2014届高三人教A版数学(理)一轮复习课后作业(5)函数及其表示

合集下载

2014届高考人教A版数学(理)一轮复习讲义2.8函数与方程

2014届高考人教A版数学(理)一轮复习讲义2.8函数与方程

第8讲函数与方程【2014年高考会这样考】1.考查具体函数的零点的取值范围和零点个数.2.利用函数零点求解参数的取值范围.3.利用二分法求方程的近似解.4.考查函数零点、方程的根和两函数图象交点横坐标之间的等价转化思想和数形结合思想.对应学生31考点梳理1.函数的零点(1)函数零点的定义:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)几个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.(3)函数零点的判定(零点存在性定理):如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.2.二次函数y=ax2+bx+c(a>0)零点的分布3.(1)二分法的定义对于在区间[a,b]上连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.(2)给定精确度ε,用二分法求函数f(x)零点近似值的步骤如下:①确定区间[a,b],验证f(a)·f(b)<0,给定精确度ε:②求区间(a,b)的中点c;③计算f(c);(i)若f(c)=0,则c就是函数的零点;(ii)若f(a)·f(c)<0,则令b=c(此时零点x0∈(a,c));(iii)若f(c)·f(b)<0,则令a=c(此时零点x0∈(c,b)).④判断是否达到精确度ε.即:若|a-b|<ε,则得到零点近似值a(或b);否则重复②③④.【助学·微博】一个口诀用二分法求函数零点近似值的口诀为:定区间,找中点,中值计算两边看.同号去,异号算,零点落在异号间.周而复始怎么办?精确度上来判断.两个防范(1)函数y=f(x)的零点即方程f(x)=0的实根,是数不是点.(2)若函数y=f(x)在闭区间[a,b]上的图象是连续不间断的,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,满足这些条件一定有零点,不满足这些条件也不能说就没有零点.如图,f(a)·f(b)>0,f(x)在区间(a,b)上照样存在零点,而且有两个.所以说零点存在性定理的条件是充分条件,但并不必要.三种方法函数零点个数的判断方法.(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点;(2)零点存在性定理:利用定理不仅要求函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点;(3)利用图象交点的个数:画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点.考点自测1.(人教A版教材习题改编)如图所示的函数图象与x轴均有交点,其中不能用二分法求图中交点横坐标的是().A.①②B.①③C.①④D.③④答案 B2.(2012·湖北)函数f(x)=x cos x2在区间[0,4]上的零点个数为().A.4 B.5 C.6 D.7解析 ∵x ∈[0,4],∴x 2∈[0,16],∴x 2=0,π2,3π2,5π2,7π2,9π2,都是f (x )的零点,此时x 有6个值.∴f (x )的零点个数为6,故选C. 答案 C3.(2011·新课标全国)在下列区间中,函数f (x )=e x +4x -3的零点所在的区间为( ).A.⎝ ⎛⎭⎪⎫-14,0B.⎝ ⎛⎭⎪⎫0,14 C.⎝ ⎛⎭⎪⎫14,12 D.⎝ ⎛⎭⎪⎫12,34 解析 因为f ⎝ ⎛⎭⎪⎫14=e 14+4×14-3=e 14-2<0,f ⎝ ⎛⎭⎪⎫12=e 12+4×12-3=e 12-1>0,所以f (x )=e x+4x -3的零点所在的区间为⎝ ⎛⎭⎪⎫14,12.答案 C4.(2013·咸阳二模)若x 0是函数f (x )=3x -1x -2,x ∈(2,+∞)的一个零点,x 1∈(2,x 0),x 2∈(x 0,+∞),则( ). A .f (x 1)<0,f (x 2)<0 B .f (x 1)<0,f (x 2)>0 C .f (x 1)>0,f (x 2)<0 D .f (x 1)>0,f (x 2)>0 解析 函数f (x )=3x -1x -2在(2,+∞)上为增函数,由已知x 1∈(2,x 0),x 2∈(x 0,+∞)得x 1<x 2,故f (x 1)<f (x 2),又f (x 1)·f (x 2)<0,故f (x 1)<0,f (x 2)>0. 答案 B5.已知函数f (x )=x 2+x +a 在区间(0,1)上有零点,则实数a 的取值范围是________.解析 函数f (x )=x 2+x +a 在(0,1)上递增.由已知条件f (0)f (1)<0,即a (a +2)<0,解得-2<a <0. 答案(-2,0)对应学生32考向一 函数零点与零点个数的判断【例1】►(2012·天津)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是().A.0 B.1 C.2 D.3[审题视点] 函数零点的个数⇔f(x)=0解的个数⇔函数图象与x轴交点的个数.解析法一∵函数y=2x与y=x3-2在R上都是增函数,故f(x)=2x+x3-2在R上是增函数,又f(0)=-1,f(1)=1,即f(0)·f(1)<0,故f(x)在(0,1)内有唯一零点.法二令f(x)=0,即2x+x3-2=0,则2x-2=-x3.在同一坐标系中分别画出y=2x-2和y=-x3的图象,由图可知两个图象在区间(0,1)内只有一个交点,∴函数f(x)=2x+x3-2在区间(0,1)内有一个零点,故选B.答案 B对函数零点个数的判断可从以下几个方面考虑:(1)结合函数图象;(2)根据零点存在定理求某些点的函数值;(3)利用函数的单调性判断函数的零点是否唯一.【训练1】求函数f(x)=ln x+2x-6的零点个数.解法一∵函数y=ln x与y=2x-6均是增函数,故函数f(x)=ln x+2x-6在(0,+∞)上是增函数,又f(2)=ln 2-2<0,f(3)=ln 3>0,即f(2)·f(3)<0,所以f(x)=ln x+2x-6在(2,3)有唯一零点.法二在同一坐标系中画出函数y=ln x与y=6-2x的图象,如图所示,由图可知两图象只有一个交点,故函数f(x)=ln x+2x-6只有一个零点.考向二有关二次函数的零点问题【例2】►(1)m 为何值时,f (x )=x 2+2mx +3m +4. ①有且仅有一个零点? ②有两个零点且均比-1大?(2)若函数f (x )=|4x -x 2|+a 有4个零点,求实数a 的取值范围.[审题视点] 设出二次方程对应的函数,可画出相应的示意图,然后用函数性质加以限制.解 (1)①若函数f (x )=x 2+2mx +3m +4有且仅有一个零点,则Δ=4m 2-4(3m +4)=0,即m 2-3m -4=0,解得m =4或m =-1. ②若f (x )有两个零点且均比-1大,设两零点分别为x 1,x 2,则x 1+x 2=-2m ,x 1·x 2=3m +4,故只需⎩⎨⎧Δ=4m 2-4(3m +4)>0,(x 1+1)+(x 2+1)>0,(x 1+1)(x 2+1)>0,即⎩⎪⎨⎪⎧m 2-3m -4>0,-2m +2>0,3m +4+(-2m )+1>0,即⎩⎨⎧m >4或m <-1,m <1,m >-5,故m 的取值范围是{m |-5<m <-1}. (2)若f (x )=|4x -x 2|+a 有4个零点, 即|4x -x 2|+a =0有四个根, 即|4x -x 2|=-a 有四个根, 令g (x )=|4x -x 2|,h (x )=-a . 作出g (x ),h (x )的图象,如图所示.由图象可知要使|4x -x 2|=-a 有四个根,则g (x )与h (x )的图象应有4个交点. 故需满足0<-a <4,即-4<a <0. ∴a 的取值范围是(-4,0).本题重点考查方程的根的分布问题,熟知方程的根对于二次函数性质所具有的意义是正确解此题的关键.用二次函数的性质对方程的根进行限制时,条件不严谨是解答本题的易错点.【训练2】 已知关于x 的二次方程x 2+2mx +2m +1=0.(1)若方程有两根,其中一根在区间(-1,0)内,另一根在区间(1,2)内,求m 的范围;(2)若方程两根均在区间(0,1)内,求m 的范围. 解(1)由条件,抛物线f (x )=x 2+2mx +2m +1与x 轴的交点分别在区间(-1,0)和(1,2)内,如图(1)所示,得⎩⎨⎧f (0)=2m +1<0,f (-1)=2>0,f (1)=4m +2<0,f (2)=6m +5>0⇒⎩⎪⎨⎪⎧m <-12,m ∈R ,m <-12,m >-56.即-56<m <-12.(2)抛物线与x 轴交点均落在区间(0,1)内,如图(2)所示,列不等式组⎩⎨⎧f (0)=2m +1>0,f (1)=4m +2>0,Δ=4m 2-4(2m +1)≥0,0<-m <1⇒⎩⎪⎨⎪⎧m >-12,m >-12,m ≥1+2或m ≤1-2,-1<m <0.即-12<m ≤1- 2. 考向三 函数零点性质的应用【例3】►已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0). (1)若y =g (x )-m 有零点,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根.[审题视点] (1)y =g (x )-m 有零点即y =g (x )与y =m 的图象有交点,所以可以结合图象求解.(2)g (x )-f (x )=0有两个相异实根⇔y =f (x )与y =g (x )的图象有两个不同交点,所以可利用它们的图象求解. 解(1)法一 ∵g (x )=x +e 2x ≥2e 2=2e ,等号成立的条件是x =e ,故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则y =g (x )-m 就有零点. 法二作出g (x )=x +e 2x (x >0)的大致图象如图: 可知若使y =g (x )-m 有零点,则只需m ≥2e.(2)若g (x )-f (x )=0有两个相异的实根,即g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x (x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2.∴其图象的对称轴为x =e ,开口向下,最大值为m -1+e 2.故当m -1+e 2>2e ,即m >-e 2+2e +1时,g (x )与f (x )有两个交点,即g (x )-f (x )=0有两个相异实根.∴m 的取值范围是(-e 2+2e +1,+∞).求函数零点的值,判断函数零点的范围及零点的个数以及已知函数零点求参数范围等问题,都可利用方程来求解,但当方程不易甚至不可能解出时,可构造两个函数、利用数形结合的方法进行求解.【训练3】 已知函数f (x )=ax 3-2ax +3a -4在区间(-1,1)上有一个零点. (1)求实数a 的取值范围;(2)若a =3217,用二分法求方程f (x )=0在区间(-1,1)上的根. 解 (1)若a =0,则f (x )=-4与题意不符,∴a ≠0. ∴f (-1)·f (1)=8(a -1)(a -2)<0,∴1<a <2. (2)若a =3217,则f (x )=3217x 3-6417x +2817, ∴f (-1)>0,f (1)<0,f (0)=2817>0, ∴零点在(0,1)上,又f ⎝ ⎛⎭⎪⎫12=0.∴f (x )=的根为12.对应学生33方法优化3——如何解决有关函数零点的问题【命题研究】 通过近三年的高考题分析,重点考查函数的零点、方程的根和两函数图象交点横坐标之间的等价转化思想和数形结合思想.题型为选择题或填空题,若求函数零点的问题,难度较易;若利用零点的存在求相关参数的值的问题,难度稍大.【真题探究】► (2011·山东)已知函数f (x )=log a x +x -b (a >0,且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________. [教你审题] f (x )=log a x +x -b 在(0,+∞)上单调递增且值域为R ,则f (x )必有唯一零点x=x0,根据x0∈(n,n+1),利用零点存在的判定条件来推算n的取值.[一般解法] 设f(x0)=0,因为f(x)=log a x+x-b,又3<b<4,所以f(1)=log a1+1-b=1-b<0,因为2<a<3<b<4,所以f(2)=log a2+2-b<log a a+2-b=3-b<0,f(3)=log a3+3-b>log a a+3-b=4-b>0.综上,x0∈(2,3),又因为x0∈(n,n+1),故n=2.[优美解法] 如图所示,在直角坐标系下分别作出y=log2x,y=log3x及y=3-x,y=4-x的图象,显然所有可能的交点构成图中的阴影区域(不含边界),其中各点的横坐标均落于(2,3)之内,又因为x0∈(n,n+1),n∈N*,故n=2.[答案] 2[反思] (1)要强化训练零点求法,函数与方程的转化技巧;(2)会结合图象利用数形结合判断零点个数、零点所在区间.考查函数性质与方程根与系数关系的综合应用题,一般难度较大,在复习中要有所准备,但题量不必太大.【试一试】(2012·沈阳四校联考,8)已知函数f(x)=a x+x-b的零点x0∈(n,n+1)(n∈Z),其中常数a,b满足2a=3,3b=2,则n的值是().A.-2 B.-1 C.0 D.1解析依题意得,a>1,0<b<1,则f(x)为R上的单调递增函数.又f(-1)=1 a-1-b<0,f(0)=1-b>0,f(-1)·f(0)<0,因此x0∈(-1,0),n=-1,选B.答案 B对应学生239A级基础演练(时间:30分钟满分:55分)一、选择题(每小题5分,共20分)1.函数f(x)=sin x-x零点的个数是().A.0 B.1 C.2 D.3解析f′(x)=cos x-1≤0,∴f(x)单调递减,又f(0)=0,∴则f(x)=sin x-x 的零点是唯一的.答案 B2.(2013·泰州模拟)设f(x)=e x+x-4,则函数f(x)的零点位于区间().A.(-1,0) B.(0,1)C.(1,2) D.(2,3)解析∵f(x)=e x+x-4,∴f′(x)=e x+1>0,∴函数f(x)在R上单调递增.对于A项,f(-1)=e-1+(-1)-4=-5+e-1<0,f(0)=-3<0,f(-1)f(0)>0,A 不正确,同理可验证B、D不正确.对于C项,∵f(1)=e+1-4=e-3<0,f(2)=e2+2-4=e2-2>0,f(1)f(2)<0,故选C.答案 C3.(2013·石家庄期末)函数f(x)=2x-2x-a的一个零点在区间(1,2)内,则实数a的取值范围是().A.(1,3) B.(1,2)C.(0,3) D.(0,2)解析由条件可知f(1)f(2)<0,即(2-2-a)(4-1-a)<0,即a(a-3)<0,解之得0<a<3.答案 C4.(2011·山东)已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点的个数为().A.6 B.7 C.8 D.9解析当0≤x<2时,令f(x)=x3-x=0,得x=0或x=1.根据周期函数的性质,由f(x)的最小正周期为2,可知y=f(x)在[0,6)上有6个零点,又f(6)=f(3×2)=f(0)=0,∴f (x )在[0,6]上与x 轴的交点个数为7. 答案 B二、填空题(每小题5分,共10分)5.已知函数f (x )=⎩⎨⎧x 2,x ≤0,f (x -1),x >0,g (x )=f (x )-x -a ,若函数g (x )有两个零点,则实数a 的取值范围为________.解析 设n 为自然数,则当n <x ≤n +1时,f (x )=(x -n -1)2,则当x >0时,函数f (x )的图象是以1为周期重复出现.而函数y =x +a 是一族平行直线,当它过点(0,1)(此时a =1)时与函数f (x )的图象交于一点,向左移总是一个交点,向右移总是两个交点,故实数a 的取值范围为a <1. 答案 (-∞,1)6.函数f (x )=⎩⎨⎧x +1,x ≤0,log 2x ,x >0,则函数y =f [f (x )]+1的所有零点所构成的集合为________.解析 本题即求方程f [f (x )]=-1的所有根的集合,先解方程f (t )=-1,即⎩⎨⎧ t ≤0,t +1=-1或⎩⎨⎧t >0,log 2t =-1,得t =-2或t =12.再解方程f (x )=-2和f (x )=12. 即⎩⎨⎧ x ≤0,x +1=-2或⎩⎨⎧x >0,log 2x =-2和⎩⎪⎨⎪⎧x ≤0,x +1=12或⎩⎪⎨⎪⎧x >0,log 2x =12. 得x =-3或x =14和x =-12或x = 2. 答案⎩⎨⎧⎭⎬⎫-3,-12,14,2 三、解答题(共25分)7.(12分)设函数f (x )=⎪⎪⎪⎪⎪⎪1-1x (x >0).(1)作出函数f (x )的图象;(2)当0<a <b ,且f (a )=f (b )时,求1a +1b 的值;(3)若方程f (x )=m 有两个不相等的正根,求m 的取值范围. ] 解 (1)如图所示.(2)∵f (x )=⎪⎪⎪⎪⎪⎪1-1x=⎩⎪⎨⎪⎧1x -1,x ∈(0,1],1-1x ,x ∈(1,+∞),故f (x )在(0,1]上是减函数,而在(1,+∞)上是增函数, 由0<a <b 且f (a )=f (b ),得0<a <1<b ,且1a -1=1-1b ,∴1a +1b =2.(3)由函数f (x )的图象可知,当0<m <1时,方程f (x )=m 有两个不相等的正根. 8.(13分)已知函数f (x )=x 3+2x 2-ax +1.(1)若函数f (x )在点(1,f (1))处的切线斜率为4,求实数a 的值;(2)若函数g (x )=f ′(x )在区间(-1,1)上存在零点,求实数a 的取值范围. 解 由题意得g (x )=f ′(x )=3x 2+4x -a . (1)f ′(1)=3+4-a =4,∴a =3.(2)法一 ①当g (-1)=-a -1=0,a =-1时,g (x )=f ′(x )的零点x =-13∈(-1,1);②当g (1)=7-a =0,a =7时,f ′(x )的零点x =-73∉(-1,1),不合题意; ③当g (1)g (-1)<0时,-1<a <7;④当⎩⎪⎨⎪⎧Δ=4×(4+3a )≥0,-1<-23<1,g (1)>0,g (-1)>0时,-43≤a <-1.综上所述,a ∈⎣⎢⎡⎭⎪⎫-43,7.法二 g (x )=f ′(x )在区间(-1,1)上存在零点,等价于3x 2+4x =a 在区间(-1,1)上有解,也等价于直线y =a 与曲线y =3x 2+4x 在(-1,1)有公共点.作图可得a ∈⎣⎢⎡⎭⎪⎫-43,7. 或者又等价于当x ∈(-1,1)时,求值域.a =3x 2+4x =3⎝ ⎛⎭⎪⎫x +232-43∈⎣⎢⎡⎭⎪⎫-43,7.B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2011·陕西)函数f (x )=x -cos x 在[0,+∞)内 ( ).A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点 解析 令f (x )=0,得x =cos x ,在同一坐标系内画出两个函数y =x 与y =cos x 的图象如图所示,由图象知,两个函数只有一个交点,从而方程x =cos x 只有一个解. ∴函数f (x )只有一个零点. 答案 B2.(2012·辽宁)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且当x ∈[0,1]时,f (x )=x 3.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为 ( ).A .5B .6C .7D .8解析 由题意知函数y =f (x )是周期为2的偶函数且0≤x ≤1时,f (x )=x 3,则当-1≤x ≤0时,f (x )=-x 3,且g (x )=|x cos(πx )|,所以当x =0时,f (x )=g (x ).当x ≠0时,若0<x ≤12,则x 3=x cos(πx ),即x 2=|cos πx |.同理可以得到在区间⎣⎢⎡⎭⎪⎫-12,0,⎝ ⎛⎦⎥⎤12,1,⎝ ⎛⎦⎥⎤1,32上的关系式都是上式,在同一个坐标系中作出所得关系式等号两边函数的图象,如图所示,有5个根.所以总共有6个.答案 B二、填空题(每小题5分,共10分)3.已知函数f (x )满足f (x +1)=-f (x ),且f (x )是偶函数,当x ∈[0,1]时,f (x )=x 2.若在区间[-1,3]内,函数g (x )=f (x )-kx -k 有4个零点,则实数k 的取值范围为________.解析 依题意得f (x +2)=-f (x +1)=f (x ),即函数f (x )是以2为周期的函数.g (x )=f (x )-kx -k 在区间[-1,3]内有4个零点,即函数y =f (x )与y =k (x +1)的图象在区间[-1,3]内有4个不同的交点.在坐标平面内画出函数y =f (x )的图象(如图所示),注意到直线y =k (x +1)恒过点(-1,0),由题及图象可知,当k ∈⎝ ⎛⎦⎥⎤0,14时,相应的直线与函数y=f (x )在区间[-1,3]内有4个不同的交点,故实数k 的取值范围是⎝ ⎛⎦⎥⎤0,14.答案 ⎝ ⎛⎦⎥⎤0,144.若直角坐标平面内两点P ,Q 满足条件:①P 、Q 都在函数f (x )的图象上;②P 、Q 关于原点对称,则称点对(P 、Q )是函数f (x )的一个“友好点对”(点对(P 、Q )与点对(Q ,P )看作同一个“友好点对”).已知函数f (x )=⎩⎪⎨⎪⎧2x 2+4x +1,x <0,2ex ,x ≥0,则f (x )的“友好点对”的个数是________.解析 设P (x ,y )、Q (-x ,-y )(x >0)为函数f (x )的“友好点对”,则y =2e x ,-y =2(-x )2+4(-x )+1=2x 2-4x +1,∴2e x +2x 2-4x +1=0,在同一坐标系中作函数y 1=2e x 、y 2=-2x 2+4x -1的图象,y 1、y 2的图象有两个交点,所以f (x )有2个“友好点对”,故填2. 答案 2三、解答题(共25分)5.(12分)设函数f (x )=3ax 2-2(a +c )x +c (a >0,a ,c ∈R ).(1)设a >c >0.若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,求c 的取值范围;(2)函数f (x )在区间(0,1)内是否有零点,有几个零点?为什么?解 (1)因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴为x =a +c3a ,由条件a >c >0,得2a >a +c ,故a +c 3a <2a 3a =23<1,即二次函数f (x )的对称轴在区间[1,+∞)的左边,且抛物线开口向上,故f (x )在[1,+∞)内是增函数. 若f (x )>c 2-2c +a 对x ∈[1,+∞)恒成立,则f (x )min =f (1)>c 2-2c +a ,即a -c >c 2-2c +a ,得c 2-c <0, 所以0<c <1.(2)①若f (0)·f (1)=c ·(a -c )<0,则c <0,或a <c ,二次函数f (x )在(0,1)内只有一个零点. ] ②若f (0)=c >0,f (1)=a -c >0,则a >c >0.因为二次函数f (x )=3ax 2-2(a +c )x +c 的图象的对称轴是x =a +c 3a .而f ⎝⎛⎭⎪⎫a +c 3a =-a 2+c 2-ac3a<0,所以函数f (x )在区间⎝ ⎛⎭⎪⎫0,a +c 3a 和⎝ ⎛⎭⎪⎫a +c 3a ,1内各有一个零点,故函数f (x )在区间(0,1)内有两个零点.6.(13分)已知二次函数f (x )=x 2-16x +q +3.(1)若函数在区间[-1,1]上存在零点,求实数q 的取值范围;(2)是否存在常数t (t ≥0),当x ∈[t,10]时,f (x )的值域为区间D ,且区间D 的长度为12-t (视区间[a ,b ]的长度为b -a ).解 (1)∵函数f (x )=x 2-16x +q +3的对称轴是x =8,∴f (x )在区间[-1,1]上是减函数.∵函数在区间[-1,1]上存在零点,则必有⎩⎨⎧f (1)≤0,f (-1)≥0,即⎩⎨⎧1-16+q +3≤0,1+16+q +3≥0,∴-20≤q ≤12. (2)∵0≤t <10,f (x )在区间[0,8]上是减函数,在区间[8,10]上是增函数,且对称轴是x =8.①当0≤t ≤6时,在区间[t,10]上,f (t )最大,f (8)最小,∴f(t)-f(8)=12-t,即t2-15t+52=0,解得t=15±172,∴t=15-172;②当6<t≤8时,在区间[t,10]上,f(10)最大,f(8)最小,∴f(10)-f(8)=12-t,解得t=8;③当8<t<10时,在区间[t,10]上,f(10)最大,f(t)最小,∴f(10)-f(t)=12-t,即t2-17t+72=0,解得t=8,9,∴t=9.综上可知,存在常数t=15-172,8,9满足条件.。

人教A版高考数学一轮总复习课后习题第五章三角函数 函数y=Asin(ωx+φ)的图象及三角函数的应用

人教A版高考数学一轮总复习课后习题第五章三角函数 函数y=Asin(ωx+φ)的图象及三角函数的应用

课时规范练23 函数y=Asin(ωx+φ)的图象及三角函数的应用基础巩固组1.(北京东城高三月考)函数y=2cos2x+π6的部分图象大致是( )2.(山东省实验中学高三月考)已知函数f(x)=3sin ωx(ω>0)的周期是π,将函数f(x)的图象沿x轴向右平移π8个单位长度,得到函数y=g(x)的图象,则函数g(x)的解析式为( )A.g(x)=3sin2x-π8B.g(x)=3sin2x-π4C.g(x)=-3sin2x+π8D.g(x)=-3sin2x+π43.将函数y=cos22x+π12的图象向左平移π12个单位长度后,得到的图象的一个对称中心为( )A.-π4,0B.π8,0 C.π4,12D.π8,124.(江苏南通高三月考)函数y=Asin(ωx+φ)+b 在一个周期内的图象如图其中A>0,ω>0,|φ|<π2,则函数的解析式为( )A.y=2sin12x+π3+1 B.y=2sin 2x-π3+1 C.y=2sin12x-π3+1 D.y=2sin 2x+π3+15.已知函数f(x)=2sin(ωx+φ)ω>0,|φ|<π2的图象上相邻两条对称轴的距离为3,且过点(0,-√3),则要得到函数y=f(x)的图象,只需将函数y=2sin ωx 的图象 ( )A.向右平移1个单位长度B.向左平移1个单位长度C.向右平移12个单位长度D.向左平移12个单位长度6.(湖北高三月考)将函数f(x)=sinωx-π6(3<ω<6)的图象向右平移π3个单位长度后,得到函数g(x)的图象,若g(x)为偶函数,则ω=()A.5B.112C.4 D.727.将函数f(x)=sin2x-π3的图象上所有点的横坐标缩短到原来的12,纵坐标不变,得到函数g(x)的图象,则下列说法中正确的是( )A.gπ3=1B.g(x)在区间-π6,5π6上单调递增C.x=-π24是g(x)图象的一条对称轴D.π6,0是g(x)图象的一个对称中心8.(甘肃高三开学考试)设函数f(x)=sin(ωx+φ)ω>0,|φ|<π2在一个周期内的图象经过A-5π18,0,B-π9,-1,Cπ9,0,D2π9,1这四个点中的三个点,则φ=.9.(湖南邵阳高三月考)如图是一个半径为R的水车,一个水斗从点A(1,-√3)出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时6秒.经过t秒后,水斗旋转到P点,设点P的坐标为(x,y),其纵坐标满足y=f(t)=Rsin(ωt+φ)t≥0,ω>0,|φ|<π2,则当t∈[0,m)时,函数f(t)恰有2个极大值,则m的取值范围是.10.(辽宁沈阳高三月考)已知函数f(x)=Asin(ωx+φ)A>0,ω>0,|φ|<π2的部分图象如图所示.(1)求f(x)的解析式;(2)将f(x)图象上所有点的横坐标缩短为原来的1(纵坐标不变),再将所得2个单位长度,得到函数g(的取值范围.图象向右平移π3综合提升组11.如图所示,秒针尖的位置为M(0-12,-√32,当秒针从M 0(此时t=0)正常开始走时,那么点M 的横坐标与时间t 的函数关系为( )A.x=sin π30t-π6B.x=sin π30t-π3 C.x=cos π30t+2π3D.x=cosπ30t-2π312.已知函数f(x)=sin(2x+φ)|φ|<π2的部分图象如图所示,且经过点Aπ4,√32,则下列结论中正确的是( )A.f(x)的图象关于点π3,0对称B.f(x)的图象关于直线x=π3对称C.f x+π12为奇函数D.f x+π6为偶函数13.(山东临沂高三月考)已知函数f(x)=2sin(ωx+φ)(ω>0)的图象向左平移π2个单位长度后与f(x)的图象重合,则ω的最小值为.创新应用组14.(广东茂名高三期中)已知函数f(x)=sin(ωx+φ)(ω>0)的图象与函数g(x)=cos2x+π3的图象关于y轴对称,则符合条件的ω,φ的对应值可以为( )A.1,π3B.1,π6C.2,π3D.2,π6课时规范练23 函数y=Asin(ωx+φ)的图象及三角函数的应用 1.A 解析:由y=2cos 2x+π6可知,函数的最大值为2,排除D;因为函数图象过点π6,0,排除B;又因为函数图象过点-π12,2,排除C,故选A.2.B 解析:因为周期T=2πω=π,所以ω=2,即f(x)=3sin2x.将函数的图象沿x 轴向右平移π8个单位长度,得到g(x)=3sin2x-π8=3sin 2x-π4,故选B.3.C 解析:由于函数y=cos 22x+π12=121+cos 4x+π6=12cos 4x+π6+12,所以将函数的图象向左平移π12个单位长度后,可得f(x)=12+12cos 4x+π12+π6=12+12cos 4x+π2=12−12sin4x.令4x=kπ(k∈Z),解得x=kπ4(k ∈Z).当k=1时,可得x=π4,所以图象的一个对称中心为π4,12,故选C.4.B 解析:由图象可得,A=3-(-1)2=2,b=3+(-1)2=1,T=2×2π3−π6=π,所以ω=2ππ=2.因为函数图象过2π3,1,则2sin 2×2π3+φ+1=1,所以4π3+φ=π+2kπ,k∈Z,则φ=-π3+2kπ,k∈Z.又|φ|<π2,所以φ=-π3.故选B.5.A 解析:因为函数f(x)=2sin(ωx+φ)ω>0,|φ|<π2的图象上相邻两条对称轴的距离为3,所以T2=2πω×12=3,因此ω=π3.又因为过点(0,-√3),所以2sinφ=-√3.因为|φ|<π2,所以φ=-π3,故f(x)=2sin π3x-π3.要得到f(x)=2sinπ3x-π3=2sinπ3(x-1),需要将f(x)=2sin π3x 的图象向右平移1个单位长度,故选A.6.C 解析:由题意可知g(x)=sin ωx -π3ω+π6,因为g(x)为偶函数,所以π3ω+π6=π2+kπ(k∈Z),则ω=3k+1(k∈Z).因为3<ω<6,所以ω=4,故选C.7.C 解析:函数f(x)=sin 2x-π3的图象上所有点的横坐标缩短到原来的12,纵坐标不变,得g(x)=sin 4x-π3.对于A,gπ3=sin 4×π3−π3=sinπ=0,故A 错误;对于B,由-π2+2kπ≤4x -π3≤π2+2kπ(k∈Z),得-π24+kπ2≤x≤5π24+kπ2(k ∈Z),故g(x)在区间-π6,5π6上有增有减,故B 错误;对于C,g -π24=sin -π6−π3=sin -π2=-1,所以x=-π24是g(x)图象的一条对称轴,故C 正确;对于D,g π6=sin2π3−π3=sin π3=√32,所以π6,0不是g(x)图象的一个对称中心,故D 错误.故选C. 8.-π6解析:因为-π9--5π18=122π9--π9=π6,所以f(x)在一个周期内的图象不可能经过点C,则T=π6×4=2πω,解得ω=3.因为f2π9=1,所以2π9×3+φ=π2+2kπ(k∈Z),φ=-π6+2kπ(k∈Z).又|φ|<π2,所以φ=-π6.9.172,292解析:根据点A 的坐标(1,-√3)可得圆周的半径R=√1+3=2.又旋转一周用时6秒,即周期T=6,从而得ω=2πT=π3,∴f(t)=2sinπ3t+φ.又当t=0时,在函数图象上y=-√3,∴f(0)=2sin π3×0+φ=-√3,即sinφ=-√32.又|φ|<π2,∴φ=-π3,∴f(t)=2sinπ3t-π3.根据三角函数的性质,f(t)在[0,m)内恰有两个极大值时,有5π2<π3m-π3≤9π2,解得172<m≤292.10.解(1)由图可知,A=2. 且f(x)的最小正周期T=43×7π6+π3=2π,所以ω=2πT =1.因为f7π6=2sin7π6+φ=-2,所以7π6+φ=3π2+2kπ(k∈Z),则φ=π3+2kπ(k∈Z).又|φ|<π2,所以φ=π3,故f(x)=2sin x+π3.(2)由题可知,g(x)=2sin 2x-π3+π3=2sin 2时,-π3≤2-π3.因为g(]上不单调,所以2m-π3>π2,解得m>5π12.故m 的取值范围为5π12,+∞.11.C 解析:当t=0时,点M 0-12,-√32,则初始角为-2π3,由于秒针每60秒顺时针转一周,故转速ω=-2π60=-π30,当秒针运动t 秒到M 点时,秒针与x 正半轴的夹角为-π30t-2π3,所以x 与时间t 的函数关系式x=cos -π30t-2π3=cosπ30t+2π3.故选C.12.D 解析:由题意,可得fπ4=sinπ2+φ=√32,则π2+φ=2π3+2kπ(k∈Z),解得φ=π6+2kπ(k∈Z).因为|φ|<π2,则φ=π6,所以f(x)=sin 2x+π6.由fπ3=sin 2×π3+π6=sin5π6=12,所以A,B 不正确;由f x+π12=sin 2x+π3,此时函数为非奇非偶函数,所以C 不正确;由f x+π6=sin 2x+π2=cos2x为偶函数,所以D 正确,故选D.13.4 解析:把f(x)的图象向左平移π2个单位长度所得的函数为y=2sinωx+π2+φ=2sin ωx+πω2+φ,∴φ=πω2+φ+2kπ,即ω=-4k,k ∈Z.∵ω>0,故ω的最小值为4. 14.D 解析:因为g(x)=cos 2x+π3的图象与y=cos -2x+π3的图象关于y轴对称,所以f(x)=sin(ωx+φ)=cos -2x+π3+2kπ(k ∈Z),即cosπ2-(ωx+φ)=cos -2x+π3+2kπ(k ∈Z),所以π2-ωx -φ=-2x+π3+2kπ(k∈Z),即(2-ω)x -φ=2kπ-π6(k ∈Z),所以ω=2,φ=π6-2kπ(k∈Z),因此选项D 符合,故选D.。

(安徽专用)2014届高考数学一轮复习 第二章函数2.1函数及其表示试题 新人教A版

(安徽专用)2014届高考数学一轮复习 第二章函数2.1函数及其表示试题 新人教A版

课时作业4 函数及其表示一、选择题1.下列四个命题中正确命题的个数是( ).①函数是其定义域到值域的映射;②f (x )=x -3+2-x 是函数;③函数y =2x (x ∈N )的图象是一条直线;④函数y =⎩⎪⎨⎪⎧ x 2(x ≥0),-x 2(x <0)的图象是抛物线. A .1 B .2 C .3 D .42.下列各组函数f (x )与g (x )相同的是( ).A .f (x )=x ,g (x )=(x )2B .f (x )=x 2,g (x )=(x +1)2C .f (x )=x ,g (x )=e ln xD .f (x )=|x |,g (x )=⎩⎪⎨⎪⎧x ,x ≥0,-x ,x <0 3.已知函数f (x )=⎩⎪⎨⎪⎧ 2x ,x ≤0,f (x -3),x >0,则f (5)等于( ).A .32B .16C .12D .1324.已知函数f (x )满足2f (x )-f ⎝ ⎛⎭⎪⎫1x =3x 2,则f (x )的最小值是( ). A .2 B .2 2 C .3 D .45.水池有2个进水口,1个出水口,每个水口进出水速度如下图(1)(2)所示,某天0点到6点,该水池的蓄水量如下图(3)所示(至少打开一个水口).给出以下三个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水.其中一定正确的论断是( ).A .① B.①② C.①③ D.①②③6.设函数f (x )=⎩⎪⎨⎪⎧2x -3,x ≥1,x 2-2x -2,x <1,若f (x 0)=1,则x 0等于( ). A .-1或3 B .2或3C .-1或2D .-1或2或37.设f (x )与g (x )是定义在同一区间[a ,b ]上的两个函数,若对任意的x ∈[a ,b ],都有|f (x )-g (x )|≤1成立,则称f (x )和g (x )在[a ,b ]上是“亲密函数”,区间[a ,b ]称为“亲密区间”.若f (x )=x 2+x +2与g (x )=2x +1在[a ,b ]上是“亲密函数”,则其“亲密区间”可以是( ).A .[0,2]B .[0,1]C .[1,2]D .[-1,0]二、填空题8.(2012安徽合肥六中模拟)函数f (x )=1x -3+2x -4的定义域是__________. 9.已知f (x )=⎩⎪⎨⎪⎧ 12x +1,x ≤0,-(x -1)2,x >0,则使f (x )≥-1成立的x 的取值范围是__________.10.设函数f 1(x )=12x ,f 2(x )=x -1,f 3(x )=x 2,则f 1(f 2(f 3(2 014)))=__________.三、解答题11.某市出租车起步价为5元,起步价内最大行驶里程为3 km ,以后3 km 内每1 km 加收1.5元,再超过3 km 后,每1 km 加收2元.(不足1 km 按1 km 计算)(1)写出出租车费用y 关于行驶里程x 的函数关系式;(2)求行程7.5 km 时的出租车费用.12.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x ≥0,2-x ,x <0. (1)求f [g (2)]和g [f (2)]的值;(2)求f [g (x )]和g [f (x )]的表达式.参考答案一、选择题1.A 解析:只有①正确,②函数定义域不能是空集,③图象是分布在一条直线上的一系列的点,④图象不是抛物线. 2.D 解析:A ,C 定义域不同,B 对应关系不同,故选D.3.C 解析:f (5)=f (5-3)=f (2)=f (2-3)=f (-1)=2-1=12,故选C. 4.B 解析:由2f (x )-f ⎝ ⎛⎭⎪⎫1x =3x 2,① 令①式中的x 变为1x 可得2f ⎝ ⎛⎭⎪⎫1x -f (x )=3x 2.② 由①②可解得f (x )=2x 2+x 2,由于x 2>0,因此由基本不等式可得f (x )=2x 2+x 2≥22x 2·x 2=22,当x =142时取等号. 5.A 解析:由4点时水池水量为5可知打开一个进水口,故②不正确;4点到6点水池水量不变,也可能三个水口都打开,故③不正确.故选A.6.C 解析:∵f (x 0)=1,∴⎩⎪⎨⎪⎧ x 0≥1,2x 0-3=1或⎩⎪⎨⎪⎧x 0<1,x 02-2x 0-2=1, 解得x 0=2或x 0=-1.7.B二、填空题8.[2,3)∪(3,+∞) 解析:⎩⎪⎨⎪⎧2x -4≥0,x -3≠0⇒x ∈[2,3)∪(3,+∞). 9.[-4,2] 解析:∵f (x )≥-1, ∴⎩⎪⎨⎪⎧ x ≤0,12x +1≥-1或⎩⎪⎨⎪⎧x >0,-(x -1)2≥-1, ∴-4≤x ≤0或0<x ≤2,即-4≤x ≤2. 10.12 014解析:f 1(f 2(f 3(2 014)))=f 1(f 2(2 0142))=f 1(2 014-2) =122((2 014))-=12 014. 三、解答题11.解:(1)令[x ]表示不小于x 的最小整数,当0<x ≤3时,y =5;当3<x ≤6时,y =5+1.5([x ]-3);当x >6时,y =9.5+2([x ]-6).∴y =⎩⎪⎨⎪⎧ 5,0<x ≤3,1.5[x ]+0.5,3<x ≤6,2[x ]-2.5,x >6.(2)当x =7.5时,y =2[7.5]-2.5=2×8-2.5=13.5(元).12.解:(1)由已知,g (2)=1,f (2)=3,∴f [g (2)]=f (1)=0,g [f (2)]=g (3)=2.(2)当x ≥0时,g (x )=x -1,故f [g (x )]=(x -1)2-1=x 2-2x ;当x <0时,g (x )=2-x ,故f [g (x )]=(2-x )2-1=x 2-4x +3;∴f [g (x )]=⎩⎪⎨⎪⎧ x 2-2x ,x ≥0,x 2-4x +3,x <0. 当x ≥1或x ≤-1时,f (x )≥0,故g [f (x )]=f (x )-1=x 2-2;当-1<x <1时,f (x )<0,故g [f (x )]=2-f (x )=3-x 2.∴g [f (x )]=⎩⎪⎨⎪⎧x 2-2,x ≥1或x ≤-1,3-x 2,-1<x <1.。

2014高考数学(理)一轮复习学案课件 第2编 函数及其表示

2014高考数学(理)一轮复习学案课件 第2编 函数及其表示
学案1 函数及其表示方法
考纲解读 考向预测 课前热身
考点突破
即时巩固 课后拔高
考点 三 考点 二 考点 一
真题再现 误区警示 规律探究
2
考纲解读
返3回
考向预测
返4回
课前热身
返5回
返6回
考点 一
考点突破
返7回
返8回
返9回
返10回
考点 二
返11回
返12回
返13回
返14回
返15回
返42回
返43回
返44回
பைடு நூலகம்
返45回
返46回
返16回
考点 三
返17回
返18回
返19回
返20回
真题再现
返21回
返22回
误区警示
返23回
返24回
规律探究
返25回
即时巩固
返26回
返27回
返28回
返29回
返30回
课后拔高
返31回
返32回
返33回
返34回
返35回
返36回
返37回
返38回
返39回
返40回
返41回

2014届高考人教A版数学(理)一轮复习讲义2.7函数图象

2014届高考人教A版数学(理)一轮复习讲义2.7函数图象

第7讲函数图象【2014年高考会这样考】1.利用函数图象的变换(平移、对称、翻折、伸缩)作函数图象的草图.2.根据函数的解析式辨别函数图象.3.应用函数图象解决方程、不等式等问题.4.利用函数图象研究函数性质或求两函数图象的交点个数.对应学生28考点梳理1.函数图象的变换(1)平移变换①水平平移:y=f(x±a)(a>0)的图象,可由y=f(x)的图象向左(+)或向右(-)平移a个单位而得到.②竖直平移:y=f(x)±b(b>0)的图象,可由y=f(x)的图象向上(+)或向下(-)平移b个单位而得到.Z_xx_k(2)对称变换①y=f(-x)与y=f(x)的图象关于y轴对称.②y=-f(x)与y=f(x)的图象关于x轴对称.③y=-f(-x)与y=f(x)的图象关于原点对称.(3)伸缩变换①y=af(x)(a>0)的图象,可将y=f(x)图象上每点的纵坐标伸(a>1时)或缩(a <1时)到原来的a倍,横坐标不变.②y=f(ax)(a>0)的图象,可将y=f(x)的图象上每点的横坐标伸(a<1时)或缩(a>1时)到原来的1a倍,纵标标不变.(4)翻折变换①作出y=f(x)的图象,将图象位于x轴下方的部分以x轴为对称轴翻折到上方,其余部分不变,得到y=|f(x)|的图象;②作出y=f(x)在y轴上及y轴右边的图象部分,并作y轴右边的图象关于y轴对称的图象,即得y =f (|x |)的图象.2.等价变换例如:作出函数y =1-x 2的图象,可对解析式等价变形y =1-x 2⇔⎩⎨⎧ y ≥0,1-x 2≥0,y 2=1-x 2⇔⎩⎨⎧y ≥0,y 2=1-x 2⇔x 2+y 2=1(y ≥0),可看出函数的图象为半圆.此过程可归纳为:(1)写出函数解析式的等价组;(2)化简等价组;(3)作图.3.描点法作图方法步骤:(1)确定函数的定义域;(2)化简函数的解析式;(3)讨论函数的性质即奇偶性、周期性、单调性、最值(甚至变化趋势);(4)描点连线,画出函数的图象.【助学·微博】一条主线数形结合的思想方法是学习函数内容的一条主线,也是高考考查的热点.作函数图象首先要明确函数图象的形状和位置,而取值、列表、描点、连线只是作函数图象的辅助手段,不可本末倒置.两个区别(1)一个函数的图象关于原点对称与两个函数的图象关于原点对称不同,前者是自身对称,且为奇函数,后者是两个不同的函数对称.(2)一个函数的图象关于y 轴对称与两个函数的图象关于y 轴对称也不同,前者也是自身对称,且为偶函数,后者也是两个不同函数的对称关系. 三种途径明确函数图象形状和位置的方法大致有以下三种途径.(1)图象变换:平移变换、伸缩变换、对称变换.(2)函数解析式的等价变换.(3)研究函数的性质,描点作图.考点自测1.(人教A 版教材习题改编)为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( ).A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度解析 y =lg x +310=lg(x +3)-1可由y =lg x 的图象向左平移3个单位长度,向下平移1个单位长度而得到.答案 C2.(2013·太原一模)已知函数f (x )=2x -2,则函数y =|f (x )|的图象可能是( ).解析 函数y =|f (x )|=⎩⎨⎧2x -2,x ≥1,2-2x ,x <1,故y =|f (x )|在(-∞,1)上为减函数,在(1,+∞)上为增函数,排除A ,C ,D.答案 B3.(2011·陕西)函数y =x 13的图象是( ).解析 该题考查幂函数的图象与性质,解决此类问题首先是考虑函数的性质,尤其是奇偶性和单调性,再与函数y =x 比较即可.由(-x )13=-x 13知函数是奇函数.同时由当0<x <1时,x 13>x ,当x >1时,x 13<x ,知只有B 选项符合.答案 B4.当a ≠0时,y =ax +b 与y =(b a )x 的图象大致是( ).解析 A 中,a >0,b =1,b a =1,很容易排除;B 中,a >0,b >1,故b a >1,函数y =(b a )x 单调递增,也可排除;C 、D 中,a <0,0<b <1,故b a >1,排除D.故选C.答案 C5.直线y =1与曲线y =x 2-|x |+a 有四个交点,则a 的取值范围是________.解析 y =x 2-|x |+a 是偶函数,图象如图所示,由图象可知直线y =1与曲线y =x 2-|x |+a 有四个交点,需满足a -14<1<a ,∴1<a <54. 答案 ⎝ ⎛⎭⎪⎫1,54对应学生29考向一 作函数图象【例1】►作出下列函数的图象:(1)y =2x +1-1;(2)y =sin|x |;(3)y =|log 2(x +1)|.[审题视点] 根据函数性质通过平移,对称等变换作出函数图象.解 (1)y =2x +1-1的图象可由y =2x 的图象向左平移1个单位,得y =2x +1的图象,再向下平移一个单位得到y =2x +1-1的图象,如图①所示.(2)当x ≥0时,y =sin|x |与y =sin x 的图象完全相同,又y =sin|x |为偶函数,其图象关于y 轴对称,如图②所示.(3)首先作出y =log 2x 的图象c 1,然后将c 1向左平移1个单位,得到y =log 2(x+1)的图象c 2,再把c 2在x 轴下方的图象翻折到x 轴上方,即为所求图象c 3:y =|log 2(x +1)|.如图③所示(实线部分).(1)熟知一次函数、二次函数、反比例函数、指数函数、对数函数、三角函数等函数的图象,再利用图象变换的规律作图.(2)掌握平移变换、伸缩变换、对称变换、翻折变换、周期变换等常用的方法技巧,以简化作图过程.【训练1】 分别画出下列函数的图象:(1)y =|lg x |; (2)y =2x +2;(3)y =x 2-2|x |-1; (4)y =x +2x -1. 解 (1)y =⎩⎨⎧ lg x ,x ≥1.-lg x ,0<x <1.图象如图①. (2)将y =2x 的图象向左平移2个单位.图象如图②.(3)y =⎩⎨⎧x 2-2x -1 (x ≥0),x 2+2x -1 (x <0).图象如图③. (4)因y =1+3x -1,先作出y =3x 的图象,将其图象向右平移1个单位,再向上平移1个单位,即得y =x +2x -1的图象,如图④.考向二 函数图象的辨识【例2】►(2012·山东)函数y =cos 6x 2x -2-x的图象大致为( ).[审题视点] 利用函数的奇偶性及函数值的变化规律求解.解析 函数为奇函数,所以其图象关于原点对称,排除A ;令y =0得cos 6x=0,所以6x =π2+k π(k ∈Z ),x =π12+k 6π(k ∈Z ),函数的零点有无穷多个,排除C ;函数在y 轴右侧的第一个零点为⎝ ⎛⎭⎪⎫π12,0,又函数y =2x -2-x 为增函数,当0<x <π12时,y =2x -2-x >0,cos 6x >0,所以函数y =cos 6x 2x -2-x>0,排除B ;选D.答案D函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断图象的循环往复.【训练2】 如图所示,动点P 在正方体ABCD -A 1B 1C 1D 1的对角线BD 1上,过点P 作垂直于平面BB 1D 1D 的直线,与正方体表面相交于M ,N ,设BP =x ,MN =y ,则函数y =f (x )的图象大致是( ).解析 选B.在P 点由B 点向D 1点运动的过程中,考虑P 点的特殊位置,即考虑P 点为BD 1的中点时,此时,M ,N 分别为AA 1和CC 1的中点,MN 的值最大,故排除A ,C .取AA 1中点E 和CC 1中点F ,则BE ,BF 分别为点M ,N的运动轨迹,所以有tan ∠EBD 1=12y x ,故y =2x ·tan ∠EBD 1,而∠EBD 1为定值,故f (x )的图象为线段.排除D.答案 B 考向三 函数图象的应用【例3】►已知函数f (x )=|x 2-4x +3|.(1)求函数f (x )的单调区间,并指出其增减性;(2)求集合M ={m |使方程f (x )=m 有四个不相等的实根}.[审题视点] 利用函数的图象可直观得到函数的单调性,方程解的问题可转化为函数图象交点的问题.解 f (x )=⎩⎨⎧(x -2)2-1, x ∈(-∞,1]∪[3,+∞)-(x -2)2+1, x ∈(1,3)作出函数图象如图.(1)函数的增区间为[1,2],[3,+∞);函数的减区间为(-∞,1],[2,3].(2)在同一坐标系中作出y =f (x )和y =m 的图象,使两函数图象有四个不同的交点(如图).由图知0<m <1,∴M ={m |0<m <1}.(1)利用图象,可观察函数的对称性、单调性、定义域、值域、最值等性质.(2)利用函数图象可以解决一些形如f (x )=g (x )的方程解的个数问题.【训练3】 (2012·天津)已知函数y =|x 2-1|x -1的图象与函数y =kx -2的图象恰有两个交点,则实数k 的取值范围是________.解析 y =|x 2-1|x -1=⎩⎨⎧x +1,x ≤-1或x >1,-x -1,-1<x <1,函数y=kx-2恒过定点M(0,-2),k MA=0,k MB=4.当k=1时,直线y=kx -2在x>1时与直线y=x+1平行,此时有一个公共点,∴k∈(0,1)∪(1,4),两函数图象恰有两个交点.答案(0,1)∪(1,4)对应学生30热点突破7——函数图象的辨识【命题研究】从近三年的高考试题来看,图象的辨识与对称性以及利用图象研究函数的性质、方程、不等式的解是高考的热点,多以选择题、填空题的形式出现,属中低档题,主要考查基本初等函数的图象的应用以及数形结合思想.预测2014年高考仍将以识图、用图为主要考向,重点考查函数的图象性质以及方程、不等式与图象的综合问题.【真题探究】►(2012·新课标全国)已知函数f(x)=1ln(x+1)-x,则y=f(x)的图象大致为().[教你审题] 观察函数f (x )及四个选项的特点,从函数的定义域、值域、单调性入手或用特殊点验证.[解法] 函数f (x )的定义域为(-1,0)∪(0,+∞),排除D ;又f (1)=1ln 2-1<0,排除A ;g ′(x )=1x +1-1=-1x +1. 当-1<x <0时,g ′(x )>0,g (x )单调递增,∴g (x )<g (0)=0,∴f (x )在(-1,0)上单调递减且小于0,排除C.故选B.[答案] B[反思] (1)对基本函数的关系式、定义域、值域细心研究,抓住其关键点、单调性、奇偶性等特征,作为判断图象的依据.(2)要掌握判断函数图象的一些基本方法,如:特殊点法(利用特殊点筛选淘汰),导数法(借助导数判断单调性、凹凸性),辅助线法(借助辅助线判断点的位置、图象凹凸状况),平移法,对称法等.【试一试】 (2011·山东)函数y =x 2-2sin x 的图象大致是( ).解析 y ′=12-2cos x .令y ′=0,得cos x =14,则这个方程有无穷多解,即函数y =x 2-2sin x 有无穷多个极值点,又函数是奇函数,图象关于坐标原点对称.排除A ,B ,D ,故选C.答案 C对应学生237 A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.函数y =e sin x (-π≤x ≤π)的大致图象为 ( ).解析 因-π≤x ≤π,由y ′=e sin x cos x >0,得-π2<x <π2.则函数y =e sin x 在区间⎝ ⎛⎭⎪⎫-π2,π2上为增函数,排除A 、B 、C ,故选D. 答案 D2.已知函数f (x )=4|x |+2-1的定义域是[a ,b ](a ,b ∈Z ),值域是[0,1],则满足条件的整数对(a ,b )共有( ). A .2对 B .5对 C .6对 D .无数对解析 显然f (x )=4|x |+2-1为偶函数.其图象如图所示. f (x )=⎩⎪⎨⎪⎧4x +2-1,x ≥0,-4x -2-1,x <0, 要使值域y ∈[0,1],且a ,b ∈Z ,则a =-2,b =0,1,2;a =-1,b =2;a =0,b =2,∴共有5对. 答案 B 3.已知函数f (x )=⎝ ⎛⎭⎪⎫1e x -tan x ⎝ ⎛⎭⎪⎫-π2<x <π2,若实数x 0是函数y =f (x )的零点,且0<t <x 0,则f (t )的值( ). A .大于1 B .大于0 C .小于0 D .不大于0解析 分别作出函数y =⎝ ⎛⎭⎪⎫1e x 与y =tan x 在区间⎝ ⎛⎭⎪⎫-π2,π2上的图象,得到0<x 0<π2,且在区间(0,x 0)内,函数y =⎝ ⎛⎭⎪⎫1e x 的图象位于函数y =tan x 的图象上方,即0<x <x 0时,f (x )>0,则f (t )>0,故选B.答案 B4.如图,正方形ABCD 的顶点A ⎝ ⎛⎭⎪⎫0,22,B ⎝ ⎛⎭⎪⎫22,0,顶点C 、D 位于第一象限,直线l :x =t (0≤t ≤2)将正方形ABCD 分成两部分,记位于直线l 左侧阴影部分的面积为f (t ),则函数S =f (t )的图象大致是 ( ).解析 当直线l 从原点平移到点B 时,面积增加得越来越快;当直线l 从点B 平移到点C 时,面积增加得越来越慢.故选C.答案 C二、填空题(每小题5分,共10分)5.设函数f (x )=|x +2|+|x -a |的图象关于直线x =2对称,则a 的值为________. 解析 因为函数f (x )的图象关于直线x =2对称,则有f (2+x )=f (2-x )对于任意实数x 恒成立,即|x +4|+|x +2-a |=|x -4|+|x -2+a |对于任意实数x 恒成立,从而有⎩⎨⎧2-a =-4,a -2=4,解得a =6. 答案 66.(2011·新课标全国)函数y =11-x 的图象与函数y =2sin πx (-2≤x ≤4)的图象所有交点的横坐标之和等于________.解析 函数y =11-x =-1x -1和y =2sin πx 的图象有公共的对称中心(1,0),画出二者图象如图所示,易知y =11-x与y =2sin πx (-2≤x ≤4)的图象共有8个交点,不妨设其横坐标为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,且x 1<x 2<x 3<x 4<x 5<x 6<x 7<x 8,由对称性得x 1+x 8=x 2+x 7=x 3+x 6=x 4+x 5=2,∴x 1+x 2+x 3+x 4+x 5+x 6+x 7+x 8=8.答案 8三、解答题(共25分)7.(12分)讨论方程|1-x |=kx 的实数根的个数.解 设y =|1-x |,y =kx ,则方程的实根的个数就是函数y =|1-x |的图象与y =kx 的图象交点的个数.由右边图象可知:当-1≤k <0时,方程没有实数根;当k =0或k <-1或k ≥1时,方程只有一个实数根;当0<k <1时,方程有两个不相等的实数根.8.(13分)已知函数f (x )=x 1+x. (1)画出f (x )的草图;(2)指出f (x )的单调区间.解 (1)f (x )=x 1+x =1-1x +1,函数f (x )的图象是由反比例函数y =-1x 的图象向左平移1个单位后,再向上平移1个单位得到,图象如图所示.(2)由图象可以看出,函数f (x )有两个单调递增区间:(-∞,-1),(-1,+∞).B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.函数=ln 1|2x -3|的大致图象为(如图所示) ( ).解析 y =-ln|2x -3|=⎩⎪⎨⎪⎧ -ln (2x -3),x >32,-ln (3-2x ),x <32,故当x >32时,函数为减函数,当x <32时,函数为增函数.答案 A2.(2012·江西)如右图,已知正四棱锥S -ABCD 所有棱长都为1,点E 是侧棱SC 上一动点,过点E 垂直于SC 的截面将正四棱锥分成上、下两部分.记SE =x (0<x <1),截面下面部分的体积为V (x ),则函数y =V (x )的图象大致为 ( ).解析 (1)当0<x <12时,过E 点的截面为五边形EFGHI (如图1所示),连接FI ,由SC 与该截面垂直知,SC ⊥EF ,SC ⊥EI ,∴EF =EI =SE tan 60°=3x ,SI =2SE =2x ,IH =FG =BI =1-2x ,FI =GH =2AH =2 2x ,∴五边形EFGHI的面积S =FG ×GH +12FI × EF 2-⎝ ⎛⎭⎪⎫12FI 2=22x -32x 2,∴V (x )=V C -EFGHI +2V I -BHC =13(22x -32x 2)×CE +2×13×12×1×(1-2x )×22(1-2x )=2x 3-2x 2+26,其图象不可能是一条线段,故排除C ,D.(2)当12≤x <1时, 过E 点的截面为三角形,如图2,设此三角形为△EFG ,则EG =EF =EC tan 60°=3(1-x ),CG =CF =2CE =2(1-x ),三棱锥E -FGC底面FGC 上的高h =EC sin 45°=22(1-x ),∴V (x )=13×12CG ·CF ·h =23(1-x )3,∴V ′(x )=-2(1-x )2,又显然V ′(x )=-2(1-x )2在区间⎝ ⎛⎭⎪⎫12,1上单调递增,V ′(x )<0⎝ ⎛⎭⎪⎫x ∈⎝ ⎛⎭⎪⎫12,1, ∴函数V (x )=23(1-x )3在区间⎝ ⎛⎭⎪⎫12,1上单调递减,且递减的速率越来越慢,故排除B ,应选A.答案 A二、填空题(每小题5分,共10分)3.使log 2(-x )<x +1成立的x 的取值范围是________. ] 解析 作出函数y =log 2(-x )及y =x +1的图象.其中y =log 2(-x )与y =log 2 x 的图象关于y 轴对称,观察图象(如图所示)知-1<x <0,即x ∈(-1,0).也可把原不等式化为⎩⎨⎧-x >0,-x <2x +1后作图.答案 (-1,0)4.(2011·北京)已知函数f (x )=⎩⎪⎨⎪⎧ 2x,x ≥2,(x -1)3,x <2.若关于x 的方程f (x )=k 有两个不同的实根,则实数k 的取值范围是________.解析 作出函数f (x )=⎩⎪⎨⎪⎧ 2x,x ≥2,(x -1)3,x <2的简图,方程f (x )=k 有两个不同的实根,也就是函数f (x )的图象与直线y =k 有两个不同的交点,所以0<k <1.答案 (0,1)三、解答题(共25分)5.(12分)已知函数f (x )=x |m -x |(x ∈R ),且f (4)=0.(1)求实数m 的值;(2)作出函数f (x )的图象并判断其零点个数;(3)根据图象指出f (x )的单调递减区间;(4)根据图象写出不等式f (x )>0的解集;(5)求集合M ={m |使方程f (x )=m 有三个不相等的实根}.解 (1)∵f (4)=0,∴4|m -4|=0,即m =4.(2)∵f (x )=x |m -x |=x |4-x |=⎩⎨⎧x (x -4),x ≥4,-x (x -4),x <4.∴函数f (x )的图象如图:由图象知f (x )有两个零点.(3)从图象上观察可知:f (x )的单调递减区间为[2,4]. ](4)从图象上观察可知:不等式f (x )>0的解集为:{x |0<x <4或x >4}.(5)由图象可知若y =f (x )与y =m 的图象有三个不同的交点,则0<m <4,∴集合M ={m |0<m <4}.6.(13分)设函数f (x )=x +1x (x ∈(-∞,0)∪(0,+∞))的图象为C 1,C 1关于点A (2,1)的对称的图象为C 2,C 2对应的函数为g (x ).(1)求函数y =g (x )的解析式,并确定其定义域;(2)若直线y =b 与C 2只有一个交点,求b 的值,并求出交点的坐标.解 (1)设P (u ,v )是y =x +1x上任意一点, ∴v =u +1u ①.设P 关于A (2,1)对称的点为Q (x ,y ),∴⎩⎨⎧ u +x =4,v +y =2⇒⎩⎨⎧ u =4-x ,v =2-y ,代入①得2-y =4-x +14-x ⇒y =x -2+1x -4, ∴g (x )=x -2+1x -4(x ∈(-∞,4)∪(4,+∞)). (2)联立⎩⎪⎨⎪⎧ y =b ,y =x -2+1x -4⇒x 2-(b +6)x +4b +9=0,∴Δ=(b +6)2-4×(4b +9)=b 2-4b =0⇒b =0或b =4.∴当b =0时得交点(3,0);当b =4时得交点(5,4).。

2014届高考人教A版数学(理)一轮复习讲义2.9函数的应用

2014届高考人教A版数学(理)一轮复习讲义2.9函数的应用

第9讲函数的应用【2014年高考会这样考】1.考查二次函数模型的建立及最值问题.2.考查分段函数模型的建立及最值问题.3.考查指数、对数、幂函数、“对勾”型函数模型的建立及最值问题.4.合理选择变量,构造函数模型,求两变量间的函数关系式,从而研究其最值.对应学生34考点梳理1.常见的几种函数模型(1)一次函数模型:y=ax+b(a≠0);(2)反比例函数模型:y=kx(k≠0);(3)二次函数模型:y=ax2+bx+c(a≠0);(4)指数函数模型:y=N(1+p)x(x>0,p≠0)(增长率问题);(5)对数函数模型y=b log a x(x>0,a>0且a≠1);(6)幂函数模型y=x n;(7)y=x+ax型(x≠0);(8)分段函数型.2.三种函数模型图象与性质比较一个防范 特别关注实际问题的自变量的取值范围,合理确定函数的定义域. 四个步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质,初步选择模型;(2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题;(3)解模:用数学知识和方法解决转化出的数学问题;(4)还原:回到实际问题,检验结果的实际意义,给出结论.考点自测1.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了获得最大利润,每个售价应定为( ).A .95元B .100元C .105元D .110元解析 设定价为(90+x )元,则每件商品利润为90+x -80=(10+x )(元),利润y =(10+x )(400-20x )=20(x +10)·(20-x )=-20(x -5)2+4 500,当x =5时,利润最大,故售价定为95元.答案 A2.将甲桶中的a 升水缓慢注入空桶乙中,t 分钟后甲桶中剩余的水符合指数衰减曲线y =a e nt .假设5分钟后甲桶和乙桶的水量相等,若再过m 分钟后甲桶中的水只有a 8,则m 的值为( ).A .7B .8C .9D .10解析 令18a =a e nt ,即18=e nt ,因为12=e 5n ,故18=e 15n ,比较知t =15,m =15-5=10.答案 D3.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再慢慢走余下的路程,图中纵坐标表示离学校的距离s,横坐标表示出发后的时间t,则如图所示的四个图形中较符合该学生走法的是().解析纵轴表示离学校的距离,排除A,C,开始跑步,后慢慢走,说明函数开始下降较快,后来下降较慢.答案 D4.(2011·湖北)里氏震级M的计算公式为:M=lg A-lg A0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍.解析由lg 1 000-lg 0.001=6,得此次地震的震级为6级.因为标准地震的振幅为0.001,设9级地震最大振幅为A9,则lg A9-lg 0.001=9解得A9=106,同理5级地震最大振幅A5=102,所以9级地震的最大振幅是5级地震的最大振幅的10 000倍.答案610 0005.(人教A版教材习题改编)某种储蓄按复利计算利息,若本金为a元,每期利率为r,存期是x,本利和(本金加利息)为y元,则本利和y随存期x变化的函数关系式是________.解析已知本金为a元,利率为r,则1期后本利和为y=a+ar=a(1+r),2期后本利和为y=a(1+r)+a(1+r)r=a(1+r)2,3期后本利和为y=a(1+r)3,…x期后本利和为y=a(1+r)x,x∈N*答案y=a(1+r)x,x∈N*对应学生35考向一 一次函数、二次函数模型【例1】►据气象中心观察和预测:发生于M 地的沙尘暴一直向正南方向移动,其移动速度v (km/h)与时间t (h)的函数图象如图所示,过线段OC 上一点T (t,0)作横轴的垂线l ,梯形OABC 在直线l 左侧部分的面积即为t (h)内沙尘暴所经过的路程s (km).(1)当t =4时,求s 的值;(2)将s 随t 变化的规律用数学关系式表示出来;(3)若N 城位于M 地正南方向,且距M 地650 km ,试判断这场沙尘暴是否会侵袭到N 城,如果会,在沙尘暴发生后多长时间它将侵袭到N 城?如果不会,请说明理由.[审题视点] 正确理解s 的意义及函数v =f (t )的图象是解答此题的关键,该函数的定义域即风暴发生的时间由函数v =f (t )的图象确定,即0≤t ≤35. 解 (1)由图象可知:当t =4时,v =3×4=12,∴s =12×4×12=24.(2)当0≤t ≤10时,s =12·t ·3t =32t 2;当10<t ≤20时,s =12×10×30+30(t -10)=30t -150;当20<t ≤35时,s =12×10×30+10×30+(t -20)×30-12×(t -20)×2(t -20)=-t 2+70t -550.综上可知,s =⎩⎪⎨⎪⎧ 32t 2,t ∈[0,10],30t -150,t ∈(10,20],-t 2+70t -550,t ∈(20,35].(3)∵t ∈[0,10]时,s max =32×102=150<650, t ∈(10,20]时,s max =30×20-150=450<650,∴当t ∈(20,35]时,令-t 2+70t -550=650.解得t 1=30,t 2=40.∵20<t ≤35,∴t =30,∴沙尘暴发生30 h 后将侵袭到N 城.1.在现实生活中,很多问题的两变量之间的关系是一次函数模型,其增长特点是直线上升(自变量的系数大于0)或直线下降(自变量的系数小于0).2.当两变量之间的关系不能用同一个关系式给出,而是由几个不同的关系式构成分段函数则可以先将其作为几个不同问题,将各段的规律找出来,再将其合在一起,要注意各段变量的范围,特别是端点.【训练1】 经市场调查,某种商品在过去50天的销售量和价格均为销售时间t (天)的函数,且销售量近似地满足f (t )=-2t +200(1≤t ≤50,t ∈N ).前30天价格为g (t )=12t +30(1≤t ≤30,t ∈N ),后20天价格为g (t )=45(31≤t ≤50,t∈N ).(1)写出该种商品的日销售额S 与时间t 的函数关系;(2)求日销售额S 的最大值.解 (1)根据题意,得S =⎩⎪⎨⎪⎧ (-2t +200)⎝ ⎛⎭⎪⎫12t +30,1≤t ≤30,t ∈N 45(-2t +200),31≤t ≤50,t ∈N=⎩⎨⎧-t 2+40t +6 000,1≤t ≤30,t ∈N ,-90t +9 000,31≤t ≤50,t ∈N . (2)①当1≤t ≤30,t ∈N 时,S =-(t -20)2+6 400,∴当t =20时,S 的最大值为6 400;②当31≤t ≤50,t ∈N 时,S =-90t +9 000为减函数,∴当t =31时,S 的最大值为6 210.∵6 210<6 400,∴当t =20时,日销售额S 有最大值6 400. 考向二 指数函数模型【例2】►有一个受到污染的湖泊,其湖水的容积为V m 3,每天流出湖泊的水量等于流入湖泊的水量,都为r m 3.现假设下雨和蒸发正好平衡,且污染物质与湖水能很好地混合.用g (t )表示某一时刻t 每立方米湖水所含污染物质的克数,我们称其为在时刻t 时的湖水污染质量分数.已知目前污染源以每天p克的污染物质污染湖水,湖水污染质量分数满足关系式g (t )=p r +⎣⎢⎡⎦⎥⎤g (0)-p r e -r V t (p ≥0),其中g (0)是湖水污染的初始质量分数.(1)当湖水污染质量分数为常数时,求湖水污染的初始质量分数;(2)求证:当g (0)<p r 时,湖泊的污染程度将越来越严重;(3)如果政府加大治污力度,使得湖泊的所有污染停止,那么需要经过多少天才能使湖水的污染水平下降到开始时(即污染停时)污染水平的5%?[审题视点] 本题信息量大,解析式较繁,需要考生有较强的阅读理解能力和计算能力,同时,对题目的转化尤为重要,(2)中即证明g (t )递增;(3)中转化为解方程即可.(1)解 设0≤t 1<t 2,∴g (t )为常数,∴g (t 1)=g (t 2),即⎣⎢⎡⎦⎥⎤g (0)-p r ·⎝ ⎛⎭⎪⎫e -r V t 1-e -r V t 2=0.∴g (0)=p r .(2)证明 设0<t 1<t 2,则g (t 1)-g (t 2)=⎣⎢⎡⎦⎥⎤g (0)-p r ·(e -r V t 1-e -r V t 2) =⎣⎢⎡⎦⎥⎤g (0)-p r ·e r V t 2-e r V t 1e r V (t 1+t 2). ∵g (0)-p r <0,t 1<t 2,∴g (t 1)<g (t 2).故湖泊污染质量分数随时间变化而增加,污染越来越严重.(3)解 污染源停止,即p =0,此时g (t )=g (0)·e -r V t .设要经过t 天能使湖水的污染水平下降到开始时污染水平的5%.即g (t )=5%·g (0),即有5%·g (0)=g (0)·e -r V t .由实际意义知g (0)≠0,∴120=e -r V t .∴t =V r ln 20,即需要V r ln 20天时间.1.指数函数模型,常与增长率相结合进行考查,在实际问题中有人口增长、银行利率、细胞分裂等增长问题可以利用指数函数模型来表示;2.应用指数函数模型时,关键是对模型的判断,先设定模型将有关已知数据代入验证,确定参数,从而确定函数模型.3.y =a (1+x )n 通常利用指数运算与对数函数的性质求解.【训练2】某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y 与t 之间的函数关系式y =f (t );(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?解 (1)设y =⎩⎪⎨⎪⎧ kt ,0≤t ≤1,⎝ ⎛⎭⎪⎫12t -a ,t >1. 当t =1时,由y =4,得k =4,由⎝ ⎛⎭⎪⎫121-a =4,得a =3.则y =⎩⎪⎨⎪⎧ 4t ,0≤t ≤1,⎝ ⎛⎭⎪⎫12t -3,t >1.(2)由y ≥0.25得⎩⎨⎧ 0≤t ≤1,4t ≥0.25或⎩⎪⎨⎪⎧ t >1,⎝ ⎛⎭⎪⎫12t -3≥0.25.解得116≤t ≤5,因此服药一次后治疗有效的时间是5-116=7916小时. 考向三 函数y =x +a x模型【例3】►上海某玩具厂生产x 万套世博会吉祥物海宝所需成本费用为P 元,且P =1 000+5x +110x 2,x ∈(0,200],而每万套售出价格为Q 元,其中Q =a x +b (a >5 000,b >5).(1)该玩具厂生产多少万套吉祥物时,使得每万套成本费用最低?(2)若产出的吉祥物能全部售出,产量多大时,厂家所获利润最大?[审题视点] 用基本不等式求最值,注意等号成立的条件.解 (1)P x =1 000+5x +110x 2x =1 000x +x 10+5≥25(当且仅当x =100时,取等号),∴生产100万套时,每万套成本费用最低.(2)由题设,利润f (x )=⎝ ⎛⎭⎪⎫a x +b x -(1 000+5x +110x 2)=-110x 2+(b -5)x +a -1 000=-110[x -5(b -5)]2+a -1 000+52(b -5)2,x ∈(0,200].当5(b -5)≤200,即5<b ≤45时,[f (x )]max =f [5(b -5)]=52(b -5)2+a -1 000,∴当产量为(5b -25)万套时,利润最大.当b >45时,函数f (x )在(0,200]上是增函数,∴当产量为200万套时,[f (x )]max =200b +a -6 000.对于y =x +a x (a >0)类型的函数最值问题,特别要注意定义域问题,可考虑用均值不等式求最值,或利用函数的单调性求最值.【训练3】 (2010·湖北)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层,某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=k3x+5(0≤x≤10),若不建隔热层,每年能源消耗费用为8万元,设f(x)为隔热层建造费用与20年的能源消耗费用之和.(1)求k的值及f(x)的表达式;(2)隔热层修建多厚时,总费用f(x)达到最小,并求最小值.解(1)由已知条件C(0)=8,则k=40,因此f(x)=6x+20C(x)=6x+8003x+5(0≤x≤10).(2)f(x)=6x+10+8003x+5-10≥2 (6x+10)8003x+5-10=70(万元),当且仅当6x+10=8003x+5即x=5时等号成立.所以当隔热层为 5 cm时,总费用f(x)达到最小值,最小值为70万元.对应学生36规范解答2——函数建模及函数应用问题【命题研究】从近三年的高考试题来看,建立函数模型解决实际问题是高考的热点,题型主要以解答题为主,难度中等偏高,常与导数、最值交汇,主要考查建模能力,同时考查分析问题、解决问题的能力.预测2014年高考仍将以函数建模为主要考点,同时考查利用导数求最值问题.【真题探究】►(本小题满分12分)(2011·江苏)请你设计一个包装盒.如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,E、F在AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).(1)某广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.[教你审题] 解决本题的关键是根据条件将侧面积和容积表示成x 的函数,然后根据二次函数的最值求法和导数法求解.[规范解答] 设包装盒的高为h cm ,底面边长为a cm.由已知得a =2x ,h =60-2x 2=2(30-x )(0<x <30).(2分) (1)S =4ah =8x (30-x )=-8(x -15)2+1 800,(4分)所以当x =15时,S 取得最大值.(6分)(2)V =a 2h =22(-x 3+30x 2),(8分)V ′=62x (20-x ).由V ′=0得x =0(舍)或x =20.(9分)当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0.所以当x =20时,V 取得极大值,也是最大值.(11分)此时h a =12,即包装盒的高与底面边长的比值为12.(12分)[阅卷老师手记] (1)在求实际问题中的最大值或最小值时,一般是先设自变量、因变量,建立函数关系式,并确定其定义域,利用求函数最值的方法求解,但应注意结果与实际情况相符合. (2)用导数求解实际问题中的最大(小)值时,如果函数在开区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.解函数应用题的一般程序是:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文学语言转化成数学语言,用数学知识建立相应的数学模型;第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学解,必须验证这个数学解对实际问题的合理性.【试一试】 在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3 600元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q (百件)与销售价格P (元)的关系如图所示;③每月需各种开支 2 000元. Z&xx&k(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?解 设该店月利润余额为L 元,则由题设得L =Q (P -14)×100-3 600-2 000,①由销量图易得Q =⎩⎪⎨⎪⎧ -2P +50,14≤P ≤20,-32P +40,20<P ≤26, 代入①式得L =⎩⎪⎨⎪⎧ (-2P +50)(P -14)×100-5 600 (14≤P ≤20),⎝ ⎛⎭⎪⎫-32P +40(P -14)×100-5 600(20<P ≤26),(1)当14≤P ≤20时,L max =450元,此时P =19.5元;当20<P ≤26时,L max =1 2503元,此时P =613元.故当P =19.5元时,月利润余额最大,为450元.(2)设可在n 年内脱贫,依题意有12n ×450-50 000-58 000≥0,解得n ≥20.即最早可望在20年后脱贫.对应学生241A 级 基础演练(时间:30分钟 满分:55分)一、选择题(每小题5分,共20分)1.(2013·成都调研)在我国大西北,某地区荒漠化土地面积每年平均比上一年增长10.4%,专家预测经过x 年可能增长到原来的y 倍,则函数y =f (x )的图象大致为 ( ).解析 由题意可得y =(1+10.4%)x .答案 D2.(2013·青岛月考)某电信公司推出两种手机收费方式:A 种方式是月租20元,B 种方式是月租0元.一个月的本地网内打出电话时间t (分钟)与打出电话费s (元)的函数关系如图,当打出电话150分钟时,这两种方式电话费相差( ).A .10元B .20元C .30元 D.403元 解析 设A 种方式对应的函数解析式为s =k 1t +20,B 种方式对应的函数解析式为s =k 2t ,当t =100时,100k 1+20=100k 2,∴k 2-k 1=15,t =150时,150k 2-150k 1-20=150×15-20=10.答案 A3.某公司在甲、乙两地销售一种品牌车,利润(单位:万元)分别为L 1=5.06x -0.15x 2和L 2=2x ,其中x 为销售量(单位:辆).若该公司在这两地共销售15辆车,则能获得最大利润为( ). A .45.606万元B .45.6万元C .45.56万元D .45.51万元解析 依题意可设甲销售x 辆,则乙销售(15-x )辆,总利润S =L 1+L 2,则总利润S =5.06x -0.15x 2+2(15-x )=-0.15x 2+3.06x +30=-0.15(x -10.2)2+0.15×10.22+30(x ≥0),∴当x =10时,S max =45.6(万元).答案 B4.(2013·太原模拟)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析每辆客车营运的总利润y (单位:10万元)与营运年数x (x ∈N *)为二次函数关系(如图所示),则每辆客车营运多少年时,其营运的年平均利润最大( ). A .3 B .4 C .5 D .6解析 由题图可得营运总利润y =-(x -6)2+11,则营运的年平均利润y x =-x-25x +12,∵x ∈N *,∴y x ≤-2 x ·25x +12=2,当且仅当x =25x ,即x =5时取“=”.∴x =5时营运的年平均利润最大.答案 C二、填空题(每小题5分,共10分)5.为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文――→解密明文已知加密为y =a x -2(x 为明文,y 为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.解析 依题意y =a x -2中,当x =3时,y =6,故6=a 3-2,解得a =2.所以加密为y =2x -2,因此,当y =14时,由14=2x -2,解得x =4.答案 46.如图,书的一页的面积为600 cm 2,设计要求书面上方空出2cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.解析 设长为a cm ,宽为b cm ,则ab =600,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S max =486. 答案 30 cm 、20 cm三、解答题(共25分)7.(12分)为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x (分)与通话费y (元)的关系分别如图①、②所示.(1)分别求出通话费y 1,y 2与通话时间x 之间的函数关系式;(2)请帮助用户计算,在一个月内使用哪种卡便宜?解 (1)由图象可设y 1=k 1x +29,y 2=k 2x ,把点B (30,35),C (30,15)分别代入y 1,y 2得k 1=15,k 2=12.∴y 1=15x +29,y 2=12x .(2)令y 1=y 2,即15x +29=12x ,则x =9623.当x =9623时,y 1=y 2,两种卡收费一致;当x <9623 时,y 1>y 2,即使用“便民卡”便宜;当x >9623时,y 1<y 2,即使用“如意卡”便宜.8.(13分)(2013·济宁模拟)某单位有员工1 000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出x (x ∈N *)名员工从事第三产业,调整后他们平均每人每年创造利润为10⎝ ⎛⎭⎪⎫a -3x 500万元(a >0),剩下的员工平均每人每年创造的利润可以提高0.2x %.(1)若要保证剩余员工创造的年总利润不低于原来1 000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)在(1)的条件下,若调整出的员工创造的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?解 (1)由题意得:10(1 000-x )(1+0.2x %)≥10×1 000,即x 2-500x ≤0,又x >0,所以0<x ≤500.即最多调整500名员工从事第三产业.(2)从事第三产业的员工创造的年总利润为10⎝ ⎛⎭⎪⎫a -3x 500x 万元,从事原来产业的员工的年总利润为10(1 000-x )(1+0.2x %)万元,则10⎝ ⎛⎭⎪⎫a -3x 500x ≤10(1 000-x )(1+0.2x %),所以ax -3x 2500≤1 000+2x -x -1500x 2,所以ax ≤2x 2500+1 000+x ,即a ≤2x 500+1 000x +1恒成立,因为2500x +1 000x ≥2 2x 500×1 000x =4,当且仅当2x 500=1 000x ,即x =500时等号成立.所以a ≤5,又a >0,所以0<a ≤5,即a 的取值范围为(0,5].B 级 能力突破(时间:30分钟 满分:45分)一、选择题(每小题5分,共10分)1.(2013·潍坊联考)一张正方形的纸片,剪去两个一样的小矩形得到一个“E”形图案,如图所示,设小矩形的长、宽分别为x ,y剪去部分的面积为20,若2≤x ≤10,记y =f (x ),则y =f (x )的图象是 ( ).解析 由题意得2xy =20,即y =10x ,当x =2时,y =5,当x =10时,y =1时,排除C ,D ,又2≤x ≤10,排除B.答案 A2.(2011·湖北)放射性元素由于不断有原子放射出微粒子而变成其他元素,其含量不断减少,这种现象称为衰变.假设在放射性同位素铯137的衰变过程中,其含量M (单位:太贝克)与时间t (单位:年)满足函数关系:M (t )=M 02-t 30,其中M 0为t =0时铯137的含量.已知t =30时,铯137含量的变化率是-10ln 2(太贝克/年),则M (60)=( ). A .5太贝克B .75ln 2太贝克C .150ln 2太贝克D .150太贝克解析 由题意M ′(t )=M 02-t 30⎝ ⎛⎭⎪⎫-130ln 2, M ′(30)=M 02-1×⎝ ⎛⎭⎪⎫-130ln 2=-10ln 2, ∴M 0=600,∴M (60)=600×2-2=150.答案 D二、填空题(每小题5分,共10分)3.(2013·阜阳检测)按如图所示放置的一边长为1的正方形P ABC 沿x 轴滚动,设顶点P (x ,y )的轨迹方程是y=f (x ),则y =f (x )在其两个相邻零点间的图象与x 轴所围区域的面积为________.解析 将P 点移到原点,开始运动,当P 点第一次回到x 轴时经过的曲线是三段首尾相接的圆弧,它与x 轴围成的区域面积为π4+⎝ ⎛⎭⎪⎫π2+1+π4=π+1. 答案 π+14.某市出租车收费标准如下:起步价为8元,起步里程为3 km(不超过3 km 按起步价付费);超过3 km 但不超过8 km 时,超过部分按每千米2.15元收费;超过8 km 时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.现某人乘坐一次出租车付费22.6元,则此次出租车行驶了________km. 解析 由已知条件y =⎩⎨⎧ 8,0<x ≤3,8+2.15(x -3)+1,3<x ≤8,8+2.15×5+2.85(x -8)+1,x >8,由y =22.6解得x =9.答案 9三、解答题(共25分)5.(12分)(2011·湖南)如图,长方体物体E 在雨中沿面P (面积为S )的垂直方向做匀速度移动,速度为v (v >0),雨速沿E 移动方向的分速度为c (c ∈R ).E 移动时单位时间内的淋雨量包括两部分:①P 或P 的平行面(只有一个面淋雨)的淋雨量,假设其值与|v -c |×S 成正比,比例系数为110;②其他面的淋雨量之和,其值为12.记y 为E 移动过程中的总淋雨量.当移动距离d =100,面积S =32时,(1)写出y 的表达式;(2)设0<v ≤10,0<c ≤5,试根据c 的不同取值范围,确定移动速度v ,使总淋雨量y 最少.解 (1)由题意知,E 移动时单位时间内的淋雨量为320|v -c |+12,故y =100v ⎝ ⎛⎭⎪⎫320|v -c |+12=5v(3|v -c |+10). (2)由(1)知,当0<v ≤c 时,y =5v (3c -3v +10)=5(3c +10)v-15; 当c <v ≤10时,y =5v (3v -3c +10)=5(10-3c )v+15. 故y =⎩⎪⎨⎪⎧ 5(3c +10)v -15,0<v ≤c ,5(10-3c )v +15,c <v ≤10.①当0<c ≤103时,y 是关于v 的减函数,故当v =10时,y min =20-3c 2.②当103<c ≤5时,在(0,c ]上,y 是关于v 的减函数;在(c,10]上,y 是关于v的增函数.故当v =c 时,y min =50c. 6.(13分)(2013·徐州模拟)某学校要建造一个面积为10 000平方米的运动场.如图,运动场是由一个矩形ABCD 和分别以AD 、BC 为直径的两个半圆组成.跑道是一条宽8米的塑胶跑道,运动场除跑道外,其他地方均铺设草皮.已知塑胶跑道每平方米造价为150元,草皮每平方米造价为30元.(1)设半圆的半径OA =r (米),设建立塑胶跑道面积S 与r 的函数关系S (r );(2)由于条件限制r ∈[30,40],问当r 取何值时,运动场造价最低?最低造价为多少?(精确到元)解 (1)塑胶跑道面积S =π[r 2-(r -8)2]+8×10 000-πr 22r ×2 =80 000r +8πr -64π.∵πr 2<10 000,∴0<r <100π.(2)设运动场的造价为y 元, y =150×⎝ ⎛⎭⎪⎫80 000r +8πr -64π+30×⎝ ⎛10 000-80 000r)-8πr +64π=300 000+120×⎝ ⎛⎭⎪⎫80 000r +8πr -7 680π.令f (r )=80 000r +8πr ,∵f ′(r )=8π-80 000r 2, 当r ∈[30,40]时,f ′(r )<0, ∴函数y =300 000+120×⎝ ⎛⎭⎪⎫80 000r +8πr -7 680π在[30,40]上为减函数.∴当r =40时,y min ≈636 510,即运动场的造价最低为636 510元.。

高考数学(理科)一轮复习函数及其表示学案带答案

高考数学(理科)一轮复习函数及其表示学案带答案

高考数学(理科)一轮复习函数及其表示学案带答案第二函数学案4函数及其表示导学目标:1了解构成函数的要素,会求一些简单函数的定义域和值域,了解映射的概念2在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法等)表示函数3了解简单的分段函数,并能简单应用.自主梳理1.函数的基本概念(1)函数定义设A,B是非空的,如果按照某种确定的对应关系f,使对于集合A 中的,在集合B中,称f:A→B为从集合A到集合B的一个函数,x 的取值范围A叫做函数的__________,__________________叫做函数的值域.(2)函数的三要素__________、________和____________.(3)函数的表示法表示函数的常用方法有:________、________、________(4)函数相等如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据.()分段函数:在函数的________内,对于自变量x的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________.2.映射的概念(1)映射的定义设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中确定的元素与之对应,那么就称对应f:A→B为从集合A到集合B的(2)由映射的定义可以看出,映射是概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A、B必须是数集自我检测1.(2011&#8226;佛模拟)设集合={x|0≤x≤2},N={|0≤≤2},给出下列4个图形,其中能表示集合到N的函数关系的有()A.0个B.1个.2个D.3个2.(2010&#8226;湖北)函数=1lg0&#61480;4x-3&#61481;的定义域为()A.(34,1) B.(34,+∞).(1,+∞) D.(34,1)∪(1,+∞)3.(2010&#8226;湖北)已知函数f(x)=lg3x,x&gt;02x,x≤0,则f(f(19))等于()A.4 B14.-4 D.-144.下列函数中,与函数=x相同的函数是()A.=x2x B.=(x)2.=lg 10x D.=2lg2x.(2011&#8226;衡水月考)函数=lg(ax2-ax+1)的定义域是R,求a 的取值范围.探究点一函数与映射的概念例1 (教材改编)下列对应关系是集合P上的函数的是________.(1)P=Z,Q=N*,对应关系f:对集合P中的元素取绝对值与集合Q 中的元素相对应;=x2,x∈P,∈Q;(2)P={-1,1,-2,2},Q={1,4},对应关系:f:x→=x2,x∈P,∈(3)P={三角形},Q={x|x&gt;0},对应关系f:对P中三角形求面积与集合Q中元素对应变式迁移1 已知映射f:A→B其中B.其中A=B=R,对应关系f:x→=-x2+2x,对于实数∈B,在集合A中不存在元素与之对应,则的取值范围是()A.&gt;1 B.≥1.&lt;1 D.≤1探究点二求函数的定义域例 2 (1)求函数=x+1+&#61480;x-1&#61481;0lg&#61480;2-x&#61481;的定义域;(2)已知函数f(2x+1)的定义域为(0,1),求f(x)的定义域.变式迁移2已知函数=f(x)的定义域是[0,2],那么g(x)=f&#61480;x2&#61481;1+lg&#61480;x+1&#61481;的定义域是___________________________________________________________ _____________.探究点三求函数的解析式例3 (1)已知f(2x+1)=lg x,求f(x);(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);(3)已知f(x)满足2f(x)+f(1x)=3x,求f(x).变式迁移3(2011&#8226;武汉模拟)给出下列两个条:(1)f(x+1)=x+2x;(2)f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2试分别求出f(x)的解析式.探究点四分段函数的应用例4 设函数f(x)=x2+bx+,x≤0,2,x&gt;0若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数为()A.1 B.2 .3 D.4变式迁移4(2010&#8226;江苏)已知函数f(x)=x2+1,x≥0,1,x&lt;0,则满足不等式f(1-x2)&gt;f(2x)的x的范围是________________.1.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义;第三类是不给出函数的解析式,而由f(x)的定义域确定函数f[g(x)]的定义域或由f[g(x)]的定义域确定函数f(x)的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题解决.2.解析式的求法求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.(满分:7分)一、选择题(每小题分,共2分)1.下列各组中的两个函数是同一函数的为()(1)1=&#61480;x+3&#61481;&#61480;x-&#61481;x+3,2=x-;(2)1=x+1x-1,2=&#61480;x+1&#61481;&#61480;x-1&#61481;;(3)f(x)=x,g(x)=x2;(4)f(x)=3x4-x3,F(x)=x3x-1;()f1(x)=(2x-)2,f2(x)=2x-A.(1)(2) B.(2)(3).(4) D.(3)()2.函数=f(x)的图象与直线x=1的公共点数目是()A.1B.0.0或1D.1或23.(2011&#8226;洛阳模拟)已知f(x)=x+2&#61480;x≤-1&#61481;,x2 &#61480;-1&lt;x&lt;2&#61481;,2x &#61480;x≥2&#61481;,若f(x)=3,则x的值是()A.1B.1或32.1,32或±3D34.(2009&#8226;江西)函数=ln&#61480;x+1&#61481;-x2-3x+4的定义域为()A.(-4,-1)B.(-4,1).(-1,1)D.(-1,1](2011&#8226;台州模拟)设f:x→x2是从集合A到集合B的映射,如果B={1,2},则A∩B为()A.&#8709;B.{1}.&#8709;或{2}D.&#8709;或{1}题号1234答案二、填空题(每小题4分,共12分)6.下列四个命题:(1)f(x)=x-2+1-x有意义;(2)函数是其定义域到值域的映射;(3)函数=2x(x∈N)的图象是一条直线;(4)函数=x2,x≥0,-x2,x&lt;0的图象是抛物线.其中正确的命题个数是________.7.设f(x)=3x+1&#61480;x≥0&#61481;x2 &#61480;x&lt;0&#61481;,g(x)=2-x2&#61480;x≤1&#61481;2 &#61480;x&gt;1&#61481;,则f[g(3)]=________,g[f(-12)]=________8.(2010&#8226;陕西)已知函数f(x)=3x+2,x&lt;1,x2+ax,x≥1,若f(f(0))=4a,则实数a=______三、解答题(共38分)9.(12分)(1)若f(x+1)=2x2+1,求f(x)的表达式;(2)若2f(x)-f(-x)=x+1,求f(x)的表达式;(3)若函数f(x)=xax+b,f(2)=1,又方程f(x)=x有唯一解,求f(x)的表达式.10.(12分)已知f(x)=x2+2x-3,用图象法表示函数g(x)=f&#61480;x&#61481;+|f&#61480;x&#61481;|2,并写出g(x)的解析式.11.(14分)(2011&#8226;湛江模拟)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x(百台),其总成本为G(x)万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R(x)(万元)满足R(x)=-04x2+42x-08,0≤x≤,102,x&gt;假定该产品产销平衡,那么根据上述统计规律:(1)要使工厂有盈利,产品x应控制在什么范围?(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?答案自主梳理1.(1)数集任意一个数x都有唯一确定的数f(x)和它对应定义域函数值的集合{f(x)|x∈A}(2)定义域值域对应关系(3)解析法列表法图象法(4)对应关系()定义域对应关系并集并集2(1)都有唯一一个映射(2)函数非空自我检测1.B[对于题图(1):中属于(1,2]的元素,在N中没有象,不符合定义;对于题图(2):中属于(43,2]的元素的象,不属于集合N,因此它不表示到N的函数关系;对于题图(3):符合到N的函数关系;对于题图(4):其象不唯一,因此也不表示到N的函数关系.]2.A3B 4.解函数=lg(ax2-ax+1)的定义域是R,即ax2-ax+1&gt;0恒成立.①当a=0时,1&gt;0恒成立;②当a≠0时,应有a&gt;0,Δ=a2-4a&lt;0,∴0&lt;a&lt;4综上所述,a的取值范围为0≤a&lt;4堂活动区例 1 解题导引函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量在其定义域中的每一个值,是否都有唯一确定的函数值.(2)解析由于(1)中集合P中元素0在集合Q中没有对应元素,并且(3)中集合P不是数集,所以(1)和(3)都不是集合P上的函数.由题意知,(2)正确.变式迁移1A[由题意知,方程-x2+2x=无实数根,即x2-2x +=0无实数根.∴Δ=4(1-)&lt;0,∴&gt;1时满足题意.]例2 解题导引在(2)中函数f(2x+1)的定义域为(0,1)是指x的取值范围还是2x+1的取值范围?f(x)中的x与f(2x+1)中的2x+1的取值范围有什么关系?解(1)要使函数有意义,应有x+1≥0,x-1≠0,2-x&gt;0,2-x≠1,即x≥-1,x≠1,x&lt;2,解得-1≤x&lt;2,x≠1所以函数的定义域是{x|-1≤x&lt;1或1&lt;x&lt;2}.(2)∵f(2x+1)的定义域为(0,1),∴1&lt;2x+1&lt;3,所以f(x)的定义域是(1,3).变式迁移2(-1,-910)∪(-910,2]解析由0≤x2≤2x+1&gt;01+lg&#61480;x+1&#61481;≠0得-1&lt;x≤2且x≠-910即定义域为(-1,-910)∪(-910,2].例3 解题导引函数解析式的类型与求法(1)若已知函数的类型(如一次函数、二次函数),可用待定系数法.(2)已知复合函数f(g(x))的解析式,可用换元法,此时要注意变量的取值范围.(3)已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量,如f(-x)、f(1x)等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f(x).解(1)令2x+1=t,则x=2t-1,。

2014高考数学一轮汇总训练《函数及其表示 》理 新人教A版

2014高考数学一轮汇总训练《函数及其表示 》理 新人教A版

第一节函数及其表示[备考方向要明了]年新课标全国[归纳²知识整合]1.函数与映射的概念按某一个确定的对应关系[探究] 1.函数和映射的区别与联系是什么?提示:二者的区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集,二者的联系是函数是特殊的映射.2.函数的有关概念(1)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合 {f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系. 3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. [探究] 2.若两个函数的定义域与值域都相同,它们是否是同一个函数?提示:不一定.如函数y =x 与y =x +1,其定义域与值域完全相同,但不是同一个函数;再如y =sin x 与y =cos x ,其定义域都为R ,值域都为[-1,1],显然不是同一个函数.因为定义域和对应关系完全相同的两个函数的值域也相同,所以定义域和对应关系完全相同的两个函数才是同一个函数.4.函数的表示方法表示函数的常用方法有:解析法、列表法和图象法. 5.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数,分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[自测²牛刀小试]1.(教材习题改编)给出下列五个命题,正确的有( ) ①函数是定义域到值域的对应关系; ②函数f (x )=x -4+1-x ;③f (x )=5,因这个函数的值不随x 的变化而变化,所以f (t 2+1)也等于5; ④y =2x (x ∈N )的图象是一条直线; ⑤f (x )=1与g (x )=x 0表示同一个函数. A .1个 B .2个 C .3个D .4个解析:选B 由函数的定义知①正确;②错误;由⎩⎪⎨⎪⎧x -4≥0,1-x ≥0,得定义域为∅,所以不是函数;因为函数f (x )=5为常数函数,所以f (t 2+1)=5,故③正确;因为x ∈N ,所以函数y =2x (x ∈N )的图象是一些离散的点,故④错误;由于函数f (x )=1的定义域为R ,函数g (x )=x 0的定义域为{x |x ≠0},故⑤错误.综上分析,可知正确的个数是2.2.(教材习题改编)以下给出的对应是从集合A 到B 的映射的有( )①集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应.②集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;③集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;④集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.A .1个B .2个C .3个D .4个解析:选C 由于新华中学的每一个班级里的学生都不止一个,即一个班级对应的学生不止一个,所以④不是从集合A 到集合B 的映射.3.(2012²江西高考)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 4.(教材习题改编)已知函数f (x )=x +2x -6,则f (f (4))=________;若f (a )=2,则a =________.解析:∵f (x )=x +2x -6,∴f (4)=4+24-6=-3. ∴f (f (4))=f (-3)=-3+2-3-6=19.∵f (a )=2,即a +2a -6=2, 解得a =14. 答案:19145.(教材习题改编)A ={x |x 是锐角},B =(0,1),从A 到B 的映射是“求余弦”,与A 中元素60°相对应的B 中的元素是________;与B 中元素32相对应的A 中的元素是________.解析:∵cos 60°=12,∴与A 中元素60°相对应的B 中的元素是12.又∵cos 30°= 32,∴与B 中元素32相对应的A 中的元素是30°. 答案:1230°[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x ≥0-1,x <0表示同一个函数.(2)函数y =f (x )的图象与直线x =1的交点最多有1个. (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________.[自主解答] 对于(1),函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1x ≥0,-1x <0的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )与g (t )表示同一函数;对于(4),由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0,所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3) ———————————————————1.判断两个变量之间是否存在函数关系的方法要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否为同一个函数的方法判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.1.(1)以下给出的同组函数中,是否表示同一函数?为什么? ①f 1:y =xx;f 2:y =1.②f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:③f 1:y =2x ;f 2:如图所示.解:①不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .②同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式.③同一函数.理由同②.(2)已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是( )A .k >1B .k ≥1C .k <1D .k ≤1解析:选A 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. 所以Δ=4(1-k )<0,解得k >1时满足题意.[例2] (1)已知f (x +1)=x 2+4x +1,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9.求f (x ). [自主解答] (1)法一:(换元法)设x +1=t ,则x =t -1, ∴f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.法二:(配凑法)∵f (x +1)=x 2+4x +1=(x +1)2+ 2(x +1)-2,∴所求函数为f (x )=x 2+2x -2.(2)(待定系数法)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9.由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,解得a =1,b =3.∴所求函数解析式为f (x )=x +3.若将本例(1)中“f (x +1)=x 2+4x +1”改为“f ⎝ ⎛⎭⎪⎫2x+1=lg x ”,如何求解?解:令2x+1=t ,∵x >0,∴t >1且x =2t -1. ∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).———————————————————求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).2.给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2. 试分别求出f (x )的解析式. 解:(1)令t = x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c ,又∵f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +3.[例3] 已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f x +1,x <4,则f (2+log 23)的值为( )A.124B.112C.16 D.13[解析] ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18³⎝ ⎛⎭⎪⎫12log 23=18³13=124.[答案] A ——————————————————— 解决分段函数求值问题的方法(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.3.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ) A.12 B.45 C .2D .9解析:选C ∵x <1,f (x )=2x+1,∴f (0)=2.由f (f (0))=4a ,得f (2)=4a ,∵x ≥1,f (x )=x 2+ax , ∴4a =4+2a ,解得a =2.4种方法——函数解析式的求法求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)解方程组法.具体内容见例2[方法²规律].2两个易误点——映射的概念及分段函数求值问题中的易误点(1)判断对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯一”.但要注意:①A 中不同元素可有相同的象,即允许多对一,但不允许一对多;②B 中元素可无原象,即B 中元素可有剩余.(2)求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域是其定义域内不同子集上对应的各关系式的值域的并集.数学思想——分类讨论思想在分段函数中的应用当数学问题不宜用统一的方法处理时,我们常常根据研究对象的差异,按照一定的分类方法或标准,将问题分为“全而不重,广而不漏”的若干类,然后逐类分别讨论,再把结论汇总,得出问题答案的思想,这就是主要考查了分类讨论的数学思想,由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类讨论的一种体现.[典例] (2011²江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] ①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.[答案] -34[题后悟道]1.在解决本题时,由于a 的取值不同限制了1-a 及1+a 的取值,从而应对a 进行分类讨论.2.运用分类讨论的思想解题的基本步骤 (1)确定讨论对象和确定研究的区域;(2)对所讨论的问题进行合理的分类(分类时需要做到不重不漏,标准统一、分层不越级);(3)逐类讨论:即对各类问题详细讨论,逐步解决; (4)归纳总结,整合得出结论. [变式训练]1.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C ①当a >0时,∵f (a )>f (-a ), ∴log 2a >log 12a =log 2 1a.∴a >1a,得a >1.②当a <0时,∵f (a )>f (-a ), ∴log 12(-a )>log 2(-a )=log 121-a. ∴-a <1-a得-1<a <0,故C 项为正确选项.2.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ∈-∞,1,x 2,x ∈[1,+∞,若f (x )>4,则x 的取值范围是________________.解析:当x <1时,由f (x )>4得2-x>4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2,但由于x ≥1,所以x >2. 综上,x 的取值范围是x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)一、选择题(本大题共6小题,每小题5分,共30分) 1.下列各组函数中,表示相等函数的是( ) A .y =5x 5与y =x 2B .y =ln e x与y =eln xC .y =x -1x +3x -1与y =x +3D .y =x 0与y =1x解析:选D y =5x 5=x ,y =x 2=|x |,故y =5x 5与y =x 2不表示相等函数;B 、C 选项中的两函数定义域不同;D 选项中的两函数是同一个函数.2.设A ={0,1,2,4},B =⎩⎨⎧⎭⎬⎫12,0,1,2,6,8,则下列对应关系能构成A 到B 的映射的是( )A .f :x →x 3-1 B .f :x →(x -1)2C .f :x →2x -1D .f :x →2x解析:选C 对于A ,由于集合A 中x =0时,x 3-1=-1∉B ,即A 中元素0在集合B 中没有元素与之对应,所以选项A 不符合;同理可知B 、D 两选项均不能构成A 到B 的映射,C 符合.3.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≥0,lg -x ,x <0,则f (f (-10))=( )A.12 B.14 C .1D .-14解析:选A 依题意可知f (-10)=lg 10=1,f (1)=21-2=12.4.(2013²杭州模拟)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D ∵f (a )+f (-1)=2,且f (-1)= 1=1,∴f (a )=1,当a ≥0时,f (a )= a =1,∴a =1; 当a <0时,f (a )= -a =1,∴a =-1.5.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3解析:选B 由f (x )+2f (3-x )=x 2可得f (3-x )+2f (x )=(3-x )2,由以上两式解得f (x )=13x 2-4x +6.6.(2013²泰安模拟)具有性质:f ⎝ ⎛⎭⎪⎫1x =-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x ,x >1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①解析:选B ①f ⎝ ⎛⎭⎪⎫1x=1x-x =-f (x )满足.②f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x )不满足. ③0<x <1时,f ⎝ ⎛⎭⎪⎫1x =-x =-f (x ),x =1时,f ⎝ ⎛⎭⎪⎫1x =0=-f (x ), x >1时,f ⎝ ⎛⎭⎪⎫1x =1x=-f (x )满足.二、填空题7.已知f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则函数f (3)=________.解析:∵f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,∴f (x )=x 2+2.∴f (3)=32+2=11. 答案:118.若f (a +b )=f (a )²f (b )且f (1)=1,则f 2f 1+f 3f 2+…+f 2 012f 2 011=________.解析:令b =1,∵f a +1f a =f (1)=1,∴f 2f 1+f 3f 2+…+f 2 012f 2 011=2 011. 答案:2 0119.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析:画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,如图.由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎨⎧-1<x <1,-1-2<x <-1+ 2.得x ∈(-1,2-1). 答案:(-1,2-1)三、解答题(本大题共3小题,每小题12分,共36分)10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0,g (f (2))=g (3)=2.(2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2; 当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1.11.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.12.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1,∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用s 1,s 2分别表示乌龟和兔子所行的路程,t 为时间,则下图与故事情节相吻合的是( )解析:选B 根据故事的描述,乌龟是先于兔子到达终点,到达终点的最后时刻乌龟的路程大于兔子的路程,并且兔子中间有一段路程为零,分析知B 图象与事实相吻合.2.下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; (2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应. 解析:对于(1),集合P 中元素0在集合Q 中没有对应元素,故(1)不是函数;对于(3)集合P 不是数集,故(3)不是函数;(2)正确.答案:(2)3.试判断以下各组函数是否表示同一函数: (1)y =x -2²x +2,y =x 2-4; (2)y =x ,y =3t 3; (3)y =|x |,y =(x )2.解:∵y =x -2²x +2的定义域为{x |x ≥2},y =x 2-4的定义域为{x |x ≥2或x ≤-2},∴它们不是同一函数.(2)∵它们的定义域相同,且y =3t 3=t , ∴y =x 与y =3t 3是同一函数.(3)∵y =|x |的定义域为R ,y =(x )2的定义域为{x |x ≥0}, ∴它们不是同一函数.4.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a , 由2a =3,得a =32,满足-1<a <2.③当a ≥2时,f (a )=a 22,由a 22=3,得a =±6, 又a ≥2,故a = 6. 综上可知,a 的值为32或 6.。

人教A版高考总复习一轮数学精品课件 第5章 课时规范练 函数y=Asin(ωx+φ)的图象及应用

人教A版高考总复习一轮数学精品课件 第5章 课时规范练 函数y=Asin(ωx+φ)的图象及应用
1 π
C.y=sin(2x-2 )
π
D.y=sin(2x- )
6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
解析 将函数

y=sin(x-3)的图象上所有点的横坐标伸长到原来的
不变),得到图象对应的函数解析式为
1
y=sin(2x-3),将

移3个单位长度,得到的图象对应的函数解析式为
2 倍(纵坐标
1
y=sin(2x-3)的图象向左平
1

1
y=sin(2(x+3)-3)=sin(2x-6).
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2.(2024·青海西宁模拟)把函数 y=f(x)图象上所有点的横坐标伸长到原来的 2
π
倍,纵坐标保持不变,再把所得图象向左平移 个单位长度,得到
解析 因为 ω>0,所以

T=π= ⇒ω=2,当

π
π
π
x= 时,sin( +φ)=0⇒ +φ=kπ(k∈Z).因
4
2
2
π
π
为 0<φ<π,所以 φ= ,所以 f(x)=sin(2x+ )=cos
2
2
2x.将函数 f(x)图象上的所有点的
横坐标伸长为原来的 2 倍(纵坐标不变),可得函数 y=cos x 的图象,再将所得图
2
3
由 θ>0 可知,当 k=1 时,θ
π
取得最小值6.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

2014高考数学一轮复习第二章函数及其表示训练理新人教A版

2014高考数学一轮复习第二章函数及其表示训练理新人教A版

【创新设计】2014高考数学一轮复习第二章函数及其表示训练理新人教A版第一节函数及其表示[备考方向要明了][归纳·知识整合]1.函数与映射的概念[探究] 1.函数和映射的区别与联系是什么?提示:二者的区别在于映射定义中的两个集合是非空集合,可以不是数集,而函数中的两个集合必须是非空数集,二者的联系是函数是特殊的映射.2.函数的有关概念 (1)函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合 {f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(2)函数的三要素:定义域、值域和对应关系. 3.相等函数如果两个函数的定义域相同,并且对应关系完全一致,则这两个函数为相等函数. [探究] 2.若两个函数的定义域与值域都相同,它们是否是同一个函数?提示:不一定.如函数y =x 与y =x +1,其定义域与值域完全相同,但不是同一个函数;再如y =sin x 与y =cos x ,其定义域都为R ,值域都为[-1,1],显然不是同一个函数.因为定义域和对应关系完全相同的两个函数的值域也相同,所以定义域和对应关系完全相同的两个函数才是同一个函数.4.函数的表示方法表示函数的常用方法有:解析法、列表法和图象法. 5.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数,分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数.[自测·牛刀小试]1.(教材习题改编)给出下列五个命题,正确的有( ) ①函数是定义域到值域的对应关系; ②函数f (x )=x -4+1-x ;③f (x )=5,因这个函数的值不随x 的变化而变化,所以f (t 2+1)也等于5; ④y =2x (x ∈N )的图象是一条直线; ⑤f (x )=1与g (x )=x 0表示同一个函数. A .1个 B .2个 C .3个D .4个解析:选B 由函数的定义知①正确;②错误;由⎩⎪⎨⎪⎧x -4≥0,1-x ≥0,得定义域为∅,所以不是函数;因为函数f (x )=5为常数函数,所以f (t 2+1)=5,故③正确;因为x ∈N ,所以函数y =2x (x ∈N )的图象是一些离散的点,故④错误;由于函数f (x )=1的定义域为R ,函数g (x )=x 0的定义域为{x |x ≠0},故⑤错误.综上分析,可知正确的个数是2.2.(教材习题改编)以下给出的对应是从集合A 到B 的映射的有( )①集合A ={P |P 是数轴上的点},集合B =R ,对应关系f :数轴上的点与它所代表的实数对应.②集合A ={P |P 是平面直角坐标系中的点},集合B ={(x ,y )|x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;③集合A ={x |x 是三角形},集合B ={x |x 是圆},对应关系f :每一个三角形都对应它的内切圆;④集合A ={x |x 是新华中学的班级},集合B ={x |x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.A .1个B .2个C .3个D .4个解析:选C 由于新华中学的每一个班级里的学生都不止一个,即一个班级对应的学生不止一个,所以④不是从集合A 到集合B 的映射.3.(2012·江西高考)若函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,lg x ,x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:选B f (10)=lg 10=1,故f (f (10))=f (1)=12+1=2. 4.(教材习题改编)已知函数f (x )=x +2x -6,则f (f (4))=________;若f (a )=2,则a =________.解析:∵f (x )=x +2x -6,∴f (4)=4+24-6=-3. ∴f (f (4))=f (-3)=-3+2-3-6=19.∵f (a )=2,即a +2a -6=2, 解得a =14. 答案:19145.(教材习题改编)A ={x |x 是锐角},B =(0,1),从A 到B 的映射是“求余弦”,与A 中元素60°相对应的B 中的元素是________;与B 中元素32相对应的A 中的元素是________. 解析:∵cos 60°=12,∴与A 中元素60°相对应的B 中的元素是12.又∵cos 30°= 32,∴与B 中元素32相对应的A 中的元素是30°. 答案:12 30°[例1] 有以下判断:(1)f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1,x -1,x 表示同一个函数.(2)函数y =f (x )的图象与直线x =1的交点最多有1个. (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数.(4)若f (x )=|x -1|-|x |,则f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=0.其中正确判断的序号是________. [自主解答] 对于(1),函数f (x )=|x |x的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧x ,-x的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,若x =1是y =f (x )定义域内的值,由函数的定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )与g (t )表示同一函数;对于(4),由于f ⎝ ⎛⎭⎪⎫12=⎪⎪⎪⎪⎪⎪12-1-⎪⎪⎪⎪⎪⎪12=0, 所以f ⎝ ⎛⎭⎪⎫f ⎝ ⎛⎭⎪⎫12=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3) ———————————————————1.判断两个变量之间是否存在函数关系的方法要检验两个变量之间是否存在函数关系,只需检验:(1)定义域和对应关系是否给出;(2)根据给出的对应关系,自变量x 在其定义域中的每一个值,是否都能找到唯一的函数值y 与之对应.2.判断两个函数是否为同一个函数的方法判断两个函数是否相同,要先看定义域是否一致,若定义域一致,再看对应法则是否一致,由此即可判断.1.(1)以下给出的同组函数中,是否表示同一函数?为什么? ①f 1:y =xx;f 2:y =1.②f 1:y =⎩⎪⎨⎪⎧1,x ≤1,2,1<x <2,3,x ≥2;f 2:③f 1:y =2x ;f 2:如图所示.解:①不同函数.f 1(x )的定义域为{x ∈R |x ≠0},f 2(x )的定义域为R .②同一函数.x 与y 的对应关系完全相同且定义域相同,它们是同一函数的不同表示方式. ③同一函数.理由同②.(2)已知映射f :A →B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是( )A .k >1B .k ≥1C .k <1D .k ≤1解析:选A 由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根. 所以Δ=4(1-k )<0,解得k >1时满足题意.[例2] (1)已知f (x +1)=x 2+4x +1,求f (x )的解析式.(2)已知f (x )是一次函数,且满足3f (x +1)-f (x )=2x +9.求f (x ). [自主解答] (1)法一:(换元法)设x +1=t ,则x =t -1, ∴f (t )=(t -1)2+4(t -1)+1, 即f (t )=t 2+2t -2.∴所求函数为f (x )=x 2+2x -2.法二:(配凑法)∵f (x +1)=x 2+4x +1=(x +1)2+2(x +1)-2,∴所求函数为f (x )=x 2+2x -2.(2)(待定系数法)由题意,设函数为f (x )=ax +b (a ≠0), ∵3f (x +1)-f (x )=2x +9, ∴3a (x +1)+3b -ax -b =2x +9, 即2ax +3a +2b =2x +9.由恒等式性质,得⎩⎪⎨⎪⎧2a =2,3a +2b =9,解得a =1,b =3.∴所求函数解析式为f (x )=x +3.若将本例(1)中“f (x +1)=x 2+4x +1”改为“f ⎝ ⎛⎭⎪⎫2x+1=lg x ”,如何求解?解:令2x+1=t ,∵x >0,∴t >1且x =2t -1. ∴f (t )=lg 2t -1,即f (x )=lg 2x -1(x >1).———————————————————求函数解析式的常用方法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的表达式;(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法; (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围;(4)解方程组法:已知关于f (x )与f ⎝ ⎛⎭⎪⎫1x或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程求出f (x ).2.给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2. 试分别求出f (x )的解析式.解:(1)令t = x +1, ∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1, ∴f (x )=x 2-1(x ≥1).(2)设f (x )=ax 2+bx +c ,又∵f (0)=c =3. ∴f (x )=ax 2+bx +3,∴f (x +2)-f (x )=a (x +2)2+b (x +2)+3-(ax 2+bx +3)=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2,解得⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +3.[例3] 已知函数f (x )=⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫12x ,x ≥4,f x +,x <4,则f (2+log 23)的值为( )A.124B.112C.16 D.13[解析] ∵2+log 23<4,∴f (2+log 23)=f (3+log 23).∵3+log 23>4,∴f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=18×⎝ ⎛⎭⎪⎫12log 23=18×13=124.[答案] A ———————————————————解决分段函数求值问题的方法(1)求分段函数的函数值时,应根据所给自变量的大小选择相应段的解析式求解,有时每段交替使用求值.(2)若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值是否符合相应段的自变量的取值范围,做到分段函数分段解决.3.已知函数f (x )=⎩⎪⎨⎪⎧2x+1,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a 等于( ) A.12B.45C .2D .9解析:选C ∵x <1,f (x )=2x+1,∴f (0)=2.由f (f (0))=4a ,得f (2)=4a ,∵x ≥1,f (x )=x 2+ax , ∴4a =4+2a ,解得a =2.4种方法——函数解析式的求法求函数解析式常用的方法有:(1)待定系数法;(2)换元法;(3)配凑法;(4)解方程组法.具体内容见例2[方法·规律].2两个易误点——映射的概念及分段函数求值问题中的易误点(1)判断对应是否为映射,即看A 中元素是否满足“每元有象”和“且象唯一”.但要注意:①A 中不同元素可有相同的象,即允许多对一,但不允许一对多;②B 中元素可无原象,即B 中元素可有剩余.(2)求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域是其定义域内不同子集上对应的各关系式的值域的并集.数学思想——分类讨论思想在分段函数中的应用当数学问题不宜用统一的方法处理时,我们常常根据研究对象的差异,按照一定的分类方法或标准,将问题分为“全而不重,广而不漏”的若干类,然后逐类分别讨论,再把结论汇总,得出问题答案的思想,这就是主要考查了分类讨论的数学思想,由于分段函数在不同定义区间上具有不同的解析式,在处理分段函数问题时应对不同的区间进行分类求解,然后整合,这恰好是分类讨论的一种体现.[典例] (2011·江苏高考)已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________.[解析] ①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,计算得a =-32(舍去);②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得2(1+a )+a =-(1-a )-2a ,计算得a =-34,符合题意,所以综上所述,a =-34.[答案] -34[题后悟道]1.在解决本题时,由于a 的取值不同限制了1-a 及1+a 的取值,从而应对a 进行分类讨论.2.运用分类讨论的思想解题的基本步骤 (1)确定讨论对象和确定研究的区域;(2)对所讨论的问题进行合理的分类(分类时需要做到不重不漏,标准统一、分层不越级); (3)逐类讨论:即对各类问题详细讨论,逐步解决; (4)归纳总结,整合得出结论. [变式训练]1.设函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12-x ,x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)解析:选C ①当a >0时,∵f (a )>f (-a ), ∴log 2a >log 12a =log 2 1a.∴a >1a,得a >1.②当a <0时,∵f (a )>f (-a ), ∴log 12(-a )>log 2(-a )=log 121-a. ∴-a <1-a得-1<a <0,故C 项为正确选项. 2.设函数f (x )=⎩⎪⎨⎪⎧2-x,x ∈-∞,,x 2,x ∈[1,+,若f (x )>4,则x 的取值范围是________________.解析:当x <1时,由f (x )>4得2-x>4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2,但由于x ≥1,所以x >2. 综上,x 的取值范围是x <-2或x >2. 答案:(-∞,-2)∪(2,+∞)一、选择题(本大题共6小题,每小题5分,共30分) 1.下列各组函数中,表示相等函数的是( ) A .y =5x 5与y =x 2B .y =ln e x与y =e ln xC .y =x -x +x -1与y =x +3D .y =x 0与y =1x解析:选D y =5x 5=x ,y =x 2=|x |,故y =5x 5与y =x 2不表示相等函数;B 、C 选项中的两函数定义域不同;D 选项中的两函数是同一个函数.2.设A ={0,1,2,4},B =⎩⎨⎧⎭⎬⎫12,0,1,2,6,8,则下列对应关系能构成A 到B 的映射的是( )A .f :x →x 3-1 B .f :x →(x -1)2C .f :x →2x -1D .f :x →2x解析:选C 对于A ,由于集合A 中x =0时,x 3-1=-1∉B ,即A 中元素0在集合B 中没有元素与之对应,所以选项A 不符合;同理可知B 、D 两选项均不能构成A 到B 的映射,C 符合.3.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≥0,-x ,x <0,则f (f (-10))=( )A.12 B.14 C .1D .-14解析:选A 依题意可知f (-10)=lg 10=1,f (1)=21-2=12.4.(2013·杭州模拟)设函数f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,若f (a )+f (-1)=2,则a =( )A .-3B .±3C .-1D .±1解析:选D ∵f (a )+f (-1)=2,且f (-1)= 1=1, ∴f (a )=1,当a ≥0时,f (a )= a =1,∴a =1; 当a <0时,f (a )= -a =1,∴a =-1.5.已知函数f (x )满足f (x )+2f (3-x )=x 2,则f (x )的解析式为( ) A .f (x )=x 2-12x +18 B .f (x )=13x 2-4x +6C .f (x )=6x +9D .f (x )=2x +3解析:选B 由f (x )+2f (3-x )=x 2可得f (3-x )+2f (x )=(3-x )2,由以上两式解得f (x )=13x 2-4x +6. 6.(2013·泰安模拟)具有性质:f ⎝ ⎛⎭⎪⎫1x=-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,0<x <1,0,x =1,-1x,x >1.满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①解析:选B ①f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足.②f ⎝ ⎛⎭⎪⎫1x =1x+x =f (x )不满足. ③0<x <1时,f ⎝ ⎛⎭⎪⎫1x =-x =-f (x ),x =1时,f ⎝ ⎛⎭⎪⎫1x =0=-f (x ), x >1时,f ⎝ ⎛⎭⎪⎫1x =1x=-f (x )满足.二、填空题7.已知f ⎝⎛⎭⎪⎫x -1x =x 2+1x2,则函数f (3)=________.解析:∵f ⎝⎛⎭⎪⎫x -1x =x 2+1x2=⎝ ⎛⎭⎪⎫x -1x 2+2,∴f (x )=x 2+2.∴f (3)=32+2=11. 答案:118.若f (a +b )=f (a )·f (b )且f (1)=1,则ff+f f+…+f f=________.解析:令b =1,∵f a +f a=f (1)=1,∴f f+f f+…+f f=2 011.答案:2 0119.已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0,则满足不等式f (1-x 2)>f (2x )的x 的取值范围是________.解析:画出f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1,x <0的图象,如图.由图象可知,若f (1-x 2)>f (2x ),则⎩⎪⎨⎪⎧1-x 2>0,1-x 2>2x ,即⎩⎨⎧-1<x <1,-1-2<x <-1+ 2.得x ∈(-1,2-1). 答案:(-1,2-1)三、解答题(本大题共3小题,每小题12分,共36分)10.已知f (x )=x 2-1,g (x )=⎩⎪⎨⎪⎧x -1,x >0,2-x ,x <0.(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式. 解:(1)由已知,g (2)=1,f (2)=3, 因此f (g (2))=f (1)=0,g (f (2))=g (3)=2.(2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,故f (g (x ))=(2-x )2-1=x 2-4x +3.所以f (g (x ))=⎩⎪⎨⎪⎧x 2-2x ,x >0,x 2-4x +3,x <0.当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2;当-1<x <1时,f (x )<0, 故g (f (x ))=2-f (x )=3-x 2.所以g (f (x ))=⎩⎪⎨⎪⎧x 2-2,x >1或x <-1,3-x 2,-1<x <1.11.二次函数f (x )满足f (x +1)-f (x )=2x ,且f (0)=1. (1)求f (x )的解析式; (2)解不等式f (x )>2x +5.解:(1)设二次函数f (x )=ax 2+bx +c (a ≠0). ∵f (0)=1,∴c =1.把f (x )的表达式代入f (x +1)-f (x )=2x ,有a (x +1)2+b (x +1)+1-(ax 2+bx +1)=2x .∴2ax +a +b =2x . ∴a =1,b =-1. ∴f (x )=x 2-x +1.(2)由x 2-x +1>2x +5,即x 2-3x -4>0, 解得x >4或x <-1.故原不等式解集为{x |x >4或x <-1}.12.规定[t ]为不超过t 的最大整数,例如[12.6]=12,[-3.5]=-4,对任意实数x ,令f 1(x )=[4x ],g (x )=4x -[4x ],进一步令f 2(x )=f 1[g (x )].(1)若x =716,分别求f 1(x )和f 2(x );(2)若f 1(x )=1,f 2(x )=3同时满足,求x 的取值范围. 解:(1)∵x =716时,4x =74,∴f 1(x )=⎣⎢⎡⎦⎥⎤74=1. ∵g (x )=74-⎣⎢⎡⎦⎥⎤74=34.∴f 2(x )=f 1[g (x )]=f 1⎝ ⎛⎭⎪⎫34=[3]=3. (2)∵f 1(x )=[4x ]=1,g (x )=4x -1, ∴f 2(x )=f 1(4x -1)=[16x -4]=3.∴⎩⎪⎨⎪⎧1≤4x <2,3≤16x -4<4,∴716≤x <12.1.“龟兔赛跑”讲述了这样的故事:领先的兔子看着慢慢爬行的乌龟,骄傲起来,睡了一觉,当它醒来时,发现乌龟快到达终点了,于是急忙追赶,但为时已晚,乌龟还是先到达了终点…,用s1,s2分别表示乌龟和兔子所行的路程,t为时间,则下图与故事情节相吻合的是( )解析:选B 根据故事的描述,乌龟是先于兔子到达终点,到达终点的最后时刻乌龟的路程大于兔子的路程,并且兔子中间有一段路程为零,分析知B图象与事实相吻合.2.下列对应关系是集合P上的函数的是________.(1)P=Z,Q=N*,对应关系f:对集合P中的元素取绝对值与集合Q中的元素相对应;(2)P={-1,1,-2,2},Q={1,4},对应关系:f:x→y=x2,x∈P,y∈Q;(3)P={三角形},Q={x|x>0},对应关系f:对P中三角形求面积与集合Q中元素对应.解析:对于(1),集合P中元素0在集合Q中没有对应元素,故(1)不是函数;对于(3)集合P不是数集,故(3)不是函数;(2)正确.答案:(2)3.试判断以下各组函数是否表示同一函数:(1)y=x-2·x+2,y=x2-4;(2)y=x,y=3t3;(3)y=|x|,y=(x)2.解:∵y=x-2·x+2的定义域为{x|x≥2},y=x2-4的定义域为{x|x≥2或x≤-2},∴它们不是同一函数.(2)∵它们的定义域相同,且y=3t3=t,∴y=x与y=3t3是同一函数.(3)∵y=|x|的定义域为R,y=(x)2的定义域为{x|x≥0},∴它们不是同一函数.4.已知f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2,且f (a )=3,求a 的值.解:①当a ≤-1时,f (a )=a +2,由a +2=3,得a =1,与a ≤-1相矛盾,应舍去. ②当-1<a <2时,f (a )=2a , 由2a =3,得a =32,满足-1<a <2.③当a ≥2时,f (a )=a 22,由a 22=3,得a =±6, 又a ≥2,故a = 6. 综上可知,a 的值为32或 6.第二节 函数的定义域和值域[备考方向要明了][归纳·知识整合]1.常见基本初等函数的定义域 (1)分式函数中分母不等于零.(2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域均为R .(4)y =a x(a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R . (5)y =log a x (a >0且a ≠1)的定义域为(0,+∞).(6)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π+π2,k ∈Z .(7)实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.2.基本初等函数的值域 (1)y =kx +b (k ≠0)的值域是R . (2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为⎩⎨⎧⎭⎬⎫y |y ≥4ac -b 24a ; 当a <0时,值域为⎩⎨⎧⎭⎬⎫y |y ≤4ac -b 24a . (3)y =k x(k ≠0)的值域是{y |y ≠0}. (4)y =a x(a >0且a ≠1)的值域是{y |y >0}. (5)y =log a x (a >0且a ≠1)的值域是R . (6)y =sin x ,y =cos x 的值域是[-1,1]. (7)y =tan x 的值域是R .[探究] 1.若函数y =f (x )的定义域和值域相同,则称函数y =f (x )是圆满函数,则函数①y =1x;②y =2x ;③y = x ;④y =x 2中是圆满函数的有哪几个?提示:①y =1x 的定义域和值域都是(-∞,0)∪(0,+∞),故函数y =1x是圆满函数;②y=2x 的定义域和值域都是R ,故函数y =2x 是圆满函数;③y = x 的定义域和值域都是[0,+∞),故y = x 是圆满函数;④y =x 2的定义域为R ,值域为[0,+∞),故函数y =x 2不是圆满函数.2.分段函数的定义域、值域与各段上的定义域、值域之间有什么关系? 提示:分段函数的定义域、值域为各段上的定义域、值域的并集.[自测·牛刀小试]1.(教材习题改编)函数f (x )=4-xx -1的定义域为( ) A .[-∞,4] B .[4,+∞) C .(-∞,4)D .(-∞,1)∪(1,4]解析:选D 要使函数f (x )=4-xx -1有意义,只需⎩⎪⎨⎪⎧4-x ≥0,x -1≠0,即⎩⎪⎨⎪⎧x ≤4,x ≠1.所以函数的定义域为(-∞,1)∪(1,4].2.下表表示y 是x 的函数,则函数的值域是( )A .[2,5]B .NC .(0,20]D .{2,3,4,5}解析:选D 函数值只有四个数2,3,4,5,故值域为{2,3,4,5}. 3.若f (x )=1log 12x +,则f (x )的定义域为( )A.⎝ ⎛⎭⎪⎫-12,0B.⎝ ⎛⎦⎥⎤-12,0C.⎝ ⎛⎭⎪⎫-12,+∞ D .(0,+∞)解析:选A 根据题意得log 12(2x +1)>0, 即0<2x +1<1,解得-12<x <0,即x ∈⎝ ⎛⎭⎪⎫-12,0. 4.(教材改编题)函数y =f (x )的图象如图所示,则函数y =f (x )的定义域为________,值域为________.解析:由图象可知,函数y =f (x )的定义域为[-6,0]∪[3,7),值域为[0,+∞).答案:[-6,0]∪[3,7) [0,+∞)5.(教材改编题)若x -4有意义,则函数y =x 2-6x +7的值域是________. 解析:∵x -4有意义,∴x -4≥0,即x ≥4. 又∵y =x 2-6x +7=(x -3)2-2, ∴y min =(4-3)2-2=1-2=-1. ∴其值域为[-1,+∞). 答案:[-1,+∞)[例1] (1)(2012·山东高考)函数f (x )=1x ++ 4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2](2)已知函数f (x 2-1)的定义域为[0,3],则函数y =f (x )的定义域为________.[自主解答] (1)x 满足⎩⎪⎨⎪⎧x +1>0,x +1≠1,4-x 2≥0,即⎩⎪⎨⎪⎧x >-1,x ≠0,-2≤x ≤2.解得-1<x <0或0<x ≤2. (2)∵0≤x ≤3,∴0≤x 2≤9,-1≤x 2-1≤8.∴函数y =f (x )的定义域为[-1,8]. [答案] (1)B (2)[-1,8]本例(2)改为f (x )的定义域为[0,3],求y =f (x 2-1)的定义域. 解:∵y =f (x )的定义域为[0,3], ∴0≤x 2-1≤3,解得-2≤x ≤-1或1≤x ≤2,所以函数定义域为[-2,-1]∪[1,2].———————————————————简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)对实际问题:由实际意义及使解析式有意义构成的不等式(组)求解. (3)对抽象函数:①若已知函数f (x )的定义域为[a ,b ],则复合函数f (g (x ))的定义域由不等式a ≤g (x )≤b 求出.②若已知函数f (g (x ))的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.1.(1)(2012·江苏高考)函数f (x )= 1-2log 6x 的定义域为________. (2)已知f (x )的定义域是[-2,4],求f (x 2-3x )的定义域.解析:(1)由1-2log 6x ≥0解得log 6x ≤12⇒0<x ≤6,故所求定义域为(0, 6 ].答案:(0, 6 ](2)∵f (x )的定义域是[-2,4],∴-2≤x 2-3x ≤4,由二次函数的图象可得,-1≤x ≤1或2≤x ≤4. ∴定义域为[-1,1]∪[2,4].[例2] 求下列函数的值域: (1)y =x -3x +1;(2)y =x -1-2x ;(3)y =x +4x. [自主解答] (1)法一:(分离常数法)y =x -3x +1=x +1-4x +1=1-4x +1.因为4x +1≠0,所以1-4x +1≠1, 即函数的值域是{y |y ∈R ,y ≠1}. 法二:由y =x -3x +1得yx +y =x -3. 解得x =y +31-y,所以y ≠1,即函数值域是{y |y ∈R ,y ≠1}.(2)法一:(换元法)令1-2x =t ,则t ≥0且x =1-t 22,于是y =1-t 22-t =-12(t +1)2+1,由于t ≥0,所以y ≤12,故函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.法二:(单调性法)容易判断函数y =f (x )为增函数,而其定义域应满足1-2x ≥0,即x ≤12.所以y ≤f ⎝ ⎛⎭⎪⎫12=12,即函数的值域是⎩⎨⎧⎭⎬⎫y |y ≤12.(3)法一:(基本不等式法)当x >0时,x +4x≥2x ×4x=4, 当且仅当x =2时“=”成立;当x <0时,x +4x =-(-x -4x)≤-4,当且仅当x =-2时“=”成立.即函数的值域为(-∞,-4]∪[4,+∞).法二:(导数法)f ′(x )=1-4x 2=x 2-4x2.x ∈(-∞,-2)或x ∈(2,+∞)时,f (x )单调递增,当x ∈(-2,0)或x ∈(0,2)时,f (x )单调递减. 故x =-2时,f (x )极大值=f (-2)=-4;x =2时,f (x )极小值=f (2)=4.即函数的值域为(-∞,-4]∪[4,+∞).若将本例(3)改为“y =x -4x”,如何求解?解:易知函数y =x -4x 在(-∞,0)和(0,+∞)上都是增函数,故函数y =x -4x的值域为R .———————————————————求函数值域的基本方法(1)观察法:一些简单函数,通过观察法求值域. (2)配方法:“二次函数类”用配方法求值域.(3)换元法:形如y =ax +b ±cx +d (a ,b ,c ,d 均为常数,且a ≠0)的函数常用换元法求值域,形如y =ax +a -bx 2的函数用三角函数代换求值域.分离常数法:形如y =cx +dax +ba的函数可用此法求值域.单调性法:函数单调性的变化是求最值和值域的依据,根据函数的单调区间判断其增减性进而求最值和值域.数形结合法:画出函数的图象,找出坐标的范围或分析条件的几何意义,在图上找其变化范围.2.求下列函数的值域. (1)y =x 2+2x ,x ∈[0,3];(2)y =x 2-xx 2-x +1;(3)y =log 3x +log x 3-1.解:(1)(配方法)y =x 2+2x =(x +1)2-1, ∵0≤x ≤3,∴1≤x +1≤4.∴1≤(x +1)2≤16. ∴0≤y ≤15,即函数y =x 2+2x (x ∈[0,3])的值域为[0,15].(2)y =x 2-x +1-1x 2-x +1=1-1x 2-x +1,∵x 2-x +1=⎝ ⎛⎭⎪⎫x -122+34≥34,∴0<1x 2-x +1≤43,∴-13≤y <1,即值域为⎣⎢⎡⎭⎪⎫-13,1. (3)y =log 3x +1log 3x -1,令log 3x =t ,则y =t +1t-1(t ≠0),当x >1时,t >0,y ≥2t ·1t-1=1, 当且仅当t =1t即log 3x =1,x =3时,等号成立;当0<x <1时,t <0,y =-⎣⎢⎡⎦⎥⎤-t +⎝ ⎛⎭⎪⎫-1t -1≤-2-1=-3.当且仅当-t =-1t 即log 3x =-1,x =13时,等号成立.综上所述,函数的值域是(-∞,-3]∪[1,+∞).[例3] 已知函数f (x )=ax 2+bx .若至少存在一个正实数b ,使得函数f (x )的定义域与值域相同,求实数a 的值.[自主解答] ①若a =0,则对于每个正数b ,f (x )=bx 的定义域和值域都是[0,+∞),故a =0满足条件;②若a >0,则对于正数b ,f (x )=ax 2+bx 的定义域为D ={x |ax 2+bx ≥0}=⎝⎛⎦⎥⎤-∞,-b a ∪[0,+∞),但f (x )的值域A ⊆[0,+∞),故D ≠A ,即a >0不符合条件;③若a <0,则对于正数b ,f (x )=ax 2+bx 的定义域D =⎣⎢⎡⎦⎥⎤0,-b a , 由于此时f (x )max =f ⎝ ⎛⎭⎪⎫-b 2a =b2-a ,故f (x )的值域为⎣⎢⎡⎦⎥⎤0,b2-a , 则-b a =b2-a ⇒⎩⎨⎧a <0,2-a =-a⇒a =-4.综上所述,a 的值为0或-4. ——————————————————— 由函数的定义域或值域求参数的方法已知函数的值域求参数的值或取值范围问题,通常按求函数值域的方法求出其值域,然后依据已知信息确定其中参数的值或取值范围.3.(2013·温州模拟)若函数f (x )=1x -1在区间[a ,b ]上的值域为⎣⎢⎡⎦⎥⎤13,1,则a +b =________.解析:∵由题意知x -1>0,又x ∈[a ,b ], ∴a >1.则f (x )=1x -1在[a ,b ]上为减函数, 则f (a )=1a -1=1且f (b )=1b -1=13, ∴a =2,b =4,a +b =6. 答案:61种意识——定义域优先意识函数的定义域是函数的灵魂,它决定了函数的值域,并且它是研究函数性质的基础.因此,我们一定要树立函数定义域优先的意识.4个注意——求函数定义域应注意的问题(1)如果没有特别说明,函数的定义域就是能使解析式有意义的所有实数x 的集合.(2)不要对解析式进行化简变形,以免定义域变化.(3)当一个函数由两个或两个以上代数式的和、差、积、商的形式构成时,定义域是使得各式子都有意义的公共部分的集合.(4)定义域是一个集合,要用集合或区间表示,若用区间表示数集,不能用“或”连接,而应该用并集符号“∪”连接.4个准则——函数表达式有意义的准则函数表达式有意义的准则一般有:①分式中的分母不为0;②偶次根式的被开方数非负;③y=x0要求x≠0;④对数式中的真数大于0,底数大于0且不等于1.6种技巧——妙求函数的值域(1)当所给函数是分式的形式,且分子、分母是同次的,可考虑用分离常数法;(2)若与二次函数有关,可用配方法;(3)若函数解析式中含有根式,可考虑用换元法或单调性法;(4)当函数解析式结构与基本不等式有关,可考虑用基本不等式求解;(5)分段函数宜分段求解;(6)当函数的图象易画出时,还可借助于图象求解.易误警示——与定义域有关的易错问题[典例](2013·福州模拟)函数f(x)=x+2x+1-1-x的定义域为________________.[解析] ∵要使函数f(x)=x+2x+1-1-x有意义,则⎩⎪⎨⎪⎧1-x≥0,x+1≠0,∴⎩⎪⎨⎪⎧x≤1,x≠-1,∴函数f(x)的定义域为{x|x≤1,且x≠-1}.[答案] (-∞,-1)∪(-1,1][易误辨析]1.本题若将函数f(x)的解析式化简为f(x)=(x+1)-1-x后求定义域,会误认为其定义域为(-∞,1].事实上,上述化简过程扩大了自变量x的取值范围.2.在求函数的值域时,要特别注意函数的定义域.求函数的值域时,不但要重视对应关系的作用,而且还要特别注意定义域对值域的制约作用.[变式训练]1.若函数f (x )的值域是⎣⎢⎡⎦⎥⎤12,3,则函数F (x )=f (x )+1f x 的值域是( ) A.⎣⎢⎡⎦⎥⎤12,5B.⎣⎢⎡⎦⎥⎤56,5C.⎣⎢⎡⎦⎥⎤2,103D.⎣⎢⎡⎦⎥⎤3,103解析:选C 令t =f (x ),则12≤t ≤3.易知函数g (t )=t +1t 在区间⎣⎢⎡⎦⎥⎤12,1上是减函数,在[1,3]上是增函数.又因为g ⎝ ⎛⎭⎪⎫12=52,g (1)=2,g (3)=103.可知函数F (x )=f (x )+1fx 的值域为⎣⎢⎡⎦⎥⎤2,103.2.已知函数f (x +2)=x +2x ,则函数f (x )的值域为________. 解析:令2+x =t ,则x =(t -2)2(t ≥2). ∴f (t )=(t -2)2+2(t -2)=t 2-2t (t ≥2). ∴f (x )=x 2-2x (x ≥2).∴f (x )=(x -1)2-1≥(2-1)2-1=0, 即f (x )的值域为[0,+∞). 答案:[0,+∞)一、选择题(本大题共6小题,每小题5分,共30分)1.已知a 为实数,则下列函数中,定义域和值域都有可能是R 的是( ) A .f (x )=x 2+a B .f (x )=ax 2+1 C .f (x )=ax 2+x +1D .f (x )=x 2+ax +1解析:选C 当a =0时,f (x )=ax 2+x +1=x +1为一次函数,其定义域和值域都是R . 2.已知等腰△ABC 周长为10,则底边长y 关于腰长x 的函数关系为y =10-2x ,则函数的定义域为( )A .RB .{x |x >0}C .{x |0<x <5}D.⎩⎨⎧⎭⎬⎫x |52<x <5解析:选D 由题意知⎩⎪⎨⎪⎧x >0,10-2x >0,2x >10-2x ,即52<x <5. 3.设M ={x |-2≤x ≤2},N ={y |0≤y ≤2},函数f (x )的定义域为M ,值域为N ,则f (x )的图象可以是( )解析:选A A 中定义域是[-2,2],值域为[0,2];B 中定义域为[-2,0],值域为[0,2];C 不表示函数;D 中的值域不是[0,2].4.(2013·南昌模拟)函数y = x x --lg 1x的定义域为( )A .{x |x >0}B .{x |x ≥1}C .{x |x ≥1,或x <0}D .{x |0<x ≤1}解析:选B 由⎩⎪⎨⎪⎧x x -,1x>0,得x ≥1.5.函数y =2--x 2+4x 的值域是( ) A .[-2,2] B .[1,2] C .[0,2]D .[-2, 2 ]解析:选C ∵-x 2+4x =-(x -2)2+4≤4,0≤-x 2+4x ≤2,-2≤--x 2+4x ≤0, 0≤2--x 2+4x ≤2,∴0≤y ≤2. 6.设函数g (x )=x 2-2(x ∈R ),f (x )=⎩⎪⎨⎪⎧g x +x +4,x <g x ,gx -x ,x ≥g x ,则f (x )的值域是( )A.⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞)B. )[0,+∞C.⎣⎢⎡⎭⎪⎫-94,+∞ D.⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞)解析:选D 令x <g (x ),即x 2-x -2>0,解得x <-1或x >2;令x ≥g (x ),即x 2-x -2≤0,解得-1≤x ≤2,故函数f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.当x <-1或x >2时,函数f (x )>f (-1)=2;当-1≤x ≤2时,函数f ⎝ ⎛⎭⎪⎫12≤f (x )≤f (-1),即-94≤f (x )≤0,故函数f (x )的值域是⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞).二、填空题(本大题共3小题,每小题5分,共15分) 7.函数y =16-x -x2的定义域是________.解析:由函数解析式可知6-x -x 2>0,即x 2+x -6<0,故-3<x <2. 答案:(-3,2) 8.设x ≥2,则函数y =x +x +x +1的最小值是______.解析:y =x ++x ++1]x +1,设x +1=t ,则t ≥3,那么y =t 2+5t +4t=t+4t +5,在区间[2,+∞)上此函数为增函数,所以t =3时,函数取得最小值即y min =283. 答案:2839.(2013·厦门模拟)定义新运算“⊕”:当a ≥b 时,a ⊕b =a ;当a <b 时,a ⊕b =b 2.设函数f (x )=(1⊕x )x -(2⊕x ),x ∈[-2,2],则函数f (x )的值域为________.解析:由题意知,f (x )=⎩⎪⎨⎪⎧x -2,x ∈[-2,1],x 3-2,x ∈,2].当x ∈[-2,1]时,f (x )∈[-4,-1];当x ∈(1,2]时,f (x )∈(-1,6],故当x ∈[-2,2]时,f (x )∈[-4,6].答案:[-4,6]三、解答题(本大题共3小题,每小题12分,共36分)10.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a ,b 的值.解:∵f (x )=12(x -1)2+a -12,∴其对称轴为x =1,即[1,b ]为f (x )的单调递增区间. ∴f (x )min =f (1)=a -12=1,①f (x )max =f (b )=12b 2-b +a =b .②由①②解得⎩⎪⎨⎪⎧a =32,b =3.11.设O 为坐标原点,给定一个定点A (4,3),而点B (x,0)在x 轴的正半轴上移动,l (x )表示AB 的长,求函数y =xl x的值域. 解:依题意有x >0,l (x )=x -2+32=x 2-8x +25,所以y =x l x =xx 2-8x +25=11-8x +25x2. 由于1-8x +25x 2=25⎝ ⎛⎭⎪⎫1x -4252+925,所以1-8x +25x 2≥35,故0<y ≤53. 即函数y =x l x 的值域是⎝ ⎛⎦⎥⎤0,53. 12.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. 解:(1)∵函数的值域为[0,+∞), ∴Δ=16a 2-4(2a +6)=0 ⇒2a 2-a -3=0⇒a =-1或a =32.(2)∵对一切x ∈R 函数值均为非负, ∴Δ=8(2a 2-a -3)≤0⇒-1≤a ≤32.∴a +3>0.∴g (a )=2-a |a +3|=-a 2-3a +2 =-⎝ ⎛⎭⎪⎫a +322+174⎝ ⎛⎭⎪⎫a ∈⎣⎢⎡⎦⎥⎤-1,32. ∵二次函数g (a )在⎣⎢⎡⎦⎥⎤-1,32上单调递减, ∴g ⎝ ⎛⎭⎪⎫32≤g (a )≤g (-1),即-194≤g (a )≤4.∴g (a )的值域为⎣⎢⎡⎦⎥⎤-194,4.1.下列函数中,与函数y =1x有相同定义域的是( )A .f (x )=ln xB .f (x )=1xC .f (x )=|x |D .f (x )=e x解析:选A 当x >0时,1x有意义,因此函数y =1x的定义域为{x |x >0}.对于A ,函数f (x )=ln x 的定义域为{x |x >0}; 对于B ,函数f (x )=1x的定义域为{x |x ≠0,x ∈R };对于C ,函数f (x )=|x |的定义域为R ; 对于D ,函数f (x )=e x的定义域为R . 所以与函数y =1x有相同定义域的是f (x )=ln x .2.函数y =x +-x 2-3x +4的定义域为( )A .[-4,-1)B .(-4,1)C .(-1,1)D .(-1,1]解析:选C 由⎩⎪⎨⎪⎧-x 2-3x +4>0x +1>0得-1<x <1,因此该函数的定义域是(-1,1).3.若函数y =f (x )的定义域为[0,2],则函数g (x )=f x x -1的定义域是( )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:选B 要使g (x )有意义,则⎩⎪⎨⎪⎧0≤2x ≤2,x -1≠0,解得0≤x <1.故定义域为[0,1).4.已知函数f (x )=⎝ ⎛⎭⎪⎫13x ,x ∈[-1,1],函数g (x )=f 2(x )-2af (x )+3的最小值为h (a ).(1)求h (a )的解析式;(2)是否存在实数m ,n 同时满足下列两个条件:①m >n >3;②当h (a )的定义域为[n ,m ]时,值域为[n 2,m 2]?若存在,求出m ,n 的值;若不存在,请说明理由.解:(1)由f (x )=⎝ ⎛⎭⎪⎫13x,x ∈[-1,1],知f (x )∈⎣⎢⎡⎦⎥⎤13,3,令t =f (x )∈⎣⎢⎡⎦⎥⎤13,3 记g (x )=y =t 2-2at +3,则g (x )的对称轴为t =a ,故有: ①当a ≤13时,g (x )的最小值h (a )=289-2a3,②当a ≥3时,g (x )的最小值h (a )=12-6a , ③当13<a <3时,g (x )的最小值h (a )=3-a 2综上所述,h (a )=⎩⎪⎨⎪⎧289-2a 3,a ≤13,3-a 2,13<a <3,12-6a ,a ≥3,(2)当a ≥3时,h (a )=-6a +12,故m >n >3时,h (a )在[n ,m ]上为减函数, 所以h (a )在[n ,m ]上的值域为[h (m ),h (n )].由题意,则有⎩⎪⎨⎪⎧hm =n 2,h n =m 2,⇒⎩⎪⎨⎪⎧-6m +12=n 2,-6n +12=m 2,,两式相减得6n -6m =n 2-m 2,又m ≠n ,所以m +n =6,这与m >n >3矛盾,故不存在满足题中条件的m ,n 的值.第三节 函数的单调性与最值[备考方向要明了][归纳·知识整合]1.函数的单调性 (1)单调函数的定义:(2)如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在区间D 具有(严格的)单调性,这一区间叫做y =f (x )的单调区间.[探究] 1.函数y =1x的单调递减区间为(-∞,0)∪(0,+∞),这种表示法对吗?提示:首先函数的单调区间只能用区间表示,不能用集合或不等式的形式表示;如果一个函数有多个单调区间应分别写,分开表示,不能用并集符号“∪”联结,也不能用“或”联结.2.函数f (x )在区间[a ,b ]上单调递增与函数f (x )的单调递增区间为[a ,b ]含义相同吗? 提示:含义不同.f (x )在区间[a ,b ]上单调递增并不能排除f (x )在其他区间上单调递增,而f (x )的单调递增区间为[a ,b ]意味着f (x )在其他区间上不可能单调递增.2.函数的最值 [探究] 3.函数的单调性、最大(小)值反映在其图象上有什么特征?提示:函数的单调性反映在图象上是上升或下降的,而最大(小)值反映在图象上为其最高(低)点的纵坐标的值.[自测·牛刀小试]1.(教材习题改编)函数f (x )=2x -1,x ∈[2,6],则下列说法正确的有( ) ①函数f (x )为减函数;②函数f (x )为增函数;③函数f (x )的最大值为2;④函数f (x )的最小值为25.A .①③B .①③④C .②③④D .②④解析:选B 易知函数f (x )=2x -1在x ∈[2,6]上为减函数,故f (x )min =f (6)=25,f (x )max=f (2)=2.2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12B .k <12C .k >-12D .k <-12解析:选D 使y =(2k +1)x +b 在(-∞,+∞)上是减函数,则2k +1<0,即k <-12.3.已知函数f (x )为R 上的减函数,则满足f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1)的实数x 的取值范围是( ) A .(-1,1) B .(0,1)C .(-1,0)∪(0,1)D .(-∞,-1)∪(1,+∞)解析:选C ∵函数f (x )为R 上的减函数,且f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1x<f (1), ∴⎪⎪⎪⎪⎪⎪1x >1,即|x |<1且|x |≠0. ∴x ∈(-1,0)∪(0,1).4.(教材习题改编)f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为________;f (x )max =________.解析:∵函数f (x )=x 2-2x 的对称轴为x =1.∴函数f (x )=x 2-2x (x ∈[-2,4])的单调递增区间为[1,4],单调递减区间为[-2,1). 又f (-2)=4+4=8,f (4)=16-8=8. ∴f (x )max =8. 答案:[1,4] 85.(教材习题改编)若函数f (x )=4x 2-kx -8在[5,20]上是单调递增函数,则实数k 的取值范围是________.解析:∵函数f (x )=4x 2-kx -8的对称轴为x =k8,又函数f (x )在[5,20]上为增函数, ∴k8≤5,即k ≤40. 答案:(-∞,40][例1] 已知函数f (x )= x 2+1-ax ,其中a >0. (1)若2f (1)=f (-1),求a 的值;(2)证明:当a ≥1时,函数f (x )在区间[0,+∞)上为单调减函数. [自主解答] (1)由2f (1)=f (-1), 可得22-2a = 2+a ,得a =23. (2)证明:任取x 1,x 2∈[0,+∞),且x 1<x 2,f (x 1)-f (x 2)= x 21+1-ax 1- x 22+1+ax 2=x 21+1- x 22+1-a (x 1-x 2) =x 21-x 22x 21+1+ x 22+1-a (x 1-x 2)=(x 1-x 2)⎝ ⎛⎭⎪⎫x 1+x 2x 21+1+ x 22+1-a . ∵0≤x 1< x 21+1,0<x 2< x 22+1, ∴0<x 1+x 2x 21+1+x 22+1<1.又∵a ≥1,∴f (x 1)-f (x 2)>0, ∴f (x )在[0,+∞)上单调递减. ——————————————————— 判断或证明函数的单调性的两种方法(1)利用定义的基本步骤是:。

2014届高三数学理一轮复习讲义_函数及表示

2014届高三数学理一轮复习讲义_函数及表示
∴ f [g ( x )] > g [ f ( x )] 中 x = 2 . 类型三:函数的定义域 例 5.求下列函数的定义域 ⑴y=
1 + x2 - 1 ; 2- | x | ì x2 - 1 ³ 0 î2- | x |¹ 0
得í
⑵y=
2x - 2 + (5 x - 4)0 ; lg ( 2 x - 1)
点评:换元法是常用的求解析式法,注意新元的范围,最后要给出函数的定义域;也可以用配凑的方
第3页 共6页
法;除以之外,若已知函数类型,还可以利用待定系数法求函数解析式。 举一反三: 【变式】 已知函数 f ( x ), g ( x ) 分别由下表给出:
则满足 f [g ( x )] > g [ f ( x )] 的 x 的值是 【答案】2;
2
ìD = a 2 + 12a < 0 îa > 0
ì-12 < a < 0 Þí Þ a ÎÆ ; îa > 0
ìD = a 2 + 12a < 0 ì-12 < a < 0 当 a < 0 时, ax + ax - 3 < 0 Þ í Þí Þ -12 < a < 0 , îa < 0 îa < 0
x 0
(6)函数 y = tan x 的定义域是 {x | x ¹ kp + 虑解析式有意义,还要有实际意义。 【典型例题】 类型一:映射的概念
p 2
k Î z} ; (7)由实际问题确定函数的定义域,不仅要考
例 1.以下对应中,从集合 A 到集合 B 的映射有
;其中
是函数 。
(1) (2) (3) (4) 解析: (1) 、 (2) 、 (4)是映射, (1) 、 (2)是函数。 点评:1.判断是否映射的方法:先看集合 A 中的每个元素是否在集合 B 中都有象;再看集合 A 中的每 个元素的象是否唯一; 2.函数是非空数集到非空数集的特殊映射,函数一定是映射,映射不一定是函数. 举一反三: 【变式】设集合 A=R,集合 B=R ,则从集合 A 到集合 B 的映射只可能是( A 、 f :x® y= x C、 f : x ® y = 3

2014届高考数学一轮复习教学案函数及其表示(含解析)

2014届高考数学一轮复习教学案函数及其表示(含解析)

第一节函数及其表示[知识能否忆起]1.函数的概念(1)函数的定义:一般地,设A,B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A 中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应;那么就称f:A→B为从集合A到集合B的一个函数.记作y=f(x),x∈A.(2)函数的定义域、值域:在函数y=f(x),x∈A中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、值域和对应关系.(4)相等函数:如果两个函数的定义域和对应关系完全一致,则这两个函数相等,这是判断两函数相等的依据.2.函数的表示法表示函数的常用方法有:解析法、图象法、列表法.3.映射的概念设A,B是两个非空的集合,如果按照某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么称对应f:A→B为集合A 到集合B的一个映射.4.分段函数若函数在其定义域内,对于定义域内的不同取值区间,有着不同的对应关系,这样的函数通常叫做分段函数.分段函数虽然由几部分组成,但它表示的是一个函数.[小题能否全取]1.(教材习题改编)设g(x)=2x+3,g(x+2)=f(x),则f(x)等于()A.-2x+1B.2x-1C.2x-3 D.2x+7解析:选D f (x )=g (x +2)=2(x +2)+3=2x +7.2.(2012·江西高考)设函数f (x )={eq \b\lc\{\rc\ (\a\vs4\al\co1(x 2+1,x ≤1,,\f(2,x ),x >1,))|则f (f (3))=( )A.15| B .3 C.23|D.139| 解析:选D f (3)=23|,f (f (3))=⎝⎛⎭⎫23|2+1=139|. 3.已知集合A =[0,8],集合B =[0,4],则下列对应关系中,不能看作从A 到B 的映射的是( )A .f :x →y =18|xB .f :x →y =14|xC .f :x →y =12|xD .f :x →y =x解析:选D 按照对应关系f :x →y =x ,对A 中某些元素(如x =8),B 中不存在元素与之对应.4.已知f ⎝⎛⎭⎫1x |=x 2+5x ,则f (x )=____________. 解析:令t =1x |,则x =1t |.所以f (t )=1t 2|+5t |.故f (x )=5x +1x 2|(x ≠0).答案:5x +1x2|(x ≠0)5.(教材习题改编)若f (x )=x 2+bx +c ,且f (1)=0,f (3)=0,则f (-1)=________.解析:由已知得⎩⎪⎨⎪⎧ 1+b +c =0,9+3b +c =0,|得⎩⎪⎨⎪⎧b =-4,c =3.| 即f (x )=x 2-4x +3.所以f (-1)=(-1)2-4×(-1)+3=8. 答案:81.函数与映射的区别与联系(1)函数是特殊的映射,其特殊性在于集合A 与集合B 只能是非空数集,即函数是非空数集A 到非空数集B 的映射.(2)映射不一定是函数,从A 到B 的一个映射,A 、B 若不是数集,则这个映射便不是函数.2.定义域与值域相同的函数,不一定是相同函数如函数y =x 与y =x +1,其定义域与值域完全相同,但不是相同函数;再如函数y =sin x 与y =cos x ,其定义域与值域完全相同,但不是相同函数.因此判断两个函数是否相同,关键是看定义域和对应关系是否相同.3.求分段函数应注意的问题在求分段函数的值f (x 0)时,一定要首先判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.典题导入[例1] 有以下判断:(1)f (x )=|x |x |与g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0|表示同一函数;(2)函数y =f (x )的图象与直线x =1的交点最多有1个; (3)f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;(4)若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12|=0. 其中正确判断的序号是________.[自主解答] 对于(1),由于函数f (x )=|x |x|的定义域为{x |x ∈R ,且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1,x ≥0,-1,x <0|的定义域是R ,所以二者不是同一函数;对于(2),若x =1不是y =f (x )定义域的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于(3),f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于(4),由于f ⎝⎛⎭⎫12|=⎪⎪⎪⎪12-1|-⎪⎪⎪⎪12|=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12|=f (0)=1. 综上可知,正确的判断是(2)(3). [答案] (2)(3)由题悟法两个函数是否是同一个函数,取决于它们的定义域和对应关系是否相同,只有当两个函数的定义域和对应关系完全相同时,才表示同一函数.另外,函数的自变量习惯上用x 表示,但也可用其他字母表示,如:f(x)=2x-1,g(t)=2t-1,h(m)=2m-1均表示同一函数.以题试法1.试判断以下各组函数是否表示同一函数.(1)y=1,y=x0;(2)y=x-2|·x+2|,y=x2-4|;(3)y=x,y=3t3|;(4)y=|x|,y=(x|)2.解:(1)y=1的定义域为R,y=x0的定义域为{x|x∈R,且x≠0},故它们不是同一函数.(2)y=x-2|·x+2|的定义域为{x|x≥2}.y=x2-4|的定义域为{x|x≥2,或x≤-2},故它们不是同一函数.(3)y=x,y=3t3|=t,它们的定义域和对应关系都相同,故它们是同一函数.(4)y=|x|的定义域为R,y=(x|)2的定义域为{x|x≥0},故它们不是同一函数.典题导入[例2] (1)已知f ⎝⎛⎭⎫x +1x |=x 2+1x 2|,求f (x )的解析式; (2)已知f ⎝⎛⎭⎫2x +1|=lg x ,求f (x )的解析式;(3)已知f (x )是二次函数,且f (0)=0,f (x +1)=f (x )+x +1,求f (x ). [自主解答] (1)由于f ⎝⎛⎭⎫x +1x |=x 2+1x 2|=⎝⎛⎭⎫x +1x |2-2, 所以f (x )=x 2-2,x ≥2或x ≤-2,故f (x )的解析式是f (x )=x 2-2(x ≥2或x ≤-2). (2)令2x |+1=t 得x =2t -1|,代入得f (t )=lg 2t -1|,又x >0,所以t >1,故f (x )的解析式是f (x )=lg 2x -1|(x >1).(3)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=0,知c =0,f (x )=ax 2+bx , 又由f (x +1)=f (x )+x +1,得a (x +1)2+b (x +1)=ax 2+bx +x +1, 即ax 2+(2a +b )x +a +b =ax 2+(b +1)x +1,所以⎩⎪⎨⎪⎧2a +b =b +1,a +b =1,|解得a =b =12|.所以f (x )=12|x 2+12|x (x ∈R).由题悟法函数解析式的求法(1)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式(如例(1));(2)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法(如例(3)); (3)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围(如例(2));(4)方程思想:已知关于f (x )与f ⎝⎛⎭⎫1x |或f (-x )的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x )(如A 级T6).以题试法2.(1)已知f (x |+1)=x +2x |,求f (x )的解析式;(2)设y =f (x )是二次函数,方程f (x )=0有两个相等实根,且f ′(x )=2x +2,求f (x )的解析式.解:(1)法一:设t =x |+1,则x =(t -1)2(t ≥1); 代入原式有f (t )=(t -1)2+2(t -1)=t 2-2t +1+2t -2=t 2-1. 故f (x )=x 2-1(x ≥1).法二:∵x +2x |=(x |)2+2x |+1-1=(x |+1)2-1, ∴f (x |+1)=(x |+1)2-1(x |+1≥1), 即f (x )=x 2-1(x ≥1). (2)设f (x )=ax 2+bx +c (a ≠0), 则f ′(x )=2ax +b =2x +2, ∴a =1,b =2,f (x )=x 2+2x +c . 又∵方程f (x )=0有两个相等实根, ∴Δ=4-4c =0,c =1,故f (x )=x 2+2x +1.典题导入[例3] (2012·广州调研考试)设函数f (x )=⎩⎪⎨⎪⎧2-x,x ∈(-∞,1),x 2,x ∈[1,+∞),|若f (x )>4,则x 的取值范围是______.[自主解答] 当x <1时,由f (x )>4,得2-x >4,即x <-2;当x ≥1时,由f (x )>4得x 2>4,所以x >2或x <-2, 由于x ≥1,所以x >2. 综上可得x <-2或x >2. [答案] (-∞,-2)∪(2,+∞)若本例条件不变,试求f (f (-2))的值. 解:∵f (-2)=22=4, ∴f (f (-2))=f (4)=16.由题悟法求分段函数的函数值时,应根据所给自变量值的大小选择相应的解析式求解,有时每段交替使用求值.若给出函数值或函数值的范围求自变量值或自变量的取值范围,应根据每一段的解析式分别求解,但要注意检验所求自变量值或范围是否符合相应段的自变量的取值范围.以题试法3.(2012·衡水模拟)已知f (x )的图象如图,则f (x )的解析式为________. 解析:由图象知每段为线段.设f (x )=ax +b ,把(0,0),⎝⎛⎭⎫1,32|和⎝⎛⎭⎫1,32|,(2,0)分别代入, 解得⎩⎪⎨⎪⎧ a =32,b =0,|⎩⎪⎨⎪⎧a =-32,b =3.|答案:f (x )=⎩⎨⎧32x ,0≤x ≤1,3-32x ,1≤x ≤2|1.下列四组函数中,表示同一函数的是( ) A .y =x -1与y =(x -1)2| B .y =x -1|与y =x -1x -1| C .y =4lg x 与y =2lg x 2 D .y =lg x -2与y =lg x100|答案:D2.下列函数中,与函数y =13x|定义域相同的函数为( )A .y =1sin x |B .y =ln xx |C .y =x e xD .y =sin xx|解析:选D 函数y =13x|的定义域为{x |x ≠0},选项A 中由sin x ≠0⇒x ≠k π,k ∈Z ,故A 不对;选项B 中x >0,故B 不对;选项C 中x ∈R ,故C 不对;选项D 中由正弦函数及分式型函数的定义域确定方法可知定义域为{x |x ≠0}.3.(2012·安徽高考)下列函数中,不满足f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:选C 对于选项A ,f (2x )=|2x |=2|x |=2f (x );对于选项B ,f (x )=x -|x |=⎩⎪⎨⎪⎧0,x ≥0,2x ,x <0,|当x ≥0时,f (2x )=0=2f (x ),当x <0时,f (2x )=4x =2·2x =2f (x ),恒有f (2x )=2f (x );对于选项D ,f (2x )=-2x =2(-x )=2f (x );对于选项C ,f (2x )=2x +1=2f (x )-1.4.已知f (x )=⎩⎪⎨⎪⎧-cos (πx ),x >0,f (x +1)+1,x ≤0,|则f ⎝⎛⎭⎫43|+f ⎝⎛⎭⎫-43|的值等于( ) A .-2 B .1 C .2D .3解析:选D f ⎝⎛⎭⎫43|=12|,f ⎝⎛⎭⎫-43|=f ⎝⎛⎭⎫-13|+1=f ⎝⎛⎭⎫23|+2=52|,f ⎝⎛⎭⎫43|+f ⎝⎛⎭⎫-43|=3. 5.现向一个半径为R 的球形容器内匀速注入某种液体,下面图形中能表示在注入过程中容器的液面高度h 随时间t 变化的函数关系的是( )解析:选C 从球的形状可知,水的高度开始时增加的速度越来越慢,当超过半球时,增加的速度又越来越快.6.若f (x )对于任意实数x 恒有2f (x )-f (-x )=3x +1,则f (x )=( ) A .x -1B .x +1C .2x +1D .3x +3解析:选B 由题意知2f (x )-f (-x )=3x +1.① 将①中x 换为-x ,则有2f (-x )-f (x )=-3x +1.② ①×2+②得3f (x )=3x +3, 即f (x )=x +1.7.已知f (x )=x 2+px +q 满足f (1)=f (2)=0,则f (-1)=________. 解析:由f (1)=f (2)=0,得⎩⎪⎨⎪⎧ 12+p +q =0,22+2p +q =0,|所以⎩⎪⎨⎪⎧p =-3,q =2.| 故f (x )=x 2-3x +2.所以f(-1)=(-1)2+3+2=6.答案:68.已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\co1(x2+2ax,x≥2,,2x+1,x<2,))若f(f(1))>3a2,则a的取值范围是________.解析:由题知,f(1)=2+1=3,f(f(1))=f(3)=32+6a,若f(f(1))>3a2,则9+6a>3a2,即a2-2a-3<0,解得-1<a<3.答案:(-1,3)9.设集合M={x|0≤x≤2},N={y|0≤y≤2},那么下面的4个图形中,能表示集合M 到集合N的函数关系的是________.解析:由函数的定义,对定义域内的每一个x对应着唯一一个y,据此排除①④,③中值域为{y|0≤y≤3}不合题意.答案:②10.若函数f(x)=eq \f(x,ax+b)(a≠0),f(2)=1,又方程f(x)=x有唯一解,求f(x)解:由f(2)=1得eq \f(2,2a+b)=1,即2a+b=2;由f(x)=x得eq \f(x,ax+b)=x,变形得x eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,ax+b)解此方程得x=0或x=eq \f(1-b,a),又因方程有唯一解,故eq \f(1-b,a)=0,解得b=1,代入2a+b=2得a=eq \f(1,2),所以f(x)=eq \f(2x,x+2).11.甲同学家到乙同学家的途中有一公园,甲从家到公园的距离与乙从家到公园的距离都是2 km,甲10时出发前往乙家.如图所示,表示甲从家出发到达乙家为止经过的路程y(km)与时间x(min)的关系.试写出y=f(x)的函数解析式.解:当x∈[0,30]时,设y=k1x+b1,由已知得eq \b\lc\{\rc\ (\a\vs4\al\co1(b1=0,,30k1+b1=2,))解得eq \b\lc\{\rc\ (\a\vs4\al\co1(k1=\f(1,15),,b1=0.))即y=eq \f(1,15)x.当x∈(30,40)时,y=2;当x∈[40,60]时,设y=k2x+b2,由已知得eq \b\lc\{\rc\ (\a\vs4\al\co1(40k2+b2=2,,60k2+b2=4,))解得eq \b\lc\{\rc\ (\a\vs4\al\co1(k2=\f(1,10),,b2=-2.))即y=eq \f(1,10)x-2.综上,f(x)=eq \b\lc\{\rc\ (\a\vs4\al\co1(\f(1,15)x,x∈[0,30],,2,x∈(30,40),,\f(1,10)x -2,x∈[40,60].))12.如图1是某公共汽车线路收支差额y元与乘客量x的图象.(1)试说明图1上点A、点B以及射线AB上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为赢的建议,如图2、3所示.你能根据图象,说明这两种建议的意义吗?(3)此问题中直线斜率的实际意义是什么?(4)图1、图2、图3中的票价分别是多少元?解:(1)点A表示无人乘车时收支差额为-20元,点B表示有10人乘车时收支差额为0元,线段AB上的点表示亏损,AB延长线上的点表示赢利.(2)图2的建议是降低成本,票价不变,图3的建议是提高票价.(3)斜率表示票价.(4)图1、2中的票价是2元.图3中的票价是4元.1.(2011·北京高考)根据统计,一名工人组装第x件某产品所用的时间(单位:分钟)为f(x)=eq \b\lc\{\rc\ (\a\vs4\al\co1(\f(c,\r(x)),x<A,,\f(c,\r(A)),x≥A))(A,c为常数).已知工人组装第4件产品用时30分钟,组装第A件产品用时15分钟,那么c和A的值分别是() A.75,25 B.75,16C.60,25 D.60,16解析:选D因为组装第A件产品用时15分钟,所以eq \f(c,\r(A))=15,①所以必有4<A,且eq \f(c,\r(4))=eq \f(c,2)=30.②联立①②解得c=60,A=16.2.(2012·江西红色六校联考)具有性质:f eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))=-f(x)的函数,我们称为满足“倒负”变换的函数,下列函数:①y=x-eq \f(1,x);②y=x+eq \f(1,x);③y=eq \b\lc\{\rc\ (\a\vs4\al\co1(x,0<x<1,,0,x=1,,-\f(1,x),x>1.))其中满足“倒负”变换的函数是() A.①②B.①③C.②③D.①解析:选B对于①,f(x)=x-eq \f(1,x),f eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))=eq \f(1,x)-x=-f(x),满足;对于②,f eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))=eq \f(1,x)+x=f(x),不满足;对于③,f eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))=eq \b\lc\{\rc\ (\a\vs4\al\co1(\f(1,x),0<\f(1,x)<1,,0,\f(1,x)=1,,-x,\f(1,x)>1,))即f eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))=eq \b\lc\{\rc\ (\a\vs4\al\co1(\f(1,x),x>1,,0,x=1,,-x,0<x<1,))故f eq \b\lc\(\rc\)(\a\vs4\al\co1(\f(1,x)))=-f(x),满足.综上可知,满足“倒负”变换的函数是①③.3.二次函数f(x)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)解不等式f(x)>2x+5.解:(1)设二次函数f(x)=ax2+bx+c(a≠0).∵f(0)=1,∴c=1.把f(x)的表达式代入f(x+1)-f(x)=2x,有a(x+1)2+b(x+1)+1-(ax2+bx+1)=2x.∴2ax+a+b=2x.∴a=1,b=-1.∴f(x)=x2-x+1.(2)由x2-x+1>2x+5,即x2-3x-4>0,解得x>4或x<-1.故原不等式解集为{x|x>4,或x<-1}.1.已知函数f(x)=eq \b\lc\{\rc\ (\a\vs4\al\co1(3x+2,x<1,,x2+ax,x≥1,))若f(f(0))=4a,则实数a=________.解析:∵f(0)=3×0+2=2,f(f(0))=f(2)=4+2a=4a,∴a=2.答案:22.若函数的定义域为{x|-3≤x≤6,且x≠4},值域为{y|-2≤y≤4,且y≠0},试在下图中画出满足条件的一个函数的图象.解:本题答案不唯一,函数图象可画为如图所示.3.已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(1)若f(2)=3,求f(1);又若f(0)=a,求f(a);(2)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析式.解:(1)因为对任意x∈R有f(f(x)-x2+x)=f(x)-x2+x,所以f(f(2)-22+2)=f(2)-22+2,又f(2)=3,从而f(1)=1.若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.(2)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x,又有且仅有一个实数x0,使得f(x0)=x0,故对任意x∈R,有f(x)-x2+x=x0.在上式中令x=x0,有f(x0)-x eq \o\al(2,0)+x0=x0.又因为f(x0)=x0,所以x0-x eq \o\al(2,0)=0,故x0=0或x0=1.若x0=0,则f(x)=x2-x,但方程x2-x=x有两个不相同实根,与题设条件矛盾,故x0≠0.若x0=1,则有f(x)=x2-x+1,易证该函数满足题设条件.综上,所求函数f(x)的解析式为f(x)=x2-x+1.。

2014高考理科数学一轮复习章节过关检测(新课标,人教A版)3-1函数及其表示

2014高考理科数学一轮复习章节过关检测(新课标,人教A版)3-1函数及其表示

课时作业(八)一、选择题1.下列四组函数中,表示同一函数的是( )A .y =x -1与y =(x -1)2B .y =x -1与y =x -1x -1C .y =4lg x 与y =2lg x 2D .y =lg x -2与y =lg x100解析:∵y =x -1与y =(x -1)2=|x -1|的对应法则不同,故不是同一函数;y =x -1(x ≥1)与y =x -1x -1(x >1)的定义域不同,∴它们不是同一函数;又y =4lg x (x >0)与y =2lg x 2(x ≠0)的定义域不同,因此它们也不是同一函数,而y =lg x -2(x >0)与y =lg x100=lg x -2(x >0)有相同的定义域、值域与对应法则,故它们是同一函数.答案:D2.(2012年江西)若函数f (x )=⎩⎨⎧x 2+1, x ≤1,lg x , x >1,则f (f (10))=( )A .lg 101B .2C .1D .0解析:f (f (10))=f (1)=2,故选B. 答案:B3.(2012年安徽)下列函数中,不满足f (2x )=2f (x )的是 ( )A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x解析:验证C ,f (x )=x +1.∵f (2x )=2x +1,2f (x )=2x +2, ∴f (2x )≠2f (x ),即f (x )=x +1不满足f (2x )=2f (x ),故选C. 答案:C4.(2012年山东滨州模拟)已知函数f ⎝ ⎛⎭⎪⎫x -1x =x 2+1x 2,则f (3)=( )A .8B .9C .11D .10解析:∵f ⎝ ⎛⎭⎪⎫x -1x =⎝ ⎛⎭⎪⎫x -1x 2+2,∴f (3)=9+2=11.答案:C5.(2012年福建厦门模拟)已知函数f (x )=⎩⎨⎧3-x 2,x ∈[-1,2],x -3,x ∈(2,5],则方程f (x )=1的解是( )A.2或2B.2或3C.2或4D .±2或4解析:(1)当x ∈[-1,2]时,由3-x 2=1⇒x =2; (2)当x ∈(2,5]时,由x -3=1⇒x =4. 综上所述,f (x )=1的解为2或4. 答案:C6.(2012年山东聊城市第一学期期末质量检测)具有性质:f (1x )=-f (x )的函数,我们称为满足“倒负”交换的函数,下列函数:①f (x )=x -1x ;②f (x )=x +1x ;③f (x )=⎩⎪⎨⎪⎧x ,(0<x <1)0,(x =1)-1x ,(x >1)中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .只有①解析:①f ⎝ ⎛⎭⎪⎫1x =1x -x =-f (x )满足.②f ⎝ ⎛⎭⎪⎫1x =1x +x =f (x )不满足. ③0<x <1时,f ⎝ ⎛⎭⎪⎫1x =-x =-f (x ),x =1时,f ⎝ ⎛⎭⎪⎫1x =0=-f (x ),x >1时,f ⎝ ⎛⎭⎪⎫1x =1x =-f (x )满足.故选B.答案:B 二、填空题7.(2012年福建省四地六校期中联考)已知函数f (x )=⎩⎨⎧3x(x ≤0)log 2x (x >0),则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=________.解析:∵f ⎝ ⎛⎭⎪⎫12=-1,f (-1)=13,∴f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫12=13.答案:138.(2012年上海静安三模)函数y =lg (2-x )12+x -x 2+(x -1)0的定义域是________.解析:由⎩⎨⎧2-x >0,12+x -x 2>0,x -1≠0,得⎩⎨⎧x <2,-3<x <4,x ≠1,所以-3<x <2且x ≠1,故所求函数的定义域为{x |-3<x <2且x ≠1}.答案:{x |-3<x <2且x ≠1}9.设M 是由满足下列性质的函数f (x )构成的集合:在定义域内存在x 0,使得f (x 0+1)=f (x 0)+f (1)成立.已知下列函数:①f (x )=1x ;②f (x )=2x ;③f (x )=lg(x 2+2);④f (x )=cos πx .其中属于集合M 的函数是________.(写出所有满足要求的函数的序号)解析:对于①,1x +1=1x +1显然无实数解;对于②,方程2x +1=2x +2,解得x =1;对于③,方程lg[(x +1)2+2]=lg(x 2+2)+lg 3,显然也无实数解;对于④,方程cos[π(x +1)]=cos πx +cos π,即cos πx =12,显然存在x 使之成立.答案:②④ 三、解答题10.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1. (1)求函数f (x )的解析式. (2)求函数y =f (x 2-2)的值域. 解:(1)设f (x )=ax 2+bx +c (a ≠0),由题意可知⎩⎨⎧c =0a (x +1)2+b (x +1)+c =ax 2+bx +c +x +1,整理得⎩⎨⎧ 2a +b =b +1a ≠0a +b =1c =0,解得⎩⎪⎨⎪⎧a =12b =12c =0,∴f (x )=12x 2+12x .(2)由(1)知y =f (x 2-2)=12(x 2-2)2+12(x 2-2)=12(x 4-3x 2+2)=12⎝ ⎛⎭⎪⎫x 2-322-18,当x 2=32时,y 取最小值-18,故函数值域为[-18,+∞).11.已知函数 f (x )=2x -1,g (x )=⎩⎨⎧x 2(x ≥0),-1 (x <0),求f [g (x )]和g [f (x )]的解析式.解:当x ≥0时,g (x )=x 2, f [g (x )]=2x 2-1, 当x <0时,g (x )=-1, f [g (x )]=-2-1=-3,∴f [g (x )]=⎩⎨⎧ 2x 2-1 ,-3(x ≥0),(x <0).∵当2x -1≥0,即x ≥12时,g [f (x )]=(2x -1)2, 当2x -1<0,即x <12时,g [f (x )]=-1,∴g [f (x )]=⎩⎨⎧(2x -1)2,-1,⎝ ⎛⎭⎪⎫x ≥12,⎝ ⎛⎭⎪⎫x <12.12.某公司招聘员工,连续招聘三天,应聘人数和录用人数符合函数关系y=⎩⎨⎧4x ,1≤x ≤10,2x +10,10<x ≤100,1.5x ,x >100,其中,x 是录用人数,y 是应聘人数.若第一天录用9人,第二天的应聘人数为60人,第三天未被录用的人数为120人.求这三天参加应聘的总人数和录用的总人数.解:由1<9<10,得第一天应聘人数为4×9=36(人). 由4x =60,得x =15∉[1,10];由2x +10=60,得x =25∈(10,100];由1.5x =60,得x =40<100. 所以第二天录用人数为25人.设第三天录用x 人,则第三天的应聘人数为120+x . 由4x =120+x ,得x =40∉[1,10]; 由2x +10=120+x ,得x =110∉(10,100]; 由1.5x =120+x ,得x =240>100.所以第三天录用240人,应聘人数为360人.综上,这三天参加应聘的总人数为36+60+360=456人,录用的总人数为9+25+240=274人.[热点预测]13.(1)(2012年山西长治质检)已知函数f (x )= ⎩⎨⎧log 2x ,x >0,3x ,x ≤0,则f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫14的值是( )A .9 B.19 C .-9D .-19(2)(2012年山东威海一模)已知f (x )=⎩⎨⎧x ,x ≥0,-x ,x <0,则不等式x +x ·f (x )≤2的解集是________.解析:(1)f ⎣⎢⎡⎦⎥⎤f ⎝ ⎛⎭⎪⎫14=f ⎝ ⎛⎭⎪⎫log 214=f (-2)=3-2=19.(2)当x ≥0时,不等式x +x ·f (x )≤2等价于x +x 2≤2,解得-2≤x ≤1.又x ≥0,所以0≤x≤1.当x<0时,不等式x+x·f(x)≤2等价于x-x2≤2,即x2-x+2≥0,此不等式的解集为R,所以x<0.综上可知,不等式的解集为(-∞,1].答案:(1)B(2)(-∞,1]。

2014高考数学一轮复习课件_2.1函数及其表示

2014高考数学一轮复习课件_2.1函数及其表示

计2014年仍以分段函数及应用为重点,同时应特别之二
数形结合求解分段函数问题
|x2-1| (2012· 天津高考)已知函数y= 的图象与函数y=kx x-1 -2的图象恰有两个交点,则实数k的取值范围是 ________.
【解析】 根据绝对值的意义, |x2-1| x+1(x>1或x<-1), y= = x-1 -x-1(-1≤x<1). 在直角坐标系中作出该函数的图象, 如图中实线所示.根据图象可知, 当0<k<1或1<k<4时两函数的图象 有两个交点.
4.分段函数 对应关系 若函数在其定义域的不同子集上,因__________不同而
分别用几个不同的式子来表示,这种函数称为分段函数.
1.若两个函数的定义域与值域相同,则一定是相等函
数,这种说法对吗?
【提示】 不对.如y=sin x和y=cos x的定义域都为
R,值域都为[-1,1],但不是相等函数判定两个函数是同 一函数,当且仅当两个函数的定义域和对应关系都分别相 同.
-x-1(-1≤x<0), (2)已知函数f(x)= 则f(x)-f(- -x+1(0<x≤1).
x)>-1的解集为(
)
1 A.(-∞,-1)∪(1,+∞) B.[-1,- )∪(0,1] 2 1 C.(-∞,0)∪(1,+∞) D.[-1,- ]∪(0,1) 2
【思路点拨】 可列方程组求解. (1)由x≥A时,f(x)=15知,4<A,从而
有意义,则必须有
1 故函数g(x)的定义域为[ ,1) 2 1 【答案】 (1)C (2)[ ,1) 2
2 (1)已知f( +1)=lg x,求f(x); x (2)已知f(x)是二次函数且f(0)=2,f(x+1)-f(x)=x- 1,求f(x); 2 【审题视点】 (1)用换元法,令 +1=t; x (2)本题已给出函数的基本特征,即二次函数,可采用 待定系数法求解. 2 2 【尝试解答】 (1)令t= +1,则x= , x t-1 2 ∴f(t)=lg , t-1 2 即f(x)=lg . x-1

【全程复习方略】(广东专用)2014年高考数学 第二章 第一节 函数及其表示课时作业 理 新人教A版

【全程复习方略】(广东专用)2014年高考数学 第二章 第一节 函数及其表示课时作业 理 新人教A版

【全程复习方略】(广东专用)2014年高考数学第二章第一节函数及其表示课时作业理新人教A版一、选择题1.(2012·江西高考)若函数f(x)=则f(f(10))= ( )(A)lg101 (B)2 (C)1 (D)02.(2013·中山模拟)下列各组函数中表示同一个函数的是( )(A)f(x)=,g(x)=(B)f(x)=·,g(x)=(C)f(x)=,g(x)=x0(D)f(x)=,g(x)=x-13.(2013·广州模拟)函数y=的定义域为( )(A)(,1) (B)(,+∞)(C)(1,+∞) (D)(,1)∪(1,+∞)4.设f(x)=则f(5)的值为( )(A)10 (B)11 (C)12 (D)135.函数f(x)=+lg的定义域是( )(A)(2,4) (B)(3,4)(C)(2,3)∪(3,4] (D)[2,3)∪(3,4)6.如果f()=,则当x≠0且x≠1时,f(x)= ( )(A) (B) (C) (D)-17.(2013·惠州模拟)已知函数f(x)=若f(a)=2,则a= ( )(A)4 (B)2 (C)1 (D)-18.函数f(x)=(x≠-)满足f(f(x))=x,则常数c等于( )(A)3 (B)-3(C)3或-3 (D)5或-39.已知函数y=f(x+1)的定义域是[-2,3],则y=f(2x-1)的定义域是( )(A)[0,] (B)[-1,4](C)[-5,5] (D)[-3,7]10.(能力挑战题)已知函数y=f(x)的图象关于直线x=-1对称,且当x∈(0,+∞)时,有f(x)=,则当x∈(-∞,-2)时,f(x)的解析式为( )(A)f(x)=- (B)f(x)=-(C)f(x)= (D)f(x)=-二、填空题11.已知两个函数f(x)和g(x)的定义域和值域都是集合{1,2,3},其函数对应关系如下表:则方程g(f(x))=x的解集为.12.(2013·石家庄模拟)已知函数f(x)=若f(f(0))=4a,则实数a= .13.二次函数的图象经过三点A(,),B(-1,3),C(2,3),则这个二次函数的解析式为.14.函数y=lg(ax2-2ax+2)的定义域为R,则a的取值范围是.三、解答题15.(能力挑战题)如果对任意实数x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,(1)求f(2),f(3),f(4)的值.(2)求+++…+++的值.答案解析1.【解析】选B.∵f(10)=lg10=1,∴f(f(10))=f(1)=12+1=2.2.【解析】选C.对于A,f(x)的值域大于等于0,而g(x)的值域为R,所以A不对;对于B,f(x)的定义域为{x|x≥1};而函数g(x)的定义域为{x|x≥1或x≤-1},所以B不对; 对于C,因为f(x)==1(x≠0),g(x)=x0=1(x≠0),所以两个函数是同一个函数,所以C对;对于D,f(x)的定义域为{x|x≠-1};而函数g(x)的定义域为R,所以D不对.3.【解析】选A.要使函数有意义,则即∴<x<1,∴函数的定义域为(,1).4.【解析】选B.f(5)=f(f(11))=f(9)=f(f(15))=f(13)=11.【方法技巧】求函数值的四种类型及解法(1)f(g(x))型:遵循先内后外的原则.(2)分段函数型:根据自变量值所在区间对应求值,不确定时要分类讨论.(3)已知函数性质型:对具有奇偶性、周期性、对称性的函数求值,要用好其函数性质,将待求值调节到已知区间上求解.(4)抽象函数型:对于抽象函数求函数值,要用好抽象的函数关系,适当赋值,从而求得待求函数值.5.【解析】选D.要使函数有意义,必须所以函数的定义域为[2,3)∪(3,4).6.【解析】选B.令=t,t≠0且t≠1,则x=,∵f()=,∴f(t)=,化简得:f(t)=,即f(x)=(x≠0且x≠1).7.【解析】选A.当a>0时,由log2a=2得a=4;当a≤0时,由a+1=2得a=1,不合题意,舍去,故a=4.8.【解析】选B.f(f(x))==x,∴f(x)==,得c=-3.9.【解析】选A.由-2≤x≤3,得-1≤x+1≤4,由-1≤2x-1≤4,得0≤x≤,故函数y=f(2x-1)的定义域为[0,].10.【思路点拨】函数y=f(x)的图象关于直线x=-1对称,则有f(x)=f(-x-2).【解析】选D.设x<-2,则-x-2>0,由函数y=f(x)的图象关于x=-1对称,得f(x)=f(-x-2)=,所以f(x)=-.11.【解析】当x=1时,f(x)=2,g(f(x))=2,不合题意;当x=2时,f(x)=3,g(f(x))=1,不合题意;当x=3时,f(x)=1,g(f(x))=3,符合要求,故方程g(f(x))=x的解集为{3}.答案:{3}12.【解析】∵f(0)=20+1=2,∴f(f(0))=f(2)=4+2a=4a,∴a=2.答案:213.【解析】方法一:设y-3=a(x+1)(x-2),把A(,)代入得a=1,∴二次函数的解析式为y=x2-x+1.方法二:设二次函数解析式为y=ax2+bx+c,则有解得∴二次函数的解析式为y=x2-x+1.答案:y=x2-x+114.【解析】当a=0时,函数为y=lg2,定义域为R满足题意.当a≠0时,要使函数y=lg(ax2-2ax+2)的定义域为R,必须即解得0<a<2.故a的取值范围为[0,2).答案:[0,2)15.【思路点拨】(1)根据等式中变量的任意性,可采用赋值法求函数值.(2)根据(1)的函数值相邻两项的规律求出比值,然后求解.【解析】(1)∵对任意实数x,y,都有f(x+y)=f(x)·f(y),且f(1)=2,∴f(2)=f(1+1)=f(1)·f(1)=22=4,f(3)=f(2+1)=f(2)·f(1)=23=8,f(4)=f(3+1)=f(3)·f(1)=24=16.(2)由(1)知=2,=2,=2,…,=2.故原式=2×1007=2014.【变式备选】已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,求5a-b的值.【解析】f(ax+b)=(ax+b)2+4(ax+b)+3=x2+10x+24,a2x2+(2ab+4a)x+b2+4b+3=x2+10x+24,∴得或∴5a-b=2.。

中学2014高考数学一轮复习 函数及其表示晚练 新人教A版

中学2014高考数学一轮复习 函数及其表示晚练 新人教A版

广东省始兴县风度中学2014高考数学一轮复习 函数及其表示晚练 新人教A 版(晚练2) 一、选择题(5分×8=40分)1. 判断下列各组中的两个函数是同一函数的为( ) ⑴3)5)(3(1+-+=x x x y ,52-=x y ; ⑵111-+=x x y ,)1)(1(2-+=x x y ;⑶x x f =)(,2)(x x g =; ⑷343()f x x x =-,3()1F x x x =-;⑸21)52()(-=x x f ,52)(2-=x x f .A. ⑴、⑵B. ⑵、⑶C. ⑷D. ⑶、⑸2. 函数()y f x =的图象与直线1x =的公共点数目是( )A. 1B. 0C. 0或1D. 1或23. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈ 使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( )A. 2,3B. 3,4C. 3,5D. 2,54. 已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( )A. 1B. 1或32C. 1,32或3± D. 3 5.图中图象所表示的函数解析式为( )A .y =32|x -1|(0≤x ≤2)B .y =32-32|x -1|(0≤x ≤2)C .y =32-|x -1|(0≤x ≤2) D .y =1-|x -1|(0≤x ≤2)A .(0,1]B .(0,1)C .(-∞,1]D .(-∞,0]7. 设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( ) A. 10 B. 11 C. 12 D. 138.(2011年江西高考文3)若121()log (21)f x x =+,则()f x 的定义域为( ) A.1(,0)2- B.1(,)2-+∞ C.1(,0)(0,)2-⋃+∞ D.1(,2)2- 二、填空题(5分×6=30分)9. 函数422--=x x y 的定义域 . 10. 若二次函数2y ax bx c =++的图象与x 轴交于(2,0),(4,0)A B -,且函数的最大值为9,则这个二次函数的表达式是 .11. 函数0y x x=-_____________________. 12. 函数1)(2-+=x x x f x ∈(-1,3]的值域是_________________.13.已知一次函数f (x )满足f [f (x )]=3x +2,则f (x )=14.已知=+=-)3(,1)1(22f xx x x f 则三、解答题(30分)15.(2012北京理)已知函数()4cos sin()16f x x x π=+-。

2014高考数学总复习(人教新课标理科)课时作业5 第2章 函数2含解析

2014高考数学总复习(人教新课标理科)课时作业5 第2章 函数2含解析

课时作业(五)1.(2012·山东)函数f(x)=错误!+错误!的定义域为A.[-2,0)∪(0,2] B.(-1,0)∪(0,2]C.[-2,2]D.(-1,2]答案B解析由错误!得错误!所以f(x)的定义域为(-1,0)∪(0,2].2.下表表示y是x的函数,则函数的值域是(A。

[2,5]C.(0,20] D.{2,3,4,5}答案D解析由表知函数值只有2,3,4,5四个数,故值域为{2,3,4,5}.3.若函数y=f(x)的值域是[1,3],则函数F(x)=1-2f(x+3)的值域是( )A.[-5,-1] B.[-2,0]C.[-6,-2] D.[1,3]答案A解析∵1≤f(x)≤3,∴1≤f(x+3)≤3.∴-6≤-2f(x+3)≤-2,∴-5≤F(x)≤-1.4.若函数y=错误!x2-2x+4的定义域、值域都是[2,2b](b>1),则()A.b=2 B.b≥2C.b∈(1,2)D.b∈(2,+∞)答案A解析∵函数y=12x2-2x+4=错误!(x-2)2+2,其图像的对称轴为直线x=2,∴在定义域[2,2b]上,y为增函数.当x=2时,y=2;当x=2b时,y=2b.故2b=错误!×(2b)2-2×2b+4,即b2-3b+2=0,得b1=2,b2=1.又∵b>1,∴b=2.5.若函数y=f(x)的定义域是[0,2],则函数g(x)=错误!的定义域是( )A.[0,1] B.[0,1)C.[0,1)∪(1,4] D.(0,1)答案B解析∵y=f(x)的定义域为[0,2],∴g(x)的定义域需满足错误!解得0≤x〈1,故选B。

6.函数y=错误!(x〉0)的值域是( A.(0,+∞)B.(0,错误!)C.(0,错误!] D.[错误!,+∞)答案C解析由y=错误!(x〉0),得0〈y=错误!=错误!≤错误!=错误!,因此该函数的值域是(0,错误!],选C.7.函数f(x)=a x+log a(x+1)在[0,1]上的最大值和最小值的和为a,则a的值是( )A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课后作业(五) 函数及其表示
一、选择题
1.(2012·山东高考)函数f (x )=1
ln (x +1)
+4-x 2的定义域为( )
A .[-2,0)∪(0,2]
B .(-1,0)∪(0,2]
C .[-2,2]
D .(-1,2] 2.(2013·深圳模拟)已知f (x )=⎩⎨⎧cos πx (x ≤0),f (x -1)+1 (x >0),则f (43)+f (-43)的
值为( )
A.1
2 B .-1
2
C .-1
D .1
图2-1-1
3.已知函数f (x )的图象是两条线段(如图2-1-1,不含端点),则f (f (1
3))=( )
A .-13 B.13
C .-23 D.23
图2-1-2
4.如图2-1-2,是张大爷晨练时所走的离家距离(y )与行走时间(x )之间的函数关系的图象.若用黑点表示张大爷家的位置,则张大爷散步行走的路线可能是( )
5.(2013·揭阳模拟)设集合A =[0,12),B =[1
2,1],函数f (x )=
⎩⎪⎨⎪⎧x +12,x ∈A ,2(1-x ),x ∈B .若x 0∈A ,且f [f (x 0)]∈A ,则x 0的取值范围是( )
A .(0,14]
B .(14,1
2]
C .(14,12)
D .[0,38] 二、填空题
6.(2013·梅州模拟)已知f (1
2x -1)=2x +3,f (m )=6,则m =________.
7.已知函数f (x )=1
x +1
,则函数f [f (x )]的定义域是________.
8.(2013·珠海模拟)已知f (x )=⎩⎨⎧x ,x ≥0,
-x ,x <0,则不等式x +x ·f (x )≤2的解集
是________.
三、解答题
图2-1-3
9.已知函数y =f (x )的图象由图2-1-3中的两条射线和抛物线的一部分组成,求函数的解析式.
10.已知f (x )=x 2
-1,g (x )=⎩⎨⎧x -1,x >0,
2-x ,x <0.
(1)求f (g (2))和g (f (2))的值; (2)求f (g (x ))和g (f (x ))的解析式.
11.如果对∀x ,y ∈R 都有f (x +y )=f (x )·f (y ),且f (1)=2, (1)求f (2),f (3),f (4)的值. (2)求f (2)f (1)+f (4)f (3)+f (6)f (5)+…+f (2 012)f (2 011)+f (2 014)
f (2 013)
的值.
解析及答案
一、选择题
1.【解析】 由⎩⎨⎧x +1>0,
ln (x +1)≠0,得-1<x ≤2,且x ≠0.4-x 2≥0
【答案】 B
2.【解析】 f (-43)=cos(-43π)=-cos π3=-12, f (43)=f (13)+1=f (-23)+2=cos(-23π)+2=32, ∴f (43)+f (-43)=-12+3
2=1.
【答案】 D 3.【解析】 由图象知,当-1<x <0时,f (x )=x +1, 当0<x <1时,f (x )=x -1, ∴f (x )=⎩⎨⎧x +1,-1<x <0,
x -1,0<x <1,
∴f (13)=13-1=-23,
∴f (f (13))=f (-23)=-23+1=13. 【答案】 B 4.【解析】 由y 与x 的关系知,在中间时间段y 值不变,只有D 符合题意. 【答案】 D
5.【解析】 x 0∈A 时,f (x 0)∈[1
2,1), 则f [f (x 0)]=2(1-f (x 0)).
由f [f (x 0)]∈A 知0≤2(1-f (x 0))<1
2, ∴3
4<f (x 0)≤1, 即34<x 0+1
2≤1. ∴14<x 0≤1
2,故选B. 【答案】 B 二、填空题
6.【解析】 法一 ∵f (1
2x -1)=2x +3,∴f (x )=4x +7, ∴f (m )=4m +7=6,
∴m =-1
4.
法二 由2x +3=6,得x =3
2,
∴m =12×32-1=-14.
【答案】 -1
4 7.【解析】 f (x )的定义域为{x |x ≠-1},要使函数f [f (x )]有意义,则有⎩⎪⎨⎪⎧x ≠-1,1x +1
≠-1,即x ≠-1且x ≠-2,
故函数f [f (x )]的定义域是{x |x ≠-1且x ≠-2}. 【答案】 {x |x ≠-1且x ≠-2} 8.【解析】 (1)当x ≥0时,不等式可化为x +x 2≤2, 解得-2≤x ≤1, 又x ≥0,∴0≤x ≤1.
(2)当x <0时,不等式可化为x -x 2≤2,解得x ∈R , 又x <0,∴x <0.
综上知,不等式的解集为{x |x ≤1}. 【答案】 {x |x ≤1} 三、解答题 9.【解】 根据图象,设左侧的射线对应的解析式为y =kx +b (x ≤1). ∵点(1,1),(0,2)在射线上, ∴⎩⎨⎧k +b =1,b =2,解得⎩⎨⎧k =-1,b =2.
∴左侧射线对应函数的解析式为y =-x +2(x ≤1); 同理,x ≥3时,函数的解析式为y =x -2(x ≥3).
再设抛物线对应的二次函数解析式为y =a (x -2)2+2(1≤x ≤3,a <0),
∵点(1,1)在抛物线上,∴a +2=1,a =-1, ∴1≤x ≤3时,函数的解析式为 y =-x 2+4x -2(1≤x ≤3).
综上,函数的解析式为y =⎩⎨⎧-x +
2,x <1,
-x 2
+4x -2,1≤x ≤3,x -2,x >3.
10.【解】 (1)由已知,g (2)=1,f (2)=3, ∴f (g (2))=f (1)=0,g (f (2))=g (3)=2. (2)当x >0时,g (x )=x -1, 故f (g (x ))=(x -1)2-1=x 2-2x ; 当x <0时,g (x )=2-x ,
故f (g (x ))=(2-x )2-1=x 2-4x +3;
∴f (g (x ))=⎩⎨⎧x 2
-2x , x >0,
x 2-4x +3, x <0,
当x >1或x <-1时,f (x )>0, 故g (f (x ))=f (x )-1=x 2-2;
当-1<x <1时,f (x )<0,故g (f (x ))=2-f (x )=3-x 2,
∴g (f (x ))=⎩⎨⎧x 2
-2,x >1或x <-1,
3-x 2
,-1<x <1.
11.【解】 (1)∵对∀x ,y ∈R ,f (x +y )=f (x )·f (y ), 且f (1)=2,
f (2)=f (1+1)=f (1)·f (1)=22=4, f (3)=f (2+1)=f (1)·f (2)=23=8. f (4)=f (2+2)=f (2)·f (2)=24=16. (2)由(1)知
f (2)f (1)=2,f (4)f (3)=2,f (6)
f (5)
=2,…, f (2 012)f (2 011)=2,f (2 014)f (2 013)=2.
∴原式的值为2×1 007=2 014.。

相关文档
最新文档