2018-2019学年北师版九年级数学下册3.4 圆周角和圆心角的关系
圆周角和圆心角的关系 北师大版数学九年级下册
学习目标 (1分钟)
1.探索圆周角定理的相关推论; 2.会运用圆周角定理的有关推论解1 什么是圆周角?
B
顶点在圆上,并且两边都和圆相交
E ●O
的角叫圆周角. 特征:① 角的顶点在圆上.
② 角的两边都与圆相交.
A
C
以A为顶点: ∠BAE,∠DAE,∠BAD 以B为顶点:∠ABC 以C为顶点: ∠BCD,∠ECD,∠BCE 以D为顶点:∠ADC 以E为顶点:∠AEC
O
A
B
5.⊙O的内接四边形ABCD中, C ∠A∶∠B∶∠C=1∶2∶3 ,则 ∠D= 90º .
6. 如图所示,四边形ABCD内接于☉O,∠B=50°,∠ACD=25°
∠BAD=65°.求证:(1)AD=CD; (2)AB是☉O的直径.
证明:(1)∵四边形ABCD内接于☉O,
∴∠D=180°-∠B=130° 又∵∠ACD=25° ∴∠DAC=180°-∠D-∠ACD
C A
C为⊙O上一点,∠BAC=30°, 则BC= 5 cm
O C
3.完成课本第83页“随堂练习”第2题;B
完成课本第84页“知识技能”第2题。
“随堂练习”第2题 小明想用直角尺检查某些工件是否恰好为半圆形.下 面所示的四种圆弧形,你能判断哪个是半圆形?为什 么?
解:题图(2)是半圆形. ∵90°的圆周角所对的弦是直径.
(1)试判断AB,AC之间的大小关系,并给出证明.
解:(1)AB=AC. 证明如下:连接AD, ∵AB是⊙O的直径, ∴∠ADB=90°, 即AD⊥BC. ∵BD=DC, ∴AD垂直平分BC, ∴AB=AC.
7.如图,点A,B,D,E在⊙O上,弦AE,BD的延长线相交于点C. 若AB是⊙O的直径,D是BC的中点.
3.4+圆周角和圆心角的关系第1课时+圆周角定理课件2023-2024学年+北师大版九年级数学下册+
归纳新知
由上面的问题可以看出,∠ABC是圆上的一种新的 角,这种角我们称为圆周角.你能归纳出其完整定义吗?
定义:顶点在圆上,且角的两边分别与圆还有另
一个交点的角叫做圆周角.
A
C
圆心角和圆周角 有什么关系吗?
E
B D
归纳新知
A
C
E
B D
(1)在上图中,当球员在B,D,E处射门时,他所 处的位置对球门AC分别形成三个角∠ABC,∠ADC, ∠AEC.这三个角的大小有什么关系?
第3章 圆
3.4 圆周角和圆心角的关系
第1课时 圆周角定理
复习导课
请画出一个圆心角,并说明圆心角的特点.
O
A
B
特点:顶点在圆心,角的两边与圆相交.
复习导课
A
C
E
B D
图中∠ABC的顶点位置与圆心角的顶点位置有什么 不同?它的两边与圆有什么位置关系?
∠ABC的顶点在圆上,而圆心角的顶点在圆心; ∠ABC的两边与圆相交.
是△ABO的外角,
O
∴∠AOC=∠A+∠B.
∵OA=OB,∴∠A=∠B.
∴∠AOC=2∠A. 即 ABC = 1 AOC .
B
2
归纳新知
如果∠ABC的两边都不经过圆心,那么结果会怎样? 你能利用特殊结果把问题解决吗?
① 点 O 在 ∠ ABC 内 部 时 , 只要作出直径BD,将这个角转 化为上述情况的两个角的和即 可证出.
归纳新知
A
三个张角∠ABC,∠ADC 和∠AEC有什么关系呢?它们 会相等吗?
C O
E
B
D
∠ABC,∠ADC和∠AEC是同弧(弧AC)所对 的圆周角,根据我们所学的圆周角定理可知,它们 都等于圆心角∠AOC的一半,所以这几个圆周角相 等.即∠ ABC=∠ADC=∠AEC.
北师大版数学九年级下册:3.4 《圆周角和圆心角的关系》 练习
3.4 圆周角和圆心角的关系第1课时 圆周角定理及其推论1基础题知识点1 圆周角的概念1.下列四个图中,∠x 是圆周角的是(C)A B C D知识点2 圆周角定理2.(2018·衢州)如图,点A ,B ,C 在⊙O 上,∠ACB=35°,则∠AOB 的度数是(B)A .75°B .70°C .65°D .35°3.如图,已知CD 是⊙O 的直径,过点D 的弦DE 平行于半径OA.若∠D 的度数是50°,则∠C 的度数是(A)A .25°B .30°C .40°D .50°4.(2019·兰州)如图,在⊙O 中,AB ︵=BC ︵,点D 在⊙O 上,∠CDB=25°,则∠AOB=(B)A .45°B .50°C .55°D .60°5.(2018·广东)同圆中,已知弧AB 所对的圆心角是100°,则弧AB 所对的圆周角是50°.6.如图,⊙O 是△ABC 的外接圆,∠AOB=70°,AB =AC ,则∠ABC=35°.知识点3 圆周角定理的推论17.(教材P80练习T2变式)(2019·柳州)如图,在⊙O 中与∠1一定相等的角是(A)A .∠2B .∠3C .∠4D .∠58.(2019·哈尔滨)如图,⊙O 中,弦AB ,CD 相交于点P ,∠A=42°,∠APD=77°,则∠B 的大小是(B)A .43°B .35°C .34°D .44°9.如图,⊙O 的直径AB 过弦CD 的中点E.若∠C=25°,则∠D=65°.10.如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD.求证:DB 平分∠ADC.证明:∵AB=BC ,∴AB ︵=BC ︵.∴∠A DB =∠BDC.∴DB 平分∠ADC.易错点 忽略弦所对的圆周角不唯一而致错11.在直径为4的⊙O 中,弦AB =23,点C 是圆上不同于A ,B 的点,那么∠ACB 的度数为60°或120°.中档题12.(2018·菏泽)如图,在⊙O 中,OC ⊥AB ,∠ADC=32°,则∠OBA 等于(D)A .64°B .58°C .32°D .26°13.(2019·泰安)如图,点A ,B ,C 是⊙O 上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F ,则∠BAF 等于(B)A .12.5°B .15°C .20°D .22.5°14.(2019·贵港)如图,A ,B ,C ,D 是⊙O 上的四个点,B 是AC ︵的中点,M 是半径OD 上任意一点.若∠BDC=40°,则∠AMB 的度数不可能是(D)A .45°B .60°C .75°D .85°15.(2018·泰安)如图,⊙O 是△ABC 的外接圆,∠A=45°,BC =4,则⊙O 的直径为16.如图,AB 是⊙O 的一条弦,OD⊥AB,垂足为点C ,交⊙O 于点D ,点E 在⊙O 上.(1)若∠AOD=52°,求∠DEB 的度数;(2)若OC =3,OA =6,求tan∠DEB 的值.解:(1)连接OB.∵OD⊥A B ,∴AD ︵=BD ︵.∴∠BOD=∠AOD=52°.∴∠DEB=12∠BOD=26°. (2)∵OD⊥AB,OC =3,OA =6,∴OC=12OA ,即∠OAC=30°.∴∠AOC=60°.∴∠DEB=12∠AOC=30°. ∴tan∠DEB=33. 17.如图,在⊙O 中,AB =AC ,∠CBD=30°,∠BCD=20°,试求∠BAC 的度数.解:连接OB ,OC ,OD.∵∠BOD=2∠BCD,∠COD=2∠CBD,∠CBD=30°,∠BCD=20°,∴∠COD=60°,∠BOD=40°.∴∠BOC=100°, ∠BAC=12∠BOC=50°. 综合题18.如图,四边形ABCD 内接于⊙O,点E 在对角线AC 上,EC =BC =DC.(1)若∠CBD=39°,求∠BAD 的度数;(2)求证:∠1=∠2.解:(1)∵BC=DC ,∴BC ︵=DC ︵.∴∠BAC=∠CAD=∠CBD.∵∠CBD=39°,∴∠BAC=∠CAD=39°.∴∠BAD=∠BAC+∠DAC=78°.(2)证明:∵EC=BC ,∴∠CBE=∠CEB.∵∠CBE=∠1+∠CBD,∠CEB=∠2+∠BAC,∴∠1+∠CBD=∠2+∠BAC.又∵∠BAC=∠CBD,∴∠1=∠2.第2课时圆周角定理的推论2,3基础题知识点1 圆周角定理的推论21.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是(C)A.35°B.45°C.55°D.65°2.(教材P83练习T2变式)从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是(B)3.(2018·南充)如图,BC是⊙O的直径,点A是⊙O上的一点,∠OAC=32°,则∠B的度数是(A)A.58°B.60°C.64°D.68°4.如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M,N,量得OM=8 cm,ON=6 cm,则该圆玻璃镜的半径是(B)A.10 cmB.5 cmC.6 cmD.10 cm5.如图,A,D是⊙O上的两个点,BC是直径.若∠D=32°,则∠OAC=(B)A.64°B.58°C.72°D.55°6.如图,在半径为5 cm的⊙O中,AB为直径,∠ACD=30°,求弦BD的长.解:∵AB为直径,∴∠ADB=90°.又∵∠ABD=∠ACD=30°,∴BD=AB·cos∠ABD=10×32=53(cm).知识点2 圆周角定理的推论37.圆内接四边形ABCD中,已知∠A=70°,则∠C=(D)A.20°B.30°C.70°D.110°8.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点.若∠BAD=105°,则∠DCE的大小是(B)A.115°B.105°C.100°D.95°9.(2018·邵阳)如图所示,四边形ABCD为⊙O的内接四边形,∠BCD=120°,则∠BOD的大小是(B)A.80°B.120°C.100°D.90°10.(2019·淮安)如图,在圆内接四边形ABCD中,若∠A,∠B,∠C的度数之比为4∶3∶5,则∠D 的度数是120°.易错点对圆内接四边形的概念理解不清导致错误11.如图,在⊙O中,点A,B,C在⊙O上,且∠ACB=110°,则∠α=140°.中档题12.如图,CD是⊙O的直径,已知∠1=30°,则∠2=(C)A.30°B.45°C.60°D.70°13.(2019·牡丹江)如图,四边形ABCD内接于⊙O,AB经过圆心,∠B=3∠BAC,则∠ADC等于(B)A.100°B.112.5°C.120°D.135°14.(2018·白银)如图,⊙A过点O(0,0),C(3,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是(B)A.15°B.30°C.45°D.60°15.如图,四边形ABCD内接于⊙O,∠B=50°,∠ACD=25°,∠BAD=65°.求证:(1)AD=CD;(2)AB是⊙O的直径.证明:(1)∵四边形ABCD内接于⊙O,∴∠D=180°-∠B=130°.∵∠ACD=25°,∴∠DAC=180°-∠D-∠ACD=180°-130°-25°=25°.∴∠DAC=∠ACD.∴AD=CD.(2)∵∠BAC=∠BAD-∠DAC=65°-25°=40°,∠B=50°,∴∠ACB=180°-∠B-∠BAC=180°-50°-40°=90°.∴AB是⊙O的直径.16.(2018·宜昌)如图,在△ABC中,AB=AC.以AB为直径的半圆交AC于点D,交BC于点E.延长AE至点F ,使EF =AE ,连接FB ,FC.(1)求证:四边形ABFC 是菱形;(2)若AD =7,BE =2,求半圆和菱形ABFC 的面积.解:(1)证明:∵AB 为半圆的直径,∴∠AEB=90°,∵AB=AC ,∴CE=BE ,又∵EF=AE ,∴四边形ABFC 是平行四边形.又∵AB=AC(或∠AEB=90°),∴平行四边形ABFC 是菱形.(2)连接BD.∵AD=7,BE =CE =2,设CD =x ,则AB =AC =7+x.∵AB 为半圆的直径,∴∠ADB=90°,∴AB 2-AD 2=CB 2-CD 2.∴(7+x)2-72=42-x 2.∴x 1=1或x 2=-8(舍去).∴AB=8.∴S 半圆=12×π×42=8π. ∴BD=15.∴S 菱形ABFC =815.综合题17.如图,在△ABC 中,∠C=60°,以AB 为直径的半圆O 分别交AC ,BC 于点D ,E ,已知⊙O 的半径为2 3.(1)求证:△CDE∽△CBA;(2)求DE 的长.解:(1)证明:∵四边形ABED 为⊙O 的内接四边形,∴∠A+∠BED=180°.又∵∠BED+∠CED=180°,∴∠CED=∠A. 又∵∠C=∠C,∴△CDE∽△CBA.(2)连接AE.由(1)得DE BA =CE CA, ∵AB 为⊙O 的直径,⊙O 的半径为23, ∴∠AEB=∠AEC=90°,AB =4 3.在Rt△AEC 中,∵∠C=60°,∴∠CAE=30°. ∴DE BA =CE CA =12,即DE =2 3.。
3.4圆周角和圆心角的关系第1课时(课件)九年级数学下册(北师大版)
即∠C= ∠AOB.
(1)
二、自主合作,探究新知
试一试:你能将图(2)、(3)转化成图(1)吗?与同伴交流,并尝
试证明.
二、自主合作,探究新知
想一想:(1)在足球射门的游戏中,球员在B、D、E三点射门时,所形
成的三个张角∠BAC,∠BAC,∠BAC大小有什么关系?你能用圆周角定
理证明你的结论吗?
?你是怎么发现的?与同伴进行交流.
(1)∠D=∠E= ∠F=40°
F
使用量角器进行测量可得弧AB所对的圆周角的度数都相等.
(2)∠D=∠E=
∠F= ∠AOB.
利用量角器得出弧AB所对的圆周角都等于40°,都等于弧AB所对的
圆心角80°的一半.
二、自主合作,探究新知
议一议:在图中,改变∠AOB的度数,你得到的结
⌒
它们都是AC所对的圆周角,根据圆周角定理,它们都等于∠AOC度
数的一半,所以这三个角相等.
二、自主合作,探究新知
(2)如图,在☉O中 A B = E F ,那么∠C和∠G的大小有什么关系?
为什么?
C
G
O
A
F
B
E
圆周角定理的推论1:同弧或等弧所对的圆周角相等.
二、自主合作,探究新知
典型例题
例1:如图,OA,OB,OC都是☉O的半径,∠AOB=50°,
∠BOC=70°.求∠ACB和∠BAC度数.
⌒ ,
解:∵圆心角∠AOB 与圆周角∠ACB所对的弧为 AB
1
∴∠ACB= ∠AOB=25°.
2
1
同理∠BAC= ∠BOC=35°.
2
O .
A
70°
C
北师大版九年级数学下册:3.4《圆周角和圆心角的关系》教案1
北师大版九年级数学下册:3.4《圆周角和圆心角的关系》教案1一. 教材分析《圆周角和圆心角的关系》是北师大版九年级数学下册第3章的内容。
本节课主要通过探究圆周角和圆心角的关系,引导学生发现并证明圆周角定理。
教材通过生活中的实例引入圆周角和圆心角的概念,让学生在实际情境中感受数学与生活的联系。
接着,通过观察和操作活动,引导学生发现圆周角和圆心角之间的数量关系,进而证明圆周角定理。
教材还提供了丰富的练习题,帮助学生巩固所学知识,为后续学习圆的性质和应用打下基础。
二. 学情分析九年级的学生已经学习了平面几何的基本概念和性质,对图形的变换有一定的了解。
然而,对于圆周角和圆心角的关系,他们可能还比较陌生。
因此,在教学过程中,需要通过生动的实例和生活情境,激发学生的学习兴趣,引导学生积极参与观察、操作和思考。
此外,学生可能对圆的相关概念和性质有一定的了解,但需要进一步引导他们运用这些知识来解决实际问题。
三. 教学目标1.理解圆周角和圆心角的概念,掌握圆周角定理及其推论。
2.能够运用圆周角定理解决实际问题,提高运用数学知识解决问题的能力。
3.培养学生的观察能力、操作能力和逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.圆周角和圆心角的概念及它们之间的关系。
2.圆周角定理的证明及其推论。
3.运用圆周角定理解决实际问题。
五. 教学方法1.情境教学法:通过生活实例和实际情境,引导学生感受圆周角和圆心角的关系,激发学生的学习兴趣。
2.观察操作法:让学生通过观察、操作和思考,发现圆周角和圆心角之间的数量关系,培养学生的观察能力和操作能力。
3.问题驱动法:设置一系列问题,引导学生逐步深入探讨圆周角和圆心角的关系,培养学生的问题解决能力。
4.合作学习法:学生进行小组讨论和合作交流,分享彼此的想法和成果,提高学生的团队协作能力。
六. 教学准备1.教学课件:制作课件,展示圆周角和圆心角的图片、实例和动画效果,帮助学生直观地理解概念和关系。
北师大版数学九年级下册3.4.1圆周角和圆心角的关系优秀教学案例
一、案例背景
北师大版数学九年级下册3.4.1“圆周角和圆心角的关系”是本章节的重要内容,涉及到圆周角定理及其推论。在教学过程中,我以一个生活中的实例为背景,引导学生发现圆周角和圆心角之间的关系,激发学生的学习兴趣和探究欲望。
在案例中,我设计了一个关于自行车轮子的问题:一个自行车轮子上有36个齿,当车轮转过一周时,齿所形成的圆周角是多少度?通过这个问题,学生可以直观地感受到圆周角的概念。接着,我引导学生思考:如果我们知道车轮转过的圆心角,能否计算出对应的圆周角?这时,学生已初步掌握了圆周角定理,能够运用定理解决问题。
2.运用分组讨论、展示等形式,促进学生之间的交流与合作,提高学生的团队协作能力。
3.设计不同难度的练习题,让学生在课后进行巩固,培养学生的自主学习能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生探究数学问题的热情。
2.通过圆周角定理的学习,使学生感受到数学在生活中的重要性,提高学生运用数学知识解决实际问题的意识。
(二)问题导向
在教学中,我设计了一系列问题来引导学生思考和探究。例如,当学生了解了圆周角的概念后,我提出问题:如果我们知道车轮转过的圆心角,能否计算出对应的圆周角?这个问题引导学生思考圆周角和圆心角之间的关系,激发他们的探究欲望。通过问题导向,我引导学生积极主动地参与学习,培养他们的思考能力和解决问题的能力。
(三)学生小组讨论
在学生小组讨论环节,我设计了一系列有关圆周角和圆心角的问题,让学生分组讨论和解决问题。例如,我让学生设计一个关于圆周角和圆心角的实例,并展示给其他同学。通过小组讨论,学生能够互相交流、合作,共同解决问题,提高他们的团队协作能力和沟通能力。
3.4圆周角和圆心角的关系(教案)2018-2019学年九年级下学期数学教材解读(北师大版)
举例:在解决应用题时,教师应引导学生分析问题,找出关键信息,运用圆周角和圆心角的关系,逐步解决问题。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“3.4圆周角和圆心角的关系”。在开始之前,我想先问大家一个问题:“你们在日常生活中是否注意过圆周角和圆心角的现象?”比如,当我们观察时钟时,分针和时针之间的角度变化。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索圆周角和圆心角的奥秘。
2.应用圆周角和圆心角的关系解决实际问题:结合实际情境,运用圆周角和圆心角的关系求解圆的相关问题,如圆弧长度、圆的面积等。
本节课旨在帮助学生理解圆周角和圆心角的内在联系,提高学生解决实际问题的能力,为后续学习几何知识打下坚实基础。
二、核心素养目标
1.培养学生的几何直观能力:通过观察、分析圆周角和圆心角的性质,使学生能够把握几何图形的特征,发展几何直觉和空间观念。
2.提高学生的几何直观能力,培养他们识别和推理几何图形的能力;
3.加强实际应用环节,让学生学会将理论知识应用于解决实际问题;
4.关注学生的个体差异,因材施教,提高他们的自信心和积极性。
2.提高学生的逻辑推理能力:引导学生运用圆周角和圆心角的关系进行推理,证明几何性质,培养学生严谨的逻辑思维。
3.增强学生的数学应用意识:将圆周角和圆心角的知识应用于解决实际问题,提高学生运用数学知识解决实际问题的能力,培养数学应用意识。
4.培养学生的团队协作能力:通过小组合作、讨论交流,培养学生与他人合作、共同解决问题的能力,提高沟通与协作水平。
3.4圆周角和圆心角的关系(教案)2018-2019学年九年级下学期数学教材解读(北师大版)
九年级数学圆周角和圆心角知识点
九年级数学圆周角和圆心角知识点引言:数学作为一门博大精深的学科,其中的几何知识在我们的日常生活中无处不在。
而在九年级数学学习中,圆周角和圆心角是我们必须理解和掌握的重要概念之一。
本文将深入探讨九年级数学中的圆周角和圆心角知识点,希望能够为同学们的学习提供一些帮助。
一、圆周角圆周角是指一个图形所对的圆的圆周上的一部分,以弧所对的角叫做圆周角。
我们可以通过弧所对的圆心角来计算圆周角的大小。
假设圆的半径为r,圆弧对应的圆心角为θ(弧度制),那么圆周角的度数就是θ的度数。
例如,当θ为π/2时(即90度),圆周角也是90度。
圆周角的度数取决于其对应的圆心角的度数大小,换言之,圆周角可以看作是圆心角对应弧的一种度数表示。
二、圆心角圆心角是指圆周上任意两点连线与定点所夹的角,定点即为圆心。
通过圆心角的大小,我们可以判断出对应弧的长短和角的大小。
圆周上的所有圆心角的和等于360度,这是因为360度对应于一整个圆周。
根据圆心角的大小,我们可以将其分为三类:锐角、直角和钝角。
如果一个圆心角的度数小于90度,则称之为锐角;如果一个圆心角的度数等于90度,则称之为直角;如果一个圆心角的度数大于90度但小于180度,则称之为钝角。
三、圆周角和圆心角的关系圆周角和圆心角有着密切的联系。
首先,同一个圆弧所对应的圆心角和圆周角的度数相等。
这是因为,圆周角可以看作是圆心角对应的弧的度数表示。
其次,同一个圆的圆周角之和等于360度。
这是由圆心角之和等于360度所决定的。
另外,当两个圆心角的度数相等时,它们所对应的圆周角的度数也是相等的。
四、常见的圆周角和圆心角问题在九年级数学学习中,我们经常会遇到一些与圆周角和圆心角相关的问题。
下面我们来讨论一些常见的问题类型。
问题类型一:已知圆心角的度数,求圆周角的度数。
根据前文的介绍,我们可以直接通过圆心角的度数来确定圆周角的度数。
例如,当圆心角的度数为120度时,对应的圆周角的度数也为120度。
北师大版九年级数学下册:3.4《圆周角和圆心角的关系》教案3
北师大版九年级数学下册:3.4《圆周角和圆心角的关系》教案3一. 教材分析《圆周角和圆心角的关系》是北师大版九年级数学下册第三单元“圆”的一部分。
本节课主要通过探究圆周角和圆心角的关系,引导学生发现圆周角定理,并理解其含义。
教材通过生动的实例和丰富的练习,帮助学生掌握圆周角定理,并能运用到实际问题中。
二. 学情分析学生在学习本节课之前,已经掌握了圆的基本概念、圆的性质和圆的周长、面积计算。
但学生对于圆周角和圆心角的关系可能较为抽象,需要通过实例和练习来理解和掌握。
三. 教学目标1.知识与技能:引导学生发现圆周角定理,理解圆周角定理的含义,并能运用到实际问题中。
2.过程与方法:通过观察、操作、交流、归纳等方法,培养学生动手操作能力和团队协作能力。
3.情感态度价值观:培养学生对数学的兴趣,激发学生探究数学问题的热情。
四. 教学重难点1.圆周角定理的发现和理解。
2.圆周角定理在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例和练习,引导学生观察、操作、交流,发现圆周角定理。
2.问题驱动法:提出问题,激发学生思考,引导学生探究圆周角和圆心角的关系。
3.合作学习法:分组讨论,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学课件:制作课件,展示实例和练习。
2.练习题:准备一些有关圆周角和圆心角的练习题,用于巩固和拓展。
3.教学道具:准备一些圆形道具,用于展示和操作。
七. 教学过程1.导入(5分钟)利用课件展示一个圆形,引导学生观察圆周角和圆心角的关系。
提出问题:“你们认为圆周角和圆心角有什么关系?”让学生思考并发表自己的观点。
2.呈现(10分钟)利用课件呈现几个实例,让学生观察圆周角和圆心角的关系。
引导学生发现圆周角定理:一个圆周角等于它所对的圆心角的一半。
让学生用自己的语言阐述圆周角定理的含义。
3.操练(10分钟)让学生分组讨论,每组设计一个关于圆周角和圆心角的练习题,并互相交换解答。
教师巡回指导,解答学生的问题。
3.4 圆周角和圆心角的关系 第1课时(教案)-北师大版数学九年级下册
第4节圆周角和圆心角的关系1.经历探索圆周角和圆心角及其所对弧的关系的过程.2.理解圆周角的概念,了解并证明圆周角定理及其推论.3.理解圆的内接四边形的性质.1.经历探索圆周角和圆心角及其所对弧的关系的过程,培养学生观察、分析、猜想、归纳和逻辑推理的能力.2.通过渗透分类讨论、归纳等数学思想方法,培养学生的探究意识和探索新知识的能力.在经历探索圆周角和圆心角关系的过程中,感受探索的艰辛与喜悦,体验数学活动充满着探索与创造,激发学生的学习欲望.【重点】1.掌握圆周角定理及其证明过程.2.运用圆周角定理及其推论解决相关问题.3.圆的内接四边形的性质及其应用.【难点】1.圆周角定理的证明过程.2.体会分类讨论、归纳等数学思想方法的应用.第1课时圆周角定理及其推论11.理解圆周角的概念,掌握圆周角和圆心角之间的关系(圆周角定理)及其推论1,并会运用它们进行有关的证明和运算.2.理解并掌握圆周角和圆心角之间的关系(圆周角定理)的证明方法.经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.通过观察、猜想、验证、推理,培养学生探索数学问题的能力和方法.【重点】掌握圆周角的概念、圆周角定理及推论1及其证明过程.【难点】了解圆周角与圆心的三种位置关系,用化归思想合情推理验证圆周角定理.【教师准备】多媒体课件.【学生准备】1.复习三角形外角的知识和圆的基础知识.2.圆规和直尺.导入一:课件出示:如图所示,有一只小蚂蚁从C点出发,沿着圆周的方向逆时针爬行,在爬行的过程中,蚂蚁所在的点B与点A,C所组成的∠ABC的度数会发生变化吗?若∠AOC=60°,那么∠ABC的度数可能是多少?学生猜测:∠ABC的度数应该不会发生变化,∠ABC的度数可能是30°.【问题】∠ABC是什么角?圆心角∠AOC和∠ABC之间有什么样的关系?[设计意图]通过活泼的小蚂蚁的运动,让学生初步感知圆周角的基本概念以及圆周角与圆心角的关系,使学生对本节课的探究任务一目了然.导入二:课件出示:同学们,你们喜欢踢足球吗?看了2014年巴西世界杯和2015年加拿大女足世界杯了吗?(投影展示世界杯的精彩片段)【问题】请同学们想一想,球员射中球门的难易与什么有关?【学生活动】学生思考后积极回答,学生的答案可能会五花八门.【引导】射门球员与两个门柱组成的角度会决定球员射中球门的难易程度,相信学完本节课的知识你就可以解决这个问题了.[设计意图]由学生熟知的世界杯为引子,创设问题情境,吸引学生的注意,激发学生的学习兴趣.复习所学过的圆心角,并且引出要学习的圆周角,引导学生在观察图形的基础上进行独立思考,然后再进行合作交流,最后达成共识.课件出示:如图所示,球员射中球门的难易程度与他所处的位置B对球门AC的张角(∠ABC)有关.当球员分别站在B,D,E的位置上射门时,哪个位置进球的可能性大?【学生活动】学生思考后并猜测,可能会有大部分的学生认为在D处进球的可能性大,也有学生认为一样大.【教师活动】教师对于学生的回答,暂时不做评论,教师出示动画效果的视频进行演示,继续引导学生思考下面的问题.【问题】图中的三个角∠ABC,∠ADC,∠AEC,以前见过这种类型的角吗?它们有什么共同特征?【学生活动】生观察后,与同伴交流,代表小结三个角的共同特征:(1)角的顶点在圆上;(2)角在圆的内部;(3)角的两边都与圆相交.【教师点评】我们把具有这样特征的角称为圆周角.圆周角的概念:顶点在圆上,两边分别与圆还有另一个交点,像这样的角,叫做圆周角.【教师强调】理解圆周角的概念的两个特征:(1)角的顶点在圆上;(2)角的两边都与圆相交.[过渡语]同学们了解了圆周角的概念,通过下面的题目,来检测一下同学们对圆周角概念的理解程度.判断下列图中的角是否是圆周角,并说明理由.【学生活动】先让学生观察思考,独立判断,基础差的学生回答,并说明是与不是的理由.[设计意图]让学生学好基础知识、基本概念,识别其内容反映出来的数学思想和方法,培养学生的基本技能及分析问题和解决问题的能力,使学生通过自己的观察与探索,发现、理解并掌握圆周角的定义.课件出示:【做一做】如图所示,∠AOB=80°.问题1请你画出几个所对的圆周角,这几个圆周角有什么关系吗?请与同伴进行交流.教师引导学生动手操作并思考下面的问题:1.你所画出的圆周角的度数之间有什么关系?你是怎么得到这个结论的?2.你能画出多少个圆周角?【师生活动】要求学生动手操作,师巡视,发现学生出现的问题,及时纠正.学生独立完成并与同伴进行交流后,代表发言.1.使用量角器进行测量可得所对的圆周角的度数都相等.2.可以画出无数个相等的圆周角.问题2这些圆周角与圆心角∠AOB的大小有什么关系?你是怎么发现的?与同伴进行交流.【师生活动】学生继续进行操作,师参与其中.【学生活动】学生独立完成并与同伴进行交流后,代表发言.利用量角器得出所对的圆周角都等于40°,都等于所对的圆心角80°的一半.【议一议】如果改变图中的∠AOB的度数,上面的结论还成立吗?【活动方式】分组探究,分别以∠AOB的度数为30°,90°,120°和150°为例,分四组练习,得出结论.再结合各组的结论,总结出圆周角与圆心角之间的关系.【学生活动】学生在小组内交流、汇总,并在全班交流、补充.【教师归纳】圆周角与圆心的位置关系只有三种:(1)圆心在圆周角的一边上(如图(1)所示);(2)圆心在圆周角的内部(如图(2)所示);(3)圆心在圆周角的外部(如图(3)所示).【教师活动】要求学生独立写出已知和求证,并利用图(1)进行证明.教师引导学生思考下面的问题:1.△AOC是什么三角形?2.∠AOB与△AOC有什么关系?代表展示:如图(1)所示,∠ACB是所对的圆周角,∠AOB是所对的圆心角.求证∠C=·∠AOB.证明:圆心O在∠C的一条边上,如图(1)所示.∵∠AOB是△AOC的外角,∴∠AOB=∠A+∠C.∵OA=OC,∴∠A=∠C.∴∠AOB=2∠C,即∠C=∠AOB.【做一做】请你完成其他两种情况的证明.教师引导学生思考下面的问题:1.证明圆周角定理的主要思路是什么?2.我们用推理论证的方法得到了第一种情况结论是成立的.对于第二、三种情况都可以转化成圆心在圆周角的一边上的情况去处理.如何进行转化呢?【师生活动】学生分组讨论,师要参与其中,对有困难的小组进行指点.代表发言:1.主要是利用等腰三角形的外角的知识进行证明.2.可以通过作直径的方法进行转化.【活动方式】分成四组解答,第一、三组利用图(2)进行证明,第二、四组利用图(3)进行证明.【学生活动】学生讨论后,理清了思路,独立解答.找2名学生代表板演展示.【教师活动】师利用多媒体出示证明过程,规范学生的证明步骤.证明:圆心O在圆周角的内部(如图所示).在☉O中作直径CD,由前面的结论可知∠ACD=∠AOD,∠BCD=∠BOD,∴∠ACD+∠BCD=∠AOD+∠BOD.即∠ACB=∠AOB.证明:圆心O在圆周角的外部(如图所示).在☉O中作直径CD,由前面的结论可知∠ACD=∠AOD,∠BCD=∠BOD,∴∠ACD-∠BCD=∠AOD-∠BOD.即∠ACB=∠AOB.[设计意图]通过测量和推理证明两种方式得出圆周角的判定定理,加深了学生对于圆周角定【想一想】在射门游戏中,当球员在B,D,E处射门时,所形成的三个张角∠ABC,∠ADC,∠AEC的大小有什么关系?你能用圆周角定理证明你的结论吗?学生分析:如图所示,因为∠ABC,∠ADC,∠AEC都是同一条所对的圆周角,根据圆周角定理,它们都等于所对的圆心角∠AOC度数的一半,所以这三个角都相等.【问题】根据上述探究的结论,以及三个圆周角的共性,你还能得出什么样的结论?【师生总结】圆周角定理推论1:同弧或等弧所对的圆周角相等.【想一想】你现在知道球员在哪个位置把球射进球门的可能性大了吗?学生统一了想法:因为∠ABC=∠ADC=∠AEC,所以球员在B,D,E处把球射进球门的可能性是一样大的.[设计意图]利用情境题及时巩固新知,使每个学生都有收获,感受成功的喜悦,充分肯定探索活动的意义,提高学生的积极性和主观能动性.[知识拓展]在同一个圆中,同弦所对的圆周角可能相等也可能互补.如图所示.【教师强调】(1)“同弧”指“同一个圆”.(2)“等弧”指“在同圆或等圆中”.(3)“同弧或等弧”不能改为“同弦或等弦”.1.圆周角的概念.2.圆周角定理.3.圆周角定理的证明方法.4.圆周角定理的推论1.1.(2014·温州中考)如图所示,已知A,B,C在☉O上,为优弧,下列选项中与∠AOB相等的是()A.2∠CB.4∠BC.4∠AD.∠B+∠C解析:由圆周角定理可得∠AOB=2∠C.故选A.2.如图所示,在☉O中,AC∥OB,∠BAO=25°,则∠BOC的度数为()A.25°B.50°C.60°D.80°解析:∵OA=OB,∴∠B=∠BAO=25°,∵AC∥OB,∴∠BAC=∠B=25°,∴∠BOC=2∠BAC=50°.故选B.3.如图所示,☉O的直径CD⊥AB,∠AOC=50°,则∠CDB的大小为.解析:由垂径定理,得=,∴∠CDB=·∠AOC=25°.故填25°.4.如图所示,☉O是△ABC的外接圆,点D为上一点,∠ABC=∠BDC=60°,AC=3cm,求△ABC的周长.解:∵=,∴∠BDC=∠BAC.∵∠ABC=∠BDC=60°,∴∠ABC=∠BAC=60°,∴∠ACB=60°.∴△ABC为等边三角形.∵AC=3cm,∴△ABC的周长为3×3=9(cm).第1课时1.圆周角的概念:顶点在圆上,两边分别与圆还有另一个交点的角.2.圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.3.圆周角定理的推论1:同弧或等弧所对的圆周角相等.一、教材作业【必做题】1.教材第80页随堂练习第1,2题.2.教材第80页习题3.4第1,2,3题.【选做题】教材第81页习题3.4第4题.二、课后作业【基础巩固】1.(2014·山西中考)如图所示,☉O是△ABC的外接圆,连接OA,OB,∠OBA=50°,则∠C的度数为()A.30°B.40°C.50°D.80°2.(2014·株洲中考)如图所示,点A,B,C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是.3.如图所示,边长为1的小正方形网格中,☉O的圆心在格点上,则∠AED的余弦值是.【能力提升】4.(2014·齐齐哈尔中考)如图所示,在☉O中,OD⊥BC,∠BOD=60°,则∠CAD的度数等于()A.15°B.20°C.25°D.30°5.如图所示,点E是的中点,点A在☉O上,AE交BC于D.求证BE2=AE·DE.6.如图所示,A,B,C,D是☉O上的四点,AB=AC,AD交BC于点E,AE=2,ED=4,求AB的长.7.如图所示,在半径为5cm的☉O中,直径AB与弦CD相交于点P,∠CAB=50°,∠APD=80°.(1)求∠ABD的大小;(2)求弦BD的长.【拓展探究】8.(2015·安徽中考)在☉O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在☉O上,且OP⊥PQ.(1)如图(1)所示,当PQ∥AB时,求PQ的长度;(2)如图(2)所示,当点P在BC上移动时,求PQ长的最大值.【答案与解析】1.B(解析:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°×2=80°,∴∠C=∠AOB=40°.故选B.)2.28°(解析:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°,∴3∠ACB=84°,∴∠ACB=28°.故填28°.)3.(解析:∵∠AED与∠ABC都对应,∴∠AED=∠ABC,在Rt△ABC中,AB=2,AC=1,根据勾股定理得BC=,则cos∠AED=cos∠ABC==.)4.D(解析:∵在☉O中,OD⊥BC,∴=,∴∠CAD=∠BOD=×60°=30°.故选D.)5.证明:∵点E是的中点,∴=.∴∠BAE=∠CBE,∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.6.解:∵在☉O中,AB=AC,∴弧AB=弧AC.∴∠ABC=∠D.又∠BAE=∠DAB,∴△ABE∽△ADB.∴=,即AB2=AE·AD=2×6=12.∴AB=2.7.解:(1)∵∠APD是△APC的外角,∠CAB=50°,∠APD=80°,∴∠C=80°-50°=30°,∴∠ABD=∠C=30°.(2)如图所示,过点O作OE⊥BD于点E,则BD=2BE,由(1)知∠ABD=30°,OB=5cm,∴BE=OB·cos30°=3×=(cm),∴BD=2BE=2×=3(cm).8.解:(1)连接OQ,如图(1)所示,∵PQ∥AB,OP⊥PQ,∴OP⊥AB,在Rt△OBP中,∵tan B=,∴OP=3tan30°=,在Rt△OPQ中,∵OP=,OQ=3,∴PQ==.(2)连接OQ,如图(2)所示,在Rt△OPQ中,PQ==,∴当OP的长最小时,PQ的长最大,此时OP⊥BC,则OP=OB=,∴PQ长的最大值为=.本节课教学设计上,一是注重了创设情境,激发学生学习的兴趣、主动性和求知欲望,为下一步教学的顺利展开开个好头;二是注重了引导学生经历探索、验证、论证、应用数学新知的过程,鼓励学生用动手实践、自主探究、合作交流的学习方法进行学习,使学生在数学活动中深刻地理解知识和掌握由特殊到一般的认知方法.探索并证明圆周角和圆心角的关系,学生解决起来是有一定难度的,教学时可以给学生留出充足的时间和空间,让他们进行思考、交流.学生在经历画图、猜想、推理、交流、严格证明等过程后,自己得出了结论,收到了预期的效果.在学生证明圆周角定理时由于引导效果不好,导致有些学生解决问题还有困难,不知如何入手.今后在教学中多训练学生的思维能力,再放手,采取结对子帮扶,充分发挥小组长的示范作用.练习(教材第80页)1.解:∠A=∠BOC=×50°=25°.2.解:∠BDC=∠BAC.相等的角还有:∠ADB=∠ACB,∠DBA=∠DCA,∠CAD=∠CBD.习题3.4(教材第80页)1.解:∠ACB=2∠BAC.∵∠ACB=∠AOB,∠BAC=∠BOC,且∠AOB=2∠BOC,∴∠ACB=2∠BAC.2.解:∵∠C=100°,∴∠BOD(大于180°的)=200°,∴∠BOD(小于180°的)=160°,∴∠A=∠BOD=×160°=80°.3.解:尽量保证同排的人视角相同.4.解:当船位于安全区域时,∠α小于“危险角”.对于圆周角的概念的得出,可以通过对情境题的仔细观察就可以直接得出圆周角的概念,而定理的探索,则需要通过动手操作,利用量角器测量的方法得出圆周角与圆心角之间的关系.对于圆周角定理的证明遵循“由特殊到一般”的方法,对于三种可能性的证明则可以利用“转化”的思想方法进行解决.。
北师大版数学九年级下册3.4.2圆周角和圆心角的关系教学设计
(3)课后作业和测试,了解学生对知识点的掌握程度,及时发现问题并进行针对性辅导。
4.教学反思:
教师应在课后对教学过程进行反思,了解学生在学习过程中的困惑和问题,不断调整教学策略,以提高教学效果。同时,关注学生的情感态度,鼓励学生克服困难,树立自信心,使他们在数学学习中获得成功体验。
四、教学内容与过程
(一)导入新课
1.引入:通过展示生活中的实例,如自行车轮子、风扇叶片等,引导学生观察并思考这些物体上的角度特点,从而引出圆周角和圆心角的概念。
2.提问:询问学生对圆的基本概念、性质和角度计算方法的掌握情况,为新课的学习做好铺垫。
3.复习:简要复习圆的基本性质,如圆的半径相等、圆的周长和面积公式等,为新课的学习打下基础。
2.合作交流:鼓励学生在小组合作中,学会倾听、表达、交流,培养学生的团队协作能力。
3.理性思考:培养学生用数学的眼光看待问题,善于从多个角度分析问题,形成理性思考的习惯。
4.求知欲:通过解决实际问题,激发学生的求知欲,培养学生勇于探索、追求真理的精神。
二、学情分析
九年级学生在学习圆周角和圆心角的关系这一章节时,已具备了一定的几何图形认知基础和逻辑思维能力。他们对圆的基本概念、性质以及圆中角度的计算方法有了一定的了解,这为学习圆周角和圆心角的关系奠定了基础。然而,学生在解决涉及圆周角和圆心角的复杂问题时,可能会遇到以下困难:
第四步:总结规律,教师引导学生总结圆周角和圆心角的性质,并给出严谨的证明。
第五步:巩固练习,设计不同难度的练习题,让学生在解答过程中巩固所学知识。
第六步:拓展提高,鼓励学生运用所学知识解决实际问题,培养学生的创新意识和能力。
北师大版九年级数学下册:3.4《圆周角和圆心角的关系》说课稿2
北师大版九年级数学下册:3.4《圆周角和圆心角的关系》说课稿2一. 教材分析《圆周角和圆心角的关系》是北师大版九年级数学下册第三章第四节的内容。
本节课的主要内容是探究圆周角和圆心角的关系,即圆周角定理。
这个定理是圆的基础知识之一,对于学生理解和掌握圆的相关概念和性质有着重要的意义。
教材中,首先通过观察和思考,引导学生发现圆周角和圆心角之间的关系。
然后通过证明,使学生理解圆周角定理。
接着,通过一些练习题,让学生应用圆周角定理,解决一些与圆有关的问题。
二. 学情分析九年级的学生,已经学习了平面几何的基础知识,对一些几何图形的性质和概念有一定的了解。
但是,对于圆的相关知识,可能还不是很熟悉。
因此,在教学过程中,需要引导学生复习一些与圆有关的基础知识,如圆的定义,圆心角的定义等。
同时,九年级的学生,抽象思维能力较强,善于通过逻辑推理来解决问题。
因此,在教学过程中,可以引导学生通过观察,思考,证明等方法,来理解和掌握圆周角定理。
三. 说教学目标1.知识与技能目标:学生能够理解圆周角定理,并能运用圆周角定理解决一些与圆有关的问题。
2.过程与方法目标:通过观察,思考,证明等方法,学生能够发现和理解圆周角和圆心角之间的关系。
3.情感态度与价值观目标:培养学生对数学的兴趣,使学生感受到数学的美妙。
四. 说教学重难点1.教学重点:圆周角定理的发现和证明。
2.教学难点:圆周角定理的理解和应用。
五. 说教学方法与手段1.教学方法:采用观察,思考,证明的教学方法,引导学生发现和理解圆周角定理。
2.教学手段:利用多媒体课件,帮助学生直观地理解圆周角和圆心角之间的关系。
六. 说教学过程1.导入:通过一些与圆有关的问题,引导学生复习圆的相关知识,为新课的学习做好铺垫。
2.探究:引导学生观察和思考,发现圆周角和圆心角之间的关系。
然后通过证明,使学生理解圆周角定理。
3.应用:通过一些练习题,让学生应用圆周角定理,解决一些与圆有关的问题。
北师大版九年级数学下册第三章圆3.4《圆周角和圆心角的关系(1)》说课稿
圆周角和圆心角的关系(1)(说课稿)3.3 圆周角和圆心角的关系一、教材分析(一)教学内容今天我说课的内容是义务教育课程标准北师大版实验教科书九年级(下)第三章《圆》第3节《圆周角和圆心角的关系》第一课时||。
(二)地位和作用本节课是学生在掌握圆心角的概念以及圆心角、弧、弦的关系的基础上进行学习的||,既是前面圆有关性质的延续||,又是下一节课证明圆周角定理推论的理论依据||。
本节课所渗透的学习内容和学习方法||,在学生今后的学习中应用广泛||,是本章重点内容之一||。
(三)教学目标根据新课程标准的要求以及九年级学生的认知结构与心理特征||,我从以下三方面确定教学目标:知识与技能——理解圆周角的概念和圆周角定理以及证明||。
过程与方法——经历探索圆周角与圆心角的关系的过程||,体会分类、归纳、转化的数学思想方法||。
情感态度与价值观——在推理证明的过程中获得正确的学习方法;在合作交流中培养团结协作的精神;在自主探究中体会成功的喜悦||。
(四)教学重点和难点根据新课程的理念||,经历过程带给学习的能力||,比具体的结果更重要||,结合本课内容||,我认为本节课的教学重点是:经历探索“圆周角与圆心角的关系”的过程||,理解掌握圆周角定理||,难点是:利用化归思想推导证明圆周角定理||。
二、教法学法分析(一)教学方法根据新课程理念的要求||,教师应该是数学学习的组织者、引导者与合作者||,结合本节课的内容及学生的实际情况||,在教法上我主要采用“探究合作||,启发引导”的方法||,同时以多媒体演示为辅助||,使学习的主要内容不是教师直接传授给学生||,而是以问题的形式不断呈现出来||,由学生自己去发现||,然后内化为自己知识结构的一部分||,这样既能唤起学生学习的欲望||,又调动学生学习的积极性和主动性||。
(二)学生学法在学法上||,学生主要采用动手实践、自主探索与合作交流相结合的学习方法||,在教师的引导下从直观感知上升到理性思考||,从自己的实践中获取知识||。
3.4 圆周角和圆心角的关系(1)(数学北师大版九年级下册)
[归纳总结] 对“同弧或等弧所对的圆周角相等”的理解: (1)“同弧”指“在同一个圆中”;(2)“等弧”指“在同圆或等 圆中”;(3)“同弧或等弧”不能改为“同弦或等弦”.
∠ABC 与圆心角∠AOC,它们的大小有什么关系?
图 3-4-1
在探讨圆周角与圆心角的大小关系时,首先考虑了一种特
殊情况(圆心在圆周角的一边上),如图 3-4-1①所示.
∵∠AOC 是△ABO 的外角, ∴∠AOC=∠ABO+__∠__O_A_B__. 又∵OA=OB,
∴∠OAB=__∠__A_B_O____, ∴∠AOC=_2_∠__A_B_C__, 即∠ABC=21∠AOC. 如果∠ABC 的两边都不经过圆心,如图 3-4-1②、③, 那么结论会怎样?请你说明理由.
总结反思
知识点一 圆周角 圆周角:顶点在圆上,并且两边都和圆相交的角叫做圆周角. 由定义可知圆周角具备两个特征:一是顶点必须在圆上,二是 角的两边都和圆相交.
知识点二 圆周角定理 圆周角的度数等于它所对弧上的圆心角度数的___一__半___.
知识点三 圆周角定理推论1 同弧或等弧所对的圆周角__相__等____.
图 3-4-2
[解析] 根据△AOB 是等腰三角形,由∠ABO=55°,可 得∠AOB=70°,再利用圆周角定理即可求解.
解:∵OA=OB,∴△AOB 是等腰三角形. 又∵∠ABO=55°, ∴∠AOB=180°-∠ABO-∠OAB=180°- 55°-55°=70°, ∴∠BCA=21∠AOB=12×70°=35°.
3.4圆周角和圆心角的关系第1课时 圆周角定理及其推论+2023-2024学年+北师大数学九年级下册
4圆周角和圆心角的关系第1课时圆周角定理及其推论1教学目标:1.了解圆周角的概念.2.理解圆周角定理的证明.3.经历探索圆周角和圆心角的关系的过程,学会以特殊情况为基础,通过转化来解决一般性问题的方法,渗透分类的数学思想.教学重难点:重点:圆周角概念及圆周角定理.难点:认识圆周角定理需分三种情况证明的必要性.教学过程:导入如图所示,在射门游戏中球员射中球门的难易程度与他所处的位置B对球门AC的张角(∠ABC)有关,当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC,这三个角的大小有什么关系?解:相等新课讲授知识点1圆周角的概念下列四个图中,∠x是圆周角的是(C)[总结]定义:顶点在圆上,两边分别与圆还有另一个交点,这样的角叫圆周角.知识点2圆周角定理⏜所对的圆周角,这些圆周角与圆心角∠AOB的大小有如图所示,∠AOB=80°,请你画出几个AB什么关系?你能说明理由吗?解:AB⏜所对的圆周角有无数个,它们与∠AOB的位置关系分为三种,如图①,②,③所示.(1)如图①所示,因为OB=OC,所以∠C=∠OBC.所以∠AOB=∠C+∠OBC=2∠C.∠AOB.即∠C= 12(2)如图②所示,连接CO并延长,交圆O于点D,由(1)得,∠AOD=2∠ACD,∠BOD=2∠BCD,所以∠AOB=∠AOD+∠BOD=2∠ACD+2∠BCD=2(∠ACD+∠BCD)=2∠ACB.∠AOB.即∠ACB= 12(3)如图③所示,延长CO交圆于点D.由(1)得,∠AOD=2∠ACD,∠BOD=2∠BCD.所以∠AOB=∠BOD-∠AOD=2∠BCD-2∠ACD=2(∠BCD-∠ACD)=2∠ACB,∠AOB.即∠ACB= 12[总结]圆周角定理:圆周角的度数等于它所对弧上的圆心角度数的一半.知识点3圆周角定理的推论如图所示,四边形ABCD的四个顶点在☉O上,找出图中分别与∠1,∠2,∠3,∠4相等的角.解:∠CBD=∠1,∠ACB=∠2,∠BAC=∠3,∠ABD=∠4.[总结]圆周角定理的推论:同弧或等弧所对的圆周角相等.范例应用例1如图所示,☉O的直径AB垂直于弦CD,连接OD,AC,若∠CAO=56°.⏜=BD⏜;(1)求证:BC(2)求∠AOD的度数.(1)证明:因为AB是直径,AB⊥CD,所以BC⏜=BD⏜.(2)解:设AB交CD于H(图略).因为AB⊥CD,所以∠AHC=90°.因为∠CAO=56°,所以∠ACD=90°-56°=34°.所以∠AOD=2∠ACD=68°.[方法归纳]计算圆周角(圆心角)的度数时,同弧(或等弧)是关键:(1)先找到圆周角(圆心角)所对的弧;(2)再找这段弧对的圆心角(圆周角);(3)建立两个角之间的关系.例2 如图所示,在☉O中,弦AB,CD交于点E,AD=CB.求证:AE=CE.解:由圆周角定理可得,∠ADE=∠CBE,在△ADE和△CBE中,{∠ADE=∠CBE,∠AED=∠CEB, AD=CB,所以△ADE≌△CBE(AAS).所以AE=CE.课堂训练1.(2021阜新)如图所示,A,B,C是☉O上的三点,若∠O=70°,则∠C的度数是(B)A.40°B.35°C.30°D.25°第1题图第2题图2.如图所示,☉O的两条弦AB,CD所在的直线交于点P,AC,BD交于点E,∠AED=105°,∠P=55°,则∠ACD等于(C)A.60°B.70°C.80°D.90°3.如图所示,△ABO是等边三角形,则弦AB所对圆周角度数为30°或150°.第3题图第4题图⏜中点,点D是优弧AB⏜上的一点,∠ADC=30°, 4.如图所示,AB是☉O的弦,且AB=6,点C是AB则圆心O到弦AB的距离等于√3.5.如图所示,四边形ABCD内接于☉O,AB=AC,BD⊥AC,垂足为E.(1)若∠CAD=23°,求∠BAC的度数;(2)若∠ACD=45°,AC=13,求CD的长.解:(1)因为AC⊥BD,所以∠BEC=90°.因为∠CBE=∠CAD=23°,所以∠ACB=90°-23°=67°. 因为AB=AC ,所以∠ABC=∠ACB=67°.所以∠BAC=180°-67°-67°=46°. (2)因为AC ⊥BD , 所以∠AEB=∠CED=90°. 因为∠ABD=∠ACD=45°,所以△ABE ,△CED 都是等腰直角三角形. 因为AC=AB=13, 所以AE=√22AB=13√22. 所以EC=AC-AE=13-13√22. 所以CD=√2EC=13√2-13.小结1.圆周角的概念2.圆周角定理及其推论板书4 圆周角和圆心角的关系 第1课时 圆周角定理及其推论11.圆周角的概念2.圆周角定理3.圆周角定理的推论反思学生解决这一问题是有一定难度的,特别是定理证明的分类讨论,在教学过程中应该给学生留出足够的时间和空间,让学生经历观察、想象、推理等过程,多角度直观的体验数学模型.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4圆周角和圆心角的关系
一、选择题
1.在同圆中,同弦所对的圆周角 ( )
A.相等 B.互补 C.相等或互补 D.互余
2.如图3-63所示,A,B,C,D在同一个圆上,四边形ABCD的两条对角线把四个内角分成的8个角中,相等的角共有 ( )
A.2对 B.3对 C.4对D.5对
3.如图3-64所示,⊙O的半径为5,弦AB=53,C是圆上一点,则∠ACB的度数是.
4.如图,四边形 ABCD内接于⊙O,若∠BOD=100°,则∠DAB的度数为()
A.50° B.80° C.100° D.130°
5.如图是中国共产主义青年团团旗上的图案,点A、B、C、D、E五等分圆,则∠A+∠B+∠C+∠D+∠E的度数是()
A.180° B.15 0° C.135° D.120°
6.下列命题中,正确的命题个数是()
①顶点在圆周上的角是圆周角;
②圆周角度数等于圆心角度数的一半;
③900的圆周角所对的弦是直径;
④圆周角相等,则它们所对的弧也相等。
A、1个
B、2个
C、3个
D、4个
二、填空题
7.如图3-65所示,在⊙O中,∠AOB=100°,C为优弧ACB的中点,则∠CAB =.
8.如图3-66所示,AB为⊙O的直径,AB=6,∠CAD=30°,则弦DC =.
9.如图3-67所示,AB是⊙O的直径,∠BOC=120°,CD⊥AB,求∠ABD 的度数.
10.如图,已知AB是⊙O的直径,AD ∥ OC弧AD的度数为80°,则∠BOC=_________
11.如图,⊙O内接四边形ABCD中,AB=CD则图中和∠1相等的角有______。
12.如图,弦AB的长等于⊙O的半径,点C在 AB上,则∠C的度数是________-.
三、解答题
13.如图3-68所示,在△ABC中,AB=AC,∠C=70°,以AB为直径的半圆分别交AC,BC于D,E,O为圆心,求∠DOE的度数.
14.(2014年天津市,第21题10分)已知⊙O的直径为10,点A,点B,点C在⊙O上,∠CAB的平分线交⊙O于点D.
(Ⅰ)如图①,若BC为⊙O的直径,AB=6,求AC,BD,CD的长;
(Ⅱ)如图②,若∠CAB=60°,求BD的长.
15.如图3-70所示,在⊙O中,AB是直径,弦AC=12 cm,BC=16 cm,∠ACB的平分线交⊙O于点D,求AD的长.
16.如图3-71所示,AB是半圆O的直径,C是半圆上一点,D是 AC的中点,DH⊥AB,H是垂足,AC分别交BD,DH于E,F,试说明DF=EF.
参考答案
1.C
2.C
3.60°[提示:如图3-72所示,作OD ⊥AB ,垂足为D ,则BD =12AB =532.∴sin ∠BOD =32
BD OB ,∴∠BOD =60°,∴∠BOA =120°,∴∠BCA =12
∠BOA =60°.故填60°.] 4.分析: 因为∠BOD=100°,所以∠C=50°,所以∠A=130°,因为圆内接四边形的对角互补。
答案:D
5.分析: ∠A, ∠B, ∠C, ∠D, ∠E 是圆周角,所对的弧之和恰好是整个圆周。
答案:A
6.分析:本题考查圆周角的概念,①不对,两边要于圆相交;②,④不对,应加上在同圆中。
③正确。
答案:A
7.65°
8.3
9.解:连接OD.∵AB是直径,CD⊥AB,∴∠AOC=∠AOD.又∵∠BOC=120°,
∴∠AOC=∠AOD=60°,∴∠ABD=1
2
∠AOD=
1
2
×60°=30°.
10.分析:本题考查圆周角的概念。
因为AB是直径,弧AD的度数是80°,所
以弧BD的度数是100°。
所以∠BOC=50°。
答案:50°。
11.分析:因为 AB=CD,所以弧AB=弧CD,所以∠2=∠5=∠6=∠1
答案:3个
12.分析:如图连OA,OB.因为AB=OA.所以△AOB 是等边三角形,所以∠
O=60°,所以∠C=30°。
答案:30°
13.解:∵AB=AC,∴∠ABC=∠C=70°,∴∠A=180°-∠ABC-∠C=180°-70°-70°=40°,∴∠BOD=2∠A=80°.在△OBE中,∵OB=OE,∴∠ABC =∠OEB=70°,∠BOE=180°-2∠ABC=40°.∴∠DOE=∠BOD-∠BOE=80°-40°=40 °.
14.考点:圆周角定理;等边三角形的判定与性质;勾股定理.
分析:(Ⅰ)利用圆周角定理可以判定△CAB和△DCB是直角三角形,利用勾股定理可以求得AC的长度;利用圆心角、弧、弦的关系推知△DCB也是等腰三角形,所以利用勾股定理同样得到BD=CD=5;
(Ⅱ)如图②,连接OB,O D.由圆周角定理、角平分线的性质以及等边三角形的判定推知△OBD是等边三角形,则BD=OB=OD=5.
解答: 解:(Ⅰ)如图①,∵BC 是⊙O 的直径,
∴∠CAB =∠BDC =90°.
∵在直角△CAB 中,BC =10,AB =6,
∴由勾股定理得到:AC ===8.
∵AD 平分∠CAB , ∴=, ∴CD =B D .
在直角△BDC 中,BC =10,CD 2+BD 2=BC 2
,
∴易求BD =CD =5
;
(Ⅱ)如图②,连接OB ,O D .
∵AD 平分∠CAB ,且∠CAB =60°,
∴∠DAB =∠CAB =30°,
∴∠DOB =2∠DAB =60°.
又∵OB =OD ,
∴△OBD 是等边三角形,
∴BD =OB =O D .
∵⊙O 的直径为10,则OB =5,
∴BD =5.
15.解:连接BD .∵AB 是⊙O 的直径,∴∠ADB =∠ACB =90°.在Rt △ACB 中,AB =22221216AC BC +=+=20(cm).∵CD 平分∠ACB ,∴∠1=∠2,∴ AD BD =.∴AD =BD .在Rt △ABD 中,∵AD 2+BD 2=AB 2,∴AD =BD =22AB =22
×20=102(cm).
16.解:连接BC,∵AB为直径,∴∠C=90°,∴∠CBD+∠BEC=90°.∵DH⊥AB,∴∠HDB+∠ABD=90°.∵
AD CD
,∴∠ABD=∠CBD,∴∠HDB=∠BEC,又∠BEC=∠FED,∴∠FDE=∠FED,∴DF=EF.。