2015-2016学年高中数学新课标必修3习题:第3章质量评估检测 Word版含答案

合集下载

高中数学必修3学习质量评估试卷

高中数学必修3学习质量评估试卷

高中数学必修3学习质量评估试卷参考公式:b=2121xn xyx n yx ni ini ii--∑∑==,a=y -b x ,b 是回归直线的斜率,a 是截距Ⅰ、选择题(3分×13=39分)1.算法是指可以用计算机来解决的某一类问题的程序或步骤,它不具有( ) A .有限性B .明确性C .有效性D .无限性2.程序框图是算法思想的重要表现形式,程序框图中不含( ) A .流程线B .判断框C .循环框D .执行框3.程序框图中有三种基本逻辑结构,它不是( ) A .条件结构B .判断结构C .循环结构D .顺序结构 4.下列程序语句不正确的是( ) A .INPUT “MATH=”;a+b+c B .PRINT “MA TH=”;a+b+c C .a=b+c D .a 1=b -c5.抽样调查时,为了反映样本的代表性,对总体进行随机抽样,样本必须符合() A .等可能性B .有限性C .分层性D .可靠性 6.与标准差单位不一致的是( )A .平均数B .相关系数C .众数D .中位数7.在教学调查中,甲、乙、丙三个班的数学测试成绩分布如图:设75分是各班的平均分,123s s s ,,分别表示甲、乙、丙三个班数学测试成绩的标准差,则有( )A.312s s s >> B.213s s s >> C.123s s s >>D.s 3>s 2>s 18.某班有60名学生,近视者有45名,体检中医生检查该班前5名都是近视者,检查第6名学生仍是近视者的概率为( ) A .43 B .118 C .5944×5843×1914×5641×118 D .101 9.x 1是[0,1]内随机数,x 是[-1,1]内的随机数,则x 1与x 之间的关系是( ) A .x 1=2x -1 B .x=2(x 1-1) C .x=2x 1-1 D .x 1=2(x -1) 10.在程序框图中一般不含有条件判断框的结构是( ) A .顺序结构B .循环结构C .当型结构D .直到型结构 11.下表是十六进制与十进制转化表 16进制 0 123456789 ABCDEF10进制12345678910 11 12 13 14 15x 75 x 75 x 75 f (x ) f (x ) f (x ) 50 100 50 100 100 50已知在十六进制中A ×B=6E ,则D ×E 为 ( ) A 116 B 6B C 611 D B6 12.通过求Q=∑=--ni i ia bx y1)(2的最小值而得到回归直线的方法称为()A .辗转相除法B .随机模拟法C .秦九韶法D .最小二乘法13.连掷两次骰子得到的点数分别为m 和n ,则向量a =(m,n)与向量b =(1,-1)数量积大于0的概率为( ) A.125 B.21 C.127 D 65 Ⅱ、填空题(4分×5=20分)14.某比赛为两运动员制定下列发球规则:规则一:投掷一枚硬币,出现正面向上,甲发球,反面向上,乙发球;规则二:从装有2个红球与2个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球;规则三:从装有3个红球与1个黑球的布袋中随机地取出2个球,如果同色,甲发球,否则乙发球;则对甲、乙公平的规则是______15.一条河上有一个渡口,每小时有一艘船渡到对岸,渡口上游有一座桥,某人到此等候过河,若他等待时间超过20分钟,则他就从桥上过河,他坐船过河的概率16.在程序语句中,赋值语句s=s+i 起累加作用,类似地起累乘作用的赋值语句是________17.若集合M ={0,l ,2},N ={(x ,y)|x -2y +1≥0且x -2y -1≤0,x ,y ∈M},由M 中数为坐标的点随机地撒在平面直角坐标系上,落在N 区域内的概率为____18.若以连续掷三次骰子分别得到的点数n m ,,p 作为点Q 的坐标,则点Q 落在以原点为球心,3为半径的球面内(含球面)的概率是_____ Ⅲ、解答题(41分) 19.(12分)两学生在高中三年的数学测试成绩如下: 甲:89,91,86,79,93,88,96,78,95,89,87,88 乙:67,88,92,95,77,85,69,79,83,99,68,73 试写出它们的茎叶图,简单分析谁的成绩比较稳定。

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3全册同步测试题及解析答案.doc

新人教版高中数学必修3 全册同步测试题及解析答案篇一:高一数学必修3全册各章节课堂同步习题(详解答案)第一章算法初步1.1算法与程序框图1.1.1算法的概念班次姓名[自我认知]:1.下面的结论正确的是().A.一个程序的算法步骤是可逆的B. 一个算法可以无止境地运算下去的C.完成一件事情的算法有且只有一种D. 设计算法要本着简单方便的原则2.下面对算法描述正确的一项是(). A.算法只能用自然语言来描述B.算法只能用图形方式来表示C.同一问题可以有不同的算法D.同一问题的算法不同,结果必然不同3.下面哪个不是算法的特征()A.抽象性B.精确性C. 有穷性D.唯一性4.算法的有穷性是指()A.算法必须包含输出B.算法中每个操作步骤都是可执行的C.算法的步骤必须有限D.以上说法均不正确5.早上从起床到出门需要洗脸刷牙(5min)、刷水壶(2min)、烧水(8min)、泡面(3min)、吃饭(lOmin)、听广播(8min)几个步骤,从下列选项中选最好的一种算法()A.S1洗脸刷牙、S2 刷水壶、S3烧水、S4泡面、S5吃饭、S6听广播 B.S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭、S5听广播 C. S1刷水壶、S2烧水同时洗脸刷牙、S3泡面、S4吃饭同时听广播D.S1吃饭同时听广播、S2泡面;S3烧水同时洗脸刷牙;S4刷水壶6.看下面的四段话,其中不是解决问题的算法是()A.从济南到北京旅游,先坐火车,再坐飞机抵达B.解一元一次方程的步骤是去分母、去括号、移项、合并同类项、系数化为1C.方程x2?l?0有两个实根D.求1+2+3+4+5的值,先计算1+2=3,再计算3+3=6,6+4=10,10+5=15,最终结果为15 7.已知直角三角形两直角边长为a,b,求斜边长c的一个算法分下列三步:①计算c?a,b的值;③输出斜边长c的值,其中正确的顺序是()A.①②③B.②③①C.①③②D.②①③[课后练习]:8.若f?x?在区间?a,b?内单调,且f?a??f?b??O,则f?x?在区间?a,b?内()A.至多有一个根B.至少有一个根C.恰好有一个根D.不确定9.已知一个学生的语文成绩为89,数学成绩为96,外语成绩为99.求他的总分和平均成绩的一个算法为:第一步:取A=89 ,B=96 ,C=99;第二步:①;第三步:②;第四步:输出计算的结果.10.写出求1+2+3+4+5+6+7+100的一个算法.可运用公式l+2+3+?+n= 第一步①;第二步②;第三步输出计算的结果.11.写出Ix2x3x4x5x6的一个算法.12.写出按从小到大的顺序重新排列x,y,z三个数值的算法. n(n?l)直接计算.21.1. 2程序框图[自我认知]:1 •算法的三种基本结构是()A.顺序结构、条件结构、循环结构B.顺序结构、流程结构、循环结构C.顺序结构、分支结构、流程结构D .流程结构、循环结构、分支结构2 .程序框图中表示判断框的是()A.矩形框B.菱形框D.圆形框D.椭圆形框3.如图⑴、(2),它们都表示的是输出所有立方小于1000的正整数的程序框图,那么应分别补充的条件为()(1)33(2)3A.⑴n>1000 ? (2)n<1000 ?B.⑴n<1000 ?⑵n>1000 ?C.(Dn<1000?⑵n>1000 ?D. (l)n<1000 ?(2)n<1000?4.算法共有三种逻辑结构,即顺序逻辑结构,条件逻辑结构和循环逻辑结构,下列说法正确的是()A.—个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C. 一个算法必须含有上述三种逻辑结构D.—个算法可以含有上述三种逻辑结构的任意组合[课后练习]:5.给出以下一个算法的程序框图(如下图所示),该程序框图的功能是()A.求输出a,b,c三数的最大数B.求输出a,b,c三数的最小数3333C.将a,b,c按从小到大排列D.将a,b,c按从大到小排列第5题图第6题图6.右边的程序框图(如上图所示),能判断任意输入的数x 的奇偶性:其中判断框内的条件是A.m?O?B.x?O ?C.x?l ?D.m?l?7.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构()A.顺序结构B.条件结构和循环结构C.顺序结构和条件结构D.没有任何结构?x2?l(x?0)8.已知函数f?x???,设计一个求函数值的算法,并画出其程序框图(x?0)?2x?l1.1.2程序框图(第二课时)[课后练习]:班次姓名1 . 如图⑴的算法的功能是.输出结果i=,i+2=.2.如图⑵程序框图箭头a指向①处时,输出s=.箭头a指向②处时,输出s=.3.如图⑷所示程序的输出结果为s=132,则判断中应填A、i>10? B、i>ll? C、i<ll?D、i>12? 4.如图⑶程序框图箭头b指向①处时,输出s=.箭头b指向②处时, 输出S= _________5、如图⑸是为求1-1000的所有偶数的和而设计的一个程序空白框图,将空白处补上。

人教A版高中数学必修三练习:第三章 概率 单元质量评估 Word版含答案

人教A版高中数学必修三练习:第三章 概率 单元质量评估 Word版含答案

单元质量评估(12019 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( C )A.随机事件的概率总在[0,1]内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对2.下列事件中,随机事件的个数为 ( C )①在某学校校庆的田径运动会上,学生张涛获得100米短跑冠军;②在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4 ℃时结冰.A.1B.2C.3D.43.甲,乙,丙三人随意坐一排座位,乙正好坐中间的概率为( B )A. B. C. D.4.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( B )A.A与C互斥B.B与C互斥C.任何两个均互斥D.任何两个均不互斥5.函数f(x)=x2-x-2,x∈[-5,5],那么任取一点x0,使得f(x0)≤0的概率是( A )A. B. C. D.6.如图,在矩形ABCD中,点E为边CD的中点.若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于( C )A. B. C. D.7.给甲,乙,丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( B )A. B. C. D.8.如图,EFGH是以O为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,则P(A)= ( D )A. B. C.2 D.9.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+ π2有零点的概率为( B )A. B.1- C. D.-110.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( C )A. B. C. D.11.掷一枚均匀的正六面体骰子,设A表示事件“出现2点”,B表示“出现奇数点”,则P(A∪B)等于( B )A. B. C. D.12.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( C )A. B. C. D.二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.一个口袋内装有大小相同的10个白球,5个黑球,5个红球,从中任取一球是白球或黑球的概率为.14.某人从甲地去乙地共走了500 m,途经一条宽为x m的河流.此人不小心把一件物品丢在了途中,若掉在河里就找不到,否则就能找到,已知该物品能被找到的概率为,则河宽为100 m.15.已知集合A={(x,y)|x2+y2=1},集合B={(x,y)|x+y+a=0},若A∩B≠的概率为1,则a的取值范围是16.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是,这两个数字之和是偶数的概率是.三、解答题(本大题共6小题,共70分.解答时应写出文字说明,证明过程或演算步骤)17.(10分)从甲,乙,丙,丁四个人中选两名代表.求:(1)甲被选中的概率.(2)丁没被选中的概率.【解析】(1)从甲,乙,丙,丁四个人中选两名代表,共有{甲,乙},{甲,丙},{甲,丁},{乙,丙},{乙,丁},{丙,丁}6个基本事件,甲被选中的事件有{甲,乙},{甲,丙},{甲,丁}共3个,若记甲被选中为事件A,则P(A)==.(2)记丁被选中为事件B,则P()=1-P(B)=1-=.18.(12分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n个.从袋子中随机取出1个小球,取到白球的概率是.(1)求n的值.(2)记从袋中随机取出的一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.【解析】(1)由题意可得=,解得n=2.(2)设红球为a,黑球为b,白球为c1,c2,从袋子中取出2个小球的所有基本等可能事件为:(a,b),(a,c1),(a,c2),(b,c1),(b,c2),(c1,c2),共有6个,其中得2分的基本事件有(a,c1),(a,c2),所以总得分为2分的概率为P==.19.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率.【解析】(1)由题意可知,=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个.事件A包含的基本事件为(0,21),(0,22),(21,0),(22,0),共4个,所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.20.(12分)已知集合Z={(x,y)|x∈[0,2],y∈[-1,1]}.(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图矩形ABCD区域,事件B 包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.21.(12分)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在[4,5)和[7,8]内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[7,8]内的概率.(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.【解析】(1)融合指数在[7,8]内的3家“省级卫视新闻台”记为A1,A2,A3;融合指数在[4,5)内的2家“省级卫视新闻台”记为B1,B2.从融合指数在[4,5)和[7,8]内的5家“省级卫视新闻台”中随机抽取2家的所有基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3, B2},{B1,B2},共10个.其中,至少有1家融合指数在[7,8]内的基本事件是:{A1,A2},{A1,A3},{A2,A3},{A1,B1},{A1,B2},{A2,B1},{A2,B2},{A3,B1},{A3,B2},共9个.所以所求的概率P=.(2)这20家“省级卫视新闻台”的融合指数平均数为4.5×+5.5×+6.5×+7.5×=6.05.22.(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.【解析】(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A,D),(A,E),(B,D),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为. (2)记F是标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D), (C,E),(C,F),(D,E),(D,F),(E,F),共15种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为(A,D),(A,E),(B,D),(A,F),(B,F),(C,F),(D,F),(E,F),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.关闭Word文档返回原板块。

北师大版数学必修三第三章检测卷附答案

北师大版数学必修三第三章检测卷附答案

第三章 学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.时间120分钟,满分150分.第Ⅰ卷(选择题 共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,是必然事件的是( C ) A .打雷后会下雨 B .明天下雪 C .1小时等于60分钟D .下雨后有彩虹[解析] 选项A 、B 、D 中的事件都可能发生,也可能不发生,都是随机事件,只有C 中为必然事件.2.某校团委要组建诗歌、绘画、演讲三个协会,某位学生只报了其中的2个,则基本事件共有( C )A .1个B .2个C .3个D .4个[解析] 这个同学选报的协会可能为(诗歌,绘画),(诗歌,演讲),(绘画,演讲),即有3个基本事件.3.抛掷一只骰子,落地时向上的点数是5的概率是( D ) A .13B .14C .15D .16[解析] 掷一次骰子相当于做一次试验,因为骰子是均匀的,它有6个面,每个面朝上的机会是均等的,故出现5点的可能性是16.4.据人口普查统计,育龄妇女生男生女是等可能的,则某一育龄妇女两胎均是女孩的概率是( C )A .12B .13C .14D .15[解析] 所有基本事件总数为4,分别为(男,男),(男,女),(女,男),(女,女),故两胎均是女孩的概率是14.5.某医院治疗一种疾病的治愈率为15,前4个病人都没有治好,第5个病人的治愈率为( B )A .1B .15C .45D .0[解析] 治愈率为15,表明第n 个病人被治愈的概率为15,并不是5个人中必有1个人治愈.6.设p 在[0,5]上随机地取值,则关于x 的方程x 2+px +1=0有实数根的概率为( C ) A .15B .25C .35D .45[解析] 0≤p ≤5且方程有实根满足p 2-4≥0,则2≤p ≤5,所以对应的概率为P =5-25-0=35. 7.某产品的设计长度为20 cm ,规定误差不超过0.5 cm 为合格品,今对一批产品进行测量,测得结果如下表:A .580B .780C .1720D .320[解析] P =5+75+68+7=320.8.甲、乙两人随意住两间空房,则甲、乙两人各住一间房的概率是( C ) A .14B .13C .12D .23[解析] 不妨设两间空房为A 、B ,则甲、乙两人随意入住的所有可能情况为:甲、乙都住A ;甲、乙都住B ;甲住A ,乙住B ;甲住B ,乙住A 共4种情况.其中甲、乙两人各住一间的情形有2种,故所求的概率P =24=12.9.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( B )A .π2B .π4C .π6D .π8[解析] 总面积2×1=2. 半圆面积12×π×12=π2.∴p =π22=π4.10.一个球形容器的半径为3 cm ,里面装满纯净水,因不小心混入了1个感冒病毒,从中任取1 mL 水含有感冒病毒的概率为( C )A .13B .13πC .136πD .49π[解析] 纯净水的体积为43π×33=36π(cm 3)=36π(mL),任取1 mL 水含有感冒病毒的概率P =136π.11.函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0∈[-5,5]使f (x 0)≤0的概率是( C )A .1B .23C .310D .25[解析] 任取一点x 0∈[-5,5]的结果有无限多个,属于几何概型.画出函数f (x )的图像(图略),由图像得当x 0∈[-1,2]时,f (x 0)≤0.设“使f (x 0)≤0”为事件A ,则事件A 构成的区域长度是2-(-1)=3,全部结果构成的区域长度是5-(-5)=10,则P (A )=310.故选C .12.(2019·山西柳林县高一期末测试)如图所示,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形.若直角三角形中较小的锐角θ=30°,现在向该正方形区域内随机地投掷一枚飞镖,则飞镖落在小正方形内的概率是( A )A .2-32B .32C .14D .12[解析] 大正方形面积为2×2=4,小正方形的边长为2cos30°-2sin30°=3-1,∴小正方形的面积为(3-1)2=4-23,∴飞镖落在小正方形内的概率是P =4-234=2-32,故选A .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,将正确答案填在题中横线上) 13.下列试验是古典概型的为_①②④__.①从6名同学中选出4名参加数学竞赛,每人被选中的可能性大小; ②同时掷两颗骰子,点数和为7的概率; ③近三天中有一天降雨的概率;④10人站成一排,其中甲、乙相邻的概率.[解析] ①②④是古典概型,因为符合古典概型的定义和特点.③不是古典概型,因为不符合等可能性,受多方面因素影响.14.如图所示,在一个边长为a 、b (a >b >0)的矩形内画一个梯形,梯形上、下底分别为13a与12a ,高为b .向该矩形内随机投一点,则所投的点落在梯形内部的概率为 512.[解析] S 矩形=ab ,S 梯形=12(13a +12a )·b =512ab ,故所投的点落在梯形内部的概率为S 梯形S 矩形=512ab ab =512.15.从字母a ,b ,c ,d ,e 中任取两个不同字母,则取到字母a 的概率为 25 .[解析] 基本事件有(a ,b ),(a ,c ),(a ,d ),(a ,e ),(b ,c ),(b ,d ),(b ,e ),(c ,d ),(c ,e ),(d ,e )共10个,含a 的有4个,故概率为410=25.写全基本事件个数是解决问题的关键.16.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为1316. [解析] 本题主要考查几何概型.∵去看电影的概率P 1=π×12-π×(12)2π×12=34;∴去打篮球的概率P 2=π×(14)2π×12=116.小波不在家看书的概率P =34+116=1316.三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)高一军训时,某同学射击1次,命中10环、9环、8环的概率分别是0.13,0.28,0.31.(1)求射击1次,命中10环或9环的概率; (2)求射击1次,至少命中8环的概率.[解析] 设事件“射击1次,命中k 环”为事件A k (k ∈N 且k ≤10)且事件A k 两两互斥.由题意,知P (A 10)=0.13,P (A 9)=0.28,P (A 8)=0.31.(1)记“射击1次,命中10环或9环”的事件为A ,那么P (A )=P (A 10)+P (A 9)=0.13+0.28=0.41.(2)记“射击1次,至少命中8环”的事件为B ,那么P (B )=P (A 10)+P (A 9)+P (A 8)=0.13+0.28+0.31=0.72.18.(本小题满分12分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较,在试制某种牙膏新品种时,需要选用两种不同的添加剂.现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用.根据试验设计原理,通常首先要随机选取两。

人教A版高中数学必修三试卷综合质量评估第一~三章.docx

人教A版高中数学必修三试卷综合质量评估第一~三章.docx

综合质量评估第一~三章(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,该程序运行后输出结果为()(A)14 (B)16 (C)18 (D)642.用秦九韶算法计算多项式f(x)=2x6+3x5+5x3+6x2+7x+8在x=2时,v2的值为()(A)2 (B)19 (C)14 (D)333.关于如下两个程序框图,说法正确的是()(A )(1)和(2)都是顺序结构(B )(1)和(2)都是条件分支结构(C )(1)是当型循环结构,(2)是直到型循环结构(D )(1)是直到型循环结构,(2)是当型循环结构4.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y 0.7x a ∧=-+,则a=( )(A )10.5 (B )5.15 (C )5.2 (D )5.255.如图,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为A x 和B x ,样本标准差分别为s A 和s B ,则( )A B A B A B A BA B A B A B A B A x x ,s s B x x ,s s C x x ,s s D x x ,s s ->><>><<<() ()() ()6.为积极倡导“学生每天锻炼一小时”的活动,某学校举办了一次以班级为单位的广播操比赛,9位评委给高三(1)班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是( )评委给高三(1)班打出的分数(A )2 (B )3 (C )4 (D )57.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号).若第16组应抽出的号码为126,则第一组中用抽签方法确定的号码是( )(A )4 (B )5 (C )6 (D )78.(易错题)某校为了了解学生的身体素质情况,对初三(2)班的50名学生进行了立定跳远、铅球、100米三个项目的测试,每个项目满分为10分.如图是将该班学生所得的三项成绩(成绩均为整数)之和进行整理后,分成5组画出的条形图,已知从左至右前4个小组的频率分别为0.02,0.1,0.12,0.46.下列说法:(1)学生的成绩≥27分的共有15人;(2)学生成绩的众数在第四小组(22.5~26.5)内;(3)学生成绩的中位数在第四小组(22.5~26.5)范围内.其中正确的说法有( )(A )0个 (B )3个 (C )1个 (D )2个9.现有甲、乙两颗骰子,从1点到6点出现的概率都是16,掷甲、乙两颗骰子,设分别出现的点数为a ,b 时,则满足a<|b 2-2a|<10a的概率为( ) 1111A B C D 181296() () () () 10.x 是x 1,x 2,…,x 100的平均数,a 是x 1,x 2,…,x 40的平均数,b 是x 41,x 42,…,x 100的平均数,则下列各式正确的是( )(A )40a 60b x 100+=(B )60a 40b x 100+= (C )x a b =+(D )a b x 2+= 11.在A ,B 两个袋中各装有写着数字1,2,3,4,5,6的六张卡片,现从A ,B 两个袋中各取一张卡片,两张卡片上的数字之和为9的概率是( )12111()()()()A B C D99113612.如图是把二进制数11111(2)转化为十进制数的一个程序框图,判断框内应填入的条件是()(A)i>4? (B)i≤4?(C)i>5? (D)i≤5?二、填空题(本大题共4小题,每小题5分,共20分,请把正确答案填在题中的横线上)13.从2012年参加奥运知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图所示.观察图形,估计这次奥运知识竞赛的及格率(大于或等于60分为及格)为__________.14.某工厂生产A,B,C三种不同型号的产品,产品数量之比依次为2∶3∶5.现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有16件.那么此样本的容量n=__________.15.已知集合A ={-1,0,1,3},从集合A 中有放回地任取两个元素x ,y 作为点P 的坐标,则点P 落在坐标轴上的概率为_________.16.(易错题)设a ∈[0,10)且a ≠1,则函数f (x )=log a x 在(0,+∞)内为增函数且a 2g x x-()=在(0,+∞)内也为增函数的概率为______. 三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)下面是计算个人所得税的算法过程,其算法如下:第一步输入工资x (注x ≤5 000);第二步如果x ≤800,那么y=0;如果800<x ≤1 300,那么 y=0.05(x-800);否则 y=25+0.1(x-1 300)第三步输出税款y,结束.请写出该算法的程序框图.18.(12分)下面是水稻产量与施化肥量的一组观测数据(单位:千克/亩):(1)将上述数据制成散点图;(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?19.(12分)高二年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:(1)根据上面图表,①②③处的数值分别为_________、_________、_________;(2)画出[85,155]的频率分布直方图.20.(12分)(2011·湖南高考)某河流上游的一座水力发电站,每年6月份的发电量Y(单位:万千瓦时)与该河上游在6月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年6月份降雨量频率分布表频率视为概率,求今年6月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.21.(12分)(能力题)将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷2次,将得到的点数分别记为a,b.(1)求直线ax+by+5=0与圆x2+y2=1相切的概率;(2)将a,b,5的值分别作为三条线段的长,求这三条线段围成等腰三角形的概率.22.(12分)(能力题)(2012·烟台高一检测)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15),…,第五组[17,18].下图是按上述分组方法得到的频率分布直方图.(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m,n表示该班某两位同学的百米测试成绩,且已知m,n∈[13,14)∪[17,18].求事件“|m-n|>1”的频率.答案解析1.【解析】选B.A初值为10,步长为-1,到A=3循环最后一次,A=2时,输出S ,每循环一次,S 的值增加2,故最后结果为S =16.2.【解题指南】首先把一个n 次多项式f (x )写成(…((a n x+a n-1)x+a n-2)x+…+a 1)x+a 0的形式,然后化简,求n 次多项式f (x )的值就转化为求n 个一次多项式的值,即可求出v 2的值.【解析】选C.∵f (x )=2x 6+3x 5+5x 3+6x 2+7x+8=(((((2x+3)x+0)x+5)x+6)x+7)x+8∴v 0=a 6=2,v 1=v 0x+a 5=2×2+3=7,v 2=v 1x+a 4=7×2+0=14.3. 【解析】选C.观察图(1)可知,它是先判断后循环,故是当型循环的程序框图;观察图(2)可知,它是先循环后判断,故是直到型循环的程序框图.故(1)是当型循环结构,(2)是直到型循环结构.4.【解析】选D.由条件知x 2.5,y 3.5==,∴3.5=-0.7×2.5+a ,解得a=5.25.5.【解析】选B.∵样本A 的数据均不大于10,而样本B 的数据均不小于10,显然A B x x <,由图可知A 中数据波动程度较大,B 中数据较稳定,∴s A >s B .6.【解题指南】根据计分规则知记分员去掉一个最高分94和一个最低分87,余下7个数字的平均数是91,根据平均数的计算公式写出平均数的表示形式,得到关于x 的方程,解方程即可.【解析】选A.∵由题意知记分员在去掉一个最高分94和一个最低分87后,余下的7个数字的平均数是91,即89889290x 93929191.7+++++++= ∴635+x=91×7=637,∴x=2.7.【解析】选C.设在第一组中抽取的号码是x (1≤x ≤8),由题意可得分段间隔是8.又∵第16组应抽出的号码为126,∴x+15×8=126,∴解得x=6,∴第一组中用抽签方法确定的号码是6.8. 【解题指南】由五组的数据的频率和为1求得第五组的频率,然后由每组人数=总人数×该组频率,得到第五组的人数,可判断(1)的正误;由众数的概念判断众数落在哪一个小组,可判断(2)的正误;由中位数的概念可判断(3)的正误.【解析】选D.5个小组的频率之和为1,且前四个分别为0.02,0.1,0.12,0.46,故第五组的频率是1-(0.02+0.1+0.12+0.46)=0.3,学生的成绩≥27分的在第五组,总共有50名学生,故第五组共有50×0.3=15(人),故(1)正确;观察直方图:第四组人数最多,但学生成绩的众数不一定在第四小组(22.5~26.5)内,故(2)不正确;学生成绩的中位数是第25个数和第26个数的平均数,应该落在第四组,故(3)正确.9.【解题指南】本题是一个古典概型,试验发生包含的总的基本事件有36种,满足条件的事件需要进行讨论.若a=1时,若a=2时,把两种情况相加得到共有3种情况满足条件,根据古典概型概率公式得到结果.【解析】选B.由题意知本题是一个古典概型,∵试验发生包含的总的基本事件有36种,满足条件的事件需要进行讨论.若a=1时,b=2或3;若a=2时,b=1;∴共有3种情况满足条件,∴概率为31P.==361210.【解析】选A.设P i是x1,x2,…,x100中x i被抽到的概率,q i是x1,x2,…,x40中x i被抽到的概率,r i是x41,x42,…,x100中x i被抽到的概率,则i i i i 4060P q P r 100100==,. 故x 1,x 2,…,x 100的平均数1122404041411001004060x x q x q x q x r x r 100100=++⋯+++⋯+()() 4060a b 100100=+. 11.【解析】选A.两袋中各取一张卡片,共36种取法,数字之和为9有以下情况:(3,6),(4,5),(5,4),(6,3)四种情况,所求的概率是41.369= 12.【解析】选A.11111(2)=1+2+22+23+24,由于程序框图中s =1+2s ,则i=1时,s =1+2×1=1+2,i =2时,s =1+2×(1+2)=1+2+22,i =3时,s =1+2+22+23,i =4时,s =1+2+22+23+24,故i>4时跳出循环,故选A.13.【解析】及格率为1-(0.01+0.015)×10=0.75.答案:0.7514.【解析】根据分层抽样比可知216235n=++,∴n =80. 答案:80【变式训练】在120个零件中,一级品24个,二级品36个,三级品60个,从中抽取容量为20的样本,计算每部分各抽取多少?【解析】由于一、二、三级品个数之比为2∶3∶5,所以235204,206,2010101010⨯=⨯=⨯=(个)(个)(个),故分别从一、二、三级品中抽取4个、6个、10个.15.【解析】所有基本事件构成集合Ω={(-1,-1),(-1,0),(-1,1),(-1,3),(0,-1),(0,0),(0,1),(0,3),(1,-1),(1,0),(1,1),(1,3),(3,-1),(3,0),(3,1),(3,3)},其中点P 落在坐标轴上的事件所含基本事件有(-1,0),(0,-1),(0,0),(0,1),(0,3),(1,0),(3,0),∴P =716. 答案:71616.【解析】由条件知,a 的所有可能取值为a ∈[0,10)且a ≠1,使函数f (x ),g (x )在(0,+∞)内都为增函数的a 的取值为a 1a 20>⎧⎨<⎩,-,∴1<a<2. 由几何概率知,211P .10010-==- 答案:110 17.【解析】程序框图如图所示.18.【解析】(1)散点图如图.(2)从图中可以发现数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系.当施化肥量由小到大变化时,水稻产量由小变大,但水稻产量不会一直随化肥施用量的增加而增长.19.【解析】(1)由题意抽取样本人数为12400.3=, ∴①处应填:400.0251⨯=.②处应填:40.100=,40③处应填:1.(2)频率分布直方图如下:20.【解析】(1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为(2)P(“发电量低于490万千瓦时或超过530万千瓦时”)=P(Y<490或Y>530)=P(X<130或X>210)=1323++=,20202010故今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦.时)的概率为31021.【解析】(1)先后2次抛掷一枚骰子,将得到的点数分别记为a,b,事件总数为6×6=36.因为直线ax+by+5=0与圆x 2+y 2=1相切,所以有2251a b =+,即a 2+b 2=25,由于a,b ∈{1,2,3,4,5,6}. 所以,满足条件的情况只有a=3,b=4或a=4,b=3两种情况.所以,直线ax+by+5=0与圆x 2+y 2=1相切的概率是213618=. (2)先后2次抛掷一枚骰子,将得到的点数分别记为a,b ,事件总数为6×6=36. 因为,三角形的一边长为5,所以,当a=1时,b=5,(1,5,5) 1种 当a=2时,b=5,(2,5,5) 1种 当a=3时,b=3,5,(3,3,5),(3,5,5) 2种 当a=4时,b=4,5,(4,4,5),(4,5,5) 2种当a=5时,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5) 6种 当a=6时,b=5,6,(6,5,5),(6,6,5) 2种 故满足条件的不同情况共有14种. 所以,三条线段能围成不同的等腰三角形的概率为1473618=. 22.【解析】(1)由直方图知,成绩在[14,16)内的人数为:50×0.16+50×0.38= 27(人),所以该班成绩良好的人数为27人.(2)由直方图知,成绩在[13,14)的人数为50×0.06=3(人),设为x ,y ,z; 成绩在[17,18]的人数为50×0.08=4(人),设为A ,B ,C ,D.若m,n ∈[13,14)时,有xy,xz,yz ,3种情况;若m,n ∈[17,18]时,有AB,AC,AD,BC,BD,CD ,6种情况;若m,n 分别在[13,14)和[17,18]内时,共有12种情况.所以基本事件总数为21种,事件“|m-n|>1”所包含的基本事件个数有12种. ∴124P m n 1217->==().。

高中数学人教A版必修三 章末综合测评3 Word版含答案.doc

高中数学人教A版必修三 章末综合测评3 Word版含答案.doc

章末综合测评(三) 概率(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4℃时结冰. A .1 B .2 C .3D .4【解析】 ①在明年运动会上,可能获冠军,也可能不获冠军.②李凯不一定被抽到.③任取一张不一定为1号签.④在标准大气压下水在4℃时不可能结冰,故①②③是随机事件,④是不可能事件.【答案】 C2.下列说法正确的是( )A .甲、乙二人比赛,甲胜的概率为35,则比赛5场,甲胜3场 B .某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C .随机试验的频率与概率相等D .天气预报中,预报明天降水概率为90%,是指降水的可能性是90%【解析】 概率只是说明事件发生的可能性大小,其发生具有随机性.故选D.【答案】 D3.(2016·开封高一检测)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( )A.16 B .13 C.12D .23【解析】 给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P =26=13.故选B.【答案】 B4.在区间[-2,1]上随机取一个数x ,则x ∈[0,1]的概率为( ) A.13 B .14 C.12D .23【解析】 由几何概型的概率计算公式可知x ∈[0,1]的概率P =1-01-(-2)=13.故选A.【答案】 A5.1升水中有1只微生物,任取0.1升化验,则有微生物的概率为()A.0.1 B.0.2C.0.3 D.0.4【解析】本题考查的是体积型几何概型.【答案】 A6.(2016·天水高一检测)从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()A.A与C互斥B.B与C互斥C.任何两个均互斥D.任何两个均不互斥【解析】互斥事件是不可能同时发生的事件,所以B与C互斥.【答案】 B7.某人从甲地去乙地共走了500 m,途中要过一条宽为x m的河流,他不小心把一件物品丢在途中,若物品掉在河里就找不到,若物品不掉在河里,则能找到,已知该物品能找到的概率为45,则河宽为()A.100 m B.80 m C.50 m D.40 m【解析】设河宽为x m,则1-x500=45,所以x=100.【答案】 A8.从一批羽毛球中任取一个,如果其质量小于4.8 g 的概率是0.3,质量不小于4.85 g 的概率是0.32,那么质量在[4.8,4.85)范围内的概率是( )A .0.62B .0.38C .0.70D .0.68【解析】 记“取到质量小于4.8 g ”为事件A ,“取到质量不小于4.85 g ”为事件B ,“取到质量在[4.8,4.85)范围内”为事件C .易知事件A ,B ,C 互斥,且A ∪B ∪C 为必然事件.所以P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.3+0.32+P (C )=1,即P (C )=1-0.3-0.32=0.38.【答案】 B9.如图1,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ) 【导学号:28750071】图1A.14 B .13 C.12D .23【解析】 点E 为边CD 的中点,故所求的概率P =△ABE 的面积矩形ABCD 的面积=12.【答案】 C10.将区间[0,1]内的均匀随机数x1转化为区间[-2,2]内的均匀随机数x,需要实施的变换为()A.x=x1*2 B.x=x1*4C.x=x1*2-2 D.x=x1*4-2【解析】由题意可知x=x1*(2+2)-2=4x1-2.【答案】 D11.先后抛掷两颗骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则()A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解析】先后抛掷两颗骰子的点数共有36个基本事件:(1,1),(1,2),(1,3),…,(6,6),并且每个基本事件都是等可能发生的.而点数之和为12的只有1个:(6,6);点数之和为11的有2个:(5,6),(6,5);点数之和为10的有3个:(4,6),(5,5),(6,4),故P1<P2<P3.【答案】 B12.在5件产品中,有3件一等品和2件二等品,从中任取2件,则下列选项中以710为概率的事件是()A.恰有1件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】将3件一等品编号为1,2,3,2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P 1=610,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P 2=310,其对立事件是“至多有一件一等品”,概率为P 3=1-P 2=1-310=710.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13.一个袋子中有5个红球,3个白球,4个绿球,8个黑球,如果随机地摸出一个球,记A ={摸出黑球},B ={摸出白球},C ={摸出绿球},D ={摸出红球},则P (A )=________;P (B )=________;P (C ∪D )=________.【解析】 由古典概型的算法可得P (A )=820=25,P (B )=320,P (C ∪D )=P (C )+P (D )=420+520=920.【答案】 25 320 92014.在区间(0,1)内任取一个数a ,能使方程x 2+2ax +12=0有两个相异实根的概率为________.【解析】 方程有两个相异实根的条件是Δ=(2a )2-4×1×12=4a 2-2>0,解得|a |>22,又a ∈(0,1),所以22<a <1,区间⎝ ⎛⎭⎪⎫22,1的长度为1-22,而区间(0,1)的长度为1,所以方程有两个相异实根的概率为1-221=2-22.【答案】2-2215.甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图2所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是________.图2【解析】 由题意可知从甲、乙两组中各随机选取一名同学,共有9种选法,其中这两名同学的成绩相同的选法只有1种,故所求概率P =19.【答案】 1916.(2016·合肥高一检测)甲乙两人玩猜数字游戏,先由甲心中任想一个数字记为a ,再由乙猜甲刚才想的数字,把乙猜的数字记为b ,且a 、b ∈{0,1,2,…,9}.若|a -b |≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,则二人“心有灵犀”的概率为________.【解析】 此题可化为任意从0~9中取两数(可重复)共有10×10=100种取法.若|a -b |≤1分两类,当甲取0或9时,乙只能猜0、1或8、9共4种,当甲取2~8中的任一数字时,分别有3种选择,共3×8=24种,所以P =24+410×10=725.【答案】 725三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)(2015·陕西高考)随机抽取一个年份,对西安市该年4月份的天气情况进行统计,结果如下:(1)在4月份任取一天,估计西安市在该天不下雨...的概率; (2)西安市某学校拟从4月份的一个晴天..开始举行连续2天的运动会,估计运动会期间不下雨...的概率. 【解】 (1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为2630=1315.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为78.以频率估计概率,运动会期间不下雨的概率为78.18.(本小题满分12分)对某班一次测验成绩进行统计,如下表所示:(1)求该班成绩在[80,100]内的概率; (2)求该班成绩在[60,100]内的概率.【解】 记该班的测试成绩在[60,70),[70,80),[80,90),[90,100]内依次为事件A ,B ,C ,D ,由题意知事件A ,B ,C ,D 是彼此互斥的.(1)该班成绩在[80,100]内的概率是P (C ∪D )=P (C )+P (D )=0.25+0.15=0.4.(2)该班成绩在[60,100]内的概率是P (A ∪B ∪C ∪D )=P (A )+P (B )+P (C )+P (D )=0.17+0.36+0.25+0.15=0.93.19.(本小题满分12分)小王、小李两位同学玩掷骰子(骰子质地均匀)游戏,规则:小王先掷一枚骰子,向上的点数记为x ;小李后掷一枚骰子,向上的点数记为y.(1)在直角坐标系xOy中,以(x,y)为坐标的点共有几个?(2)规定:若x+y≥10,则小王赢;若x+y≤4,则小李赢,其他情况不分输赢.试问这个游戏规则公平吗?请说明理由. 【导学号:28750072】【解】(1)由于x,y取值为1,2,3,4,5,6,则以(x,y)为坐标的点有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36个,即以(x,y)为坐标的点共有36个.(2)满足x+y≥10的点有:(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6个,所以小王赢的概率是636=1 6,满足x+y≤4的点有:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1),共6个,所以小李赢的概率是636=1 6,则小王赢的概率等于小李赢的概率,所以这个游戏规则公平.20.(本小题满分12分)(2014·天津高考)某校夏令营有3名男同学A,B,C和3名女同学X,Y,Z,其年级情况如下表:现从这6名同学中随机选出2人参加知识竞赛(每人被选到的可能性相同).(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.【解】(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A,B},{A,C},{A,X},{A,Y},{A,Z},{B,C},{B,X},{B,Y},{B,Z},{C,X},{C,Y},{C,Z},{X,Y},{X,Z},{Y,Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A,Y},{A,Z},{B,X},{B,Z},{C,X},{C,Y},共6种.因此,事件M发生的概率P(M)=615=25.21.(本小题满分12分)(2014·四川高考)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.(1)求“抽取的卡片上的数字满足a+b=c”的概率;(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.【解】(1)由题意知,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a +b =c ”为事件A ,则事件A 包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P (A )=327=19.因此,“抽取的卡片上的数字满足a +b =c ”的概率为19.(2)设“抽取的卡片上的数字a ,b ,c 不完全相同”为事件B ,则事件B 包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P (B )=1-P (B )=1-327=89.因此,“抽取的卡片上的数字a ,b ,c 不完全相同”的概率为89.22.(本小题满分12分)把参加某次铅球投掷的同学的成绩(单位:米)进行整理,分成以下6个小组:[5.25,6.15),[6.15,7.05),[7.05,7.95),[7.95,8.85),[8.85,9.75),[9.75,10.65],并绘制出频率分布直方图,如图3所示是这个频率分布直方图的一部分.已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.规定:投掷成绩不小于7.95米的为合格.图3(1)求这次铅球投掷成绩合格的人数;(2)你认为这次铅球投掷的同学的成绩的中位数在第几组?请说明理由;(3)若参加这次铅球投掷的学生中,有5人的成绩为优秀,现在要从成绩优秀的学生中,随机选出2人参加相关部门组织的经验交流会,已知a、b两位同学的成绩均为优秀,求a、b两位同学中至少有1人被选到的概率.【解】(1)∵第6小组的频率为1-(0.04+0.10+0.14+0.28+0.30)=0.14.∴参加这次铅球投掷的总人数为70.14=50.根据规定,第4、5、6组的成绩均为合格,人数为(0.28+0.30+0.14)×50=36.(2)∵成绩在第1、2、3组的人数为(0.04+0.10+0.14)×50=14,成绩在第5、6组的人数为(0.30+0.14)×50=22,参加这次铅球投掷的总人数为50,∴这次铅球投掷的同学的成绩的中位数在[7.95,8.85)内,即第4组.(3)设这次铅球投掷成绩优秀的5人分别为a、b、c、d、e,则选出2人的所有可能的情况为:ab,ac,ad,ae,bc,bd,be,cd,ce,de,共10种,其中a、b至少有1人的情况为:ab,ac,ad,ae,bc,bd,be,共有7种,∴a、b两位同学中至少有1人被选到的概率为P=7 10.。

人教版必修三第三章测试题(含答案)

人教版必修三第三章测试题(含答案)

人教版必修三第三章测试题(含答案) 第三章测试题一、选择题(本大题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论不正确的是()。

A。

A与B互斥且为对立事件B。

B与C互斥且为对立事件C。

A与C存在有包含关系D。

A与C不是对立事件2.抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是()。

A。

1/1991B。

1/1000C。

1/2D。

1/10013.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()。

A。

1/4B。

1/8C。

1/2D。

3/44.甲、乙两人随意入住两间空房,则甲乙两人各住一间房的概率是()。

A。

1/3B。

11/42C。

1/2D。

2/35.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黑球的概率是()。

A。

0.42B。

0.28C。

0.3D。

0.76.已知地铁列车每10 XXX一班,在车站停1 XXX则乘客到达站台立即乘上车的概率是()。

A。

109/118B。

1/10C。

1/11D。

1/97.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为()。

A。

1/10B。

3/10C。

17/50D。

102/1258.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()。

A。

1B。

1/12C。

3/23D。

3/109.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是()。

A。

1/12B。

1/6C。

1/3D。

5/1210.现有五个球分别记为A,C,J,K,S,随机放进三个盒子,每个盒子只能放一个球,则K或S在盒中的概率是()。

北师大版高中数学必修3第三章单元质量评估A卷

北师大版高中数学必修3第三章单元质量评估A卷

第三章单元质量评估(一)时限:120分钟 满分:150分 第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合要求的)1.下列说法正确的是( ) A .任何事件的概率总是在(0,1)之间 B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定2.抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面朝上的概率是( )A.1999B.11 000C.9991 000D.123.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85 g 的概率为0.32,那么质量在(4.8,4.85)(g)范围内的概率是( )A .0.62B .0.38C .0.02D .0.684.从装有10个红球和10个白球的罐子里任取2个球,下列是互斥而不对立的两个事件是( )A .至少有一个红球,至少有一个白球B .恰有一个红球,都是白球C .至少有一个红球,都是白球D .至多有一个红球,都是红球5.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的横、纵坐标,则点P 在直线x +y =5下方的概率为( )A.16B.14C.112D.196.某产品的设计长度为20 cm ,规定误差不超过0.5 cm 为合格品,今对一批产品进行测量,测得结果如下表:A.580B.780C.1720D.3207.如图所示,ABCD 为长方形,AB =2,BC =1,O 为AB 的中点.在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4 B .1-π4 C.π8D .1-π88.甲、乙两人随意入住两间空房,则甲、乙两人各住一间房的概率是( )A.13B.14C.12D .无法确定9.在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于S4的概率是( )A.14B.12C.34D.2310.一个袋中装有2个红球和2个白球,现从袋中取出一球,然后放回袋中再取出一球,则取出的两个球同色的概率是( )A.12B.13C.14D.2511.在区间(-1,1)内任取一个数a ,能使方程x 2+x +a =0有两个不相等的实根的概率为( )A.14B.34C.54D.5812.对于给定的实数a 1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具),记出现向上的点数分别为m ,n ,如果m +n 是偶数,则把a 1乘以2后再减去2;如果m +n 是奇数,则把a 1除以2后再加上2,这样就可得到一个新的实数a 2,对a 2仍按上述方法进行一次操作,又得到一个新的实数a 3.当a 3>a 1时,甲获胜,否则乙获胜.若甲获胜的概率为34,则a 1的值不可能是( )A .0B .2C .3D .4答案1.C 利用概率的概念以及和频率的关系来判断可知选C. 2.D 由于硬币出现正面朝上的概率与试验的次数无关,故概率是12.3.C 利用互斥事件的概率计算公式可知对应概率为0.32-0.3=0.02.4.B A 中,“至少有一个红球”可能为一红一白,“至少有一个白球”可能为一白一红,两事件可能同时发生,故不是互斥事件.B 中,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥事件,而任选2个球还有“两球都是红球”的情况,故不是对立事件.C 中,两个事件是对立事件.D 中,两个事件是对立事件.5.A 试验是连续掷两次骰子,故共包含6×6=36个基本事件.事件点P 在x +y =5下方,共包含(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)6个基本事件,故p =636=16.6.D 记“产品为19.5 cm 以下”为事件A ,P (A )=580;记“产品为20.5 cm 以上”为事件B ,P (B )=780,则事件A 和B 互斥,产品不合格即为事件A ∪B ,P (A ∪B )=P (A )+P (B )=580+780=320.7.B 根据几何概型概率公式得所求概率为p =S 阴影S 长方形ABCD=2-12π·122=1-π4,故选B.8.C 设两间空房分别为A 、B .情况1,甲、乙同住A 房间.情况2,甲、乙同住B 房间.情况3,甲住A 房间,乙住B 房间.情况4,甲住B 房间,乙住A 房间.所以答案是12.9.C 如图,作PE ⊥BC ,AD ⊥BC ,垂足分别为E ,D ,当△PBC 的面积等于S 4时,PE =14AD ,若S △PBC >14S ,则PE >14AD ,即PB >14AB ,故概率P =34AB AB =34.10.A 现从袋中取出一球,然后放回袋中再取出一球,共有4种结果:(红,红),(红,白),(白,红),(白,白).记“取出的两个球同色”为事件A ,则A 包含的结果有(白,白),(红,红)2种,由古典概型的概率计算公式可得P (A )=12.11.D Δ=1-4a >0,∴a <14.又∵a ∈(-1,1),∴-1<a <14,∴P =14+11+1=58.故选D.12.C 本题考查概率的意义.依题意,m +n 是偶数的概率为12;若a 1=0,则a 2=-2或a 2=2,当a 2=-2时,a 3=-6<a 1或a 3=1>a 1;当a 2=2时,a 3=2>a 1或a 3=3>a 1,此时甲获胜的概率为34,因此a 1的值可能是0.同理可结合各选项检验,a 1的值可能是2,4,a 1的值不可能是3,故选C.————————————————————————————第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请把答案填写在题中横线上)13.我国西部某个地区的年降水量在下列区间内的概率如下表所示:14.从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________.15.如图,边长为2的正方形中有一封闭曲线围成的阴影区域.在正方形中随机撒一粒豆子,它落在阴影区域内的概率为23,则阴影区域的面积为________.16.某班委会由4名男生与3名女生组成,现从中选出2人担任正、副班长,其中至少有1名女生当选的概率是__________________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.(本题满分10分)连续掷3枚硬币,观察落地后这3枚硬币出现正面还是反面.(1)写出这个试验的所有基本事件; (2)求恰有两枚正面向上的概率.18.(本题满分12分)如图所示的正方形的边长为2,正方形的中心与坐标原点O 重合,有人随机地向正方形投掷飞镖,求飞镖落在图中阴影部分的概率.(结果保留三位小数)答案13.0.25解析:利用互斥事件的概率计算公式可知对应概率为0.13+0.12=0.25.14.34解析:从长度为2,3,4,5的四条线段中任意取出三条共有4种不同的取法,其中可以构成三角形的有(2,3,4)、(2,4,5)、(3,4,5)三种,故所求概率为p =34.15.83解析:由几何概型概率公式可得P =S 阴影S 正方形=23,又S 正方形=2×2=4,所以S 阴影=23×4=83.16.57解析:∵从7人中选2人共有21种选法,从4个男生中选2人共有6种选法,∴没有女生当选的概率是621=27.∴至少有1名女生当选的概率为1-27=57.17.解:(1)这个试验的基本事件有(正,正,正),(正,正,反),(正,反,正),(正,反,反),(反,正,正),(反,正,反),(反,反,正),(反,反,反)共8个.(2)记A =“恰有两枚正面向上”,它包含的基本事件有:(正,正,反),(正,反,正),(反,正,正)3个.所以P (A )=38.18.解:正方形的面积S =2×2=4,直线6x -3y -4=0与正方形两边的交点坐标分别为⎝ ⎛⎭⎪⎫1,23和⎝ ⎛⎭⎪⎫16,-1.所以阴影部分的面积 S 1=12×⎝ ⎛⎭⎪⎫1+23×⎝ ⎛⎭⎪⎫1-16=2536.记“飞镖落在图中阴影部分”的事件为A , 则P (A )=S 1S =25364=25144≈0.174.——————————————————————————— 19.(本题满分12分)某医院一天内派出医生下乡医疗的人数及其概率如下:(2)派出医生至少2人的概率.20.(本题满分12分)设关于x的一元二次方程为x2+2ax+b2=0.(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]中任取的一个数,b是从区间[0,2]中任取的一个数,求上述方程有实根的概率.答案19.解:设事件A为“不派出医生”;事件B为“派出1名医生”;事件C为“派出2名医生”;事件D为“派出3名医生”;事件E 为“派出4名医生”;事件F为“派出5名及以上医生”.易知事件A、B、C、D、E、F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.2,P(D)=0.3,P(E)=0.2,P(F)=0.04.(1)“派出医生至多2人”的概率为P(A∪B∪C)=P(A)+P(B)+P(C)=0.1+0.16+0.2=0.46.(2)“派出医生至少2人”的概率为P(C∪D∪E∪F)=P(C)+P(D)+P(E)+P(F)=0.2+0.3+0.2+0.04=0.74.20.解:设事件A为“方程x2+2ax+b2=0有实根”.当a≥0,b≥0时,方程x2+2ax+b2=0有实根的充要条件为a≥b.(1)基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 包含9个基本事件,故事件A 发生的概率P (A )=912=34.(2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}. 构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为3×2-12×223×2=23. ————————————————————————————21.(本题满分12分)某班50名学生在一次百米测试中,成绩全部介于13秒与18秒之间,将测试结果按如下方式分成五组:第一组[13,14);第二组[14,15),…,第五组[17,18].如图是按分组得到的频率分布直方图:(1)若成绩大于或等于14秒且小于16秒认为良好,求该班在这次百米测试中成绩良好的人数;(2)设m ,n 表示该班某两位同学的百米测试成绩,且已知m ,n ∈[13,14)∪[17,18].求事件“|m -n |>1”的概率.22.(本题满分12分)在甲、乙等5位学生参加的一次社区专场演唱会中,每位学生的节目集中安排在一起演出,若采用抽签的方式随机确定各位学生的演出顺序(序号为1,2,3,4,5).求:(1)甲、乙两人的演出序号至少有一个为偶数的概率;(2)甲、乙两人的演出序号不相邻的概率.答案21.解:(1)由题中的直方图知,成绩在[14,16)内的人数为50×0.16×1+50×0.38×1=27,所以该班成绩良好的人数为27人.(2)设事件M:“|m-n|>1”.由频率分布直方图知,成绩在[13,14)的人数为50×0.06×1=3,设这3人分别为x,y,z.成绩在[17,18]的人数为50×0.08×1=4,设这4人分别为A,B,C,D.若m,n∈[13,14),则有xy,xz,yz,共3种情况;若m,n∈[17,18],则有AB,AC,AD,BC,BD,CD,共6种情况.当m,n分别在[13,14)和[17,18]内时,此时有|m-n|>1.共12种情况.所以基本事件总数为3+6+12=21种.则事件“|m-n|>1”所包含的基本事件个数为12.∴P(M)=1221=47.22.解:甲、乙两人可能被排在1,2号;1,3号;1,4号;1,5号;2,3号;2,4号;2,5号;3,4号;3,5号;4,5号,共10种情形.其中甲、乙两人至少有一个被安排在偶数号的情形有:1,2号;1,4号;2,3号;2,4号;2,5号;3,4号;4,5号,共7种情形.甲、乙两人被安排在不相邻的演出序号有:1,3号,1,4号;1,5号;2,4号;2,5号;3,5号,共6种情形.(1)记“甲、乙两人的演出序号至少有一个为偶数”为事件A,则P(A)=7 10.(2)记“甲、乙两人的演出序号不相邻”为事件B,则P(B)=610=35.。

最新人教版高中数学必修3第三章数学三模块综合测评(附答案)

最新人教版高中数学必修3第三章数学三模块综合测评(附答案)

模块综合测评(时间:120分钟,总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列赋值语句正确的是( )A.m+n=3B.l=mC.m=1,n=1D.m=m-1 解析:判断是否为赋值语句,主要看它是否满足赋值语句的特点.注意,赋值语句中的等号与数学中等号意义的区别. 答案:D2.抛掷一枚骰子,观察骰子出现的点数,若“出现2点”这个事件发生,则下列事件一定发生的是( )A.“出现奇数点”B.“出现偶数点”C.“点数大于3”D.“点数是3的倍数”解析:若事件A 发生,则事件B 发生,则事件A 和事件B 的关系是A B ,令事件A={出现2点},则事件B={出现偶数点}一定发生. 答案:B 3.高三(1)、(2)班在一次数学考试中,成绩平均分相同,但(1)班的成绩比(2)班整齐,若(1)、(2)班的成绩方差分别为s 12和s 22,则( )A.s 12>s 22B.s 12<s 22C.s 12=s 22D.s 1>s 2解析:方差的大小描述了数据的分散程度,因为(1)班成绩比(2)班成绩整齐,这说明(1)班的成绩分布比较集中,所以s 21<s 22. 答案:B4.某地招生办为了了解2007年高考文科数学主观题的阅卷质量,将2 050本试卷中封面保密号的尾数是11的全部抽出来,再次复查,这种抽样方法采用的是( )A.抽签法B.简单随机抽样C.系统抽样D.分层抽样 解析:由各抽样方法的使用条件可知,这种抽样为系统抽样. 答案:C5.若以连续抛掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=25内的概率是( ) A.21 B.3613 C.94 D.125 解析:设P 点坐标为(m,n),则P 点落在圆内,即满足m 2+n 2<25通过列举法可得满足条件的点(m,n)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2)共13个,而(m,n)所有可能的点有36种,所以P 点落在圆内的概率为3613,本题也可从对立事件角度去考虑. 答案:B6.①学校为了解高一学情,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90—110分,12人低于90分,现从中抽取12人了解有关情况;③运动会服务人员为参加400 m 决赛的6名同学安排跑道.就这三件事,合适的抽样方法为( ) A.分层抽样、分层抽样、简单随机抽样 B.系统抽样、系统抽样、简单随机抽样 C.分层抽样、简单随机抽样、简单随机抽样 D.系统抽样、分层抽样、简单随机抽样 解析:明确各种抽样方法的适用范围,进而选择合适的抽样方法. 答案:D7.在如下图所示的Rt △ABC 中,∠A=30°,过直角顶点C 在∠ACB 内任作一条射线交线段AB 于M ,则使AM >AC 的概率是( )A.61 B.65 C.232- D.21 解析:它属于几何概型,令事件A={过直角顶点C 在∠ACB 内任作一条射线交线段AB 于M ,使AM >AC },事件A 发生的区域为∠BCM=15°(如图),构成事件总的区域为∠ACB=90°,由几何概型的概率公式得P(A)=61. 答案:A8.已知框图,则表示的算法是( )A.求和S=2+22+…+264B.求和S=1+2+22+…+263C.求和S=1+2+22+…+264D.以上均不对解析:关键是要读懂框图的含义.循环结构中是完成数据的累加,要实现所求算法,框图中第一次执行循环体时i 的值应为0,框图中最后一次执行循环体时i 的值应为64,结合条件不满足时执行循环体,当i >64时就会终止循环. 答案:C9.一人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是( ) A.至少有一次中靶 B.两次中靶 C.两次都不中靶 D.只有一次中靶 解析:若A 、B 为互斥事件则A∩B=∅. 答案:C10.现有语文、数学、英语、历史、政治和物理共六本书,从中任取一本,取出的是文科书的概率是( ) A.21 B.65 C.61 D.32 解析:取到的书是文科书,即取到的书为语文、英语、历史、政治书,根据互斥事件的概率公式可求得P=3261616161=+++.答案:D11.甲口袋内装有大小相等的8个红球和4个白球,乙口袋内装有大小相等的9个红球和3个白球,从两个口袋内各摸出1个球,那么125等于( ) A.2个球都是白球的概率 B.2个球中恰好有1个是白球的概率 C.2个球都不是白球的概率 D.2个球都不是红球的概率 解析:依次求出A 、B 、C 、D 四项中所求事件的概率,四个选项的概率依次是A :121121234=⨯⨯;B :12512129438=⨯⨯+⨯;C :21121298=⨯⨯;D :21121234=⨯⨯答案:B12.用辗转相除法求204与85的最大公约数时,需要做除法的次数是( )A.1次B.2次C.3次D.4次 解析:用辗转相除法可得:204÷85=2…34,85÷34=2…17,34÷17=2,到此时可以判断它们的最大公约数是17,使用了3次除法得出结果. 答案:C二、填空题(本大题共4小题,每小题4分,共16分.把正确答案填在题中的横线上)13.设集合P={x,1},Q={y,1,2},P ⊆Q,x,y ∈{1,2,3,…,9},且在直角坐标平面内,从所有满足这些条件的有序实数对(x,y )所表示的点中任取一个,其落在圆x 2+y 2=r 2内的概率恰为72,则r 2的一个可能的整数值是____________.(只需写出一个即可) 解析:由于P ⊆Q,所以x=2或x=y.当x=2时,点(x,y )有(2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)、(2,9)共7个;当x=y 时,点(x,y )有(3,3)、(4,4)、(5,5)、(6,6)、(7,7)、(8,8)、(9,9)共7个;所以满足条件的点(x,y )总共有7+7=14个.由于落在圆x 2+y 2=r 2内的概率恰为72,则共有72×14=4点落在圆x 2+y 2=r 2内. 将满足条件的14个点(x,y )按横纵坐标的平方和从小到大的顺序排列:(2,3)、(3,3)、(2,4)、(2,5)、(4,4)、(2,6)、(5,5)、(2,7)、(2,8)、(6,6)、(2,9)、(7,7)、(8,8)、(9,9).则第4个点是A (2,5),第5个点是B (4,4),显然r 2只需满足|OA|2<r 2<|OB|,即22+52<r 2<42+42,所以有29<r 2<32,则r 2的一个可能的整数值是30或31,故填30(或31也行). 答案:30(或31).14.x=input(“请输入一个正的两位数x=”); if 9<x and x <100 then a=x/10;b=x mod 10; x=10*b+a ; print x elsedisp(“输入有误!”) end以上程序运行的含义是______________.解析:读懂程序的流程和程序的意图(或程序目的),可以代入数据试运行,这样一般可以得到准确的答案.答案:将一个数的十位数与个位对换 15.一个样本方差是S 2=151[(x 1-12)2+(x 2-12)2+…+(x 15-12)2],则这个样本的平均数是___________,样本容量是___________. 解析:在样本方差的公式S 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]中我们可以知道样本的容量为n 及样本的平均数为x ,因此同学们应记清公式中各个量的含义.答案:12 1516.将一批数据分成4组,列出频率分布表,其中第1组的频率是0.27,第2组与第4组的频率之和为0.54,则第3组的频率是______________.解析:在直方图中频率之和为1,所以第3组的频率为1-0.27-0.54=0.19. 答案:0.19三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(12分)根据下面程序,画出程序框图,并说出表示了什么样的算法. a=input(“a=”); b=input(“b=”); c=input(“c=”); if a >b and a >c then print(% io (2),a ); elseif b >c thenprint (% io (2),b ); elseprint (% io (2),c ); end end end分析:我们根据程序按顺序从上到下分析. 第一步:是输入a ,b ,c 三个数;第二步:是判断a 与b ,a 与c 的大小,如果a 同时大于b ,c ,则输出a ,否则执行第三步; 第三步:判断b 与c 的大小,因为a 已小于b 与c ,则只需比较b 与c 的大小就能看出a ,b ,c 中谁是最大的了,如果b >c ,则输出b ,否则输出c.通过上面的分析,程序表示一个什么样的算法已经非常清楚了. 解:框图如图所示:以上程序表示了输出a ,b ,c 中三个数的最大数的一个算法.18.(12分)在一个边长为a ,b(a >b >0)的矩形内画一个梯形,梯形上、下底分别为a 31与a 21,高为b ,向该矩形内随机投一点,求所投的点落在梯形内部的概率. 分析:投中矩形内每一点都是一个基本事件,基本事件有无限多个,并且每个基本事件发生的可能性相等,所以投中某一部分的概率只与这部分的几何度量(面积)有关,符合几何概型的条件.解:记A={所投的点落在梯形内部},S 矩形=ab ,S 梯形=125)2131(21=+b a a ab ,P(A)=125125=ab ab, 即所投的点落在梯形内部的概率是125.19.(12分)一个小球从100 m 高处自由落下,每次着地后又跳回到原高度一半再落下,编写程序,求当它第10次着地时, (1)向下运动共经过多少米? (2)第10次着地后反弹多高? (3)全程共经过多少米?分析:搞清楚小球的运动的特点,通过循环来设计程序. 解:程序: i=100; sum=0; k=1;while k <=10 sum=sum+i i=i/2 k=k+1 endprint(% io (2),sum) print(% io (2),i)print(“全程共经过(单位:(m))”;2*sum -100) end20.(12分)某地区100位居民的人均月用水量(单位:t)的分组的频数如下:[0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的众数.(3)当地政府制订了人均月用水量为3t的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?分析:众数即直方图中所有矩形中最高矩形的中点的横坐标.解:(1)(2)众数约为2.25.(3)对,上面的图和表显示了样本数据落在各个小组的比例大小.从中我们可以看到,月用水量在区间[2,2.5]内的居民最多,在[1.5,2]的次之,大部分居民的月用水量都在[1,3]之间,其中月用水量在3t以上的居民所占的比例为6%+4%+2%=12%,即大约占12%的居民月用水量在3t以上,88%的居民月用水量在3t以下.因此居民月用水量标准定为3t是一个可以考虑的标准.即不超出这个标准的概率约为88%,在85%以上.21.(13分)A、B两个箱子中分别装有标号为0、1、2的三种卡片,每种卡片的张数如下表所示:(1)从A、B箱中各取1张卡片,用x表示取出的2张卡片的数字之积,求x=2的概率.(2)从A、B箱中各取1张卡片,用y表示取出的2张卡片的数字之和,求x=0且y=2的概率.分析:本题属于古典概型,关键是列举出基本事件的个数. 解:(1)记事件A={从A 、B 箱中各取1张卡片,两卡片的数字之积等于2},由上图知总基本事件个数为6×5=30(个),事件A 包含基本事件个数为5个. 由古典概型的概率公式得:P(A)=61305=. 即x=2的概率为61. (2)记事件B={从A 、B 箱中各取1张卡片,其数字和为2且积为0},由图知事件B 包含基本事件个数为10个.所以由古典概型的概率公式得P(B)=313010=. 即x=0且y=2的概率为31. 22.(13分)(2007广东高考,理17)下表提供了某厂节能降耗技术改造后生产甲产品过程中(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程=bx+a.(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)分析:根据表中的数据在直角坐标系中把所给的数据点(x,y )描出,然后根据最小二乘法思想求出b 与a 的,代入回归直线方程,把所得到的回归直线方程用来估计总体. 解:(1)如下图.(2)∑=ni ii yx 1=3×2.5+4×3+5×4+6×4.5=66.5,46543+++=x =4.5,45.4435.2+++=y =3.5,∑=ni ix12=32+42+52+62=86,b=8186635.665.44865.35.445.662--=⨯-⨯⨯-=0.7,a=y -b x =3.5-0.7×4.5=0.35. 故线性回归方程为yˆ=0.7x+0.35. (3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,故耗能减少了90-70.35=19.65(吨标准煤).。

人教A版高中数学必修三试卷新课标高中章节素质测试题—第三章 概率.doc

人教A版高中数学必修三试卷新课标高中章节素质测试题—第三章 概率.doc

新课标高中数学人教A 版必修3章节素质测试题——第三章 概率(考试时间120分钟,满分150分)姓名_______评价______一、选择题(每小题5分,共60分. 以下给出的四个备选答案中,只有一个正确)1.(10北京文3)从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则a b >的概率是( ) A.45 B.35 C.25 D.152.(12北京理2)设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.4π B.22π- C.6πD.44π-3.(07江西文6)一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...地每次取一个球,共取2次,则取得两个球的编号和不小于...15的概率为( ) A.132B.164C.332D.3644.(11新课标理4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A .13B .12 C .23D .345.(11福建文7)如图,矩形ABCD 中,点E 为边CD 的中点,若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( ) A .14 B .13C . 12D . 236.(11湖北5)已知随机变量ξ服从正态分布()22N ,a ,且8.0)4(=<ξP ,则=<<)20(ξP ( )A.0.6B .0.4C .0.3D .0.27.(09安徽文10)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于( ) A.1B.21 C. 31D. 08.(10安徽文10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( ) A.318 B.418 C.518 D.6189.(09辽宁文9)ABCD 为长方形,AB=2,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( ) A.4πB.14π-C.8πD.18π-10.(08辽宁理7)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A .13B .12C .23D .3411.(12湖北理8)如图,在圆心角为直角的扇形OAB 中,分别以OA ,OB 为直径作两个半圆.在扇形OAB 内随机取一点,则此点取自阴影部分的概率是( )12.(12辽宁理10)在长为12cm 的线段AB 上任取一点C.现作一矩形,令边长分别等于线段AC ,CB 的长,则该矩形面积小于32cm 2的概率为( ) A.16 B. 13 C. 23 D. 45二、填空题(本大题共4小题,每小题5分,共20分,把答案填在答题卡中对应题号后的横线上) 13.(10江苏3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_________.14.(11江苏5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是_________.15.(09湖南理13)一个总体分为A ,B 两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B 层中甲、乙都被抽到的概率为128,则总体中的个体数为_______. 16.(11江西理12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,A. π21-B.π121-C. π2D. π1在家看书,则小波周末不.在家看书的概率为_________. 三、解答题(本大题共6小题,共70分,解答应写出文字说明.证明过程或演算步骤)17.(本题满分10分,11天津文15)编号为1216,,,A A A ⋅⋅⋅的16名篮球运动员在某次训练比赛中的得分记录如下:(Ⅰ)将得分在对应区间内的人数填入相应的空格;(Ⅱ)从得分在区间[)20,30内的运动员中随机抽取2人, (i )用运动员的编号列出所有可能的抽取结果; (ii )求这2人得分之和大于50的概率.18.(本题满分12分,12湖南文17)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中的一次购物量超过8件的顾客占55%. (Ⅰ)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过...2分钟的概率.(将频率视为概率)19.(本题满分12分,08广东19)某初级中学共有学生2000名,各年级男、女生人数如下表:已知在全校学生中随机抽取1名,抽到初二年级女生的概率是0.19.(Ⅰ)求x 的值;(Ⅱ)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名? (Ⅲ)已知245,245y z ≥≥,求初三年级中女生比男生多的概率.20.(本题满分12分,11辽宁19)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种甲和品种乙)进行田间试验.选取两大块地,每大块地分成n 小块地,在总共2n 小块地中,随机选n 小块地种植品种甲,另外n 小块地种植品种乙. (Ⅰ)假设n =2,求第一大块地都种植品种甲的概率;(Ⅱ)试验时每大块地分成8小块,即n =8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm 2)如下表:分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据n x x x ,,,21⋅⋅⋅的的样本方差])()()[(1222212x x x x x x ns n -+⋅⋅⋅+-+-=,其中x 为样本平均数.21.(本小题满分12分,10山东19)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(Ⅰ)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(Ⅱ)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求2+<m n 的概率.22.(本小题满分12分,09山东19)一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类型分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆. (Ⅰ)求z 的值;(Ⅱ)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(Ⅲ)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看作一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.新课标高中数学人教A 版必修3章节素质测试题——第三章 概率(参考答案)一、选择题:(本大题共12题,每小题5分,共60分)二、填空题(本大题共4小题,每小题5分,共20分)13.21. 14. 31. 15. 40 . 16. 1613. 三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤) 17. 解:(Ⅰ)4,6,6(Ⅱ)(i )解:得分在区间[20,30)内的运动员编号为345101113,,,,,.A A A A A A 从中随机抽取2人,所有可能的抽取结果有:343531*********{,},{,},{,},{,},{,},{,},A A A A A A A A A A A A 410{,}A A ,411413510511513101110131113{,},{,},{,},{,},{,},{,},{,},{,}A A A A A A A A A A A A A A A A ,共15种.(ii )解:“从得分在区间[20,30)内的运动员中随机抽取2人,这2人得分之和大于50”(记为事件B )的所有可能结果有:454104115101011{,},{,},{,},{,},{,}A A A A A A A A A A ,共5种.所以51().153P B == 18. 解:(Ⅰ)由已知得251055,35,15,20y x y x y ++=+=∴==,该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为:115 1.530225 2.5203101.9100⨯+⨯+⨯+⨯+⨯=(分钟).(Ⅱ)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,123,,A A A 分别表示事件“该顾客一次购物的结算时间为1分钟”, “该顾客一次购物的结算时间为1.5分钟”, “该顾客一次购物的结算时间为2分钟”.将频率视为概率,得123153303251(),(),()10020100101004P A P A P A ======. 123123,,,A A A A A A A =Q U U 且是互斥事件,123123()()()()()P A P A A A P A P A P A ∴==++U U 33172010410=++=. 故一位顾客一次购物的结算时间不超过2分钟的概率为710.19. 解:(Ⅰ)∵19.02000x=,∴.380=x(Ⅱ)初三年级人数为.500)370380377373(2000=+++-=+z y现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:200048×500=12名. (Ⅲ)设初三年级女生比男生多的事件为A ,初三年级女生男生数记为(y ,z):由(Ⅱ)知500=+z y ,且y ,z ∈N , 基本事件空间包含的基本事件有:(245,255)、(246,254)、(247,253)、……(255,245)共11个. 事件A 包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个. ∴P(A)=115. 20. 解:(Ⅰ)设第一大块地中的两小块地编号为1,2,第二大块地中的两小块地编号为3,4,令事件A=“第一大块地都种品种甲”.从4小块地中任选2小块地种植品种甲的基本事件共6个: (1,2),(1,3),(1,4),(2,3),(2,4),(3,4). 而事件A 包含1个基本事件:(1,2). 所以1().6P A =(Ⅱ)品种甲的每公顷产量的样本平均数和样本方差分别为:222222221(403397390404388400412406)400,81(3(3)(10)4(12)0126)57.25.8x S =+++++++==+-+-++-+++=甲甲品种乙的每公顷产量的样本平均数和样本方差分别为:2222222221(419403412418408423400413)412,81(7(9)06(4)11(12)1)56.8x S =+++++++==+-+++-++-+=乙乙由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.21. 解:(Ⅰ)从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个. 从袋中随机取出的球的编号之和不大于4的事件有1和2,1和3,共2个.因此所求事件的概率为.3162==P (Ⅱ)先从袋中随机取一个球,记下编号为m ,放回后,在从袋中随机取一个球,记下编号为n ,其一切可能的结果(m ,n )有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3)(4,4),共16个. 有满足条件2+≥m n 的事件为(1,3)、(1,4)、(2,4),共3个, 所以满足条件2+≥m n 的事件的概率为.1631=P故满足条件2+<m n 的事件的概率为.1613163111=-=-=P P 22. 解:(Ⅰ)设该厂本月生产轿车为n 辆,由题意得,5010100300n =+,解得.2000=n .400)600450150300100(2000=++++-=∴z(Ⅱ)设所抽样本中有m 辆舒适型轿车,因为用分层抽样的方法在C 类轿车中抽取一个容量为5的样本, 所以40010005m=,解得.2=m 也就是抽取了2辆舒适型轿车,3辆标准型轿车,分别记作S 1,S 2;B 1,B 2,B 3,则 从中任取2辆的所有基本事件为:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3)共10个,其中至少有1辆舒适型轿车的基本事件有7个基本事件:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2), 所以从中任取2辆,至少有1辆舒适型轿车的概率为710. (Ⅲ)样本的平均数为1(9.48.69.29.68.79.39.08.2)98x =+++++++=, 那么与样本平均数之差的绝对值不超过0.5的数为9.4,8.6,9.2,8.7,9.3,9.0这6个数,总的个数为8,所以该数与样本平均数之差的绝对值不超过0.5的概率为75.086=.。

最新新课程高中数学测试题组(必修3)全套含答案word版本

最新新课程高中数学测试题组(必修3)全套含答案word版本

特别说明:《新课程高中数学训练题组》是由李传牛老师根据最新课程标准,参考独家内部资料,结合自己颇具特色的教学实践和卓有成效的综合辅导经验精心编辑而成;本套资料分必修系列和选修系列及部分选修4系列。

欢迎使用本资料!本套资料所诉求的数学理念是:(1)解题活动是高中数学教与学的核心环节,(2)精选的优秀试题兼有巩固所学知识和检测知识点缺漏的两项重大功能。

本套资料按照必修系列和选修系列及部分选修4系列的章节编写,每章分三个等级:[基础训练A组],[综合训练B组],[提高训练C组]建议分别适用于同步练习,单元自我检查和高考综合复习。

本套资料配有详细的参考答案,特别值得一提的是:单项选择题和填空题配有详细的解题过程,解答题则按照高考答题的要求给出完整而优美的解题过程。

本套资料对于基础较好的同学是一套非常好的自我测试题组:可以在90分钟内做完一组题,然后比照答案,对完答案后,发现本可以做对而做错的题目,要思考是什么原因:是公式定理记错?计算错误?还是方法上的错误?对于个别不会做的题目,要引起重视,这是一个强烈的信号:你在这道题所涉及的知识点上有欠缺,或是这类题你没有掌握特定的方法。

本套资料对于基础不是很好的同学是一个好帮手,结合详细的参考答案,把一道题的解题过程的每一步的理由捉摸清楚,常思考这道题是考什么方面的知识点,可能要用到什么数学方法,或者可能涉及什么数学思想,这样举一反三,慢慢就具备一定的数学思维方法了。

目录:数学3(必修)数学3(必修)第一章:算法初步 [基础训练A组]数学3(必修)第一章:算法初步 [综合训练B组]数学3(必修)第一章:算法初步 [提高训练C组]数学3(必修)第二章:统计 [基础训练A组]数学3(必修)第二章:统计 [综合训练B组]数学3(必修)第二章:统计 [提高训练C组]数学3(必修)第三章:概率 [基础训练A组]数学3(必修)第三章:概率 [综合训练B组]数学3(必修)第三章:概率 [提高训练C组]根据最新课程标准,参考独家内部资料,精心编辑而成;本套资料分必修系列和选修系列及1a = 3b = a a b =+ b a b =- PRINT a ,bIF 10a < THEN 2y a =* else y a a =* 部分选修4系列。

2019学年高中数学必修三全册作业与测评:单元质量评估(三)

2019学年高中数学必修三全册作业与测评:单元质量评估(三)

单元质量评估(三)(第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】选C.①在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4℃时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=错误!未找到引用源。

,则“出现1点或2点”的概率为( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(A∪B)=P(A)+(B)=错误!未找到引用源。

+错误!未找到引用源。

=错误!未找到引用源。

.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为. 【解析】A,B为互斥事件,故采用概率的加法公式得P(A∪B)=错误!未找到引用源。

,所以出现的点数大于2的概率为1-P(A∪B)=错误!未找到引用源。

. 答案:错误!未找到引用源。

3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是( )A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

【解析】选D.基本事件总数Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲}.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P=错误!未找到引用源。

2018-2019学年人教版高中数学必修3第三章章末评估验收(三)(解析版)

2018-2019学年人教版高中数学必修3第三章章末评估验收(三)(解析版)

2018-2019学年人教版高中数学必修3第三章章末评估验收(三)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为( )①在学校明年召开的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签.A. 0B. 1C. 2D. 3【答案】D【解析】【分析】利用随机事件的定义直接求解.【详解】由随机事件的定义知:在①中,在学校明年召开的田径运动会上,学生张三获得100米短跑冠军,是随机事件,故①正确;在②中,在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李四,是随机事件,故②正确;在③中,王麻子从标有1,2,3,4的4张号签中任取一张,恰为1号签,是随机事件,故③正确.故选:D.【点睛】本题考查随机事件的判断,是基础题,解题时要认真审题,注意随机事件定义的合理运用.2.下列说法中正确的是( )A. 若事件A与事件B是互斥事件,则P(A)+P(B)=1B. 若事件A与事件B满足条件:P(A)+P(B)=1,则事件A与事件B是对立事件C. 一个人打靶时连续射击两次,则事件“至少有一次中靶”与事件“至多有一次中靶”是对立事件D. 把红、橙、黄、绿4张纸牌随机分给甲、乙、丙、丁4人,每人分得1张,则事件“甲分得红牌”与【答案】D【解析】【分析】由互斥事件和对立事件的概念可判断结论.【详解】把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”由互斥事件和对立事件的概念可判断两者不可能同时发生,故它们是互斥事件,故选:D.【点睛】本题考查事件的概念,考查互斥事件和对立事件,考查不可能事件,不可能事件是指一个事件能不能发生,不是说明两个事件之间的关系,这是一个基础题.事件“乙分得红牌”是互斥事件3.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( )A. B. C. D.【答案】B【解析】【分析】根据题意,打电话的顺序是任意的,打电话给甲乙丙三人的概率都相等均为,从而可得到正确的选项.【详解】∵打电话的顺序是任意的,打电话给甲、乙、丙三人的概率都相等,∴第一个打电话给甲的概率为.故选:B.【点睛】此题考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.4.某人向平面区域内任意投掷一枚飞镖,则飞镖恰好落在单位圆x2+y2=1内的概率为( )A. B. C. D.【答案】A【解析】【分析】本题利用几何概型求解.先根据区域|x|+|y|≤图象特征,求出其面积,最后利用面积比即可得点P落在单位圆x2+y2=1内的概率.【详解】:区域|x|+|y|≤表示以(±,0)和(0,±)为顶点的正方形,单位圆x2+y2=1内所有的点均在正方形区域内,正方形的面积S1=4,单位圆面积S2=π,由几何概型的概率公式得:P==,故选:A.【点睛】本小题主要考查几何概型及几何概型的应用等基础知识,考查运算求解能力,属于基础题.如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.5. 如下四个游戏盘,现在投镖,投中阴影部分概率最大的是 ( )【答案】A【解析】解答:解:A游戏盘的投中阴影部分概率为,B游戏盘的投中阴影部分概率为,设正方形的边长为r,C游戏盘的投中阴影部分概率为=,设圆的半径为r,D游戏盘的投中阴影部分概率为=,∴A游戏盘的投中阴影部分概率最大.故选A.点评:本题主要考查几何概型.几何概型中的面积类型基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.6.一个球形容器的半径为3 cm,里面装满纯净水,因不小心混入了1个感冒病毒,从中任取1 mL水含有感冒病毒的概率为( )A. B. C. D.【答案】C【解析】【分析】利用球的体积公式结合几何概型概率计算能求出从中任取1mL水含有感冒病毒的概率.【详解】一个球形容器的半径为3cm,里面装满纯净水,因不小心混入了1个感冒病毒,由几何概型概率计算是:从中任取1mL水含有感冒病毒的概率为:P==.故选:C.【点睛】本题考查概率的求法,考查球的体积、几何概型概率计算公式等基础知识,考查数据处理能力、运算求解能力,考查函数与方程思想,是基础题.7.将区间[0,1]内的均匀随机数x1转化为区间[-2,2]内的均匀随机数x,需要实施的变换为( )A. x=x1*2B. x=x1*4C. x=x1*2-2D. x=x1*4-2【答案】D【解析】【分析】分别将的范围代入变换式,能使得x的取值范围为区间即可.【详解】分别将的范围代入变换式,A、B选项最小值为0,C选项最大值为0,D选项最小值为-2,最大值为2,符合题意.故选D.【点睛】本题考查均匀随机数的区间转化,确定原区间经变化后与新区间范围相同即可.8.手表实际上是个转盘,一天24小时,分针指到哪个数字的概率最大( )A. 12B. 6C. 1D. 12个数字概率相等【答案】D【解析】【分析】利用等可能性即可得到结果.【详解】手表设计的转盘是等分的,即分针指到1,2,3,…,12中每个数字的机会都一样.【点睛】本题考查了等可能性概率问题,属于基础题.9.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A. B. C. D.【答案】D【解析】【分析】本题是一个古典概型,试验包含的所有事件是任意找两人玩这个游戏,其中满足条件的满足|a b|≤1的情形包括6种,列举出所有结果,根据计数原理得到共有的事件数,根据古典概型概率公式得到结果.【详解】由题意知本题是一个古典概型,∵试验包含的所有事件是任意找两人玩这个游戏,共有6×6=36种猜字结果,其中满足|a b|≤1的有如下情形:①若a=1,则b=1,2;②若a=2,则b=1,2,3;③若a=3,则b=2,3,4;④若a=4,则b=3,4,5;⑤若a=5,则b=4,5,6;⑥若a=6,则b=5,6,总共16种,∴他们“心有灵犀”的概率为.故选:D.【点睛】本题是古典概型问题,属于高考新增内容,解本题的关键是准确的分类,得到他们“心有灵犀”的各种情形.10.为美化环境,从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )A. B. C. D.【答案】C【解析】【分析】确定基本事件的个数,利用古典概型的概率公式,可得结论.【详解】从红、黄、白、紫4种颜色的花中任选2种花种在一个花坛中,余下的2种花种在另一个花坛中,有=6种方法,红色和紫色的花在同一花坛,有2种方法,红色和紫色的花不在同一花坛,有4种方法,所以所求的概率为=.另解:由列举法可得,红、黄、白、紫记为1,2,3,4,即有(12,34),(13,24),(14,23),(23,14),(24,13),(34,12),则P==.故选:C.【点睛】本题考查等可能事件的概率计算与分步计数原理的应用,考查学生的计算能力,比较基础.11.随机掷两枚质地均匀的骰子,它们向上的点数之和不超过5的概率记为p1,点数之和大于5的概率记为p2,点数之和为偶数的概率记为p3,则( )A. p1<p2<p3B. p2<p1<p3C. p1<p3<p2D. p3<p1<p2【答案】C【解析】列表得:(1,6)(2,6)(3,6)(4,6)(5,6)(6,6)(1,5)(2,5)(3,5)(4,5)(5,5)(6,5)(1,4)(2,4)(3,4)(4,4)(5,4)(6,4)(1,3)(2,3)(3,3)(4,3)(5,3)(6,3)(1,2)(2,2)(3,2)(4,2)(5,2)(6,2)(1,1)(2,1)(3,1)(4,1)(5,1)(6,1)所以一共有36种等可能的结果,两个骰子点数之和不超过5的有10种情况,点数之和大于5的有26种情况,点数之和为偶数的有18种情况,所以向上的点数之和不超过5的概率p1==,点数之和大于5的概率p2==,点数之和为偶数的概率记为p3==.点睛:考查古典概型及其概率计算公式.首先列表,然后根据表格点数之和不超过5,点数之和大于5,点数之和为偶数情况,再根据概率公式求解即可.12.在一个不透明的袋中,装有若干个颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为,那么袋中球的总个数为( )A. 10B. 11C. 12D. 13【答案】C【解析】【分析】先设袋中共有x个球,根据概率定义,利用红球的概率公式列出方程求解即可.【详解】设袋中共有x个球,根据概率定义,=;x=12.袋中球的总个数为12个.故选:C.【点睛】此题考查了概率的定义:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上).13.下图的矩形,长为,宽为,在矩形内随机地撒颗黄豆,数得落在阴影部分的黄豆数为颗,则我们可以估计出阴影部分的面积为_____.【答案】【解析】矩形面积为10,设阴影面积为,,解得,故填:.14.如图,在矩形ABCD中,AB=,BC=1,以A为圆心,1为半径作四分之一个圆弧DE,在圆弧DE 上任取一点P,则直线AP与线段BC有公共点的概率是.【答案】【解析】试题分析:由题意知本题是一个几何概型,试验包含的所有事件是∠BAD,如图,连接AC交弧DE于P,则tan∠CAB=,∴∠CAB=30°,满足条件的事件是直线AP在∠CAB内时AP与BC相交时,即直线AP与线段BC有公共点∴概率考点:1.概率的基本性质;2.几何概型15.甲、乙两组各有三名同学,他们在一次测验中的成绩的茎叶图如图所示,如果分别从甲、乙两组中各随机选取一名同学,则这两名同学的成绩相同的概率是______.【答案】【解析】甲组同学的成绩分别为:88,92,92乙组同学的成绩分别为:90,91,92记“分别从甲、乙两组中各随机挑选一名同学的成绩”为(x,y),则共有种情况其中这两名同学成绩相同的情况共有1种故这两名同学成绩相同的概率为 .16.已知集合A={(x,y)|x2+y2=1},集合B={(x,y)|x+y+a=0},若A∩B≠∅的概率为1,则a的取值范围是________.【答案】-≤a≤【解析】因为A∩B = ∅的概率为0,所以直线与圆有公共点,因此圆心到直线的距离,解得,所以填[-, ].三、解答题(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤)17.对某班一次测验成绩进行统计,如下表所示:分数段[40,50)[50,60)[60,70)[70,80)[80,90)[90,100]概率0.020.040.170.360.250.15(1)求该班成绩在[80,100]内的概率;(2)求该班成绩在[60,100]内的概率.【答案】(1);(2).【解析】【分析】利用频率和估计概率即可,先计算各频率之和即可【详解】记该班的测试成绩在[60,70),[70,80),[80,90),[90,100]内依次为事件A,B,C,D,由题意知事件A,B,C,D是彼此互斥的.(1)该班成绩在[80,100]内的概率是P(C∪D)=P(C)+P(D)=0.25+0.15=0.4.(2)该班成绩在[60,100]内的概率是P(A∪B∪C∪D)=P(A)+P(B)+P(C)+P(D)=0.17+0.36+0.25+0.15=0.93.【点睛】本题主要考查了利用频率和估计概率,属于基础题.18.某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖.抽奖方法是:从装有2个红球A1,A2和1个白球B的甲箱与装有2个红球a1,a2和2个白球b1,b2的乙箱中,各随机摸出1个球.若摸出的2个球都是红球则中奖,否则不中奖.(1)用球的标号列出所有可能的摸出结果;(2)有人认为:两个箱子中的红球比白球多,所以中奖的概率大于不中奖的概率.你认为正确吗?请说明理由.【答案】(1)见解析;(2)不正确.【解析】【分析】(1)中奖利用枚举法列出所有可能的摸出结果;(2)在(1)中求出摸出的2个球都是红球的结果数,然后利用古典概型概率计算公式求得概率,并说明中奖的概率大于不中奖的概率是错误的.【详解】(1)所有可能的摸出结果是:{A1,a1},{A1,a2},{A1,b1},{A1,b2},{A2,a1},{A2,a2},{A2,b1},{A2,b2},{B,a1},{B,a2},{B,b1},{B,b2}.(2)不正确.理由如下:由(1)知,所有可能的摸出结果共12种,其中摸出的2个球都是红球的结果为{A1,a1},{A1,a2},{A2,a1},{A2,a2},共4种,所以中奖的概率为=,不中奖的概率为1-=>,故这种说法不正确.【点睛】本题考查了古典概型及其概率计算公式,训练了枚举法求基本事件个数,是基础题.19.先后抛掷两枚大小相同的骰子.(1)求点数之和出现7点的概率;(2)求出现两个6点的概率;(3)求点数之和能被3整除的概率。

高中数学(人教A版)必修三单元质量评估(三) Word版含解析

高中数学(人教A版)必修三单元质量评估(三) Word版含解析

温馨提示:此套题为版,请按住,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭文档返回原板块。

单元质量评估(三)(第三章)(分钟分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).在次重复进行的试验中,事件发生的频率为,当很大时()与的关系是( )()≈()<()>()【解析】选.根据概率的统计定义可知,当试验次数不断增大时,事件发生的频率会趋于一个稳定值,该值的大小反映了事件发生的可能性的大小,所以事件发生的概率近似等于该频率的稳定值..从一批产品(其中正品、次品都多于件)中任取件,观察正品件数和次品件数,下列事件是互斥事件的是( )()恰好有件次品和恰好有两件次品.()至少有件次品和全是次品.()至少有件正品和至少有件次品.()至少件次品和全是正品..()() .()() .()() .()()【解析】选.互斥事件是两个事件不可能同时发生..(·广东高考)已知件产品中有件次品,其余为合格品.现从这件产品中任取件,恰有一件次品的概率为( )【解题指南】先对产品标号,然后列举出可能出现的结果,根据古典概型概率公式求出所求的概率.【解析】选件产品中有件次品,记为,有件合格品,记为,从这件产品中任取件,有种,分别是(),(),(),(),(),(),(),(),(),(),恰有一件次品,有种,分别是(),(),(),(),(),(),设事件“恰有一件次品”,则()..(·临沂高一检测)在区域内任意取一点(),则<的概率是( )【解题指南】本题为几何概型,首先画出所有可能构成的区域,再画出事件所满足的区域,根据几何概型的概率公式计算.【解析】选.所有基本事件构成的区域为边长为的正方形,而满足条件的点构成的区域为圆心在原点,半径为的圆在第一象限的部分即的。

人教版高中数学必修三 单元质量评估(三)

人教版高中数学必修三 单元质量评估(三)

温馨提示:此套题为Word版,请按住Ctrl,滑动鼠标滚轴,调节合适的观看比例,答案解析附后。

关闭Word文档返回原板块。

单元质量评估(三)(第三章)(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件中,随机事件的个数为()①在某学校2015年的田径运动会上,学生张涛获得100米短跑冠军;②在体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯;③从标有1,2,3,4的4张号签中任取一张,恰为1号签;④在标准大气压下,水在4℃时结冰.A.1B.2C.3D.4【解析】选C.①在某学校2015年的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4℃时结冰是不可能事件.2.抛掷一骰子,观察出现的点数,设事件A为“出现1点”,事件B为“出现2点”.已知P(A)=P(B)=,则“出现1点或2点”的概率为()A. B. C. D.【解析】选B.因为A,B为互斥事件,故采用概率的加法公式P(A∪B)=P(A)+(B)=+=.【延伸探究】若本题条件不变,则“出现的点数大于2”的概率为. 【解析】A,B为互斥事件,故采用概率的加法公式得P(A∪B)=,所以出现的点数大于2的概率为1-P(A∪B)=.答案:3.甲、乙、丙3名学生排成一排,其中甲、乙两人站在一起的概率是()A. B. C. D.【解析】选D.基本事件总数Ω={甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲}.“甲、乙两人站在一起”的可能结果有“甲乙丙”“丙甲乙”“乙甲丙”“丙乙甲”4种.所以甲、乙两人站在一起的概率P==.4.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是()A.至少有一个红球与都是红球B.至少有一个红球与都是白球C.至少有一个红球与至少有一个白球D.恰有一个红球与恰有二个红球【解析】选D.根据题意,从8个球中任取3个球包括事件对于A中的两个事件不互斥,对于B中两个事件互斥且对立,对于C中两个事件不互斥,对于D中的两个事件互斥而不对立.5.先后抛掷两枚骰子,设出现的点数之和是12,11,10的概率依次是P1,P2,P3,则()A.P1=P2<P3B.P1<P2<P3C.P1<P2=P3D.P3=P2<P1【解题指南】列出先后抛掷两枚骰子出现的点数的所有的基本事件个数,再分别求出点数之和是12,11,10的基本事件个数,进而求出点数之和是12,11,10的概率P1,P2,P3,即可得到它们的大小关系.【解析】选B.先后抛掷两枚骰子,出现的点数共有:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)共36种,其中点数之和是12的有1种,故P1=;点数之和是11的有2种,故P2=;点数之和是10的有3种,故P3=,故P1<P2<P3,故选B.6.有四个游戏盘,将它们水平放稳后,在上面扔一颗玻璃小球,若小球落在阴影部分,则可中奖,小明要想增加中奖机会,应选择的游戏盘是()【解题指南】增加中奖机会应选择概率高的对应的游戏盘.【解析】选A.P(A)=,P(B)=,P(C)=,P(D)=,所以P(A)>P(C)=P(D)>P(B).7.若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A. B. C. D.【解题指南】根据条件可用列举法列出所有基本事件和甲或乙被录用的基本事件,采用古典概型求概率.【解析】选D.所有被录用的情况有(甲乙丙),(甲乙丁),(甲乙戊),(甲丙丁),(甲丙戊),(甲丁戊),(乙丙丁),(乙丙戊),(乙丁戊),(丙丁戊)共10种,其中甲或乙被录用的基本事件有9种,故概率P=.【一题多解】所有的基本事件有10种,而甲、乙都不被录用的情况只有(丙丁戊)一种,故甲或乙被录用的概率为1-=.8.在区间[1,6]上随机取一个实数x,使得2x∈[2,4]的概率为()A. B. C. D.【解析】选B.由于区间[1,6]的长度是6-1=5,由2x∈[2,4],则x∈[1,2],长度为2-1=1,故在区间[1,6]上随机取一实数,则该实数使得2x∈[2,4]的概率P=.9.(2015·东营高一检测)在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为()A.1-B.1-C.1-D.1-【解析】选B.若使函数有零点,必须Δ=(2a)2-4(-b2+π2)≥0,即a2+b2≥π2.在坐标轴上将a,b的取值范围标出,如图所示.当a,b满足函数有零点时,以(a,b)为坐标的点位于正方形内、圆外的部分(如阴影部分所示),于是所求的概率为1-=1-.10.(2015·石家庄高一检测)在5件产品中,有3件一等品和2件二等品,从中任取2件,以为概率的事件是()A.恰有2件一等品B.至少有一件一等品C.至多有一件一等品D.都不是一等品【解析】选C.将3件一等品编号为1,2,3;2件二等品编号为4,5,从中任取2件有10种取法:(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5).其中恰含有1件一等品的取法有:(1,4),(1,5),(2,4),(2,5),(3,4),(3,5),恰有1件一等品的概率为P1=,恰有2件一等品的取法有:(1,2),(1,3),(2,3).故恰有2件一等品的概率为P2=,其对立事件是“至多有一件一等品”,概率为P3=1-P2=1-=.11.记集合A={(x,y)|x2+y2≤16}和集合B={(x,y)|x+y-4≤0,x≥0,y≥0}表示的平面区域分别为Ω1,Ω2.若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为()A. B. C. D.【解析】选A.区域Ω1为圆心在原点,半径为4的圆,区域Ω2为等腰直角三角形,两腰长为4,所以P===.12.某公司共有职工8000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表:公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额y(元)与乘市时间t(分钟)的关系是y=200+40,其中表示不超过的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为() A.0.5 B.0.7 C.0.8 D.0.9【解析】选D.当0≤t<60时,y≤300.记事件“公司1人每月用于路途补贴不超过300元”为事件A.则P(A)=++=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.从一副混合后的扑克牌(52张)中随机抽取1张,事件A为“抽得为红桃K”,事件B为“抽得为黑桃”,则概率P(A∪B)=.(结果用最简分数表示) 【解析】由互斥事件概率公式得P(A∪B)=+=.答案:14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.【解析】从长度为2,3,4,5的四条线段中任意取出3条共有4种不同的取法,其中可构成三角形的有(2,3,4),(2,4,5),(3,4,5)三种,故所求概率P=. 答案:15.将号码分别为1,2,…,9的九个小球放入一个袋中,这些小球仅号码不同,其余完全相同,甲从袋中摸出一个球.其号码为a,放回后,乙从此袋中再摸出一个球,其号码为b,则使不等式a-2b+10>0成立的事件发生的概率等于.【解析】甲、乙两人每人摸出一个小球都有9种不同的结果,故基本事件为(1,1),(1,2),(1,3),…,(9,7),(9,8),(9,9),共81个.由不等式a-2b+10>0得2b<a+10,于是,当b=1,2,3,4,5时,每种情形a可取1,2,…,9中每个值,使不等式成立,则共有45种;当b=6时,a可取3,4…,9中每个值,有7种;当b=7时,a可取5,6,7,8,9中每个值,有5种;当b=8时,a可取7,8,9中每一个值,有3种;当b=9时,a只能取9,有1种.于是,所求事件的概率为=.答案:16.两人相约在0时到1时之间相遇,早到者应等迟到者20分钟方可离去.如果两人出发是各自独立的,且在0时到1时之间的任何时刻相遇是等概率的,问两人相遇的概率为.【解析】假设两人分别在x时与y时到达,依题意:|x-y|≤才能相遇.显然到达时间的全部可能结果均匀分布在如图的单位正方形I内,而相遇现象,则发生在图中阴影区域G中,由几何概型的概率公式:P===.所以,两人相遇的可能性为.答案:三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)随机地排列数字1,5,6得到一个三位数,计算下列事件的概率.(1)所得的三位数大于400.(2)所得的三位数是偶数.【解析】1,5,6三个数字可以排成156,165,516,561,615,651,共6个不同的三位数.(1)大于400的三位数的个数为4,所以P==.(2)三位数为偶数的有156,516,共2个,所以所求的概率为P==.18.(12分)某地区的年降水量在下列范围内的概率如表所示:(1)求年降水量在100~200(mm)范围内的概率.(2)求年降水量在150~300(mm)范围内的概率.【解析】记这个地区的年降水量在100~150(mm),150~200(mm),200~250(mm),250~300(mm)范围内分别为事件A,B,C,D.这四个事件是彼此互斥的,根据互斥事件的概率加法公式,有(1)年降水量在100~200(mm)范围内的概率是P(A∪B)=P(A)+P(B)=0.12+0.25=0.37.(2)年降水量在150~300(mm)范围内的概率是P(B∪C∪D)=P(B)+P(C)+P(D)=0.25+0.16+0.14=0.55.19.(12分)已知集合M={(x,y)|x∈[0,2],y∈[-1,1]}(1)若x,y∈Z,求x+y≥0的概率.(2)若x,y∈R,求x+y≥0的概率.【解析】(1)设“x+y≥0,x,y∈Z”为事件A,x,y∈Z,x∈[0,2],即x=0,1,2;y∈[-1,1],即y=-1,0,1.则基本事件有:(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)共9个.其中满足“x+y≥0”的基本事件有8个,所以P(A)=.故x,y∈Z,x+y≥0的概率为.(2)设“x+y≥0,x,y∈R”为事件B,因为x∈[0,2],y∈[-1,1],则基本事件为如图四边形ABCD区域,事件B包括的区域为其中的阴影部分.所以P(B)====,故x,y∈R,x+y≥0的概率为.20.(12分)(2015·山东高考)某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如表(单位:人)(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率.(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.【解题指南】将符合要求的基本事件一一列出.【解析】(1)记“该同学至少参加上述一个社团为事件A”,则P(A)==.所以该同学至少参加上述一个社团的概率为.(2)从5名男同学和3名女同学中各随机选1人的所有基本事件有(A1,B1),(A1,B2),(A1,B3),(A2,B1),(A2,B2),(A2,B3),(A3,B1),(A3,B2),(A3,B3),(A4,B1),(A4,B2),(A4,B3),(A5,B1),(A5,B2),(A5,B3)共15个,其中A1被选中且B1未被选中的有(A1,B2),(A1,B3)共2个,所以A1被选中且B1未被选中的概率为P=.21.(12分)甲、乙两人相约于下午1:00~2:00之间到某车站乘公共汽车外出,他们到达车站的时间是随机的.设在下午1:00~2:00之间该车站有四班公共汽车开出,开车时间分别是1:15,1:30,1:45,2:00.求他们在下述情况下乘同一班车的概率:(1)约定见车就乘.(2)约定最多等一班车.【解题指南】本题是几何概型.解题关键是充分理解题意,画出示意图,明确总的基本事件和符合条件的基本事件构成的空间,然后利用几何概型概率计算公式计算求解即可.【解析】设甲、乙到站的时间分别是x,y,则1≤x≤2,1≤y≤2.试验区域D 为点(x,y)所形成的正方形,以16个小方格表示,示意图如图a所示.(1)如图b所示,约定见车就乘的事件所表示的区域如图b中4个加阴影的小方格所示,于是所求的概率为=.(2)如图c所示,约定最多等一班车的事件所示的区域如图c中的10个加阴影的小方格所示,于是所求的概率为=.22.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是.(1)求n的值.(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a,第二次取出的小球标号为b.①记事件A表示“a+b=2”,求事件A的概率;②在区间[0,2]内任取2个实数x,y,求事件“x2+y2>(a-b)2恒成立”的概率. 【解析】(1)由题意可知:=,解得n=2.(2)①不放回地随机抽取2个小球的所有基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.所以P(A)==.②记“x2+y2>(a-b)2恒成立”为事件B,则事件B等价于“x2+y2>4”,(x,y)可以看成平面中的点,则全部结果所构成的区域Ω={(x,y)|0≤x≤2,0≤y≤2,x,y ∈R},而事件B所构成的区域B={(x,y)|x2+y2>4,(x,y)∈Ω},所以P(B)===1-.关闭Word文档返回原板块。

高中数学北师大版必修三习题:阶段质量检测(三)含答案

高中数学北师大版必修三习题:阶段质量检测(三)含答案

阶段质量检测(三) (时间:90分钟 满分:120分)一、选择题(本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列事件:①如果a ,b 是实数,那么b +a =a +b ;②某地1月1日刮西北风;③当x 是实数时,x 2≥0;④一个电影院某天的上座率超过50%,其中是随机事件的有( )A .1个B .2个C .3个D .4个2.下列叙述随机事件的频率与概率的关系中,说法正确的是( ) A .频率就是概率B .频率是客观存在的,与试验次数无关C .随着试验次数的增多,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是( )A.310 B.112 C.4564 D.384.从一批羽毛球产品中任取一个,其质量小于4.8 g 的概率为0.3,质量小于4.85 g 的概率为0.32,那么质量在[4.8,4.85)(g)范围内的概率是( )A .0.62B .0.38C .0.02D .0.685.若连续抛掷两次骰子得到的点数分别为m ,n ,则点P (m ,n )在直线x +y =4上的概率是( )A.13B.14C.16D.1126.(北京高考)设不等式组⎩⎪⎨⎪⎧0≤x ≤2,0≤y ≤2表示的平面区域为D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.π4 B.π-22 C.π6 D.4-π47.从集合A ={-1,1,2}中随机选取一个数记为k ,从集合B ={-2,1,2}中随机选取一个数记为b ,则直线y =kx +b 不经过第三象限的概率为( )A.29B.13C.49D.598.ABCD 为长方形,AB =2,BC =1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 的距离大于1的概率为( )A.π4B.1-π4C.π8D.1-π89.下列概率模型:①从区间[-10,10]内任取一个数,求取到1的概率;②从区间[-10,10]内任取一个数,求取到绝对值不大于1的数的概率;③从区间[-10,10]内任取一个整数,求取到大于1且小于5的数的概率;④向一个边长为4 cm的正方形ABCD内投一点P,求点P离正方形的中心不超过1 cm的概率.其中是几何概型的个数为( )A.1 B.2 C.3 D.410.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A.19B.29C.718D.49二、填空题(本大题共4小题,每小题5分,满分20分.把答案填写在题中的横线上)11.如图,EFGH是以O为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A表示事件“豆子落在正方形EFGH内”,则P(A)=________.12.在区间[0,4]上任取一实数a,使方程x2+2x+a=0有实根的概率是________.13.(福建高考)利用计算机产生0~1之间的均匀随机数a,则事件“3a-1>0”发生的概率为________.14.某射击选手射击一次,击中10环、9环、8环的概率分别为0.3,0.4,0.1,则该射击选手射击一次,击中大于或等于9环的概率是________,击中小于8环的概率是________.三、解答题(本大题共4小题,满分50分.解答应写出必要的文字说明、证明过程或演算步骤)15.(12分)对某班一次测验成绩进行统计,如下表所示:分数段100~9190~8180~7170~6160~5150~41概率0.150.250.360.170.040.02(2)求该班成绩在[61,100]内的概率.16.(12分)设有一个等边三角形网格,其中每个最小等边三角形的边长都是4 3 cm,现用直径等于2 cm的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.17.(12分)为迎接2017全运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:(1)求a,b,c(2)若得分在[90,100]之间的有机会进入决赛,已知其中男女比例为2∶3,如果一等奖只有两名,求获得一等奖的全部为女生的概率.18.(14分)有编号为A1,A2,…,A10的10个零件,测量其直径(单位:cm),得到下面数据:(1)从上述10个零件中,随机抽取一个,求这个零件为一等品的概率;(2)从一等品零件中,随机抽取2个.①用零件的编号列出所有可能的抽取结果;②求这2个零件直径相等的概率.答案1. 解析:选B 由题意可知①③是必然事件,②④是随机事件.2. 解析:选C 由频率与概率关系知C正确.3. 解析:选D 所有子集共8个;其中含有2个元素的为{a,b},{a,c},{b,c}.4. 解析:选C 其中质量小于4.85 g包括质量小于4.8 g和质量在[4.8,4.85)范围内两种情况,所以所求概率为0.32-0.3=0.02.5. 解析:选D 由题意知(m,n)的取值情况有(1,1),(1,2),…,(1,6);(2,1),(2,2),…,(2,6);…;(6,1),(6,2),…,(6,6).共36种情况.而满足点P(m,n)在直线x+y=4上的取值情况有(1,3),(2,2),(3,1),共3种情况,故所求概率为336=112.6. 解析:选D 画草图易知区域D是边长为2的正方形,到原点的距离大于2的点在以原点为圆心,以2为半径的圆的外部,所以所求事件的概率为P =2×2-14·π·222×2=4-π4.7. 解析:选A 直线y =kx +b 不经过第三象限,即k <0,b >0,总的基本事件个数是3×3=9;k <0,b >0包含的基本事件有(-1,1),(-1,2),共2个,所以直线不经过第三象限的概率是P =29.8. 解析:选B 长方形面积为2,以O 为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为π2,因此取到的点到O 的距离小于1的概率为π2÷2=π4,取到的点到O 的距离大于1的概率为1-π4.9. 解析:选C ①是,因为区间[-10,10]内有无限多个数,对应数轴上无限多个点,且取到“1”这个数对应的点的概率为0;②是,因为区间[-10,10]和[-1,1]内都有无限多个数可取(无限性),且在这两个区间内每个数被取到的可能性相同(等可能性);③不是,因为区间[-10,10]内的整数只有21个,不满足无限性;④是,因为在边长为4 cm 的正方形和半径为1 cm 的圆内均有无数多个点(无限性),且这两个区域内的任何一个点都有可能被投到(等可能性).10. 解析:选D 首先要弄清楚“心有灵犀”的实质是|a -b |≤1,由于a ,b ∈{1,2,3,4,5,6},则满足要求的事件可能的结果有:(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16种,而依题意得基本事件的总数有36种.因此他们“心有灵犀”的概率为P =1636=49.11. 解析:圆的半径是1,则正方形的边长是2,故正方形EFGH 的面积为(2)2=2.又圆的面积为π,则由几何概型的概率公式,得P (A )=2π.答案:2π12. 解析:当4-4a ≥0即a ≤1时方程有实根,故所求的概率为P =14.答案:1413. 解析:因为0≤a ≤1,由3a -1>0得13<a ≤1,由几何概率公式得,事件“3a -1>0”发生的概率为1-131=23.答案:2314. 解析:设“击中10环”“击中9环”“击中8环”分别为事件A ,B ,C ,则P (A )=0.3,P (B )=0.4,P (C )=0.1,∴P (A +B )=P (A )+P (B )=0.7,P (A +B +C )=P (A )+P (B )+P (C )=0.8, ∴P =1-0.8=0.2. 答案:0.7 0.215. 解:记该班的测试成绩在[100~91),[90~81),[80~71),[70~61)内依次为事件A ,B ,C ,D ,由题意知事件A ,B ,C ,D 是彼此互斥的.(1)该班成绩在[81,100]内的概率是P (A +B )=P (A )+P (B )=0.15+0.25=0.4.(2)该班成绩在[61,100]内的概率是P (A +B +C +D )=P (A )+P (B )+P (C )+P (D )=0.15+0.25+0.36+0.17=0.93.16. 解:记A ={硬币落下后与格线没有公共点},在每个最小等边三角形内再作小等边三角形使其三边与原等边三角形三边距离都为1,则新作小等边三角形的边长为2 3.∴P (A )=34×23234×432=14. 17. 解:(1)a =50×0.1=5,b =2550=0.5,c =50-5-15-25=5,d =1-0.1-0.3-0.5=0.1.(2)把得分在[90,100]之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件.所以,获得一等奖的全部为女生的概率为P =310.18. 解:(1)由所给数据可知,一等品零件共有6个,设“从10个零件中,随机抽取一个为一等品”为事件A ,则P (A )=610=35.(2)①设一等品零件的编号为A 1,A 2,A 3,A 4,A 5,A 6.从这6个一等品零件中随机抽取2个,所有可能的结果有:{A1,A2},{A1,A3},{A1,A4},{A1,A5},{A1,A6},{A2,A3},{A2,A4},{A2,A5},{A2,A6},{A3,A4},{A3,A5},{A3,A6},{A4,A5},{A4,A6},{A5,A6},共有15种.②“从一等品零件中,随机抽取的2个零件直径相等”(记为事件B)的所有可能结果有:{A1,A4},{A1,A6},{A4,A6},{A2,A3},{A2,A5},{A3,A5},共有6种.所以P(B)=615=25.。

高中数学人教A版必修三 第三章 概率 学业分层测评15 Word版含答案

高中数学人教A版必修三 第三章 概率 学业分层测评15 Word版含答案

学业分层测评(十五)随机事件的概率(建议用时:45分钟)[学业达标]一、选择题1.下列事件中,是随机事件的是()A.长度为3,4,5的三条线段可以构成一个三角形B.长度为2,3,4的三条线段可以构成一直角三角形C.方程x2+2x+3=0有两个不相等的实根D.函数y=log a x(a>0且a≠1)在定义域上为增函数【解析】A为必然事件,B,C为不可能事件.【答案】 D2.下列说法正确的是()A.任一事件的概率总在(0,1)内B.不可能事件的概率不一定为0C.必然事件的概率一定为1D.以上均不对【解析】任一事件的概率总在[0,1]内,不可能事件的概率为0,必然事件的概率为1.【答案】 C3.一个家庭中先后有两个小孩,则他(她)们的性别情况可能为()A.男女、男男、女女B .男女、女男C .男男、男女、女男、女女D .男男、女女【解析】 用列举法知C 正确. 【答案】 C4.从存放号码分别为1,2,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:则取到号码为奇数的频率是( ) A .0.53 B .0.5 C .0.47D .0.37【解析】 取到号码为奇数的频率是10+8+6+18+11100=0.53. 【答案】 A5.给出下列三种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②作7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是n m =37;③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数是( )A .0B .1C .2D .3【解析】 由频率与概率之间的联系与区别知①②③均不正确. 【答案】 A 二、填空题6.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A ,则事件A 出现的频数为________,事件A 出现的频率为________. 【导学号:28750049】【解析】 100次试验中有48次正面朝上,则52次反面朝上,则频率=频数试验次数=52100=0.52.【答案】 52 0.527.已知随机事件A 发生的频率是0.02,事件A 出现了10次,那么共进行了________次试验.【解析】 设进行了n 次试验,则有10n =0.02,得n =500,故进行了500次试验.【答案】 5008.从100个同类产品中(其中有2个次品)任取3个.①三个正品;②两个正品,一个次品;③一个正品,两个次品;④三个次品;⑤至少一个次品;⑥至少一个正品.其中必然事件是________,不可能事件是________,随机事件是________.【解析】 从100个产品(其中2个次品)中取3个可能结果是:“三个全是正品”,“两个正品,一个次品”,“一个正品,两个次品”.【答案】 ⑥ ④ ①②③⑤ 三、解答题9.(1)从甲、乙、丙、丁四名同学中选2名代表学校参加一项活动,可能的选法有哪些?(2)试写出从集合A ={a ,b ,c ,d }中任取3个元素构成集合. 【解】 (1)可能的选法为:(甲,乙),(甲,丙),(甲,丁),(乙,丙),(乙,丁),(丙,丁).(2)可能的集合为{a ,b ,c },{a ,b ,d },{a ,c ,d },{b ,c ,d }. 10.一个地区从某年起几年之内的新生婴儿数及其中的男婴数如下:(1)计算男婴出生的频率;(保留4位小数)(2)这一地区男婴出生的频率是否稳定在一个常数上?【解】 (1)男婴出生的频率依次是:0.520 0,0.517 3,0.517 3,0.517 3.(2)各个频率均稳定在常数0.517 3上.[能力提升]1.掷一枚硬币,反面向上的概率是12,若连续抛掷同一枚硬币10次,则有( )A .一定有5次反面向上B .一定有6次反面向上C .一定有4次反面向上D .可能有5次反面向上【解析】 掷一枚硬币,“正面向上”和“反面向上”的概率为12,连掷10次,并不一定有5次反面向上,可能有5次反面向上.【答案】 D2.总数为10万张的彩票,中奖率是11 000,对于下列说法正确的是( )A .买1张一定不中奖B .买1 000张一定中奖C .买2 000张不一定中奖D .买20 000张不中奖【解析】 由题意,彩票中奖属于随机事件, ∴买一张也可能中奖,买2 000张也不一定中奖. 【答案】 C3.一袋中装有10个红球,8个白球,7个黑球,现在把球随机地一个一个摸出来,为了保证在第k 次或第k 次之前能首次摸出红球,则k 的最小值为________.【解析】 至少需摸完黑球和白球共15个. 【答案】 164.某教授为了测试贫困地区和发达地区的同龄儿童的智力,出了10个智力题,每个题10分.然后作了统计,下表是统计结果.贫困地区:发达地区:(1)利用计算器计算两地区参加测试的儿童中得60分以上的频率;(2)求两个地区参加测试的儿童得60分以上的概率;(3)分析贫富差距为什么会带来人的智力的差别?【解】(1)贫困地区依次填:0.533,0.540,0.520,0.520,0.512,0.503.发达地区依次填:0.567,0.580,0.560,0.555,0.552,0.550.(2)贫困地区和发达地区参加测试的儿童得60分以上的频率逐渐趋于0.5和0.55,故概率分别为0.5和0.55.(3)经济上的贫困导致贫困地区生活水平落后,儿童的健康和发育会受到一定的影响;另外经济落后也会使教育事业发展落后,导致智力出现差别.。

(word版)(经典)高中数学必修三单元测试题附答案解析

(word版)(经典)高中数学必修三单元测试题附答案解析

成龙教育〔数学3必修〕第二章:统计[根底训练A组]一、选择题110生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为,b,.名工人某天生产同一零件,a中位数为众数为c,那么有()A.a b c B.b c aC.c a b D.c b a2.以下说法错误的选项是()A.在统计里,把所需考察对象的全体叫作总体B.一组数据的平均数一定大于这组数据中的每个数据C.平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D.一组数据的方差越大,说明这组数据的波动越大3.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是()A.B.C.3D.34.要了解全市高一学生身高在某一范围的学生所占比例的大小,需知道相应样本的()A.平均数B.方差C.众数D.频率分布5.要从已编号〔1:60〕的60枚最新研制的某型导弹中随机抽取6枚来进行发射试验,用每局部选取的号码间隔一样的系统抽样方法确定所选取的6枚导弹的编号可能是〔〕A.5,10,15,20,25,30B.3,13,23,33,43,53C.1,2,3,4,5,6D.2,4,8,16,32,486.容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号12345678频数1013x141513129第三组的频数和频率分别是() A.14和B.和14C.1和D.1和1 14314二、填空题1.为了了解参加运动会的2000名运发动的年龄情况,从中抽取100名运发动;就这个问题,以下说法中正确的有;2000名运发动是总体;②每个运发动是个体;③所抽取的100名运发动是一个样本;④样本容量为100;⑤这个抽样方法可采用按年龄进行分层抽样;⑥每个运发动被抽到的概率相等。

2.经问卷调查,某班学生对摄影分别执“喜欢〞、“不喜欢〞和“一般〞三种态度,其中执“一般〞态度的比“不喜欢〞态度的多12人,按分层抽样方法从全班选出局部学生座谈摄影,如果选出的2位“喜欢〞摄影的同学、1位“不喜欢〞摄影的同学和3位执“一般〞态度的同学,那么全班学生中“喜欢〞摄影的比全班人数的一半还多人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析:给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P= = .故选B.
答案:B
7.在区间[-π,π]内随机取两个数分别记为a,b,则使得函数f(x)=x2+2ax-b2+π2有零点的概率为()
A. B.1-
C. D. -1
解析:要使函数有零点,则Δ=(2a)2-4(-b2+π2)≥0,a2+b2≥π2,又-π≤a≤π,-π≤b≤π,所以基本事件的范围是2π·2π=4π2,函数有零点所包含的基本事件的范围是4π2-π3.所以所求概率为 =1- .故选B.
答案:B
5.
如图,是由一个圆、一个三角形和一个长方形构成的组合图形,现用红、蓝两种颜色为其涂色,每个图形只能涂一种颜色,则三个形状颜色不全相同的概率为()
A. B.
C. D.
解析:P= = .
答案:A
6.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是()
A. B.
C. D.
答案:C
10.一个数学兴趣小组有女同学2名,男同学3名,现从这个数学兴趣小组中任选2名同学参加数学竞赛,则参加数学竞赛的2名同学中,女同学人数不少于男同学人数的概率为()
A. B.
C. D.
解析:3名男同学,2名女同学,共5名同学,从中选出2人,有10种情况,女同学人数不少于男同学人数,包括2名女同学和1名女同学1名男同学,共7种情况,故所求概率为 .
A. - B.
C.1- D.
解析:
如图,不妨设扇形的半径为2a,记两块白色区域的面积分别为S1,S3,两块阴影部分的面积分别为S2,S4,
则S1+S2+S3+S4=S扇形OAB= π(2a)2=πa2,①
而S1+S2与S2+S3的和恰好为一个半径为a的圆,即S1+S2+S2+S3=πa2.②
①-②得S2=S4,由图可知S2=(S扇形EOD+S扇形COD)-S正方形OEDC= πa2-a2,所以S阴影=πa2-2a2.
答案:D
11.掷一枚均匀的正六面体骰子,设A表示事件“出现2点”,B表示“出现奇数点”,则P(A∪B)等于()
A. B.
C. D.
解析:由古典概型的概率公式得P(A)= ,P(B)= = .
又事件A与B为互斥事件,
由互斥事件的概率和公式得P(A∪B)=P(A)+P(B)= + = .
答案:B
12.
如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,在扇形OAB内随机取一点,则此点取自阴影部分的概率是()
答案:B
8.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是
A. B.
C. D.
解析:设被污损的数字是x,则x∈{0,1,2,3,4,5,6,7,8,9}.甲的平均成绩为 甲= (88+89+90+91+92)=90, 乙= [83+83+87+(90+x)+99]= ,设甲的平均成绩超过乙的平均成绩为事件A,则此时有90> ,解得x<8,则事件A包含x=0,1,2,3,4,5,6,7,共8个基本事件,则P(A)= = .
解析:从1,2,3,4,5中选取3个数构成的基本事件空间共有10个元素,要使剩下的两个数是奇数,则在选取过程中能取1个奇数,可构成三个基本事件:(2,4,1),(2,4,3),(2,4,5).因此所求概率为P= =0.3.
第三章 质量评估检测
时间:120分钟 满分:150分
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.
1.从甲、乙、丙三人中任选两名代表,甲被选中的概率()
A. B.
C. D.1
解析:P= = .
答案:C
2.将骰子向桌面上先后抛掷2次,其中向上的数之积为12的结果有()
由几何概型概率公式可得,此点取自阴影部分的概率P= = =1- .
答案:C
二、填空题:本大题共4小题,每小题5分,共20分.
13.取一根长为3 m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1 m的概率应为________.
解析:将3 m的绳子平均分成三段,每段1 m,则依题意要使剪得两段的长都不小于1 m,则应在中间一段剪开,故满足题意的概率为 .
A.2种B.4种
C.6种D.8种
解析:有4种情况,即3×4,4×3,2×6,6×2,∴将骰子向桌面上先后抛掷2次,其中向上的数之积为12的结果有4种.
答案:B
3.在面积为S的△ABC的内部任取一点P,则△PBC的面积小于 的概率为()
A. B.
C. D.
解析:
如图所示,EF为△ABC的中位线.当点P位于四边形BEFC内时,S△PBC的面积小于 ,
又∵S△AEF= S,SBEFC= S.
∴△PBC的面积小于 的概率为P= = .
答案:C
4.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是()
A.A与C互斥
B.B与C互斥
C.任何两个均互斥
D.任何两个均不互斥
解析:因为事件B是表示“三件产品全是次品”,事件C是表示“三件产品不全是次品”,显然这两个事件不可能同时发生,故它们是互斥的,所以选B.
答案:C
9.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒内间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时
由于两串彩灯第一次闪亮相互独立且4秒内任一时刻等可能发生,所以总的基本事件为如图所示的正方形的面积,而要求的是第一次闪亮的时刻相差不超过2秒的基本事件,即如图所示的阴影部分的面积,根据几何概型的计算公式可知它们第一次闪亮的时刻相差不超过2秒的概率是 = ,故选C.
答案:
14.
如图所示,在正方形内有一扇形(见阴影部分),点P随意等可能落在正方形内,则这点落在扇形外且在正方形内的概率为________.
解析:设正方形的边长为1,则正方形的面积S=1,扇形的面积S1= × ×12= ,根据几何概型公式得,点P落在扇形外且在正方形内的概率为 =1- .
答案:1-
15.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是________.(结果用数值表示)
相关文档
最新文档