新课标高考数学导数分类汇编(文)

合集下载

导数21 大题(其他、中档、中上、未)-2022年全国一卷新高考数学题型细分汇编

 导数21 大题(其他、中档、中上、未)-2022年全国一卷新高考数学题型细分汇编

导数——大题——其他中下:1.(2022年湖北宜昌夷陵中学J39)青岛胶东国际机场的显著特点之一是弯曲曲线的运用,衡量曲线弯曲程度的重要指标是曲率.曲线的曲率定义如下:若()f x ¢是()f x 的导函数,()f x ''是()f x ¢的导函数,则曲线()y f x =在点()(),x f x 处的曲率()()()3221f x K f x ''=⎡⎤⎦'+⎣.已知函数()()()ln cos 10,0x f x ae x b x a b =---≥>,若0a =,则曲线()y f x =在点()()1,1f 处的曲率为22.(1)求b ;(2)若函数()f x 存在零点,求a 的取值范围;(①)(3)已知1.098ln 3 1.099<<,0.048 1.050e <,0.0450.956e -<,证明:1.14ln π 1.15<<.(求导,中下;第二问,未;)导数——大题——其他中档:1.(2022年广东肇庆J36)已知函数()()ax f x axe a b x =++,()(1)ln g x x x =+.(1)当1a b =-=时,证明:当,()0x ∈+∞时,()()f x g x >;(②)(2)若对(0,)∀∈+∞x ,都[1,0]b ∃∈-,使()()f x g x ≥恒成立,求实数a 的取值范围.(切线放缩,比较大小,中档;第二问,未;)导数——大题——中档、中上、未:1.(2022年河北演练二J40)已知函数(1)ln (),()|ln |1x xf xg x x x -==+.(1)若()()(1,1)f m g n m n =>>,证明:m n >;(③)(2)设函数()(1)ln (1)F x x x a x =--+,若()0F x =有两个不同的实数根12,x x ,且12x x <,证明:221eax x >⋅.(中档,未;第二问,未;)2.(2022年湖北荆州中学J19)已知函数f (x )=e x -e -x -a sin x ,其中e 是自然对数的底数.(1)当x >0,f (x )>0,求a 的取值范围;(④)(2)当x >1时,求证:12x x e e x x ---+>sin sin(ln )x x -.(中档,未;第二问,未;)3.(2022年湖北荆门四校J21)已知函数3()ln()4f x ax x ax=++(其中实数0a >)的最小值为5,(1)求实数a 的值;(⑤)(2)若不等式()(4)5f x k x ≥++恒成立,求实数k 的取值范围.(中上,未;第二问,未;)4.(2022年湖北襄阳五中J23)已知函数()()e ln ln 1(0)x af x x a a x-=-++>(e 是自然对数的底数).(1)当1a =时,试判断()f x 在()1,+∞上极值点的个数;(⑥)(2)当1e 1a >-时,求证:对任意1x >,()1f x a >.(中档,未;第二问,未;)2.(2022年河北衡水中学J15)已知函数(),n f x nx x x R =-∈,其中*,2n N n ∈≥.(Ⅰ)讨论()f x 的单调性;(⑦)(Ⅱ)设曲线()y f x =与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为()y g x =,求证:对于任意的正实数x ,都有()()f x g x ≤;(中上,未;第二问,未;)(Ⅲ)若关于x 的方程()=a(a )f x 为实数有两个正实根12x x ,,求证:21-21ax x n<+-1.(2022年湖南师大附中J11)已知函数()()()1ln 1f x x x a x =+--.(⑧)(1)若1a =,比较(log 10f 与()5log 9f 的大小;(2)讨论函数()f x 的零点个数.(中档,未;第二问,未;)1.(2022年江苏江阴J61)已知函数()e (1ln )x f x m x =+,其中m >0,f '(x )为f (x )的导函数,设()()ex f x h x '=,且5()2h x ≥恒成立.(1)求m 的取值范围;(⑨)(中档,未;第二问,未;)(2)设函数f (x )的零点为x 0,函数f '(x )的极小值点为x 1,求证:x 0>x 1.1.(2022年山东枣庄一模J60)已知函数()()e sin xf x x a x a =-∈R .(1)若[]0,πx ∀∈,()0f x ≥,求a 的取值范围;(⑩)(2)当59a ≥-时,试讨论()f x 在()0,2π内零点的个数,并说明理由.(中档,未;第二问,未;)①【答案】(1)1;(2)10,e⎡⎤⎢⎥⎣⎦;(3)证明见解析.【解析】【分析】(1)将0a =代入并计算()1f ,()f x '',根据曲率直接计算即可.(2)等价转化为()ln cos 1xx x a e+-=有根,然后令()()ln cos 1xx x g x e+-=并研究其性质,最后进行判断可得结果.(3)依据(2)条件可知1ln 1x x e-+≤,然后根据π3113π,π3ln 1ln 13πe e -+<+<判断即可.【详解】(1)当0a =时,()()ln cos 1f x x b x =---,()1f b =-.()()1sin 1f x b x x '=-+-,()()21cos 1f x b x x''=+-.∴()f x 在()1,b -处的曲率为3212122b k b +==⇒=.(2)()()()ln cos 1ln cos 10x xx x f x ae x x a e +-=---=⇒=令()ln 1h x x x =+-,则()111x h x x x-'=-=当()0,1∈x 时,()0h x '>,当()1,∈+∞x 时,()0h x '<所以函数()h x 在()0,1单调递增,在()1,+¥单调递减,所以()(1)0h x h ≤=,则ln 1x x +≤又令()x x m x e =,则()1'xxm x e -=当()0,1∈x 时,()0m x '>,当()1,∈+∞x 时,()0m x '<所以函数()m x 在()0,1单调递增,在()1,+¥单调递减所以()1(1)m x m e≤=令()()ln cos 1xx x g x e+-=,∴()ln 11x x x x g x e e e+≤≤≤,当且仅当1x =时取“=”,显然,当1a e>时,()f x 无零点.当10a e ≤≤时,()11g a e =≥,111cos 110ee g a e e ⎛⎫-+- ⎪⎛⎫⎝⎭=<≤ ⎪⎝⎭∴存在1,1x e ⎛⎫∈ ⎪⎝⎭使()0g x a =,符合题意.综上:实数a 的取值范围为10,e ⎡⎤⎢⎥⎣⎦.(3)由(2)知ln 11xx e e+≤,∴1ln 1x x e -+≤(当且仅当1x =时取“=”)∴π10.0483πln 13e e -+<<,∴0.048ln π1ln 3 1.0501 1.099 1.15e <-+<-+<又∵310.045π3ln 1πe e -+<<,∴0.045ln πln 31 1.09810.956 1.14e ->+->+->综上:1.14ln π 1.15<<.【点睛】关键点点睛:第(1)问关键在于求导;第(2)问关键在于等价转化的使用以及常用不等式(ln 1x x +≤)的使用以及放缩法;第(3)问在于利用第(2)问的条件ln 11xx e e+≤进行比较.②【答案】(1)证明见解析;(2)1,e∞⎡⎫+⎪⎢⎣⎭.③【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由()()(1,1)f m g n m n =>>,列出m 与n 的关系式,利用指数对数的运算性质进行化简与放缩即可证明;(2)把()0F x =化成()f x a =的形式,根据导数确定()f x 的单调性与极值,画出简图,确定12,x x 与1的大小关系,利用(1)的结论,可以得到12,x x 与e a 的关系,进而可证得结论.【小问1详解】证明:由()()(1,1)f m g n m n =>>,得(1)ln |ln |ln 1m mn n m -==+,则有(1)ln 1121ln 1111e(e)m m m m m m m m m n mmm ----++++====<,所以m n >;【小问2详解】证明:令()(1)ln (1)0(0)F x x x a x x =--+=>,化简可得(1)ln 1x xa x -=+,即()f x a =,2212ln 2ln 1()(1)(1)(1)x x x x x f x x x x x +--'=+=+++,令1()2ln g x x x x=+-,221()10x x xg =++>',所以()g x 在()0,∞+上单调递增且(1)0g =,则()g x 即()0f x '<时()0,1x ∈,()0f x '>时()1,x ∈+∞,可得()f x 在()0,1上单调递减,在()1,+∞单调递增,且有(1)0f =,由下图可知,1201x x <<<,0a >,又2222(1)ln ()ln e ln e =(e )1a a a x x f x a g x -====+,即22()=(e )(1,e 1)a a f x g x >>,由(1)可得2e ax >⋅⋅⋅①,又由1()f x a =得1111111111(1)ln (1)ln 1(()ln e ln e =(e )111a a a x x x x f f x a g x x x --======++,即1111((e )(1,e 1)a a f g x x >>,由(1)可得11e a x >⋅⋅⋅②,①②相乘可得221e a x x >,即221e a x x >⋅.【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.④22.【答案】解:(1)由题意可知f '(x )=e x +e -x -a cos x ,①当0<a ≤2时,由-1≤cos x ≤1可知-2≤-a ≤a cos x ≤a ≤2,又因为e x +e -x ≥2恒成立,所以f '(x )=e x +e -x -a cos x ≥0恒成立,所以y =f (x )在[0,+∞)上恒为增函数.又f (0)=0,所以f (x )>0对x >0恒成立;②当a >2时,,且可知y =e x +e -x 与y =a cos x 必有一个交点,不妨设为x 0,所以y =f (x )在[0,x 0)上为减函数,在[x 0,+∞)为增函数,又f (0)=0,所以f (x 0)<0,与题意不符,故舍去.综合可知a 的取值范围是(0,2].(2),只需证,即证,即证e x -e -x -2sin x >e ln x -e -ln x -2sin (ln x ),即证f (x )>f (ln x )(此时a =2),由(1)问可知当0<a ≤2时y =f (x )在[0,+∞)上恒为增函数.所以即证x >ln x ,不妨令g (x )=x -ln x ,则所以y =g (x )在(0,1)递减,(1,+∞)递增.又因为g (x )min =g (1)=1>0所以g (x )=x -ln x >0恒成立,即x >ln x ,所以原结论得证.⑤【答案】(1)2;(2)(],4-∞-.【解析】【分析】(1)对()f x 求导,构造2()43(0)g x ax ax x =+->并由二次函数性质判断其零点0x 及区间符号,进而确定()f x 的单调性、极值,结合已知最值列方程得003ln2(41)6041x x ++-=+,再构造中间函数求零点,进而求a 的值;(2)令2(0)t x t =>问题转化为()0F t ≥对(0,)t ∈+∞恒成立,构造中间函数研究()F t 的最值,并判断单调性,最后可求k 的范围.【小问1详解】由题设,2243()(0)ax ax f x x ax +-'=>且0a >,令2()43(0)g x ax ax x =+->,则()g x 在(0,)+∞上递增且(0)30=-<g ,所以()0g x =有唯一正实根,记为0x ,则200430ax ax +-=.当00x x <<时,()0g x <即()0f x '<,()f x 单调递减,当0x x >时,()0>g x 即()0f x '>,()f x 单调递增,所以极小值也是最小值为00003()ln()45f x ax x ax =++=.又200430ax ax +-=,可得00341ax x =+,故003ln2(41)6041x x ++-=+,令3()ln26(1)h t t t t =+->,其中041t x =+,则121()20t h t t t-'=-+=>,所以()h t 在(1,)+∞上单调递增且(3)0h =,而3t =,即012x =,从而2a =.综上,实数a 的值为2.【小问2详解】由题意,3ln(2)502x kx x+--≥恒成立,令2(0)t x t =>.令3()ln 5(0)2kt F t t t t =+-->,则2226()2kt t F t t-+-'=,令2()26(0)t kt t t ϕ=-+->ⅰ、当0k ≥时,(1)202kF =--<,不合题意,舍去,ⅱ、当0k <时,()0t ϕ=有唯一的正实根,记为0t ,且200260t kt -=<,则0(0,3)t ∈且0312kt t -=当00t t <<时,()0t ϕ<,即()0F t '<,当0t t >时,()0t ϕ>,即()0F t '>所以()F t 在0(0,)t 单调递减,在0(,)t +∞上单调递增,则极小值也是最小值为00000036ln 5ln 62()kt t F t t t t +--+==-.要使()0F t ≥对(0,)t ∈+∞恒成立,则0()0F t ≥.令6()ln 6(03)m x x x x =+-<<,则26()0x m x x-'=<,即()m x 在(0,3)上递减,又(1)0m =,所以不等式()0m x ≥的解集为(]0,1,故001t <≤,又(]020062,0,1,k t t t -=+∈则k 的取值范围是(],4-∞-.【点睛】关键点点睛:(1)构造中间函数,并结合导数研究()f x 单调性、最值,根据已知求得参数间的函数关系及参数范围;(2)令2(0)t x t =>,根据已知确定隐零点0t 与参数k 的关系,并求出0t 的范围,进而求k 的范围.⑥【答案】(1)()f x 在()1,+∞上只有一个极值点,即唯一极小值点;(2)证明见解析【解析】【分析】(1)求出函数的导数,判断其正负,结合零点存在定理,判断函数的单调性,求得答案;(2)求出函数的导数,构造函数()=e 1x axh x x ---,判断其正负情况,确定函数单调性,进而确定函数的最小值()000ln ln 11(1)x a f x x -++-=,故可将原问题转化为对任意1x >,()001ln ln 111x a x a-++>-,再构造函数,利用其单调性即可证明结论.【小问1详解】当1a =时,()1e ln ln2x f x x x-=-+,则1122(1)(e )e (1)11()x x xx x x f x x x x ------'=-=,设1()=e1x x x x ϕ---,则11()e 11x x x ϕ-=---在()1,+∞上是增函数,当1x +→时,()x ϕ→-∞,(2)e 20ϕ=->,所以存在0(1,2)x ∈,使得0()0x ϕ=,当0(1,)x x ∈时,()0x ϕ<,则()0f x '<,即()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,()0x ϕ>,则()0f x '>,即()f x 在0(1,)x 上单调递增,所以()f x 在()1,+∞上只有一个极值点,即唯一极小值点;【小问2详解】证明:由22(1)(e )e (1)11()x a x a xx x x f x x xx ------'=-=,设()=e1x ax h x x ---,则1()e 11x ah x x -=---在()1,+∞上是增函数,当1x +→时,()h x →-∞,因为1e 1a >-,所以1(1)e 10h a a +=-->,所以存在0(1,1)x a ∈+,使得0000()e01x ax h x x -=-=-,当0(1,)x x ∈时,()0h x <,则()0f x '<,即()f x 在0(1,)x 上单调递减,当0(,)x x ∈+∞时,()0h x >,则()0f x '>,即()f x 在0(1,)x 上单调递增,故0x x =是函数()()e ln ln 1(0)x af x x a a x -=-++>的极小值点,也是最小值点,则()0000e ln l 1)n ()(x af x x f x a x --+=+≥,又因为000e1x ax x -=-,所以()000ln ln 11(1)x a f x x -++-=,即证:对任意1x >,()001ln ln 111x a x a-++>-,即证:对任意1x >,()001ln ln 111x a x a->-+-,设()ln 11g x x x =--,则()ln 11g x x x =--在()1,+∞上单调递减,因为0(1,1)x a ∈+,所以0()(1)g x g a >+,故()001ln ln 111x a x a->-+-,故对任意1x >,()1f x a>.【点睛】本题考查了利用导数判断函数的极值点的个数以及证明不等式成立的问题,综合性较强,要能熟练求导,利用导数判断函数的单调性以及求函数最值,解答的关键是根据函数或导数的特点,构造函数,进而结合零点存在定理判断导数正负,求得函数的最值,利用函数最值进而证明不等式成立.⑦【答案】(Ⅰ)当n 为奇数时,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增;当n 为偶数时,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)见解析;(Ⅲ)见解析.【详解】(Ⅰ)由()n f x nx x =-,可得,其中*n N ∈且2n ≥,下面分两种情况讨论:(1)当n 为奇数时:令()0f x '=,解得1x =或1x =-,当x 变化时,(),()f x f x '的变化情况如下表:x (,1)-∞-(1,1)-(1,)+∞()f x '-+-()f x所以,()f x 在(,1)-∞-,(1,)+∞上单调递减,在(1,1)-内单调递增.(2)当n 为偶数时,当()0f x '>,即1x <时,函数()f x 单调递增;当()0f x '<,即1x >时,函数()f x 单调递减.所以,()f x 在(,1)-∞-上单调递增,()f x 在(1,)+∞上单调递减.(Ⅱ)证明:设点P 的坐标为0(,0)x ,则110n x n -=,20()f x n n '=-,曲线()y f x =在点P 处的切线方程为()00()y f x x x =-',即()00()()g x f x x x '=-,令()()()F x f x g x =-,即,则0()()()F x f x f x -'''=由于1()n f x nx n -'=-+在()0,+∞上单调递减,故()F x '在()0,+∞上单调递减,又因为0()0F x '=,所以当0(0,)x x ∈时,0()0F x '>,当0(,)x x ∈+∞时,0()0F x '<,所以()F x 在0(0,)x 内单调递增,在0(,)x +∞内单调递减,所以对任意的正实数x 都有0()()0F x F x ≤=,即对任意的正实数x ,都有()()f x g x ≤.(Ⅲ)证明:不妨设12x x ≤,由(Ⅱ)知()()20()g x n nx x =--,设方程()g x a =的根为2x ',可得202.a x x n n '=+-,当2n ≥时,()g x 在(),-∞+∞上单调递减,又由(Ⅱ)知222()()(),g x f x a g x '≥==可得22x x '≤.类似的,设曲线()y f x =在原点处的切线方程为()y h x =,可得()h x nx =,当(0,)x ∈+∞,()()0n f x h x x -=-<,即对任意(0,)x ∈+∞,()().f x h x <设方程()h x a =的根为1x ',可得1a x n'=,因为()h x nx =在(),-∞+∞上单调递增,且111()()()h x a f x h x '==<,因此11x x '<.由此可得212101a x x x x x n''-<-=+-.因为2n ≥,所以11112(11)111n n n C n n ---=+≥+=+-=,故1102n n x -≥=,所以2121a x x n-<+-.【解析】1.导数的运算;2.导数的几何意义;3.利用导数研究函数性质、证明不等式.⑧【答案】(1)(()25log 10log 9f f >(2)当2a ≤时,()f x 有1个零点;当2a >时,()f x 有3个零点【解析】【分析】(1)利用导数判断函数()f x 在()1,+∞上的单调性,根据函数的单调性即可得出答案;(2)求出函数的导函数()f x ',再利用导数可求得()min 2f x a '=-,再分20a -≥和20a -<两种情况讨论,结合零点的存在性定理,从而可得出结论.【小问1详解】解:当1a =时,()()()1ln 1f x x x x =+--,()1ln 11ln x f x x x x x+'=+-=+,当1x >时,()0f x '>,所以()f x 在()1,+∞上单调递增,因为2445log 10log 10log 9log 91=>>>,所以(()25log 10log 9f f >;【小问2详解】解:()11ln ln 1x f x x a x a x x +'=+-=++-,令()1ln 1g x x a x =++-,则()()221110-'=-=>x g x x x x x,当01x <<时,()0g x '<,当1x >时,()0g x '>,所以函数()g x 在()0,1上递减,在()1,+∞上递增,所以()()min 12g x g a ==-,即()min 2f x a '=-,①若20a -≥,即2a ≤,则()0f x '≥,()f x 在()0,∞+上递增,因为()10f =,则1x =为()f x 的唯一零点;②若20a -<,即2a >,则()()min 10f x f ''=<,因为e 1a >,()1e 10e aaf '=+>,则()f x '在()1,+∞内仅有个零点,记为n ,因为0e 1a -<<,()e e 21a af a -'=-+设()e 21a h a a =-+,则当2a >时,()e 20ah a '=->,所以()h a 在()2,+∞内单调递增,从而()()22e 30h a h >=->,即()e 0af -'>,所以()f x 在()0,1内仅有一个零点,记为m ,于是,当()0,x m ∈或(),x n ∈+∞时,()0f x '>,当(),x m n ∈时,()0f x '<,所以函数()f x 在(),n +∞和()0,m 上递增,在(),m n 上递减,因为01m n <<<,()10f =,则()0f m >,()0f n <,故()f x 在(),m n 内有唯一零点,因为()()()e e 1e 12e 0aa a a f a a a ----=-+--=-<,则()f x 在()0,m 内有唯一零点,因为()()()e e 1e 120a a af a a a =+--=>,则()f x 在(),m +∞内有唯一零点,所以()f x 在()0,∞+内有3个零点.综上所述,当2a ≤时,()f x 有1个零点;当2a >时,()f x 有3个零点.【点睛】本题考查了利用导数求函数的单调区间及最值问题,考查了利用导数研究函数的零点的问题,考查了二次求导,考查了学生的数据分析能力及分类讨论思想,属于难题.⑨【答案】(1)3,2⎡⎫+∞⎪⎢⎣⎭(2)证明见解析【解析】【分析】(1)求导可得()'f x 解析式,即可得()h x 解析式,利用导数求得()h x 的单调区间和最小值,结合题意,即可得m 的范围.(2)求得()f x ''解析式,令22()1ln (0)m m t x m x x x x=++->,利用导数可得()t x 的单调性,根据零点存在性定理,可得存在21,12x ⎛⎫∈ ⎪⎝⎭,使得t (x 2)=0,进而可得f '(x )在x =x 2处取得极小值,即x 1=x 2,所以11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭,令()1ln s x m x =+,分析可得s (x 1)<0,即可得证【小问1详解】由题设知()e (1ln )x m f x m x x'=++,则1ln (())0h m m x x x x ++>=,所以22(1)()m m m x h x x x x -'=-=当x >1时,h '(x )>0,则h (x )在区间(1,+∞)是增函数,当0<x <1时,h '(x )<0,则h (x )在区间(0,1)是减函数,所以h (x )min =h (1)=512m +≥,解得32m ≥,所以m 的取值范围为3,2⎡⎫+∞⎪⎢⎣⎭【小问2详解】222e 1ln e )n (1l x x m m m m m m x m x x x x x x f x ⎛⎫⎛⎫+++-=++- ⎪ ⎪⎝⎭⎝'=⎭'令22()1ln (0)m m t x m x x x x=++->则2322()m m m t x x x x '=-+=2233(1)1(22)0m x m x x x x ⎡⎤-+-+⎣⎦=>恒成立,所以t (x )在(0,+∞)单调递增.又1(1)10,1l 3ln 20n 2122t m t m ⎛⎫=+>=-≤- ⎪⎝⎭<,所以存在21,12x ⎛⎫∈ ⎪⎝⎭,使得t (x 2)=0,当x ∈(0,x 2)时,t '(x )<0,即f ''(x )<0,则f '(x )在(0,x 2)单调递减;当x ∈(x 2,+∞)时,t '(x )>0,即f ''(x )>0,则f '(x )在(x 2,+∞)单调递增;所以f '(x )在x =x 2处取得极小值.即x 1=x 2,所以t (x 1)=0,即11211211ln 0,,12m m m x x x x ⎛⎫++-=∈ ⎪⎝⎭,所以1122111(12)21ln 0m x m m m x x x x -+=-=<,令()1ln s x m x =+,则s (x )在(0,+∞)单调递增;所以s (x 1)<0因为f (x )的零点为x 0,则01ln 0m x +=,即s (x 0)=0所以s (x 1)<s (x 0),所以x 0>x 1【点睛】解题的关键是熟练掌握利用导数求函数单调区间,极(最)值的方法,并灵活应用,难点在于,需结合零点存在性定理,判断零点所在区间,再进行分析和求解,属中档题.⑩【答案】(1)(],1-∞(2)若591a -≤≤,()f x 在(0,2)π内无零点;若1a >,()f x 在(0,2)π内有且仅有1个零点,证明见解析.【解析】【分析】(1)求导,然后,分别讨论0a ≤,01a <≤和1a >时的单调性即可.(2)根据(1)的结论,分别讨论590a -≤≤,01a <≤和1a >时零点的个数.【小问1详解】'()(1)e cos x f x x a x=+-①若0a ≤,当[0,]x π∈时,0a -≥,sin 0x ≥,()e ()sin 0x f x x a x =+-≥,当且仅当0x =时取等号,可见,0a ≤符合题意.②若01a <≤,当[0,]2x π∈时,0'()(1)e cos 10f x x a x a ≥+-≥-≥;当,2x π⎛⎤∈π ⎥⎝⎦时,cos 0x <,'()(1)e (cos )0x f x x a x =++⋅->.可见,当[]0,x π∈时,'()0f x ≥,当且仅当1a =,且0x =时取等号.所以()f x 在[0,]π上单调递增,所以,()(0)0f x f ≥=.所以01a <≤符合题意.③若1a >,因为(1)e x y x =+在[]0,π上单调递增,cos y a x =-在[]0,π上单调递增,所以,'()(1)e cos x f x x a x =+-在[]0,π上单调递增,又'(0)10f a =-<,2'((1)e 022f πππ=+>,由零点存在定理及'()f x 的单调性,存在唯一的0(0,2x π∈,使得0'()0f x =.当0(0,)x x ∈时,0'()'()0f x f x <=,()f x 单调递减,所以,()(0)0f x f <=.可见,1a >不符合题意.综上,a 的取值范围是(],1-∞【小问2详解】①若590a -≤≤,由(1),(]0,x π∈时,()0f x >,()f x 在(]0,π内无零点.当(),2x ∈ππ时,1sin 0x -≤<,0sin 1x <-≤,sin a x a -≥,又由e x y x =单调递增,则33()e sin e 3e 593 2.7590.0490x f x x a x a ππ=->+>->⨯-=>.可见,若590a -≤≤,()f x 在(0,2)π内无零点.②若01a <≤,由(1),(]0,x π∈时,()0f x >,()f x 在(]0,π内无零点.当(,2)x ππ∈时,sin 0x ->,()e (sin )0x x f x x a x xe =+->>.可见,若01a <≤,()f x 在(0,2)π内无零点.③若1a >,由(1),存在唯一的00,2x π⎛⎫∈ ⎪⎝⎭,当0(0,)x x ∈时,0'()'()0f x f x <=.()f x 单调递减;当0(,)x x π∈时,0'()'()0f x f x >=,()f x 单调递增.又(0)0f =,所以0()(0)0f x f <=.又()e 0f πππ=>,由零点存在定理及()f x 的单调性,存在唯一的10(,)x x π∈,使得1()0f x =.可见,()f x 在(]0,π内存在唯一的零点.当(,2)x ππ∈时,sin 0,sin 0x a x <->,所以,()e sin e 0x x f x x a x x =->>,所以,()f x 在(,2)ππ内没有零点,可见,()f x 在(0,2)π有且仅有1个零点.综上所述,若591a -≤≤,()f x 在(0,2)π内无零点;若1a >,()f x 在(0,2)π内有且仅有1个零点.【点睛】关键点睛:通过导数讨论含参函数的单调性时,要对参数进行分类讨论,分类讨论时,要注意做到不重不漏;讨论含参函数的零点个数时,要利用零点存在定理来讨论零点个数,利用零点存在定理讨论零点个数时,要注意结合单调性讨论,属于难题。

历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2020-2023)全国高考数学真题分类(导数及其应用)汇编(附答案)

历年(2020‐2023)全国高考数学真题分类(导数及其应用)汇编【2023年真题】1. (2023·新高考II 卷 第6题) 已知函数()ln x f x ae x =-在区间(1,2)单调递增,则a 的最小值为( ) A. 2eB. eC. 1e -D. 2e -2.(2023·新课标I 卷 第11题)(多选) 已知函数()f x 的定义域为R ,22()()()f xy y f x x f y =+,则( ) A. (0)0f = B. (1)0f =C. ()f x 是偶函数D. 0x =为()f x 的极小值点3.(2023·新课标II 卷 第11题)(多选)若函数2()ln (0)b cf x a x a x x=++≠既有极大值也有极小值,则( ) A. 0bc >B. 0ab >C. 280b ac +>D. 0ac < 4. (2023·新课标I 卷 第19题) 已知函数(1)讨论()f x 的单调性;(2)证明:当0a >时,3()2ln a+.2f x >5.(2023·新高考II 卷 第22题)(1)证明:当01x <<时,2x x sinx x -<<;(2)已知函数2()(1)f x cosax ln x =--,若0x =是()f x 的极大值点,求a 的取值范围.【2022年真题】6.(2022·新高考I 卷 第7题)设0.10.1a e =,19b =,ln 0.9c =-,则( ) A. a b c <<B. c b a <<C. c a b <<D. a c b <<7.(2022·新高考I 卷 第10题)(多选)已知函数3()1f x x x =-+,则( )A. ()f x 有两个极值点B. ()f x 有三个零点C. 点(0,1)是曲线()y f x =的对称中心D. 直线2y x =是曲线()y f x =的切线8.(2022·新高考I 卷 第15题)若曲线()x y x a e =+有两条过坐标原点的切线,则a 的取值范围是__________. 9.(2022·新高考II 卷 第15题)曲线ln ||y x =经过坐标原点的两条切线方程分别为__________,__________.10.(2022·新高考I 卷 第22题)已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在y b =直线,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)已知函数().ax x f x xe e =-(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求实数a 的取值范围; (3)设*n N ∈ln(1).n ++>+【2021年真题】12.(2021·新高考I 卷 第7题)若过点(,)a b 可以作曲线e x y =的两条切线,则( ) A. e b a <B. e a b <C. 0e b a <<D. 0e a b <<13.(2021·新高考I 卷 第15题)函数()|21|2ln f x x x =--的最小值为__________. 14.(2021·新高考II 卷 第16题)已知函数,函数()f x 的图象在点()()11,A x f x 和点()()22,B x f x 的两条切线互相垂直,且分别交y 轴于M ,N 两点,则||||AM BN 取值范围是__________.15.(2021·新高考I 卷 第22题)已知函数()(1ln ).f x x x =-(1)讨论()f x 的单调性.(2)设a ,b 为两个不相等的正数,且ln ln b a a b a b -=-,证明:112.e a b<+< 16.(2021·新高考II 卷 第22题)已知函数2()(1).x f x x e ax b =--+(1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 有一个零点.①21,222e a b a <>…; ②10,2.2a b a <<…【2020年真题】17.(2020·新高考I 卷 第21题、II 卷 第22题)已知函数1()ln ln .x f x ae x a -=-+(1)当a e =时,求曲线()y f x =在点(1,(1))f 处的切线与两坐标轴围成的三角形的面积; (2)若()1f x …,求a 的取值范围.参考答案1. (2023·新高考II 卷 第6题) 解:由题意,1()0xf x ae x'=-…对(1,2)x ∀∈恒成立, 1x a xe ∴…,由于1()xg x xe =在(1,2)单调递减,1()(1)g x g e∴<=,1.a e ∴…故答案选:.C2.(2023·新课标I 卷 第11题)(多选)解:选项A ,令0x y ==,则(0)0(0)0(0)f f f =⨯+⨯,则(0)0f =,故A 正确; 选项B ,令1x y ==,则(1)1(1)1(1)f f f =⨯+⨯,则(1)0f =,故B 正确; 选项C ,令1x y ==-,则22(1)(1)(1)(1)(1)f f f =-⨯-+-⨯-,则(1)0f -=, 再令1y =-,则22()(1)()(1)f x f x x f -=-+-,即()()f x f x -=,故C 正确; 选项D ,不妨设()0f x =为常函数,且满足原题22()()()f xy y f x x f y =+, 而常函数没有极值点,故D 错误. 故选:.ABC3.(2023·新课标II 卷 第11题)(多选) 解:因为2()ln (0)b cf x a x a x x=++≠,所以定义域为(0,)+∞, 得232()ax bx c f x x'--=,由题意知220ax bx c --=有两个不相等的正解12,.x x 则,易得0.bc <故选.BCD4. (2023·新课标I 卷 第19题) 解:(1)()1x f x ae '=-,当0a =时()10f x '=-<,()f x 在(,)-∞+∞单调递减, 当0a <时0x ae <,()0f x '<,()f x 在(,)-∞+∞单调递减,当0a >时,令()0f x '=,=-ln x a ,(,ln )x a ∈-∞-时,()0f x '<,()f x 单调递减. (ln ,)x a ∈-+∞时()0f x '>,()f x 单调递增, 故当0a …时()f x 在(,)-∞+∞单调递减,当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.(2)由(1)知当0a >时, () f x 在区间(,ln )a -∞-单调递减,在区间(ln ,)a -+∞单调递增.故,令,221()a g a a -'=,令()0g a '=,因为0a >,故2a =,() g a 在区间(0,2单调递减,在区间(,)2+∞单调递增,,即 >?0,()?>?0a g a 时恒成立, 即min 3()2ln 2f x a >+,即当0a >时,3()2ln a+.2f x > 5.(2023·新高考II 卷 第22题)(1)证明:构造函数2()g x sinx x x =-+,则()12g x cosx x '=-+, 令()()h x g x =', 则()20h x sinx '=-+>,所以()h x 在(0,1)上单调递增,则()(0)0g x g '>'=,所以()g x 在(0,1)上单调递增,所以()(0)0g x g >=,即2x x sinx -<;构造函数()G x x sinx =-,则()10G x cosx '=->,所以()G x 在(0,1)上单调递增,则()(0)0G x G >=,即sinx x <, 综上,当01x <<时,2x x sinx x -<<;(2)解:由210x ->,得函数()f x 的定义域为(1,1).-又()()f x f x -=,所以()f x 是偶函数,所以只需考虑区间(0,1).22()1xf x asinax x'=-+-, 令()()F x f x =',则222222()(1)x F x a cosax x +'=-+-, 其中,①若,记a <<时,易知存在0δ>,使得(0,)x δ∈时,,()f x ∴'在(0,)δ上递增,()(0)0f x f ∴'>'=,()f x ∴在(0,)δ上递增,这与0x =是()f x 的极大值点矛盾,舍去.②若,记a <或a >存在0δ'>,使得(,)x δδ∈-''时,,()f x ∴'在(,)δδ-''上递减,注意到(0)0f '=,∴当0x δ-'<<时,当0x δ<<'时,,满足0x =是()f x 的极大值点,符合题意.③若,即a =时,由()f x 为偶函数,只需考虑a =.此时22())1xf x x '=+-,(0,1)x ∈时, 2221()22(1)011x f x x x x x'>-+=->--,()f x ∴在(0,1)上递增, 这与0x =是()f x 的极大值点矛盾,舍去.综上:a 的取值范围为(,).-∞⋃+∞ 6.(2022·新高考I 卷 第7题)解:0.10.1a e =,0.110.1b =-,ln(10.1)c =--,①ln ln 0.1ln(10.1)a b -=+-, 令()ln(1),(0,0.1],f x x x x =+-∈ 则1()1011x f x x x-'=-=<--, 故()f x 在(0,0.1]上单调递减,可得(0.1)(0)0f f <=,即ln ln 0a b -<,所以a b <; ②0.10.1ln(10.1)a c e -=+-, 令()ln(1),(0,0.1],x g x xe x x =+-∈则1(1)(1)1()11x xxx x e g x xe e x x+--'=+-=--, 令()(1)(1)1x k x x x e =+--,所以2()(12)0x k x x x e '=-->, 所以()k x 在(0,0.1]上单调递增,可得()(0)0k x k >=,即()0g x '>,所以()g x 在(0,0.1]上单调递增,可得(0.1)(0)0g g >=,即0a c ->,所以.a c > 故.c a b <<7.(2022·新高考I 卷 第10题)(多选)解:32()1()31f x x x f x x =-+⇒'=-,令()0f x '=得:3x =±,()03f x x '>⇒<-或3x >;()033f x x '<⇒-<<,所以()f x 在(,3-∞-上单调递增,在(,)33-上单调递减,在(,)3+∞上单调递增,所以()f x 有两个极值点(3x =为极大值点,3x =为极小值点),故A 正确;又((1103939f -=---+=+>,(1103939f =-+=->, 所以()f x 仅有1个零点(如图所示),故B 错;又3()1()()2f x x x f x f x -=-++⇒-+=,所以()f x 关于(0,1)对称,故C 正确;对于D 选项,设切点00(,)P x y ,在P 处的切线为320000(1)(31)()y x x x x x --+=--, 即2300(31)21y x x x =--+,若2y x =是其切线,则2030312210x x ⎧-=⎪⎨-+=⎪⎩,方程组无解,所以D 错. 8.(2022·新高考I 卷 第15题)解:(1)x y x a e '=++,设切点为00(,)x y , 故0000(1)x y x a e x =++, 即0000()(1).x x x a e x a e x +=++ 由题意可得,方程(1)x a x x a +=++在(,0)(0,)-∞⋃+∞上有两个不相等的实数根.化简得,20x ax a +-=,240a a =+> ,解得4a <-或0a >,显然此时0不是根,故满足题意. 9.(2022·新高考II 卷 第15题)解:当0x >时,点111(,ln )(0)x x x >上的切线为1111ln ().y x x x x -=- 若该切线经过原点,则1ln 10x -=,解得x e =, 此的切线方程为.x y e=当0x <时,点222(,ln())(0)x x x -<上的切线为()()2221ln y x x x x --=-若该切线经过原点,则2ln()10x --=,解得x e =-, 此时切线方程为.x y e=-10.(2022·新高考I 卷 第22题) 解:(1)由题知()x f x e a '=-,1()g x a x'=-, ①当0a …时,()0f x '>,,()0g x '<,则两函数均无最小值,不符题意; ②当0a >时,()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增;()g x 在1(0,a单调递减,在1(,)a +∞单调递增;故min ()(ln )ln f x f a a a a ==-,min 11()()1ln g x g a a==-,所以1ln 1ln a a a a -=-,即1ln 01a a a --=+, 令1()ln 1a p a a a -=-+,则222121()0(1)(1)a p a a a a a +'=-=>++, 则()p a 在(0,)+∞单调递增,又(1)0p =,所以 1.a =(2)由(1)知,()x f x e x =-,()ln g x x x =-,且()f x 在(,0)-∞上单调递减,在(0,)+∞上单调递增;()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,且min min ()() 1.f x g x ==①1b <时,此时min min ()()1f x g x b ==>,显然y b =与两条曲线()y f x =和()y g x = 共有0个交点,不符合题意;②1b =时,此时min min ()()1f x g x b ===,故y b =与两条曲线()y f x =和()y g x =共有2个交点,交点的横坐标分别为0和1; ③1b >时,首先,证明y b =与曲线()y f x =有2个交点, 即证明()()F x f x b =-有2个零点,()()1x F x f x e '='=-, 所以()F x 在(,0)-∞上单调递减,在(0,)+∞上单调递增, 又因为()0b F b e --=>,(0)10F b =-<,()20b F b e b =->,(令()2b t b e b =-,则()20b t b e '=->,()(1)20)t b t e >=->所以()()F x f x b =-在(,0)-∞上存在且只存在1个零点,设为1x ,在(0,)+∞上存在且只存在1个零点,设为2.x其次,证明y b =与曲线和()y g x =有2个交点, 即证明()()G x g x b =-有2个零点,1()()1G x g x x'='=-, 所以()(0,1)G x 上单调递减,在(1,)+∞上单调递增,又因为()0b b G e e --=>,(0)10G b =-<,(2)ln 20G b b b =->,(令()ln 2b b b μ=-,则1()10b bμ'=->,()(1)1ln 20)b μμ>=-> 所以()()G x g x b =-在(0,1)上存在且只存在1个零点,设为3x ,在(1,)+∞上存在且只存在1个零点,设为4.x再次,证明存在b ,使得23:x x =因为23()()0F x G x ==,所以2233ln x b e x x x =-=-, 若23x x =,则2222ln x e x x x -=-,即2222ln 0x e x x -+=, 所以只需证明2ln 0x e x x -+=在(0,1)上有解即可, 即()2ln x x e x x ϕ=-+在(0,1)上有零点,因为313312()30e e e eϕ=--<,(1)20e ϕ=->,所以()2ln x x e x x ϕ=-+在(0,1)上存在零点,取一零点为0x ,令230x x x ==即可, 此时取00x b ex =-则此时存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点, 最后证明1402x x x +=,即从左到右的三个交点的横坐标成等差数列, 因为120304()()()0()()()F x F x F x G x G x G x ====== 所以100()()(ln )F x G x F x ==,又因为()F x 在(,0)-∞上单调递减,10x <,001x <<即0ln 0x <,所以10ln x x =, 同理,因为004()()()xF xG e G x ==,又因为()G x 在(1,)+∞上单调递增,00x >即01x e >,11x >,所以04xx e =,又因为0002ln 0xe x x -+=,所以01400ln 2x x x ex x +=+=,即直线y b =与两条曲线()y f x =和()y g x =从左到右的三个交点的横坐标成等差数列.11.(2022·新高考II 卷 第22题)解:(1)1()(1)()x x x x a f x xe e x e f x xe =⇒=-=-⇒'= 当(,0)x ∈-∞时,()0f x '<,()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,()f x 单调递增.(2)令()()11(0)()(0)0ax x g x f x xe e x g x g =+=-+⇒=厔对0x ∀…恒成立 又()(0)0ax ax x g x e axe e g ''=+-⇒=令()()()()(2)ax ax ax x ax ax x h x g x h x ae a e axe e a e axe e ='⇒'=++-=+-,则(0)21h a '=- ①若(0)210h a '=->,即12a >,00()(0)()(0)limlim 00x x g x g g x h x x ++'→→'-''==>- 所以00,x ∃>使得当时,有()0()0()g x g x g x x'>⇒'>⇒单调递增0()(0)0g x g ⇒>=,矛盾 ②若(0)210h a '=-…,即12a …时,1111ln(1)ln(1)2222()0()x x x x ax ax x ax ax xxx g x e axe e ee eeee g x +++'++=+-=---=⇒剟在[0,)+∞上单调递减,()(0)0g x g =…,符合题意.综上所述,实数a 的取值范围是1.2a …(3)求导易得12ln(1)t t tt->>令112ln ln(1tn =⇒->⇒>+111231ln(ln()ln(ln(1)12n nk kn k nnn k n==+++⇒>⇒>=⋅=+∑()ln1n++⋅⋅⋅>+,证毕.12.(2021·新高考I卷第7题)解:设切点为根据两点之间斜率和导数的几何意义,易知xxe bex a-=-,整理得:000x x xe b x e ae--+=有两解,令()x x xg x e b xe ae=--+,()()xg x a x e'=-,易知()g x最大值为().g a即,解得bae>,又因为当x趋近正无穷时()0g x<,当x趋近负无穷时,()g x趋近0b-<,则0.b>综上,a0b e<<故选.D13.(2021·新高考I卷第15题)解:已知函数,易知函数定义域为(0,)+∞,①:当1(0,]2x∈时,,所以2()2f xx'=--,在1(0,]2x∈单调递减,②当1(,)2x∈+∞时,,所以22(1)()2xf xx x-'=-=,所以()f x在1(,1]2x∈单调递减,在(1,)x∈+∞单调递增,又因为12ln 2<,所以最小值为1. 故答案为1.14.(2021·新高考II 卷 第16题) 解:由题意,,则,所以点和点,12,xxAM BN k e k e =-=,所以12121,0xx e e x x -⋅=-+=,所以,所以,同理,所以故答案为:15.(2021·新高考I 卷 第22题)(1)解:的定义域为,,由解得1x >, 由解得01x <<, 在上单调递增,在上单调递减;(2)证明:由ln ln b a a b a b -=-可得ln ln 11a b a b b a-=-, 整理得:11lnln 11a b a a b b -=-,即,不妨设1211,x x a b==,且120x x <<,即,即证明122x x e <+<, 由在上单调递增,在上单调递减,且,可得1201x x <<<,()f x ()f x先证明122x x +>, 令,02x <<,,在上单调递增,又1201x x <<< ,,,即,由(1)可知在上单调递减,212x x ∴>-,即122x x +>;下面再证明12x x e +<, 不妨设21,x tx = 则1t >,由可得,化简1ln ln 11t tx t =-- , 要证12x x e +<,即证,即证,即证,即证, 设,1t >,,令,1t >, ,, 在上单调递减, ,,在上单调递减,()fx,即,12x x e ∴+<,故112.e a b<+< 16.(2021·新高考II 卷 第22题) 解:(1)由函数的解析式可得:, 当0a …时,若,则单调递减,若,则单调递增; 当102a <<时,若,则单调递增,若,则单调递减, 若,则单调递增; 当12a =时,在R 上单调递增; 当12a >时,若,则单调递增,若,则单调递减, 若,则单调递增;(2)若选择条件①:由于2122e a <…,故212a e <…,则,又((1)0f e=<,由(1)可知函数在区间上单调递增,故函数在区间上有一个零点.,由于212a e <…,故,(0,)x ∈+∞(0,)x ∈+∞结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点. 若选择条件②: 由于102a <<,故021a <<,则,当0b …时,24,42e a ><,,而函数在区间上单调递增,故函数在区间上有一个零点. 当0b <时,构造函数,则,当时,单调递减, 当时,单调递增,注意到,故恒成立,从而有:1x e x +…,此时:,当x >,取01x =+,则,即:,而函数在区间上单调递增,故函数在区间上有一个零点.,由于102a <<,021a <<,故,结合函数的单调性可知函数在区间上没有零点.综上可得,()f x 有一个零点.17.(2020·新高考I 卷 第21题、II 卷 第22题)(0,)x ∈+∞解:(1)当a e =,()ln 1x f x e x =-+,1(),(1)1,(1)1x f x e k f e f e x'=-='=-=+,所以切线方程为:1(1)(1)y e e x --=--, 即(1)2y e x =-+,所以切线在y 轴上的截距为2,在x 轴上的截距为21-e, 所以三角形的面积1222.211S e e =⨯⨯=-- 1ln 1(2)()ln ln ln ln x a x f x ae x a e x a -+-=-+=-+,要使()1f x …,只需ln 1ln ln 1a x e x a +--+…,即ln 1ln -1ln a x e a x +-+…,即ln 1ln ln -1+ln ln a x x e a x x x e x +-++=+…, 令()x g x e x =+,,()g x 单调递增,故只需(ln 1)(ln )g a x g x +-…, 因为()g x 为增函数, 只需证ln 1ln a x x +-…,即ln ln 1a x x +-…, 设()ln 1h x x x =+-,11()1xh x x x-'=-=, 所以()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,max ()(1)0h x h ==,所以ln 0a …,1a …, 即a 的取值范围为[1,).+∞。

导数10 大题(单调性)中下4-2022年全国一卷新高考数学题型细分汇编

导数10 大题(单调性)中下4-2022年全国一卷新高考数学题型细分汇编

导数——大题——单调性4:1. (2022年山东临沂J15)已知函数ln ()(exx kf x k +=为常数,e 2.71828=…是自然对数的底数),曲线()y f x =在点(1,(1)f )处的切线与x 轴平行.2. (1)求k 的值;3. (2)求()f x 的单调区间;(①)(单调性,易;第三问,未;)4. (3)设2()()()g x x x f x =+',其中()f x '为()f x 的导函数.证明:对任意0x >,2()1e g x -<+.5. (2022年山东威海三模J27)已知函数()2ln a f x x x x=-+. 6. (1)当34a =时,求()f x 的单调区间;(②)(单调性,中下;第二问,未;) 7. (2)若()f x 有两个极值点12,x x ,且12x x <,从下面两个结论中选一个证明.8. ①()()21212f x f x x x a-<--; ②()222ln 223f x a <+-.9. (2022年山东济宁三模J42)已知函数()()2ln e 1ln 1f x x a x a x =-----,a ∈R .10. (1(当0a =时,证明:()()()e 21f x x ≥--;(③)11. (2(若函数()f x 在()1,e 内有零点,求实数a 的取值范围.12. (单调性,最值,中下;第二问,未;)13. (2022年山东实验中学J46)已知函数()e sin xf x x =⋅.14. (1)求函数()f x 的单调区间;(④)15. (2)如果对于任意的0,2x π⎡⎤∈⎢⎥⎣⎦,()f x kx ≥恒成立,求实数k 的取值范围;16. (3)设函数()()20152017e cos ,,22xF x f x x x ππ⎡⎤=+⋅∈-⎢⎥⎣⎦.过点1,02M π-⎛⎫ ⎪⎝⎭作函数()F x 的图象的所有切线,令各切点的横坐标构成数列{}n x ,求数列{}n x 的所有项之和S 的值. 17. (单调性,中下;第二问,未;)1.(2022年广东韶关二模J06)(本小题满分12分) 已知f(x)=e x.;(⑤)2.(1)求证:当x>0时,f(x)>1+x+x223.(2)若不等式f(x)≥2x ln x+mx+1,(其中m∈R)恒成立时,实数m的取值范围为(-∞,t],4.求证:t>23.(单调性,最值,切线放缩,中下;第二问,未;)20①【答案】(1)1k =;(2)()f x 在(0,1)递增,在(1,)+∞递减; (3)证明见解析. 【解析】【分析】(1)由题设求导函数()f x ',再由(1)0f '=求参数k 值. (2)由(1)得1ln ()e xx x xf x x --'=且,()0x ∈+∞,构造函数()1ln h x x x x =--,结合导数研究()h x 的符号,进而求()f x 的单调区间.(3)由题设只需证2e 1ln (1e )1xx x x x ---<++在(0,)+∞上恒成立,由(2)易得21ln 1e x x x ---≤+,再构造()e (1)x m x x =-+并应用导数判断e ),(1xx +的大小关系,即可证结论. 【小问1详解】 由题设,1ln ()e xkx x xf x x --'=,,()0x ∈+∞,又()y f x =在(1,(1)f )处的切线与x 轴平行,即1(1)0ekf -'==, 1k ∴=.【小问2详解】 由(1)得:1ln ()e xx x xf x x --'=,,()0x ∈+∞,令()1ln h x x x x =--,,()0x ∈+∞,当(0,1)x ∈时,()0h x >,当(1,)x ∈+∞时,()0h x <,又e 0x >,(0,1)x ∴∈时,()0f x '>,(1,)x ∈+∞时,()0f x '<,()f x ∴在(0,1)递增,在(1,)+∞递减;【小问3详解】由2()()()g x x x f x =+',即1()(1ln )e xx g x x x x +=--,,()0x ∈+∞, 0x ∴∀>,22e ()1e 1ln (1e )1xg x x x x x --<+⇔--<++, 由(2),对于()1ln h x x x x =--,,()0x ∈+∞, ()ln 2h x x ∴'=--,,()0x ∈+∞,2(0,e )x -∴∈时()0h x '>,()h x 递增,2(e x -∈,)∞+时()0h x <,()h x 递减,22max ()(e )1e h x h --∴==+,即21ln 1e x x x ---≤+,设()e (1)xm x x =-+,则0()e 1e x x m x e '=-=-,(0,)x ∴∈+∞时()0m x '>,()m x 递增,即()(0)0m x m >=,则e 11x x >+, 综上,22e 1ln 1e (1e )1x x x x x----≤+<++,故0x ∀>,()21e g x -<+,得证. 【点睛】关键点点睛:第三问,应用分析法转化为证明2e 1ln (1e )1xx x x x ---<++在(0,)+∞上恒成立,结合(2)中()h x 的单调性得到21ln 1e x x x ---≤+,再判断e ),(1x x +的大小关系.②【答案】(1)()f x 的单增区间为13,22⎛⎫⎪⎝⎭;单减区间为10,2⎛⎫ ⎪⎝⎭,3,2⎛⎫+∞ ⎪⎝⎭(2)证明见解析 【解析】【分析】(1)首先求函数的导数,根据导数与函数单调性的关系,即可求解;(2)若选①,不等式转化为证明212121ln ln x x x x ax x -<=-,变形为证明2212111212lnx x x x x x x x <=1()2ln ,1h t t t t t=-+>,即可证明; 若选②,首先根据函数有两个极值点,证得212x <<,()2222222ln 33a f x a x x a x -=-+-,再变换为()2222222102ln 2333f x a x x x -=+-+,通过构造函数,利用导数,即可证明. 【小问1详解】22222()1(0)a x x af x x x x x-+-'=--=>, 当34a =时,2222232483(21)(23)4()44x x x x x x f x x x x -+--+--==--'=, 令()0f x '>,解得1322x <<;令()0f x '<,解得102x <<或32x >, 所以()f x 的单增区间为13,22⎛⎫⎪⎝⎭;单减区间为10,2⎛⎫ ⎪⎝⎭,3,2⎛⎫+∞ ⎪⎝⎭.【小问2详解】证明①:由题意知,12,x x 是220x x a -+=的两根,则12122x x x x a +=⎧⎨=⎩,()()()()()122121211221212ln ln a x x x x x x f x f x x x x x x x ----+-=--, 将12x x a =代入得,()()()212121212ln ln 2f x f x x x x x x x --=---,要证明()()21212f x f x x x a -<--,只需证明()21212ln ln 22x x x x a--<--,即212121ln ln x x x x ax x -<=-, 因为120x x <<,所以210x x ->, 只需证明2212111212lnx x x x x x x x <= 21x t x =,则1t >,只需证明21ln t t t <-,即12ln 0(1)t t t t-+<>, 令1()2ln ,1h t t t t t=-+>,22221(1)()10t h t t t t--=--=<', 所以()h t 在(1,)+∞上单调递减,可得()(1)0h t h <=, 所以12ln 0(1)t t t t-+<>, 综上可知,()()21212f x f x x x a-<--.证明②:22222()1(0)a x x af x x x x x -+-'=--=>设2()2g x x x a =-+-,因为()f x 有两个极值点,所以Δ440(0)0a g =->⎧⎨<⎩,解得01a <<,因为(2)0,(1)10g a g a =-<=->, 所以212x <<,()2222222ln 33a f x a x x a x -=-+-,由题意可知22220x x a -+-=, 可得2222a x x =-+代入得,()2222222102ln 2333f x a x x x -=+-+, 令2210()2ln 2(12)33h x x x x x =+-+<<, 24102(1)(23)()333x x h x x x x--=+-=', 当31,,()02x h x ⎛⎫∈< ⎪⎝⎭',所以()h x 在31,2⎛⎫⎪⎝⎭上单调递减,当3,2,()02x h x ⎛⎫∈>⎪⎝⎭',所以()h x 在3,22⎛⎫ ⎪⎝⎭上单调速增,因为212x <<,所以()2max{(1),(2)}h x h h <, 由2(1),(2)2ln 223h h =-=-,可得()22ln8ln (2)(1)03e h h --=>,所以(2)(1)h h >,所以()2(2)h x h <, 所以()222ln 223f x a -<-,即()222ln 223f x a <+-.③【答案】(1)证明见解析;(2)e 21a -<< 【解析】【分析】(1)构造函数()()()()=e 21g x f x x ---,证得min ()0g x ≥即可; (2)根据零点存在性定理结合导函数与单调性、最值等关系进行判定. 小问1详解】证明:当0a =时,设()()()()=e 21(e 1)(ln 1)g x f x x x x ---=---,1()(e 1)x g x x-'=-,由()001g x x '<⇒<<,()01g x x '>⇒>,可得()g x 在()0,1单调递减,在()1,+∞单调递增,所以min ()(1)0g x g ==,则()0g x ≥,即()()()e 21f x x ≥--; 【小问2详解】函数()()2ln e 1ln 1f x x a x a x =-----,(1)0,(e)0f f ==,若函数()f x 在()1,e 内有零点,则函数()f x 在()1,e 内至少有两个极值点,即()f x '在()1,e 内至少有两个变号零点.2ln e 12ln e 1()1a x a x a x a f x x x x----++'=--=,等价于()2ln e 1h x x a x a =--++在()1,e 内至少有两个变号零点,22()1a x ah x x x-'=-=,()1,e x ∈,当12a ≤或e 2a ≥时,()0h x '≥或()0h x '≤恒成立,则()h x 在()1,e 上单调,不合题意;当122ea <<时,由()012h x x a '<⇒<<,()02e h x a x '>⇒<<,可得()h x 在(1,2)a 单调递减,在(2,e)a 上单调递增,所以当(1)0)(e)0(2)0h h h a >⎧⎪>⎨⎪<⎩时,()h x 在()1,e 内有两个变号零点且最多两个,即2e 01032ln 2e 10a a a a a -+>⎧⎪->⎨⎪--+<⎩,令2t a =,()1,e t ∈,设31()ln e 1()ln 0e 22F t t t t F t t t '=--+⇒=-=⇒=(e t ∈时,()0F t '>,()F t 单调递增,当)e,e t ∈时,()0F t '<,()F t 单调递减,所以max 3()(e)e e e e 1e e 102F t F ==+=+<,即32ln 2e 10a a a --+<在122ea <<上恒成立,所以e 21a -<<.此时()0h x =即()0f x '=有两个零点,设为121e x x <<<,当()11,x x ∈和()2,e x 时,()0f x '>,()f x 单调递增,当()12,x x x ∈时,()0f x '<,()f x 单调递减,所以1()(1)0f x f >=,2()(e)0f x f <=,则()f x 在()12,x x 上有零点,综上可得:e 21a -<<. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.④【答案】(1)()3π7π2π,2π44k k k Z ⎡⎤++∈⎢⎥⎣⎦(2)(],1-∞ (3)1008π【分析】(1)对函数求导()π2sin 4xf x e x ⎛⎫'=+ ⎪⎝⎭,求增区间需要导函数大于等于0,求减区间需要导函数小于等于0,分别解不等式即可;(2)令()()sin xg x f x kx e x kx =-=-,要使()f x kx ≥恒成立,只需当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()min 0g x ≥,对该函数求导,分类讨论研究函数单调性,进而得到结果;(3)求出函数()F x 过点1,02M π-⎛⎫⎪⎝⎭的切线方程,各切点的横坐标满足00πtan 22x x ⎛⎫=- ⎪⎝⎭,0x 为函数1tan y x =和2π22y x ⎛⎫=- ⎪⎝⎭的交点的横坐标,这两个函数图像均关于点π,02⎛⎫ ⎪⎝⎭对称,则它们交点的横坐标也关于π2x =对称,从而所作的所有切线的切点的横坐标构成数列{}n x 的项也关于π2x =成对出现,从而根据对称性得出结果. (1)(()()πsin cos 2sin 4x xf x e x x e x ⎛⎫'=+=+ ⎪⎝⎭,增区间应满足:()0f x '>,22,4k x k k z ππππ≤+≤+∈减区间应该满足:()0f x '<,222,4k x k k z πππππ+≤+≤+∈(()f x 的增区间为()π3π2π,2π44k k k Z ⎡⎤-+∈⎢⎥⎣⎦;减区间为()3π7π2π,2π44k k k Z ⎡⎤++∈⎢⎥⎣⎦.(2)令()()sin xg x f x kx e x kx =-=-要使()f x kx ≥恒成立,只需当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()min 0g x ≥,(()()sin cos xg x e x x k '=+-令()()sin cos x h x e x x =+,则()2cos 0xh x e x '=≥对π0,2x ⎡⎤∈⎢⎥⎣⎦恒成立,(()h x 在π0,2⎡⎤⎢⎥⎣⎦上是增函数,则()π21,h x e ⎡⎤∈⎢⎥⎣⎦,(当1k ≤时,()0g x '≥恒成立,()g x 在π0,2⎡⎤⎢⎥⎣⎦上为增函数,(()()min 00g x g ==,(1k ≤满足题意;(当π21k e <<时,()0g x '=在π0,2⎡⎤⎢⎥⎣⎦上有实根0x ,()h x 在π0,2⎡⎤⎢⎥⎣⎦上是增函数,则当[)00,x x ∈时,()0g x '<,(()0(0)0g x g <=不符合题意; (当π2k e ≥时,()0g x '≤恒成立,()g x 在π0,2⎡⎤⎢⎥⎣⎦上为减函数,(()()00g x g <=不符合题意,(1k ≤,即(],1k ∈-∞. (3)(()()()cos sin cos x x F x f x e x e x x =+=+(()2cos xF x e x '=,设切点坐标为()()0000,sin cos x x e x x +,则切线斜率为()0002cos xF x e x '=,从而切线方程为()()000000sin cos 2cos xxy e x x e x x x -+=-,(()0000000π1πsin cos 2cos tan 222x xex x e x x x x -⎛⎫⎛⎫-+=-⇔=- ⎪ ⎪⎝⎭⎝⎭,令1tan y x =,2π22y x ⎛⎫=- ⎪⎝⎭,这两个函数的图象均关于点π,02⎛⎫⎪⎝⎭对称,则它们交点的横坐标也关于π2x =对称,从而所作的所有切线的切点的横坐标构成数列{}n x 的项也关于π2x =成对出现,又在2015π2017π,22⎡⎤-⎢⎥⎣⎦共有1008对,每对和为π. (1008πS =.⑤第11页共11页。

20112019高考数学函数与导数分类汇编文.docx

20112019高考数学函数与导数分类汇编文.docx

2011-2019 新课标文科高考《函数与导数》分类汇编一、选择题【 2019 新课标 1 】 3.已知 a log 2 0.2,b 20.2, c 0.20.3,则()A . a b cB . a c bC . c a bD . b c a【答案】 B】 5.函数 f(x)= sin x【 2019 新课标 1x 在[ —π,π ] 的图像大致为cos xx2A .B .C .D .【答案】 D【 2019 新课标 2 】6.设 f(x) 为奇函数,且当 x ≥0时, f(x)= e x1,则当 x<0时, f(x)= ( )A . ex1B . ex1C . ex1D . ex1【答案】 D【 2019 新课标 2 】10 .曲线 y=2sinx+cosx 在点 ( π,– 1) 处的切线方程为( )A . x y1 0B . 2x y 2 1 0C . 2x y 2 1 0D . x y1 0【答案】 Ce xln在点 1, ae【 2019 新课标 3】 7. 已知曲线处的切线方程为 y2 xb ,则()yaxxA. a e, b1B. ae,b1C. ae 1,b 1D. a e 1, b1【答案】 D【详解】详解:y/aexln x1, k = y /|x=1 = ae+ 1= 2a = e- 1将 (1,1) 代入 y2 xb 得 2 b1,b1 ,故选 D .【点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,二导致计算错误.求导要 “慢 ”,计算要准,是解答此类问题的基本要求.【 2019 新课标 3】 12. 设 fx 是定义域为R 的偶函数,且在0,单调递减,则( )132123A. ff 22f 23B. ff 23f 22log 5log 841413223C. f22f 23flog 5D. f23f22f log 5441【答案】 C【详解】fx是 R 的偶函数,flog 3 1f log 3 4.423,又 f x2 3log 3 41在 (0,+∞) 单调递减,f log 3 4f 2 3f 2 2,22321f log 3,故选 C .f 22f 234【点睛】本题主要考查函数的奇偶性、单调性,考查学生转化与化归及分析问题解决问题的能力.【 2018 新课标 1 】6.设函数f ( x)x 3 ( a 1)x 2ax . 若 f ( x) 为奇函数,则曲线y f (x) 在点 (0,0)处的切线方程为()A . y2x B . yxC . y 2 xD . y x【答案】 D【 2018 新课标】 12 .设函数 f (x)x≤2 , x则满足 f (x 1) f (2 x)的 x 的取值范围是()0,1, x0,A .( ,1]B . (0, )C . ( 1,0)D . (,0)【答案】 D【 2018 新课标 2 】3.函数f (x)e xe x的图象大致为()x 2【答案】 B【 2018 新课标 2 】12 .已知 f ( x)是定义域为( ,) 的奇函数,满足 f (1x) f (1 x) .若 f)1( 2,则()A .50B.0C.2D.50【答案】 C【 2018 新课标 3 】7.下列函数中,其图像与函数y ln x 的图像关于直线x 1 对称的是()A .y ln 1xB .y ln 2x C.y ln 1x D .y ln 2x【答案】 B2【 2018 新课标 3 】9.函数 yx 4 x 22 的图像大致为()【答案】 D【 2017 新课标 1 】9.已知函数 f (x)lnxln(2x) ,则(C )A . f (x) 在( 0,2 )单调递增B . f (x) 在( 0,2 )单调递减C . y= f (x) 的图像关于直线 x=1 对称D . y= f (x) 的图像关于点(1,0)对称【 2017 新课标 2 】8. 函数 f ( x) ln( x22x8) 的单调递增区间是(D )A.(- ,-2)B. (- ,-1)C.(1, +) D.(4,+)【解析】由x 2﹣ 2x ﹣ 8> 0 得: x ∈(﹣ ∞,﹣ 2)∪( 4, +∞),令 t=x 2﹣ 2x ﹣ 8,则 y=lnt ,∵ x ∈(﹣ ∞,﹣ 2 )时, t=x 2﹣ 2x ﹣ 8 为减函数;x ∈( 4 ,+∞)时, t=x 2﹣2x﹣ 8 为增函数; y=lnt 为增函数,故函数 f ( x ) =ln ( x 2﹣ 2x ﹣8)的单调递增区间是(4 , +∞),故选: D .【 2017 新课标 3 】7. 函数 y 1x的部分图像大致为(x sin 2D )xB .C .D .【新课标 】 已知函数() 22( x1x1)2017 3 12. fxxxa ee有唯一零点,则 a()1B11D 1A3C22【解析】'() 22( x1e x 1)0 ,得1fxxa ex即 x1 为函数的极值点,故f (1)则 122a0 , a12【 2016 新课标 1 】( 8)若 a>b>0 , 0<c<1 ,则( B) (A ) log a b c ccc ( D ) c ab c<logc ( B ) log a<log b ( C ) a <b >c【 2016 新课标 1 】( 9)函数 y=2x 2–e|x|在 [–2,2] 的图像大致为(D )A. B. C.D.31【2016 新课标 1】( 12 )若函数 f ( x)x -sin2 x a sin x 在,单调递增, 则 a 的取值范围是( C)31(C )11(D )1( A )1,1(B )1,,1,3333y=10lgx【 2016 新课标 2】10. 下列函数中, 其定义域和值域分别与函数 的定义域和值域相同的是( D)( A ) y=x( B ) y=lg x( C ) y=2x( D ) y1x【解析】 y10lg xx ,定义域与值域均为0,,只有 D 满足,故选D .【 2016 新课标 2】12. 已知函数 f(x) ( x ∈R )满足 f(x)=f(2-x) ,若函数 y=|x 2-2x-3|与 y=f(x) 图像的交点为( x 1 ,y 1), (x 2 2m,y ), ?,( x ,ymm ),则x i= (B)i 1(A)0(B) m(C) 2m(D) 4 m1 对称,当 m| x 2【解析】因为 yf ( x), y 2 x 3| 都关于 x 1 对称,所以它们交点也关于x 为偶数时,其和为2mm ,当 m 为奇数时,其和为2m 1 1 m ,因此选 B. 22421【 2016 新课标 3 】( 7 )已知 a 23, b33, c25 3,则( A)(A)b<a<c(B) a<b<c(C) b<c<a(D) c<a<b【 2016 新课标 3】( 4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图 .图中 A 点表示十月的平均最高气温约为15 ℃, B 点表示四月的平均最低气温约为5℃ .下面叙述不正确的是(D )( A )各月的平均最低气温都在0℃以上( B )七月的平均温差比一月的平均温差大( C )三月和十一月的平均最高气温基本相同( D)平均最高气温高于20 ℃的月份有 5 个【 2015 新课标 1】(10)已知函数,且f(a)=-3,则f(6-a)=(A) 7531( A)-(B)-(C)-(D)-4444【 2015新课标 1】( 12)设函数 y=f ( x)的图像关于直线y=-x 对称,且f( -2 ) +f ( -4) =1 ,则a= (C)( A)-1(B)1(C)2(D )411) 成立的x的取 1 + x 2【 2015新课标 2 】12.设函数 f ( x) = ln(1 + x ) -,则使得 f ( x) > f (2x -值范围是(A)41B. (,1(1,)1111A. ( ,1)) C. (, ) D.(,)( ,)333333[解析 ]因为函数f ( x)ln(1x )12 ,是偶函数,x[ 0,)时函数是增函数1x(2x 1)2,解得1f ( x) f ( 2x 1)x2x1,x 2x 1. 故选A.3【 2015 新课标 2 】11. 如图,长方形的边AB=2 , BC=1,O 是 AB 的中点,点P 沿着边 BC,CD, 与 DA 运动,记∠ BOP=x,将动点P 到 A,B 两点的距离之和表示为函数 f (x),则 f(x) 的图像大致为(B)P C DxO B AY Y YY2222O π π3 ππX O π π3π ππ π 3ππXπ π3ππXO O2X 42442424444 A B C D[解析 ]如图,当点P 在 BC 上时,∵DBOP= x,PB= tan x,PA= 4 + tan2 x ,PA+ PB= tan x + 4 + tan2 x , 当 x时取得最大值1 5 ,以A,B为焦点C,D为椭圆上两4定点作椭圆,显然,当点 P 在 C,D 之间移动时 PA+PB< 1 5 .又函数 f ( x)不是一次函数,故选B.【 2014 新课标 1 】5. 设函数 f (x), g( x) 的定义域为R ,且f (x)是奇函数,g (x) 是偶函数,则下列结论中正确的是(C)A. f (x)g ( x)是偶函数B. | f ( x) | g( x)是奇函数C. f ( x) | g( x) |是奇函数D. | f ( x) g (x) |是奇函数【参考答案】:设 F ( x) f ( x) g ( x),则 F ( x)f( x) g( x) ,∵f ( x)是奇函数,g( x) 是偶函数,∴ F (x) f (x) g(x) F ( x) ,F ( x)为奇函数,选 C.【解题方法】:①把四个选项逐一分析,②利用性质f ( x) 奇, | f ( x) | 为偶,奇奇 =偶,奇偶 =奇。

新高考导数知识点归纳总结

新高考导数知识点归纳总结

新高考导数知识点归纳总结随着新高考制度的实施,越来越多的学生开始接触到导数这一概念。

导数在数学中具有重要的地位,不仅仅是高考数学的考点,更是解决实际问题的有力工具。

为了帮助学生更好地掌握导数的知识,本文将对新高考导数知识点进行归纳总结,并提供相关的解题技巧和注意事项。

一、导数的定义和求导法则1. 导数的定义:导数是函数在某一点处的变化率,即斜率。

用数学符号表示为f'(x),或者dy/dx。

2. 求导法则:- 常数法则:如果f(x) = C,其中C为常数,则f'(x) = 0。

- 幂函数法则:如果f(x) = x^n,其中n为正整数,则f'(x) = nx^(n-1)。

- 乘法法则:如果f(x) = u(x)v(x),其中u(x)和v(x)为函数,则f'(x)= u'(x)v(x) + u(x)v'(x)。

- 除法法则:如果f(x) = u(x)/v(x),其中u(x)和v(x)为函数,v(x) ≠ 0,则f'(x) = (u'(x)v(x) - u(x)v'(x))/v(x)^2。

- 反函数法则:如果f(x)和g(x)互为反函数,则f'(x) = 1/g'(f(x))。

二、导数的计算和性质1. 高阶导数:- 一阶导数:f'(x)表示函数f(x)的一阶导数。

- 二阶导数:f''(x)表示函数f(x)的二阶导数。

- 高阶导数:f^n(x)表示函数f(x)的n阶导数。

2. 导数的计算:- 函数的和、差、积的导数:如果f(x)和g(x)的导函数存在,则(f+g)'(x) = f'(x) + g'(x),(f-g)'(x) = f'(x) - g'(x),(fg)'(x) = f'(x)g(x) +f(x)g'(x)。

- 复合函数的导数:如果y = f(g(x)),其中f(x)和g(x)均可导,则y' = f'(g(x))g'(x)。

高考数学分类汇编函数(包含导数)

高考数学分类汇编函数(包含导数)

高考数学分类汇编函数(包含导数)一、选择题1.(市回民中学2008-2009学年度上学期高三第二次阶段测试文科) 函数x x x f ln )(+=的零点所在的区间为 ( )A .(-1,0)B .(0,1)C .(1,2)D .(1,e )答案:B.2(市回民中学2008-2009学年度上学期高三第二次阶段测试文科)具有性质:1()()f f x x =-的函数,我们称为满足“倒负”变换的函数,下列函数:①1y x x=-;②1y x x =+;③,(01)0,(1)1(1)x x y x x x⎧⎪<<⎪==⎨⎪⎪->⎩中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有① 答案:B.3.(二中2009届高三期末数学试题) 已知0||2||≠=b a ,且关于x 的函数x b a x a x x f ⋅++=23||2131)(在R 上有极值,则与的夹角围为( ) A .)6,0[π B .],6(ππC .],3(ππD .2[,]33ππ答案:C.4.(二中2009届高三期末数学试题)已知函数()f x 是定义在R 上的偶函数,且对任意x ∈R ,都有(1)(3)f x f x -=+。

当[4,6]x ∈时,()21x f x =+,设函数()f x 在区间[2,0]-上的反函数为1()f x -,则1(19)f -的值为 A .2log 3- B .22log 3- C .212log 3-D .232log 3-答案:D.5.(省二中2008—2009学年上学期高三期中考试)已知),(,)1(log )1()3()(+∞-∞⎩⎨⎧≥<--=是x x x ax a x f a 上是增函数,那么实数a 的取值围是()A .(1,+∞)B .(3,∞-)C .)3,23[D .(1,3)答案:C.6.(省二中2008—2009学年上学期高三期中考试) 若关于x 的方程,01)11(2=+++xx a ma (a>0,且1≠a )有解,则m 的取值围是() A .)0,31[- B .]1,0()0,31[ - C .]31,(--∞D .),1(+∞答案:A.7.(省二中2008—2009学年上学期高三期中考试)已知函数)(x f 是定义在R 上的偶函数,且对任意R x ∈,都有)3()1(+=-x f x f 。

专题04 导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)

专题04  导数解答题2013-2022十年全国高考数学真题分类汇编(文科,全国通用版)(解析版)
设 , ,
当 时, ,当 时, ,
故 在 上为减函数,在 上为增函数,
所以 ,
而 , ,
有两个不同的零点即 的解的个数为2.
当 ,由(1)讨论可得 、 仅有一个零点,
当 时,由(1)讨论可得 、 均无零点,
故若存在直线 与曲线 、 有三个不同的交点,
则 .
设 ,其中 ,故 ,
设 , ,则 ,
故 在 上为增函数,故 即 ,
【题目栏目】导数\导数的综合应用
【题目来源】2021年高考全国甲卷文科·第20题
10.(2021年全国高考乙卷文科·第21题)已知函数 .
(1)讨论 的单调性;
(2)求曲线 过坐标原点的切线与曲线 的公共点的坐标.
【答案】(1)答案见解析;(2) .
解析:(1)由函数的解析式可得: ,
导函数的判别式 ,
即曲线 过坐标原点的切线与曲线 的公共点的坐标为 .
【点睛】导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.
故 为方程 的解,同理 也为方程 的解,
所以 ,而 ,
故 即 .
【题目栏目】导数\导数的综合应用
【题目来源】2022新高考全国I卷·第22题
5.(2021年新高考全国Ⅱ卷·第22题)已知函数 .
(1)讨论 的单调性;
(2)从下面两个条件中选一个,证明: 有一个零点

新高三数学导数知识点归纳

新高三数学导数知识点归纳

新高三数学导数知识点归纳导数是高等数学中的重要概念,是微积分中的基础内容。

在高三数学学习中,导数知识点是必学的内容之一。

本文将对新高三数学导数知识点进行归纳和总结,帮助同学们更好地掌握这一知识。

一、导数的定义导数是函数在某一点上的变化率,用数学符号表示为f'(x),读作"f关于x的导数",也可以读作"f的导数"。

导数的定义如下:若函数f(x)在点x处有极限lim┬(△x→0)⁡〖(f(x+△x)-f(x) )/△x=lim┬(△x→0)⁡(△f(x)/△x=f'(x)〗其中Δf(x)表示函数f(x)在点x处的增量,Δx表示自变量的增量。

二、常用函数的导数1. 常数函数的导数:对于常数函数f(x)=c (c为常数),其导数为0,即f'(x)=0。

2. 幂函数的导数:对于幂函数f(x)=x^n (n为正整数),其导数为f'(x)=n*x^(n-1)。

3. 指数函数的导数:对于指数函数f(x)=a^x (a>0,a≠1),其导数为f'(x)=a^x*lna。

4. 对数函数的导数:对于对数函数f(x)=logₐx (a>0,a≠1),其导数为f'(x)=1/(x*lna)。

5. 三角函数的导数:常见的三角函数(sin、cos、tan等)的导数如下:sinx的导数为cosx;cosx的导数为-sinx;tanx的导数为sec^2x。

三、导数的运算法则1. 基本运算法则:(1)常数的导数为0;(2)导数的线性性,即导数与常数的乘积等于常数乘以导数。

2. 加减法法则:(1)两个函数的和(差)的导数等于两个函数的导数的和(差);(2)即(f(x)±g(x))' = f'(x)±g'(x)。

3. 乘积法则:(1)两个函数的乘积的导数等于第一个函数的导数乘以第二个函数,加上第一个函数乘以第二个函数的导数;(2)即(f(x)g(x))' = f'(x)g(x) + f(x)g'(x)。

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编(附答案)

历年(2019-2023)高考数学真题专项(导数及应用解答题)汇编 考点01 利用导数求函数单调性,求参数(2)若不等式()1f x ≥恒成立,求a 的取值范围.考点02 恒成立问题1.(2023年全国新高考Ⅱ卷(文))(1)证明:当01x <<时,sin x x x x 2-<<; (2)已知函数()()2cos ln 1f x ax x =--,若0x =是()f x 的极大值点,求a 的取值范围.2.(2020年全国高考Ⅱ卷(文)数学试题)已知函数1()e ln ln x f x a x a -=-+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围.3.(2019∙全国Ⅰ卷数学试题)已知函数f (x )=2sin x -x cos x -x ,f ′(x )为f (x )的导数. (1)证明:f ′(x )在区间(0,π)存在唯一零点; (2)若x [0∈,π]时,f (x )≥ax ,求a 的取值范围.4.(2019年全国高考Ⅱ卷(文))已知函数()(1)ln 1f x x x x =---.证明: (1)()f x 存在唯一的极值点;(2)()=0f x 有且仅有两个实根,且两个实根互为倒数.考点03 三角函数相关导数问题a=时,求b的取值范围;(i)当0(ii)求证:22e+>.a b4.(2021年全国高考Ⅰ卷数学试题)已知函数f(x)=2sin x-x cos x-x,f′(x)为f(x)的导数. (1)证明:f′(x)在区间(0,π)存在唯一零点;∈,π]时,f(x)≥ax,求a的取值范围.(2)若x[0考点04 导数类综合问题参考答案考点01 利用导数求函数单调性,求参数考点02 恒成立问题 1考点03 三角函数相关导数问题2022年8月11日高中数学作业学校:___________姓名:___________班级:___________考号:___________考点04 导数类综合问题 一、解答题)(【点睛】思路点睛:函数的最值问题,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系4.(2022∙全国新高考Ⅱ卷(文))已知函数(2) 和首先求得导函数的解析式,然后分类讨论导函数的符号即可确定原函数的单调性;当时,的解为:当113,ax⎛⎫--∈-∞⎪时,单调递增;时,单调递减;时,单调递增;综上可得:当时,在当时,在解得:,则,()1+,a x与联立得化简得3210--+=,由于切点的横坐标x x x综上,曲线过坐标原点的切线与曲线的公共点的坐标为和【点睛】本题考查利用导数研究含有参数的函数的单调性问题,和过曲线外一点所做曲线的切线问题,注。

2024年新高考版数学专题1_4.1 导数的概念及运算(分层集训)

2024年新高考版数学专题1_4.1 导数的概念及运算(分层集训)

y y
(3x12 x2
a
1)
x
2
x13
,
有且仅有一组解,即方程x2-(3
x12
-1)x+2
x13
+a=0有两个相
等的实数根,
从而Δ=(3 x12-1)2-4(2 x13+a)=0⇔4a=9 x14-8 x13-6 x12+1. (1)若x1=-1,则4a=12,a=3.
(2)4a=9 x14 -8 x13-6 x12 +1, 令h(x)=9x4-8x3-6x2+1, 则h'(x)=36x3-24x2-12x=12x(x-1)(3x+1),
x0
2x
答案 BC
B. lim f (2) f (2 x)
Δx0
2x
D. lim f (2) f (2 x)
x0
2x
2.(2023届长沙长郡中学月考,3)已知函数y=f(x)的图象在点P(3,f(3))处的 切线方程是y=-2x+7,则f(3)-f '(3)= ( ) A.-2 B.2 C.-3 D.3 答案 D
2
2
解得λ=0,所以f(x)=x3-3 x,f '(x)=3x2-3 ,令f '(x)=0,得x=- 2 或 2 ,f(x),f '(x)随x
2
2
的变化情况如表.
22
x
-1
2
f '(x)
f(x)
5
8
1 2
,
2
2
2 2
-
0
2 2
,2
2
+

极小值- 2

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)

高考文科数学导数真题汇编(带答案)高考数学文科导数真题汇编答案一、客观题组4.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=-2处取得极小值,则函数y=xf'(x)的图象可能是。

5.设函数f(x)=x^2-2x,则f(x)的单调递减区间为。

7.设函数f(x)在R上可导,其导函数f'(x),且函数f(x)在x=2处取得极大值,则函数y=xf'(x)的图象可能是。

8.设函数f(x)=1/(2x-lnx),则x=2为f(x)的极小值点。

9.函数y=1/(2x-lnx)的单调递减区间为(0,1]。

11.已知函数f(x)=x^2+bx+c的图象经过点(1,2),且在点(2,3)处的切线斜率为4,则b=3.12.已知函数f(x)=ax^2+bx+c的图象过点(1,1),且在点(2,3)处的切线斜率为5,则a=2.二、大题组2011新课标】21.已知函数f(x)=aln(x/b)+2,曲线y=f(x)在点(1,f(1))处的切线方程为x+2y-3=0.(1) 求a、b的值;(2) 证明:当x>1,且x≠b时,f(x)>2ln(x/b)。

解析】1) f'(x)=a/(xlnb)+2/x,由于直线x+2y-3=0的斜率为-1/2,且过点(1,f(1)),解得a=1,b=1.2) 由(1)知f(x)=ln(x)+1,所以f(x)-2ln(x/b)=ln(x/b)+1>0,当x>1,且x≠b时,f(x)>2ln(x/b)成立。

2012新课标】21.设函数f(x)=ex-ax-2.(1) 求f(x)的单调区间;(2) 若a=1,k为整数,且当x>0时,(x-k)f'(x)+x+1>0,求k的最大值。

解析】1) f(x)的定义域为(-∞,+∞),f'(x)=ex-a,若a≤0,则f'(x)>0,所以f(x)在(-∞,+∞)单调递增。

专题04 导数及其应用(解答题)-三年(2017-2019)高考真题数学(文)分项汇编(解析版)

专题04 导数及其应用(解答题)-三年(2017-2019)高考真题数学(文)分项汇编(解析版)

x1

x0
1,故 ex1x0

x02 x1 1 x1 1
x02 ,两边取对数,得 ln ex1x0 ln x02 ,
于是
x1 x0 2 ln x0 2 x0 1 ,
整理得 3x0 x1 2 .
【名师点睛】本小题主要考查导数的运算、不等式证明、运用导数研究函数的性质等基础知识和方法. 考查函数思想、化归与转化思想.考查综合分析问题和解决问题的能力.
f
(2)

ln
2

1 2

ln
4 1 2

0
,故存在唯一
x0
(1, 2)
,使得
f
x0


0.
又当 x x0 时, f (x) 0 , f (x) 单调递减;当 x x0 时, f (x) 0 , f (x) 单调递增.
因此, f (x) 存在唯一的极值点.
(2)由(1)知 f x0 f (1) 2 ,又 f e2 e2 3 0 ,所以 f (x) 0 在 x0, 内存在唯一根
6.【2019 年高考浙江】已知实数 a 0 ,设函数 f (x)=a ln x x 1, x 0.
(1)当 a 3 时,求函数 f (x) 的单调区间; 4
(2)对任意
x

[
1 e2
, ) 均有
f
(x)
x 2a
,
求 a 的取值范围.
注:e=2.71828…为自然对数的底数.
【解析】(Ⅰ)解:由已知, f (x) 的定义域为 (0, ) ,且
f (x)

1 x

最新-2017新课标高考数学导数分类汇编(文)

最新-2017新课标高考数学导数分类汇编(文)

2021-2021新课标(文科)导数压轴题分类汇编【2021新课标】21.函数f(x)=a J n-^+-,曲线y = f(x)在点(1,f(1))处的切线方程为 x 1 xx+2y —3=0. (1)求a 、b 的值;In x(2)证实:当x>0,且x#1时,f (x) >—— x- 1【解析】z x 1:(——-Inx) b(1) f'(x)=-x —2-—与(x 1)2x 2【2021新课标】21.设函数f(x) = e x -ax-2 (1)求f (x)的单调区间(2)假设a=1, k 为整数,且当x>0时,(x-k) f (x)+x+1>0,求k 的最大值 【解析】(1) f(x)的定义域为(-00,8),f (x) =e x -a ,假设a M0 ,那么f (x) >0 ,所以f (x)在(-℃>,")单调递增.假设 a >0 ,那么当 x W (g ,ln a)时,f '(x) <0 ;当 x w (In a +中时,f (x) >0 ,所以 f (x)在(-°o,ln a)单 调递减,在(Ina, F 单调递增.(2)由于 a =1 ,所以(x —k)f '(x) +x+1 =(x -k)(e x —1)+ x+1.故当 x>0 时,(x-k) f (x)+x+1 —0 等价于 k < x *1 +x (x > 0) ①. (e x -1)由(1)知,函数 h(x) =e x —x —2在(0,代)单调递增,而 h(1)<0, h(2) a 0 ,精品文档 精品文档所以h(x),在(0,〜)存在唯一的零,故g'(x)在(0,〜)存在唯一的零点.精品文档由于直线x+2y —3=0的斜率为且过点(1,1),f(1)=1,故1(2)由(1)知b =1, 即a --b 2 In x 11 2,f(x)= ------ + —,所以x 1 x 考虑函数,那么 h(x) =- 2x 2 -(x 2 一1)f(x)-JnA=」^(2Inx-立1), x- 1 1- x x_ (x-1)2 ― 2~ ,x所以 xw 1时 h' x) v 0,而 h(1)=0In x故 xW(0,1)时,h(x)>0 可得 f (x) A ——x -1从而当x >0 ,且x #1时,f(x)x -1In xxW(1,+=c)时,h(x)<0 可得 f (x) > ---------- ,x -1令 g (x 户口+x ' M g (x)-xe x -1 e x (e x -x -2) 二/ x 八 2 1 二J~—(e -1) (e -1)设此零点为a ,那么a w (1,2).当xw(0,a)时,g'(x)<0;当x w(a,+=c)时,g\x) >0.所以g(x)在(0, -He)的最小值为g(a).又由g '(a) = 0 ,可得e a =a + 2 ,所以g(a) =a +1 w (2,3).由于①式等价于k<g(a),故整数k的最大值为2【2021新课标1】20.函数f(x)=e x(ax+b)-x2-4x,曲线y=f(x)在点(0, f(0))处的切线方程为y= 4x + 4.(1)求a, b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.【解析】(1)f' x) = e x(ax+a + b)-2x-4.由得f(0) = 4, f' (0)4.故b=4, a+b = 8.从而a=4, b= 4.(2)由(1)知,f(x) = 4e x(x+ 1)-x2-4x,.一x r x 1)f x)=4e x(x + 2) —2x—4=4(x+2) I e --.令f'x) = 0 得,x=—In 2 或x=—2.从而当x6 (—8, - 2)U(-ln 2, + 8对,y x)>0;当xC ( —2, — ln 2)时,f'x)v0.故f(x)在(—°°, — 2), (— ln 2, + 00止单调递增,在(—2, — ln 2)上单调递减.当x=—2时,函数f(x)取得极大值,极大值为f(-2) = 4(1-e 2).【2021新课标2】21.函数f(x) =x2e x.⑴求f(x)的极小值和极大值;(2)当曲线y = f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.【解析】(1)f(x)的定义域为(—8, +8), f' (x)- e x x(x-2).①当xC(—oo, 0)或xC(2, +8时,f' (x)0;当xC(0,2)时,f' (x)0.所以f(x)在(―8, 0), (2, +8弹调递减,在(0,2)单调递增.故当x=0时,f(x)取得极小值,极小值为f(0)=0;当x = 2时,f(x)取得极大值,极大值为f(2)= 4e 2.(2)设切点为(t, f(t)),那么l 的方程为y=f' (t)(xt)+f(t).所以l在x轴上的截距为m(t) = t —上g=t+—L =t—2+二一+3.f '(t) t -2 t -2由和①得tc (—8, 0)U(2, +8).2令h(x)=x+—(xw0)那么当xC (0, +8对,h(x)的取值范围为12灰,+8);当xC(一oo, —2)时,h(x)的取值范围是( — 8, -3).所以当tC( —oo, 0)U(2, +8时,m(t)的取值范围是(—8, 0)U[2j2+3, + 问综上,l在x轴上的截距的取值范围是(―m0)U[2应+3, +8].精品文档精品文档1 - a o ,.【2021新课标 1】21.设函数 f (x )= aln x + —x — bx(a #1),曲线 y = f ( X)在点(1, f (1))处的切线斜率为0 (1)求 b;a(2)右存在x 0 >1,使得f (x 0 )< ——-,求a 的取值也围.【解析】(1) f'(x) =a+(1—a)x —b ,由题设知 f'(1) = 0,解得 b 1 x1 - a o(2) f (x)的定义域为(0, 8),由(1)知,f(x)= aln x + 三一x 2—x , . a 1 - a ( a *f (x) =— + (1 -a)x -1 = ---------- . x -- ----- ((x -1)x x < 1-a J1a(i)假设 aw 」,那么一a —E1,故当 xC(1, 8)时,f '(x)0 , f(x)在(1,2 1-a所以,存在x 0>1,使得f (x 0) W-a-的充要条件为f(1)E-a-,即 上刍―1<_a_1 -a 1 -a 21 -a所以 ,21 a 11;af(x)A0, f(x)在(1, ——)上单调递减, 1 -a所以,存在x 0>1,,使得f(x 0) w/一的充要条件为f(N_)wN_ 1-a1 - a 1 - a2而f(3)=alnN —+=一十2 a 旦,所以不符合题意. 1 -a 1 -a 2 1 -a 1 -a 1 -a1-a 1 - a a(in)假设a>1,那么 f(1)=——一1= ---------- <——.2 2 a -1综上,a 的取值范围为:(一无一1, J 2—1)=(1,〜)【2021新课标2121.函数f (x) =x 3 -3x 2+ax+2 ,曲线y = f (x)在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求 a ;(2)证实:当时,曲线 y = f(x)与直线y = kx-2只有一个交点.【解析】(1) f'(x) =3x 2-6x+a , f'(0) = a2曲线y = f (x)在点(0, 2)处的切线万程为y =ax+2 ,由题设得——=—2 ,所以a = 1a精品文档 精品文档8)上单调递增..1 a (ii)右一<a<1,那么 ------- >1 ,故当 xC(1,21 -aa 一,a 一----- )时,f '(x) < 0 , xC ( ,收)时, 1-a----- 1 - af (x)在一a —,〜单调递增.1 -a(2)由(1)知,f (x) =x3 -3x2 x 2 3 2设g(x) = f (x) -kx 2 = x -3x (1 - k)x 4由题设知1 —k .0当x W0 时,g (x) =3x2 -6x+1 -k >0 , g(x)单调递增,g(—1) = k —1 < 0,g(0) =4 , 所以g(x) =0在(3,0]有唯一实根.当x 10 时,令h(x) =x3 -3x2 +4 ,那么g(x) = h(x) +(1 — k)x > h(x)h'(x)=3x2_6x=3x(x—2),h(x)在(0, 2)单调递减,在(2,〜)单调递增,所以g(x) h(x) ,h(2) =0所以g(x) =0在(0,+oc)没有实根综上g(x) =0在R由唯一实根,即曲线y=f(x)与直线y = kx — 2只有一个交点.【2021新课标1】21.设函数x.(1)讨论f(x)的导函数f'(x)零点的个数;2(2)证实:当a>0时,f(x) 22a+aln —.a【解析】(21)解:(1 ) /⑸的定义域为当dwo时,/(工)没有零点;当.>o时,由于小单调递增,-2单调递增,所以(白)在电皿〉单调递增•乂X,当各满足0<5<四且3<,时,/(d)<0.故当0>.时・rco存在唯一零点.4 4...... 6分(II)由(1 ),可设/'住)在(0,2)的唯一零点为当时,八幻?0:当工仪与,2}时,/'住),0-故在©&)单调递减,在[,单调递增,所以当工工厢时,人功取得最小值,最小值为由i- -= 0 .所以/(金)=-^- + 力% + ^2a +(Jln -./ 2J^ a a故当白时.FCOeX-oInN. ……12分【2021 新课标2】21.f (x)=lnx + a(1 —x ).(1)讨论f (x)的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a的取值范围精品文档精品文档【解析】f x = lnx a 1 -x .1r(1) f'(x) = —— ax当aMCW,函数f(x)在(0,+笛)上是增函数;当a>0时,函数f(x)在(0,1)上是增函数,在(L+oc)上是减函数.a a1 1(2)由(1)知,当a>0时,函数f(x)在x=」时取得最大值f(-) = a-1-lna. a a由a -1 -ln a > 2a 一2,整理得In a + a -1 <0.1设g(x) = In x + x -1,那么g'(x) =1 + —" a >0x > 0,二g'(x) > 0, g(x)在(0, 十8)是增x函数.又g(1) =0,上述不等式即g(a) <g(1),二0 < a <1,即a w (0,1).【2021新课标1】21.函数^(I)讨论的单调性;(II)假设有两个零点,求a的取值范围.【解析】(I)f' x)=:i x-1 e x 2a x -1 );=「:x -1 e x 2a .(i)设a 之0 ,那么当xw (-°0,1)时,f '(x)<0 ;当x1(1,+°°)时,f '{x}> 0.所以在(口,1 )单调递减,在(1,依)单调递增.(ii)设a<0,由f'(x) = 0得x=1 或x=ln(-2a). _ .. e①右a = —"2,那么f'(x) = (x—1X e —e),所以f (x)在(-°°,收)单调递增.e②假设a a—2,那么ln(-2a)<1,故当x13,ln (―2a))U(1,")时,f'(x)>0;当x w (ln (—2a ),1)时,f'(x)<0,所以f (x )在(-°°,ln (—2a )),(1,—)单调递增,在(ln(-2a ),1)单调递减.e③假设a<—2,那么ln(—2a)>1,故当x^ (㈤,1 )U(ln(—2a ),也)时,f'(x)>0,当x w (1,ln (-2a ))时,f '(x )<0.所以f (x)在(*,1 )(ln(-2a )单调递增,在(1,ln(-2a)伴调递减.(II)(i)设a >0,那么由(I)知,f(x)在(Q,1即调递减,在(1,收洋调递增.b . a又f (1 ) = -e, f (2 )= a ,取b 满足b<0 且3 < ln —,精品文档精品文档那么f (b )>a(b -2 )+a(b -1 2 = a b3—gb )>0 ,所以f (x)有两个零点.(ii)设a=0,那么f{x)=(x—2)e x所以f(x)有一个零点.e , , .................(iii)设a<0,假设a之—万,那么由(I)知,f (x )在(1,依)单调递增.e .又当xwl时,f(x)<0,故f(x)不存在两个零点;假设a <—万,那么由(I)知,f (x)在(1,ln(—2a))单调递减,在(ln(-2a ),收)单调递增.又当xwl时f (x)<0,故f (x )不存在两个零点.综上,a的取值范围为(0,收)【2021新课标2】20.函数f (x) = (x + 1)lnx- a(x- 1).(1)当a=4时,求曲线y = f (x)在(1,f (1))处的切线方程;(2)假设当x w(1,z)时,f(x) >0,求a的取值范围.【解析】(1)当a = 4 时,f (x) =(x+1)lnx—4(x—1) , f(1)=0 ,切点坐标(1,0),对f(x)求导,得x 1f (x)=一十1n x-4 ,从而切线斜率f (1) = -2 ,所以切线方程为y - 0 = -2(x -1) x即2x+y- 2 = 01 1 1 x-1(2)对f(x)求导,得 f (x) =1+-+lnx-a 再求导,得 f (x) =-=+—=——. x x x x当x W(1,M)时,f "(x) >0 ,函数f'(x)在区间内(1,收)单调递增,所以f'(x)> f'(1) = 2 —a .(i)假设a W2 ,那么当x WQf)时,f (x)>f(1)>0 ,函数f(x)在区间内(1,f 单调递增, 所以f(x)Af(1)=0 . (ii )假设a >2 ,那么结合函数f'(x)在区间内(1,收)单调递增,可知方程f'(x)=0存在唯一零点,1设为X.,那么a =1 +7 +1n X..X Q当xW(1,x.)时,f卜)<巾.)=.,函数f(x)在区间内(1,x.)单调递减,所以f(x)<f(1)=.,f (x) 0不成立.综上,a的取值范围是(-¥2].【2021新课标3】21.设函数f(x) = lnx-x+1.(1)讨论f(x)的单调性;精品文档一 一一.,x -1(2)证实当 x w (1,~)时,1<±」<x;ln x(3)设 c>1,证实当 xw(0,1)时,1+(c-1)x>c x .【解析】1 " ,一(1)由题设,f(x)的定义域为(0,依),f (x) = ——1 ,令f (x)=0,解得x=1. x 当0<x<1时,f '(x)>0, f(x)单调递增;当x>1时,f '(x)<0, f(x)单调递减. (2)由(1)知,f (x)在x =1处取得最大值,最大值为 f(1) = 0. 所以当x#1时,lnx<x-1.................. 1 1 x -1故当 x w (1,~)时,lnx<x —1, in —<——1,即 1 c ------------------ < x .x x in x(3)由题设 c >1 ,设 g (x) =1 +(c -1)x - c x ,那么 g (x) = c-1 -c x in c,c 1 in — in c.in c.................................................. .... 、 ,» 'g(x)单调递增;当XAX .时,g(x)<0, g(x)单调递减.故 0 <x 0 <1,又 g(0) = g(1) = 0,故当 0<x<1 时,g(x) >0.所以当 xw(0,1)时,1+(c —1)x>c x .【2021新课标1】21.函数f (x)=e x (e x - a) - a 2x.(1)讨论f(x)的单调性;(2)假设f(x)至0,求a 的取值范围.【解析】(1)函数 f(x)的定义域为 —,f'(x) = 2e 2x —ae x —a 2 = (2e x +a)(e x —a),①假设a=0,那么f (x)=e 2x ,在(-«,+^)单调递增. ②假设a>0,那么由 f'(x) =0得x = ina .当 x w (-0o,in a)时,f '(x) < 0 ;当 x w (in a,收)时,f '(x) a 0 ,所以 f (x)在(-°o,in a)单调 递减,在(in a,〜)单调递增.a③右a <0,那么由 f (x) =0得 x = in(——).2a aa当 xw(-«,in(—a))时,f (x) <0 ;当 x w H -)a 十 时,f(x)〉0,故 f(x)在(Q,in(—马))单调递减,在(in( --),依)单调递增.2(2)①假设a=0,那么 f(x) = e 2x ,所以 f(x)之0.②假设a >0,那么由(1)得,当x=ina 时,f (x)取得最小值,最小值为 f (in a) =-a 2 in a 从而当且仅当一a 2ina 之0,即a<1时,f(x)>0.令 g '(x) = 0,解得 x0 =当 x 时,g (x) >0 ,由(2)知,1 :二铝:二 c, inc精品文档a③右a<0,那么由(1)得,当x = ln(——)时,f(x)取得取小值,取小值为2a o 3 a 3 a 3 .f(ln( ——)) =a2[——ln( ——)].从而当且仅当a2[- -ln(--)] >0 ,即a 2 —2e4时f (x)主0.2 4 2 4 23综上,a的取值范围为[-2e4,1].【2021新课标2】21.设函数f(x)=(1-x2)e x.(1)讨论f(x)的单调性;(2)当x之0时,f(x) <ax+1 ,求a的取值范围.【解析】(1) f(x) = (1 — x2) e x, xCR, :f'(x) = (1 — 2x — x2) ex,令f,(x) =0可知x= - 1到2当xv - 1 - 或x> - 1+.2时,f' (x) v 0,当-1 - V2V xv - 1+、,2时f' (x) >0, :f(x)在(- oo, - 1 -V2), (- 1+'/2, +8)上单调递减,在(-1 -施,-1+再)上单调递增;(2)由题可知f (x) = (1 - x) (1+x) ex.下面对a的范围进行讨论:①当a>l时,设函数h (x) = (1-x) e x,那么h' (x) = - xe x< 0 (x>0),因此h (x)在[0, +°°)上单调递减,又由于h (0) =1,所以h (x) <1,所以 f (x) = (1 -x) h (x) <x+1<ax+1②当0vav1 时,设函数g (x) =e x—x — 1 ,那么g' (x) =e x— 1 >0 (x>0),所以g (x)在[0 , +8)上单调递增,又g ( 0) =1 - 0 - 1=0 ,所以ex> x+1由于当0Vxv1 时 f (x) > (1—x) (1+x) 2,所以(1 - x) (1+x) 2 - ax- 1=x (1 - a - x - x2),取x0=、芯—;胃1C (0, 1),贝(J ( 1 — x0) (1+x0) 2 - ax0 - 1=0,所以 f (x0) >ax0+1,矛盾;公-r, —一,一、…一 C 〜〜③当a<0时,取x0=―-——G (0, 1 ),那么f(x0) > (1 — x0)(1+x 0)2=1 > a0+1 ,矛盾;综上所述,a的取值范围是[1 , +8].【2021 新课标3】21.设函数f (x) = ln x +ax2 +(2a +1)x.3(1)讨论f(x)的单调性;(2)当a<0时,证实f(x) <---2.4a【解析】2 ' 1 (1)由 f (x) = In x +ax +(2a +1)x,( x >0)有 f (x) =— +2ax+ 2a +1 = x 2ax 2 (2a 1)x1①当 a=0时,f (x) =1 A0, f (x)单增 ②当 a,0时,令 f '(x) =0 ,即 2ax 2+(2a+1)x + 1=0 , 1 2 ③解得 x 1 =-1(舍),x 2 = -一 ,设 g(x)=2ax +(2a+1)x + 1 2a 1 一,、,一i .当 a>0 时,g(x)开口向上,—— <0,g(x)〉0,即 f (x) A0, f (x)单增 2a1 口.当 a<0 时,g(x)开口向上,——>0 , 2a 1 . 一, 、一此时,在(0,——)上,g(x) <0 ,即 f (x) <0 , f (x)单减 2a , 1 在(一一,依)上,g(x)A0,即 f(x)〉0, f(x)单增 2a 1 ⑵由(1)可得:“幻"〈〞它一2a______ 3 - 1 1 故要证f (x) <-———2,即证ln(-——)---1 < 4a 2a 4a )-^-14a -A.2 4a 1 1 . _ …一即证ln(-——)十——十1 <0 ,即证ln t -t +1 <0(t >0) 2a 2a 1 令 g(t) =lnt —t +1 ,那么 g ⑴=——1 ,令 g (t)之0,得 t<1,g(t)max = g(1)= 0 二g(t) <0 ,故原命题得证. 精品文档。

高考数学导数小题分类总结整理

高考数学导数小题分类总结整理

(1) u v

(3)
u

v
(2) u v (4) cu

( c 为常数).
复合函数的导数
设函数 u x在点 x 处有导数 u x,函数 y f u在点 x 的对应点 u 处有导数 y f u,则复合函数 y f x在点 x 处也有导数,且 yx yu ux 或写作 f x x f ux .
趋势,
例 1、导函数正负与原函数图像的影响 (1)函数 f(x)=ax3+bx2+cx+d 的图象如图,且|x1|<|x2|,则
有( ) A.a>0,b>0,c>0,d>0 B.a<0,b>0,c<0,d>0 C.a<0,b<0,c>0,d>0 D.a>0,b<0,c>0,d<0
变式.已知 R 上可导函数 f x 的图像如图所示,
g(x)
=
f
(x)
−x−b
有三个零点,则实数
b
的取值
范围为( )
(3)设函数 f (x) = ex (2x 1) ax a ,其中 a 1,若存在唯一的整数 x0,使得 f (x0 ) 0,则 a 的
取值范围是( )A.[- ,1) B. [- , ) C. [ , ) D. [ ,1)
变式:(1)已知
D. x2e x1 x1e x2
(2).已知定义在(0,+∞)上的函数 f(x)的导函数为 f'(x),满足 x2f'(x)+xf(x)
=lnx,f(e)= ,则 f(x)( )
A.有极大值,无极小值 B.有极小值,无极大值 C.既有极大值又有极小值 D.既无极大值也无极小值
变式:(1)已知函数 f x 是定义在 0, 内的单调函数,且对

高考数学导数大题汇编

高考数学导数大题汇编

高考数学导数大题汇编高考数学导数大题汇编1.设函数 f(x) = 2x^3 - 3x^2 - 12x + 5,求 f(x) 的导函数 f'(x)。

解:对 f(x) 分别求导得到 f'(x) = 6x^2 - 6x - 12。

2.已知函数 f(x) = 3x^2 + 2x + 5,求函数 f(x) 在 x = 2 处的切线方程。

解:首先求 f(x) 在 x = 2 处的导数 f'(x) = 6x + 2。

代入 x = 2,得到f'(2) = 14。

切线的斜率等于 f'(2),所以切线的斜率为 14。

又知道切线通过点 (2, f(2)) = (2, 19),所以切线方程为 y - 19 = 14(x - 2)。

3.已知函数 f(x) = x^3 - 3x^2 + 2x,求函数 f(x) 在 x = 1 处的极值。

解:首先求导数 f'(x) = 3x^2 - 6x + 2。

令 f'(x) = 0,解方程得到 x = 1 和 x = 2。

求得的 x 值是函数 f(x) 的驻点,需要判断是极大值还是极小值。

为此,我们可以求二阶导数 f''(x) = 6x - 6。

当 x = 1 时,f''(1) = 0,说明该点处可能是拐点。

当 x = 2 时,f''(2) = 6,说明该点处是极小值点。

所以函数 f(x) 在 x = 1 处的极小值为 f(1) = 0。

4.已知函数 f(x) = x^4 - 4x^3 + 6x^2 - 8x,求函数 f(x) 的单调递增区间和单调递减区间。

解:首先求导数 f'(x) = 4x^3 - 12x^2 + 12x - 8。

令 f'(x) = 0,解方程得到 x = 1。

求得的 x 值是函数 f(x) 的驻点,需要判断是单调递增还是单调递减。

为此,我们可以选取驻点 x = 1 附近的值进行判断。

导数14 大题(单调性分类讨论)2-2022年全国一卷新高考数学题型细分汇编

 导数14 大题(单调性分类讨论)2-2022年全国一卷新高考数学题型细分汇编

第1页共22页导数——大题——单调性分类讨论:1.(2022年湖南衡阳八中J27)已知a ∈R ,函数()()ln 1f x x a x =+-,()xg x e =.2.(1)讨论()f x 的单调性;(①)3.(2)过原点分别作曲线()y f x =和()y g x =的切线1l 和2l ,求证:存在0a >,使得切线1l 和2l 的斜率互为倒数;4.(3)若函数()()2h x x a f x =+-的图象与x 轴交于两点()1,0A x ,()2,0B x ,且120x x <<.设012x x x λμ=+,其中常数λ、μ满足条件1λμ+=,0μλ≥>,试判断函数()h x 在点()()00,M x h x 处的切线斜率的正负,并说明理由.(单调性分类讨论,一次函数,中下;第二问,未;)5.(2022年湖南衡阳八中J28)设函数f (x )=ax 2-a -ln x ,其中a ∈R.6.(I )讨论f (x )的单调性;(②)7.(II )确定a 的所有可能取值,使得11()xf x e x->-在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数)。

(单调性分类讨论,简单的二次函数,中下;第二问,未;)8.(2022年湖南永州J30)已知函数()()e xf x a x a =-∈R .9.(1)求()f x 的极值;(③)10.(2)若()21121212e e 0t tat at t t t t ==<<时,()1220t t t λλ-+>恒成立,求实数λ的取值范围.11.(单调性,极值,ex ,分类讨论,中下;第二问,未;)12.(2022年湖南岳阳一中J34)已知函数()()()ln 2f x a x x a R =+-∈.13.(1)讨论()f x 的单调性和最值;(④)14.(2)若关于x 的方程21e ln (0)2xm m m m x =->+有两个不等的实数根12,x x ,求证:122e e x x m+>.15.(单调性分类讨论,一次函数,中下;第二问,未;)1.(2022年广东中山三模J25)已知函数()e ()=-∈R x f x ax a .第2页共22页2.(1)讨论()f x 的单调性.(⑤)(单调性分类讨论,涉及ex ,中下;第二问,未;)3.(2)若0a =,证明:对任意的1x >,都有432()3ln f x x x x x ≥-+.1.(2022年山东泰安J10)已知函数()()ln f x g x x =-.(⑥)2.(1)若函数21()ln 2g x x ax a x =++,讨论()f x 的单调性.3.(2)若函数2211()ln 2g x x x x x x ⎛⎫=-+ ⎪⎝⎭,证明:1ln 2()2f x +>.4.(单调性分类讨论,二次函数可因式分解,中下;第二问,未;)5.(2022年山东J53)已知函数()()1ln 0f x a x x x=+>.6.(1)讨论函数()f x 的单调性;(⑦)(单调性分类讨论,一次函数,中下;第二问,未;)7.(2)若存在1x ,2x 满足120x x <<,且121x x =+,()()12f x f x =,求实数a 的取值范围.8.(2022年山东聊城一模J40)已知函数()()2ln ,f x ax x g x x nx m =-=-+.9.(1)讨论()f x 的单调性;(⑧)(单调性分类讨论,一次函数,中下;第二问,未;)10.(2)当104a <<时,若对于任意的0x >,都有()()0f x g x ,求证:2ln 4nm <<.11.(2022年山东菏泽一模J37)已知函数()1e xf x ax -=-.12.(1)讨论()f x 的单调性;(⑨)(单调性分类讨论,涉及ex ,中下;第二问,未;)13.(2)若()224a f x x -≥对于任意0x ≥恒成立,求实数a 的取值范围.1.(2022年山东猜想J54)已知函数()()1ln f x a x a R x=+∈,()21g x x x x =--.2.(1)讨论()f x 的单调性;(⑩)3.(2)若函数()()()F x f x g x =+存在两个极值点1x ,2x ,且曲线()y F x =在12x x x =第3页共22页方程为()y G x =,求使不等式()()F x G x <成立的x 的取值范围.4.(单调性分类讨论,一次函数,中下;第二问,未;)5.(2022年江苏南京六校联调J03)已知函数x a e x f x)1()(-+=,x x ax x g cos sin )(++=6.(1)求函数)(x f 的最值;(⑪)(单调性分类讨论,最值,涉及ex ,中下;第二问,未;)7.(2)令)()()(x g x f x h -=,求函数)(x h 在区间),4(+∞-π上的零点个数,并说明理由.4.(2022年广东深圳一模J23)已知函数()()22ln 121f x x a x ax =-+-+(a R ∈).5.(1)求函数()f x 的单调区间;(⑫)6.(2)若函数()f x 有两个零点1x ,2x .7.(i )求实数a 的取值范围;8.(ii )求证:1211a x x +>+(单调性分类讨论,二次函数可因式分解,中下;第二问,未;)①【答案】(1)答案见解析;(2)证明见解析;(3)函数()h x 在点()()00,M x h x 处的切线斜率为正.理由见解析.【分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得单调区间;(2)由导数求得2l 的斜率,从而得1l 的斜率为1e,设()f x 的切点坐标为00(,)x y ,利用导数几何意义得000()y f x x '=得出关于a 的方程,再引入新函数,利用导数证明此方程有正数解;(3)求出()h x ,()h x ',由12()()0h x h x -=得出用12,x x 表示a 的式子,0()h x '中就消去了a ,通过设12x t x =,得到关于t 的函数,而且(0,1)t ∈,利用不等式的性质和导数的知识确定其正负即可.(1)()f x 的定义域是(0,)+∞,1()f x a x'=-,0a ≤时,()0f x '>恒成立,()f x 在(0,)+∞递增,0a >时,10x a <<时,()0f x '>,1x a >时,()0f x '<,()f x 的增区间是1(0,a,减区间是1(,)a+∞.(2)1()f x a x'=-,()e x g x '=,设()g x 的切线方程是y kx =,则e x k =,显然0k >,ln x k =,切点为(ln ,)k k ,于是ln kk k=,解得e =k ,所以2l 的斜率为e ,于是1l 的斜率为1e设()f x 的切点坐标为00(,)x y ,由011e a x -=,0e e 1x a =+,又00()1e f x x =,所以e e 1eln (1)e 1e 1e e 1a a a a +-=⨯+++,整理得ln(e 1)a a =+,设()ln(e 1)G x x x =+-,e e 1e ()1e 1e 1xG x x x --'=-=++,当e 10e x -<<时,()0G x '>,()G x 递增,而(0)0G =,所以e 1()0eG ->,e 1ex ->时,()0'<G x ,()G x 递减,又343(e )ln(e 1)e 580G =+-<-<,所以存在30e 1(,e )ex -∈,使得0()0G x =,因此关于a 的方程ln(e 1)a a =+有正数解.所以存在0a >,使得切线1l 和2l 的斜率互为倒数;(3)2()ln h x x x ax =-+,1()2h x x a x'=-+,因为函数()()2h x x a f x =+-的图象与x 轴交于两2点()1,0A x ,()2,0B x ,且120x x <<.所以2111122222()ln 0()ln 0h x x x ax h x x x ax ⎧=-+=⎨=-+=⎩,两式相减得:22121212(ln ln )()0x x x x a x x ---+-=,121212ln ln ()x x a x x x x -=-+-,1λμ+=01212121()()2()h x h x x a x x x x λμλμλμ''=+=-+++121212ln ln ()x x x x x x -=-+-121212()x x x x λμλμ-+++12121212ln ln 1(21)()x x x x x x x x λλμ-=--+--+因为1λμ+=,0μλ≥>,所以210λ-≤,又120x x <<,120x x -<,所以12(21)()0x x λ--≥,下面考虑121212ln ln 1x x x x x x λμ---+即112212ln x x x x x x λμ--+的符号,令12(0,1)x t x =∈,1122121ln ln x x x t t x x x t λμλμ---=-++,设1()ln t H t t t λμ-=-+,(0,1)t ∈,222222222221(1)(21)()()()()()t t t t t t H t t t t t t t λμλλλμμλλμμλμλμλμ+--+-+-++'=-==+++2222(1)()()t t t t λμλμ--=+,因为01,0t λμ<<<≤,所以10t -<,2220t λμ-<,所以()0H t '>在(0,1)上恒成立,所以()H t 在(0,1)上是增函数,所以()(1)0H t H <=,即112212ln0x x xx x x λμ--<+,又120x x -<,所以121212ln ln 10x x x x x x λμ-->-+,所以12121212ln ln 1(21)()0x x x x x x x x λλμ---+->-+,即0()0h x '>,所以函数()h x 在点()()00,M x h x 处的切线斜率为正.【点睛】本题考查用导数求函数的单调区间,导数的几何意义,研究方程根的分布等等,解题关键是掌握转化与化归思想,方程有正数解问题转化为函数有正的零点,这就可结合零点存在定理用导数知识来研究函数的性质,判断函数值的正负,通过换元法,设12x t x =,化不确定为确定,化二元为一元:(0,1)t ∈,转化为研究函数()H t 的正负.本题对学生的逻辑思维能力,运算求解能力要求较高,属于困难题.②22.(I )2121'()20).ax f x ax x x x-=-=>(0a ≤当时,'()f x <0,()f x 在0+∞(,)内单调递减.0a >当时,由'()f x =0,有2x a=此时,当x ∈12a(时,'()f x <0,()f x 单调递减;当x ∈1+)2a∞时,'()f x >0,()f x 单调递增.(II )令()g x =111ex x --,()s x =1e x x --.则'()s x =1e1x --.而当1x >时,'()s x >0,所以()s x 在区间1+)∞(,内单调递增.又由(1)s =0,有()s x >0,从而当1x >时,()f x >0.当0a ≤,1x >时,()f x =2(1)ln 0a x x --<.故当()f x >()g x 在区间1+)∞(,内恒成立时,必有0a >.当102a <<时,2a由(I )有)(1)02f f a<=,从而(02g a>,所以此时()f x >()g x 在区间1+)∞(,内不恒成立.当12a ³时,令()()()(1)h x f x g x x =-³,当1x >时,3212222111112121()2e 0xx x x x h x ax x x x x x x x x --+-+¢=-+->-+-=>>,因此,()h x 在区间(1,)+¥单调递增.又因为(1)=0h ,所以当1x >时,()()()0h x f x g x =->,即()()f x g x >恒成立.综上,1[,)2a Î+¥③【答案】(1)答案见解析(2)1,2⎡⎫+∞⎪⎢⎣⎭【解析】【分析】(1)对()f x 求导得()e 1xf x a '=-,分别讨论0a ≤和0a >时,求不等式()0f x '>,()0f x '<的解集,再由极值的定义可求得结果;(2)()1220t t t λλ-+>恒成立,转化为()()()12121221122112++21122112e e ===e +e e e e e e +e t t t t t t t t t t t t t t t t t t t t a t t λ---->+--对任意12101lnt t a <<<<恒成立,进一步令21t t m -=,e e m m mλ->-对任意0m >恒成立,令()e e 0m m m h m λ-=-->,分类讨论120λ-≥和120λ-<是否满足()min 0h m >,即可得出答案.【小问1详解】解:函数()e xf x a x =-的定义域为R ,()e 1xf x a '=-,当0a ≤时,()0f x '<在x ∈R 恒成立,()f x 在x ∈R 单调递减,故()f x 无极值;当0a >时,令()e 10xf x a '=-=,则1lnln x a a==-,(),ln x a ∈-∞-时,()0f x '<,()f x 在(),ln x a ∈-∞-单调递减;()ln ,x a ∈-+∞时,()0f x '>,()f x 在()ln ,x a ∈-+∞单调递增;故()f x 在1lnln x a a==-取极小值,且1ln 1ln f a a ⎛⎫=+ ⎪⎝⎭,无极大值综上,当0a ≤时,()f x 无极值;当0a >时,()f x 在1ln ln x a a==-取极小值,且1ln 1ln f a a ⎛⎫=+ ⎪⎝⎭,无极大值.【小问2详解】解:∵()21121212e e 0t t at at t t t t ==<<,∴2121e e 1t t a a t t ==,即22e 0t a t -=且11e 0t a t -=∴()111e 0tf t a t =-=且()222e 0tf t a t =-=,即1t ,2t 为()f x 的两个零点∴由(1)知,当0a >时,()f x 在ln x a =-取极小值,且()ln 1ln 0f a a -=+<,故10ea <<又∵()1e 10f a =-<,∴12101ln t t a<<<<,又∵()1220t t t λλ-+>恒成立,∴1212t t t t λ>+对任意12101ln t t a<<<<恒成立,∵1212e 0e 0t t a t a t ⎧-=⎨-=⎩,∴()2121e e t tt t a +=+,12+221e t t t t a =且2121e e t tt t a -=-∴()()()12121221122112++21122112e e ===e +e e e e e e +e t t t t t t t t t t t t t t t t t t t t a t t λ---->+--对任意12101ln t t a<<<<恒成立∴令21t t m -=,则0m >,e e m mmλ->-对任意0m >恒成立,则0λ>.∴e e 0m mmλ--->对任意0m >恒成立令()e e 0m mm h m λ-=-->,则()1e +e m m h m λ-'=-当120λ-≥,即12λ≥时,()1e +e 0m m h m λ-'=->恒成立故()h m 在()0,m ∈+∞为单调递增函数,又∵()00h =,∴()0h m >对0m >恒成立当120λ-<,即102λ<<时,()h m '为单调增函数,又∵()1020h λ'=-<,1ln 0h λλ⎛⎫'=> ⎪⎝⎭,∴010,ln m λ⎛⎫∃∈ ⎪⎝⎭使()00h m '=,当()00,m m ∈时,()0h m ¢<,故()h m 在()00,m m ∈单调递减∴当()00,m m ∈时,()()00h m h <=,不合题意综上,实数λ的取值范围为1,2⎡⎫+∞⎪⎢⎣⎭.【点睛】本题考查利用导数判断函数的单调性求函数的极值及导数在恒成立求参问题中的应用,考查学生的运算求解能力和转化与化归能力.属于综合型、难度大型试题.④【答案】(1)见解析(2)见解析【解析】【分析】(1)求出函数的导数,分类讨论得到导数的符号后可得函数的单调性和最值.(2)利用同构可得原方程即为2e x x m +=有两个不同的实数根12,x x ,结合构造法可证122e e x x m+>成立.【小问1详解】()2122a a x f x x x --'=-=++,其中2x >-若0a ≤,则()0f x ¢<在()2,-+∞上恒成立,故()f x 在()2,-+∞上为减函数,故()f x 无最值.若0a >,当()2,2x a ∈--时,()0f x ¢>;当()2,x a ∈-+∞时,()0f x ¢<;故()f x 在()2,2a --上为增函数,在()2,a -+∞上为减函数,故()max ()2ln 2f x f a a a a =-=-+,()f x 无最小值.【小问2详解】方程21e ln (0)2xm m m m x =->+即为()e ln 2ln 2x m x m x x ++=+++,故()ln ln eln e 2ln 2x mx m x x +++=+++,因为ln y x x =+为()0,+∞上的增函数,所以ln 2e e x m x x m ++==所以关于x 的方程21e ln (0)2xm m m m x =->+有两个不等的实数根12,x x 即为:2e x x m +=有两个不同的实数根12,x x .所以12122e ,2e x xx m x m +=+=,所以()1212e -exx x x m -=,不妨设12x x >,12t x x =-,故()()12121212e e e e e e x x x x x x x x m -+=+-,要证:122e e x x m+>即证()()1212122e e e e x x x x x x m m -+>-,即证()121212e12e 1x x x x x x ---+>-,即证()()e 120e 1ttt t +>>-,即证()()e 12e 20ttt t +>->,设()()e 12e 2tts t t =+-+,则()()e 1e 2e 1e 1t t t ts t t t '=++-=-+,故()e 0ts t t ''=>,所以()s t '在()0,+∞上为增函数,故()()00s t s ''>=,所以()s t 在()0,+∞上为增函数,所以()()00s t s >=,故122e e x xm+>成立.【点睛】思路点睛:对于较为复杂的与指数、对数有关的方程,可以考虑利用同构将其转化为简单的方程,从而利用常见的极值点偏移的方法来处理零点不等式.⑤【答案】(1)单调性讨论见解析(2)证明见解析【解析】【分析】(1)求导,根据a 的符号分类讨论即可;(2)考虑x 的取值范围,采用缩放法可以证明.【小问1详解】()'e x f x a =-,当0a ≤时,()'fx >,()f x 是单调递增的;当0a >时,令()'e 0x f x a =-=,得到0ln x a =,当(),ln x a ∈-∞时,()'f x <,()f x 单调递减;当()ln ,x a ∈+∞时,()'f x >,()f x 单调递增;【小问2详解】由题意,1x >时,()4323ln f x x x x x ≥-+等价于()2e 3ln 1x x x x x x≥-+,设()()()'2e 1e ,x x x h x h x x x -==,当1x >时,()'0h x >,()h x 单调递增,()()1e h x h >=…①,设()()'1ln 1,10k x x x k x x=--=->,()k x ∴是增函数,()()ln 110k x x x k =-->=,即1ln ,ln 1x x x x ->->-,()2223ln 1311231x x x x x x x x -+>+-+=-++,()()223ln 1231x x x x x x x -+>-++,令()()23223123p x x x x x x x =-++=-++,()'2661p x x x =-++=66066061212x x ⎛⎫⎛⎫+--- ⎪⎪ ⎪⎪⎝⎭⎝⎭,当66012x +>时,()'0p x <,当6606601212x +<<时,()'0p x >,66012x +∴=时,()p x 取最大值566013126+=⨯+,608<,566015141382.53126312618∴⨯+<⨯+=<,即()p x 的最大值小于2.5,由①可知,()e h x > 2.5>,∴当1x >时,()()()h x p x k x >>,即()4323ln f x x x x x≥-+;【点睛】本题的第二问要从1x >考虑,因为e xx的最小值就是在1x =取得,对于原不等式,由于导数计算过于复杂,因此考虑对ln x 进行缩放,使得计算比较简单.⑥【答案】(1)当1a ≥时,f (x )在(0,)+∞上单调递增;当1a <时,f (x )在(0,1-a )上单调递减,在(1-a ,+∞)上单调递增;(2)证明见解析【解析】【分析】(1)由题意可得21()(1)ln 2f x x ax a x =++-,求导,分1a ≥和1a <讨论即可;(2)令()ln h x x x =-,利用导数确定()h x 的单调性并求出最小值,再令2()ln ,0x x x x ϕ=->,利用导数确定()ϕx 的单调性并求出最小值即可得证.【小问1详解】解:因为,所以21()(1)ln 2f x x ax a x =++-,()f x 的定义域为(0,)+∞,1(1)(1)()a x x a f x x a x x-++-'=++=.当1a ≥时,()0,()f x f x ≥'在(0,)+∞上单调递增.当1a <时,若(0,1)x a ∈-,则()0,()f x f x <'单调递减;若(1,)x a ∈-+∞,则()0,()f x f x >'单调递增.综上所述:当1a ≥时,f (x )在(0,)+∞上单调递增;当1a <时,f(x)在(0,1-a )上单调递减,在(1-a,+∞)上单调递增;【小问2详解】证明:211()(ln )ln 2f x x x x x x x ⎡⎤=-+-⎢⎥⎣⎦.设()ln h x x x =-,则1()x h x x=-'.当(0,1)x ∈时,()0,()h x h x <'单调递减;当(1,)x ∈+∞时,()0,()h x h x >'单调递增.所以min ()(1)1,ln 1h x h x x ==-≥,因此222211111(ln )2222x x x x x x x x x x ⎡⎤⎛⎫-+≥+≥⨯= ⎪⎢⎥⎣⎦⎝⎭,当且仅当1x =时,等号成立.设2()ln ,0x x x x ϕ=->,则221()x x xϕ-'=.当20,2x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0,()x x ϕϕ<'单调递减:当2,2x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0,()x x ϕϕ>'单调递增.因此min2121ln 2()ln 2222x ϕϕ⎛⎫+==-= ⎪ ⎪⎝⎭,从而1ln 2()()2f x x ϕ+≥≥,则1ln 2()2f x +≥,因为212≠,所以1ln 2()2f x +≥中的等号不成立,故1ln 2()2f x +>.⑦【答案】(1)当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在10,a ⎛⎫⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;(2)()2,+∞.【解析】【分析】(1)根据a 的正负性,结合导数的性质分类讨论求解即可;(2)根据已知等式构造函数()1ln h t a t t t=+-,利用导数的性质,结合一元二次方程的求解根公式判断该函数的单调性,再通过构造新函数,利用导数的性质进行求解即可.【小问1详解】函数()f x 的定义域为()0,∞+,()21ax f x x -'=.当0a ≤时,()0f x <′,()f x 在()0,∞+上单调递减;当0a >时,令()0f x <′,得10x a <<,令()0f x >′,得1x a>,所以()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.综上所述,当0a ≤时,()f x 在()0,∞+上单调递减;当0a >时,()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增;【小问2详解】()()21212121211111ln ln ln 0x f x f x a x a x a x x x x x =⇒+=+⇒+-=,又121x x =+,则21212212121121ln 0ln 0x x x x x x x x a a x x x x x x +++-=⇒+-=.令211x t x =>,即方程1ln 0a t t t+-=在()1,+∞上有解.令()1ln h t a t t t=+-,()1,t ∈+∞,则()2211a t t at t h t t t⎛⎫-+ ⎪-+-⎝⎭'==,()1,t ∈+∞.12t t+>,当2a ≤时,()0h t '<,()h t 在()1,+∞上单调递减,又()10h =,则()0h t <在()1,t ∈+∞上恒成立,不合题意;当2a >时,240a ->,令210t at -+-=,可知该方程有两个正根,因为方程两根之积为1且1t >,所以242a a t +-=.当241,2a a t ⎛⎫-∈ ⎪ ⎪⎝⎭时,()0h t '>,当24,2a a t ⎛⎫+-∈+∞⎪ ⎪⎝⎭时,()0h t '<;则241,2a a t ⎛⎫-∈ ⎪ ⎪⎝⎭时,()()10h t h >=,而()()221ee 1e 2eaa a a h aa a =+-<+->.令()()21e2xx x x ϕ=+->,则()2e x x x ϕ'=-,令()()m x x ϕ=',()2e 0xm x '=-<,则()x ϕ'在()2,+∞上单调递减,()()224e 0x ϕϕ'<'=-<,则()x ϕ在()2,+∞上单调递减,()()225e 0x ϕϕ<=-<,即()e0ah <,故存在204,e 2a a a t ⎛⎫+-∈⎪ ⎪⎝⎭,使得()00h t =,故2a >满足题意.综上所述,实数a 的取值范围是()2,+∞.【点睛】关键点睛:根据等式的形式构造新函数,再根据不等式的形式构造新函数是解题的关键.⑧【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求出()1()0f x a x x'=->,分0a 和0a >两种情况讨论即可得答案;(2)由(1)根据函数零点存在定理存在12110,,,x x a a ∞⎛⎫⎛⎫∈∈+ ⎪ ⎪⎝⎭⎝⎭,使得()()120f x f x ==,由对于任意的0x >,都有()()0f x g x ,可得12,x x 也是函数()g x 的两个零点,即12,x x 是方程20x nx m -+=的根,所以1212,x x n x x m +==,又1122ln ,ln ax x ax x ==,所以()()121212ln ln ln ln m x x x x a x x ==+=+,所以2ln 4nm <<等价于()121224x x a x x +<+<,由104a <<,不等式右边易证,左边要证122x x a +>,即证212x x a >-,构造函数2()()p x f x f x a ⎛⎫=-- ⎪⎝⎭即可证明.【小问1详解】解:()f x 的定义域为(0,)+∞,1()f x a x'=-,当0a 时,对于任意的0x >,都有()0f x '<,所以()f x 在(0,)+∞内单调递减;当0a >时,令()0f x '>,解得1x a >;令()0f x '<,解得10x a<<,所以()f x 在10,a ⎛⎫ ⎪⎝⎭内单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭内单调递增;【小问2详解】证明:因为当10,4a ⎛⎫∈ ⎪⎝⎭时,()f x 在10,a ⎛⎫⎪⎝⎭内单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭内单调递增,又21111ln 1ln 40,(1)0,2ln 0f a f a f a a a a ⎛⎫⎛⎫=+<-<=>=+> ⎪ ⎪⎝⎭⎝⎭,所以存在12110,,,x x a a ∞⎛⎫⎛⎫∈∈+ ⎪ ⎪⎝⎭⎝⎭,使得()()120f x f x ==,且当()10,x x ∈时,()0f x >,当()12,x x x ∈时,()0f x <,当()2,x x ∈+∞时,()0f x >,因为对于任意的0x >,都有()()0f x g x ,所以12,x x 也是函数()g x 的两个零点,即12,x x 是方程20x nx m -+=的根,所以1212,x x n x x m +==,又因为1122ln ,ln ax x ax x ==,所以()()121212ln ln ln ln m x x x x a x x ==+=+,所以2ln 4n m <<等价于()121224x x a x x +<+<,因为104a <<,所以()12124x x a x x ++<,下面证明:122x x a +>.要证122x x a +>,即证212x x a>-,因为2121,,,()x x f x a a ⎛⎫-∈+∞ ⎪⎝⎭在1,a ⎛⎫+∞ ⎪⎝⎭内单调递增,所以只需证()212f x f x a ⎛⎫>-⎪⎝⎭,又因为()()12f x f x =,所以也只需证()112f x f x a ⎛⎫>-⎪⎝⎭,设2()()p x f x f x a ⎛⎫=--⎪⎝⎭,则2()()p x f x f x a ⎛⎫'='+'- ⎪⎝⎭222a a x x a =-⎛⎫- ⎪⎝⎭,因为221x x a a⎛⎫-< ⎪⎝⎭,所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0p x '<,所以()p x 在10,a ⎛⎤⎥⎝⎦上单调递减,又因为10p a ⎛⎫=⎪⎝⎭,所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0p x >,即2()f x f x a ⎛⎫>- ⎪⎝⎭,因为110,x a ⎛⎫∈ ⎪⎝⎭,所以()112f x f x a ⎛⎫>- ⎪⎝⎭,所以122x x a +>成立,即()122a x x +>,因此2ln 4n m <<.【点睛】关键点点睛:本题(2)问解题的关键是根据函数零点存在定理判断存在12110,,,x x a a ∞⎛⎫⎛⎫∈∈+ ⎪ ⎪⎝⎭⎝⎭,使得()()120f x f x ==,从而可得12,x x 也是函数()g x 的两个零点,即12,x x 是方程20x nx m -+=的根,进而将欲证不等式2ln 4nm <<等价转化为证明()121224x x a x x +<+<.⑨【答案】(1)当0a ≤时,()f x 在(),-∞+∞上单调递增;当0a >时,()f x 在(),1ln a -∞+上单调递减,在()1ln ,a ++∞上单调递增(2)122e24ln 2a --≤≤-【解析】【分析】(1)分类讨论0a ≤与0a >两种情况,函数求导即可判断函数的增减区间.(2)将函数代入后化简即可将式子转化为1122e e 2x x ax x ----≤≤-+,对两侧函数分别求导求出最值即可求出实数a 的取值范围.【小问1详解】()1e x f x a-='-①当0a ≤时,()0f x '>,()f x 在(),-∞+∞上单调递增;②当0a >时,令()1e0x f x a --'==,1ln x a =+,当(),1ln x a ∈-∞+时,()0f x '<,()f x 在(),1ln a -∞+上单调递减;当()1ln ,x a ∈++∞时,()0f x '>,()f x 在()1ln ,a ++∞上单调递增;【小问2详解】由()224a f x x -≥,得2212e 42x a a x ax x -⎛⎫≥++=+ ⎪⎝⎭,对于任意0x ≥恒成立,因此1122ee 2x x ax x ----≤≤-+,记()12ex h x x -=-+,由()1211e 02x h x -=-+=',得12ln 2x =+,当[]0,12ln 2x ∈+时,()h x 单调递减,当[]12ln 2,x ∈++∞时,()h x 单调递增,所以()min 12ln 2h x =-,因此24ln 2a ≤-;记()12e x t x x -=--,易知()t x 在调递减,所以()()12max0e t x t -==-,所以122e a -≥-;综上,122e24ln 2a --≤≤-.【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.⑩【答案】(1)答案见解析;(2)2a ⎛ ⎝.【解析】【分析】(1)先对函数求导,然后结合导数与单调性关系对a 进行分类讨论,确定导数符号,进而确定函数的单调性;(2)先对()F x 求导,然后结合极值存在条件可转化为()0F x '=有两个不等正实数解,结合二次方程根的存在条件及方程的根与系数关系及导数几何意义求出切线方程,构造函数()()()h x F x G x =-,结合导数与单调性关系进而可求.【详解】解:(1)()21-='ax f x x ,当0a ≤时,()0f x '<恒成立,函数()f x 在()0,∞+上单调递减,当0a >时,易得当1x a >时,()0f x '>,当10x a<<时,()0f x '<,故()f x 在1,a ⎛⎫+∞⎪⎝⎭上单调递增,在10,a ⎛⎫⎪⎝⎭上单调递减,(2)()()()2ln F x f x g x a x x x =+=+-,所以()2221a x x aF x x x x-+'=+-=,0x >,因为()()()F x f x g x =+存在两个极值点1x ,2x ,所以()220x x aF x x-+'==有两个不等正实数解,即220x x a -+=有两个不等式正根,所以18002a a∆=->⎧⎪⎨>⎪⎩,解得108a <<,因为122a x x =,122a x x x ==所以212a F a '=-,ln 22222a a a a a F =+-所以曲线()y F x =在12x x x =处的切线方程为()ln 22122222a a a a a y a x ⎛⎛-+=-- ⎝⎝,即()()321ln 222a a a G x y a x ==-+-,令()()()23ln 22ln 222a a a h x F x G x x a x ax =-=+-+-,()2222220x a x ax ah x xx-+'==>,故()h x 在()0,∞+上单调递增,且02a h =,故当02ax <<时,()0h x <,即()()F x G x <,故x 的范围2a ⎛ ⎝.【点睛】关键点点睛:解不等式比较常用的方法是构造新函数,研究函数的单调性,明确函数的零点,即可明确不等式何时成立.⑪解析:(1)1)(-+='a e x f x,(1)当−1≥0,即时,得'x >0恒成立,此时函数)(x f 在R 上单调递增,故函数)(x f 在R 上无最大最小值………………………2分○2当−1<0,即<1时,由'x =0,解得=l?(1−p ,当>l?(1−p 时,'x >0,f (x )单调递增当<l?(1−p 时,'x <0,f (x )单调递减所以=l?(1−p 时,f (x )取最小值即)1ln()1(1))1(ln()(min a a a a f x f --+-=-=………………………4分(2)x x e x g x f x h x-+-=-=4sin(2)()()(π,则14cos(2)(-+-='πx e x h x ○1当)43,4(ππ-∈x 时,由)4cos(π+=x y 在区间)43,4(ππ-上单调递减,知:)(x h '在)43,4(ππ-上单调递增,且01)0(<-='h ,01243(43>-+='ππe h ,知:函数)(x h '在)43,4(ππ-上有唯一的零点)43,0(0π∈x 。

高三数学导数(全章导数的概念等15个) 人教课标版9

高三数学导数(全章导数的概念等15个) 人教课标版9

S(x)6x22x 41.6令 S(x)0,得x12233,x22233.
x1(0,2), 所以当 因此当点B为(2 2
x 3 ,02) 时2,3矩3时形,的S(最x)m 大a面x3积923是.
32
3.
2
9
例5:如图宽为a的走廊与另一走廊
8a θ C y
垂直相连,如果长为8a的细杆
B
能水平地通过拐角,问另一走
答案:(1)a=1,b=4. (2)单调递增区间为(-∞,-1)和(1,+∞).
练习2:已知函数f(x)=x3+ax2+bx+c在x=-2/3与x=1处都 取得极值. (1)求a、b的值; (2)若x∈[-1,2]时,不等式f(x)<c2恒成立,求c的取值范围.
答案:(1)a=-1/2,b=-2. (2)利用f(x)max<c2,解得c<-1或c>2.
A a
廊的宽度至少是多少?
解:设细杆与另一走廊一边夹角为(0 ),又设另一走
廊 的y (宽) 为B y.s C A i n s Bca io (8 n a ,sB C a 8a)0 c( ao .s 2). cos 2
y () 8 a co a s s2 ic n 2 a o cs 2 o s 8 a co c s a 2 o.s
导数的应用习题课
一、知识点
1.导数应用的知识网络结构图:
(1)已知f(x)=2x3-6x2+m(m为常数),在[-2 , 2] 上有最大值3,函数在[-2 , 2]上的最小值__-3_7__
(2)函数f(x)=x3+ax+b,满足f(0)=0,且在 x=1时取得极小值,则实数a的值为_-_3___

高考导数分类汇编

高考导数分类汇编

全国高考理科数学分类汇编——函数与导数1.(北京)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是f(x)=sinx.【解答】解:例如f(x)=sinx,尽管f(x)>f(0)对任意的x∈(0,2]都成立,当x∈[0,)上为增函数,在(,2]为减函数,故答案为:f(x)=sinx.2.(北京)设函数f(x)=[ax2﹣(4a+1)x+4a+3]e x.(Ⅰ)若曲线y=f(x)在点(1,f(1))处的切线与x轴平行,求a;(Ⅱ)若f(x)在x=2处取得极小值,求a的取值范围.【解答】解:(Ⅰ)函数f(x)=[ax2﹣(4a+1)x+4a+3]e x的导数为f′(x)=[ax2﹣(2a+1)x+2]e x.由题意可得曲线y=f(x)在点(1,f(1))处的切线斜率为0,可得(a﹣2a﹣1+2)e=0,解得a=1;(Ⅱ)f(x)的导数为f′(x)=[ax2﹣(2a+1)x+2]e x=(x﹣2)(ax﹣1)e x,若a=0则x<2时,f′(x)>0,f(x)递增;x>2,f′(x)<0,f(x)递减.x=2处f(x)取得极大值,不符题意;若a>0,且a=,则f′(x)=(x﹣2)2e x≥0,f(x)递增,无极值;若a>,则<2,f(x)在(,2)递减;在(2,+∞),(﹣∞,)递增,可得f(x)在x=2处取得极小值;若0<a<,则>2,f(x)在(2,)递减;在(,+∞),(﹣∞,2)递增,可得f(x)在x=2处取得极大值,不符题意;若a<0,则<2,f(x)在(,2)递增;在(2,+∞),(﹣∞,)递减,可得f(x)在x=2处取得极大值,不符题意.综上可得,a的范围是(,+∞).3.(江苏)函数f(x)=的定义域为[2,+∞).【解答】解:由题意得:≥1,解得:x≥2,∴函数f(x)的定义域是[2,+∞).故答案为:[2,+∞).4.(江苏)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(﹣2,2]上,f(x)=,则f(f(15))的值为.【解答】解:由f(x+4)=f(x)得函数是周期为4的周期函数,则f(15)=f(16﹣1)=f(﹣1)=|﹣1+|=,f()=cos()=cos=,即f(f(15))=,故答案为:5.(江苏)若函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,则f(x)在[﹣1,1]上的最大值与最小值的和为﹣3.【解答】解:∵函数f(x)=2x3﹣ax2+1(a∈R)在(0,+∞)内有且只有一个零点,∴f′(x)=2x(3x﹣a),x∈(0,+∞),①当a≤0时,f′(x)=2x(3x﹣a)>0,函数f(x)在(0,+∞)上单调递增,f(0)=1,f(x)在(0,+∞)上没有零点,舍去;②当a>0时,f′(x)=2x(3x﹣a)>0的解为x>,∴f(x)在(0,)上递减,在(,+∞)递增,又f(x)只有一个零点,∴f()=﹣+1=0,解得a=3,f(x)=2x3﹣3x2+1,f′(x)=6x(x﹣1),x∈[﹣1,1],f′(x)>0的解集为(﹣1,0),f(x)在(﹣1,0)上递增,在(0,1)上递减;f(﹣1)=﹣4,f(0)=1,f(1)=0,∴f(x)min=f(﹣1)=﹣4,f(x)max=f(0)=1,∴f(x)在[﹣1,1]上的最大值与最小值的和为:f(x)max+f(x)min=﹣4+1=﹣3.6.(江苏)记f′(x),g′(x)分别为函数f(x),g(x)的导函数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)与g(x)的一个“S点”.(1)证明:函数f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)若函数f(x)=ax2﹣1与g(x)=lnx存在“S点”,求实数a的值;(3)已知函数f(x)=﹣x2+a,g(x)=.对任意a>0,判断是否存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”,并说明理由.【解答】解:(1)证明:f′(x)=1,g′(x)=2x+2,则由定义得,得方程无解,则f(x)=x与g(x)=x2+2x﹣2不存在“S点”;(2)f′(x)=2ax,g′(x)=,x>0,由f′(x)=g′(x)得=2ax,得x=,f()=﹣=g()=﹣lna2,得a=;(3)f′(x)=﹣2x,g′(x)=,(x≠0),由f′(x0)=g′(x0),得b=﹣>0,得0<x0<1,由f(x0)=g(x0),得﹣x02+a==﹣,得a=x02﹣,令h(x)=x2﹣﹣a=,(a>0,0<x<1),设m(x)=﹣x3+3x2+ax﹣a,(a>0,0<x<1),则m(0)=﹣a<0,m(1)=2>0,得m(0)m(1)<0,又m(x)的图象在(0,1)上连续不断,则m(x)在(0,1)上有零点,则h(x)在(0,1)上有零点,则f(x)与g(x)在区间(0,+∞)内存在“S”点.7.(全国1卷)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为()DA.y=﹣2x B.y=﹣x C.y=2x D.y=x【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,曲线y=f(x)在点(0,0)处的切线的斜率为:1,则曲线y=f(x)在点(0,0)处的切线方程为:y=x.故选:D.8.(全国1卷)已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()CA.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.9. (全国1卷)已知函数f(x)=2sinx+sin2x,则f(x)的最小值是.【解答】解:由题意可得T=2π是f(x)=2sinx+sin2x的一个周期,故只需考虑f(x)=2sinx+sin2x在[0,2π)上的值域,先来求该函数在[0,2π)上的极值点,求导数可得f′(x)=2cosx+2cos2x=2cosx+2(2cos2x﹣1)=2(2cosx﹣1)(cosx+1),令f′(x)=0可解得cosx=或cosx=﹣1,可得此时x=,π或;∴y=2sinx+sin2x的最小值只能在点x=,π或和边界点x=0中取到,计算可得f()=,f(π)=0,f()=﹣,f(0)=0,∴函数的最小值为﹣,故答案为:.10.(全国1卷)已知函数f(x)=﹣x+alnx.(1)讨论f(x)的单调性;(2)若f(x)存在两个极值点x1,x2,证明:<a﹣2.【解答】解:(1)函数的定义域为(0,+∞),函数的导数f′(x)=﹣﹣1+=﹣,设g(x)=x2﹣ax+1,当a≤0时,g(x)>0恒成立,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,当a>0时,判别式△=a2﹣4,①当0<a≤4时,△≤0,即g(x)>0,即f′(x)<0恒成立,此时函数f(x)在(0,+∞)上是减函数,②当a>2时,x,f′(x),f(x)的变化如下表:(0,)(,)(,+∞)综上当a≤2时,f(x)在(0,+∞)上是减函数,当a>2时,在(0,),和(,+∞)上是减函数,则(,)上是增函数.(2)由(1)知a>2,0<x1<1<x2,x1x2=1,则f(x1)﹣f(x2)=(x2﹣x1)(1+)+a(lnx1﹣lnx2)=2(x2﹣x1)+a(lnx1﹣lnx2),则=﹣2+,则问题转为证明<1即可,即证明lnx1﹣lnx2>x1﹣x2,即证2lnx1>x1﹣在(0,1)上恒成立,设h(x)=2lnx﹣x+,(0<x<1),其中h(1)=0,求导得h′(x)=﹣1﹣=﹣=﹣<0,则h(x)在(0,1)上单调递减,∴h(x)>h(1),即2lnx﹣x+>0,故2lnx>x﹣,则<a﹣2成立.11.(全国2卷)函数f(x)=的图象大致为()BA.B.C.D.【解答】解:函数f(﹣x)==﹣=﹣f(x),则函数f(x)为奇函数,图象关于原点对称,排除A,当x=1时,f(1)=e﹣>0,排除D.当x→+∞时,f(x)→+∞,排除C,故选:B.12.(全国2卷)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()CA.﹣50 B.0 C.2 D.50【解答】解:∵f(x)是奇函数,且f(1﹣x)=f(1+x),∴f(1﹣x)=f(1+x)=﹣f(x﹣1),f(0)=0,则f(x+2)=﹣f(x),则f(x+4)=﹣f(x+2)=f(x),即函数f(x)是周期为4的周期函数,∵f(1)=2,∴f(2)=f(0)=0,f(3)=f(1﹣2)=f(﹣1)=﹣f(1)=﹣2,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=2+0﹣2+0=0,则f(1)+f(2)+f(3)+…+f(50)=12[f(1)+f(2)+f(3)+f(4)]+f(49)+f(50)=f(1)+f(2)=2+0=2,故选:C.13.(全国2卷)曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.【解答】解:∵y=2ln(x+1),∴y′=,当x=0时,y′=2,∴曲线y=2ln(x+1)在点(0,0)处的切线方程为y=2x.故答案为:y=2x.14.(全国2卷)已知函数f(x)=e x﹣ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.【解答】证明:(1)当a=1时,函数f(x)=e x﹣x2.则f′(x)=e x﹣2x,令g(x)=e x﹣2x,则g′(x)=e x﹣2,令g′(x)=0,得x=ln2.当∈(0,ln2)时,h′(x)<0,当∈(ln2,+∞)时,h′(x)>0,∴h(x)≥h(ln2)=e ln2﹣2•ln2=2﹣2ln2>0,∴f(x)在[0,+∞)单调递增,∴f(x)≥f(0)=1,解:(2),f(x)在(0,+∞)只有一个零点⇔方程e x﹣ax2=0在(0,+∞)只有一个根,⇔a=在(0,+∞)只有一个根,即函数y=a与G(x)=的图象在(0,+∞)只有一个交点.G,当x∈(0,2)时,G′(x)<0,当∈(2,+∞)时,G′(x)>0,∴G(x)在(0,2)递增,在(2,+∞)递增,当→0时,G(x)→+∞,当→+∞时,G(x)→+∞,∴f(x)在(0,+∞)只有一个零点时,a=G(2)=.15.(全国3卷)函数y=﹣x4+x2+2的图象大致为()DA.B.C.D.【解答】解:函数过定点(0,2),排除A,B.函数的导数f′(x)=﹣4x3+2x=﹣2x(2x2﹣1),由f′(x)>0得2x(2x2﹣1)<0,得x<﹣或0<x<,此时函数单调递增,排除C,故选:D.16.(全国3卷)设a=log0.20.3,b=log20.3,则()BA.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b【解答】解:∵a=log0.20.3=,b=log20.3=,∴=,,∵,,∴ab<a+b<0.故选:B.17.(全国3卷)曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,则a=﹣3.【解答】解:曲线y=(ax+1)e x,可得y′=ae x+(ax+1)e x,曲线y=(ax+1)e x在点(0,1)处的切线的斜率为﹣2,可得:a+1=﹣2,解得a=﹣3.故答案为:﹣3.18.(全国3卷)已知函数f(x)=(2+x+ax2)ln(1+x)﹣2x.(1)若a=0,证明:当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0;(2)若x=0是f(x)的极大值点,求a.【解答】(1)证明:当a=0时,f(x)=(2+x)ln(1+x)﹣2x,(x>﹣1).,,可得x∈(﹣1,0)时,f″(x)≤0,x∈(0,+∞)时,f″(x)≥0∴f′(x)在(﹣1,0)递减,在(0,+∞)递增,∴f′(x)≥f′(0)=0,∴f(x)=(2+x)ln(1+x)﹣2x在(﹣1,+∞)上单调递增,又f(0)=0.∴当﹣1<x<0时,f(x)<0;当x>0时,f(x)>0.(2)解:由f(x)=(2+x+ax2)ln(1+x)﹣2x,得f′(x)=(1+2ax)ln(1+x)+﹣2=,令h(x)=ax2﹣x+(1+2ax)(1+x)ln(x+1),h′(x)=4ax+(4ax+2a+1)ln(x+1).当a≥0,x>0时,h′(x)>0,h(x)单调递增,∴h(x)>h(0)=0,即f′(x)>0,∴f(x)在(0,+∞)上单调递增,故x=0不是f(x)的极大值点,不符合题意.当a<0时,h″(x)=8a+4aln(x+1)+,显然h″(x)单调递减,①令h″(0)=0,解得a=﹣.∴当﹣1<x<0时,h″(x)>0,当x>0时,h″(x)<0,∴h′(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴h′(x)≤h′(0)=0,∴h(x)单调递减,又h(0)=0,∴当﹣1<x<0时,h(x)>0,即f′(x)>0,当x>0时,h(x)<0,即f′(x)<0,∴f(x)在(﹣1,0)上单调递增,在(0,+∞)上单调递减,∴x=0是f(x)的极大值点,符合题意;②若﹣<a<0,则h″(0)=1+6a>0,h″(e﹣1)=(2a﹣1)(1﹣e)<0,∴h″(x)=0在(0,+∞)上有唯一一个零点,设为x0,∴当0<x<x0时,h″(x)>0,h′(x)单调递增,∴h′(x)>h′(0)=0,即f′(x)>0,∴f(x)在(0,x0)上单调递增,不符合题意;③若a<﹣,则h″(0)=1+6a<0,h″(﹣1)=(1﹣2a)e2>0,∴h″(x)=0在(﹣1,0)上有唯一一个零点,设为x1,∴当x1<x<0时,h″(x)<0,h′(x)单调递减,∴h′(x)>h′(0)=0,∴h(x)单调递增,∴h(x)<h(0)=0,即f′(x)<0,∴f(x)在(x1,0)上单调递减,不符合题意.综上,a=﹣.19.(上海)设常数a∈R,函数f(x)=1og2(x+a).若f(x)的反函数的图象经过点(3,1),则a=7.【解答】解:∵常数a∈R,函数f(x)=1og2(x+a).f(x)的反函数的图象经过点(3,1),∴函数f(x)=1og2(x+a)的图象经过点(1,3),∴log2(1+a)=3,解得a=7.故答案为:7.20.(上海)已知α∈{﹣2,﹣1,﹣,1,2,3},若幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,则α=﹣1.【解答】解:∵α∈{﹣2,﹣1,,1,2,3},幂函数f(x)=xα为奇函数,且在(0,+∞)上递减,∴a是奇数,且a<0,∴a=﹣1.故答案为:﹣1.21.(上海)已知常数a>0,函数f(x)=的图象经过点P(p,),Q(q,).若2p+q=36pq,则a=6.【解答】解:函数f(x)=的图象经过点P(p,),Q(q,).则:,整理得:=1,解得:2p+q=a2pq,由于:2p+q=36pq,所以:a2=36,由于a>0,故:a=6.故答案为:622.(上海)设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,则在以下各项中,f(1)的可能取值只能是()B A.B.C.D.0【解答】解:设D是含数1的有限实数集,f(x)是定义在D上的函数,若f(x)的图象绕原点逆时针旋转后与原图象重合,故f(1)=cos=,故选:B.23.(上海)某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族S中的成员仅以自驾或公交方式通勤.分析显示:当S中x%(0<x<100)的成员自驾时,自驾群体的人均通勤时间为f(x)=(单位:分钟),而公交群体的人均通勤时间不受x影响,恒为40分钟,试根据上述分析结果回答下列问题:(1)当x在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?(2)求该地上班族S的人均通勤时间g(x)的表达式;讨论g(x)的单调性,并说明其实际意义.【解答】解;(1)由题意知,当30<x<100时,f(x)=2x+﹣90>40,即x2﹣65x+900>0,解得x<20或x>45,∴x∈(45,100)时,公交群体的人均通勤时间少于自驾群体的人均通勤时间;(2)当0<x≤30时,g(x)=30•x%+40(1﹣x%)=40﹣;当30<x<100时,g(x)=(2x+﹣90)•x%+40(1﹣x%)=﹣x+58;∴g(x)=;当0<x<32.5时,g(x)单调递减;当32.5<x<100时,g(x)单调递增;说明该地上班族S中有小于32.5%的人自驾时,人均通勤时间是递减的;有大于32.5%的人自驾时,人均通勤时间是递增的;当自驾人数为32.5%时,人均通勤时间最少.24.(天津)已知a=log2e,b=ln2,c=log,则a,b,c的大小关系为()DA.a>b>c B.b>a>c C.c>b>a D.c>a>b【解答】解:a=log 2e>1,0<b=ln2<1,c=log=log23>log2e=a,则a,b,c的大小关系c>a>b,故选:D.25.(天津)已知a>0,函数f(x)=.若关于x的方程f(x)=ax恰有2个互异的实数解,则a的取值范围是(4,8).【解答】解:当x≤0时,由f(x)=ax得x2+2ax+a=ax,得x2+ax+a=0,得a(x+1)=﹣x2,得a=﹣,设g(x)=﹣,则g′(x)=﹣=﹣,由g(x)>0得﹣2<x<﹣1或﹣1<x<0,此时递增,由g(x)<0得x<﹣2,此时递减,即当x=﹣2时,g(x)取得极小值为g(﹣2)=4,当x>0时,由f(x)=ax得﹣x2+2ax﹣2a=ax,得x2﹣ax+2a=0,得a(x﹣2)=x2,当x=2时,方程不成立,当x≠2时,a=设h(x)=,则h′(x)==,由h(x)>0得x>4,此时递增,由h(x)<0得0<x<2或2<x<4,此时递减,即当x=4时,h(x)取得极小值为h(4)=8,要使f(x)=ax恰有2个互异的实数解,则由图象知4<a<8,故答案为:(4,8)26.(天津)已知函数f(x)=a x,g(x)=log a x,其中a>1.(Ⅰ)求函数h(x)=f(x)﹣xlna的单调区间;(Ⅱ)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2,g(x2))处的切线平行,证明x1+g(x2)=;(Ⅲ)证明当a≥e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.【解答】(Ⅰ)解:由已知,h(x)=a x﹣xlna,有h′(x)=a x lna﹣lna,令h′(x)=0,解得x=0.由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表:∴函数h(x)的单调减区间为(﹣∞,0),单调递增区间为(0,+∞);(Ⅱ)证明:由f′(x)=a x lna,可得曲线y=f(x)在点(x1,f(x1))处的切线的斜率为lna.由g′(x)=,可得曲线y=g(x)在点(x2,g(x2))处的切线的斜率为.∵这两条切线平行,故有,即,两边取以a为底数的对数,得log a x2+x1+2log a lna=0,∴x1+g(x2)=;(Ⅲ)证明:曲线y=f(x)在点()处的切线l1:,曲线y=g(x)在点(x2,log a x2)处的切线l2:.要证明当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线,只需证明当a≥时,存在x1∈(﹣∞,+∞),x2∈(0,+∞)使得l1与l2重合,即只需证明当a≥时,方程组由①得,代入②得:,③因此,只需证明当a≥时,关于x1的方程③存在实数解.设函数u(x)=,既要证明当a≥时,函数y=u(x)存在零点.u′(x)=1﹣(lna)2xa x,可知x∈(﹣∞,0)时,u′(x)>0;x∈(0,+∞)时,u′(x)单调递减,又u′(0)=1>0,u′=<0,故存在唯一的x0,且x0>0,使得u′(x0)=0,即.由此可得,u(x)在(﹣∞,x0)上单调递增,在(x0,+∞)上单调递减,u(x)在x=x0处取得极大值u(x0).∵,故lnlna≥﹣1.∴=.下面证明存在实数t,使得u(t)<0,由(Ⅰ)可得a x≥1+xlna,当时,有u(x)≤=.∴存在实数t,使得u(t)<0.因此,当a≥时,存在x1∈(﹣∞,+∞),使得u(x1)=0.∴当a≥时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线.27.(浙江)函数y=2|x|sin2x的图象可能是()DA. B. C.D.【解答】解:根据函数的解析式y=2|x|sin2x,得到:函数的图象为奇函数,故排除A和B.当x=时,函数的值也为0,故排除C.故选:D.28.(浙江)我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一.凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为x,y,z,则,当z=81时,x=8,y=11.【解答】解:,当z=81时,化为:,解得x=8,y=11.故答案为:8;11.29.(浙江)已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是{x|1<x<4} .若函数f(x)恰有2个零点,则λ的取值范围是(1,3] .【解答】解:当λ=2时函数f(x)=,显然x≥2时,不等式x﹣4<0的解集:{x|2≤x<4};x<2时,不等式f(x)<0化为:x2﹣4x+3<0,解得1<x<2,综上,不等式的解集为:{x|1<x<4}.函数f(x)恰有2个零点,函数f(x)=的草图如图:函数f(x)恰有2个零点,则λ∈(1,3].故答案为:{x|1<x<4};(1,3].30.(浙江)已知函数f(x)=﹣lnx.(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8﹣8ln2;(Ⅱ)若a≤3﹣4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【解答】证明:(Ⅰ)∵函数f(x)=﹣lnx,∴x>0,f′(x)=﹣,∵f(x)在x=x1,x2(x1≠x2)处导数相等,∴=﹣,∵x1≠x2,∴+=,由基本不等式得:=≥,∵x1≠x2,∴x1x2>256,由题意得f(x 1)+f(x2)==﹣ln(x1x2),设g(x)=,则,∴列表讨论:∴g(x)在[256,+∞)上单调递增,∴g(x1x2)>g(256)=8﹣8ln2,∴f(x1)+f(x2)>8﹣8ln2.(Ⅱ)令m=e﹣(|a|+k),n=()2+1,则f(m)﹣km﹣a>|a|+k﹣k﹣a≥0,f(n)﹣kn﹣a<n(﹣﹣k)≤n(﹣k)<0,∴存在x0∈(m,n),使f(x0)=kx0+a,∴对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点,由f(x)=kx+a,得k=,设h(x)=,则h′(x)==,其中g(x)=﹣lnx,由(1)知g(x)≥g(16),又a≤3﹣4ln2,∴﹣g(x)﹣1+a≤﹣g(16)﹣1+a=﹣3+4ln2+a≤0,∴h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,∴方程f(x)﹣kx﹣a=0至多有一个实根,综上,a≤3﹣4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011-2017新课标(文科)导数压轴题分类汇编【2011新课标】21. 已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。

(1)求a 、b 的值;(2)证明:当0x >,且1x ≠时,f (x )>ln xx -1【解读】(1)221(ln )'()(1)x x b x f x x xα+-=-+ 由于直线230x y +-=的斜率为12-,且过点(1,1), 故(1)1,1'(1),2f f =⎧⎪⎨=-⎪⎩即1,1,22b a b =⎧⎪⎨-=-⎪⎩解得1a =,1b =。

(2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2(2ln x -x 2-1x ), 考虑函数,则22222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,.【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间(2)若a =1,k 为整数,且当x >0时,(x -k ) f ´(x )+x +1>0,求k 的最大值 【解读】(1)f (x )的定义域为(,)-∞+∞,()x f x e a '=-,若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(l n ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增.(2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0)(1)x x k x x e +<+>-①.令1()(1)x x g x x e +=+-,则221(2)()1(1)(1)x x xx x xe e e x g x e e ----'=+=--. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >,ln ()1x f x x >-ln ()1xf x x >-0x >1x ≠ln ()1xf x x >-所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈.当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>.所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4.(1)求a ,b 的值;(2)讨论f (x )的单调性,并求f (x )的极大值. 【解读】(1)f ′(x )=e x (ax +a +b )-2x -4.由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8.从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,f ′(x )=4e x (x +2)-2x -4=4(x +2)·1e 2x⎛⎫-⎪⎝⎭. 令f ′(x )=0得,x =-ln 2或x =-2.从而当x ∈(-∞,-2)∪(-ln 2,+∞)时,f ′(x )>0; 当x ∈(-2,-ln 2)时,f ′(x )<0.故f (x )在(-∞,-2),(-ln 2,+∞)上单调递增,在(-2,-ln 2)上单调递减.当x =-2时,函数f (x )取得极大值,极大值为f (-2)=4(1-e -2).【2013新课标2】21.已知函数f(x)=x 2e -x . (1)求f(x)的极小值和极大值;(2)当曲线y =f(x)的切线l 的斜率为负数时,求l 在x 轴上截距的取值范围. 【解读】(1)f(x)的定义域为(-∞,+∞),f′(x)=-e -x x(x -2).①当x ∈(-∞,0)或x ∈(2,+∞)时,f′(x)<0;当x ∈(0,2)时,f′(x)>0. 所以f(x)在(-∞,0),(2,+∞)单调递减,在(0,2)单调递增. 故当x =0时,f(x)取得极小值,极小值为f(0)=0;当x =2时,f(x)取得极大值,极大值为f(2)=4e -2.(2)设切点为(t ,f(t)),则l 的方程为y =f′(t)(x -t)+f(t). 所以l 在x 轴上的截距为m(t)=()223'()22f t t t t t f t t t -=+=-++--. 由已知和①得t ∈(-∞,0)∪(2,+∞).令h(x)=2x x+(x≠0),则当x ∈(0,+∞)时,h(x)的取值范围为[∞); 当x ∈(-∞,-2)时,h(x)的取值范围是(-∞,-3).所以当t ∈(-∞,0)∪(2,+∞)时,m(t)的取值范围是(-∞,0)∪[3+,+∞].综上,l 在x 轴上的截距的取值范围是(-∞,0)∪[3,+∞].【2014新课标1】21.设函数()()21ln 12a f x a x x bx a -=+-≠,曲线()()()11y f x f =在点,处的切线斜率为0 (1)求b 。

(2)若存在01,x ≥使得()01af x a <-,求a 的取值范围。

【解读】(1)()(1)af x a x b x'=+--,由题设知(1)0f '=,解得b 1 (2)f (x )的定义域为(0,∞),由(1)知,21()ln 2a f x a x x x -=+-,()1()(1)111a a a f x a x x x x x a -⎛⎫'=+--=-- ⎪-⎝⎭(i)若12a ≤,则11a a≤-,故当x ∈(1,∞)时, f '(x ) 0,f (x )在(1,∞)上单调递增. 所以,存在0x ≥1, 使得0()1a f x a ≤-的充要条件为(1)1a f a ≤-,即1121a aa--<-所以1 a 1。

(ii)若112a <<,则11a a >-,故当x ∈(1,1a a -)时, f '(x ) <0,x ∈(,1aa+∞-)时,()0f x '>,f (x )在(1,1a a -)上单调递减,f (x )在,1aa+∞-单调递增.所以,存在0x ≥1,, 使得0()1a f x a ≤-的充要条件为()11a af a a≤--, 而()2()ln 112111a a a a af a a a a a a=++>-----,所以不符合题意. (ⅲ)若1a >,则11(1)1221a a af a ---=-=<-。

综上,a 的取值范围为:()()11,⋃+∞【2014新课标2】21. 已知函数32()32f x x x ax =-++,曲线()y f x =在点(0,2)处的切线与x 轴交点的横坐标为-2.(1)求a ;(2)证明:当时,曲线()y f x =与直线2y kx =-只有一个交点。

【解读】(1)2()36f x x x a '=-+,(0)f a '=曲线()y f x =在点(0,2)处的切线方程为2y ax =+,由题设得22a-=-,所以1a =(2)由(1)知,32()32f x x x x =-++ 设32()()23(1)4g x f x kx x x k x =-+=-+-+ 由题设知10k ->当0x ≤时,2()3610g x x x k '=-+->,()g x 单调递增,(1)10,(0)4g k g -=-<=, 所以()0g x =在(,0]-∞有唯一实根。

当0x >时,令32()34h x x x =-+,则()()(1)()g x h x k x h x =+->2()363(2),()h x x x x x h x '=-=-在(0,2)单调递减,在(2,)+∞单调递增,所以()()(2)0g x h x h >≥=所以()0g x =在(0,)+∞没有实根综上()0g x =在R 由唯一实根,即曲线()y f x =与直线2y kx =-只有一个交点。

【2015新课标1】21. 设函数x 。

(1)讨论()f x 的导函数'()f x 零点的个数; (2)证明:当0a >时,2()2ln f x a a a≥+。

【解读】【2015新课标2】21. 已知()()ln 1f x x a x =+-. (1)讨论()f x 的单调性;(2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围.【解读】已知()()ln 1f x x a x =+-..),1()1,0)(00)(0.1)(')1(上是减函数上是增函数,在在(时,函数当)上是增函数;,在(时,函数当+∞>∞+≤-=aa x f a x f a a xx f (2)由(1)知,当.ln 1)1(1)(0a a af a x x f a --==>时取得最大值在时,函数.01ln ,22ln 1<-+->--a a a a a 整理得由 .1,0(,10),1()(,0)1(0)(,0)(',00,11',1ln )()即上述不等式即函数。

又)是增,在()(则设∈<<∴<=∞+>∴>∴>+=-+=a a g a g g x g x g x a xx g x x x g【2016新课标1】21. 已知函数 . (I)讨论 的单调性;(II)若 有两个零点,求的取值范围. 【解读】(I)(i)设,则当时,;当时,. 所以在单调递减,在单调递增. (ii)设,由得x=1或x=ln(-2a).①若,则,所以在单调递增. ②若,则ln(-2a)<1,故当时,;当时,,所以在单调递增,在单调递减.③若,则,故当时,,当时,。

相关文档
最新文档