Multisim仿真-电路分析-3
multisim电路分析方法
在Variables in Circuit栏中列出的是电路中可 用于分析的节点和变量。点击 Variables in circuit 窗口中的下箭头按钮,可以给出变量类型选择表。 在变量类型选择表中: 点击Voltage and current选择电压和电流变量。
点击Voltage选择电压变量。 点击 Current选择电流变量。 点击Device/Model Parameters 选择元件/ 模型参数变量。 点击All variables选择电路中的全部变量。
其中Output variables、 Miscellaneous Options 和Summary 3个选项与直流工作点分析的设置 一样,下面仅介绍Analysis Parameters选项, Analysis Parameters对话框如图1.6.8所示。
图1.6.8 Analysis Parameters对话框
图 1.6.5 Miscellaneous Options对话框
如果选择Use this custom analysis,可以用 来选择用户所设定的分析选项。可供选取设定的 项目已出现在下面的栏中,其中大部分项目应该 采用默认值,如果想要改变其中某一个分析选项 参数,则在选取该项后,再选中下面的Use this option选项。选中Use this option选项将在其右边
2. Parameters区 在Parameters区可以对时间间隔和步长等参数 进行设置。
Start time窗口:设置开始分析的时间。 End time窗口:设置结束分析的时间。
点击Maximum time step settings,可以设 置分析的最大时间步长。其中:
(1)设置单位时间内的采样点数 点击Minimum number of time points,可以 设置单位时间内的采样点数。
Multisim三相电路仿真实验
实验六 三相电路仿真实验一、实验目的1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真;2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结;3、 加深对三相四线制供电系统中性线作用的理解。
4、 掌握示波器的连接及仿真使用方法。
5、 进一步提高分析、判断和查找故障的能力。
二、实验仪器1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。
3.仿真分析三相电路的相关内容。
4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。
这种联接方式的特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。
2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。
这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。
3、电流、电压的“线量”与“相量”关系测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。
画仿真图时要注意。
负载对称星形联接时,线量与相量的关系为: (1)P L U U 3= (2)P L I I =负载对称三角形联接时,线量与相量的关系为:(1)P L U U = (2)P LI I 3=4、星形联接时中性线的作用三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。
中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。
如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。
五、实验内容及参考实验步骤(一)、建立三相测试电路如下:图1 三相负载星形联接实验电路图1.接入示波器:测量ABC三相电压波形。
并在下表中绘出图形。
Timebase:_________/DIV 三相电压相位差:φ=__________。
基于multisim仿真电路的设计与分析
基于multisim仿真电路的设计与分析
Multisim是一种电路仿真软件,可用于设计、验证、测试电路、系统,以及进行以及抗干扰性分析。
多西姆允许用户模拟几乎所有类型的器件,从单个P型半导体到功率调制器,而且还可以快速分析仿真结果。
首先,用户可以使用Multisim设计和模拟他们需要的电路。
用户可以使用基于PCB 的图形用户界面来构建电路,并选择多种不同的器件进行模拟,还可以使用贴片微电子器件实现更精确的模拟效果。
其次,用户可以使用Multisim验证设计的电路,比如测量器件的电压和电流,计算电感和电容的时间常数,以及检测电路的故障和短路情况等等。
这可以帮助用户确保设计的电路是否按他们希望的方式正常运行,也可以帮助用户更好地理解复杂的电路结构与特性之间的关系。
最后,用户还可以利用Multisim对电路进行抗干扰性分析,测量系统的信号完整性和可靠性,以及对抗外界的干扰因素的敏感程度等等。
这对于确保电路和系统具有良好的可靠性和性能是至关重要的,这也是Multisim非常强大的一个特性。
总之,Multisim是一款全面功能强大的仿真软件,可用于设计、验证、测试电路和系统,以及对抗干扰性分析等等,它可以帮助用户找出电路存在的问题或弱点,确保系统具有良好的可靠性和性能。
Multisim模拟电路仿真实验
Multisim模拟电路仿真实验电路仿真是电子工程领域中重要的实验方法,它通过计算机软件模拟电路的工作原理和性能,可以在电路设计阶段进行测试和验证。
其中,Multisim作为常用的电路设计与仿真工具,具有强大的功能和用户友好的界面,被广泛应用于电子工程教学和实践中。
本文将对Multisim模拟电路仿真实验进行探讨和介绍,包括电路仿真的基本原理、Multisim的使用方法以及实验设计与实施等方面。
通过本文的阅读,读者将能够了解到Multisim模拟电路仿真实验的基本概念和操作方法,掌握电路仿真实验的设计和实施技巧。
一、Multisim模拟电路仿真的基本原理Multisim模拟电路仿真实验基于电路分析和计算机仿真技术,通过建立电路模型和参数设置,使用数值计算方法求解电路的节点电压、电流以及功率等相关参数,从而模拟电路的工作情况。
Multisim模拟电路仿真的基本原理包括以下几个方面:1. 电路模型建立:首先,需要根据电路的实际连接和元件参数建立相应的电路模型。
Multisim提供了丰富的元件库和连接方式,可以通过简单的拖拽操作和参数设置来搭建电路模型。
2. 参数设置:在建立电路模型的基础上,需要为每个元件设置合适的参数值。
例如,电阻器的阻值、电容器的容值、电源的电压等。
这些参数值将直接影响到电路的仿真结果。
3. 仿真方法选择:Multisim提供了多种仿真方法,如直流分析、交流分析、暂态分析等。
根据不同的仿真目的和需求,选择适当的仿真方法来进行仿真计算。
4. 仿真结果分析:仿真计算完成后,Multisim会给出电路的仿真结果,包括节点电压、电流、功率等参数。
通过分析这些仿真结果,可以评估电路的性能和工作情况。
二、Multisim的使用方法Multisim作为一款功能强大的电路设计与仿真工具,具有直观的操作界面和丰富的功能模块,使得电路仿真实验变得简单而高效。
以下是Multisim的使用方法的基本流程:1. 新建电路文件:启动Multisim软件,点击“新建”按钮创建一个新的电路文件。
Multisim仿真—电路
电路分析基础2.1 L 、C 并联谐振回路频率特性的仿真测试电路说明:①电源选择“Sources ”→“SIGNAL_VOLTAGE_SOURCE ”→“AC_VOLTAGE ”。
9个,设置为电路分析:理论值:kHz FmH LCf 035.51121210=⨯==μππ实际值:kHz f 006.50=左右测量此处的频率观察左下脚的值,为实际值2.2 L 、C串联谐振回路频率特性的仿真测试电路说明:①电源选择“Sources”→“SIGNAL_VOLTAGE_SOURCE”→“AC_VOLTAGE”。
9个,设置为电路分析:理论值:kHz nFmH LCf 23.1591121210=⨯==ππ实际值:kHz f 23.1590=2.3 电容特性仿真测试C11uF按Space 键,来回切换,看电容的充放电过程。
2.4 电感特性仿真测试按Space键,来回切换,观察电感特性。
模拟电子线路2.5 全波整流电路¸1N40072.6 光电控制电路图中,SONALERT为固体音调发生器,按Space键,是开关闭合,观察效果如下图。
若接实际电路,SONALERT应发出200Hz对应的声音。
图中用2.5V的红色探针来表示。
X1在指示器库(Indicators)中的探针(PROBE)中选择PROBE-RED。
2.7 桥式整流∏滤波电路¸观察波形:①起始波形:②平稳后波形:2.8同向比例运算电路W① 理论值:通过同向比例运算的公式计算:V mV k k 110.010101001U 2=⨯ΩΩ+=)(。
② 实际值:电压表示数0.110V 。
2.9 三角波发生器观察示波器波形,分析三角波的产生过程。
数字电子技术2.10译码器仿真电路的分析XWG1为字信号发生器(Word Generation)。
设置其值为0-7。
选择循环时,灯依次点亮,可设断点、可单步执行。
74LS138的真值表:例:当字发生器-XWG1运行到0000000003时,2.11 模数AD与转换电路的仿真电路中函数信号发生器设置为:改变变阻器的值,观察数码管显示数值的变换。
Multisim电路仿真实验
仿真错误
遇到仿真错误时,首先 检查电路原理是否正确 ,然后检查元件库是否
完整。
界面显示问题
如果界面显示异常,可 以尝试调整软件设置或
重启软件。
导出问题
在导出电路图或仿真结 果时出现问题,检查文 件路径和格式是否正确
。
THANKS
分析实验结果,验证电路的功 能和性能是否符合预期。
如果实验结果不理想,需要对 电路进行调整和优化。
04
电路仿真实验分析
实验数据整理
1 2 3
实验数据整理
在Multisim中进行电路仿真实验后,需要将实验 数据导出并整理成表格或图表形式,以便后续分 析和处理。
数据格式
数据整理时需要确保数据的准确性和完整性,包 括电压、电流、电阻、电容、电感等参数,以及 仿真时间和波形图等。
数据存储
整理好的数据应妥善存储,以便后续查阅和引用。
数据分析与处理
数据分析
对整理好的实验数据进行深入分 析,包括参数变化趋势、波形图 特征等,以揭示电路的性能和特 性。
数据处理
根据分析结果,对数据进行必要 的处理,如计算平均值、求取标 准差等,以得出更准确的结论。
误差分析
分析实验数据中可能存在的误差 来源,如测量误差、电路元件误 差等,以提高实验的准确性和可 靠性。
Multisim软件
Multisim软件是进行电路仿真实验的核心工具,用户可以在软件中创建电路图、设置元件参数、 进行仿真实验等操作。
实验电路板
实验电路板是用来搭建实际电路的硬件设备,用户可以在上面放置电路元件、连接导线等,实现 电路的物理连接。
元件库
Multisim软件提供了丰富的元件库,用户可以从元件库中选择需要的元件,将其添加到电路图中 ,方便快捷地搭建电路。
Multisim电路仿真实验
(1) 万用表的使用 如图所示,在万用表控制面板上可以选择电压值、电流值、 电阻以及分贝值。参数设置窗口,可以设置万用表的一些参数。
万用表图标、面板和参数设置
(2) 函数信号发生器 如图所示,在函数信号发生器中可以选择正弦波、三角波和 矩形波三种波形,频率可在1~999范围内调整。信号的幅值、 占空比、偏移量也可以根据需要进行调节。偏移量指的是交流 信号中直流电平的偏移。
IV分析仪及其使用
Multisim 电路仿真分析
1. 仿真实验法 应用Multisim 进行仿真的基本步骤如下。
(1) 启动Multisim
双击Multisim 图标进入Multisim 主窗口。 (2) 创建实验电路 连接好电路和仪器,并保存电路文件。
(3) 仿真实验
① 设置仪器仪表的参数。
② 运行电路:单击主窗口的启动开关O/I按钮,电 路开始仿真,若再单击此按钮,则仿真实验结束。若 要使实验暂停,可单击主窗口的暂停键,在开关旁边 再单击就可重新恢复电路运行。 ③ 观测记录实验结果。实验结果也可存储或打印输 出,并可用word的剪贴板输出。
新特点:
可以根据自己的需求制造出真正属于自己的仪器; 所有的虚拟信号都可以通过计算机输出到实际的 硬件电路上; 所有硬件电路产生的结果都可以输回到计算机中 进行处理和分析。
Multisim 使用方法
通过Option菜单可以对软件的运行环境进行定制和设置。 Global Preference:Symbol standard栏选DIN(欧洲标准,我国采用 的是欧洲标准) 放置元器件 通过Place/ Place Component命令打开Component Browser窗口。 选中相应的元器件:在Component Family Name中选择74LS系列, 在Component Name List中选择74LS00。单击OK按钮就可以选中 74LS00,出现如下备选窗口。7400是四/二输入与非门,在窗口种的 Section A/B/C/D分别代表其中的一个与非门,用鼠标选中其中的一个 放置在电路图编辑窗口中,如左图所示。器件在电路图中显示的图形 符号,用户可以在上面的Component Browser中的Symbol选项框中 预览到。当器件放置到电路编辑窗口中后,用户就可以进行移动、复 制、粘贴等编辑工作了。 将元器件连接成电路 将电路需要的元器件放置在电路编辑窗口后,用鼠标就可以方便地将 器件连接起来。方法是:用鼠标单击连线的起点并拖动鼠标至连线的 终点。在Multisim中连线的起点和终点不能悬空。 通过Simulate菜单执行仿真分析命令。项
Multisim三相电路仿真实验
实验六三相电路仿真实验、实验目的1、熟练运用MUltiSim正确连接电路,对不同联接情况进行仿真;2、对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结;3、加深对三相四线制供电系统中性线作用的理解。
4、掌握示波器的连接及仿真使用方法。
5、进一步提高分析、判断和查找故障的能力。
二、实验仪器1. PC机一台2. MUItiSim软件开发系统一套三、实验要求1.绘制出三相交流电源的连接及波形观察2 •学习示波器的使用及设置。
3•仿真分析三相电路的相关内容。
4 .掌握三瓦法测试及二瓦法测试方法四、原理与说明1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。
这种联接方式的特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。
2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。
这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。
3、电流、电压的“线量”与“相量”关系测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。
画仿真图时要注负载对称星形联接时,线量与相量的关系为:(1) U L='3U P(2) I L=I P负载对称三角形联接时,线量与相量的关系为:(2)1 L = 3I P(I) U L =U P4、星形联接时中性线的作用三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。
中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。
如果中性线断开,这时线电压仍然对称, 但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。
五、实验内容及参考实验步骤 (一)、建立三相测试电路如下三相电压相位差: φ =(二)、三相对称星形负载的电压、电流测量(1) 使用MUItiSim 软件绘制电路图1,图中相电压有效值为 220V 。
multisim使用及电路仿真实验报告_范文模板及概述
multisim使用及电路仿真实验报告范文模板及概述1. 引言1.1 概述引言部分将介绍本篇文章的主题和背景。
在这里,我们将引入Multisim的使用以及电路仿真实验报告。
Multisim是一种强大的电子电路设计和仿真软件,广泛应用于电子工程领域。
通过使用Multisim,可以实现对电路进行仿真、分析和验证,从而提高电路设计的效率和准确性。
1.2 文章结构本文将分为四个主要部分:引言、Multisim使用、电路仿真实验报告以及结论。
在“引言”部分中,我们将介绍文章整体结构,并简要概述Multisim的使用与电路仿真实验报告两个主题。
在“Multisim使用”部分中,我们将详细探讨Multisim软件的背景、功能与特点以及应用领域。
接着,在“电路仿真实验报告”部分中,我们将描述一个具体的电路仿真实验,并包括实验背景、目的、步骤与结果分析等内容。
最后,在“结论”部分中,我们将总结回顾实验内容,并分享个人的实验心得与体会,同时对Multisim软件的使用进行评价与展望。
1.3 目的本篇文章旨在介绍Multisim的使用以及电路仿真实验报告,并探讨其在电子工程领域中的应用。
通过对Multisim软件的详细介绍和电路仿真实验报告的呈现,读者将能够了解Multisim的基本特点、功能以及实际应用场景。
同时,本文旨在激发读者对于电路设计和仿真的兴趣,并提供一些实践经验与建议。
希望本文能够为读者提供有关Multisim使用和电路仿真实验报告方面的基础知识和参考价值,促进他们在这一领域的学习和研究。
2. Multisim使用2.1 简介Multisim是一款功能强大的电路仿真软件,由National Instruments(国家仪器)开发。
它为用户提供了一个全面的电路设计和分析工具,能够模拟各种电子元件和电路的行为。
使用Multisim可以轻松地创建、编辑和测试各种复杂的电路。
2.2 功能与特点Multisim具有许多强大的功能和特点,使其成为研究者、工程师和学生选择使用的首选工具之一。
Multisim电路仿真
Multisim电路仿真示例1.直流电路分析步骤一:文件保存打开Multisim 软件,自动产生一个名为Design1的新文件。
打开菜单File>>Save as…,将文件另存为“CS01”(自动加后缀)步骤二:放置元件打开菜单Place>>Component…1.选择Sources(电源)Group (组),选择POWER_SOURCES(功率源)Family(小组),在元件栏中用鼠标双击DC_POWER,将直流电源放置到电路工作区。
说明:所有元件按Database -> Group -> Family 分类存放2.继续放置元件:Sources Group –>POWER_SOURCES Family->ROUND(接地点Basic Group->RESISTOR Family(选择5个电阻)3.设定元件参数。
采用下面两种方式之一1)在放置元件时(在一系列标准值中)选择;2)在工作区,鼠标右键点击元件,在Properties (属性)子菜单中设定。
步骤三.根据电路图连线用鼠标拖动元件到合适位置,如果有必要,鼠标右键点击元件,可对其翻转(Flip)或旋转(Rotate)。
连线时先用鼠移至一个元件的接线端,鼠标符号变成叉形,然后拖动到另一结点,点击右键确认连线。
若需显示全部节点编号,在菜单Option>>Sheet Properties>>Sheet visibility的Net names 选板中选中show all。
步骤四.电路仿真选择菜单Simulate>>Analyses>>DC operating point…(直流工作点分析)在DC operating point analysis窗口中,选择需要分析的变量(节点电压、元件电流或功率等)。
点击“Simulate”按钮,得到结果:可以验证,模拟结果与理论计算完全一致。
电子电路multisim仿真实验报告
电子电路multisim仿真实
验报告
班级:XXX
姓名:XXX
学号:XXX
班内序号:XXX
一:实验目的
1:熟悉Multisim软件的使用方法。
2:掌握放大器静态工作点的仿真方法及其对放大器性能的影响。
3:掌握放大电路频率特性的仿真方法。
二:虚拟实验仪器及器材
基本电路元件(电阻,电容,三极管)双踪示波器波特图示仪直流电源
三:仿真结果
(1)电路图
其中探针分别为:
探针一探针二
(2)直流工作点分析。
(3)输入输出波形
A通道为输入波形B通道为输出波形
四:实验流程图
开始
选取实验所需电路元件
及测量工具
合理摆放元件位置并连
接电路图
直流特性分析
结束
五:仿真结果分析
(1)直流工作点
电流仿真结果中,基极电流Ib为7.13u,远小于发射极和集电极,而发射极和集电极电流Ie和Ic近似相等,与理论结果相吻合。
电压仿真结果中,基极与发射极的电位差Vbe经过计算约为0.625V,符合三极管的实际阈值电压,而Vce约为5.65V。
以上数据均满足放大电路的需求,所以电路工作在放大区。
(2)示波器图像分析
示波器显示图像中,A路与B路反相,与共射放大电路符合。
六:总结与心得
这次的仿真花费了大量时间,主要是模块的建立。
经过本次的电子电路仿真实验,使我对计算机在电路实验中的应用有了更为深刻的认识,对计算机仿真的好处有了进一步的了解。
仿真可以大大的减轻实验人员的工作负担,同时更可以极大的提升工作效率,事半功倍,所以对仿真的学习是极为必要的。
Multisim电路仿真
Multisim电路仿真Multisim是一个强大的电路仿真软件,它可以在计算机上进行电路设计、仿真和分析,是电子工程师必不可少的工具之一。
本文将介绍Multisim电路仿真的相关知识。
一、Multisim的基本操作1. 新建电路:在Multisim中,可以通过菜单栏或快捷键新建电路;也可以导入已有电路。
2. 添加元器件:在Multisim的元器件库中,选择需要使用的元器件,拖放到电路图中,并正确连接线路。
3. 设置元器件参数:在元器件上双击,进入元器件参数设置界面,对元器件进行参数设置。
4. 运行电路仿真:完成电路图绘制后,点击仿真按钮,进行仿真。
仿真完成后,可以查看仿真结果。
Multisim的元器件库非常丰富,包括各种电子元器件,如二极管、三极管、电容、电阻、集成电路等。
可以通过搜索功能快速查找需要使用的元器件。
1. 直流分析:可以通过直流分析查看电路在稳定直流电压条件下的工作状态。
2. 交流分析:可以查看电路在交流电压条件下的情况,包括电流、电压等波形和相位差。
3. 暂态分析:可以查看电路在瞬态条件下的情况,如电容充电、电路开关时的瞬态响应。
4. 傅里叶分析:可以将电路的任意输入信号分解成不同频率的信号,并产生频谱图。
Multisim电路仿真可以应用在各种领域,如模拟电路设计、数字电路设计、信号处理、控制系统等。
通过仿真,可以快速调试电路,验证电路的可靠性和性能参数,节省开发成本和时间。
1. 操作简单:Multisim的界面设计很直观,操作非常简单,适合初学者和专业人士使用。
2. 元器件库丰富:Multisim的元器件库非常齐全,可以支持各种电路设计和仿真。
3. 仿真结果准确:Multisim的仿真结果准确可靠,可以反映电路实际工作情况。
4. 分析方法多样:Multisim的仿真分析方法多样,可以满足不同应用领域的需求。
六、结语Multisim是一款经典的电路仿真软件,具有操作简单、元器件库丰富、仿真结果准确、分析方法多样等优点。
multisim仿真教程 三相桥式整流电路
multisim仿真教程三相桥式整流电路
三相桥式整流电路是现代交流变成直流电的基础电路之一。
本文将介绍 multisim 软
件下搭建三相桥式整流电路的仿真步骤。
1.新建工程
打开 multisim,点击文件菜单 -> 新建 -> 新建工程,输入工程名称和保存路径,
点击确定。
2.添加所需元件
点击顶部工具栏上的元件库按钮,在元件库中搜索所需元件:三相变压器、桥式整流器、电容、电感等元件。
拖动元件到工作区中。
3.连接电路
用连接线将各个元件连接起来,连接线的方式包括直接拖动连接线或者单击元件端口,再单击另一个元件端口,连接线就自动生成了。
4.设置元件参数
双击元件,打开元件的属性对话框,设置元件的参数。
如三相变压器的参数包括变比、高压侧电源参数,桥式整流器的参数包括电阻大小等等。
点击顶部工具栏的仿真按钮,打开“模拟和仿真设置”对话框,设置仿真时间和步长
大小等参数。
6.运行仿真
点击顶部工具栏的运行按钮或者按下F5键,运行仿真。
可以在中间的绘图区域看到电路的波形图,包括输入电压、输出电压等各种电压大小和波形。
7.分析结果
通过观察仿真结果,可以分析电路的性能表现、各个元件运行状况是否正常等等。
可
以通过修改元件参数,重新运行仿真,查看结果的变化。
总结
通过上述步骤,就可以在 multisim 软件中搭建三相桥式整流电路的仿真模型,并进
行仿真分析。
除此之外,还可以在绘图区域添加标签、参考线等辅助元素,使仿真结果更
加直观和清晰。
基于Multisim仿真电路的设计与分析
信号在 过渡段衰减时,衰减速度较 为缓慢,通带中的相频特性 微伏,截止频率为 2dB。实验设计 的数据采集板示意图,如 图 1
(尤其是低频时)几乎可 以线性表示。
所示 。经分析可以知道 ,当理论增益的数值达到 3O分贝时,实
滤波器 的阶数受到两个 因素的影响:一个是过渡带 宽度 , 际实验测量得 到的数值要 比理论计算出的数值稍小一些 ;电路 另一个是止带衰减量。如果 Q=Q s≥Q c时衰减量 为 s,则有 中 的 电阻 R, 电容 C的测 量 得 到 数值 要 比理 论计 算 出的数 值 存
10log(1+ n)≥ , l+Q >10 0。M ,所 以: 在一定的差异,而且滤波器的各个测量获得 参数与理论设计的
1/ /
n> Mog[10。· 一1] /logf ̄ 。
上式 中我们可 以发现 , Q S的数值越小 ,则说明过渡带 内 小频率在不断的增加 ,同时滤波器 已经处在过渡带窄,此时滤 波器 的阶数必须更高 ; Q S的数值越大 ,则说 明过渡带越 宽, 此时滤波器的阶数要求也就相对较低 。
参考文献 : [1】黄培根,任 清褒.MultisimlO计 算机虚拟仿 真 实验【M1.北 京 :电 子 工 业 出版社 ,2008,92. [2】郑步生.Multisim2001电路设计及 仿真入 门与应 用[M】
三 、 多 路 负 反 馈 二 阶低 通滤 波节
1 /
/
R1 R2CIC
滤波器的发展经历了无源滤波器和有源滤波器两个阶段 。
根 据 低 通 滤 波 标 准 式 可 以 得 到 ,
无源滤波器是 由三个无源元件 R、L、C所组成 ,为了能够不断 日( )=( PcOo )/( +ao)0S+∞ ),其中可以将该式
基于MULTISIM仿真电路的设计与分析
基于MULTISIM仿真电路的设计与分析一、本文概述本文旨在探讨基于Multisim仿真软件的电路设计与分析方法。
我们将详细介绍Multisim仿真电路的基本原理,操作流程,以及在实际电路设计中的应用。
通过本文,读者将能够了解Multisim仿真软件的基本功能,掌握电路设计的基本步骤,学会利用Multisim进行电路仿真分析,从而提高电路设计效率,减少实际电路搭建过程中的错误和成本。
我们将简要介绍Multisim仿真软件的发展历程、特点及其在电路设计领域的重要性。
然后,我们将详细阐述电路设计的基本流程,包括需求分析、原理图设计、仿真分析、优化改进等步骤。
接下来,我们将通过具体的案例,展示如何利用Multisim进行电路仿真分析,包括电路元件的选择、电路连接、仿真参数设置、结果分析等过程。
我们将对基于Multisim仿真电路的设计与分析方法进行总结,并展望其在未来电路设计领域的应用前景。
通过本文的学习,读者将能够熟悉并掌握基于Multisim仿真电路的设计与分析方法,为实际电路设计提供有力的支持。
本文也将为电路设计师、电子爱好者以及相关专业学生提供有益的参考和借鉴。
二、MULTISIM仿真软件基础MULTISIM是一款强大的电路设计与仿真软件,广泛应用于电子工程、计算机科学及相关领域的教学和科研中。
它为用户提供了一个直观、易用的图形界面,允许用户创建、编辑和模拟各种复杂的电路系统。
本章节将详细介绍MULTISIM仿真软件的基础知识和基本操作,为后续的电路设计与分析奠定坚实基础。
MULTISIM软件界面简洁明了,主要由菜单栏、工具栏、电路图编辑区和结果输出区等部分组成。
用户可以通过菜单栏访问各种命令和功能,如文件操作、电路元件库、仿真设置等。
工具栏则提供了一系列快捷按钮,方便用户快速选择和使用常用的电路元件和工具。
电路图编辑区是用户创建和编辑电路图的主要区域,支持多种电路元件的拖拽和连接。
结果输出区则用于显示仿真结果和数据分析。
Multisim仿真-电路分析PPT演示课件
5.1 基尔霍夫定律
注意电流的方向、参考方向 电流表内阻在表旁;双击可以更改Mode(DC/AC)
•5
5.1 基尔霍夫定律
2. KVL
•6
5.2 节点电压法
节点电压法:对所有独立节点列KCL方程组,求解。 当电路结构复杂时,计算困难!
•7
5.2 节点电压法
用仿真方法可以顺利解决这一问题。
等效电阻为二者之比。
•12
5.6 RC一阶电路
方波作为信号源。
•13
5.6 RC一阶电路
示波器上读时间常数。
•14
5.7 谐振电路仿真
作业:
进行RLC串联电路频响仿真 要求: (1)参数自定(提示:交流信号源不必设置) (2)仿真内容包括幅频、相频特性,给出相应图示 (3)实验分析品质因数与选频作用 (4)仿真独立写一个报告,A4打印,不得超过4页 (5)若发现雷同则雷同报告一律计零分
•2
第5章 Multisim应用于电路分析
5.1 基尔霍夫定律 5.2 节点分析法 5.3 叠加原理 5.4 戴维南及诺顿等效电路 5.5 最大功率传输 5.6 过渡过程仿真 5.7 谐振电路仿真 5.8 三相电路仿真 5.9 二端口网络
•3
5.1 基尔霍夫定律
1. KCL 电压表和电流表:Place/Component/Indicators
•16
5.8 三相电路仿真
三相星形联结电路仿真
•17
5.8 三相电路仿真
电流表、电压表模式更改:AC 仿真
开关设置
•18
5.8 三相电路仿真
各表显示的数值:线电压、相电压、线电流=相电 流、中性线电流(约等于零)
•19
添加直流电压表,仿真。
Multisim三相电路仿真实验
Multisim三相电路仿真实验————————————————————————————————作者:————————————————————————————————日期:2--3 实验六 三相电路仿真实验一、实验目的1、 熟练运用Multisim 正确连接电路,对不同联接情况进行仿真;2、 对称负载和非对称负载电压电流的测量,并能根据测量数据进行分析总结;3、 加深对三相四线制供电系统中性线作用的理解。
4、 掌握示波器的连接及仿真使用方法。
5、 进一步提高分析、判断和查找故障的能力。
二、实验仪器1.PC 机一台 2.Multisim 软件开发系统一套 三、实验要求1.绘制出三相交流电源的连接及波形观察 2.学习示波器的使用及设置。
3.仿真分析三相电路的相关内容。
4.掌握三瓦法测试及二瓦法测试方法 四、原理与说明1、负载应作星形联接时,三相负载的额定电压等于电源的相电压。
这种联接方式的特点是三相负载的末端连在一起,而始端分别接到电源的三根相线上。
2、负载应作三角形联接时,三相负载的额定电压等于电源的线电压。
这种联接方式的特点是三相负载的始端和末端依次联接,然后将三个联接点分别接至电源的三根相线上。
3、电流、电压的“线量”与“相量”关系测量电流与电压的线量与相量关系,是在对称负载的条件下进行的。
画仿真图时要注意。
负载对称星形联接时,线量与相量的关系为: (1)P L U U 3=(2)P L I I =负载对称三角形联接时,线量与相量的关系为:(1)P L U U = (2)P LI I 3=4、星形联接时中性线的作用三相四线制负载对称时中性线上无电流,不对称时中性线上有电流。
中性线的作用是能将三相电源及负载变成三个独立回路,保证在负载不对称时仍能获得对称的相电压。
--4 如果中性线断开,这时线电压仍然对称,但每相负载原先所承受的对称相电压被破坏,各相负载承受的相电压高低不一,有的可能会造成欠压,有的可能会过载。
Multisim电路设计与仿真第3章Multisim 12.0的虚拟仪器使用方法
01 Multisim 12.0常用虚拟仪器
Multisim 12.0提供了类型丰富的虚拟仪器,用户 通过虚拟仪器可以分析运行结果,判断设计是否正确 合理。从仪器工具栏或用菜单命令(Simulation/ instrument)选用这些虚拟仪器,被选用后,各种虚 拟仪器都以面板的方式显示在电路中。
四通道示波器测试实例,按照图7连接电路图,观察D触发器 的输入和输出及时钟信号的波形,如图8所示。
图7四通道示波器测试电路
图8四通道示波器波形图
6)波特图仪(Bode Plotter)
波特图仪是一种用来测量和显示一个电路系统或放大器幅频 特性和相频特性的仪器,是交流分析的重要工具,类似于实际 电路测量中常用的扫频仪。其图标如图9所示。图标上有in+、 in-、out+、out-4个端子,其中in两个端子连接系统信号输入端 ,out两个端子连接系统信号输出端。需要注意,在使用波特图 仪时,必须在系统的信号输入端连接一个交流信号源或函数信 号发生器,此信号源由波特图仪自行控制不需设置。
双击函数信号发生器图标,弹出函数信号发生器的参数设 置控制面板,如图3所示。
图3函数信号发生器
Waveforms:波形选择区用于选择输出波形,分别为正弦波 、三角波、矩形波。
Frequency:频率设置,用于设置输出信号的频率,可选范 围1 fHz~1 000 THz。
Duty Cycle:占空比设置用于设置输出的三角波和方波电压 信号的占空比,设定范围1%~99%。
multisim仿真电路设计
multisim仿真电路设计
Multisim是一款集成电路设计和仿真软件,可以用于设计和验证电路的性能。
以下是一个简单的示例来说明如何在Multisim中设计和仿真电路。
1. 打开Multisim软件,并创建一个新的电路设计。
可以从工具栏中选择“新电路设计”或使用快捷键Ctrl+N。
2. 在设计窗口中,选择所需的元件和工具来设计电路。
例如,在工具栏中选择“元件”按钮,并选择电阻、电容和电感等元件。
3. 将所选元件拖放到设计窗口中,并使用线连接它们以形成电路。
可以使用工具栏上的线条工具或按下L键来连接元件。
4. 对于每个元件,可以通过双击元件来修改其值。
例如,对于电容,可以设置其电容值。
5. 设计完毕后,可以通过点击“仿真”按钮来验证电路的性能。
也可以选择“仿真”菜单中的“运行”选项,或使用快捷键F5。
6. 在仿真结果窗口中,可以查看电路的电压波形、电流波形、输入输出特性等。
也可以使用Multisim的仪表模拟工具来测量电路参数和性能。
通过这些步骤,您可以在Multisim中设计和仿真电路。
Multisim还提供了其他高级功能,如噪声分析、优化、印刷电路板设计等,以帮助工程师更好地设计和验证复杂电路。
应用Multisim进行三相电路的仿真与分析
2019年4月总第311期ISSN1672-1438CN11-4994/T 作者简介:兰海燕,工程硕士,讲师。
在高职高专院校电力类或电力相关专业教学中,讲练结合是非常必要的。
在三相交流电路的学习过程中,三相三线制、三相四线制、负载平衡、负载不平衡等多种情况对于学习中的学生来说,有时理解得不是那么透彻,或者理论和实际情况不容易结合到一起。
所以本文讨论这一部分内容理论与实际相结合的教学研究[1]。
本仿真实验基于学生已学过相应理论基础的情况下进行。
1 构建实验电路为了方便地模拟各种实验情况,这里采用9个独立的SPST 开关J1~J9控制九盏灯泡X1~X9;电压采取三相星型电源,380/220 V ,50 Hz 。
考虑到不同实验条件下灯泡耐压及功耗问题,这里选取虚拟灯泡元件LAMP-VIRTUAL ,并设置最大额定电压400 V ,最大额定功率15 W ,三相电路如图1所示。
图1 三相实验电路2 测量实验数据本次实验共有以下几种情况,三相四线制Y0接平衡负载,三相三线制Y 接平衡负载,三相四线制Y0接不平衡负载,三相三线制Y 接不平衡负载。
不平衡负载考虑包含短路、断路的特殊情况。
实验需要测量三相线电压、负载相电压、负载线电流、中线电流和中点电压。
图2为三相四线制Y0接平衡负载情况下所有万用表的接线及读数。
双击仪表,显示读数,然后按以下顺序放置,便于读数。
左侧3块仪表(XMM1~XMM3)为线电流,中间3块表(XMM5~XMM7)为线电压,右侧3块表(XMM8~XMM10)为相电压。
中间及右侧最下面2块表分别为中线电流(XMM4)和中点电压(XMM11)。
不同万用表需要根据调至不同的测量档位。
图2 三相四线制Y0接平衡负载需要注意的是,当稍后测量三相三线制不同负载的时候,需要去掉中线,即需要去掉XMM4所在的导线,而不能去掉XMM11所在的导线。
因为这2块表XMM11是测量电压,其内阻非常大,本来这根线就是断路的情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
之电路分析
内容
========★☆★○ 基础篇 ○★☆★======= 第1章 Multisim电路仿真软件简介 第2章 仿真基础Ⅰ(放置元件-电路图编辑-仿真-报告) 第3章 仿真基础Ⅱ(元器件库、虚拟仪器) 第4章 仿真基础Ⅲ(仿真分析方法)
========★☆★○ 应用篇 ○★☆★======= 第5章 应用于电路分析 第6章 应用于模拟电路 第7章 应用于数字电路 第8章 应用于单片机电路 第9章 FPGA/CPLD仿真 第10章 电子系统综合设计
方波作为信号源。
5.6 RC一阶电路
示波器上读时间常数。
5.8 三相电路仿真
三相星形联结电路仿真
5.8 三相电路仿真
电流表、电压表模式更改:AC 仿真
开关设置
5.8 三相电路仿真
各表显示的数值:线电压、相电压、线电 流=相电流、中性线电流(约等于零)
第5章 Multisim应用于电路分析
5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 基尔霍夫定律 节点分析法 叠加原理 戴维南及诺顿等效电路 最大功率传输 过渡过程仿真 谐振电路仿真 三相电路仿真 二端口网络
5.1 基尔霍夫定律
1. KCL 电压表和电流表: Place/Component/Indicators
5.2 节点电压法
用更多仪表。
5.2 节点电压法
也可以用直流工作点分析,将节点1、2、3、 4列为输出节点。
5.4 戴维南及诺顿等效电路
J1断开情况下读取电压值,即为等效电压源的 电压值。
5.4 戴维南及诺顿等效电路
J1接通情况下读取电流值,即为等效电流源的 电流值。
等效电阻为二者之比。
5.6 RC一阶电路
内容
========★☆★○ 基础篇 ○★☆★======= 第1章 Multisim电路仿真软件简介 第2章 仿真基础Ⅰ(放置元件-电路图编辑-仿真-报告) 第3章 仿真基础Ⅱ(元器件库、虚拟仪器) 第4章 仿真基础Ⅲ(仿真分析方法)
========★☆★○ 应用篇 ○★☆★======= 第5章 应用于电路分析 第6章 应用于模拟电路 第7章 应用于数字电路 第8章 应用于单片机电路 第9章 FPGA/CPLD仿真 第10章 电子系统综合设计
5.1 基尔霍夫定律
注意电流的方向、参考方向 电流表内阻在表旁;双击可以更改 Mode(DC/AC)
5.1 基尔霍夫定律
2. KVL
5.2 节点电压法
节点电压法:对所有独立节点列KCL方程组,求解。 当电路结构复杂时,计算困难!
5.2 节点电压法
用仿真方法可以顺利解决这一问题。
添加直流电压表,仿真。