠. 【点睛】本题考查了一元二次方程判别式以及一元二次方程的定义,一元二次方程ax 2+bx+c=0(a ≠0)的根与△=b 2-4ac 有如下关系:(1)△>0方程有两个不相等的实数根;(2)△=0方程有两个相等的实数根;(3)△<0方程没有实数根. 19.30【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB 的中线可得△E′CB 是等边三角形从而得出∠ACE′的度数和CE′的长从而得出△CDE 旋转的度数【详解】解:∵三角板是两块大小【解析】【分析】根据含有30°角的直角三角形的性质可知CE′是△ACB的中线,可得△E′CB是等边三角形,从而得出∠ACE′的度数和CE′的长,从而得出△CDE旋转的度数.【详解】解:∵三角板是两块大小一样且含有30°的角,∴CE′是△ACB的中线,∴CE′=BC=BE′,∴△E′CB是等边三角形,∴∠BCE′=60°,∴∠ACE′=90°﹣60°=30°,故答案为:30.【点睛】本题考查了含有30°角的直角三角形的性质,等边三角形的判定和性质,旋转的性质,本题关键是得到CE´是△ABC的中线.20.4【解析】【分析】由抛物线开口向上可知a>0再由开口的大小由a的绝对值决定可求得a的取值范围【详解】解:∵抛物线y1=ax2的开口向上∴a>0又∵它的开口比抛物线y2=3x2+2的开口小∴|a|>3解析:4【解析】【分析】由抛物线开口向上可知a>0,再由开口的大小由a的绝对值决定,可求得a的取值范围.【详解】解:∵抛物线y1=ax2的开口向上,∴a>0,又∵它的开口比抛物线y2=3x2+2的开口小,∴|a|>3,∴a>3,取a=4即符合题意【点睛】本题主要考查二次函数的性质,掌握二次函数的开口大小由a的绝对值决定是解题的关键,即|a|越大,抛物线开口越小.三、解答题21.(1)n>0;(2)x1=0,x2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240∆=->,即可求出n的取值范围;b ac(2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.22.(1)2340x ++=(答案不唯一)(2)见解析(3)1.【解析】【分析】(1)直接找一组勾股数代入方程即可;(2)根据根的判别式即可求解;(3)根据方程的解代入求出a,b,c 的关系,再根据完全平方公式的变形进行求解.【详解】(1)当a=3,b=4,c=5时,勾系一元二次方程为2340x ++=;(2)依题意得△=)2-4ab=2c 2-4ab,∵a 2+b 2=c 2,∴2c 2-4ab=2(a 2+b 2)-4ab=2(a-b )2≥0,即△≥0,故方程必有实数根;(3)把x=-1代入得c∵四边形 ACDE 的周长是,即,故得到c=2,∴a 2+b 2=4,∵(a+b)2= a 2+b 2+2ab∴ab=2,故∆ABC 的面积为12ab=1. 【点睛】此题主要考查一元二次方程的应用,解题的关键是熟知勾股定理、根的判别式及完全平方公式的应用.23.(Ⅰ)证明见解析;(Ⅱ)∠BDE=50°, ∠CED =35°【解析】【分析】(Ⅰ)由旋转的性质可得AC=CD,CB=CE,∠ACD=∠BCE,由等腰三角形的性质可求解.(Ⅱ)由旋转的性质可得AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,由三角形内角和定理和等腰三角形的性质可求解.【详解】证明:(Ⅰ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,CB=CE,∠ACD=∠BCE,∴∠A=180ACD2︒-∠,∠CBE=180BCE2︒-∠,∴∠A=∠EBC;(Ⅱ)∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,∠ABC=∠DEC,∠ACD=∠BCE=50°,∠EDC=∠A,∠ACB=∠DCE∴∠A=∠ADC=65°,∵∠ACE=130°,∠ACD=∠BCE=50°,∴∠ACB=∠DCE =80°,∴∠ABC=180°﹣∠BAC﹣∠BCA=35°,∵∠EDC=∠A=65°,∴∠BDE=180°﹣∠ADC﹣∠CDE=50°.∠CED=180°﹣∠DCE﹣∠CDE=35°【点睛】本题主要考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.24.(1)详见解析(2)85%【解析】【分析】(1)根据童车的数量是300×25%,童装的数量是300-75-90,儿童玩具占得百分比是90÷300×100%,童装占得百分比1-30%-25%,即可补全统计表和统计图.(2)先分别求出儿童玩具、童车、童装中合格的数量之和,再根据概率公式计算即可.【详解】解:(1)童车的数量是300×25%=75,童装的数量是300-75-90=135;儿童玩具占得百分比是(90÷300)×100%=30%.童装占得百分比1-30%-25%=45%.补全统计表和统计图如下:(2)∵儿童玩具中合格的数量是90×90%=81,童车中合格的数量是75×88%=66,童装中合格的数量是135×80%=108, ∴从该超市的这三类儿童用品中随机购买一件,购买到合格品的概率是816610885%300++=. 25.(1)20%;(2)10368万元.【解析】试题分析:(1)首先设该县投入教育经费的年平均增长率为x ,然后根据增长率的一般公式列出一元二次方程,然后求出方程的解得出答案;(2)根据增长率得出2017年的教育经费.试题解析:(1)设该县投入教育经费的年平均增长率为x.则有:6000=8640解得:=0.2=-2.2(舍去) 所以该县投入教育经费的年平均增长率为20%(2)因为2016年该县投入教育经费为8640万元,且增长率为20%所以2017年该县投入教育经费为8640×(1+20%)=10368(万元)考点:一元二次方程的应用。

2019-2020学年陕西省宝鸡市金台区九年级(上)期末数学试卷解析版

2019-2020学年陕西省宝鸡市金台区九年级(上)期末数学试卷解析版

2019-2020学年陕西省宝鸡市金台区九年级(上)期末数学试卷一、选择题(每题3分,共计30分;每道题只有一个选项是符合题意的,请将正确答案填涂在答题卡上)1.(3分)一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.2.(3分)下列说法:①四边相等的四边形一定是菱形②顺次连接矩形各边中点形成的四边形一定是正方形③对角线相等的四边形一定是矩形④经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分其中正确的有()个.A.4B.3C.2D.13.(3分)若a,b是方程x2+2x﹣2016=0的两根,则a2+3a+b=()A.2016B.2015C.2014D.20124.(3分)一个密闭不透明的盒子里有若干个白球,在不许将球倒出来数的情况下,为了估计白球数,小刚向其中放入了8个黑球,搅匀后从中随意摸出一个球记下颜色,再把它放回盒中,不断重复这一过程,共摸球400次,其中80次摸到黑球,你估计盒中大约有白球()A.32个B.36个C.40个D.42个5.(3分)如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m 的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A.3.25m B.4.25m C.4.45m D.4.75m6.(3分)把一张矩形的纸片对折后和原矩形相似,那么大矩形与小矩形的相似比是()A.:1B.4:1C.3:1D.2:17.(3分)如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,∠GEF=90°,则GF的长为()A.2B.3C.4D.58.(3分)某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可得方程()A.560(1+x)2=1850B.560+560(1+x)2=1850C.560(1+x)+560(1+x)2=1850D.560+560(1+x)+560(1+x)2=18509.(3分)如图,E为▱ABCD的边AB延长线上的一点,且BE:AB=2:3,△BEF的面积为4,则▱ABCD的面积为()A.30B.27C.14D.3210.(3分)如图,在以O为原点的直角坐标系中,矩形OABC的两边OC、OA分别在x轴、y轴的正半轴上,反比例函数y=(x>0)与AB相交于点D,与BC相交于点E,若BD=3AD,且△ODE的面积是9,则k=()A.B.C.D.12二、填空题(本大题共8小题,共24分)11.(3分)已知=,则=.12.(3分)若3是关于x的方程x2﹣x+c=0的一个根,则方程的另一个根等于.13.(3分)国家对药品实施价格调整,某药品经过两次降价后,每盒的价格由原来的60元降至48.6元,那么平均每次降价的百分率是.14.(3分)在一个不透明的袋子中,装有1个红球和2个白球,这些球除颜色外其余都相同.搅均后从中随机一次摸出两个球,则摸到的两个球都是白球的概率是.15.(3分)如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠BEC=.16.(3分)如图,D、E分别是△ABC的边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则S△DOE:S△AOC的值为.17.(3分)小明家的客厅有一张直径为1.1米,高0.75米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中点D的坐标为(2,0),则点E的坐标是.18.(3分)如图,反比例函数y=的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD ⊥DC,▱ABCD的面积为6,则k=.三、解答题(共66分,注意写出必要的解题步骤)19.(15分)选用合适的方法解下列方程:(1)x2﹣7x+10=0;(2)3x2﹣4x﹣1=0;(3)(x+3)2=(1﹣3x)2.20.(6分)如图所示,请画出这个几何体的三视图.21.(7分)不透明的口袋里装有红、黄、蓝三种颜色的小球若干个(小球除颜色外其余都相同),其中黄球2个,篮球1个.若从中随机摸出一个球,摸到篮球的概率是.(1)求口袋里红球的个数;(2)第一次随机摸出一个球(不放回),第二次再随机摸出一个球,请用列表或画树状图的方法,求两次摸到的球恰是一黄一蓝的概率.22.(8分)为吸引市民组团去风景区旅游,观光旅行社推出了如下收费标准:某单位员工去风景区旅游,共支付给旅行社旅游费用10500元,请问该单位这次共有多少员工去风景区旅游?23.(8分)如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小明在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己得影长FG=4m,如果小明的身高为1.6m,求路灯杆AB的高度.24.(10分)如图,O是矩形ABCD的对角线的交点,E、F、G、H分别是OA、OB、OC、OD上的点,且AE=BF=CG=DH.(1)求证:四边形EFGH是矩形;(2)若E、F、G、H分别是OA、OB、OC、OD的中点,且DG⊥AC,OF=2cm,求矩形ABCD的面积.25.(12分)如图,已知一次函数y=ax+b(a,b为常数,a≠0)的图象与x轴,y轴分别交于点A,B,且与反比例函数y=(k为常数,k≠0)的图象在第二象限内交于点C,作CD⊥x轴于D,若OA=OD=OB =3.(1)求一次函数与反比例函数的解析式;(2)观察图象直接写出不等式0<ax+b≤的解集;(3)在y轴上是否存在点P,使得△PBC是以BC为一腰的等腰三角形?如果存在,请直接写出P点的坐标;如果不存在,请简要说明理由.2019-2020学年陕西省宝鸡市金台区九年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共计30分;每道题只有一个选项是符合题意的,请将正确答案填涂在答题卡上)1.【解答】解:由主视图和左视图可得此几何体为柱体,根据俯视图为三角形可得此几何体为三棱柱;故选:C.2.【解答】解:∵四边相等的四边形一定是菱形,∴①正确;∵顺次连接矩形各边中点形成的四边形一定是菱形,∴②错误;∵对角线相等的平行四边形才是矩形,∴③错误;∵经过平行四边形对角线交点的直线,一定能把平行四边形分成面积相等的两部分,∴④正确;其中正确的有2个.故选:C.3.【解答】解:∵a是方程x2+2x﹣2016=0的实数根,∴a2+2a﹣2016=0,∴a2=﹣2a+2016,∴a2+3a+b=﹣2a+2016+3a+b=a+b+2016,∵a、b是方程x2+2x﹣2016=0的两个实数根,∴a+b=﹣2,∴a2+3a+b=﹣2+2016=2014.故选:C.4.【解答】解:设盒子里有白球x个,根据=得:=解得:x=32.经检验得x=32是方程的解.答:盒中大约有白球32个.故选:A.5.【解答】解:如图,设BD是BC在地面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,∴树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得,∴x=4.45,∴树高是4.45m.故选:C.6.【解答】解:设原矩形的长为2a,宽为b,则对折后的矩形的长为b,宽为a,∵对折后所得的矩形与原矩形相似,∴=,∴大矩形与小矩形的相似比是:1;故选:A.7.【解答】解:∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∵∠GEF=90°,∴∠AEG+∠BEF=90°,∴∠AGE=∠BEF,∴△AGE∽△BEF,∴,∵E为AB的中点,∵AG=1,BF=2,∴,解得:BE=AE=,在Rt△AEG中,GE2=AG2+AE2=3,在Rt△BEF中,EF2=BE2+BF2=6,∴在Rt△GEF中,GF==3.故选:B.8.【解答】解:依题意得二月份的产量是560(1+x),三月份的产量是560(1+x)(1+x)=560(1+x)2,∴560+560(1+x)+560(1+x)2=1850.故选:D.9.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,CD∥AB,BC∥AB,∴△BEF∽△AED,∵,∴,∴,∵△BEF的面积为4,∴S△AED=25,∴S四边形ABFD=S△AED﹣S△BEF=21,∵AB=CD,,∴,∵AB∥CD,∴△BEF∽△CDF,∴,∴S平行四边形ABCD=S四边形ABFD+S△CDF=21+9=30,故选:A.10.【解答】解:∵四边形OCBA是矩形,∴AB=OC,OA=BC,设B点的坐标为(a,b),∵BD=3AD,∴D(,b),∵点D,E在反比例函数的图象上,∴=k,∴E(a,),∵S△ODE=S矩形OCBA﹣S△AOD﹣S△OCE﹣S△BDE=ab﹣﹣k﹣•(b﹣)=9,∴k=,故选:C.二、填空题(本大题共8小题,共24分)11.【解答】解:∵=,∴=,∴﹣=,=.故答案为:.12.【解答】解:设方程的另一个根为a,∵3是关于x的方程x2﹣x+c=0的一个根,∴a+3=1,解得:a=﹣2,故答案为:﹣2.13.【解答】解:设平均每次降价的百分率是x,根据题意得:60(1﹣x)2=48.6,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:平均每次降价的百分率是10%.故答案为:10%.14.【解答】解:画树状图如图:∵一共有6种情况,两个球都是白球有2种,∴P(两个球都是白球)==,故答案为:.15.【解答】解:∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,BE=CE,∵∠ADF=25°,∴∠CDF=∠ADC﹣∠ADF=90°﹣25°=65°,∵DF=DC,∴∠DFC=∠DCA===,∴∠BCE=∠BCD﹣∠DCA=90°﹣=,∵BE=CE,∴∠BEC=180°﹣2∠BCE=180°﹣65°=115°,故答案为115°16.【解答】解:∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△BDE∽△BAC,△DOE∽△AOC,∴=,∴S△DOE:S△AOC=()2=;故答案为:1:16.17.【解答】解:∵BC∥DE,∴△ABC∽△ADE,∴=,∵BC=1.1,∴DE=1.76,∴OE=OD+DE=2+1.76=3.76.∴E(3.76,0).故答案为:(3.76,0).18.【解答】解:过点P做PE⊥y轴于点E∵四边形ABCD为平行四边形∴AB=CD又∵BD⊥x轴∴ABDO为矩形∴AB=DO∴S矩形ABDO=S▱ABCD=6∵P为对角线交点,PE⊥y轴∴四边形PDOE为矩形面积为3即DO•EO=3∴设P点坐标为(x,y)k=xy=﹣3故答案为:﹣3三、解答题(共66分,注意写出必要的解题步骤)19.【解答】解:(1)x2﹣7x+10=0.(x﹣2)(x﹣5)=0,x﹣2=0或x﹣5=0,解得x1=2,x2=5.(2)△=(﹣4)2﹣4×3×(﹣1)=28>0,则x==;(3)∵(x+3)2=(1﹣3x)2,∴x+3=1﹣3x或x+3=﹣1+3x,解得:x=﹣0.5或x=2.20.【解答】解:如图所示:21.【解答】解:(1)设红球有x个,根据题意得:=,解得:x=1,经检验x=1是原方程的根.则口袋中红球有1个;(2)列表如下:红黄黄蓝红﹣﹣﹣(黄,红)(黄,红)(蓝,红)黄(红,黄)﹣﹣﹣(黄,黄)(蓝,黄)黄(红,黄)(黄,黄)﹣﹣﹣(蓝,黄)蓝(红,蓝)(黄,蓝)(黄,蓝)﹣﹣﹣所有等可能的情况有12种,其中两次摸到的球恰是一黄一蓝的情况有4种,则P==.22.【解答】解:设该单位这次共有x名员工去风景区旅游.因为500×15=7500<10500,所以员工人数一定超过15人.由题意,得[500﹣10(x﹣15)]x=10500,整理,得x2﹣65x+1050=0,解得x1=35,x2=30.当x1=35时,500﹣10(x﹣15)=300<320,故舍去x1;当x2=30时,500﹣10(x﹣15)=350>320,符合题意.答:该单位这次共有30名员工去风景区旅游.23.【解答】解:∵CD∥EF∥AB,∴可以得到△CDF∽△ABF,△ABG∽△EFG,∴,,又∵CD=EF,∴,∵DF=3,FG=4,BF=BD+DF=BD+3,BG=BD+DF+FG=BD+7,∴,∴BD=9,BF=9+3=12,∴,解得,AB=6.4m.24.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=0B=OC=OD,∵AE=BF=CG=DH,∴AO﹣AE=OB﹣BF=CO﹣CG=DO﹣DH,即:OE=OF=OG=OH,∴四边形EFGH是矩形;(2)解:∵G是OC的中点,∴GO=GC,∵DG⊥AC,∴∠DGO=∠DGC=90°,又∵DG=DG,∴△DGC≌△DGO,∴CD=OD,∵F是BO中点,OF=2cm,∴BO=4cm,∵四边形ABCD是矩形,∴DO=BO=4cm,∴DC=4cm,DB=8cm,∴CB==4,∴矩形ABCD的面积=4×4=16cm2.25.【解答】解:(1)∵CD⊥OA,∴DC∥OB,∴===,∴CD=2OB=8,∵OA=OD=OB=3,∴A(3,0),B(0,4),C(﹣3,8),把A、B两点的坐标分别代入y=ax+b可得,解得,∴一次函数解析式为y=﹣x+4,∵反比例函数y=的图象经过点C,∴k=﹣24,∴反比例函数的解析式为y=﹣;(2)由题意可知所求不等式的解集即为直线AC在x轴上方且在反比例函数图象下方的图象所对应的自变量的取值范围,即线段AC(包含A点,不包含C点)所对应的自变量x的取值范围,∵C(﹣3,8),∴0<﹣x+4≤﹣的解集为﹣3≤x<0;(3)∵B(0,4),C(﹣3,8),∴BC=5,∵△PBC是以BC为一腰的等腰三角形,∴有BC=BP或BC=PC两种情况,①当BC=BP时,即BP=5,∴OP=BP+OB=4+5=9,或OP=BP﹣PB=5﹣4=1,∴P点坐标为(0,9)或(0,﹣1);②当BC=PC时,则点C在线段BP的垂直平分线上,∴线段BP的中点坐标为(0,8),∴P点坐标为(0,12);综上可知存在满足条件的点P,其坐标为(0,﹣1)或(0,9)或(0,12).。

宝鸡市九年级(上)期末数学试卷含答案

宝鸡市九年级(上)期末数学试卷含答案

九年级(上)期末数学试卷一、选择题(本大题共10小题,共30.0分)1.方程x2-4x=0的解是()A. x=4B. x=0C. x1=0,x2=4D. x1=0,x2=-42.如图是一个空心圆柱体,其俯视图是()A.B.C.D.3.以下说法合理的是()A. 小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是B. 某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖C. 某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是D. 小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是4.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,则重叠部分△AFC的面积为()A. 12B. 10C. 8D. 65.若-2a2+4a-5=x,则不论a取何值,一定有()A. x>-5B. x<-5C. x≥-3D. x≤-36.菱形ABCD的面积为120,对角线BD=24,则这个菱形的周长是()A. 64B. 60C. 52D. 507.如图,在平行四边形ABCD中,点E是边AD的中点,EC交对角线BD于点F,则S△CDF:S四边形ABFE等于()A. 1:3B. 2:5C. 3:5D. 4:98.在△ABC中,tan C=,cos A=,则∠B=()A. 60°B. 90°C. 120°D. 135°9.一次函数y=kx-k与反比例函数y=(k≠0)在同一个坐标系中的图象可能是()A. B.C. D.10.如图,E,F,G,H分别是BD,BC,AC,AD的中点,且AB=CD,下列结论:①EG⊥FH;②四边形EFGH是菱形;③HF平分∠EHG;④EG=(BC-AD),其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共7小题,共21.0分)11.菱形ABCD的边长为6,∠ABC=60°,则较长对角线BD的长是______.12.已知线段a,b其长度满足,则=______.13.如图,身高为1.6米的学生想测量学校旗杆的高度,当他站在C处时,他头顶端的影子正好与旗杆顶端的影子重合,并测得AC=2米,BC=8米,则旗杆的高度是______米.14.某种药原来每瓶售价为40元,经过两次降价,现在每瓶售价为25.6元,若设平均每次降低的百分率为x,根据题意列出方程为______.15.关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,则实数a的取值范围是______.16.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为______.17.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为______.三、解答题(本大题共8小题,共49.0分)18.计算或解方程(1)2cos60°-()-1+tan60°+|-2|(2)4x2-8x+3=019.如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.20.四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树状图法说明理由,若认为不公平,请你修改规则,使游戏变得公平.21.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.22.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售量,增加利润,尽快减少库存,商场决定采取适当的降价措施,经市场调查发现,如果每件衬衫降价1元,那么商场平均每天可多售出2件,若商场想平均每天盈利达1200元,那么买件衬衫应降价多少元?23.张华为体育测试做准备,每天爬家对面的翠山,张华从西坡沿坡角为35°的山坡爬了2000米,紧接着又爬了坡角为45°的山坡800米,最后到达山顶;请你计算翠山的高度.(结果精确到个位,参考数据:≈1.4,≈1.7,sin35°≈0.6,cos35°≈0.8,tan35°≈0.7.24.如图,一次函数y=x+4的图象与反比例函数y=(k为常数且k≠0)的图象交于A(﹣1,a),B两点,与x轴交于点C.(1)求此反比例函数的表达式;(2)若点P在x轴上,且S△ACP=S△BOC,求点P的坐标.25.从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图①,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD是△ABC 的完美分割线;(2)如图②,在△ABC中,AC=2,BC=,CD是△ABC的完美分割线,且△ACD 是以CD为底边的等腰三角形,求完美分割线CD的长.答案和解析1.【答案】C【解析】解:方程分解因式得:x(x-4)=0,可得x=0或x-4=0,解得:x1=0,x2=4.故选C方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.2.【答案】D【解析】解:该空心圆柱体的俯视图是故选:D.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单几何体的三视图,从上边看得到的图形是俯视图.3.【答案】A【解析】解:A.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是,故A选项符合题意;B、某彩票的中奖概率是5%,那么买100张彩票不一定中奖,所以B选项不符合题意;C、某运动员射击一次只有两种可能的结果:中靶与不中靶,它们发生的可能性不等,所以C选项不符合题意;D、小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的频率是,所以D选项不符合题意;故选:A.利用频率与概率的意义对B、D进行判断;根据概率公式对C进行判断;根据频率估计概率对A进行判断.本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.4.【答案】B【解析】解:∵△AD′C≌△ABC,∴△AD′F≌△CBF,∴△AD′F与△CBF面积相等,设BF=x,则(8-x)2=x2+42,64-16x+x2=x2+16,16x=48,解得x=3,∴△AFC的面积=×4×8-×3×4=10.故选:B.∵△AD′C≌△ABC,∴△AD′F≌△CBF,得△AD′F与△CBF面积相等,设BF=x,列出关于x的关系式,解得x的值即可解题.本题考查了全等三角形的证明,全等三角形对应边相等的性质,矩形各内角为直角的性质,本题中正确计算BF的值是解题的关键.5.【答案】D【解析】解:∵x=-2a2+4a-5=-2(a-1)2-3≤-3∴不论a取何值,x≤-3故选:D.由-2a2+4a-5=-2(a-1)2-3可得:x≤-3.本题考查了配方法的应用,熟练运用配方法解决问题是本题的关键.6.【答案】C【解析】解:菱形ABCD的面积S=AC•BD=120,∵BD=24,∴AC==10,∴AB=,∴这个菱形的周长=13×4=52,故选:C.菱形的面积可以根据对角线的长计算,已知菱形的面积,对角线BD的长即可计算AC 的长,进而利用勾股定理解答即可.本题考查了根据对角线长计算菱形的面积的方法,本题中正确计算是解题的关键.7.【答案】B【解析】【分析】本题主要考查了平行四边形的性质,相似三角形的判定与性质,由平行四边形的性质得到DE∥BC,则△DEF∽△BCF,由此得到,由AE=DE,推出,设△DEF的面积为S.则△CDF的面积为2S,△BFC的面积为4S,△BCD的面积=△ABD的面积=6S,推出四边形ABFE的面积为5S,由此即可解决问题.【解答】解:∵四边形ABCD为平行四边形,∴ED∥BC,BC=AD,∴△DEF∽△BCF,∴,∵AE=DE,∴,设△DEF的面积为S.则△CDF的面积为2S,△BFC的面积为4S,△BCD的面积=△ABD 的面积=6S,∴四边形ABFE的面积为5S,∴S△CDF:S四边形ABFE=2:5.故选B.8.【答案】C【解析】解:∵tan C=,cos A=,∴∠C=30°,∠A=30°,∴∠B=120°.故选:C.直接利用特殊角的三角函数值得出∠C=30°,∠A=30°,进而得出答案.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.9.【答案】B【解析】解:当k>0时,一次函数y=kx-k的图象过一、三、四象限,反比例函数y=的图象在一、三象限,∴A、C不符合题意,B符合题意;当k<0时,一次函数y=kx-k的图象过一、二、四象限,反比例函数y=的图象在二、四象限,∴D不符合题意.故选:B.分k>0及k<0两种情况考虑,根据一次函数图象与系数的关系、反比例函数的图象对照四个选项即可得出结论.本题考查了反比例函数的图象以及一次函数图象与系数的关系,分k>0及k<0两种情况考虑是解题的关键.10.【答案】C【解析】解:∵E、F、G、H分别是BD、BC、AC、AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,∴①EG⊥FH,正确;②四边形EFGH是菱形,正确;③HF平分∠EHG,正确;④当AD∥BC,如图所示:E,G分别为BD,AC中点,∴连接CD,延长EG到CD上一点N,∴EN=BC,GN=AD,∴EG=(BC-AD),只有AD∥BC时才可以成立,而本题AD与BC很显然不平行,故本小题错误.综上所述,①②③共3个正确.故选:C.根据三角形的中位线平行于第三边并且等于第三边的一半与AB=CD可得四边形EFGH 是菱形,然后根据菱形的对角线互相垂直平分,并且平分每一组对角的性质对各小题进行判断.本题考查了三角形中位线定理与菱形的判定与菱形的性质,根据三角形的中位线定理与AB=CD判定四边形EFGH是菱形是解答本题的关键.11.【答案】6【解析】解:∵四边形ABCD是菱形,∠ABC=60°,∴AB=BC=CD=AD=6,∠ABC=∠ADC=60°,AC⊥BD,OA=OC,OB=OD,∴ABC,ADC是等边三角形,∴AC=6,OA=OC=3,在Rt AOB中,BO==3,∴BD=2OB=6,故答案为6.首先证明ABC,ADC是等边三角形,在Rt AOB中,求出OB,利用菱形的性质可得DB,根据菱形的面积公式计算即可.本题考查菱形的性质、勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.【答案】【解析】解:设=k(k≠0),则a=2k,b=3k,∴==.故答案为.设=k,则a=2k,b=3k,代入式子化简即可.本题考查比例线段,解题的关键是学会利用参数解决问题,属于中考常考题型.13.【答案】8【解析】解:设旗杆高度为h,由题意得=,解得:h=8米.故答案为:8.因为人和旗杆均垂直于地面,所以构成相似三角形,利用相似比解题即可.本题考查了考查相似三角形的性质和投影知识,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.14.【答案】40(1-x)2=25.6【解析】解:设平均每次降低的百分率为x,根据题意得:40(1-x)2=25.6.故答案是:40(1-x)2=25.6.设平均每次降低的百分率为x,根据某种药原来每瓶为40元,经过两次降价,现在每瓶售价25.6元列出方程.本题考查了由实际问题抽象出一元二次方程,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程.15.【答案】a<1且a≠0【解析】解:∵关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,∴△=b2-4ac=22-4×a×1=4-4a>0,解得:a<1,∵方程ax2+2x+1=0是一元二次方程,∴a≠0,∴a的范围是:a<1且a≠0.故答案为:a<1且a≠0.由关于x的一元二次方程ax2+2x+1=0有两个不相等的实数根,即可得判别式△>0,继而可求得a的范围.此题考查了一元二次方程判别式的知识.此题比较简单,注意掌握一元二次方程有两个不相等的实数根,即可得△>0.16.【答案】4【解析】解:∵在△ABC中,AD是中线,BC=8,∴CD=4,∵∠B=∠DAC,∠ACD=∠BCA,∴△ACD∽△BCA,∴,即,解得,AC=4.根据三角形相似的知识可以得到AC的长,本题得以解决.本题考查相似三角形的判定与性质,解题的关键是明确题意,找出所求问题需要的条件.17.【答案】-4【解析】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD+∠AOC=90°,∴∠OBD=∠AOC,∴△OBD∽△AOC,又∵∠AOB=90°,tan∠BAO=,∴=,∴=,即=,解得k=±4,又∵k<0,∴k=-4,故答案为-4.首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y=(x<0),y=(x>0)的图象上,即可得S△OBD=,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值.此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法.18.【答案】解:(1)原式=2×-2++2-=1;(2)∵4x2-8x+3=0,∴(2x-3)(2x-1)=0,∴x=或x=;【解析】(1)根据实数的运算法则即可求出答案;(2)根据一元二次方程的解法即可求出答案.本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.19.【答案】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.【解析】根据菱形的性质和全等三角形的判定和性质解答即可.此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.20.【答案】解:(1)P(抽到2)=;(2)根据题意可列表从表(或树状图)中可以看出所有可能结果共有16种,符合条件的有10种,∴P(两位数不超过32)=.∴游戏不公平.调整规则:法一:将游戏规则中的32换成26~31(包括26和31)之间的任何一个数都能使游戏公平.法二:游戏规则改为:抽到的两位数不超过32的得3分,抽到的两位数超过32的得5分;能使游戏公平.法三:游戏规则改为:组成的两位数中,若个位数字是2,小贝胜,反之小晶胜.【解析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即小贝赢或小晶赢的概率是否相等,求出概率比较,即可得出结论.本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16-t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16-t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16-t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16-6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.【解析】本题考查了菱形、矩形的判定与性质.解决此题注意结合方程的思想解题.(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;(3)菱形的四条边相等,则菱形的周长=4×10,根据菱形的面积求出面积即可.22.【答案】解:设买件衬衫应降价x元,由题意得:(40-x)(20+2x)=1200,即2x2-60x+400=0,∴x2-30x+200=0,∴(x-10)(x-20)=0,解得:x=10或x=20为了减少库存,所以x=20.故买件衬衫应应降价20元.【解析】设买件衬衫应降价x元,那么就多卖出2x件,根据扩大销售量,增加盈利,尽快减少库存,每天在销售吉祥物上盈利1200元,可列方程求解.本题考查一元二次方程的应用,理解题意的能力,关键是看到降价和销售量的关系,然后根据利润可列方程求解.23.【答案】解:作EF⊥BC于F,AD⊥BC于D,EN⊥AD于N,则四边形EFDN为矩形,∴DN=EF,在Rt△BEF中,sin B=,∴EF=BE•sin B≈2000×0.6=1200,在Rt△AEN中,sin∠AEN=,∴AN=AE•sin∠AEN≈560,∴翠山的高度AD=AN+ND=560+1200=1760,答:翠山的高度约为1760米.【解析】作EF⊥BC于F,AD⊥BC于D,EN⊥AD于N,根据正弦的定义分别求出EF、DN,计算即可.本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.24.【答案】解:(1)把点A(-1,a)代入y=x+4,得a=3,∴A(-1,3)把A(-1,3)代入反比例函数y=∴k=-3,∴反比例函数的表达式为y=-(2)联立两个函数的表达式得解得或∴点B的坐标为B(-3,1)当y=x+4=0时,得x=-4∴点C(-4,0)设点P的坐标为(x,0)∵S△ACP=S△BOC∴解得x1=-6,x2=-2∴点P(-6,0)或(-2,0)【解析】(1)利用点A在y=-x+4上求a,进而代入反比例函数y=求k.(2)联立方程求出交点,设出点P坐标表示三角形面积,求出P点坐标.本题是一次函数和反比例函数综合题,考查利用方程思想求函数解析式,通过联立方程求交点坐标以及在数形结合基础上的面积表达.25.【答案】解:(1)∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形,∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD是等腰三角形,∵∠BCD=∠A=40°,∠CBD=∠ABC∴△BCD∽△BAC,∴CD是△BAC的完美分割线;(2)∵△BCD∽△BAC,∴,∵AC=AD=2,BC=,设BD=x,则AB=4+x,∴,解得x=-1±,∵x>0,∴BD=x=-1+,∵△BCD∽△BAC,∴,∵AC=2,BC=,BC=-1+∴CD==-.【解析】(1)根据三角形内角和定理求出∠ACB=80°,根据角平分线的定义得到∠ACD=40°,证明△BCD∽△BAC,证明结论;(2)根据△BCD∽△BAC,得到,设BD=x,解方程求出x,根据相似三角形的性质定理列式计算即可.本题考查的是相似三角形的性质、等腰三角形的判定与性质,掌握相似三角形的判定定理和性质定理是解题的关键.。

九年级上册宝鸡数学期末试卷测试卷 (word版,含解析)

九年级上册宝鸡数学期末试卷测试卷 (word版,含解析)

九年级上册宝鸡数学期末试卷测试卷 (word 版,含解析)一、选择题1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O 的位置关系是( )A .点P 在O 上B .点P 在O 外C .点P 在O 内D .无法确定2.已知3sin 2α=,则α∠的度数是( ) A .30°B .45°C .60°D .90° 3.一元二次方程x 2=-3x 的解是( ) A .x =0 B .x =3 C .x 1=0,x 2=3 D .x 1=0,x 2=-3 4.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm 5.已知二次函数y=-x 2+2mx+2,当x<-2时,y 的值随x 的增大而增大,则实数m ( ) A .m=-2B .m>-2C .m≥-2D .m≤-2 6.抛物线y =2(x ﹣2)2﹣1的顶点坐标是( )A .(0,﹣1)B .(﹣2,﹣1)C .(2,﹣1)D .(0,1) 7.将一副学生常用的三角板如下图摆放在一起,组成一个四边形ABCD ,连接AC ,则tan ACD ∠的值为( )A 3B 31C 31D .238.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( )A .23(2)3y x =++B .23(2)3y x =-+C .23(2)3y x =+-D .23(2)3y x =--9.下列说法中,不正确的是( )A .圆既是轴对称图形又是中心对称图形B .圆有无数条对称轴C .圆的每一条直径都是它的对称轴D .圆的对称中心是它的圆心 10.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .1211.如图,PA 是⊙O 的切线,切点为A ,PO 的延长线交⊙O 于点B ,连接AB ,若∠B =25°,则∠P 的度数为( )A .25°B .40°C .45°D .50° 12.如图,AB ,AM ,BN 分别是⊙O 的切线,切点分别为 P ,M ,N .若 MN ∥AB ,∠A =60°,AB =6,则⊙O 的半径是( )A .32B .3C .323D 3二、填空题13.二次函数23(1)2y x =-+图象的顶点坐标为________.14.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.15.二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a ≠0)的图像上部分点的横坐标x 和纵 坐标y 的对应值如下表 x… -1 0 1 2 3 … y … -3 -3 -1 39 … 关于x 的方程ax 2+bx +c =0一个负数解x 1满足k <x 1<k +1(k 为整数),则k =________.16.如图,在△ABC 中,AB =3,AC =4,BC =6,D 是BC 上一点,CD =2,过点D 的直线l 将△ABC 分成两部分,使其所分成的三角形与△ABC 相似,若直线l 与△ABC 另一边的交点为点P ,则DP =________.17.在平面直角坐标系中,抛物线2y x 的图象如图所示.已知A 点坐标为()1,1,过点A 作1AA x ∕∕轴交抛物线于点1A ,过点1A 作12A A OA ∕∕交抛物线于点2A ,过点2A 作23A A x ∕∕轴交抛物线于点3A ,过点3A 作34A A OA ∕∕交抛物线于点4A ……,依次进行下去,则点2019A 的坐标为_____.18.若32x y =,则x y y+的值为_____. 19.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin 13BAC B ∠=∠=,则线段OC 的最大值为_____.20.如图示,在Rt ABC ∆中,90ACB ∠=︒,3AC =,3BC =,点P 在Rt ABC ∆内部,且PAB PBC ∠=∠,连接CP ,则CP 的最小值等于______.21.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.22.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.23.顶点在原点的二次函数图象先向左平移1个单位长度,再向下平移2个单位长度后,所得的抛物线经过点(0,﹣3),则平移后抛物线相应的函数表达式为_____.24.若把一根长200cm 的铁丝分成两部分,分别围成两个正方形,则这两个正方形的面积的和最小值为_____.三、解答题25.如图,二次函数2y x bx c =-++的图像经过()0,3M ,()2,5N --两点.(1)求该函数的解析式;(2)若该二次函数图像与x 轴交于A 、B 两点,求ABM ∆的面积;(3)若点P 在二次函数图像的对称轴上,当MNP ∆周长最短时,求点P 的坐标.26.先化简,再求值:221a a -÷(1﹣11a +),其中a 是方程x 2+x ﹣2=0的解. 27.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.28.化简并求值: 22+24411m m m m m ++÷+-,其中m 满足m 2-m -2=0. 29.(1)如图①,AB 为⊙O 的直径,点P 在⊙O 上,过点P 作PQ ⊥AB ,垂足为点Q .说明△APQ ∽△ABP ;(2)如图②,⊙O 的半径为7,点P 在⊙O 上,点Q 在⊙O 内,且PQ =4,过点Q 作PQ 的垂线交⊙O 于点A 、B .设PA =x ,PB =y ,求y 与x 的函数表达式.30.已知二次函数223y x x =--+的图象和x 轴交于点A 、B ,与y 轴交于点C ,点P 是直线AC 上方的抛物线上的动点.(1)求直线AC 的解析式.(2)当P 是抛物线顶点时,求APC ∆面积.(3)在P 点运动过程中,求APC ∆面积的最大值.31.数学概念若点P 在ABC ∆的内部,且APB ∠、BPC ∠和CPA ∠中有两个角相等,则称P 是ABC ∆的“等角点”,特别地,若这三个角都相等,则称P 是ABC ∆的“强等角点”. 理解概念(1)若点P 是ABC ∆的等角点,且100APB ∠=,则BPC ∠的度数是 .(2)已知点D 在ABC ∆的外部,且与点A 在BC 的异侧,并满足180BDC BAC ∠+∠<,作BCD ∆的外接圆O ,连接AD ,交圆O 于点P .当BCD ∆的边满足下面的条件时,求证:P 是ABC ∆的等角点.(要求:只选择其中一道题进行证明!)①如图①,DB DC =②如图②,BC BD =深入思考(3)如图③,在ABC ∆中,A ∠、B 、C ∠均小于120,用直尺和圆规作它的强等角点Q .(不写作法,保留作图痕迹)(4)下列关于“等角点”、“强等角点”的说法:①直角三角形的内心是它的等角点;②等腰三角形的内心和外心都是它的等角点;③正三角形的中心是它的强等角点;④若一个三角形存在强等角点,则该点到三角形三个顶点的距离相等;⑤若一个三角形存在强等角点,则该点是三角形内部到三个顶点距离之和最小的点,其中正确的有 .(填序号)32.如图,点P 是二次函数21(1)14y x =--+图像上的任意一点,点()10B ,在x 轴上.(1)以点P 为圆心,BP 长为半径作P .①直线l 经过点()0,2C 且与x 轴平行,判断P 与直线l 的位置关系,并说明理由. ②若P 与y 轴相切,求出点P 坐标;(2)1P 、2P 、3P 是这条抛物线上的三点,若线段1BP 、2BP 、3BP的长满足12323BP BP BP BP ++=,则称2P 是1P 、3P 的和谐点,记做()13,T P P .已知1P 、3P 的横坐标分别是2,6,直接写出()13,T P P 的坐标_______.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断.【详解】解:∵()8,6P -,∴10= ,∵O 的直径为10,∴r=5,∵OP>5,∴点P 在O 外.故选:B.【点睛】本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点在圆内,解题关键是根据点到圆心的距离和半径的关系判断. 2.C解析:C【解析】【分析】根据特殊角三角函数值,可得答案.【详解】解:由sin α=,得α=60°, 故选:C .【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键. 3.D解析:D【解析】【分析】先移项,然后利用因式分解法求解.【详解】解:(1)x 2=-3x ,x2+3x=0,x(x+3)=0,解得:x1=0,x2=-3.故选:D.【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.4.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.5.C解析:C【解析】【分析】根据二次函数的性质,确定抛物线的对称轴及开口方向得出函数的增减性,结合题意确定m值的范围.【详解】解:抛物线的对称轴为直线221mx m∵10a=-<,抛物线开口向下,∴当x m < 时,y 的值随x 值的增大而增大,∵当2x <-时,y 的值随x 值的增大而增大,∴2m ≥- ,故选:C .【点睛】本题考查了二次函数的性质,主要利用了二次函数的增减性,由系数的符号特征得出函数性质是解答此题的关键.6.C解析:C【解析】【分析】根据二次函数顶点式顶点坐标表示方法,直接写出顶点坐标即可.【详解】解:∵顶点式y =a (x ﹣h )2+k ,顶点坐标是(h ,k ),∴y =2(x ﹣2)2﹣1的顶点坐标是(2,﹣1).故选:C .【点睛】本题考查了二次函数顶点式,解决本题的关键是熟练掌握二次函数顶点式中顶点坐标的表示方法.7.B解析:B【解析】【分析】设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,设AB =2,则易求出CF CEF ∽△AEB ,可得2EF CF BE AB ==,于是设EF ,则2BE x =,然后利用等腰直角三角形的性质可依次用x 的代数式表示出CF 、CD 、DE 、DG 、EG 的长,进而可得CG 的长,然后利用正切的定义计算即得答案.【详解】解:设AC 、BD 交于点E ,过点C 作CF ⊥BD 于点F ,过点E 作EG ⊥CD 于点G ,则CF ∥AB ,△CDF 和△DEG 都是等腰直角三角形,∴△CEF ∽△AEB ,设AB =2,∵∠ADB =30°,∴BD =∵∠BDC =∠CBD =45°,CF ⊥BD ,∴CF=DF=BF =12BD =,∴32EF CF BE AB ==, 设EF =3x ,则2BE x =,∴()23BF CF DF x ===+,∴()()2223226CD DF x x ==+=+,()()233223DE DF EF x x x =+=++=+, ∴()()222232622EG DG DE x x ===+=+, ∴()()226262CG CD DG x x x =-=+-+=, ∴()62tan 312x EG ACD CGx +∠===+.故选:B.【点睛】本题以学生常见的三角板为载体,考查了锐角三角函数和特殊角的三角函数值、30°角的直角三角形的性质、等腰三角形的性质等知识,构图简洁,但有相当的难度,正确添加辅助线、熟练掌握等腰直角三角形的性质和锐角三角函数的知识是解题的关键.8.A解析:A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可.【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 9.C解析:C【解析】【分析】圆有无数条对称轴,但圆的对称轴是直线,故C 圆的每一条直线都是它的对称轴的说法是错误的【详解】本题不正确的选C ,理由:圆有无数条对称轴,其对称轴都是直线,故任何一条直径都是它的对称轴的说法是错误的,正确的说法应该是圆有无数条对称轴,任何一条直径所在的直线都是它的对称轴故选C【点睛】此题主要考察对称轴图形和中心对称图形,难度不大10.A解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以CE ==CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =, ∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴622CE ===∴2CD CE ==故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.11.B解析:B【解析】【分析】连接OA ,由圆周角定理得,∠AOP =2∠B =50°,根据切线定理可得∠OAP =90°,继而推出∠P=90°﹣50°=40°.【详解】连接OA,由圆周角定理得,∠AOP=2∠B=50°,∵PA是⊙O的切线,∴∠OAP=90°,∴∠P=90°﹣50°=40°,故选:B.【点睛】本题考查圆周角定理、切线的性质、三角形内角和定理,解题的关键是求出∠AOP的度数.12.D解析:D【解析】【分析】根据题意可判断四边形ABNM为梯形,再由切线的性质可推出∠ABN=60°,从而判定△APO≌△BPO,可得AP=BP=3,在直角△APO中,利用三角函数可解出半径的值.【详解】解:连接OP,OM,OA,OB,ON∵AB,AM,BN 分别和⊙O 相切,∴∠AMO=90°,∠APO=90°,∵MN∥AB,∠A=60°,∴∠AMN=120°,∠OAB=30°,∴∠OMN=∠ONM=30°,∵∠BNO=90°,∴∠ABN=60°,∴∠ABO=30°,在△APO和△BPO中,OAP OBPAPO BPOOP OP∠=∠⎧⎪∠=∠⎨⎪=⎩,△APO≌△BPO(AAS),∴AP=12AB=3,∴tan ∠OAP=tan30°=OP AP =33, ∴OP=3,即半径为3.故选D.【点睛】本题考查了切线的性质,切线长定理,解直角三角形,全等三角形的判定和性质,关键是说明点P 是AB 中点,难度不大.二、填空题13.【解析】【分析】二次函数(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性解析:()1,2【解析】【分析】二次函数2()y a x h k =-+(a≠0)的顶点坐标是(h ,k ).【详解】解:根据二次函数的顶点式方程23(1)2y x =-+知,该函数的顶点坐标是:(1,2). 故答案为:(1,2).【点睛】本题考查了二次函数的性质和二次函数的三种形式,解答该题时,需熟悉二次函数的顶点式方程2()y a x h k =-+中的h ,k 所表示的意义. 14.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.15.-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1 的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3解析:-3【解析】【分析】首先利用表中的数据求出二次函数,再利用求根公式解得x1,再利用夹逼法可确定x1的取值范围,可得k.【详解】解:把x=0,y=-3,x=1,y=-1,x=-1,y=-3代入y=ax2+bx+c得3 1 3ca b c a b c-=⎧⎪-=++⎨⎪-=-+⎩,解得113abc=⎧⎪=⎨⎪=-⎩,∴y=x²+x-3,∵△=b2-4ac=12-4×1×(-3)=13,∴x=122ba-±-±=,∵1x<0,∴1x=−1-132<0,∵-4≤-13≤-3,∴133222 -≤-≤-,∴-3≤−1−13≤ 2.5-,∵整数k满足k<x1<k+1,∴k=-3,故答案为:-3.【点睛】本题考查了二次函数的图象和性质,解题的关键是求出二次函数的解析式.16.1,,【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图解析:1,83,32【解析】【分析】分别利用当DP∥AB时,当DP∥AC时,当∠CDP=∠A时,当∠BPD=∠BAC时求出相似三角形,进而得出结果.【详解】BC=6,CD=2,∴BD=4,①如图,当DP∥AB时,△PDC∽△ABC,∴PD CDAB BC=,∴236DP=,∴DP=1;②如图,当DP ∥AC 时,△PBD ∽△ABC .∴PD BD AC BC =,∴446DP =,∴DP=83; ③如图,当∠CDP=∠A 时,∠DPC ∽△ABC ,∴DP DC AB AC =,∴234DP =,∴DP=32; ④如图,当∠BPD=∠BAC 时,过点D 的直线l 与另一边的交点在其延长线上,,不合题意。

陕西省宝鸡市2020年九年级上学期期末数学试卷C卷

陕西省宝鸡市2020年九年级上学期期末数学试卷C卷
A . AD•DB=AE•EC
B . AD•AE=BD•EC
C . AD•CE=AE•BD
D . AD•BC=AB•DE
16. (2分) (2019九上·郑州期中) 若A(-3,y1)、B(-1,y2)、C(1,y3)三点都在反比例函数y= (k>0)的图象上,则y1、y2、y3的大小关系是( )
A . y1>y2>y3
27. (10分) (2019八下·辽阳月考) 现有一个种植总面积为 的矩形塑料温棚,分垄间隔套种草莓和西红柿共 垄,种植的草莓或西红柿单种农作物的总垄数不低于8垄,又不超过 垄(垄数为正整数),它们的占地面积、产量、利润分别如下:
(1) 若设草莓共种植了 垄,通过计算说明共有几种种植方案?分别是哪几种?
D .
8. (2分) (2017九上·乐昌期末) 关于x的方程x2+2x﹣1=0的根的情况是( )
A . 有两个不相等的实数根
B . 有两个相等的实数根
C . 无实数根
D . 只有一个实数根
9. (2分) (2016九上·金东期末) 美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm,下半身长x与身高l的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( )
29. (10分) (2019·涡阳模拟) 如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,∠ABC的平分线BF交AD于点F,交BC于点D.
(1) 求证:BE=EF;
(2) 若DE=4,DF=3,求AF的长.
30. (10分) (2012·南京) 某玩具由一个圆形区域和一个扇形区域组成,如图,在⊙O1和扇形O2CD中,⊙O1与O2C、O2D分别切于点A、B,已知∠CO2D=60°,E、F是直线O1O2与⊙O1、扇形O2CD的两个交点,且EF=24cm,设⊙O1的半径为xcm.

九年级上册宝鸡数学期末试卷测试卷 (word版,含解析)

九年级上册宝鸡数学期末试卷测试卷 (word版,含解析)

九年级上册宝鸡数学期末试卷测试卷 (word 版,含解析) 一、选择题1.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确...的是( )A .12DE BC =B .AD AE AB AC = C .△ADE ∽△ABCD .:1:2ADE ABC S S =2.如图,点P 为⊙O 外一点,PA 为⊙O 的切线,A 为切点,PO 交⊙O 于点B ,∠P=30°,OB=3,则线段BP 的长为( )A .3B .33C .6D .93.一枚质地匀均的骰子,其六个面上分别标有数字:1,2,3,4,5,6,投掷一次,朝上面的数字大于4的概率是( )A .12B .13C .23D .164.抛物线2(1)2y x =-+的顶点坐标是( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2) 5.如图,O 的直径AB 垂直于弦CD ,垂足是点E ,22.5CAO ∠=,6OC =,则CD 的长为( )A .62B .32C .6D .126.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π- 7.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点M ,若CD =8 cm ,MB =2 cm ,则直径AB 的长为( )A .9 cmB .10 cmC .11 cmD .12 cm8.若关于x 的一元二次方程240kx x -+=有实数根,则k 的取值范围是( ) A .16k ≤ B .116k ≤ C .1,16k ≤且0k ≠ D .16,k ≤ 且0k ≠ 9.如图,∠1=∠2,要使△ABC ∽△ADE ,只需要添加一个条件即可,这个条件不可能是( )A .∠B =∠D B .∠C =∠E C .AD AB AE AC = D .AC BC AE DE= 10.在4张相同的小纸条上分别写上数字﹣2、0、1、2,做成4支签,放在一个盒子中,搅匀后从中任意抽出1支签(不放回),再从余下的3支签中任意抽出1支签,则2次抽出的签上的数字的和为正数的概率为( )A .14B .13C .12D .2311.如图,△AOB 为等腰三角形,顶点A 的坐标(25),底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A′O′B ,点A 的对应点A′在x 轴上,则点O′的坐标为( )A .(203,103)B .(163,453)C .(203,453) D .(163,43) 12.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离 B .相切C .相交D .无法判断 二、填空题13.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.14.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.15.若a b b -=23,则a b的值为________. 16.在比例尺为1∶500 000的地图上,量得A 、B 两地的距离为3 cm ,则A 、B 两地的实际距离为_____km .17.若线段AB=10cm ,点C 是线段AB 的黄金分割点,则AC 的长为_____cm.(结果保留根号)18.已知扇形的圆心角为90°,弧长等于一个半径为5cm 的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm .19.抛物线()2322y x =+-的顶点坐标是______.20.已知关于x 的一元二次方程2230x x k -+=有两个不相等的实数根,则k 的取值范围是________.21.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.22.若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是____________.23.一次安全知识测验中,学生得分均为整数,满分10分,这次测验中甲、乙两组学生人数都为6人,成绩如下:甲:7,9,10,8,5,9;乙:9,6,8,10,7,8.(1)请补充完整下面的成绩统计分析表:平均分 方差 众数 中位数 甲组8 9 乙组53 8 8(2)甲组学生说他们的众数高于乙组,所以他们的成绩好于乙组,但乙组学生不同意甲组学生的说法,认为他们组的成绩要好于甲组,请你给出一条支持乙组学生观点的理由_____________________________.24.如图,AE 、BE 是△ABC 的两个内角的平分线,过点A 作AD ⊥AE .交BE 的延长线于点D .若AD =AB ,BE :ED =1:2,则cos ∠ABC =_____.三、解答题25.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像;(2)直接写出不等式221x x x -->+的解集.26.已知二次函数22y =x mx --.(1)求证:不论m 取何值,该函数图像与x 轴一定有两个交点;(2)若该函数图像与x 轴的两个交点为A 、B ,与y 轴交于点C ,且点A 坐标(2,0),求△ABC 面积.27.如图,分别以△ABC 的边AC 和BC 为腰向外作等腰直角△DAC 和等腰直角△EBC ,连接DE .(1)求证:△DAC ∽△EBC ;(2)求△ABC 与△DEC 的面积比.28.为加快城乡对接,建设美丽乡村,某地区对A 、B 两地间的公路进行改建,如图,A ,B 两地之间有一座山.汽车原来从A 地到B 地需途经C 地沿折线ACB 行驶,现开通隧道后,汽车可直接沿直线AB 行驶,已知BC =80千米,∠A =45°,∠B =30°.(1)开通隧道前,汽车从A 地到B 地要走多少千米?(2)开通隧道后,汽车从A 地到B 地可以少走多少千米?(结果保留根号)29.如图,已知抛物线214y x bx c =++经过ABC 的三个顶点,其中点(0,3)A ,点(12,15)-B ,//AC x 轴,点P 是直线AC 下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P 且与y 轴平行的直线l 与直线AB 、AC 分别交与点E 、F ,当四边形AECP 的面积最大时,求点P 的坐标;(3)当点P 为抛物线的顶点时,在直线AC 上是否存在点Q ,使得以C 、P 、Q 为顶点的三角形与ABC 相似,若存在,直接写出点Q 的坐标;若不存在,请说明理由.30.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同.(1)搅匀后从袋子中任意摸出1个球,摸到红球的概率是多少?(2)搅匀后先从袋子中任意摸出1个球,记录颜色后不放回,再从袋子中任意摸出1个球,用画树状图或列表的方法列出所有等可能的结果,并求出两次都摸到白球的概率.31.如图 1,直线 y=2x+2 分别交 x 轴、y 轴于点A 、B ,点C 为x 轴正半轴上的点,点 D 从点C 处出发,沿线段CB 匀速运动至点 B 处停止,过点D 作DE ⊥BC ,交x 轴于点E ,点 C′是点C 关于直线DE 的对称点,连接 EC′,若△ DEC′与△ BOC 的重叠部分面积为S ,点D 的运动时间为t (秒),S 与 t 的函数图象如图 2 所示.(1)V D = ,C 坐标为 ;(2)图2中,m= ,n= ,k= .(3)求出S 与t 之间的函数关系式(不必写自变量t 的取值范围).32.如图,AB 是⊙O 的弦,OP OA ⊥交AB 于点P ,过点B 的直线交OP 的延长线于点C ,且BC 是⊙O的切线.(1)判断CBP ∆的形状,并说明理由;(2)若6,2OA OP ==,求CB 的长;(3)设AOP ∆的面积是1,S BCP ∆的面积是2S ,且1225S S =.若⊙O 的半径为6,45BP =tan APO ∠.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】∵在△ABC 中,点D 、E 分别是AB 、AC 的中点,∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC ,AD AE AB AC =, ∴21()4ADE ABC S DE S BC ==. 由此可知:A 、B 、C 三个选项中的结论正确,D 选项中结论错误.故选D.2.A解析:A【解析】直接利用切线的性质得出∠OAP=90°,进而利用直角三角形的性质得出OP 的长.【详解】连接OA ,∵PA 为⊙O 的切线,∴∠OAP=90°,∵∠P=30°,OB=3,∴AO=3,则OP=6,故BP=6-3=3.故选A .【点睛】此题主要考查了切线的性质以及圆周角定理,正确作出辅助线是解题关键.3.B解析:B【解析】【分析】直接得出朝上面的数字大于4的个数,再利用概率公式求出答案.【详解】∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次, ∴共有6种情况,其中朝上面的数字大于4的情况有2种,∴朝上一面的数字是朝上面的数字大于4的概率为:2163=, 故选:B .【点睛】本题考查简单的概率求法,概率=所求情况数与总情况数的比;熟练掌握概率公式是解题关键. 4.D解析:D【解析】【分析】根据顶点式2()y a x h k =-+,顶点坐标是(h ,k ),即可求解.【详解】∵顶点式2()y a x h k =-+,顶点坐标是(h ,k ),∴抛物线2(1)2y x =-+的顶点坐标是(1,2).5.A 解析:A【解析】【分析】先根据垂径定理得到CE DE =,再根据圆周角定理得到245BOC A ∠=∠=,可得OCE ∆为等腰直角三角形,所以2322CE OC ==,从而得到CD 的长. 【详解】∵CD AB ⊥,AB 为直径,∴CE DE =, ∵∠BOC 和∠A 分别为BC 所对的圆心角和圆周角,∠A=22.5°,∴2222.545BOC A ∠=∠=⨯=,∴OCE ∆为等腰直角三角形,∵OC=6,∴2263222CE OC ==⨯=, ∴262CD CE ==.故选A .【点睛】本题考查了垂径定理及圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;垂直于弦的直径,平分这条弦且平分这条弦所对的两条弧.6.D解析:D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD ⊥BC ,∴BD=CD=1,AD=3BD=3,∴△ABC的面积为12BC•AD=1232⨯⨯=3,S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3=2π﹣23,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.7.B解析:B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB是⊙O的直径,弦CD⊥AB于点M,∴DM=12CD=4cm,OM=R-2,在RT△OMD中,OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB的长为:2×5=10cm.故选B.【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.8.C解析:C【解析】【分析】一元二次方程有实数根,则根的判别式∆≥0,且k≠0,据此列不等式求解.【详解】根据题意,得:∆=1-16k≥0且k≠0,解得:116k≤且k≠0.故选:C.【点睛】本题考查一元二次方程根的判别式与实数根的情况,注意k≠0.9.D解析:D【解析】【分析】先求出∠DAE=∠BAC,再根据相似三角形的判定方法分析判断即可.【详解】∵∠1=∠2,∴∠1+∠BAE=∠2+∠BAE,∴∠DAE=∠BAC,A、添加∠B=∠D可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;B、添加∠C=∠E可利用两角法:有两组角对应相等的两个三角形相似可得△ABC∽△ADE,故此选项不合题意;C、添加AD ABAE AC=可利用两边及其夹角法:两组边对应成比例且夹角相等的两个三角形相似,故此选项不合题意;D、添加AC BCAE DE=不能证明△ABC∽△ADE,故此选项符合题意;故选:D.【点睛】本题考查相似三角形的判定,解题的关键是掌握相似三角形判定方法:两角法、两边及其夹角法、三边法、平行线法.10.C解析:C【解析】【分析】画树状图展示所有12种等可能的结果数,再找出2次抽出的签上的数字和为正数的结果数,最后根据概率公式计算即可.【详解】根据题意画图如下:共有12种等情况数,其中2次抽出的签上的数字的和为正数的有6种,则2次抽出的签上的数字的和为正数的概率为612=12;故选:C.【点睛】本题考查列表法与树状图法、概率计算题,解题的关键是画树状图展示出所有12种等可能的结果数及准确找出2次抽出的签上的数字和为正数的结果数,11.C解析:C【解析】【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标.【详解】解:过O′作O′F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,5),∴AE=5,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A′B=3,由旋转前后三角形面积相等得OB AE A'B O'F22⋅⋅=,即453O'F2⋅⋅=,∴O′F=45.在Rt△O′FB中,由勾股定理可求BF=22458433⎛⎫-=⎪⎪⎝⎭,∴OF=820433+=.∴O′的坐标为(2045,3).故选C.【点睛】本题考查坐标与图形的旋转变化;勾股定理;等腰三角形的性质;三角形面积公式.12.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题13.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF 的长度是解题的关键.14.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF 和Rt△DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.15.【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵=,∴b=a,∴=,故答案为:.【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.解析:5 3【解析】【分析】根据条件可知a与b的数量关系,然后代入原式即可求出答案.【详解】∵a bb-=23,∴b=35 a,∴ab=5335aa,故答案为:5 3 .【点睛】本题考查了分式,解题的关键是熟练运用分式的运算法则.16.15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离解析:15【解析】【分析】由在比例尺为1:50000的地图上,量得A、B两地的图上距离AB=3cm,根据比例尺的定义,可求得两地的实际距离.【详解】解:∵比例尺为1:500000,量得两地的距离是3厘米,∴A、B两地的实际距离3×500000=1500000cm=15km,故答案为15.【点睛】此题考查了比例尺的性质.注意掌握比例尺的定义,注意单位要统一.17.或【解析】【分析】根据黄金分割比为计算出较长的线段长度,再求出较短线段长度即可,AC可能为较长线段,也可能为较短线段.【详解】解:AB=10cm,C是黄金分割点,当AC>BC时,则有解析:5或1555【解析】【分析】根据黄金分割比为12计算出较长的线段长度,再求出较短线段长度即可,AC 可能为较长线段,也可能为较短线段.【详解】解:AB=10cm ,C 是黄金分割点,当AC>BC 时,则有AC=12AB=12×10=5, 当AC<BC 时,则有×10=5-,∴AC=AB-BC=10-(5 )=15-,∴AC 长为5 cm 或1555 cm. 故答案为:55 或1555【点睛】本题考查了黄金分割点的概念.注意这里的AC 可能是较长线段,也可能是较短线段;熟记黄金比的值是解题的关键.18.【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R ,根据弧长公式得,∴R解析:【解析】【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R ,根据弧长公式得,90=25180R∴R=20, 225515 .故答案为:【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.19.【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由,根据顶点式的坐标特点可知,顶点坐标为.故答案为:.【点睛】本题考查抛物线的顶点坐标公式,将解析式化解析:()2,2--【解析】【分析】根据题意已知抛物线的顶点式,可据此直接写出顶点坐标.【详解】解:由()2322y x =+-,根据顶点式的坐标特点可知,顶点坐标为()2,2--. 故答案为:()2,2--.【点睛】本题考查抛物线的顶点坐标公式,将解析式化为顶点式y=a (x-h )2+k ,顶点坐标是(h ,k ),对称轴是x=h .20.【解析】【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围. ,,方程有两个不相等的实数解析:3k <【解析】【分析】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.【详解】根据一元二次方程的根的判别式,建立关于k 的不等式,求出k 的取值范围.1a ,b =-,c k =方程有两个不相等的实数根,241240b ac k ∴∆=-=->,3k∴<.故答案为:3k<.【点睛】本题考查了根的判别式.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.22.15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解析:15π.【解析】【分析】根据圆锥的主视图得到圆锥的底面圆的半径为3,母线长为5,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式求解.【详解】解:根据题意得圆锥的底面圆的半径为3,母线长为5,所以这个圆锥的侧面积=12×5×2π×3=15π. 【点睛】本题考查圆锥侧面积的计算,掌握公式,准确计算是本题的解题关键. 23.(1),8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中解析:(1)83,8.5,8;(2)两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【解析】【分析】(1)根据方差、平均数的计算公式求出甲组方差和乙组平均数,根据中位数的定义,取出甲组中位数;(2)根据(1)中表格数据,分别从反应数据集中程度的中位数和平均分及反应数据波动程度的方差比较甲、乙两组,由此找出乙组优于甲组的一条理由.【详解】(1)甲组方差:()()()()()()22222218789810888589863⎡⎤-+-+-+-+-+-=⎣⎦ 甲组数据由小到大排列为:5,7,8,9,9,10故甲组中位数:(8+9)÷2=8.5乙组平均分:(9+6+8+10+7+8)÷6=8填表如下:乙组85388故答案为:83,8.5,8;两队的平均分相同,但乙组的方差小于甲组方差,所以乙组成绩更稳定.【点睛】本题考查数据分析,熟练掌握反应数据集中趋势的中位数、众数和平均数以及反应数据波动程度的方差的计算公式和定义是解题关键.24.【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可解析:3【解析】【分析】取DE的中点F,连接AF,根据直角三角形斜边中点的性质得出AF=EF,然后证得△BAF≌△DAE,得出AE=AF,从而证得△AEF是等边三角形,进一步证得∠ABC=60°,即可求得结论.【详解】取DE的中点F,连接AF,∴EF=DF,∵BE:ED=1:2,∴BE=EF=DF,∴BF=DE,∵AB=AD,∴∠ABD=∠D,∵AD⊥AE,EF=DF,∴AF=EF,在△BAF和△DAE中AB AD ABF D BF DE =⎧⎪∠=∠⎨⎪=⎩∴△BAF ≌△DAE (SAS ),∴AE =AF ,∴△AEF 是等边三角形,∴∠AED =60°,∴∠D =30°,∵∠ABC =2∠ABD ,∠ABD =∠D ,∴∠ABC =60°,∴cos ∠ABC =cos60°【点睛】 本题考查了全等三角形的判定和性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题25.(1)画图见解析;(2)x<-1或x>3【解析】【分析】(1)根据二次函数与一次函数图象的性质即可作图,(2)观察图像,找到抛物线在直线上方的图象即可解题.【详解】(1)画图(2)221x x x -->+在图象中代表着抛物线在直线上方的图象∴解集是x <-1或x >3【点睛】本题考查了二次函数与不等式:对于二次函数y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.26.(1)见解析;(2)10【解析】【分析】(1)令y =0得到关于x 的二元一次方程,然后证明△=b 2−4ac >0即可;(2)令y=0求出抛物线与x 轴的交点坐标,根据坐标的特点即可解题.【详解】(1)因为224()4(4)b ac m -=--⨯-=216m +,且20m ≥,所以2160m +>.所以该函数的图像与x 轴一定有两个交点.(2)将A (-1,0)代入函数关系式,得,2(1)40m -+-=,解得m=3,求得点B 、C 坐标分别为(4,0)、(0,-4).所以△ABC 面积=[4-(-1)]×4×0.5=10【点睛】本题主要考查的是抛物线与x 轴的交点、二次函数的性质,将函数问题转化为方程问题是解答问题(1)的关键,求出抛物线与x 轴的交点坐标是解答问题(2)的关键.27.(1)见解析;(2)12【解析】【分析】 (1)利用等腰直角三角形的性质证明△DAC ∽△EBC ;(2)依据△DAC ∽△EBC 所得条件,证明△ABC 与△DEC 相似,通过面积比等于相似比的平方得到结果.【详解】(1)证明:∵△EBC 是等腰直角三角形∴BC =BE ,∠EBC =90°∴∠BEC =∠BCE =45°.同理∠DAC =90°,∠ADC =∠ACD =45°∴∠EBC =∠DAC =90°,∠BCE =∠ACD =45°.∴△DAC ∽△EBC .(2)解:∵在Rt △ACD 中, AC 2+AD 2=CD 2,∴2AC 2=CD 2∴2AC CD =, ∵△DAC ∽△EBC ∴AC BC =DC EC , ∴EC BC =DC AC , ∵∠BCE =∠ACD∴∠BCE -∠ACE =∠ACD -∠ACE ,即∠BCA =∠ECD ,∵在△DEC 和△ABC 中,EC BC =DC AC,∠BCA =∠ECD , ∴△DEC ∽△ABC , ∴S △ABC :S △DEC =2DC AC ⎛⎫ ⎪⎝⎭=12. 【点睛】本题考查了相似三角形的判定和性质,以及相似三角形的面积比等于相似比的平方,解题的关键在于利用(1)中的相似推导出第二对相似三角形.28.(1)开通隧道前,汽车从A 地到B 地要走)千米;(2)汽车从A 地到B 地比原来少走的路程为千米.【解析】【分析】(1)过点C 作AB 的垂线CD ,垂足为D ,在直角△ACD 中,解直角三角形求出CD ,进而解答即可;(2)在直角△CBD 中,解直角三角形求出BD ,再求出AD ,进而求出汽车从A 地到B 地比原来少走多少路程. 【详解】 (1)过点C 作AB 的垂线CD ,垂足为D ,∵AB ⊥CD ,sin30°=CD BC,BC =80千米, ∴CD =BC •sin30°=80×12=40(千米), AC =CD 402sin 45︒=(千米), AC +BC =80+1-8(千米), 答:开通隧道前,汽车从A 地到B 地要走(80+1-8)千米; (2)∵cos30°=BD BC,BC =80(千米), ∴BD =BC •cos30°=80×3=403(千米), ∵tan45°=CD AD ,CD =40(千米), ∴AD =CD 40tan 45︒=(千米), ∴AB =AD +BD =40+403(千米), ∴汽车从A 地到B 地比原来少走多少路程为:AC +BC ﹣AB =80+1-8﹣40﹣403=40+40(23)-(千米).答:汽车从A 地到B 地比原来少走的路程为 [40+40(23)-]千米.【点睛】本题考查了勾股定理的运用以及解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.29.(1)21234y x x =++;(2)(6,0)P -;(3)存在,116(,3)3Q - ,2(4,3)Q 【解析】(1)用待定系数法求出抛物线解析式即可;(2)设点P (m ,21234m m ++),表示出PE =2134m m --,再用S 四边形AECP =S △AEC +S △APC =12AC ×PE ,建立函数关系式,求出最值即可; (3)先判断出PF =CF ,再得到∠PCA =∠EAC ,以C 、P 、Q 为顶点的三角形与△ABC 相似,分两种情况计算即可.【详解】(1)∵点(0,3)A ,(12,15)-B 在抛物线上, ∴3115144124c b c =⎧⎪⎨=⨯-+⎪⎩, ∴23b c =⎧⎨=⎩, ∴抛物线的解析式为21234y x x =++, (2)∵AC ∥x 轴,A (0,3) ∴21234x x ++=3, ∴x 1=−6,x 2=0, ∴点C 的坐标(−8,3),∵点(0,3)A ,(12,15)-B ,求得直线AB 的解析式为y =−x +3,设点P (m ,21234m m ++)∴E (m ,−m +3) ∴PE =−m +3−(21234m m ++)=2134m m --, ∵AC ⊥EP ,AC =8,∴S 四边形AECP=S △AEC +S △APC =12AC ×EF +12AC ×PF =12AC ×(EF +PF ) =12AC ×PE =12×8×(2134m m --)=−(m +6)2+36,∵−8<m <0∴当m =−6时,四边形AECP 的面积的最大,此时点P (−6,0);(3)∵21234y x x =++=21(4)14x +-, ∴P (−4,−1),∴PF =y F −y P =4,CF =x F −x C =4,∴PF =CF ,∴∠PCF =45°同理可得:∠EAF =45°,∴∠PCF =∠EAF ,∴在直线AC 上存在满足条件的Q ,设Q (t ,3)且AB ,AC =8,CP ==, ∵以C 、P 、Q 为顶点的三角形与△ABC 相似, ①当△CPQ ∽△ABC 时,∴CQ CP AC AB =,∴88t +=, ∴t =−163或t =−323(不符合题意,舍) ∴Q (−163,3) ②当△CQP ∽△ABC 时,∴CQ CP AB AC =,8=, ∴t =4或t =−20(不符合题意,舍)∴Q (4,3)综上,存在点116(,3)3Q -2(4,3)Q . 【点睛】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质,几何图形面积的求法(用割补法),解本题的关键是求函数解析式.30.(1)13;(2)13,见解析【解析】【分析】(1)袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,摸到红球的概率即可求出;(2)分别使用树状图法或列表法将抽取球的结果表示出来,第一次共有3种不同的抽取情况,第二次有2种不同的抽取情况,所有等可能出现的结果有6种,找出两次都是白球的的抽取结果,即可算出概率.【详解】解:(1)∵袋中一共有3个球,有3种等可能的抽取情况,抽取红球的情况只有1种,∴1P=3(摸到红球);(2)画树状图,根据题意,画树状图结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴21P==63(两次白球);用列表法,根据题意,列表结果如下:一共有6种等可能出现的结果,两次都抽取到白球的次数为2次,∴21P==63(两次白球).【点睛】本题考查了列表法或树状图法求概率,用图表的形式将第一次、第二次抽取所可能发生的情况一一列出,避免遗漏.31.(1)点D的运动速度为1单位长度/秒,点C坐标为(4,0).(285;45;25.(3)①当点C′在线段BC上时,S=14t2;②当点C′在CB的延长线上,S=−1312t2+85t−203;③当点E在x轴负半轴, S=t2−45t+20.【解析】【分析】(1)根据直线的解析式先找出点B的坐标,结合图象可知当t=5时,点C′与点B重合,通过三角形的面积公式可求出CE的长度,结合勾股定理可得出OE的长度,由OC=OE+EC可得出OC的长度,即得出C点的坐标,再由勾股定理得出BC的长度,根据CD=12BC,结合速度=路程÷时间即可得出结论;(2)结合D点的运动以及面积S关于时间t的函数图象的拐点,即可得知当“当t=k 时,点D与点B重合,当t=m时,点E和点O重合”,结合∠C的正余弦值通过解直角三角形即可得出m、k的值,再由三角形的面积公式即可得出n的值;(3)随着D点的运动,按△DEC′与△BOC的重叠部分形状分三种情况考虑:①通过解直角三角形以及三角形的面积公式即可得出此种情况下S关于t的函数关系式;②由重合部分的面积=S△CDE−S△BC′F,通过解直角三角形得出两个三角形的各边长,结合三角形的面积公式即可得出结论;③通过边与边的关系以及解直角三角形找出BD和DF的值,结合三角形的面积公式即可得出结论.【详解】(1)令x=0,则y=2,即点B坐标为(0,2),∴OB=2.当t=5时,B和C′点重合,如图1所示,此时S=12×12CE•OB=54,∴CE=52,∴BE=52.∵OB=2,∴OE2253222⎛⎫-=⎪⎝⎭,∴OC=OE+EC=32+52=4,BC222425+=CD5。

陕西省宝鸡市渭滨区2020届九年级上学期期末考试数学试题

陕西省宝鸡市渭滨区2020届九年级上学期期末考试数学试题

渭滨区2019-2020-1九年级数学试题 WB202001一、选择题( 每题3分,共10小题,共30分 )1.下列方程中,是关于x 的一元二次方程的是( )A .x +x2=2 B .ax 2+bx +c =0 C .(x ﹣2)(x ﹣3)=0 D .2x 2+y =12.下列条件中,能判断四边形是菱形的是( )A .对角线互相垂直且相等的四边形B .对角线互相垂直的四边形C .对角线相等的平行四边形D .对角线互相平分且垂直的四边形3.如图,菱形ABCD 中,∠A =60°,边AB =8,E 为边DA 的中点,P 为边CD 上的一点,连接PE 、PB ,当PE =EB 时,线段PE 的长为( )A .4B .8C .42D .434.如图是滨河公园中的两个物体,一天中四个不同时刻在太阳光的照射下落在地面上的影子,按照时间的先后顺序排列正确的是( )A .(3)(4)(1)(2)B .(4)(3)(1)(2)C .(4)(3)(2)(1)D .(2)(4)(3)(1)5.如图在正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC 相似的三角形所在的网格图形是( )A .B .C .D .6.如图,一张矩形纸片ABCD 的长AB =xcm ,宽BC =ycm ,把这张纸片沿一组对边AB 和D 的中点连线EF 对折,对折后所得矩形AEFD 与原矩形ADCB 相似,则x :y 的值为( ) A .2 B .2 C .552 D .21-2第3题第5题7. 已知反比例函数y =﹣x2的图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列关系是正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1 8.如图,∠AOB 是放置在正方形网格中的一个角,则tan ∠AOB ( ) A .33 B .3 C .1 D .529. 函数y =﹣ax+a 与y =xa (a ≠0)在同一坐标系中的图象可能是( )A .B .C .D .10. 如图,AD 是△ABC 的中线,点E 在AD 上,AD =4DE ,连接BE 并延长交AC 于点F ,则AF :FC 的值是( ) A .3:2 B .4:3 C .2:1 D .2:3 二、填空题(每题3分,共4题,共12分)11.如果方程x 2+4x+n =0可以配方成(x+m )2=3,那么(n ﹣m )2020= .12.在△ABC 中,tanB =43,BC 边上的高AD =6,AC =35,则BC 长为 .13. 如图,在Rt △ABC 中,∠BAC=90°,且BA=9,AC=12,点D 是斜边BC 上的一个动点,过点D 分别作DE ⊥AB 于点E ,DF ⊥AC 于点F ,点G 为四边形DEAF 对角线交点,则线段GF 的最小值为 .14. 如图,点A 、B 分别在反比例函数y=xk 1 (k 1>0) 和 y=xk 2 (k 2<0)的图象上,连接AB交y 轴于点P ,且点A 与点B 关于P 成中心对称.若△AOB 的面积为4,则k 1-k 2= .B第6题第10题第8题三、解答题(共9小题, 总计58分)15.(4分)计算:2sin452)+︒-(︒︒tan602-1cos3016.(8分)用适当的方法解方程(1)2x2+3x﹣5=0.(2)(x+3)2=(1﹣2x)2.17.(6分)尺规作图: 如图,已知正方形ABCD,E在BC边上,求作AE上一点P,使△ABE∽△DPA (不写过程,保留作图痕迹).18. (6分)如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A 作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.19. (6分)现有甲、乙、丙三人组成的篮球训练小组,他们三人之间进行互相传球练习,篮球从一个人手中随机传到另外一个人手中计作传球一次,共连续传球三次.(1)若开始时篮球在甲手中,则经过第一次传球后,篮球落在丙的手中的概率是;(2)若开始时篮球在甲手中,求经过连续三次传球后,篮球传到乙的手中的概率.(请用画树状图或列表等方法求解)20.(6分)数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD =2m .经测量,得到其它数据如图所示.其中∠CAH =37°,∠DBH=67°,AB =10m ,请你根据以上数据计算GH 的长.(参考数据tan67°512≈, tan37°43≈)21. (5分)开学初,某文具店销售一款书包,每个成本是50元,销售期间发现:销售单价时100元时,每天的销售量是50个,而销售单价每降低2元,每天就可多售出10个,当销售单价为多少元时,每天的销售利润达到4000元?要求销售单价不低于成本,且商家尽量让利给顾客.22.(7分)如图,已知一次函数y 1=ax+b 的图象与x 轴、y 轴分别交于点D 、C ,与反比例函数y 2=xk的图象交于A 、B 两点,且点A 的坐标是(1,3)、点B的坐标是(3,m ).(1)求一次函数与反比例函数的解析式;(2)求C 、D 两点的坐标,并求△AOB 的面积;(3)根据图象直接写出:当x 在什么取值范围时,y 1>y 2?23.(10分)如图所示,在等腰△ABC 中,AB =AC =10cm ,BC =16cm .点D 由点A 出发沿AB 方向向点B 匀速运动,同时点E 由点B 出发沿BC 方向向点C 匀速运动,它们的速度均为1cm/s .连接DE ,设运动时间为t (s )(0<t <10),解答下列问题:(1)当t 为何值时,△BDE 的面积为7.5cm 2; (2)在点D ,E 的运动中,是否存在时间t ,使得△BDE 与△ABC 相似?若存在,请求出对应的时间t ;若不存在,请说明理由.渭滨区2019-2020-1九年级数学答案WB202001一、选择题 ( 每题3分,共10小题,共30分 )1.C2. D3.D4.C5.C6.B7.B8.C9.D 10.A 二、填空题(每题3分,共4题,共12分)11. 1 12. 5或11 (错一个扣一分得2分) 13. 14. 8三、解答题(共9小题, 总计58分)15. (4分)计算:260tan -130cos 2-45sin 2)(︒+︒︒解:原式=2×22﹣2×23+21-60tan )(︒=1﹣3+(tan60°﹣1)=1﹣3+3﹣1=0.16. (8分)(1)2x 2+3x ﹣5=0.(2)(x +3)2=(1﹣2x )2. 解:(1)∵a =2,b =3,c =﹣5,△=b 2﹣4ac =9+40=49>0, ∴x =2a4-2ac b b -±=473-±,∴x 1=1,x 2=﹣25;4分(2)(x +3)2=(1﹣2x )2. (x +3)2﹣(1﹣2x )2=0,[(x +3)﹣(1﹣2x )][(x +3)+(1﹣2x )]=0, (3x +2)(﹣x +4)=0,则3x +2=0,﹣x +4=0, ∴x 1=32-,x 2=4.4分17. (6分)作图如下:18. (6分)(1)证明:∵E 是AD 的中点 ∴AE =DE ∵AF ∥BC ∴∠AFE =∠DBE 在△AEF 和△DEB 中⎪⎩⎪⎨⎧=∠=∠∠=∠DE AE AEF DEB DBEAFE ∴△AEF ≌△DEB (AAS ) ∴AF =DB∴四边形ADCF 是平行四边形∵∠BAC =90°,D 是BC 的中点 ∴AD =CD =21BC∴四边形ADCF 是菱形;5分518(2)解:法一、设AF 到CD 的距离为h ,∵AF ∥BC ,AF =BD =CD ,∠BAC =90°, ∴S 菱形ADCF =CD •h =21BC •h =S △ABC =21AB •AC =248621=⨯⨯. 3分法二、连接DF ∵AF =DB, AF ∥DB ∴四边形ABDF 是平行四边形 ∴DF=AB=8 ∴S 菱形ADCF =21AC •DF=248621=⨯⨯19. (6分)解:(1)经过第一次传球后,篮球落在丙的手中的概率为21;2分(2)画树状图如图所示:由树形图可知三次传球有8种等可能结果,三次传球后,篮球传到乙的手中的结果有3种,∴篮球传到乙的手中的概率为83.4分20. (6分)解:延长CD 交AH 于点E ,则CE ⊥AH ,如图所示. 设DE =xm ,则CE =(x +2)m ,AECE ,在Rt △AEC 和Rt △BED 中,tan37°=tan67°=BEDE ,∴AE =︒tan37CE ,BE =︒tan67DE .∵AE ﹣BE =AB , ∴︒tan37CE ﹣︒tan67DE =10,即432x +﹣512x =10,解得:x =8,∴DE =8m ,∴GH =CE =CD +DE =2m +8m =10m .答:GH 的长为10m .21. (5分)解:设销售单价为x 元时,每天的销售利润达到4000元,由题意得,(x ﹣50)[50+5(100﹣x )]=4000, 3分 解得x 1=70,x 2=90,1分∵晨光文具店销售单价不低于成本,且商家尽量让利顾客,∴x =70,1分 答:销售单价为70元时,每天的销售利润达到4000元,且商家尽量让利顾客. 22. (7分)解:(1)把点A (1,3)代入y 2=xk ,∴3=1k ,即k =3,故反比例函数的解析式为:y 2=x3.把点B 的坐标是(3,m )代入y 2=x3,得:m =33=1,∴点B 的坐标是(3,1).把A (1,3),B (3,1)代入y 1=ax +b ,得⎩⎨⎧=+=+133b a b a ,解得⎩⎨⎧=-=41a b ,故一次函数的解析式为:y 1=﹣x +4; 3分(2)令x =0,则y 1=4;令y 1=0,则x =4, ∴C (0,4), D (4,0), ∴S △AOB =S △AOD ﹣S △BOD =21×4×3﹣21×4×1=4;得2分(3)当 x 满足 1<x <3 、x <0时,则 y 1>y 2.对一个得 1分 共2分 23. (10分) 解:(1)分别过点D 、A 作DF ⊥BC 、AG ⊥BC ,垂足为F 、G 如图∵DF ∥AG ,∴△BD F ∽△BAG,AGFD =ABBD∵AB =AC =10,BC =16 ∴BG =8,∴AG =6. ∵AD =BE =t ,∴BD =10﹣t ,∴6FD =1010t -解得DF =53(10﹣t )∵S △BDE =21BE •DF =7.5∴53(10﹣t )•t =15,解得t =5.答:t 为5秒时,△BDE 的面积为7.5cm 2.4分(2)存在.理由如下:①当BE =DE 时,△BDE 与△BCA 相似, ∴ABBE =CBBD 即10t =1610t -,解得t =1350 3分②当BD =DE 时,△BDE 与△BAC 相似, CBBE =ABBD 即16t =1010t -,解得t =1380. 3分答:存在时间t 为1350或1380秒时,使得△BDE 与△ABC 相似.。

宝鸡市陇县2020年新人教版九年级上期末数学试卷含答案解析

宝鸡市陇县2020年新人教版九年级上期末数学试卷含答案解析

2020-2021学年陕西省宝鸡市陇县九年级(上)期末数学试卷一、选择题(本题共小题,每小题3分,共36分)1.下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=02.对于二次函数y=(x﹣2)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣2C.顶点坐标是(﹣2,2) D.与x轴无交点3.在平面直角坐标系xOy中,点A关于原点的对称点的坐标为(﹣2,1),则点A坐标为() A.(﹣2,﹣1) B.(2,﹣1) C.(2,1) D.(﹣l,2)4.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()A.25°B.50°C.60°D.30°5.下列事件中,是随机事件的是()A.度量四边形的内角和为180°B.通常加热到100℃,水沸腾C.袋中有2个黄球,3个绿球,共五个球,随机摸出一个球是红球D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上6.关于x的一元二次方程x2﹣3x+m=0有两个不相等的实数根,则实数m的取值范围为() A.m≥ B.m<C.m= D.m<﹣7.用一个圆心角为12020半径为3的扇形作一个圆锥的侧面,则这个圆锥的底面半径为() A.B.1 C.D.28.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.B.C.D.9.如图,⊙O半径为2,AB为⊙O的直径,BC为⊙O的一条弦,若∠AB C=30°,过点C作AB的垂线,垂足为点D,则CD长为()A.B.C.2 D.110.在平面直角坐标系中,将抛物线y=x2﹣x﹣6向上(下)或向左(右)平移m个单位,使平移后的抛物线恰好经过原点,则|m|的最小值为()A.1B.2 C.3 D.6二、填空题(本题共4小题,每小题3分,共12分)11.方程(2x﹣1)2=9的根是.12.已知二次函数y=x2+2x+m的图象过点(1,2),则此二次函数的顶点坐标为.13.如图,将△ABC绕点C顺时针方向旋转50°得到△A′CB′,若AC⊥A′B′,则∠BAC=.14.如图,PA、PB是⊙O的切线,A、B为切点,∠OAB=30°,OA=3,则阴影部分面积为.三、解答题(本题共8小题,共55分15.解方程(l)2x2﹣3x+1=0(公式法)(2)3x2﹣6x+4=0(配方法)16.已知二次函数y=(m﹣2)x2+(m+3)x+m+2的图象过点(0,5).(1)求m值,并写出二次函数的解析式.(2)求y的最小值.17.尺规作△ABC的外接圆.(请保留作图痕迹)18.如图所示,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A,B的坐标分别是A(3,3)、B(1,2),△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出△A1OB1,直接写出点A1,B1的坐标;(2)在旋转过程中,点B经过的路径的长.19.如图,点C是⊙O的直径AB延长线上的一点,且有BO=BD=BC.(1)求证:CD是⊙O的切线;(2)若半径OB=2,求AD的长.2020图,A、B两个转盘分别被平均分成三个、四个扇形,分别转动A盘、B盘各一次,转动过程中,指针保持不动,如果指针恰好指在分割线上,则重转一次,直到指针指向一个数字所在的区域为止,小明和小亮想用转盘做游戏,两转盘停止后的所指区域数字之和为奇数时小明贏,否则小亮贏.请用画树形图的方法来说,该游戏是否公平.21.如图,抛物线y=x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点.(1)求该抛物线的解析式;(2)求该抛物线的对称轴以及顶点坐标;(3)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求出此时P点的坐标.22.如图,在△ABC中,∠B=60°,⊙O是△ABC外接圆,过点A作⊙O的切线,交CO的延长线于P点,CP交⊙O于D;(1)求证:AP=AC;(2)若AC=3,求PC的长.2020-2021学年陕西省宝鸡市陇县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共小题,每小题3分,共36分)1.下列方程中是关于x的一元二次方程的是()A.B.ax2+bx+c=0C.(x﹣1)(x+2)=1 D.3x2﹣2xy﹣5y2=0【考点】一元二次方程的定义.【专题】方程思想.【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、原方程为分式方程;故A选项错误;B、当a=0时,即ax2+bx+c=0的二次项系数是0时,该方程就不是一元二次方程;故B选项错误;C、由原方程,得x2+x﹣3=0,符合一元二次方程的要求;故C选项正确;D、方程3x2﹣2xy﹣5y2=0中含有两个未知数;故D选项错误.故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.对于二次函数y=(x﹣2)2+2的图象,下列说法正确的是()A.开口向下 B.对称轴是x=﹣2C.顶点坐标是(﹣2,2) D.与x轴无交点【考点】二次函数的性质.【分析】根据二次函数的性质对各选项进行判断.【解答】解:由二次函数y=(x﹣2)2+2可知图象的开口向上,对称轴为直线x=2,顶点坐标为(2,2),∵图象的开口向上,顶点坐标为(2,2),∴二次函数y=(x﹣2)2+2可知图象与x轴无交点,故选D.【点评】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(﹣,),对称轴直线x=﹣,二次函数y=ax2+bx+c(a≠0)的图象具有如下性质:当a>0时,抛物线y=ax2+bx+c(a≠0)的开口向上,x<﹣时,y随x的增大而减小;x>﹣时,y随x的增大而增大;x=﹣时,y取得最小值,即顶点是抛物线的最低点.当a<0时,抛物线y=ax2+bx+c(a≠0)。

2020-2021学年陕西省宝鸡市渭滨区九年级(上)期末数学试卷

2020-2021学年陕西省宝鸡市渭滨区九年级(上)期末数学试卷

2020-2021学年陕西省宝鸡市渭滨区九年级(上)期末数学试卷一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项符合题意)1.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.2.(3分)已知四边形ABCD是平行四边形,则下列结论中正确的是()A.当AB⊥BD时,它是菱形B.当AC=BD时,它是正方形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是矩形3.(3分)关于x的一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定4.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cos B的值为()A.B.C.D.5.(3分)反比例函数y=(k<0)的图象如图,A(﹣2,y1)、B(﹣1,y2)、C(1,y3)三点都在该反比例函数的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2 6.(3分)组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.x(x﹣1)=28C.x(x﹣1)=28D.x(x+1)=287.(3分)如图.AB∥CD∥EF,AF、BE交于点G,下列比例式错误的是()A.B.C.D.8.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AE⊥BC于点E,连接OE.若OB=6,菱形ABCD的面积为54,则OE的长为()A.4B.4.5C.8D.99.(3分)如图,梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A.sin A的值越大,梯子越陡B.cos A的值越大,梯子越陡C.tan A的值越小,梯子越陡D.陡缓程度与∠A的函数值无关10.(3分)如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B (1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<1二、填空题(共4小题,每小题3分,计12分)11.(3分)把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为.12.(3分)如图是小玲设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是米.13.(3分)如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(﹣1,2),将△AOB绕点A顺时针旋转90°,点O的对应点D恰好落在双曲线y=上,则k 的值为.14.(3分)如图,∠AOB=30°,点P是∠AOB内部的一个点,且OP=6,点E,F分别是OA,OB上的动点,则△PEF周长的最小值为.三、解答题(共11小题,共78分,解答应写出过程)15.(5分)计算:2cos60°+4sin60°•tan30°﹣6cos245°.16.(5分)解方程:2x2﹣3x﹣5=0.17.(5分)尺规作图:已知点D为△ABC的边AB的中点,用尺规在△ABC的边AC上找一点E,使S△ADE:S△ABC=1:4.(保留作图痕迹,不写作法)18.(5分)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.19.(7分)某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.20.(7分)某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间.身高1.6m的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A 的仰角为60°.求小聪在地面的有效测温区间MN的长度.(额头到地面的距离以身高计,计算精确到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)21.(7分)如图,在等腰三角形ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH.求证:四边形EBFC是菱形.22.(7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰赢;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?23.(8分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.24.(10分)如图所示,在平行四边形ABCD中,∠A=90°,AB=6cm,BC=12cm,点E 由点A出发沿AB方向向点B匀速移动,速度为1cm/s,点F由点B出发沿BC方向向点C匀速移动,速度为2cm/s,如果动点E,F同时从A,B两点出发,连接EF,若设运动时间为ts,解答下列问题:(1)当t为多少时,△BEF为等腰直角三角形;(2)是否存在某一时刻t,使△EFB∽△FDC?若存在,求出t的值;若不存在,请说明理由.25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,DC=﹣,BD=﹣1,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求CB长.2020-2021学年陕西省宝鸡市渭滨区九年级(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,计30分,每小题只有一个选项符合题意)1.(3分)如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是()A.B.C.D.【解答】解:从正面看下边是一个较大的矩形,上边是一个较小的矩形,故选:B.2.(3分)已知四边形ABCD是平行四边形,则下列结论中正确的是()A.当AB⊥BD时,它是菱形B.当AC=BD时,它是正方形C.当∠ABC=90°时,它是矩形D.当AB=BC时,它是矩形【解答】解:A、当AB⊥BD时,∠ABD=90°,则∠ABC>90°,当AC⊥BD,四边形ABCD是菱形,故A错误;B、由四边形ABCD是平行四边形,AC=BD,则四边形ABCD为矩形,故B错误;C、当∠ABC=90°时,四边形ABCD是矩形,故C正确;D、由四边形ABCD是平行四边形,AB=BC,则四边形ABCD为菱形,故D错误.故选:C.3.(3分)关于x的一元二次方程x2+2x﹣1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.不能确定【解答】解:∵a=1,b=2,c=﹣1,∴△=b2﹣4ac=4+4=8>0,∴方程有两个不相等的实数根.故选:A.4.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cos B的值为()A.B.C.D.【解答】解:∵在Rt△ABC中,∠C=90°,AB=4,AC=1,∴BC==,则cos B==,故选:A.5.(3分)反比例函数y=(k<0)的图象如图,A(﹣2,y1)、B(﹣1,y2)、C(1,y3)三点都在该反比例函数的图象上,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y2<y1D.y3<y1<y2【解答】解:∵反比例函数y=(k<0),∴在每个象限内,y随x的增大而增大,且当x>0时,y<0,当x<0时,y>0,∵A(﹣2,y1)、B(﹣1,y2)、C(1,y3)三点都在该反比例函数的图象上,∴y3<y1<y2,故选:D.6.(3分)组织一次排球邀请赛,参赛的每个队之间都要比赛一场,根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛.设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=28B.x(x﹣1)=28C.x(x﹣1)=28D.x(x+1)=28【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=4×7.故选:B.7.(3分)如图.AB∥CD∥EF,AF、BE交于点G,下列比例式错误的是()A.B.C.D.【解答】解:A、由AB∥CD∥EF,则,所以A选项的结论正确;B、由AB∥CD∥EF,则,所以B选项的结论正确;C、由AB∥CD∥EF,则,所以C选项的结论正确;D、由AB∥CD∥EF,则,所以D选项的结论错误;故选:D.8.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AE⊥BC于点E,连接OE.若OB=6,菱形ABCD的面积为54,则OE的长为()A.4B.4.5C.8D.9【解答】解:∵四边形ABCD是菱形,∴OA=OC,OB=OD=BD,BD⊥AC,∴BD=2OB=12,∵S菱形ABCD═AC×BD=54,∴AC=9,∵AE⊥BC,∴∠AEC=90°,∴OE=AC=4.5,故选:B.9.(3分)如图,梯子(长度不变)跟地面所成的锐角为A,关于∠A的三角函数值与梯子的倾斜程度之间,叙述正确的是()A.sin A的值越大,梯子越陡B.cos A的值越大,梯子越陡C.tan A的值越小,梯子越陡D.陡缓程度与∠A的函数值无关【解答】解:根据锐角三角函数的变化规律,知sin A的值越大,∠A越大,梯子越陡.故选:A.10.(3分)如图,函数y=kx+b(k≠0)与y=(m≠0)的图象相交于点A(﹣2,3),B (1,﹣6)两点,则不等式kx+b>的解集为()A.x>﹣2B.﹣2<x<0或x>1C.x>1D.x<﹣2或0<x<1【解答】解:∵函数y=kx+b(k≠0)与的图象相交于点A(﹣2,3),B(1,﹣6)两点,∴不等式的解集为:x<﹣2或0<x<1,故选:D.二、填空题(共4小题,每小题3分,计12分)11.(3分)把一元二次方程x2+6x﹣1=0通过配方化成(x+m)2=n的形式为(x+3)2=10.【解答】解:∵x2+6x﹣1=0,∴(x+3)2=10,故答案为:(x+3)2=1012.(3分)如图是小玲设计用手电来测量某古城墙高度的示意图.在点P处放一水平的平面镜,光线从点A出发经平面镜反射后,刚好射到古城墙CD的顶端C处.已知AB⊥BD,CD⊥BD.且测得AB=1.4米,BP=2.1米,PD=12米.那么该古城墙CD的高度是8米.【解答】解:∵∠APB=∠CPD,∠ABP=∠CDP,∴△ABP∽△CDP∴=即=解得:CD=8米.13.(3分)如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(﹣1,2),将△AOB绕点A顺时针旋转90°,点O的对应点D恰好落在双曲线y=上,则k 的值为﹣3.【解答】解:过点D作DE⊥x轴,DF⊥AB,垂足为E、F,A(﹣1,2)∵△AOB绕点A顺时针旋转90°∴△AOB≌△ADC,∠BAC=90°又∵∠C=∠ABO=90°,∴四边形ACEB是矩形,∴AC=DF=EB=AB=2,CD=BC=AF=1,∴DE=BF=AB﹣AF=2﹣1=1,OE=OB+BE=2+1=3,∵点D恰好落在双曲线y=上,∴k=(﹣3)×1=﹣3.故答案为:﹣3.14.(3分)如图,∠AOB=30°,点P是∠AOB内部的一个点,且OP=6,点E,F分别是OA,OB上的动点,则△PEF周长的最小值为6.【解答】解:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点E,与OB交于点F,此时△PEF的周长最小.从图上可看出△PEF的周长就是P1P2的长,∵∠AOB=30°,∴∠P1OP2=60°.∵OP1=OP2,∴△OP1P2是等边三角形.∴P1P2=OP1=OP=6.∴△PEF周长的最小值是6.故答案为:6.三、解答题(共11小题,共78分,解答应写出过程)15.(5分)计算:2cos60°+4sin60°•tan30°﹣6cos245°.【解答】解:原式=2×+4××﹣6×()2=1+2﹣3=0.16.(5分)解方程:2x2﹣3x﹣5=0.【解答】解:2x2﹣3x﹣5=0,∴(2x﹣5)(x+1)=0,∴2x﹣5=0,或x+1=0,∴x1=,x2=﹣1.17.(5分)尺规作图:已知点D为△ABC的边AB的中点,用尺规在△ABC的边AC上找一点E,使S△ADE:S△ABC=1:4.(保留作图痕迹,不写作法)【解答】解:如图,作∠ADE=∠B,交AC于点E.点E即为所求.18.(5分)如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE和BF相交于点M.求证:AE=BF.【解答】解:证明:在正方形ABCD中,AB=BC=CD=DA,∠ABE=∠BCF=90°,∵CE=DF,∴BE=CF,在△AEB与△BFC中,,∴△AEB≌△BFC(SAS),∴AE=BF.19.(7分)某商店以每件40元的价格进了一批热销商品,出售价格经过两个月的调整,从每件50元上涨到每件72元,此时每月可售出188件商品.(1)求该商品平均每月的价格增长率;(2)因某些原因,商家需尽快将这批商品售出,决定降价出售.经过市场调查发现:售价每下降一元,每个月多卖出一件,设实际售价为x元,则x为多少元时商品每月的利润可达到4000元.【解答】解:(1)设该商品平均每月的价格增长率为m,依题意,得:50(1+m)2=72,解得:m1=0.2=20%,m2=﹣2.2(不合题意,舍去).答:该商品平均每月的价格增长率为20%.(2)依题意,得:(x﹣40)[188+(72﹣x)]=4000,整理,得:x2﹣300x+14400=0,解得:x1=60,x2=240.∵商家需尽快将这批商品售出,∴x=60.答:x为60元时商品每天的利润可达到4000元.20.(7分)某校为检测师生体温,在校门安装了某型号测温门.如图为该测温门截面示意图,已知测温门AD的顶部A处距地面高为2.2m,为了解自己的有效测温区间.身高1.6m 的小聪做了如下实验:当他在地面N处时测温门开始显示额头温度,此时在额头B处测得A的仰角为18°;在地面M处时,测温门停止显示额头温度,此时在额头C处测得A 的仰角为60°.求小聪在地面的有效测温区间MN的长度.(额头到地面的距离以身高计,计算精确到0.1m,sin18°≈0.31,cos18°≈0.95,tan18°≈0.32)【解答】解:延长BC交AD于点E,则AE=AD﹣DE=0.6m.BE=≈1.875m,CE=≈0.346m.所以BC=BE﹣CE≈1.529m.所以MN=BC≈1.5m.答:小聪在地面的有效测温区间MN的长度约为1.5m.21.(7分)如图,在等腰三角形ABC中,AB=AC,AH⊥BC,点E是AH上一点,延长AH至点F,使FH=EH.求证:四边形EBFC是菱形.【解答】证明:∵AB=AC,AH⊥CB,∴BH=HC,∵FH=EH,∴四边形EBFC是平行四边形,又∵AH⊥CB,∴四边形EBFC是菱形.22.(7分)有一个可自由转动的转盘,被分成了三个大小相同的扇形,分别标有数字2,4,6;另有一个不透明的瓶子,装有分别标有数字1,3,5的三个完全相同的小球.小杰先转动一次转盘,停止后记下指针指向的数字(若指针指在分界线上则重转),小玉再从瓶子中随机取出一个小球,记下小球上的数字.(1)请用列表或画树状图的方法(选其中一种)表示出所有可能出现的结果;(2)若得到的两数字之和是3的倍数,则小杰赢;若得到的两数字之和是7的倍数,则小玉赢,此游戏公平吗?为什么?【解答】解:(1)用列表法表示所有可能出现的结果情况如下:共有9种不同结果,即(2,1)(2.3)(2,5)(4,1)(4,3)(4,5)(6,1)(6,3)(6,5);(2)列出两次得数之和的所有可能的结果如下:共有9种可能出现的结果,其中“和为3的倍数”的有3种,“和为7的倍数”的有3种,∴P(小杰胜)==,P(小玉胜)==,因此游戏是公平的.23.(8分)如图,在平面直角坐标系中,一次函数y=mx+n(m≠0)的图象与y轴交于点C,与反比例函数y=(k≠0)的图象交于A,B两点,点A在第一象限,纵坐标为4,点B在第三象限,BM⊥x轴,垂足为点M,BM=OM=2.(1)求反比例函数和一次函数的解析式.(2)连接OB,MC,求四边形MBOC的面积.【解答】解:(1)∵BM=OM=2,∴点B的坐标为(﹣2,﹣2),∵反比例函数y=(k≠0)的图象经过点B,则﹣2=,得k=4,∴反比例函数的解析式为y=,∵点A的纵坐标是4,∴4=,得x=1,∴点A的坐标为(1,4),∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),∴,解得,即一次函数的解析式为y=2x+2;(2)∵y=2x+2与y轴交于点C,∴点C的坐标为(0,2),∵点B(﹣2,﹣2),点M(﹣2,0),∴OC=MB=2,∵BM⊥x轴,∴MB∥OC,∴四边形MBOC是平行四边形,∴四边形MBOC的面积是:OM•OC=4.24.(10分)如图所示,在平行四边形ABCD中,∠A=90°,AB=6cm,BC=12cm,点E 由点A出发沿AB方向向点B匀速移动,速度为1cm/s,点F由点B出发沿BC方向向点C匀速移动,速度为2cm/s,如果动点E,F同时从A,B两点出发,连接EF,若设运动时间为ts,解答下列问题:(1)当t为多少时,△BEF为等腰直角三角形;(2)是否存在某一时刻t,使△EFB∽△FDC?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)∵四边形ABCD是平行四边形,∠A=90°,∴四边形ABCD为矩形,∴∠B=90°.当△BEF为等腰直角三角形时,只能是BE=BF,AE=t,则BE=AB﹣AE=6﹣t,BF=2t,∴2t=6﹣t.解得:t=2.∴当t=2时,△BEF为等腰直角三角形.(2)存在,理由如下:∵△EFB∽△FDC,∴=.∵BE=6﹣t,BF=2t,CF=12﹣2t,∴=.解得:t=或t=6.又∵t=6时,B与E重合,所以不符合,舍去,综上所述,当t=时,△EFB∽△FDC.25.(12分)从三角形(不是等腰三角形)一个顶点引出一条射线与对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的完美分割线.(1)如图1,在△ABC中,CD为角平分线,∠A=40°,∠B=60°,求证:CD为△ABC的完美分割线.(2)在△ABC中,∠A=48°,CD是△ABC的完美分割线,且△ACD为等腰三角形,求∠ACB的度数.(3)如图2,△ABC中,AC=2,DC=﹣,BD=﹣1,CD是△ABC的完美分割线,且△ACD是以CD为底边的等腰三角形,求CB长.【解答】解:(1)∵∠A=40°,∠B=60°,∴∠ACB=180°﹣∠A﹣∠B=80°,∵∠A≠∠B≠∠ACB,∴△ABC不是等腰三角形.∵CD平分∠ACB,∴∠ACD=∠BCD=∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD为等腰三角形.∴∠DCB=∠A=40°,∵∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割线.(2)①如图3所示,当AD=CD时,∠ACD=∠A=48°,根据完美分割线的定义,可得△BDC∽△BCA,∴∠BCD=∠A=48°,则∠ACB=∠ACD+∠BCD=96°.②如图4所示,当AD=AC时,∠ACD=∠ADC=,根据完美分割线的定义,可得△BDC∽△BCA,∴∠BCD=∠A=48°,∴∠ACB=∠ACD+∠BCD=114°.③如图5所示,当AC=CD时,∠ADC=∠A=48°.∵△BDC∽△BCA,∴∠BCD=∠A=48°,根据完美分割线的定义,可得△BDC∽△BCA,∴∠BCD=∠A=48°,∴这与∠ADC>∠BCD矛盾,所以图5的情况不符合题意.综上所述,∠ACB的度数为96°或114°.(3)∵△ACD是以CD为底边的等腰三角形,AC=2,∴AC=AD=2.∵△BCD∽△BAC,∴∴,解得BC=。

2020-2021学年最新宝鸡市九年级上期末模拟数学试卷及答案

2020-2021学年最新宝鸡市九年级上期末模拟数学试卷及答案

九年级(上)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B.C.D.2.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.36cm D.7.64cm3.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13B.﹣4,19C.﹣4,13D.4,194.某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是()A.至少有两人生日相同B.可能有两人生日相同,且可能性较大C.不可能有两人生日相同D.可能有两人生日相同,但可能性较小5.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:26.一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD8.已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6B.﹣9C.0D.99.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为()A.B.C.D.10.如果反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,那么m 的取值范围是()A.m>B.m<C.m≤D.m≥二、填空题(本大题共4小题,每小题3分,共12分)11.若==≠0,则=.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为(2)如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应平行,且对应边之间的距离都相等,那么两个图形不相似的一组是(请填写正确答案的序号).13.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是度.14.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x>0)和y =﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为.三、解答题(本大题共9小题,共58分)15.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)16.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:点A(1,3),点B(4,2),点C(2,1).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)以原点O为位似中心,在原点的另一侧画出△ABC的位似图形△A2B2C2,使,并写出点A2,B2,C2的坐标.17.(6分)在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的两棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米;小丽:测量甲树的影长为4米(如图1);小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.(1)请直接写出甲树的高度为米;(2)求乙树的高度.18.(7分)如图,已知菱形ABCD中,对角线ACBD相交于点O,过点C作CE∥BD,过点D 作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形.(2)若AB=5,AC=6,求四边形CODE的周长.19.(7分)有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=上的概率.20.(7分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?21.(7分)在矩形ABCD中,AB=10,BC=12,点E为DC的中点,连接BE,过点A作AF ⊥BE,垂足为点F.(1)求证:△BEC∽△ABF;(2)求AF的长.22.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?23.(7分)如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,﹣2),反比例函数y=(k≠0)的图象经过点C,一次函数y=ax+b(a≠0)的图象经过A、C两点.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数y=(k≠0)图象上的一点,△OAP的面积恰好等于正方形ABCD 的面积,求P点的坐标.九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是()A.B.C.D.【分析】根据组合图形的俯视图,对照四个选项即可得出结论.【解答】解:由题意得:俯视图与选项B中图形一致.故选:B.【点评】本题考查了简单组合体的三视图,解题的关键是会画简单组合图形的三视图.本题属于基础题,难度不大,解决该题型题目时,掌握简单组合体三视图的画法是关键.2.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为()A.12.36cm B.13.6cm C.32.36cm D.7.64cm【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:方法1:设书的宽为x,则有(20+x):20=20:x,解得x=12.36cm.方法2:书的宽为20×0.618=12.36cm.故选:A.【点评】理解黄金分割的概念,找出黄金分割中成比例的对应线段是解决问题的关键.3.把方程x2﹣8x+3=0化成(x+m)2=n的形式,则m,n的值是()A.4,13B.﹣4,19C.﹣4,13D.4,19【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用,把左边配成完全平方式,右边化为常数.【解答】解:∵x2﹣8x+3=0∴x2﹣8x=﹣3∴x2﹣8x+16=﹣3+16∴(x﹣4)2=13∴m=﹣4,n=13故选:C.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.4.某学校有320名学生,现对他们的生日进行统计(可以不同年),下列说法正确的是()A.至少有两人生日相同B.可能有两人生日相同,且可能性较大C.不可能有两人生日相同D.可能有两人生日相同,但可能性较小【分析】依据可能性的大小的概念对各选项进行逐一分析即可.【解答】解:A、因为每年有365天而某学校只有320人,所以至少有两名学生生日相同是随机事件.故本选项错误;B、因为=>50%,所以可能性较大.正确;C、两人生日相同是随机事件,故本选项错误;D、由B可知,可能性较大,故本选项错误.故选:B.【点评】本题主要考查可能性大小的比较,关键是确定所给事件的类型;随机事件是指在一定条件下,可能发生也可能不发生的事件;概率较小的事件发生的可能性较小.5.如图,在▱ABCD中,E为CD上一点,连接AE、BD,且AE、BD交于点F,S△DEF:S△ABF=4:25,则DE:EC=()A.2:5B.2:3C.3:5D.3:2【分析】先根据平行四边形的性质及相似三角形的判定定理得出△DEF∽△BAF,再根据S△DEF:S△ABF=4:25即可得出其相似比,由相似三角形的性质即可求出DE:AB的值,由AB=CD 即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∵S△DEF:S△ABF=4:25,∴DE:AB=2:5,∵AB=CD,∴DE:EC=2:3.故选:B.【点评】本题考查的是相似三角形的判定与性质及平行四边形的性质,熟知相似三角形边长的比等于相似比,面积的比等于相似比的平方是解答此题的关键.6.一元二次方程x2+x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定【分析】先计算判别式的值,然后根据判别式的意义确定方程根的情况.【解答】解:△=12﹣4×1=﹣3<0,所以方程无实数根.故选:C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD【分析】菱形的判定方法有三种:①定义:一组邻边相等的平行四边形是菱形;②四边相等;③对角线互相垂直平分的四边形是菱形.∴可添加:AB=AD或AC⊥BD.【解答】解:因为一组邻边相等的平行四边形是菱形,对角线互相垂直平分的四边形是菱形,那么可添加的条件是:AB=BC.故选:C.【点评】本题考查菱形的判定,答案不唯一.有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形.8.已知直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,则x1y2+x2y1的值为()A.﹣6B.﹣9C.0D.9【分析】先根据点A(x1,y1),B(x2,y2)是双曲线y=上的点可得出x1•y1=x2•y2=3,再根据直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点可得出x1=﹣x2,y1=﹣y2,再把此关系代入所求代数式进行计算即可.【解答】解:∵点A(x1,y1),B(x2,y2)是双曲线y=上的点∴x1•y1=x2•y2=3①,∵直线y=kx(k>0)与双曲线y=交于点A(x1,y1),B(x2,y2)两点,∴x1=﹣x2,y1=﹣y2②,∴原式=﹣x1y1﹣x2y2=﹣3﹣3=﹣6.故选:A.【点评】本题考查的是反比例函数的对称性,根据反比例函数的图象关于原点对称得出x1=﹣x2,y1=﹣y2是解答此题的关键.9.某超市举行购物“翻牌抽奖”活动,如图所示,四张牌分别对应价值5,10,15,20(单位:元)的四件奖品,如果随机翻两张牌,且第一次翻过的牌不再参加下次翻牌,则所获奖品总价值不低于30元的概率为()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与所获奖品总价值不低于30元的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有12种等可能的结果,所获奖品总价值不低于30元的有4种情况,∴所获奖品总价值不低于30元的概率为:=.故选:C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.10.如果反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,那么m 的取值范围是()A.m>B.m<C.m≤D.m≥【分析】根据反比例函数的性质可得1﹣2m>0,再解不等式即可.【解答】解:∵反比例函数的图象在所在的每个象限内y都是随着x的增大而减小,∴1﹣2m>0,解得:m<,故选:B.【点评】此题主要考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.二、填空题(本大题共4小题,每小题3分,共12分)11.若==≠0,则=.【分析】根据已知比例关系,用未知量k分别表示出a、b和c的值,代入原式中,化简即可得到结果.【解答】解:设===k≠0,则a=2k,b=3k,c=4k,所以==.故答案是:.【点评】本题考查了比例的性质.已知几个量的比值时,常用的解法是:设一个未知数,把题目中的几个量用所设的未知数表示出来,实现消元.12.请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.(1)方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为15 (2)如图所示,两个等边三角形,两个矩形,两个正方形,两个菱形各成一组,每组中的一个图形在另一个图形的内部,对应平行,且对应边之间的距离都相等,那么两个图形不相似的一组是(请填写正确答案的序号)②.【分析】(1)求出方程的解,分为两种情况:①当等腰三角形的三边是3,3,6时,②当等腰三角形的三边是3,6,6时,看看是否符合三角形的三边关系定理,若符合求出即可.(2)根据相似多边形的定义逐一进行判断后即可确定正确的选项.【解答】解:(1)x2﹣9x+18=0,∴(x﹣3)(x﹣6)=0,∴x﹣3=0,x﹣6=0,∴x1=3,x2=6,当等腰三角形的三边是3,3,6时,3+3=6,不符合三角形的三边关系定理,∴此时不能组成三角形,当等腰三角形的三边是3,6,6时,此时符合三角形的三边关系定理,周长是3+6+6=15,故答案为:15.(2)由题意得,①中三角形对应角相等,对应边成比例,两三角形相似;③,④中正方形,菱形四条边均相等,所以对应边成比例,又角也相等,所以正方形,菱形相似;而②中矩形四个角相等,但对应边不一定成比例,所以②中矩形不是相似多边形,故答案为:②.【点评】本题考查了解一元二次方程和三角形的三边关系定理及相似图形,关键是确定三角形的三边的长度及相似图形的定义.13.如图,四边形ABCD是正方形,延长AB到点E,使AE=AC,连结CE,则∠BCE的度数是22.5 度.【分析】根据正方形的性质,易知∠CAE=∠ACB=45°;等腰△CAE中,根据三角形内角和定理可求得∠ACE的度数,进而可由∠BCE=∠ACE﹣∠ACB得出∠BCE的度数.【解答】解:∵四边形ABCD是正方形,∴∠CAB=∠BCA=45°;△ACE中,AC=AE,则:∠ACE=∠AEC=(180°﹣∠CAE)=67.5°;∴∠BCE=∠ACE﹣∠ACB=22.5°.故答案为22.5.【点评】此题主要考查的是正方形、等腰三角形的性质及三角形内角和定理.14.如图,在平面直角坐标系中,直线l∥x轴,且直线l分别与反比例函数y=(x>0)和y =﹣(x<0)的图象交于点P、Q,连结PO、QO,则△POQ的面积为7 .【分析】根据反比例函数比例系数k的几何意义得到S△OQM=4,S△OPM=3,然后利用S△POQ=S△OQM+S△OPM进行计算.【解答】解:如图,∵直线l∥x轴,∴S△OQM=×|﹣8|=4,S△OPM=×|6|=3,∴S△POQ=S△OQM+S△OPM=7.故答案为7.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.三、解答题(本大题共9小题,共58分)15.(5分)如图,已知△ABC,∠BAC=90°,请用尺规过点A作一条直线,使其将△ABC分成两个相似的三角形(保留作图痕迹,不写作法)【分析】过点A作AD⊥BC于D,利用等角的余角相等可得到∠BAD=∠C,则可判断△ABD与△CAD相似.【解答】解:如图,AD为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.解决本题的关键是利用有一组锐角相等的两直角三角形相似.16.(6分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为:点A(1,3),点B(4,2),点C(2,1).(1)作出与△ABC关于x轴对称的图形△A1B1C1;(2)以原点O为位似中心,在原点的另一侧画出△ABC的位似图形△A2B2C2,使,并写出点A2,B2,C2的坐标.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)根据位似图形的定义作出点A、B、C在原点的另一侧的对应点,再顺次连接即可得.【解答】解:(1)如图所示,△A1B1C1即为所求;(2)如图所示,△A2B2C2即为所求,点A2的坐标为(﹣2,﹣6),B2的坐标为(﹣8,﹣4),C2的坐标为(﹣4,﹣2).【点评】本题主要考查作图﹣轴对称变换、位似变换,解题的关键是根据轴对称变换和位似变换的定义作出变换后的对应点.17.(6分)在“测量物体的高度”活动中,某数学兴趣小组的3名同学选择了测量学校里的两棵树的高度,在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米;小丽:测量甲树的影长为4米(如图1);小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.(1)请直接写出甲树的高度为 5.1 米;(2)求乙树的高度.【分析】(1)根据测得一根长为1米的竹竿的影长为0.8米,利用比例式直接得出树高;(2)根据辅助线作法得出假设没有墙时影子长度,即可求出答案.【解答】解:(1)根据题意得:=,解得:x=5.1(米),故答案为:5.1.(2)假设AB是乙树,∴BC=2.4m,CD=1.2m,∴=,∴=,∴CE=0.96(m),∴=,∴AB=4.2(m),答:乙树的高度为4.2m.【点评】此题主要考查了相似三角形的应用,根据同一时刻影长与高成比例以及假设没有墙或台阶时求出影长是解决问题的关键.18.(7分)如图,已知菱形ABCD中,对角线ACBD相交于点O,过点C作CE∥BD,过点D 作DE∥AC,CE与DE相交于点E.(1)求证:四边形CODE是矩形.(2)若AB=5,AC=6,求四边形CODE的周长.【分析】(1)由条件可证得四边形CODE为平行四边形,再由菱形的性质可求得∠COD=90°,则可证得四边形CODE为矩形;(2)由菱形的性质可求得AO和OC,在Rt△AOB中可求得BO,则可求得OD的长,则可求得答案.【解答】(1)证明:∵CE∥BD,DE∥AC,∴四边形CODE为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠COD=90°,∴平行四边形CODE是矩形;(2)解:∵四边形ABCD为菱形,∴AO=OC=AC=×6=3,OD=OB,∠AOB=90°,在Rt△AOB中,由勾股定理得BO2=AB2﹣AO2,∴BO==4,∴DO=BO=4,∴四边形CODE的周长=2×(3+4)=14.【点评】本题主要考查矩形、菱形的判定和性质,掌握矩形的判定方法及菱形的对角线互相垂直平分是解题的关键.19.(7分)有三张正面分别标有数字:﹣1,1,2的卡片,它们除数字不同外其余全部相同,现将它们背面朝上,洗匀后从中随机抽出一张记下数字.(1)请用列表或画树状图的方法(只选其中一种),表示两次抽出卡片上的数字的所有结果;(2)将第一次抽出的数字作为点的横坐标x,第二次抽出的数字作为点的纵坐标y,求点(x,y)落在双曲线y=上的概率.【分析】(1)画出树状图即可得解;(2)根据反比例函数图象上点的坐标特征判断出在双曲线y=上的情况数,再根据概率公式列式计算即可得解.【解答】解:(1)根据题意画出树状图如下:(2)当x=﹣1时,y==﹣2;当x=1时,y==2;当x=2时,y==1.∴一共有9种等可能的情况,点(x,y)落在双曲线y=上有2种情况:(1,2),(2,1),∴点(x,y)落在双曲线y=上的概率为:.【点评】本题考查了列表法与树状图法以及反比例函数图象上点的坐标特征,根据抽卡的规律用树状图表示两次抽出卡片上的数字的所有结果是解题的关键.20.(7分)现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?【分析】(1)设该快递公司投递总件数的月平均增长率为x,根据“今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同”建立方程,解方程即可;(2)首先求出今年6月份的快递投递任务,再求出21名快递投递业务员能完成的快递投递任务,比较得出该公司不能完成今年6月份的快递投递任务,进而求出至少需要增加业务员的人数.【解答】解:(1)设该快递公司投递总件数的月平均增长率为x,根据题意得10(1+x)2=12.1,解得x1=0.1,x2=﹣2.1(不合题意舍去).答:该快递公司投递总件数的月平均增长率为10%;(2)今年6月份的快递投递任务是12.1×(1+10%)=13.31(万件).∵平均每人每月最多可投递0.6万件,∴21名快递投递业务员能完成的快递投递任务是:0.6×21=12.6<13.31,∴该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务∴需要增加业务员(13.31﹣12.6)÷0.6=1≈2(人).答:该公司现有的21名快递投递业务员不能完成今年6月份的快递投递任务,至少需要增加2名业务员.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.21.(7分)在矩形ABCD中,AB=10,BC=12,点E为DC的中点,连接BE,过点A作AF ⊥BE,垂足为点F.(1)求证:△BEC∽△ABF;(2)求AF的长.【分析】(1)在矩形ABCD中,有∠C=∠ABC=∠ABF+∠EBC=90°,由于AF⊥BE,所以∠AFB =∠C=90°,∠BAF=∠EBC,从而得证;(2)在矩形ABCD中,AB=10,可知CD=AB=10,由于E为DC的中点,CE=5,由勾股定理可求得:BE=13,最后由△ABF∽△BEC得:,从而可求出答案.【解答】解:(1)在矩形ABCD中,有∠C=∠ABC=∠ABF+∠EBC=90°∵AF⊥BE,∴∠AFB=∠C=90°,∴∠BAF=∠EBC∴△BEC∽△ABF(2)在矩形ABCD中,AB=10,∴CD=AB=10,∵E为DC的中点,∴CE=5,又BC=12,在Rt△BEC中,由勾股定理得:BE=13,由△ABF∽△BEC得:即:=,∴解得:AF=【点评】本题考查相似三角形的性质与判定,解题的关键熟练运用相似三角形的判定方法以及矩形的性质,本题属于中等题型.22.(6分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?【分析】(1)根据图象直接得出大棚温度18℃的时间为12﹣2=10(小时);(2)利用待定系数法求反比例函数解析式即可;(3)将x=16代入函数解析式求出y的值即可.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.【点评】此题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键.23.(7分)如图,四边形ABCD为正方形,点A坐标为(0,1),点B坐标为(0,﹣2),反比例函数y=(k≠0)的图象经过点C,一次函数y=ax+b(a≠0)的图象经过A、C两点.(1)求反比例函数与一次函数的表达式;(2)若点P是反比例函数y=(k≠0)图象上的一点,△OAP的面积恰好等于正方形ABCD 的面积,求P点的坐标.【分析】(1)先根据A点和B点坐标得到正方形的边长,则BC=3,于是可得到C(3,﹣2),然后利用待定系数法求反比例函数与一次函数的解析式;(2)设P(t,﹣),根据三角形面积公式和正方形面积公式得到×1×|t|=3×3,然后解绝对值方程求出t即可得到P点坐标.【解答】解:(1)∵点A的坐标为(0,1),点B的坐标为(0,﹣2),∴AB=1+2=3,∵四边形ABCD为正方形,∴Bc=3,∴C(3,﹣2),把C(3,﹣2)代入y=得k=3×(﹣2)=﹣6,∴反比例函数解析式为y=﹣,把C(3,﹣2),A(0,1)代入y=ax+b得,解得,∴一次函数解析式为y=﹣x+1;(2)设P(t,﹣),∵△OAP的面积恰好等于正方形ABCD的面积,∴×1×|t|=3×3,解得t=18或t=﹣18,∴P点坐标为(18,﹣)或(﹣18,).【点评】本题考查了反比例函数与一次函数的交点问题,正方形的性质等知识,解题的关键是熟练掌握基本知识,学会构建方程解决问题,属于中考常考题型.。

陕西省宝鸡市2020版九年级上学期期末数学试卷C卷

陕西省宝鸡市2020版九年级上学期期末数学试卷C卷

陕西省宝鸡市2020版九年级上学期期末数学试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)把一元二次方程化成一般式之后,其二次项系数与一次项分别是()A . 2,-3B . -2,-3C . 2,-3xD . -2,-3x2. (2分)(2016·桂林) 下列几何体的三视图相同的是()A . 圆柱B . 球C . 圆锥D . 长方体3. (2分)将二次函数y=x2-4x-1化为y=(x-h)2+k的形式,结果为()A . y=(x+2)2+5B . y=(x+2)2-5C . y=(x-2)2+5D . y=(x-2)2-54. (2分)一个不透明的袋子里装有50个黑球,2个白球,这些球除颜色外其余都完全相同.小明同学做摸球试验,将球搅匀后,从中随机摸出一个球,记下它的颜色后放回袋中,然后再重复进行下一次试验,当摸球次数很大时,摸到白球的频率接近于()A .B .C .D .6. (2分)(2017·无锡) 某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A . 20%B . 25%C . 50%D . 62.5%7. (2分)如图,在平面直角坐标中,Rt△AOB的顶点O是坐标原点,OB边在x轴的正半轴上,∠ABO=90°,且点A在第一象限内,双曲线y=(k>0)经过AO的中点,若S△AOB=4,则双曲线y=的k值为()A . 2B . 3C . 4D . 58. (2分)如图,一电线杆AB的影子分别落在地上和墙上,某一时刻,小明竖起1m高的直杆,量得其影长为0.5m,此时,他又量得电线杆AB落在地上的影子BD长3m,落在墙上的影子CD的高为2m,小明用这些数据很快算出了电线杆AB的高,请你计算,电线杆AB的高为()A . 5mB . 6mC . 7mD . 8m9. (2分)已知二次函数y=ax2+bx+c的图象如图所示,则下列结论:①c=2;②b2-4ac>0;③2a +b=0;④a+b+c<0.其中正确的为()A . ①②③B . ①②④C . ①②D . ③④10. (2分)(2017·江西模拟) 一张矩形纸片ABCD,AD=5cm,AB=3cm,将纸片沿ED折叠,A点刚好落在BC 边上的A'处,如图,这时AE的长应该是()A . cmB . cmC . cmD . cm二、填空题 (共6题;共6分)11. (1分) (2016七上·宁德期末) 由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是________个.12. (1分)已知 = ,则的值为________.13. (1分) (2016九上·嘉兴期末) 如图,半圆O的直径AC=2 ,点B为半圆的中点,点D在弦AB上,连结CD,作BF⊥CD于点E,交AC于点F,连结DF,当△BCE和△DEF相似时,BD的长为________.14. (1分)(2017·嘉祥模拟) 如图,坐标平面上,二次函数y=﹣x2+4x﹣k的图形与x轴交于A,B两点,与y轴交于C点,其顶点为D,且k>0,若△ABC与△ABD的面积比为1:4,则k的值为________.15. (1分) (2018九上·深圳期末) 若m ,n是方程的两个实数根,则m n的值为________.16. (1分) (2016八上·思茅期中) 观察图形,回答问题:如图按上面的方法继续下去,猜测第n个图形中有________个三角形(用n的代数式表示结论).三、解答题 (共9题;共94分)17. (5分) (2019八下·合肥期中) 已知关于x的方程x2-4x+m=0的一个根为-2,求方程的另一个根及m的值.18. (5分)(2019·陕西模拟) 如图,点P是正方形ABCD的对角线AC上的一点,PM⊥AB,PN⊥BC,垂足分别为点M,N,求证:DP=MN.19. (5分)如图,公园内有一棵景观树,AB的影子请好落在地图BC和地图CD上,经测量CD=4m,BC=10m,已知该坡面CD与地面成30°角,且此时测得2m的竹竿的影子是1m,求这棵景观树的高度.20. (6分) (2016九上·通州期中) 如图,在平面直角坐标系xOy中,过坐标原点O的直线l与双曲线y=相交于点A(m,3).(1)求直线l的表达式;(2)过动点P(n,0)且垂于x轴的直线与l及双曲线的交点分别为B,C,当点B位于点C上方时,写出n 的取值范围________.21. (10分)在一只不透明的盒子里有背面完全相同,正面上分别写有数字1、2、3、4的四张卡片,小马从中随机地抽取一张,把卡片上的数字作为被减数;在另一只不透明的盒子里将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小虎从中随机地抽取一个,把小球上的数字做为减数,然后计算出这两个数的差.(1)请你用画树状图或列表的方法,求这两数差为0的概率;(2)小马与小虎做游戏,规则是:若这两数的差为非正数,则小马赢;否则小虎赢.你认为该游戏公平吗?请说明理由.22. (21分)如图,平面内有A、B、C、D四点,按照下列要求画图:(1)顺次连接A、B、C、D四点,画出四边形ABCD;(2)连接AC、BD相交于点O;(3)分别延长线段AD、BC相交于点P;(4)以点C为一个端点的线段有________条;(5)在线段BC上截取线段BM=AD+CD,保留作图痕迹.23. (10分)(2017·青岛模拟) 如图,某校园内有一块菱形的空地ABCD,为了美化环境,现要进行绿化,计划在中间建设一个面积为S的矩形绿地EFGH,其中,点E、F、G、H分别在菱形的四条边上,AB=a米,BE=BF=DG=DH=x 米,∠A=60°(1)求S关于x的函数关系式,并直接写出自变量x的取值范围;(2)若a=100,求S的最大值,并求出此时x的值.24. (15分) (2015九上·龙岗期末) 如图①,已知二次函数y=﹣x2+2x+3的图象与x轴交于点A,B,与y 轴交于点C.(1)求△ABC的面积.(2)点M在OB边上以每秒1个单位的速度从点O向点B运动,点N在BC边上以每秒个单位得速度从点B向点C运动,两个点同时开始运动,同时停止.设运动的时间为t秒,试求当t为何值时,以B,M,N为顶点的三角形与△BOC相似?(3)如图②,点P为抛物线上的动点,点Q为对称轴上的动点,是否存在点P,Q,使得以P,Q,C,B为顶点的四边形是平行四变形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.25. (17分)(2017·和县模拟) 如图,在△ABC中,点D在△ABC的内部且DB=DC,点E,F在△ABC的外部,FB=FA,EA=EC,∠FBA=∠DBC=∠ECA.(1)①填空:△ACE∽________∽________;(2)求证:△CDE∽△CBA;(3)求证:△FBD≌△EDC;(4)若点D在∠BA C的平分线上,判断四边形AFDE的形状,并说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共94分)17-1、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、22-4、22-5、23-1、23-2、24-1、24-2、24-3、25-1、25-2、25-3、25-4、。

陕西省宝鸡市岐山县2020届九年级上学期数学期末考试试卷

陕西省宝鸡市岐山县2020届九年级上学期数学期末考试试卷

陕西省宝鸡市岐山县2020届九年级上学期数学期末考试试卷一、选择题(每小题3分,计30分)(共10题;共28分)1.下列方程中,是关于x的一元二次方程的是( )A. 3(x+1)2=2(x+1)B.C. ax2+bx+c=0D. x2+2x=x2-1【答案】A2.已知一个三角形的两个内角分别是40°,60°,另一个三角形的两个内角分别是40°,80°,则这两个三角形( )A. 一定不相似B. 不一定相似C. 一定相似D. 不能确定【答案】C3.在正方形网格中△ABC的位置如图所示,则cos∠B的值为()A. B. C. D.【答案】B4.对于抛物线y= (x-5)2+3,下列说法正确的是( )A. 开口向下,顶点坐标(5,3)B. 开口向上,顶点坐标(5,3)C. 开口向下,顶点坐标(-5,3)D. 开口向上,顶点坐标(-5,3)【答案】A5.在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为()A. 4.8米B. 6.4米C. 9.6米D. 10米【答案】C6.如果一个矩形对折后所得矩形与原矩形相似,则此矩形的长边与短边的比是( )A. 1:B. :1C. 2:1D. 4:1【答案】B7.如图,在△ABC中,点D在BC上,DE∥AC,DF∥AB,下列四个判断中不正确的是( )A. 四边形AEDF是平行四边形B. 若∠BAC=90°,则四边形AEDF是矩形C. 若AD⊥BC且AB=AC,则四边形AEDF是菱形D. 若AD平分∠BAC,则四边形AEDF是矩形【答案】 D8.已知关于x的函数y=k(x+1)和y= (k≠0)它们在同一坐标系中的大致图象是( )A. B. C. D.【答案】A9.如图,在▱ABCD中,点E、F分别在边AD、BC上,且EF∥CD,G为边AD延长线上一点,连接BG,则图中与△ABG相似的三角形有()个.A. 1B. 2C. 3D. 4【答案】D10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a-b+c>0;②abc>0;③4a-2b+c>0;④a-c>0.⑤3a+c>0;其中正确结论的个数是( )A. 2B. 3C. 4D. 5【答案】B二、填空题:(每小题3分,计15分)(共5题;共15分)11.将一元二次方程x2-2(3x-2)+(x+1)=0化为一般形式________。

陕西省宝鸡市陈仓区2020届九年级上学期期末质量检测考试数学试题

陕西省宝鸡市陈仓区2020届九年级上学期期末质量检测考试数学试题

2019—2020学年度第一学期期末质量检测试题(卷)九年级数学一、选择题(共10小题,每小题3分,计30分)1.已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .3-B .3C .0D .0或3 2.方程24x x =的解是( )A .4x =B .2x =C .4x =或0x =D .0x =3.下列叙述错误的是( )A .正方形的四个角都是直角B .正方形的对角线互相垂直C .邻边相等的矩形是正方形D .对角线相等的平行四边形是正方形4.如图是由5个大小相同的正方体组成的几何体,它的俯视图为( )A .B .C .D .5.如图,在ABCD 中,6AB =,9AD =,BAD ∠的平分线交BC 于点E ,交DC 的延长线于点F ,BG AE ⊥,垂足为G ,若BG =CEF ∆的面积是( )A .BC .D . 6.关于x 的方程220x x k -+=有两个不相等的实数根,则k 的取值范围是( )A .1k <B .1k >C .1k <-D .1k >-7.如图,在ABC ∆中,//DE BC ,:1:3AD AB =,:ADE DEBC S S ∆四边形等于( )A .1:3B .1:8C .1:9D .1:48.为执行“两免一补”政策,某地区2016年投入教育经费2500万元,预计2018年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A .225003600x =B .22500(1)3600x +=C .22500(1%)3600x +=D .22500(1)2500(1)3600x x +++= 9.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同,小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( )A .24B .18C .16D .610.如图,直线l 与双曲线k y x=(0)k >交于A ,B 两点,P 是线段AB 上的点(不与A ,B 重合),过点A ,B ,P 分别向x 轴作垂线,垂足分别为C ,D ,E ,连接OA ,OB ,OP ,设AOC ∆的面积为1S ,BOD ∆的面积为2S ,POE ∆的面积为3S ,则( )A .123S S S <<B .123S S S >>C .123S S S =<D .123S S S =>二、填空题(共6小题,每题3分,计18分)11.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为____________.12.小明身高1.8m ,王鹏身高1.5m ,他们在同一时刻站在阳光下,小明影子长为1.2m ,则王鹏的影长为_______________m .13.菱形的两条对角线长分别是一元二次方程214480x x -+=的两实数根,则菱形的面积为___________.14.反比例函数的图象与经过原点的直线相交于点A ,B ,已知A 点的坐标是()2,1,那么B 点的坐标为_____________.15.如图,ABC ∆中,DE 垂直平分AC 交AB 于E ,30A ∠=︒,80ACB ∠=︒,则BCE ∠=_________度.16.直线11:l y k x b =+与双曲线22:k l y x=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式21k k x b x>+的解集为____________.三、解答题(本题共7小题,计52分,解答应写出过程)17.解方程(1)2410x x -+=;(2)2(3)4(3)0x x x -+-=.18.如图,已知ABC ∆,请用尺规作图,过点A 作一条直线AD ,使其交BC 于点D ,且使ABC DAC ∆∆.(保留作图痕迹,不写作法)19.已知关于x 的方程2(2)(21)0x m x m -++-=.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是3,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.20.如图,阳光下,小亮的身高如图中线段AB 所示,他在地面上的影子如图中线段BC 所示,线段DE 表示旗杆的高,线段FG 表示一堵高墙.(1)请你在图中画出旗杆在同一时刻阳光照射下形成的影子;(2)如果小亮的身高 1.6AB m =,他的影子 2.4BC m =,旗杆的高15DE m =,旗杆与高墙的距离16EG m =,请求出旗杆的影子落在墙上的长度.21.九年级(1)班要从甲乙两名同学中选派一人去参加学校举行的”扫黑除恶”知识竞赛,王老师准备用一副扑克牌中排列数字分别为3,4,5,6的四张扑克牌做抽数字戏,决定谁去参加比赛,游戏规则为;将这四张牌的正面全部朝下,洗匀后从中随机抽取一张,得到的数字作为十位上的数字,然后将所抽到的牌放回,再从中随机抽取一张,到的数字作为个位上的数字,这样就得到了一个两位数,若这个两位数小50,则甲胜,否则乙获胜,且游戏的获胜者将去参加比赛.(1)求抽取的扑克牌使得十位数字是5的概率;(2)你认为这个游戏公平吗?请运用概率知识说明理由.22.如图,在ABC ∆中,AB AC =,D 为边BC 上一点,以AB ,BD 为邻边作ABDE ,连接AD ,EC .(1)求证:ADC ECD ∆≅∆;(2)若BD CD =,求证:四边形ADCE 是矩形.23.如图,矩形OABC 的顶点A ,C 分别在x 轴和y 轴上,点B 的坐标为()2,3,双曲线k y x=()0x >的图象经过BC 的中点D ,且与AB 交于点E ,连接DE .(1)求k 的值及点E 的坐标;(2)若点F 是OC 边上一点,且FBC ∆相似于DEB ∆.求直线FB 的解析式.九年级数学上期末参考答案一.选择题(共10小题)1-5:ACDAA 6-10:ABBCC二.填空题(共6小题)11.20% 12.1 13.24 14.(-2,-1)15.70 16.x<或0<x<三.解答题(共7小题)17(1).x1=2+,x2=2﹣(2).18.则:直线AD即为所求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

宝鸡市2020版九年级上学期数学期末考试试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共10分)1. (1分)(2019·龙湖模拟) 下列所述图形中,既是中心对称图形,又是轴对称图形的是()A . 矩形B . 平行四边形C . 正五边形D . 正三角形2. (1分) (2019九上·椒江期末) 下列关于反比例函数的说法不正确的是()A . 其图象经过点(-2,1)B . 其图象位于第二、第四象限C . 当x<0时,y随x增大而增大D . 当x>-1时,y>23. (1分) (2019九上·椒江期末) 下列说法中错误的是()A . 概率很小的事件不可能发生B . 不可能事件发生的概率为0C . 随机事件发生的概率大于或等于0且小于或等于1D . 必然事件发生的概率为14. (1分) (2019九上·椒江期末) 如图,在平面直角坐标系中,其中一个三角形是由另一个三角形绕某点旋转一定的角度得到的,则其旋转中心是()A . (1,0)B . (-1,2)C . (0,0)D . (-1,1)5. (1分) (2019九上·椒江期末) 某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,求每个支干长出多少个小分支?解:设主干长出x个支干,每个支干有x个小分支,由题意,所列方程正确的是()A .B .C .D .6. (1分) (2019九上·椒江期末) 如图,A,B两点在双曲线上,分别经过A,B两点向坐标轴作垂线段,已知S阴影=1.7,则S1+S2等于()A . 4B . 4.2C . 4.6D . 57. (1分) (2019九上·椒江期末) 小张承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:移植棵数(n)成活数(m)成活率(m/n)移植棵数(n)成活数(m)成活率(m/n)50470.940150013350.8902702350.870350032030.9154003690.923700063350.9057506620.88314000126280.902下面有四个推断:①当移植的树数是1 500时,表格记录成活数是1 335,所以这种树苗成活的概率是0.890;②随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;③若小张移植10 000棵这种树苗,则可能成活9 000棵;④若小张移植20 000棵这种树苗,则一定成活18 000棵.其中合理的是()A . ①③B . ①④C . ②③D . ②④8. (1分) (2019九上·椒江期末) 如图,点O为△ABC的外心,点I为△ABC的内心,若∠BIC=125°,则∠BOC的度数为()A . 110°B . 125°C . 130°D . 140°9. (1分) (2019九上·椒江期末) 二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c=2;③ ;④b>1.其中正确的结论个数是()A . 1个B . 2个C . 3个D . 4个10. (1分) (2019九上·椒江期末) 如图,在半径为6cm的⊙O中,点A是劣弧的中点,点D是优弧上一点,且∠D=30°,下列四个结论:①OA⊥BC;②BC=3 cm;③扇形OCAB的面积为12π;④四边形ABOC 是菱形.其中正确结论的序号是()A . ①③B . ①②③④C . ②③④D . ①③④二、填空题 (共6题;共6分)11. (1分)(2017·贺州) 如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG,若BE=2,DF=3,则AH的长为________.12. (1分) (2019九上·椒江期末) 在平面直角坐标系xOy中,若点B与点A(-2,3) 关于点O中心对称,则点B 的坐标为________.13. (1分) (2019九上·椒江期末) 圆锥的底面半径是40cm,母线长90cm,它的侧面展开图的圆心角是________°.14. (1分) (2019九上·椒江期末) 将抛物线y=2x2﹣12x+16绕它的顶点旋转180°,所得抛物线的解析式是________.15. (1分) (2019九上·椒江期末) 如图,在平面直角坐标系中,已知点A(-4,0)、B(0,3),对△AOB 连续作旋转变换依次得到三角形(1)、(2)、(3)、(4)、…,则第(2)个三角形的直角顶点的坐标是________,第(2018)个三角形的直角顶点的坐标是________.16. (1分) (2019九上·椒江期末) 如图,在△ABC中,∠ACB=90°,D为边AB的中点,E、F分别为边AC、BC上的点,且AE=AD,BF=BD.若DE=,DF=2则∠EDF=________°,线段AB的长度=________.三、解答题 (共8题;共18分)17. (1分) (2015八上·番禺期末) 为了“绿色出行”,减少雾霾,家住番禺在广州中心城区上班的王经理,上班出行由自驾车改为乘坐地铁出行,已知王经理家距上班地点21千米,他用地铁方式平均每小时出行的路程,比他用自驾车平均每小时行驶的路程的2倍还多5千米,他从家出发到达上班地点,地铁出行所用时间是自驾车方式所用时间的.求王经理地铁出行方式上班的平均速度.18. (2分) (2019九上·椒江期末) 如图,在平面直角坐标系中,△ABC的顶点为A(-3,-2),B(-5,3),C(0,4).(1)以C为旋转中心,将△ABC绕C逆时针旋转90°,画出旋转后的对应的△A1B1C1 ,写出点A1的坐标;(2)求出(1)中点B旋转到点B1所经过的路径长(结果保留根号和π).19. (3分)(2017·宜兴模拟) 小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是________.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)20. (2分) (2019九上·椒江期末) 关于的一元二次方程有两个不相等的实数根.(1)求实数m的取值范围;(2)是否存在实数m,使得成立?如果存在,求出m的值;如果不存在,请说明理由.21. (2分) (2019九上·椒江期末) 在平面直角坐标系xOy中,直线y=-x+2与反比例函数(k≠0)的图象交于点A(-2,a)和点.(1)求反比例函数的表达式和点B的坐标;(2)直接写出不等式的解集.22. (2分) (2019九上·椒江期末) 已知:如图,△ABC内接于⊙O,AF是⊙O的弦,AF⊥BC,垂足为D,点E为弧BF上一点,且BE=CF,(1)求证:AE是⊙O的直径;(2)若∠ABC=∠EAC,AE=8,求AC的长.23. (3分) (2019九上·椒江期末) 农华公司以10元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x(元/千克)1015202530日销售量p(千克)300225150750(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;(2)农华公司应该如何确定这批农产品的销售价格,才能使日销售利润W元最大?(3)若农华公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当20≤x≤25时,农经公司的日获利Q元的最大值为1215元,求a的值.(日获利=日销售利润-日支出费用)24. (3分) (2019九上·椒江期末)(1)尺规作图:已知:如图,线段AB和直线且点B在直线上求作:点C,使点C在直线上并且使△ABC为等腰三角形.作图要求:保留作图痕迹,不写作法,做出所有符合条件的点C.(2)特例思考:如图一,当∠1=90°时,符合(1)中条件的点C有________个;如图二,当∠1=60°时,符合(1)中条件的点C有________个.(3)拓展应用:如图,∠AOB=45°,点M,N在射线OA上,OM=x,ON=x+2,点P是射线OB上的点.若使点P,M,N构成等腰三角形的点P有且只有三个,求x的值。

参考答案一、选择题 (共10题;共10分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共18分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、第11 页共11 页。

相关文档
最新文档