最新导数与函数的单调性练习题

合集下载

导数与函数的单调性练习题

导数与函数的单调性练习题

导数与函数的单调性练习题2.2.1 导数与函数的单调性基础巩固题:1.已知函数 $f(x)=\frac{ax+1}{x+2}$ 在区间 $(-2,+\infty)$ 上为增函数,求实数 $a$ 的取值范围。

解析:由题意可得 $f(x)$ 在 $(-2,+\infty)$ 上单调递增,因此$a>-\frac{1}{2}$。

又因为$f(x)$ 的定义域为$(-2,+\infty)$,所以 $a$ 的取值范围为 $a\geq -\frac{1}{2}$ 或 $a\leq -2$,即$a\geq -\frac{1}{2}$ 或 $a\leq -2$。

2.已知函数 $f(x)=x^2+2x+a\ln x$ 在区间 $(0,1)$ 上单调,求实数 $a$ 的取值范围。

解析:由题意可得 $f(x)$ 在 $(0,1)$ 上单调,因此$f'(x)=2x+2+\frac{a}{x}$ 在 $(0,1)$ 上恒大于等于零或恒小于等于零。

化简可得 $a\geq -(2x^2+2x)$ 或 $a\leq -(2x^2+2x)$ 在$(0,1)$ 上恒成立。

记 $g(x)=-(2x^2+2x)$,则 $g(x)$ 在$(0,1)$ 上单调递增,且 $-4<g(x)<0$。

因此,$a\geq -4$ 或$a\leq -4$,即 $a\geq -4$ 或 $a\leq -4$。

3.已知函数$f(x)=\frac{x}{2x-9}$,求$f(x)$ 的单调区间。

解析:求导得 $f'(x)=\frac{9}{(2x-9)^2}$,$f'(x)>0$ 当且仅当 $x\frac{9}{2}$。

因此,$f(x)$ 在 $(-\infty,\frac{9}{2})$ 上单调递减,在 $(\frac{9}{2},+\infty)$ 上单调递增。

所以$f(x)$ 的单调区间为 $(-\infty,\frac{9}{2})$ 和$(\frac{9}{2},+\infty)$。

(完整word版)导数与单调性极值最基础值习题

(完整word版)导数与单调性极值最基础值习题

导数与单调性极值最基础值习题一.选择题1.可导函数y=f(x)在某一点的导数值为0是该函数在这点取极值的() A.充分条件B.必要条件 C.充要条件 D.必要非充分条件2.函数y=1+3x﹣x3有()A.极小值﹣1,极大值3 B.极小值﹣2,极大值3C.极小值﹣1,极大值1 D.极小值﹣2,极大值23.函数f(x)=x3+ax2﹣3x﹣9,已知f(x)的两个极值点为x1,x2,则x1•x2=A.9 B.﹣9 C.1 D.﹣14.函数的最大值为()A. B.e2C.e D.e﹣15.已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4 B.﹣2 C.4 D.26.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=( )A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或17.设函数f(x)=xe x,则()A.x=1为f(x)的极大值点 B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点8.函数y=x3﹣2ax+a在(0,1)内有极小值,则实数a的取值范围是( )A.(0,3)B.(0,)C.(0,+∞) D.(﹣∞,3)9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于()A.11或18 B.11 C.18 D.17或1810.设三次函数f(x)的导函数为f′(x),函数y=x•f′(x)的图象的一部分如图所示,则正确的是()A.f(x)的极大值为,极小值为B.f(x)的极大值为,极小值为C.f(x)的极大值为f(﹣3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(﹣3)11.若f(x)=x3+2ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是()A.﹣a<a<2 B.a>2或a<﹣1 C.a≥2或a≤﹣1 D.a>1或a<﹣212.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是( )A.5,﹣15 B.5,﹣4 C.﹣4,﹣15 D.5,﹣1613.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是( )A.﹣37 B.﹣29 C.﹣5 D.以上都不对二.填空题15.函数f(x)=x3﹣3x2+1的极小值点为.16.已知f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,则a+b= .17.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= .18.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a的取值范围是.19.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值范围是.20.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a= .21.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是.22.已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m= .23.设f(x)=x3﹣﹣2x+5,当x∈[﹣1,2]时,f(x)<m恒成立,则实数m的取值范围为.24.f(x)=ax3﹣3x+1对于x∈[﹣1,1]总有f(x)≥0成立,则a= .三.解答题25.已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.26.已知函数f(x)=x﹣1﹣lnx(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)求函数f(x)的极值;(Ⅲ)对∀x∈(0,+∞),f(x)≥bx﹣2恒成立,求实数b的取值范围.28.已知函数f(x)=xlnx.(Ⅰ)求f(x)的最小值;(Ⅱ)若对所有x≥1都有f(x)≥ax﹣1,求实数a的取值范围.29.已知函数f(x)=(x﹣2)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,2]上的最小值和最大值.30.已知函数f(x)=ax3﹣6ax2+b(x∈[﹣1,2])的最大值为3,最小值为﹣29,求a、b的值.31.求函数f(x)=x3﹣2x2+5在区间[﹣2,2]的最大值和最小值.32.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.导数与单调性极值最基础值习题参考答案与试题解析一.选择题(共14小题)1.可导函数y=f(x)在某一点的导数值为0是该函数在这点取极值的( )A.充分条件B.必要条件C.充要条件D.必要非充分条件【分析】结合极值的定义可知必要性成立,而充分性中除了要求f′(x)=0外,还的要求在两侧有单调性的改变(或导函数有正负变化),通过反例可知充分性不成立.【解答】解:如y=x3,y′=3x2,y′|x=0=0,但x=0不是函数的极值点.若函数在x0取得极值,由定义可知f′(x)=0,所以f′(x)=0是x为函数y=f(x)的极值点的必要不充分条件故选:D.【点评】本题主要考查函数取得极值的条件:函数在x0处取得极值⇔f′(x)=0,且f′(x<x 0)•f′(x>x)<02.函数y=1+3x﹣x3有()A.极小值﹣1,极大值3 B.极小值﹣2,极大值3C.极小值﹣1,极大值1 D.极小值﹣2,极大值2【分析】利用导数工具去解决该函数极值的求解问题,关键要利用导数将原函数的单调区间找出来,即可确定出在哪个点处取得极值,进而得到答案.【解答】解:∵y=1+3x﹣x3,∴y′=3﹣3x2,由y′=3﹣3x2>0,得﹣1<x<1,由y′=3﹣3x2<0,得x<﹣1,或x>1,∴函数y=1+3x﹣x3的增区间是(﹣1,1),减区间是(﹣∞,﹣1),(1,+∞).∴函数y=1+3x﹣x3在x=﹣1处有极小值f(﹣1)=1﹣3﹣(﹣1)3=﹣1,函数y=1+3x﹣x3在x=1处有极大值f(1)=1+3﹣13=3.故选:A.【点评】利用导数工具求该函数的极值是解决该题的关键,要先确定出导函数大于0时的实数x 的范围,再讨论出函数的单调区间,根据极值的判断方法求出该函数的极值,体现了导数的工具作用3.函数f(x)=x3+ax2﹣3x﹣9,已知f(x)的两个极值点为x1,x2,则x1•x2=()A.9 B.﹣9 C.1 D.﹣1【分析】本题的函数为三次多项式函数,若三次多项式函数有两个极值点,说明它的导函数有两个不相等的零点,转化为二次函数的根求解,用韦达定理可得x1•x2=﹣1【解答】解:由f(x)=x3+ax2﹣3x﹣9得, f′(x)=3x2+2ax﹣3f′(x)=0的两根为x1,x2就是函数的两个极值点根据韦达定理,得故选:D.【点评】本题主要考查利用导数工具讨论函数的单调性,从而得到函数的极值点.一元二次方程根与系数的关系是解决本题的又一个亮点.4.函数的最大值为()A. B.e2C.e D.e﹣1【分析】利用导数进行求解,注意函数的定义域,极大值在本题中也是最大值;【解答】解:∵函数,(x>0)∴y′=,令y′=0,得x=e,当x>e时,y′<0,f(x)为减函数,当0<x<e时,y′>0,f(x)为增函数,∴f(x)在x=e处取极大值,也是最大值,∴y最大值为f(e)==e﹣1,故选:D.【点评】此题主要考查函数在某点取极值的条件,利用导数研究函数的最值问题,是一道基础题;5.已知a为函数f(x)=x3﹣12x的极小值点,则a=()A.﹣4 B.﹣2 C.4 D.2【分析】可求导数得到f′(x)=3x2﹣12,可通过判断导数符号从而得出f(x)的极小值点,从而得出a的值.【解答】解:f′(x)=3x2﹣12;∴x<﹣2时,f′(x)>0,﹣2<x<2时,f′(x)<0,x>2时,f′(x)>0;∴x=2是f(x)的极小值点;又a为f(x)的极小值点;∴a=2.故选:D.【点评】考查函数极小值点的定义,以及根据导数符号判断函数极值点的方法及过程,要熟悉二次函数的图象.6.已知函数y=x3﹣3x+c的图象与x轴恰有两个公共点,则c=( )A.﹣2或2 B.﹣9或3 C.﹣1或1 D.﹣3或1【分析】求导函数,确定函数的单调性,确定函数的极值点,利用函数y=x3﹣3x+c的图象与x 轴恰有两个公共点,可得极大值等于0或极小值等于0,由此可求c的值.【解答】解:求导函数可得y′=3(x+1)(x﹣1),令y′>0,可得x>1或x<﹣1;令y′<0,可得﹣1<x<1;∴函数在(﹣∞,﹣1),(1,+∞)上单调增,(﹣1,1)上单调减,∴函数在x=﹣1处取得极大值,在x=1处取得极小值.∵函数y=x3﹣3x+c的图象与x轴恰有两个公共点,∴极大值等于0或极小值等于0.∴1﹣3+c=0或﹣1+3+c=0,∴c=﹣2或2.故选:A.【点评】本题考查导数知识的运用,考查函数的单调性与极值,解题的关键是利用极大值等于0或极小值等于0.7.设函数f(x)=xe x,则( )A.x=1为f(x)的极大值点B.x=1为f(x)的极小值点C.x=﹣1为f(x)的极大值点D.x=﹣1为f(x)的极小值点【分析】由题意,可先求出f′(x)=(x+1)e x,利用导数研究出函数的单调性,即可得出x=﹣1为f(x)的极小值点【解答】解:由于f(x)=xe x,可得f′(x)=(x+1)e x,令f′(x)=(x+1)e x=0可得x=﹣1令f′(x)=(x+1)e x>0可得x>﹣1,即函数在(﹣1,+∞)上是增函数令f′(x)=(x+1)e x<0可得x<﹣1,即函数在(﹣∞,﹣1)上是减函数所以x=﹣1为f(x)的极小值点故选:D.【点评】本题考查利用导数研究函数的极值,解题的关键是正确求出导数及掌握求极值的步骤,本题是基础题,8.函数y=x3﹣2ax+a在(0,1)内有极小值,则实数a的取值范围是()A.(0,3)B.(0,)C.(0,+∞) D.(﹣∞,3)【分析】先对函数求导,函数在(0,1)内有极小值,得到导函数等于0时,求出x的值,这个值就是函数的极小值点,使得这个点在(0,1)上,求出a的值.【解答】解:根据题意,y’=3x2﹣2a=0有极小值则方程有解a>0x=±所以x=是极小值点所以0<<10<<10<a<故选:B.【点评】本题考查函数在某一点取得极值点条件,本题解题的关键是在一个区间上有极值相当于函数的导函数在这一个区间上有解.9.已知函数f(x)=x3+ax2+bx+a2在x=1处有极值10,则f(2)等于()A.11或18 B.11 C.18 D.17或18【分析】根据函数在x=1处有极值时说明函数在x=1处的导数为0,又因为f′(x)=3x2+2ax+b,所以得到:f′(1)=3+2a+b=0,又因为f(1)=10,所以可求出a与b的值确定解析式,最终将x=2代入求出答案.【解答】解:f′(x)=3x2+2ax+b,∴或①当时,f′(x)=3(x﹣1)2≥0,∴在x=1处不存在极值;②当时,f′(x)=3x2+8x﹣11=(3x+11)(x﹣1)∴x∈(,1),f′(x)<0,x∈(1,+∞),f′(x)>0,符合题意.∴,∴f(2)=8+16﹣22+16=18.故选:C.【点评】本题主要考查导数为0时取到函数的极值的问题,这里多注意联立方程组求未知数的思想,本题要注意f′(x0)=0是x=x是极值点的必要不充分条件,因此对于解得的结果要检验.10.设三次函数f(x)的导函数为f′(x),函数y=x•f′(x)的图象的一部分如图所示,则正确的是()A.f(x)的极大值为,极小值为B.f(x)的极大值为,极小值为C.f(x)的极大值为f(﹣3),极小值为f(3)D.f(x)的极大值为f(3),极小值为f(﹣3)【分析】观察图象知,x<﹣3时,f′(x)<0.﹣3<x<0时,f′(x)>0.由此知极小值为f (﹣3).0<x<3时,yf′(x)>0.x>3时,f′(x)<0.由此知极大值为f(3).【解答】解:观察图象知,x<﹣3时,y=x•f′(x)>0,∴f′(x)<0.﹣3<x<0时,y=x•f′(x)<0,∴f′(x)>0.由此知极小值为f(﹣3).0<x<3时,y=x•f′(x)>0,∴f′(x)>0.x>3时,y=x•f′(x)<0,∴f′(x)<0.由此知极大值为f(3).故选:D.【点评】本题考查极值的性质和应用,解题时要仔细图象,注意数形结合思想的合理运用.11.若f(x)=x3+2ax2+3(a+2)x+1有极大值和极小值,则a的取值范围是()A.﹣a<a<2 B.a>2或a<﹣1 C.a≥2或a≤﹣1 D.a>1或a<﹣2【分析】求出函数的导函数,根据函数的极值是导函数的根,且根左右两边的导函数符号不同得到△>0;解出a的范围.【解答】解:f′(x)=3x2+4ax+3(a+2)∵f(x)有极大值和极小值∴△=16a2﹣36(a+2)>0解得a>2或a<﹣1故选:B.【点评】本题考查函数的极值点是导函数的根,且根左右两边的导函数符号需不同.12.函数y=xe﹣x,x∈[0,4]的最小值为()A.0 B.C. D.【分析】先求出导函数f′(x),由f′(x)>0和f′(x)<0,求出x的取值范围,得出函数f(x)的单调区间,从而求出函数的最值.【解答】解:,当x∈[0,1)时,f′(x)>0,f(x)单调递增,当x∈(1,4]时,f′(x)<0,f(x)单调递减,∵f(0)=0,,∴当x=0时,f(x)有最小值,且f(0)=0.故选:A.【点评】本题考查的是利用导数,判断函数的单调性,从而求出最值,属于基础题.13.函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是()A.5,﹣15 B.5,﹣4 C.﹣4,﹣15 D.5,﹣16【分析】对函数y=2x3﹣3x2﹣12x+5求导,利用导数研究函数在区间[0,3]上的单调性,根据函数的变化规律确定函数在区间[0,3]上最大值与最小值位置,求值即可【解答】解:由题意y'=6x2﹣6x﹣12令y’>0,解得x>2或x<﹣1故函数y=2x3﹣3x2﹣12x+5在(0,2)减,在(2,3)上增又y(0)=5,y(2)=﹣15,y(3)=﹣4故函数y=2x3﹣3x2﹣12x+5在区间[0,3]上最大值与最小值分别是5,﹣15故选:A.【点评】本题考查用导数判断函数的单调性,利用单调性求函数的最值,利用单调性研究函数的最值,是导数的重要运用,注意上类题的解题规律与解题步骤.14.已知f(x)=2x3﹣6x2+m(m为常数)在[﹣2,2]上有最大值3,那么此函数在[﹣2,2]上的最小值是()A.﹣37 B.﹣29 C.﹣5 D.以上都不对【分析】先求导数,根据单调性研究函数的极值点,在开区间(﹣2,2)上只有一极大值则就是最大值,从而求出m,通过比较两个端点﹣2和2的函数值的大小从而确定出最小值,得到结论.【解答】解:∵f′(x)=6x2﹣12x=6x(x﹣2),∵f(x)在(﹣2,0)上为增函数,在(0,2)上为减函数,∴当x=0时,f(x)=m最大,∴m=3,从而f(﹣2)=﹣37,f(2)=﹣5.∴最小值为﹣37.故选:A.【点评】本题考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b) 比较而得到的,属于基础题.二.填空题(共10小题)15.函数f(x)=x3﹣3x2+1的极小值点为 2 .【分析】首先求导可得f′(x)=3x2﹣6x,解3x2﹣6x=0可得其根,再判断导函数的符号分析函数的单调性,即可得到极小值点.【解答】解:f′(x)=3x2﹣6x令f′(x)=3x2﹣6x=0得x1=0,x2=2且x∈(﹣∞,0)时,f′(x)>0;x∈(0,2)时,f′(x)<0;x∈(2,+∞)时,f′(x)>0故f(x)在x=2出取得极小值.故答案为2.【点评】本题考查函数的极值问题,属基础知识的考查.熟练掌握导数法求极值的方法步骤是解答的关键.16.已知f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,则a+b= 7 .【分析】求导函数,利用函数f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,建立方程组,求得a,b的值,再验证,即可得到结论.【解答】解:∵函数f(x)=x3﹣ax2﹣bx+a2∴f'(x)=3x2﹣2ax﹣b,又∵函数f(x)=x3﹣ax2﹣bx+a2,当x=1时,有极值10,∴,∴或时,f’(x)=3x2﹣2ax﹣b=(x﹣1)(3x+11)=0有不等的实根,满足题意;时,f'(x)=3x2﹣2ax﹣b=3(x﹣1)2=0有两个相等的实根,不满足题意;∴a+b=7故答案为:7【点评】本题考查导数知识的运用,考查函数的极值,考查学生的计算能力,属于基础题.17.已知函数f(x)=x(x﹣c)2在x=2处有极大值,则c= 6 .【分析】由已知函数f(x)=x(x﹣c)2在x=2处有极大值,则必有f′(2)=0,且在x=2的两侧异号即可得出.【解答】解:∵f′(x)=(x﹣c)2+2x(x﹣c)=3x2﹣4cx+c2,且函数f(x)=x(x﹣c)2在x=2处有极大值,∴f′(2)=0,即c2﹣8c+12=0,解得c=6或2.经检验c=2时,函数f(x)在x=2处取得极小值,不符合题意,应舍去.故c=6.故答案为6.【点评】熟练掌握利用导数研究函数的极值的方法是解题的关键.18.已知函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,则实数a的取值范围是(﹣∞,﹣1)∪(2,+∞).【分析】先对函数进行求导,根据函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值,可以得到△>0,进而可解出a的范围.【解答】解:∵f(x)=x3+3ax2+3(a+2)x+1∴f'(x)=3x2+6ax+3(a+2)∵函数f(x)=x3+3ax2+3(a+2)x+1既有极大值又有极小值∴△=(6a)2﹣4×3×3(a+2)>0∴a>2或a<﹣1故答案为:(﹣∞,﹣1)∪(2,+∞)【点评】本题主要考查函数在某点取得极值的条件.属基础题.19.已知函数f(x)=x3+mx2+(m+6)x+1既存在极大值又存在极小值,则实数m的取值范围是m <﹣3或m>6 .【分析】求出函数f(x)的导函数,根据已知条件,导函数必有两个不相等的实数根,只须令导函数的判别式大于0,求出m的范围即可.【解答】解:∵函数f(x)=x3+mx2+(m+6)x+1既存在极大值,又存在极小值f′(x)=3x2+2mx+m+6=0,它有两个不相等的实根,∴△=4m2﹣12(m+6)>0解得m<﹣3或m>6故答案为:m<﹣3或m>6.【点评】本题主要考查了函数在某点取得极值的条件.导数的引入,为研究高次函数的极值与最值带来了方便.20.已知函数f(x)=4x+(x>0,a>0)在x=3时取得最小值,则a= 36 .【分析】由题设函数在x=3时取得最小值,可得f′(3)=0,解此方程即可得出a的值.【解答】解:由题设函数在x=3时取得最小值,∵x∈(0,+∞),∴得x=3必定是函数的极值点,∴f′(3)=0,f′(x)=4﹣,即4﹣=0,解得a=36.故答案为:36.【点评】本题考查利用导数求函数的最值及利用导数求函数的极值,解题的关键是理解“函数在x=3时取得最小值”,将其转化为x=3处的导数为0等量关系.21.f(x)=x3﹣3x2+2在区间[﹣1,1]上的最大值是 2 .【分析】求出函数的导函数,令导函数为0,求出根,判断根是否在定义域内,判断根左右两边的导函数符号,求出最值.【解答】解:f′(x)=3x2﹣6x=3x(x﹣2)令f′(x)=0得x=0或x=2(舍)当﹣1<x<0时,f′(x)>0;当0<x<1时,f′(x)<0所以当x=0时,函数取得极大值即最大值所以f(x)的最大值为2故答案为2【点评】求函数的最值,一般先求出函数的极值,再求出区间的端点值,选出最值.22.已知函数f(x)=x3﹣12x+8在区间[﹣3,3]上的最大值与最小值分别为M,m,则M﹣m= 32 .【分析】先对函数f(x)进行求导,令导函数等于0求出x,然后根据导函数的正负判断函数f (x)的单调性,列出在区间[﹣3,3]上f(x)的单调性、导函数f’(x)的正负的表格,从而可确定最值得到答案.【解答】解:令f′(x)=3x2﹣12=0,得x=﹣2或x=2,列表得:x﹣3(﹣3,﹣﹣2(﹣2,2)2(2,3)32)f′(x)+0﹣0+f(x)17极值24极值﹣8﹣1可知M=24,m=﹣8,∴M﹣m=32.故答案为:32【点评】本题主要考查函数的求导运算、函数的单调性与其导函数的正负之间的关系和函数在闭区间上的最值.导数是由高等数学下放到高中的内容,每年必考,要引起重视.23.设f(x)=x3﹣﹣2x+5,当x∈[﹣1,2]时,f(x)<m恒成立,则实数m的取值范围为(7,+∞).【分析】先求导数,然后根据函数单调性研究函数的极值点,通过比较极值与端点的大小从而确定出最大值,进而求出变量m的范围.【解答】解:f′(x)=3x2﹣x﹣2=0解得:x=1或﹣当x∈时,f'(x)>0,当x∈时,f'(x)<0,当x∈(1,2)时,f'(x)>0,∴f(x)max ={f(﹣),f(2)}max=7由f(x)<m恒成立,所以m>fmax(x)=7.故答案为:(7,+∞)【点评】本题考查了利用导数求闭区间上函数的最值,求函数在闭区间[a,b]上的最大值与最小值是通过比较函数在(a,b)内所有极值与端点函数f(a),f(b)比较而得到的,属于基础题.24.f(x)=ax3﹣3x+1对于x∈[﹣1,1]总有f(x)≥0成立,则a= 4 .【分析】这类不等式在某个区间上恒成立的问题,可转化为求函数最值的问题,本题要分三类:①x=0,②x>0,③x<0等三种情形.当x=0时,不论a取何值,f(x)≥0都成立;当x>0时,有a≥,可构造函数g(x)=,然后利用导数求g(x)的最大值,只需要使a≥g(x)max 同理可得x<0时的a的范围,从而可得a的值.【解答】解:①若x=0,则不论a取何值,f(x)≥0都成立;②当x>0,即x∈(0,1]时,f(x)=ax3﹣3x+1≥0可化为:a≥设g(x)=,则g′(x)=,所以g(x)在区间(0,]上单调递增,在区间[,1]上单调递减,=g()=4,从而a≥4;因此g(x)max③当x<0,即x∈[﹣1,0)时,f(x)=ax3﹣3x+1≥0可化为:a≤,g(x)=在区间[﹣1,0)上单调递增,=g(﹣1)=4,从而a≤4,综上a=4.因此g(x)min答案为:4.【点评】本题考查的是含参数不等式的恒成立问题,考查分类讨论,转化与化归的思想方法,利用导数和函数的单调性求函数的最大值,最小值等知识与方法.在讨论时,容易漏掉x=0的情形,因此分类讨论时要特别注意该问题的解答.三.解答题(共10小题)25.已知函数f(x)=ax3+x2+bx(其中常数a,b∈R),g(x)=f(x)+f′(x)是奇函数.(1)求f(x)的表达式;(2)讨论g(x)的单调性,并求g(x)在区间[1,2]上的最大值和最小值.【分析】(Ⅰ)由f'(x)=3ax2+2x+b得g(x)=fax2+(3a+1)x2+(b+2)x+b,再由函数g(x)是奇函数,由g(﹣x)=﹣g(x),利用待系数法求解.(2)由(1)知,再求导g’(x)=﹣x2+2,由g’(x)≥0求得增区间,由g’(x)≤0求得减区间;求最值时从极值和端点值中取.【解答】解:(1)由题意得f’(x)=3ax2+2x+b因此g(x)=f(x)+f’(x)=ax3+(3a+1)x2+(b+2)x+b因为函数g(x)是奇函数,所以g(﹣x)=﹣g(x),即对任意实数x,有a(﹣x)3+(3a+1)(﹣x)2+(b+2)(﹣x)+b=﹣[ax3+(3a+1)x2+(b+2)x+b]从而3a+1=0,b=0,解得,因此f(x)的解析表达式为.(2)由(Ⅰ)知,所以g’(x)=﹣x2+2,令g'(x)=0解得则当时,g'(x)<0从而g(x)在区间,上是减函数,当,从而g(x)在区间上是增函数,由前面讨论知,g(x)在区间[1,2]上的最大值与最小值只能在时取得,而,因此g(x)在区间[1,2]上的最大值为,最小值为.【点评】本题主要考查构造新函数,用导数研究函数的单调性和求函数的最值.26.已知函数f(x)=ln(1+x)﹣x,g(x)=xlnx.(Ⅰ)求函数f(x)的最大值;(Ⅱ)设0<a<b,证明0<g(a)+g(b)﹣2g()<(b﹣a)ln2.【分析】(1)先求出函数的定义域,然后对函数进行求导运算,令导函数等于0求出x的值,再判断函数的单调性,进而可求出最大值.(2)先将a,b代入函数g(x)得到g(a)+g(b)﹣2g()的表达式后进行整理,根据(1)可得到lnx<x,将、放缩变形为、代入即可得到左边不等式成立,再用根据y=lnx的单调性进行放缩<.然后整理即可证明不等式右边成立.【解答】(Ⅰ)解:函数f(x)的定义域为(﹣1,+∞)..令f′(x)=0,解得x=0.当﹣1<x<0时,f′(x)>0,当x>0时,f′(x)<0.又f(0)=0,故当且仅当x=0时,f(x)取得最大值,最大值为0.(Ⅱ)证明:=.由(Ⅰ)结论知ln(1+x)﹣x<0(x>﹣1,且x≠0),由题设,因此ln=﹣ln(1+)>﹣,,所以.又,<.=(b﹣a)ln<(b﹣a)ln2综上.【点评】本题主要考查导数的基本性质和应用、对数函数性质和平均值不等式等知识以及综合推理论证的能力.27.已知函数f(x)=x﹣1﹣lnx(Ⅰ)求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)求函数f(x)的极值;(Ⅲ)对∀x∈(0,+∞),f(x)≥bx﹣2恒成立,求实数b的取值范围.【分析】(Ⅰ)求出f(2),再根据导数的几何意义,求出该点的导数值,即得曲线在此点处的切线的斜率,然后用点斜式写出切线方程即可(Ⅱ)令导数大于0解出增区间,令导数小于0,解出函数的减区间,然后由极值判断规则确定出极值即可.(Ⅲ)由于f(x)≥bx﹣2恒成立,得到在(0,+∞)上恒成立,构造函数g(x)=,b≤g(x)即可.min【解答】解:(Ⅰ)函数的定义域为(0,+∞),,则,f(2)=1﹣ln2,∴曲线y=f(x)在点(2,f(2))处的切线方程为,即x﹣2y﹣2ln2=0;(Ⅱ),令f′(x)>0,得x>1,列表:x(0,1)1(1,+∞)f′(x)﹣0+f(x)↘0↗∴函数y=f(x)的极小值为f(1)=0;(Ⅲ)依题意对∀x∈(0,+∞),f(x)≥bx﹣2恒成立等价于x﹣1﹣lnx≥bx﹣2在(0,+∞)上恒成立可得在(0,+∞)上恒成立,令g(x)=,令g′(x)=0,得x=e2列表:x(0,e2)e2(e2,+∞)g’(x)﹣0+g(x)↘↗∴函数y=g(x)的最小值为,根据题意,.【点评】本题考查利用导数研究函数的极值,考查恒成立问题,着重考查分类讨论思想与构造函数思想的应用,体现综合分析问题与解决问题能力,属于中档题.28.已知函数f(x)=xlnx.(Ⅰ)求f(x)的最小值;(Ⅱ)若对所有x≥1都有f(x)≥ax﹣1,求实数a的取值范围.【分析】(1)先求出函数的定义域,然后求导数,根据导函数的正负判断函数的单调性进而可求出最小值.(2)将f(x)≥ax﹣1在[1,+∞)上恒成立转化为不等式对于x∈[1,+∞)恒成立,然后令,对函数g(x)进行求导,根据导函数的正负可判断其单调性进而求出最小值,使得a小于等于这个最小值即可.【解答】解:(Ⅰ)f(x)的定义域为(0,+∞),f(x)的导数f'(x)=1+lnx.令f'(x)>0,解得;令f'(x)<0,解得.从而f(x)在单调递减,在单调递增.所以,当时,f(x)取得最小值.(Ⅱ)依题意,得f(x)≥ax﹣1在[1,+∞)上恒成立,即不等式对于x∈[1,+∞)恒成立.令,则.当x>1时,因为,故g(x)是[1,+∞)上的增函数,所以g(x)的最小值是g(1)=1,从而a的取值范围是(﹣∞,1].【点评】本题主要考查函数的单调性与其导函数的正负之间的关系、根据导数求函数的最值.导数是高等数学下放到高中的内容,是每年必考的热点问题,要给予重视.29.已知函数f(x)=(x﹣2)e x.(1)求f(x)的单调区间;(2)求f(x)在区间[0,2]上的最小值和最大值.【分析】(1)求出函数的导数,令导数大于0,得增区间,令导数小于0,得减区间;(2)由(1)可得f(x)在[0,1]递减,在(1,2]递增,即有f(x)在x=1处取得极小值,且为最小值,求得端点的函数值,比较即可得到最大值.【解答】解:(1)函数f(x)的导数为f′(x)=(x﹣1)e x,由f′(x)>0,可得x>1;由f′(x)<0,可得x<1.则f(x)的增区间为(1,+∞),减区间为(﹣∞,1);(2)由(1)可得f(x)在[0,1]递减,在(1,2]递增,即有f(x)在x=1处取得极小值,且为最小值,且为f(1)=﹣e,由f(0)=﹣2,f(2)=0,可得f(x)的最大值为f(2)=0.则f(x)的最小值为﹣e,最大值为0.【点评】本题考查导数的运用:求单调区间和极值、最值,考查运算能力,正确求导是解题的关键.30.已知函数f(x)=ax3﹣6ax2+b(x∈[﹣1,2])的最大值为3,最小值为﹣29,求a、b的值.【分析】求出f′(x)=0在[﹣1,2]上的解,研究函数f(x)的增减性,函数的最值应该在极值点或者区间端点取,已知最大值为3,最小值为﹣29代入即可.【解答】解:函数f(x)=ax3﹣6ax2+b∴f′(x)=3ax2﹣12ax=3a(x2﹣4x)令f′(x)=3ax2﹣12ax=3a(x2﹣4x)=0,显然a≠0,否则f(x)=b为常数,矛盾,∴x=0,若a>0,列表如下:由表可知,当x=0时f(x)取得最大值∴b=3又f′(0)=﹣29,则f(2)<f(0),这不可能,∴f(2)=8a﹣24a+3=﹣16a+3=﹣29,∴a=2若a<0,同理可得a=﹣2,b=﹣29故答案为:a=2,b=3或a=﹣2,b=﹣29【点评】本题考查函数的导数在求最大值、最小值中的应用,关键是对于闭区间上的最值要注意函数的端点函数值,注意区别理解函数的极值点一定不在函数端点,而最值点可能在函数端点,属于基础题.31.求函数f(x)=x3﹣2x2+5在区间[﹣2,2]的最大值和最小值.【分析】求出函数的导数,利用导数研究函数f(x)=x3﹣2x2+5在区间[﹣2,2]的单调性,再由单调性求函数在区间上的最值.【解答】解:函数f(x)=x3﹣2x2+5的导函数是f'(x)=x(3x﹣4),令f’(x)=0得x=0或,如下表:∴ymax =5,ymin=﹣11【点评】本题考点是利用导数求闭区间上的函数的最值,考查用导数研究函数的单调性并利用单调性确定函数的最值,并求出.此是导数的一个很重要的运用.32.已知函数f(x)=lnx﹣.(Ⅰ)求函数f(x)的单调增区间;(Ⅱ)证明;当x>1时,f(x)<x﹣1;(Ⅲ)确定实数k的所有可能取值,使得存在x0>1,当x∈(1,x)时,恒有f(x)>k(x﹣1).【分析】(Ⅰ)求导数,利用导数大于0,可求函数f(x)的单调增区间;(Ⅱ)令F (x )=f (x )﹣(x ﹣1),证明F (x)在[1,+∞)上单调递减,可得结论;(Ⅲ)分类讨论,令G (x )=f (x )﹣k (x ﹣1)(x >0),利用函数的单调性,可得实数k 的所有可能取值.【解答】解:(Ⅰ)∵f(x)=lnx ﹣,∴f′(x)=>0(x >0),∴0<x <,∴函数f (x)的单调增区间是(0,);(Ⅱ)令F (x )=f (x )﹣(x ﹣1),则F′(x)=当x >1时,F′(x)<0,∴F(x )在[1,+∞)上单调递减, ∴x >1时,F(x )<F (1)=0, 即当x >1时,f (x)<x ﹣1;(Ⅲ)由(Ⅱ)知,k=1时,不存在x 0>1满足题意;当k >1时,对于x >1,有f (x )<x ﹣1<k (x ﹣1),则f (x )<k(x ﹣1), 从而不存在x 0>1满足题意;当k <1时,令G(x)=f(x)﹣k (x ﹣1)(x >0),则 G′(x)==0,可得x 1=<0,x 2=>1,当x ∈(1,x 2)时,G′(x)>0,故G (x )在(1,x 2)上单调递增, 从而x ∈(1,x 2)时,G (x )>G (1)=0,即f (x )>k (x ﹣1), 综上,k 的取值范围为(﹣∞,1).【点评】本题考查导数知识的综合运用,考查函数的单调性,考查不等式的证明,正确构造函数是关键.33.设函数f(x)=1+(1+a)x﹣x2﹣x3,其中a>0.(Ⅰ)讨论f(x)在其定义域上的单调性;(Ⅱ)当x∈[0,1]时,求f(x)取得最大值和最小值时的x的值.【分析】(Ⅰ)利用导数判断函数的单调性即可;(Ⅱ)利用(Ⅰ)的结论,讨论两根与1的大小关系,判断函数在[0,1]时的单调性,得出取最值时的x的取值.【解答】解:(Ⅰ)f(x)的定义域为(﹣∞,+∞),f′(x)=1+a﹣2x﹣3x2,由f′(x)=0,得x1=,x2=,x1<x2,∴由f′(x)<0得x<,x>;由f′(x)>0得<x<;故f(x)在(﹣∞,)和(,+∞)单调递减,在(,)上单调递增;(Ⅱ)∵a>0,∴x1<0,x2>0,∵x∈[0,1],当时,即a≥4①当a≥4时,x2≥1,由(Ⅰ)知,f(x)在[0,1]上单调递增,∴f(x)在x=0和x=1处分别取得最小值和最大值.②当0<a<4时,x2<1,由(Ⅰ)知,f(x)在[0,x2]单调递增,在[x2,1]上单调递减,因此f(x)在x=x2=处取得最大值,又f(0)=1,f(1)=a,∴当0<a<1时,f(x)在x=1处取得最小值;当a=1时,f(x)在x=0和x=1处取得最小值;当1<a<4时,f(x)在x=0处取得最小值.【点评】本题主要考查利用导数研究函数的单调性及最值的知识,考查学生分类讨论思想的运用能力,属中档题.34.已知函数f(x)满足f(x)=f′(1)e x﹣1﹣f(0)x+x2;(1)求f(x)的解析式及单调区间;(2)若,求(a+1)b的最大值.【分析】(1)对函数f(x)求导,再令自变量为1,求出f′(1)得到函数的解析式及导数,再由导数求函数的单调区间;(2)由题意,借助导数求出新函数的最小值,令其大于0即可得到参数a,b 所满足的关系式,再研究(a+1)b的最大值【解答】解:(1)f(x)=f’(1)e x﹣1﹣f(0)x+⇒f’(x)=f’(1)e x﹣1﹣f(0)+x令x=1得:f(0)=1∴f(x)=f'(1)e x﹣1﹣x+令x=0,得f(0)=f'(1)e﹣1=1解得f’(1)=e故函数的解析式为f(x)=e x﹣x+令g(x)=f'(x)=e x﹣1+x∴g'(x)=e x+1>0,由此知y=g(x)在x∈R上单调递增当x>0时,f'(x)>f’(0)=0;当x<0时,有f’(x)<f'(0)=0得:函数f(x)=e x﹣x+的单调递增区间为(0,+∞),单调递减区间为(﹣∞,0)(2)f(x)≥﹣(a+1)x﹣b≥0得h′(x)=e x﹣(a+1)①当a+1≤0时,h′(x)>0⇒y=h(x)在x∈R上单调递增,x→﹣∞时,h(x)→﹣∞与h(x)≥0矛盾②当a+1>0时,h′(x)>0⇔x>ln(a+1),h'(x)<0⇔x<ln(a+1)得:当x=ln(a+1)时,h(x)=(a+1)﹣(a+1)ln(a+1)﹣b≥0,即(a+1)﹣(a+1)ln(a+1)min(完整word 版)导数与单调性极值最基础值习题第31页(共31页)≥b∴(a+1)b ≤(a+1)2﹣(a+1)2ln (a+1),(a+1>0)令F (x )=x 2﹣x 2lnx (x >0),则F’(x )=x (1﹣2lnx)∴F'(x )>0⇔0<x <当x=时,F(x )max = 即当a=时,(a+1)b 的最大值为 【点评】本题考查导数在最值问题中的应用及利用导数研究函数的单调性,解题的关键是第一题中要赋值求出f′(1),易因为没有将f′(1)看作常数而出错,第二题中将不等式恒成立研究参数关系的问题转化为最小值问题,本题考查了转化的思想,考查判断推理能力,是高考中的热点题型,计算量大,易马虎出错.。

导数10 大题(单调性)中下4-2022年全国一卷新高考数学题型细分汇编

导数10 大题(单调性)中下4-2022年全国一卷新高考数学题型细分汇编

导数——大题——单调性4:1. (2022年山东临沂J15)已知函数ln ()(exx kf x k +=为常数,e 2.71828=…是自然对数的底数),曲线()y f x =在点(1,(1)f )处的切线与x 轴平行.2. (1)求k 的值;3. (2)求()f x 的单调区间;(①)(单调性,易;第三问,未;)4. (3)设2()()()g x x x f x =+',其中()f x '为()f x 的导函数.证明:对任意0x >,2()1e g x -<+.5. (2022年山东威海三模J27)已知函数()2ln a f x x x x=-+. 6. (1)当34a =时,求()f x 的单调区间;(②)(单调性,中下;第二问,未;) 7. (2)若()f x 有两个极值点12,x x ,且12x x <,从下面两个结论中选一个证明.8. ①()()21212f x f x x x a-<--; ②()222ln 223f x a <+-.9. (2022年山东济宁三模J42)已知函数()()2ln e 1ln 1f x x a x a x =-----,a ∈R .10. (1(当0a =时,证明:()()()e 21f x x ≥--;(③)11. (2(若函数()f x 在()1,e 内有零点,求实数a 的取值范围.12. (单调性,最值,中下;第二问,未;)13. (2022年山东实验中学J46)已知函数()e sin xf x x =⋅.14. (1)求函数()f x 的单调区间;(④)15. (2)如果对于任意的0,2x π⎡⎤∈⎢⎥⎣⎦,()f x kx ≥恒成立,求实数k 的取值范围;16. (3)设函数()()20152017e cos ,,22xF x f x x x ππ⎡⎤=+⋅∈-⎢⎥⎣⎦.过点1,02M π-⎛⎫ ⎪⎝⎭作函数()F x 的图象的所有切线,令各切点的横坐标构成数列{}n x ,求数列{}n x 的所有项之和S 的值. 17. (单调性,中下;第二问,未;)1.(2022年广东韶关二模J06)(本小题满分12分) 已知f(x)=e x.;(⑤)2.(1)求证:当x>0时,f(x)>1+x+x223.(2)若不等式f(x)≥2x ln x+mx+1,(其中m∈R)恒成立时,实数m的取值范围为(-∞,t],4.求证:t>23.(单调性,最值,切线放缩,中下;第二问,未;)20①【答案】(1)1k =;(2)()f x 在(0,1)递增,在(1,)+∞递减; (3)证明见解析. 【解析】【分析】(1)由题设求导函数()f x ',再由(1)0f '=求参数k 值. (2)由(1)得1ln ()e xx x xf x x --'=且,()0x ∈+∞,构造函数()1ln h x x x x =--,结合导数研究()h x 的符号,进而求()f x 的单调区间.(3)由题设只需证2e 1ln (1e )1xx x x x ---<++在(0,)+∞上恒成立,由(2)易得21ln 1e x x x ---≤+,再构造()e (1)x m x x =-+并应用导数判断e ),(1xx +的大小关系,即可证结论. 【小问1详解】 由题设,1ln ()e xkx x xf x x --'=,,()0x ∈+∞,又()y f x =在(1,(1)f )处的切线与x 轴平行,即1(1)0ekf -'==, 1k ∴=.【小问2详解】 由(1)得:1ln ()e xx x xf x x --'=,,()0x ∈+∞,令()1ln h x x x x =--,,()0x ∈+∞,当(0,1)x ∈时,()0h x >,当(1,)x ∈+∞时,()0h x <,又e 0x >,(0,1)x ∴∈时,()0f x '>,(1,)x ∈+∞时,()0f x '<,()f x ∴在(0,1)递增,在(1,)+∞递减;【小问3详解】由2()()()g x x x f x =+',即1()(1ln )e xx g x x x x +=--,,()0x ∈+∞, 0x ∴∀>,22e ()1e 1ln (1e )1xg x x x x x --<+⇔--<++, 由(2),对于()1ln h x x x x =--,,()0x ∈+∞, ()ln 2h x x ∴'=--,,()0x ∈+∞,2(0,e )x -∴∈时()0h x '>,()h x 递增,2(e x -∈,)∞+时()0h x <,()h x 递减,22max ()(e )1e h x h --∴==+,即21ln 1e x x x ---≤+,设()e (1)xm x x =-+,则0()e 1e x x m x e '=-=-,(0,)x ∴∈+∞时()0m x '>,()m x 递增,即()(0)0m x m >=,则e 11x x >+, 综上,22e 1ln 1e (1e )1x x x x x----≤+<++,故0x ∀>,()21e g x -<+,得证. 【点睛】关键点点睛:第三问,应用分析法转化为证明2e 1ln (1e )1xx x x x ---<++在(0,)+∞上恒成立,结合(2)中()h x 的单调性得到21ln 1e x x x ---≤+,再判断e ),(1x x +的大小关系.②【答案】(1)()f x 的单增区间为13,22⎛⎫⎪⎝⎭;单减区间为10,2⎛⎫ ⎪⎝⎭,3,2⎛⎫+∞ ⎪⎝⎭(2)证明见解析 【解析】【分析】(1)首先求函数的导数,根据导数与函数单调性的关系,即可求解;(2)若选①,不等式转化为证明212121ln ln x x x x ax x -<=-,变形为证明2212111212lnx x x x x x x x <=1()2ln ,1h t t t t t=-+>,即可证明; 若选②,首先根据函数有两个极值点,证得212x <<,()2222222ln 33a f x a x x a x -=-+-,再变换为()2222222102ln 2333f x a x x x -=+-+,通过构造函数,利用导数,即可证明. 【小问1详解】22222()1(0)a x x af x x x x x-+-'=--=>, 当34a =时,2222232483(21)(23)4()44x x x x x x f x x x x -+--+--==--'=, 令()0f x '>,解得1322x <<;令()0f x '<,解得102x <<或32x >, 所以()f x 的单增区间为13,22⎛⎫⎪⎝⎭;单减区间为10,2⎛⎫ ⎪⎝⎭,3,2⎛⎫+∞ ⎪⎝⎭.【小问2详解】证明①:由题意知,12,x x 是220x x a -+=的两根,则12122x x x x a +=⎧⎨=⎩,()()()()()122121211221212ln ln a x x x x x x f x f x x x x x x x ----+-=--, 将12x x a =代入得,()()()212121212ln ln 2f x f x x x x x x x --=---,要证明()()21212f x f x x x a -<--,只需证明()21212ln ln 22x x x x a--<--,即212121ln ln x x x x ax x -<=-, 因为120x x <<,所以210x x ->, 只需证明2212111212lnx x x x x x x x <= 21x t x =,则1t >,只需证明21ln t t t <-,即12ln 0(1)t t t t-+<>, 令1()2ln ,1h t t t t t=-+>,22221(1)()10t h t t t t--=--=<', 所以()h t 在(1,)+∞上单调递减,可得()(1)0h t h <=, 所以12ln 0(1)t t t t-+<>, 综上可知,()()21212f x f x x x a-<--.证明②:22222()1(0)a x x af x x x x x -+-'=--=>设2()2g x x x a =-+-,因为()f x 有两个极值点,所以Δ440(0)0a g =->⎧⎨<⎩,解得01a <<,因为(2)0,(1)10g a g a =-<=->, 所以212x <<,()2222222ln 33a f x a x x a x -=-+-,由题意可知22220x x a -+-=, 可得2222a x x =-+代入得,()2222222102ln 2333f x a x x x -=+-+, 令2210()2ln 2(12)33h x x x x x =+-+<<, 24102(1)(23)()333x x h x x x x--=+-=', 当31,,()02x h x ⎛⎫∈< ⎪⎝⎭',所以()h x 在31,2⎛⎫⎪⎝⎭上单调递减,当3,2,()02x h x ⎛⎫∈>⎪⎝⎭',所以()h x 在3,22⎛⎫ ⎪⎝⎭上单调速增,因为212x <<,所以()2max{(1),(2)}h x h h <, 由2(1),(2)2ln 223h h =-=-,可得()22ln8ln (2)(1)03e h h --=>,所以(2)(1)h h >,所以()2(2)h x h <, 所以()222ln 223f x a -<-,即()222ln 223f x a <+-.③【答案】(1)证明见解析;(2)e 21a -<< 【解析】【分析】(1)构造函数()()()()=e 21g x f x x ---,证得min ()0g x ≥即可; (2)根据零点存在性定理结合导函数与单调性、最值等关系进行判定. 小问1详解】证明:当0a =时,设()()()()=e 21(e 1)(ln 1)g x f x x x x ---=---,1()(e 1)x g x x-'=-,由()001g x x '<⇒<<,()01g x x '>⇒>,可得()g x 在()0,1单调递减,在()1,+∞单调递增,所以min ()(1)0g x g ==,则()0g x ≥,即()()()e 21f x x ≥--; 【小问2详解】函数()()2ln e 1ln 1f x x a x a x =-----,(1)0,(e)0f f ==,若函数()f x 在()1,e 内有零点,则函数()f x 在()1,e 内至少有两个极值点,即()f x '在()1,e 内至少有两个变号零点.2ln e 12ln e 1()1a x a x a x a f x x x x----++'=--=,等价于()2ln e 1h x x a x a =--++在()1,e 内至少有两个变号零点,22()1a x ah x x x-'=-=,()1,e x ∈,当12a ≤或e 2a ≥时,()0h x '≥或()0h x '≤恒成立,则()h x 在()1,e 上单调,不合题意;当122ea <<时,由()012h x x a '<⇒<<,()02e h x a x '>⇒<<,可得()h x 在(1,2)a 单调递减,在(2,e)a 上单调递增,所以当(1)0)(e)0(2)0h h h a >⎧⎪>⎨⎪<⎩时,()h x 在()1,e 内有两个变号零点且最多两个,即2e 01032ln 2e 10a a a a a -+>⎧⎪->⎨⎪--+<⎩,令2t a =,()1,e t ∈,设31()ln e 1()ln 0e 22F t t t t F t t t '=--+⇒=-=⇒=(e t ∈时,()0F t '>,()F t 单调递增,当)e,e t ∈时,()0F t '<,()F t 单调递减,所以max 3()(e)e e e e 1e e 102F t F ==+=+<,即32ln 2e 10a a a --+<在122ea <<上恒成立,所以e 21a -<<.此时()0h x =即()0f x '=有两个零点,设为121e x x <<<,当()11,x x ∈和()2,e x 时,()0f x '>,()f x 单调递增,当()12,x x x ∈时,()0f x '<,()f x 单调递减,所以1()(1)0f x f >=,2()(e)0f x f <=,则()f x 在()12,x x 上有零点,综上可得:e 21a -<<. 【点睛】函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点. (3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.④【答案】(1)()3π7π2π,2π44k k k Z ⎡⎤++∈⎢⎥⎣⎦(2)(],1-∞ (3)1008π【分析】(1)对函数求导()π2sin 4xf x e x ⎛⎫'=+ ⎪⎝⎭,求增区间需要导函数大于等于0,求减区间需要导函数小于等于0,分别解不等式即可;(2)令()()sin xg x f x kx e x kx =-=-,要使()f x kx ≥恒成立,只需当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()min 0g x ≥,对该函数求导,分类讨论研究函数单调性,进而得到结果;(3)求出函数()F x 过点1,02M π-⎛⎫⎪⎝⎭的切线方程,各切点的横坐标满足00πtan 22x x ⎛⎫=- ⎪⎝⎭,0x 为函数1tan y x =和2π22y x ⎛⎫=- ⎪⎝⎭的交点的横坐标,这两个函数图像均关于点π,02⎛⎫ ⎪⎝⎭对称,则它们交点的横坐标也关于π2x =对称,从而所作的所有切线的切点的横坐标构成数列{}n x 的项也关于π2x =成对出现,从而根据对称性得出结果. (1)(()()πsin cos 2sin 4x xf x e x x e x ⎛⎫'=+=+ ⎪⎝⎭,增区间应满足:()0f x '>,22,4k x k k z ππππ≤+≤+∈减区间应该满足:()0f x '<,222,4k x k k z πππππ+≤+≤+∈(()f x 的增区间为()π3π2π,2π44k k k Z ⎡⎤-+∈⎢⎥⎣⎦;减区间为()3π7π2π,2π44k k k Z ⎡⎤++∈⎢⎥⎣⎦.(2)令()()sin xg x f x kx e x kx =-=-要使()f x kx ≥恒成立,只需当π0,2x ⎡⎤∈⎢⎥⎣⎦时,()min 0g x ≥,(()()sin cos xg x e x x k '=+-令()()sin cos x h x e x x =+,则()2cos 0xh x e x '=≥对π0,2x ⎡⎤∈⎢⎥⎣⎦恒成立,(()h x 在π0,2⎡⎤⎢⎥⎣⎦上是增函数,则()π21,h x e ⎡⎤∈⎢⎥⎣⎦,(当1k ≤时,()0g x '≥恒成立,()g x 在π0,2⎡⎤⎢⎥⎣⎦上为增函数,(()()min 00g x g ==,(1k ≤满足题意;(当π21k e <<时,()0g x '=在π0,2⎡⎤⎢⎥⎣⎦上有实根0x ,()h x 在π0,2⎡⎤⎢⎥⎣⎦上是增函数,则当[)00,x x ∈时,()0g x '<,(()0(0)0g x g <=不符合题意; (当π2k e ≥时,()0g x '≤恒成立,()g x 在π0,2⎡⎤⎢⎥⎣⎦上为减函数,(()()00g x g <=不符合题意,(1k ≤,即(],1k ∈-∞. (3)(()()()cos sin cos x x F x f x e x e x x =+=+(()2cos xF x e x '=,设切点坐标为()()0000,sin cos x x e x x +,则切线斜率为()0002cos xF x e x '=,从而切线方程为()()000000sin cos 2cos xxy e x x e x x x -+=-,(()0000000π1πsin cos 2cos tan 222x xex x e x x x x -⎛⎫⎛⎫-+=-⇔=- ⎪ ⎪⎝⎭⎝⎭,令1tan y x =,2π22y x ⎛⎫=- ⎪⎝⎭,这两个函数的图象均关于点π,02⎛⎫⎪⎝⎭对称,则它们交点的横坐标也关于π2x =对称,从而所作的所有切线的切点的横坐标构成数列{}n x 的项也关于π2x =成对出现,又在2015π2017π,22⎡⎤-⎢⎥⎣⎦共有1008对,每对和为π. (1008πS =.⑤第11页共11页。

(完整版)导数与单调性习题

(完整版)导数与单调性习题

导数与单调性习题1、函数x e x x f )3()(-=的单调递增区间是( )A .)2,(-∞B .(0,3)C .(1,4)D .),2(+∞2、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )3函数x x y 142+=的单调递增区间是( )A .),0(+∞ B .),21(+∞ C .)1,(--∞ D .)21,(--∞ 4.求函数2()2ln f x x x =-的单调区间.5. 已知函数2()ln 3,f x x x x a R =+-∈.求()f x 的单调区间6.已知函数y =f (x )(x ∈R )上任一点(x 0,f (x 0))处的切线斜率k =(x 0-2)(x 0+1)2,则该函数的单调递减区间为( )A .[-1,+∞) B .(-∞,2] C .(-∞,-1)和(1,2) D .[2,+∞)7.已知函数y =xf ′(x )的图象如图(1)所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )8.函数y =x sin x +cos x ,x ∈(-π,π)的单调增区间是( )A.⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2B.⎝⎛⎭⎫-π2,0和⎝⎛⎭⎫0,π2C.⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫π2,πD.⎝⎛⎭⎫-π2,0和⎝⎛⎭⎫π2,π 9.x y O 图1x y O A x y O B x y O C y OD x10.已知函数()2ln ()f x x ax a a R =-+∈.讨论()f x 的单调性11.f (x )是定义在(0,+∞)上的非负可导函数,且满足xf ′(x )+f (x )≤0,对任意正数a 、b ,若a <b ,则必有( )A .af (a )≤f (b )B .bf (b )≤f (a )C .af (b )≤bf (a )D .bf (a )≤af (b )12.对于R 上可导的任意函数f (x ),若满足(x -1)f ′(x )≥0,则必有( )A .f (0)+f (2)<2f (1)B .f (0)+f (2)≤2f (1)C .f (0)+f (2)≥2f (1)D .f (0)+f (2)>2f (1)13.已知对任意实数x ,有f (-x )=-f (x ),g (-x )=g (x ),且x >0时,f ′(x )>0,g ′(x )>0,则x <0时( )A .f ′(x )>0,g ′(x )>0B .f ′(x )>0,g ′(x )<0C .f ′(x )<0,g ′(x )>0D .f ′(x )<0,g ′(x )<014.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________. 15.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,实数a 的取值范围为________.16.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是____________.17.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11).(1)求a 、b 的值;(2)讨论函数f (x )的单调性.18.设函数f (x )=x (e x -1)-12x 2. 求f (x )的单调区间;19、函数3()f x ax x =-在R 上为减函数,则实数a 的取值范围是______________.20. 已知函数()22ln f x x a x x=++在区间[2,3]上单调递增,求实数a 的取值范围21.已知函数32()f x x ax bx c =+++,()124g x x =-,若(1)0f -=,且()f x 的图象在点(1,(1))f 处的切线方程为()y g x =.(1)求实数a ,b ,c 的值;(2)求单调区间。

导数与函数的单调性训练题

导数与函数的单调性训练题

导数与函数的单调性训练题一、题点全面练1.下列函数中,在(0,+∞)上为增函数的是( ) A .f (x )=sin 2x B .f (x )=x e xC .f (x )=x 3-xD .f (x )=-x +ln x解析:选B 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎢⎡⎦⎥⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝ ⎛⎭⎪⎫-∞,-33和⎝ ⎛⎭⎪⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x ,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.综上所述,应选B.2.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的大致图象是( )解析:选A 设g (x )=f ′(x )=2x -2sin x ,则g ′(x )2-2cos x ≥0,所以函数f ′(x )在R 上单调递增,结合选项知选A.3.若函数f (x )=(x 2-cx +5)e x在区间⎣⎢⎡⎦⎥⎤12,4上单调递增,则实数c 的取值范围是( )A .(-∞,2]B .(-∞,4]C .(-∞,8]D .[-2,4]解析:选B f ′(x )=[x 2+(2-c )x -c +5]e x,∵函数f (x )在区间⎣⎢⎡⎦⎥⎤12,4上单调递增,∴x 2+(2-c )x -c +5≥0对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立,即(x +1)c ≤x 2+2x +5对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立,∴c ≤x 2+2x +5x +1对任意x ∈⎣⎢⎡⎦⎥⎤12,4恒成立,∵x ∈⎣⎢⎡⎦⎥⎤12,4,∴x 2+2x +5x +1=x +1+4x +1≥4,当且仅当x =1时等号成立,∴c ≤4.4.(2019·咸宁联考)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .(4,+∞)C .(-∞,2)D .(0,3]解析:选A ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),由x -9x ≤0,得0<x ≤3,∴f (x )在(0,3]上是减函数,则[a -1,a +1]⊆(0,3],∴a -1>0且a +1≤3,解得1<a ≤2.5.(2019·南昌联考)已知函数f (x +1)是偶函数,当x ∈(1,+∞)时,函数f (x )=sinx -x ,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (3),c =f (0),则a ,b ,c 的大小关系为( )A .b <a <cB .c <a <bC .b <c <aD .a <b <c解析:选A ∵函数f (x +1)是偶函数,∴函数f (x )的图象关于直线x =1对称,∴a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,b =f (3),c =f (0)=f (2).又∵当x ∈(1,+∞)时,函数f (x )=sin x -x ,∴当x ∈(1,+∞)时,f ′(x )=cos x -1≤0,即f (x )=sin x -x 在(1,+∞)上为减函数,∴b <a <c .6.已知函数y =f (x )(x ∈R)的图象如图所示,则不等式xf ′(x )≥0的解集为________________.解析:由f (x )图象特征可得,在⎝ ⎛⎦⎥⎤-∞,12和[2,+∞)上f ′(x )≥0, 在 ⎝ ⎛⎭⎪⎫12,2上f ′(x )<0,所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧x ≥0,f x 或⎩⎪⎨⎪⎧x ≤0,f x ⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎢⎡⎦⎥⎤0,12∪[2,+∞).答案:⎣⎢⎡⎦⎥⎤0,12∪[2,+∞) 7.(2019·岳阳模拟)若函数f (x )=x 2-e x-ax 在R 上存在单调递增区间,则实数a 的取值范围是________.解析:∵函数f (x )=x 2-e x-ax 在R 上存在单调递增区间, ∴f ′(x )=2x -e x-a >0,即a <2x -e x有解. 设g (x )=2x -e x,则g ′(x )=2-e x, 令g ′(x )=0,得x =ln 2,则当x <ln 2时,g ′(x )>0,g (x )单调递增,当x >ln 2时,g ′(x )<0,g (x )单调递减,∴当x =ln 2时,g (x )取得最大值,且g (x )max =g (ln 2)=2ln 2-2,∴a <2ln 2-2. 答案:(-∞,2ln 2-2)8.设f (x )=a (x -5)2+6ln x ,其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间.解:(1)因为f (x )=a (x -5)2+6ln x , 所以f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x=x -x -x.令f ′(x )=0,解得x =2或x =3. 当0<x <2或x >3时,f ′(x )>0; 当2<x <3时,f ′(x )<0,故函数f (x )的单调递增区间是(0,2),(3,+∞),单调递减区间是(2,3).9.已知e 是自然对数的底数,实数a 是常数,函数f (x )=e x-ax -1的定义域为(0,+∞).(1)设a =e ,求函数f (x )的图象在点(1,f (1))处的切线方程; (2)判断函数f (x )的单调性. 解:(1)∵a =e ,∴f (x )=e x-e x -1, ∴f ′(x )=e x-e ,f (1)=-1,f ′(1)=0.∴当a =e 时,函数f (x )的图象在点(1,f (1))处的切线方程为y =-1. (2)∵f (x )=e x-ax -1,∴f ′(x )=e x-a . 易知f ′(x )=e x -a 在(0,+∞)上单调递增.∴当a ≤1时,f ′(x )>0,故f (x )在(0,+∞)上单调递增; 当a >1时,由f ′(x )=e x-a =0,得x =ln a ,∴当0<x <ln a 时,f ′(x )<0,当x >ln a 时,f ′(x )>0, ∴f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增. 综上,当a ≤1时,f (x )在(0,+∞)上单调递增;当a >1时,f (x )在(0,ln a )上单调递减,在(ln a ,+∞)上单调递增.二、专项培优练(一)易错专练——不丢怨枉分1.(2019·南昌模拟)已知函数f (x )=x sin x ,x 1,x 2∈⎝ ⎛⎭⎪⎫-π2,π2,且f (x 1)<f (x 2),那么( )A .x 1-x 2>0B .x 1+x 2>0C .x 21-x 22>0D .x 21-x 22<0解析:选D 由f (x )=x sin x ,得f ′(x )=sin x +x cos x =cos x (tan x +x ),当x∈⎝ ⎛⎭⎪⎫0,π2时,f ′(x )>0,即f (x )在⎝⎛⎭⎪⎫0,π2上为增函数,又∵f (-x )=-x sin(-x )=x sinx =f (x ),∴f (x )为偶函数,∴当f (x 1)<f (x 2)时,有f (|x 1|)<f (|x 2|),∴|x 1|<|x 2|,x 21-x 22<0,故选D.2.函数f (x )=12x 2-ln x 的单调递减区间为________.解析:由题意知,函数f (x )的定义域为(0,+∞),由f (x )=x -1x<0,得0<x <1,所以函数f (x )的单调递减区间为(0,1).答案:(0,1)3.(2019·郴州模拟)已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则实数t 的取值范围是________.解析:由题意知f ′(x )=-x +4-3x=-x -x -x,由f ′(x )=0得函数f (x )的两个极值点为1和3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,∴1∈(t ,t +1)或3∈(t ,t +1)⇔⎩⎪⎨⎪⎧t <1,t +1>1或⎩⎪⎨⎪⎧t <3,t +1>3⇔0<t <1或2<t <3.答案:(0,1)∪(2,3) (二)素养专练——学会更学通4.[直观想象]已知函数y =xf ′(x )的图象如图所示(其中f ′(x )是函数f (x )的导函数),下面四个图象中,y =f (x )的图象大致是( )解析:选C 当0<x <1时,xf ′(x )<0,∴f ′(x )<0,故y =f (x )在(0,1)上为减函数;当x >1时,xf ′(x )>0,∴f ′(x )>0,故y =f (x )在(1,+∞)上为增函数,因此排除A 、B 、D ,故选C.5.[逻辑推理]已知函数f (x )=x 3-2x +e x-1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x-1e x ,得f (-x )=-x 3+2x +1e x -e x=-f (x ),所以f (x )是R 上的奇函数.又f ′(x )=3x 2-2+e x +1e x ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增. 因为f (a -1)+f (2a 2)≤0,所以f (a -1)≤-f (2a 2)=f (-2a 2), 所以a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎢⎡⎦⎥⎤-1,12. 答案:⎣⎢⎡⎦⎥⎤-1,126.[逻辑推理、数学运算]已知f (x )=ax -1x,g (x )=ln x ,x >0,a ∈R 是常数.(1)求函数y =g (x )的图象在点P (1,g (1))处的切线方程; (2)设F (x )=f (x )-g (x ),讨论函数F (x )的单调性. 解:(1)因为g (x )=ln x (x >0),所以g (1)=0,g ′(x )=1x,g ′(1)=1,故函数g (x )的图象在P (1,g (1))处的切线方程是y =x -1. (2)因为F (x )=f (x )-g (x )=ax -1x-ln x (x >0),所以F ′(x )=a +1x 2-1x =a +⎝ ⎛⎭⎪⎫1x -122-14.①当a ≥14时,F ′(x )≥0,F (x )在(0,+∞)上单调递增;②当a =0时,F ′(x )=1-xx2,F (x )在(0,1)上单调递增,在(1,+∞)上单调递减;③当0<a <14时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a2a>0,且x 2>x 1, 故F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a ,⎝ ⎛⎭⎪⎫1+1-4a 2a ,+∞上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,1+1-4a 2a 上单调递减;④当a <0时,由F ′(x )=0,得x 1=1-1-4a 2a >0,x 2=1+1-4a2a<0, F (x )在⎝ ⎛⎭⎪⎫0,1-1-4a 2a 上单调递增,在⎝ ⎛⎭⎪⎫1-1-4a 2a ,+∞上单调递减. (三)难点专练——适情自主选7.已知函数f (x )=ax -ln x ,g (x )=e ax+2x ,其中a ∈R. (1)当a =2时,求函数f (x )的极值;(2)若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上具有相同的单调性,求实数a 的取值范围.解:(1)当a =2时,f (x )=2x -ln x ,定义域为(0,+∞),则f ′(x )=2-1x,故当x ∈⎝ ⎛⎭⎪⎫0,12时,f ′(x )<0,f (x )单调递减;当x ∈⎝ ⎛⎭⎪⎫12,+∞ 时,f ′(x )>0,f (x )单调递增.所以f (x )在x =12处取得极小值,且f ⎝ ⎛⎭⎪⎫12=1+ln 2,无极大值.(2)由题意知,f ′(x )=a -1x,g ′(x )=a e ax+2,①当a >0时,g ′(x )>0,即g (x )在R 上单调递增,而f (x )在⎝ ⎛⎭⎪⎫1a,+∞上单调递增,故必存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上单调递增;②当a =0时,f ′(x )=-1x<0,故f (x )在(0,+∞)上单调递减,而g (x )在(0,+∞)上单调递增,故不存在满足条件的区间D ;③当a <0时,f ′(x )=a -1x<0,即f (x )在(0,+∞)上单调递减,而g (x )在⎝ ⎛⎭⎪⎫-∞,1a ln ⎝ ⎛⎭⎪⎫-2a 上单调递减,在⎝ ⎛⎭⎪⎫1a ln ⎝ ⎛⎭⎪⎫-2a ,+∞上单调递增,若存在区间D ⊆(0,+∞),使得f (x )与g (x )在区间D 上有相同的单调性,则有1a ln ⎝ ⎛⎭⎪⎫-2a >0,解得a <-2.综上可知,实数a 的取值范围为(-∞,-2)∪(0,+∞).。

高中数学函数的单调性与导数综合测试题(含答案)

高中数学函数的单调性与导数综合测试题(含答案)

高中数学函数的单调性与导数综合测试题(含答案)选修2-2 1.3.1 函数的单调性与导数一、选择题1.设f(x)=ax3+bx2+cx+d(a0),则f(x)为R上增函数的充要条件是()A.b2-4ac0 B.b0,c0C.b=0,c D.b2-3ac0[答案] D[解析]∵a0,f(x)为增函数,f(x)=3ax2+2bx+c0恒成立,=(2b)2-43ac=4b2-12ac0,b2-3ac0.2.(2009广东文,8)函数f(x)=(x-3)ex的单调递增区间是() A.(-,2) B.(0,3)C.(1,4) D.(2,+)[答案] D[解析]考查导数的简单应用.f(x)=(x-3)ex+(x-3)(ex)=(x-2)ex,令f(x)0,解得x2,故选D.3.已知函数y=f(x)(xR)上任一点(x0,f(x0))处的切线斜率k =(x0-2)(x0+1)2,则该函数的单调递减区间为()A.[-1,+) B.(-,2]C.(-,-1)和(1,2) D.[2,+)[答案] B[解析]令k0得x02,由导数的几何意义可知,函数的单调减区间为(-,2].4.已知函数y=xf(x)的图象如图(1)所示(其中f(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是()[答案] C[解析]当01时xf(x)0f(x)0,故y=f(x)在(0,1)上为减函数当x1时xf(x)0,f(x)0,故y=f(x)在(1,+)上为增函数,因此否定A、B、D故选C.5.函数y=xsinx+cosx,x(-)的单调增区间是()A.-,-2和0,2B.-2,0和0,2C.-,-2,D.-2,0和[答案] A[解析]y=xcosx,当-x2时,cosx0,y=xcosx0,当02时,cosx0,y=xcosx0.6.下列命题成立的是()A.若f(x)在(a,b)内是增函数,则对任何x(a,b),都有f(x)0B.若在(a,b)内对任何x都有f(x)0,则f(x)在(a,b)上是增函数C.若f(x)在(a,b)内是单调函数,则f(x)必存在D.若f(x)在(a,b)上都存在,则f(x)必为单调函数[答案] B[解析]若f(x)在(a,b)内是增函数,则f(x)0,故A错;f(x)在(a,b)内是单调函数与f(x)是否存在无必然联系,故C错;f(x)=2在(a,b)上的导数为f(x)=0存在,但f(x)无单调性,故D错.7.(2019福建理,11)已知对任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x0时,f(x)0,g(x)0,则x0时()A.f(x)0,g(x) B.f(x)0,g(x)0C.f(x)0,g(x) D.f(x)0,g(x)0[答案] B[解析]f(x)为奇函数,g(x)为偶函数,奇(偶)函数在关于原点对称的两个区间上单调性相同(反),x0时,f(x)0,g(x)0. 8.f(x)是定义在(0,+)上的非负可导函数,且满足xf(x)+f(x)0,对任意正数a、b,若ab,则必有()A.af(a)f(b) B.bf(b)f(a)C.af(b)bf(a) D.bf(a)af(b)[答案] C[解析]∵xf(x)+f(x)0,且x0,f(x)0,f(x)-f(x)x,即f(x)在(0,+)上是减函数,又0<a<b,af(b)bf(a).9.对于R上可导的任意函数f(x),若满足(x-1)f(x)0,则必有()A.f(0)+f(2)2f(1) B.f(0)+f(2)2f(1)C.f(0)+f(2)2f(1) D.f(0)+f(2)2f(1)[答案] C[解析]由(x-1)f(x)0得f(x)在[1,+)上单调递增,在(-,1]上单调递减或f(x)恒为常数,故f(0)+f(2)2f(1).故应选C.10.(2019江西理,12)如图,一个正五角星薄片(其对称轴与水面垂直)匀速地升出水面,记t时刻五角星露出水面部分的图形面积为S(t)(S(0)=0),则导函数y=S(t)的图像大致为[答案] A[解析]由图象知,五角星露出水面的面积的变化率是增减增减,其中恰露出一个角时变化不连续,故选A.二、填空题11.已知y=13x3+bx2+(b+2)x+3在R上不是单调增函数,则b的范围为________.[答案]b-1或b2[解析]若y=x2+2bx+b+20恒成立,则=4b2-4(b+2)0,-12,由题意b<-1或b>2.12.已知函数f(x)=ax-lnx,若f(x)>1在区间(1,+)内恒成立,实数a的取值范围为________.[答案]a1[解析]由已知a>1+lnxx在区间(1,+)内恒成立.设g(x)=1+lnxx,则g(x)=-lnxx2<0(x>1),g(x)=1+lnxx在区间(1,+)内单调递减,g(x)<g(1),∵g(1)=1,1+lnxx<1在区间(1,+)内恒成立,a1.13.函数y=ln(x2-x-2)的单调递减区间为__________.[答案](-,-1)[解析]函数y=ln(x2-x-2)的定义域为(2,+)(-,-1),令f(x)=x2-x-2,f(x)=2x-10,得x12,函数y=ln(x2-x-2)的单调减区间为(-,-1).14.若函数y=x3-ax2+4在(0,2)内单调递减,则实数a的取值范围是____________.[答案][3,+)[解析]y=3x2-2ax,由题意知3x2-2ax0在区间(0,2)内恒成立,即a32x在区间(0,2)上恒成立,a3.三、解答题15.设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).(1)求a、b的值;(2)讨论函数f(x)的单调性.[解析](1)求导得f(x)=3x2-6ax+3b.由于f(x)的图象与直线12x+y-1=0相切于点(1,-11),所以f(1)=-11,f(1)=-12,即1-3a+3b=-113-6a+3b=-12,解得a=1,b=-3.(2)由a=1,b=-3得f(x)=3x2-6ax+3b=3(x2-2x-3)=3(x+1)(x-3).令f(x)0,解得x-1或x3;又令f(x)0,解得-13.所以当x(-,-1)时,f(x)是增函数;当x(3,+)时,f(x)也是增函数;当x(-1,3)时,f(x)是减函数.16.求证:方程x-12sinx=0只有一个根x=0.[证明]设f(x)=x-12sinx,x(-,+),则f(x)=1-12cosx>0,f(x)在(-,+)上是单调递增函数.而当x=0时,f(x)=0,方程x-12sinx=0有唯一的根x=0.17.已知函数y=ax与y=-bx在(0,+)上都是减函数,试确定函数y=ax3+bx2+5的单调区间.[分析]可先由函数y=ax与y=-bx的单调性确定a、b的取值范围,再根据a、b的取值范围去确定y=ax3+bx2+5的单调区间.[解析]∵函数y=ax与y=-bx在(0,+)上都是减函数,a <0,b<0.由y=ax3+bx2+5得y=3ax2+2bx.令y>0,得3ax2+2bx>0,-2b3a<x<0.当x-2b3a,0时,函数为增函数.令y<0,即3ax2+2bx<0,x<-2b3a,或x>0.在-,-2b3a,(0,+)上时,函数为减函数.18.(2019新课标全国文,21)设函数f(x)=x(ex-1)-ax2.(1)若a=12,求f(x)的单调区间;(2)若当x0时f(x)0,求a的取值范围.[解析](1)a=12时,f(x)=x(ex-1)-12x2,f(x)=ex-1+xex-x=(ex-1)(x+1).当x(-,-1)时,f(x)0;当x(-1,0)时,f(x)0;当x(0,+)时,f(x)0.故f(x)在(-,-1],[0,+)上单调递增,在[-1,0]上单调递减.(2)f(x)=x(ex-1-ax).令g(x)=ex-1-ax,则g(x)=ex-a.“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。

导数单调性同步练习题及答案

导数单调性同步练习题及答案

导数单调性一、单选题1.函数的递增区间为()A.B.C.D.2.已知,,且成立,则下列不等式不可能成立的是()A.B.C.D.3.已知,,,则a,b,c的大小关系是()A.B.C.D.4.函数的图象大致为()A.B.C.D.5.已知函数,若在上的最大值为4,则在上的最小值为()A.-4B.C.-1D.26.已知函数,则的最大值的最小值是()A.B.C.1D.27.已知各项均为正数的数列满足,,其前n项和为,则下列关于数列的叙述错误的是()A.B.C.D.二、多选题8.已知函数,方程有两个不等实根,则下列选项正确的是()A.点是函数的零点B.,,使C.是的极大值点D.的取值范围是9.已知函数,则()A.是偶函数B.存在实数使得,C.在上单调递增D.存在极值点三、填空题10.已知定义在R上的函数的导函数,且,则实数的取值范围为__________. 11.函数的最大值为______.四、解答题12.已知函数,.(1)若,求的单调区间;(2)若关于x的不等式恒成立,求实数a的取值范围.13.己知函数.(1)当时,求的单调区间.(2)存在,使得成立,求整数的最小值.14.已知函数.(1)当时,求的单调区间;(2)若,不等式恒成立,求实数a的取值范围.15.求下列函数的单调区间:(1)f(x)=x2-ln x;(2)f(x)=x+(b>0).16.用导数证明:(1)在区间上是增函数;(2)在区间上是减函数.17.证明:(1)函数在定义域上是减函数;(2)函数在区间上是增函数.18.确定下列函数的单调区间:(1);(2).19.设函数.(1)若,求函数的单调区间;(2)若函数有两个不同的零点,求实数的取值范围.20.已知函数.(1)当时,求曲线在点处的切线方程;(2)当时,设,求函数的单调区间. 21.试确定函数的单调区间.22.已知函数.(1)若,求证:函数在R上单调递增;(2)若关于x的不等式恒成立,求实数m的最小值.23.已知函数,,均为不足近似值.(1)当时,判断函数的单调性;(2)证明:当时,不等式恒成立.24.已知函数其中.(1)当时,求函数的单调区间;(2)当时,函数有两个零点,,满足,证明.25.已知函数.(1)若,讨论的单调性;(2)若,是函数的两个不同的零点,证明:.26.已知函数,.(1)求的单调区间;(2)证明:;(3)若不等式对任意的都成立(其中是自然对数的底数).求的最大值.27.已知函数.(1)若,求函数的单调区间;(2)若,求证:.参考数据:.28.已知函数,.(1)若,求函数的单调区间;(2)若,且,证明:.29.已知函数的图象曲线C满足以下两个特性:①过点存在两条直线与曲线C相切;②曲线C上有A,B两点,其横坐标分别为,,且满足两点在曲线C上等高.请完成以下两个问题.(1)求实数t的取值范围;(2)若,且,求k值.30.已知函数,其中.(1)当时,求函数的单调性;(2)若对,不等式在上恒成立,求的取值范围.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.24.25.26.27.28.29.30.第11页共11页。

(完整版)导数与函数的单调性练习题

(完整版)导数与函数的单调性练习题

2.2.1导数与函数的单调性基础巩固题:1.函数f(x)=21++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.0<a<21 B.a<-1或a>21 C.a>21D.a>-2答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>21.2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4答案:C 解析:∵f ′(x )=2x +2+ax ,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.3.函数f (x )=x +9x 的单调区间为________.答案:(-3,0),(0,3) 解析:f ′(x )=1-9x 2=x 2-9x2,令f ′(x )<0,解得-3<x <0或0<x <3,故单调减区间为(-3,0)和(0,3).4 函数32x x y -=的单调增区间为 ,单调减区间为___________________答案:2(0,)3 ; 2(,0),(,)3-∞+∞ 解析: '22320,0,3y x x x x =-+===或 5.确定下列函数的单调区间:(1)y =x 3-9x 2+24x (2)y =3x -x 3 (1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2) 令3(x -2)(x -4)<0,解得2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(3x -x 3)′=3-3x 2=-3(x 2-1)=-3(x +1)(x -1) 令-3(x +1)(x -1)>0,解得-1<x <1. ∴y =3x -x 3的单调增区间是(-1,1).令-3(x +1)(x -1)<0,解得x >1或x <-1.∴y =3x -x 3的单调减区间是(-∞,-1)和(1,+∞) 6.函数y =ln(x 2-x -2)的单调递减区间为__________.[答案] (-∞,-1) [解析] 函数y =ln(x 2-x -2)的定义域为(2,+∞)∪(-∞,-1),令f (x )=x 2-x -2,f ′(x )=2x -1<0,得x <12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1)7.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________.[答案] b <-1或b >2 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +2)≤0,∴-1≤b ≤2,由题意b <-1或b >2.8.已知x ∈R,求证:e x ≥x +1.证明:设f (x )=e x -x -1,则f ′(x )=e x -1.∴当x =0时,f ′(x )=0,f (x )=0.当x >0时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.∴f (x )>f (0)=0. 当x <0时,f ′(x )<0,f (x )在(-∞,0)上是减函数,∴f (x )>f (0)=0.9.已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x 1)′=1-1·x -2=222)1)(1(1x x x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1.∴y =x +x 1的单调增区间;是(-∞,-1)和(1,+∞).令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)10.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间. 解:(Ⅰ)由f(x)的图象经过P (0,2),知d=2, 所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++=' 由在M(-1,f(-1))处的切线方程是76=+-y x , 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即{{326,23,12 1.0,3.b c b c b c b c b c -+=-=-∴-+-+=-===-即解得 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ)22()36 3.3630,f x x x x x '=----=令2210.x x --=即 解得 .21,2121+=-=x x当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时故)21,()(--∞在x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数. 点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.11.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围;解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-x+b≥0,∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2.当x=61时,g(x)max =121,∴b≥121. 12.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2+ax ∴)(x f '=3x 2-2(a+1)x+a 要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需)(x f '=3x 2-2(a+1)x+a 在(2,+∞)上满足)(x f '≥0即可.∵)(x f '=3x 2-2(a+1)x+a 的对称轴是x=31+a ,∴a 的取值应满足:⎪⎩⎪⎨⎧≥'≤+0(2)231f a 或⎪⎪⎩⎪⎪⎨⎧≥+'>+0)31(231a f a 解得:a≤38.∴a 的取值范围是a≤38.13.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.14.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,)1(-f )处的切线方程076=+-y x ,(1)求函数)(x f y =的解析式;(2)求函数)(x f y =的单调区间。

高三数学函数的单调性与导数试题

高三数学函数的单调性与导数试题

高三数学函数的单调性与导数试题1.(本小题满分13分)已知函数(1)求函数的导函数;(2)当时,若函数是R上的增函数,求的最小值;(3)当时,函数在上存在单调递增区间,求m的取值范围。

【答案】(Ⅰ).(Ⅱ)的最小值(Ⅲ).【解析】本试题主要是考查了导数在研究函数中的运用。

求解导函数,以及函数的最值,以及函数的单调性求解参数的范围的逆向解题的综合运用。

(1)根据已知的定义域求解函数的导函数;(2)当时,因为函数是R上的增函数,说明了导数恒大于等于零,得到的最小值;(3)当时,函数在上存在单调递增区间,说明了导数恒大于等于零,从而求m的取值范围。

(Ⅰ)解:.(Ⅱ)因为函数是上的增函数,所以在上恒成立.则有,即.可用圆面的几何意义解得的最小值(Ⅲ)①当时,是开口向上的抛物线,显然在上存在子区间使得,所以的取值范围是.②当时,显然成立.③当时,是开口向下的抛物线,要使在上存在子区间使,应满足或解得,或,所以的取值范围是.则的取值范围是.2.(本小题满分15分)已知函数(R)的一个极值点为.(1) 求的值和的单调区间;(2)若方程的两个实根为, 函数在区间上单调,求的取值范围。

【答案】(1)函数在上单调递增, 在上单调递减,在上单调递增. (2)实数的取值范围为.【解析】本试题主要是考查了导数在研究函数中的运用。

(1)因为函数的一个极值点为x=1.可以知道该点的导数值为零,得到a的值,并进而求解导数,得到f(x)的单调区间;(2)因为方程的两个实根为, 函数f(x)在区间上单调,利用单调性判定区间只能是已知单调区间的子区间而已,进而求解得到范围。

解:(1)∵,∴.∵的一个极值点为,∴.∴. ————————3分∴,当时, ;当时, ;当时, ;∴函数在上单调递增, 在上单调递减,在上单调递增. 6分(2)∵方程的两个不等实根为,∴△=b2-4b>0, b<0或b>4 (*)∵函数在区间上是单调的,∴区间只能是区间,,之一的子区间.记,的对称轴为x=,①., 则,解得无解;————————9分②,则,解得———————12分③则解得b>4∴实数的取值范围为. ------------------------------------------------15分3.(本题满分12分)已知函数.(Ⅰ)若,令函数,求函数在上的极大值、极小值;(Ⅱ)若函数在上恒为单调递增函数,求实数的取值范围.【答案】(1)函数在处取得极小值;在处取得极大值;(2)【解析】第一问中利用导数的正负求解函数的极值问题。

高考数学复习练习题导数与函数的单调性理

高考数学复习练习题导数与函数的单调性理

课时作业(十四)第14讲导数与函数的单调性时间/ 45分钟分值/ 100分基础热身1.函数f(x)=x2-sin x,x∈(0,π2)的单调递减区间是()A.(0,π6)B.(0,π3)C.(π6,π2)D.(π3,π2)2.下列函数中,在(0,+∞)上为增函数的是()A.f(x)=sin 2xB.g(x)=x3-xC.h(x)=x e xD.m(x)=-x+ln x图K14-13.已知函数y=-xf'(x)的图像如图K14-1所示,其中f'(x)是函数f(x)的导函数,则函数y=f(x)的大致图像可以是()A BC D图K14-24.对于R上可导的任意函数f(x),若满足(1-x)f'(x)≥0,则必有()A.f(0)+f(2)<2f(1)B.f(0)+f(2)≤2f(1)C.f(0)+f(2)>2f(1)D.f(0)+f(2)≥2f(1)5.[2019·贵港联考]若函数f(x)=kx-2ln x在区间(1,+∞)上单调递增,则k的取值范围是.能力提升6.[2019·甘肃静宁一中模拟] 已知函数f (x )=x 2+xx ,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为 ( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞)7.[2018·浙江台州中学模拟] 当0<x<1时,f (x )=ln xx,则下列大小关系正确的是 ( )A .[f (x )]2<f (x 2)<f (x ) B .f (x 2)<[f (x )]2<f (x ) C .f (x )<f (x 2)<[f (x )]2D .f (x 2)<f (x )<[f (x )]28.已知m 是实数,函数f (x )=x 2(x-m ),若f'(-1)=-1,则函数f (x )的单调递增区间是 ( ) A .(-∞,-43),(0,+∞) B .(-∞,-43)∪(0,+∞)C .(-43,0)D .(0,43)9.已知在R 上可导的函数f (x )的导函数为f'(x ),满足f'(x )<f (x ),且f (x+5)为偶函数,f (10)=1,则不等式f (x )<e x 的解集为 ( ) A .(0,+∞) B .(1,+∞) C .(5,+∞) D .(10,+∞)10.[2018·西宁二模] 设函数f'(x )是定义在(0,π)上的函数f (x )的导函数,且f'(x )cosx-f (x )sin x>0.若a=12f (π3),b=0,c=-√32f (5π6),则a ,b ,c 的大小关系是 ( )A .a<b<cB .b<c<aC .c<b<aD .c<a<b11.[2018·包头一模] 已知函数f (x )=2x 3-4x+2(e x -e -x ),若f (5a-2)+f (3a 2)≤0,则实数a 的取值范围是 ( )A.[-13,2]B.[-1,-23]C.[23,1]D.[-2,13]12.[2018·无锡期末]若函数f(x)=(x+1)2|x-a|在区间[-1,2]上单调递增,则实数a的取值范围是.13.[2018·唐山模拟]已知定义在实数集R上的函数f(x)满足f(1)=4,且f(x)的导函数f'(x)<3,则不等式f(ln x)>3ln x+1的解集为.14.(12分)已知函数f(x)=12ax2+2x-ln x(a∈R).(1)当a=3时,求函数f(x)的单调区间;(2)若函数f(x)存在单调递增区间,求实数a的取值范围.15.(13分)[2019·日照期中]已知函数f(x)=kx-xx-2ln x.(1)若函数f(x)的图像在点(1,f(1))处的切线方程为2x+5y-2=0,求f(x)的单调区间;(2)若函数f(x)在(0,+∞)上为增函数,求实数k的取值范围.难点突破16.(5分)[2018·昆明一模]已知函数f(x)=(x2-2x)e x-a ln x(a∈R)在区间(0,+∞)上单调递增,则a的最大值是()A.-eB.eC.-e22D.4e217.(5分)已知函数f(x)=x-2(e x-e-x),则不等式f(x2-2x)>0的解集为.课时作业(十四)1.B [解析] f'(x )=12-cos x ,x ∈(0,π2),令f'(x )<0,得x ∈(0,π3),故f (x )在(0,π2)上的单调递减区间为(0,π3),故选B .2.C [解析] 显然f (x )=sin 2x 在(0,+∞)上不是增函数,不符合题意. 由g'(x )=3x 2-1<0,得-√33<x<√33,所以g (x )=x 3-x 在(-√33,√33)上单调递减,不符合题意. 因为h'(x )=(x+1)e x,所以当x>0时,h'(x )>0,所以h (x )=x e x在(0,+∞)上单调递增,符合题意.由m'(x )=-1+1x <0,得x>1,所以m (x )=-x+ln x 在(1,+∞)上单调递减,不符合题意. 故选C .3.A [解析] 由函数y=-xf'(x )的图像可得: 当x<-1时,f'(x )<0,f (x )是减函数; 当-1<x<0时,f'(x )>0,f (x )是增函数; 当0<x<1时,f'(x )>0,f (x )是增函数; 当x>1时,f'(x )<0,f (x )是减函数.由此得到函数y=f (x )的大致图像可以是选项A . 4.B [解析] (1-x )f'(x )≥0.若f'(x )=0恒成立,则f (x )为常函数,则f (0)+f (2)=2f (1). 若f'(x )=0不恒成立,则当x<1时,f'(x )≥0,f (x )单调递增,当x>1时,f'(x )≤0,f (x )单调递减,∴f (0)<f (1),f (2)<f (1), ∴f (0)+f (2)<2f (1).故选B .5.[2,+∞) [解析] 因为f (x )=kx-2ln x ,所以f'(x )=k-2x .因为f (x )在区间(1,+∞)上单调递增,所以f'(x )=k-2x ≥0在区间(1,+∞)上恒成立,即k ≥2x 在区间(1,+∞)上恒成立.因为当x ∈(1,+∞)时,0<2x <2,所以k ≥2. 6.B [解析] 因为f (x )=x2+x x 在[2,+∞)上单调递增,所以f'(x )=2x-x x 2=2x 3-xx 2≥0在[2,+∞)上恒成立,则a ≤2x 3在[2,+∞)上恒成立,所以a ≤16.故选B . 7.D [解析] 由0<x<1得0<x 2<x<1.易得f'(x )=1-ln xx 2,根据对数函数的单调性可知,当0<x<1时,1-ln x>0,从而可得f'(x )>0,函数f (x )在(0,1)上单调递增,所以f (x 2)<f (x )<f (1)=0, 又[f (x )]2=(ln x x)2>0,所以f (x 2)<f (x )<[f (x )]2,故选D .8.A [解析] f'(x )=2x (x-m )+x 2,∵f'(-1)=-1,∴-2(-1-m )+1=-1,解得m=-2,∴f'(x )=2x (x+2)+x 2. 令2x (x+2)+x 2>0,解得x<-43或x>0,∴函数f (x )的单调递增区间是(-∞,-43),(0,+∞).9.A [解析] 设g (x )=x (x )e x,则g'(x )=x '(x )-x (x )e x,由f'(x )<f (x )得g'(x )<0,∴g (x )在R 上是减函数.∵f (x+5)是偶函数,∴f (x )的图像关于直线x=5对称, ∴f (0)=f (10)=1,∴g (0)=x (0)e 0=1.由f (x )<e x ,得x (x )e x<1,即g (x )<g (0).又g (x )在R 上是减函数,∴x>0,即f (x )<e x的解集为(0,+∞). 10.A [解析] 令g (x )=cos x ·f (x ).因为f'(x )cos x-f (x )sin x>0在(0,π)上恒成立, 所以g'(x )=f'(x )cos x-f (x )sin x>0在(0,π)上恒成立, 所以g (x )在(0,π)上单调递增, 所以g (π3)<g (π2)<g (5π6),即12f (π3)<0<-√32f (5π6),即a<b<c ,故选A .11.D [解析] 由函数f (x )=2x 3-4x+2(e x -e -x),可得f (-x )=2(-x )3-4(-x )+2(e -x -e x )=-[2x 3-4x+2(e x -e -x)]=-f (x ), 所以函数f (x )为奇函数.f'(x )=6x 2-4+2(e x +1e x ),因为e x +1e x ≥2√e x ·1e x =2,当且仅当x=0时取等号,所以f'(x )≥0,所以函数f (x )为R 上的增函数.因为f (5a-2)+f (3a 2)≤0,所以f (3a 2)≤-f (5a-2)=f (2-5a ), 所以3a 2≤2-5a ,即3a 2+5a-2≤0,解得-2≤a ≤13,故选D .12.(-∞,-1]∪[72,+∞) [解析] 由已知可得f (x )={(x +1)2(x -x ),x <x ,(x +1)2(x -x ),x ≥x .当x ≥a 时,f'(x )=(x+1)(3x-2a+1),由题意知需满足2x -13≤-1,∴a ≤-1;当x<a时,f'(x )=-(x+1)(3x-2a+1),由题意知需满足2x -13≥2,∴a ≥72.综上可知a ∈(-∞,-1]∪[72,+∞).13.(0,e) [解析] 设g (x )=f (x )-3x ,则g'(x )=f'(x )-3<0,所以函数g (x )在R 上单调递减. 将不等式变形为f (ln x )-3ln x>4-3,即g (ln x )>g (1), 由g (x )的单调性可得ln x<1,解得0<x<e .14.解:(1)当a=3时,f (x )=32x 2+2x-ln x ,其定义域为(0,+∞), 所以f'(x )=3x+2-1x =(3x -1)(x +1)x.易知当x ∈(0,13)时,f'(x )<0,f (x )单调递减; 当x ∈(13,+∞)时,f'(x )>0,f (x )单调递增.所以f (x )的单调递减区间为(0,13),单调递增区间为(13,+∞). (2)f (x )=12ax 2+2x-ln x (a ∈R)的定义域为(0,+∞),f'(x )=ax+2-1x =xx 2+2x -1x(a ∈R).因为函数f (x )存在单调递增区间,所以f'(x )>0在区间(0,+∞)上有解, 即ax 2+2x-1>0在区间(0,+∞)上有解. 分离参数得a>1-2xx 2,令g (x )=1-2xx 2,则只需a>g (x )min 即可.因为g (x )=1-2xx 2=(1x -1)2-1,所以g (x )min =-1,即所求实数a 的取值范围为(-1,+∞).15.解:(1)f (x )的定义域为(0,+∞),f'(x )=k+x x 2-2x =xx 2-2x +xx 2. 由题意可知f'(1)=2k-2=-25,解得k=45,所以f'(x )=4x 2-10x +45x 2=2(2x -1)(x -2)5x 2.由f'(x )>0,得0<x<12或x>2,由f'(x )<0,得12<x<2,所以函数f (x )的单调递增区间是(0,12),(2,+∞),单调递减区间是(12,2). (2)函数f (x )的定义域为(0,+∞),要使函数f (x )在定义域内为增函数,只需f'(x )≥0在区间(0,+∞)上恒成立, 即kx 2-2x+k ≥0在区间(0,+∞)上恒成立, 即k ≥2xx 2+1在区间(0,+∞)上恒成立. 令g (x )=2xx 2+1,x ∈(0,+∞),则g (x )=2x +1x≤1,当且仅当x=1时取等号,所以k ≥1,即实数k 的取值范围为[1,+∞).16.A [解析] 因为函数f (x )=(x 2-2x )e x-a ln x (a ∈R), 所以f'(x )=e x (x 2-2x )+e x(2x-2)-xx=e x (x 2-2)-x x.因为函数f (x )=(x 2-2x )e x-a ln x (a ∈R)在区间(0,+∞)上单调递增, 所以f'(x )=e x (x 2-2)-x x≥0在区间(0,+∞)上恒成立, 即a ≤e x (x 3-2x )在区间(0,+∞)上恒成立. 令h (x )=e x (x 3-2x ),则h'(x )=e x (x 3-2x )+e x (3x 2-2)=e x (x 3-2x+3x 2-2)=e x (x-1)(x 2+4x+2). 因为x ∈(0,+∞),所以x 2+4x+2>0,e x>0, 令h'(x )>0,可得x>1;令h'(x )<0,可得0<x<1.所以函数h (x )在区间(1,+∞)上单调递增,在区间(0,1)上单调递减. 所以h (x )min =h (1)=e 1(1-2)=-e, 所以a ≤-e .17.(0,2)[解析] 由函数的解析式可得f'(x)=1-2(e x+e-x),因为e x+e-x≥2√e x·e-x=2,当且仅当e x=e-x,即x=0时等号成立, 所以f'(x)=1-2(e x+e-x)≤-3,则函数f(x)是R上的减函数.因为f(0)=0,所以原不等式等价于f(x2-2x)>f(0),结合函数f(x)的单调性可得x2-2x<0,解得0<x<2,即不等式的解集为(0,2).。

导数运算及函数单调性(有答案)

导数运算及函数单调性(有答案)

导数及函数单调性班级班级 姓名姓名1.下列求导运算正确的是(.下列求导运算正确的是( )''22'2'3111.()1 B.(log )ln 2.(3)3log .(cos )2sin x x A x x x x x C e D x x x x+=+===-2.已知32'()32,(1)4, f x ax x f a =++-=若则的值等于()19101613. B. C. D.3333A3.若曲线y =f (x )在点(x 0, f (x 0))处的切线方程为2x -y +1=0,则(,则( )A .f ’(x 0)>0 B .f ’(x 0)<0 C .f ’(x 0)=0 D .f ’(x 0)不存在不存在4.下列函数中,在x =0处的导数不等于零的是处的导数不等于零的是 ( )A .)1(x x y -=B .xe x y -+= C .y=l n (1-x 2) D.x e x y ×=2 5.若y =32x lg (1-co s2x ),则x y ¢为 ( )A .4·9x [2ln 3lg (1-co s2x )+lge ·co t x ] B . 4·9x[2ln 3lg (1-co s2x )+lg 10·co t x ] C . 2·9x[ln 3·lg (1-co s2x )+lge ·co t x ] D . 以上皆非以上皆非6. (05湖北卷)在函数x x y 83-=的图象上,其切线的倾斜角小于4p的点中,坐标为整数的点的个数是数的点的个数是 ( ) A .3 B .2 C .1 D .0 7.设()f x ¢是函数()f x 的导函数的导函数,,()y f x ¢=图象如下左图图象如下左图,,则()y f x =图象最有可能是图象最有可能是 ( ))8.若函数1)(23+++=mx x x x f 是R 上的单调函数,则实数m 的取值范围是(的取值范围是( )A .),31(+¥B .)31,(-¥C .),31[+¥D .]31,(-¥9. 已知抛物线y 2=2px (p >0)与一个定点M (p ,p ),则抛物线上与M 点的距离最小的点为( ) A.(0,0) B.(2p,p ) C.(p p 2,2) D.(p p 332,2) 1010.函数.函数f(x)=x(x -1)(x -2)·…·(x -100)在0x =处的导数值(处的导数值( )A.0 B.2100 C.200 D.100!O 1 2 y xy=f /(x)O1 2 yxO 12 yxO1 2 yx O 12 yxA B C D 1111.若.若f ′(x 0)=2,k x f k x f k 2)()(lim000--® =_________.12.设函数),,())()(()(是两两不等的常数c b a c x b x a x x f ---=,则)()(b f ba f a ¢+¢ =¢+)(c f c . .13.设P 点是曲线3233+-=x x y 上的任意一点,P 点处切线倾斜角为a ,则角a 的取值范围是______________。

3.2 利用导数求函数单调性试题

3.2 利用导数求函数单调性试题

3.2 利用导数求函数单调性考向一 利用导数求单调性【例1】(1)函数f (x )=x ·e x -e x+1的单调增区间是________.(2)已知函数f (x )=x ln x ,则f (x )的单调减区间是________.(3)已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调增区间是_______. 【答案】(1)(e -1,+∞)(2)⎝⎛⎭⎫0,1e (3) ⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2 【解析】(1)由f (x )=x ·e x -e x +1,得f ′(x )=(x +1-e)·e x ,令f ′(x )>0,解得x >e -1, 所以函数f (x )的单调增区间是(e -1,+∞).(2)因为函数f (x )=x ln x 的定义域为(0,+∞),所以f ′(x )=ln x +1(x >0),思维导图考向分析当f ′(x )<0时,解得0<x <1e ,即函数f (x )的单调减区间为⎝⎛⎭⎫0,1e . (3)f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2,即f (x )的单调增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2. 【举一反三】1.(2019·黑龙江铁人中学)已知()22()2ln 2f x x x x x x =--+,则函数()f x 的单调递减区间为( ).A .10,2⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .(1,)+∞D .(0,)+∞【答案】B【解析】函数()y f x =的定义域为()0,∞+,()()()()42ln 222242ln f x x x x x x x '=-+--+=-,令()0f x '<,得112x <<,因此,函数()y f x =的单调递减区间为1,12⎛⎫⎪⎝⎭,故选:B 。

2022年高考数学利用导数研究函数的单调性专项练习含答案

2022年高考数学利用导数研究函数的单调性专项练习含答案

专题10 利用导数研究函数的单调性一、单选题(本大题共10小题,共50.0分)1. 已知函数f(x)=e |2x|−4ax 2,对任意x 1,x 2∈(−∞,0]且x 1≠x 2,都有 (x 2−x 1)(f(x 2)−f(x 1))<0,则实数a 的取值范围是 ( )A. (−∞,e2]B. (−∞,−e2]C. [0,e2]D. [−e2,0]2. f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0,对任意正数a ,b ,若a <b ,则必有( )A. af(b)<bf(a)B. bf(a)<af(b)C. bf(b)<af(a)D. af(a)<bf(b)3. 已知函数f(x)=e x −ax 2(a ∈R)有三个不同的零点,则实数a 的取值范围是( )A. (e4,+∞)B. (e2,+∞)C. (e 24,+∞)D. (e 22,+∞)4. 已知定义域为R 的奇函数y =f(x)的导函数为y =f′(x),当x >0时,xf′(x)−f(x)<0,若a =f(e)e,b =f(ln2)ln2,c =f(−3)−3,则a,b,c 的大小关系正确的是( )A. a <b <cB. b <c <aC. a <c <bD. c <a <b5. 函数f(x)的图象如图所示,则不等式(x −2)f′(x)>0的解集为( )A. (2,+∞)B. (−∞,−1)C. (−∞,−1) ∪(1,2)D. (−1,1)∪(2,+∞)6. 已知函数f(x)=e x−x 22−1,若f(x)≥kx 在x ∈[0,+∞)时总成立,则实数k 的取值范围是( )A. (−∞,1]B. (−∞,e]C. (−∞,2e]D. (−∞,e 2]7. 设点P 为函数f(x)=12x 2+2ax 与g(x)=3a 2lnx +b(a >0)的图像的公共点,以P 为切点可作直线与两曲线都相切,则实数b 的最大值为( )A. 23e 23B. 32e 23C. 23e 32D. 32e 328.已知函数f(x)=13x3+mx2+nx+2,其导函数f′(x)为偶函数,f(1)=−23,则函数g(x)=f′(x)e x在区间[0,2]上的最小值为()A. −3eB. −2eC. eD. 2e9.已知函数f(x)=xe x−mx+m2(e为自然对数的底数)在(0,+∞)上有两个零点,则m的范围是()A. (0,e)B. (0,2e)C. (e,+∞)D. (2e,+∞)10.已知f(x),g(x)都是定义在R上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x g(x)(a>0,且a≠1),f(1)g(1)+f(−1)g(−1)=103,若数列{f(n)g(n)}的前n项和大于363,则n的最小值为()A. 4B. 5C. 6D. 7二、单空题(本大题共4小题,共20.0分)11.设定义域为R的函数f(x)满足f′(x)>f(x),则不等式e x−1f(x)<f(2x−1)的解集为__________.12.若函数f(x)=xx2+a (a>0)在[1,+∞)上的最大值为√33,则a的值为________.13.已知函数f(x)=a−x2(0<x<√a)在其图象上任意一点P(t,f(t))处的切线,与x轴、y轴的正半轴分别交于M,N两点,设△OMN(O是坐标原点)的面积为S(t),当t=t0时,S(t)取得最小值,则√at0的值为.14.函数f(x)的定义域为R,f(0)=2,对于任意的x∈R,f(x)+f’(x)>1,则不等式e x f(x)>e x+1的解集为__________.三、解答题(本大题共3小题,共30分)15.已知函数f(x)=12x2−(a+1)x+alnx+1.(Ⅰ)若x=3是f(x)的极值点,求f(x)的单调区间;(Ⅱ)若f(x)≥1恒成立,求a的取值范围.16.已知函数f(x)=ax+lnx,g(x)=e x−1−1.(1)讨论函数y=f(x)的单调性;(2)若不等式f(x)≤g(x)+a在x∈[1,+∞)上恒成立,求实数a的取值范围.17.已知函数f(x)=ax +lnx,g(x)=12bx2−2x+2,a,b∈R.(1)求函数f(x)的单调区间;(2)记函数ℎ(x)=f(x)+g(x),当a=0时,ℎ(x)在(0,1)上有且只有一个极值点,求实数b的取值范围.专题10 利用导数研究函数的单调性一、单选题(本大题共10小题,共50.0分)18. 已知函数f(x)=e |2x|−4ax 2,对任意x 1,x 2∈(−∞,0]且x 1≠x 2,都有 (x 2−x 1)(f(x 2)−f(x 1))<0,则实数a 的取值范围是 ( )A. (−∞,e2]B. (−∞,−e2]C. [0,e2]D. [−e2,0]【答案】A【解析】解:因为对任意x 1<0,x 2<0,都有(x 2−x 1)[f (x 2)−f (x 1)]<0, 所以函数f (x )在(−∞,0]单调递减. 又因为f(x)=e |2x|−4ax 2=e −2x −4ax 2, 所以f′(x )=−2e −2x −8ax ,因此−2e −2x −8ax ≤0对(−∞,0]恒成立, 即4a ≤−e −2x x对(−∞,0]恒成立. 令ℎ(x )=−e −2x x,则ℎ′(x )=e −2x (2x+1)x 2,因此当x ∈(−∞,−12)时,ℎ′(x )<0,函数ℎ(x )是减函数; 当x ∈(−12,0)时,ℎ′(x )>0,函数ℎ(x )是增函数, 所以当x =−12时,函数ℎ(x )有最小值ℎ(−12)=2e , 因此4a ≤2e ,即a ≤e2. 故选A .19. f(x)是定义在(0,+∞)上的非负可导函数,且满足xf′(x)+f(x)<0,对任意正数a ,b ,若a <b ,则必有( )A. af(b)<bf(a)B. bf(a)<af(b)C. bf(b)<af(a)D. af(a)<bf(b)【答案】C【解析】解:设g(x)=xf(x),(x >0), 则g′(x)=[xf(x)]′=xf′(x)+f(x)<0, ∴函数g(x)在(0,+∞)上是减函数, ∵a <b ,∴g(a)>g(b)即bf(b)<af(a)故选C.20.已知函数f(x)=e x−ax2(a∈R)有三个不同的零点,则实数a的取值范围是()A. (e4,+∞) B. (e2,+∞) C. (e24,+∞) D. (e22,+∞)【答案】C【解析】解:令f(x)=e x−ax2=0,当x=0时显然不成立,故a=e xx2,令g(x)=e xx2,则问题转化为直线y=a与g(x)=exx2的图象有三个交点,∵g′(x)=(x−2)e xx3,令g′(x)=0,解得x=2,∴当x<0或x>2时,g′(x)>0,g(x)在(−∞,0),(2,+∞)上单调递增,当0<x<2时,g′(x)<0,g(x)在(0,2)上单调递减,g(x)在x=2处取极小值,g(2)=e24,作出g(x)的图象如下:要使直线y=a与曲线g(x)=e xx2有三个交点,,则a>e24,故实数a的取值范围是.故选C.21.已知定义域为R的奇函数y=f(x)的导函数为y=f′(x),当x>0时,xf′(x)−f(x)<0,若a=f(e)e ,b=f(ln2)ln2,c=f(−3)−3,则a,b,c的大小关系正确的是()A. a<b<cB. b<c<aC. a<c<bD. c<a<b 【答案】D【解析】解:构造函数g(x)=f(x)x,∴g′(x)=xf′(x)−f(x)x 2,当x >0时,∵xf′(x)−f(x)<0, ∴g′(x)<0,∴函数g(x)在(0,+∞)单调递减. 又∵函数f(x)为奇函数, ∴g(x)=f(x)x是偶函数,∴c =f(−3)−3=g(−3)=g(3),∵a =f(e)e=g(e),b =f(ln2)ln2=g(ln2),ln2<1<e <3,∴g(3)<g(e)<g(ln2), ∴c <a <b , 故选D .22. 函数f(x)的图象如图所示,则不等式(x −2)f′(x)>0的解集为( )A. (2,+∞)B. (−∞,−1)C. (−∞,−1) ∪(1,2)D. (−1,1)∪(2,+∞)【答案】D【解析】解:由图知,f(x)的单调递增区间为(−∞,−1),(1,+∞),单调递减区间为(−1,1),所以在区间(−∞,−1)及(1,+∞)上,f′(x)>0,在(−1,1)上,f′(x)<0, 又(x −2)f′(x)>0, 所以{x −2>0f′(x)>0或{x −2<0f′(x)<0, 得x >2或−1<x <1,即不等式(x −2)f′(x)>0的解集为(−1,1)∪(2,+∞). 故选D .23.已知函数f(x)=e x−x22−1,若f(x)≥kx在x∈[0,+∞)时总成立,则实数k的取值范围是()A. (−∞,1]B. (−∞,e]C. (−∞,2e]D. (−∞,e2]【答案】A【解析】解:当x=0时,f(x)≥kx显然恒成立;当x>0时,f(x)≥kx即为e x−12x2−kx−1≥0,设g(x)=e x−12x2−kx−1(x>0),则g′(x)=e x−x−k,令ℎ(x)=g′(x)=e x−x−k,ℎ′(x)=e x−1>0,∴函数g′(x)在(0,+∞)上为增函数,①当k≤1时,g′(x)>g′(0)=1−k≥0,故函数g(x)在(0,+∞)上为增函数,∴g(x)>g(0)=0,即f(x)≥kx成立;②当k>1时,g′(0)=1−k<0,g′(k)=e k−2k>0,故存在x0∈(0,k),使得g′(x0)= 0,∴当x∈(0,x0)时,g′(x)<0,g(x)单调递减,则g(x)<g(0)=0,即f(x)<kx,不符题意;综上所述,实数k的取值范围为(−∞,1].故选:A.24.设点P为函数f(x)=12x2+2ax与g(x)=3a2lnx+b(a>0)的图像的公共点,以P为切点可作直线与两曲线都相切,则实数b的最大值为()A. 23e23 B. 32e23 C. 23e32 D. 32e32【答案】B【解析】解:设P(x0,y0),由于点P为两曲线的公切点,则12x02+2ax0=3a2lnx0+b.又在点P处的切线斜率相同,则f′(x0)=g′(x0),即x0+2a=3a2x0,即(x0+3a)(x0−a)= 0.又a>0,x0>0,所以x0=a,于是b=52a2−3a2lna,其中a>0.设ℎ(x)=52x2−3x2lnx,其中x>0,则ℎ′(x)=2x(1−3lnx),其中x>0,所以ℎ(x)在(0,e 13)内单调递增,在(e13,+∞)内单调递减,所以实数b 的最大值为ℎ(e 13)=32e 23.故选B .25. 已知函数f(x)=13x 3+mx 2+nx +2,其导函数f′(x)为偶函数,f(1)=−23,则函数g(x)=f′(x)e x 在区间[0,2]上的最小值为( )A. −3eB. −2eC. eD. 2e【答案】B【解析】f′(x)=x 2+2mx +n , 要使导函数f′(x)为偶函数,则m =0, 故f(x)=13x 3+nx +2,则f(1)=13+n +2=−23,解得n =−3, 所以f′(x)=x 2−3,故g(x)=e x (x 2−3),g′(x)=e x (x 2−3+2x)=e x (x −1)(x +3), 当x ∈[0,1)时,g′(x)<0,当x ∈(1,2]时,g′(x)>0.所以函数g(x)在区间[0,1)上单调递减,在区间(1,2]上单调递增, 所以函数g(x)在区间[0,2]上的最小值为g(1)=e ×(1−3)=−2e . 故选B .26. 已知函数f(x)=xe x −mx +m 2(e 为自然对数的底数)在(0,+∞)上有两个零点,则m 的范围是( )A. (0,e)B. (0,2e)C. (e,+∞)D. (2e,+∞)【答案】D【解析】解:由f(x)=xe x −mx +m 2=0得xe x =mx −m 2=m(x −12),当x =12时,方程不成立,即x ≠12, 则m =xe xx−12,设ℎ(x)=xe xx−12,(x >0且x ≠12),则ℎ′(x)=(xe x )′(x−12)−xe x(x−12)2=e x (x 2−12x−12)(x−12)2=12e x(x−1)(2x+1)(x−12)2,∵x >0且x ≠12,∴由ℎ′(x)=0得x =1,当x >1时,ℎ′(x)>0,函数为增函数,当0<x <1且x ≠12时,ℎ′(x)<0,函数为减函数, 则当x =1时函数取得极小值,极小值为ℎ(1)=2e ,当0<x <12时,ℎ(x)<0,且单调递减,作出函数ℎ(x)的图象如图: 要使m =xe xx−12有两个不同的根,则m >2e 即可,即实数m 的取值范围是(2e,+∞), 方法2:由f(x)=xe x −mx +m 2=0得xe x =mx −m 2=m(x −12),设g(x)=xe x ,ℎ(x)=m(x −12),g′(x)=e x +xe x =(x +1)e x ,当x >0时,g′(x)>0,则g(x)为增函数,设ℎ(x)=m(x −12)与g(x)=xe x 相切时的切点为(a,ae a ),切线斜率k =(a +1)e a , 则切线方程为y −ae a =(a +1)e a (x −a), 当切线过(12,0)时,−ae a =(a +1)e a (12−a),即−a =12a +12−a 2−a ,即2a 2−a −1=0,得a =1或a =−12(舍),则切线斜率k =(1+1)e =2e ,要使g(x)与ℎ(x)在(0,+∞)上有两个不同的交点,则m >2e , 即实数m 的取值范围是(2e,+∞) 故选:D .27. 已知f(x),g(x)都是定义在R 上的函数,g(x)≠0,f′(x)g(x)>f(x)g′(x),且f(x)=a x g(x)(a >0,且a ≠1),f(1)g(1)+f(−1)g(−1)=103,若数列{f(n)g(n)}的前n 项和大于363,则n 的最小值为( )A. 4B. 5C. 6D. 7【答案】C【解析】解:∵f(x)=a x ⋅g(x)(a >0且a ≠1),∴f(x)g(x)=a x , 又∵f′(x)g(x)>f(x)g′(x), ∴(f(x)g(x))′=f′(x)g(x)−f(x)g′(x)g 2(x)>0,∴f(x)g(x)=a x 是增函数, ∴a >1, ∵f(1)g(1)+f(−1)g(−1)=103.∴a +a −1=103,解得a =13或a =3, 综上得a =3.∴数列{f(n)g(n)}是等比数列,f (n )g (n )=3n . ∵数列{f(n)g(n)}的前n 项和大于363, ∴3+32+33+⋯+3n =3(1−3n )1−3=12(3n+1−3)>363,即3n+1>729,∴n +1>6,解得n >5. ∴n 的最小值为6. 故选C .二、单空题(本大题共4小题,共20.0分)28. 设定义域为R 的函数f (x )满足f′(x )>f (x ),则不等式e x−1f (x )<f (2x −1)的解集为__________. 【答案】(1,+∞) 【解析】解:设F(x)=f(x)e x,则F ′(x)=f ′(x)−f(x)e x,∵f ′(x)>f(x),∴F ′(x)>0,即函数F(x)在定义域R 上单调递增, ∵e x−1f(x)<f(2x −1), ∴f(x)e x<f(2x−1)e 2x−1,即F(x)<F(2x −1),∴x <2x −1,即x >1,∴不等式e x−1f(x)<f(2x −1)的解集为(1,+∞), 故答案为(1,+∞).29. 若函数f(x)=xx 2+a (a >0)在[1,+∞)上的最大值为√33,则a 的值为________.【答案】√3−1【解析】解:f′(x)=x 2+a−2x2(x2+a)2=a−x2(x2+a)2,当x>√a时,f′(x)<0,f(x)单调递减,当−√a<x<√a时,f′(x)>0,f(x)单调递增,当x=√a时,f(x)=√a2a =√33,√a=√32<1,不合题意.∴f(x)最大值=f(1)=11+a=√33,a=√3−1,经检验a=√3−1满足题意.故答案为√3−1.30.已知函数f(x)=a−x2(0<x<√a)在其图象上任意一点P(t,f(t))处的切线,与x轴、y轴的正半轴分别交于M,N两点,设△OMN(O是坐标原点)的面积为S(t),当t=t0时,S(t)取得最小值,则√at0的值为.【答案】√3【解析】解:因为f(x)=a−x2(0<x<√a),所以f′(x)=−2x,所以在点P处的切线的斜率为k=f′(t)=−2t,又f(t)=a−t2,所以在点P处切线方程为y−(a−t2)=−2t(x−t),令x=0,得y N=a+t2,令y=0得x M=t2+a2t,所以是坐标原点)的面积为:S(t)=12(a+t2)·t2+a2t=14·t4+2at2+a2t=14(t3+2at+a2t),所以S′(t)=14(3t2+2a−a2t2)=14·3t4+2at2−a2t2,由S′(t)=0,得t=√a3,当0<t<√a3时,S′(t)<0,函数S(t)单调递增,当t>√a3时,S′(t)<0,函数S(t)单调递增,所以当t=√a3时,S(t)取得最小值,此时t0=√a3,所以√a t 0=√a √a 3=√3.故答案为√3.31. 函数f(x)的定义域为R ,f(0)=2,对于任意的x ∈R ,f(x)+f’(x)>1,则不等式e x f(x)>e x +1的解集为__________.【答案】(0,+∞)【解析】解:构造函数g (x )=e x ·f (x )−e x ,则g ′(x )=e x ·f (x )+e x ·f ′(x )−e x=e x [f (x )+f ′(x )]−e x >e x −e x =0,∴g (x )=e x ·f (x )−e x 为R 上的增函数,∵g (0)=e 0·f (0)−e 0=1,∴不等式e x ·f(x)>e x +1转化为g (x )>g (0),∴x >0.则解集为(0,+∞).故答案为(0,+∞).三、解答题(本大题共3小题,共30分)32. 已知函数f(x)=12x 2−(a +1)x +alnx +1.(Ⅰ)若x =3是f(x)的极值点,求f(x)的单调区间;(Ⅱ)若f(x)≥1恒成立,求a 的取值范围.【答案】解:(Ⅰ)由题意知函数的定义域为(0,+∞),f′(x)=x −(a +1)+a x, ∵x =3是f(x)的极值点,∴f′(3)=3−(a +1)+a 3=0,解得a =3,当a =3时,f′(x)=(x−1)(x−3)x ,当x 变化时,故f(x)在(0,1)上单调递增,在(1,3)上单调递减,在(3,+∞)上单调递增;(Ⅱ)要使得f(x)≥1恒成立,即当x>0时,12x2−(a+1)x+alnx≥0恒成立,设g(x)=12x2−(a+1)x+alnx,则g′(x)=x−(a+1)+ax=(x−1)(x−a)x,(ⅰ)当a≤0时,由g′(x)<0得单减区间为(0,1),由g′(x)>0得单增区间为(1,+∞),故g(x)min=g(1)=−a−12≥0,得a≤−12;(ii)当0<a<1时,由g′(x)<0得单减区间为(a,1),由g′(x)>0得单增区间为(0,a),(1,+∞),此时g(1)=−a−12<0,∴不合题意;(iii)当a=1时,g(x)在(0,+∞)上单调递增,此时g(1)=−a−12<0,∴不合题意;(iv)当a>1时,由g′(x)<0得单减区间为(1,a),由g′(x)>0得单增区间为(0,1),(a,+∞),此时g(1)=−a−12<0,∴不合题意.综上所述,a的取值范围为(−∞,−12].33.已知函数f(x)=ax+lnx,g(x)=e x−1−1.(1)讨论函数y=f(x)的单调性;(2)若不等式f(x)≤g(x)+a在x∈[1,+∞)上恒成立,求实数a的取值范围.【答案】解:(1)函数f(x)定义域是(0,+∞),f′(x)=a+1x =ax+1x,当a≥0时,f′(x)>0,函数f(x)在(0,+∞)单调递增,无减区间;当a<0时,函数f(x)在(0,−1a )单调递增,在(−1a,+∞)单调递减,(2)由已知e x−1−lnx−ax−1+a≥0在x≥1恒成立,令F(x)=e x−1−lnx−ax−1+a,x≥1,则F′(x)=e x−1−1x−a,易得F′(x)在[1,+∞)递增,∴F′(x)≥F′(1)=−a,①当a≤0时,F′(x)≥0,F(x)在[1,+∞)递增,所以F(x)≥F(1)=0成立,符合题意.②当a>0时,F′(1)=−a<0,且当x=ln(a+1)+1时,F′(x)=a+1−1x−a=1−1x>0,∴∃x0∈(1,+∞),使F′(x0)=0,即∃x∈(1,x0)时F′(x)<0,F(x)在(1,x0)递减,F(x)<F(1)=0,不符合题意.综上得a≤0.34.已知函数f(x)=ax +lnx,g(x)=12bx2−2x+2,a,b∈R.(1)求函数f(x)的单调区间;(2)记函数ℎ(x)=f(x)+g(x),当a=0时,ℎ(x)在(0,1)上有且只有一个极值点,求实数b的取值范围.【答案】解:的定义域是(0,+∞),且 f′(x)=−ax2+1x=x−ax2;①若a⩽0,则f′(x)>0,f(x)的单调增区间是(0,+∞),②若a>0,令f′(x)=0,得x=a,当0<x<a时,f′(x)<0,当x>a时,f′(x)>0,∴f(x)的单调减区间是(0,a),单调增区间是(a,+∞);综上,当a⩽0时,f(x)的单调增区间是(0,+∞),无单调减区间;当a>0时,f(x)的单调减区间是(0,a),单调增区间是(a,+∞);(2)a=0时,,∴ℎ′(x)=bx−2+1x =bx2−2x+1x ,∵ℎ(x)在(0,1)上有且只有一个极值点,则ℎ′(x)=0在(0,1)上有唯一实数解,且两侧异号,由ℎ′(x)=0,得bx2−2x+1=0;令p(x)=bx2−2x+1,则p(x)在(0,1)上有且只有一个零点,易知p(0)=1>0,①当b =0,由p(x)=0,得x =12,满足题意;②当b >0时,由{Δ=4−4b >0p (1)=b −1<0,解得0<b <1;③当b <0时,{Δ=4−4b >0p (1)=b −1<0,得b <1,故b <0; 综上所述,ℎ(x)在(0,1)上有且只有一个极值点时,b <1. 故实数b 的取值范围为(−∞,1).。

高中数学利用导数研究函数的单调性精选练习题

高中数学利用导数研究函数的单调性精选练习题

利用导数研究函数的单调性精选题24道一.选择题(共7小题) 1.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是()A .(-∞,1)(0-⋃,1) B .(1-,0)(1⋃,)+∞C .(-∞,1)(1--⋃,0)D .(0,1)(1⋃,)+∞2.若函数1()s in 2s in 3f x x x a x=-+在(,)-∞+∞单调递增,则a 的取值范围是() A .[1-,1] B .[1-,1]3C .1[3-,1]3D .[1-,1]3-3.函数32()f x a x b x c x d=+++的图象如图所示,则下列结论成立的是( )A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a<,0b<,0c<,0d>D .0a>,0b>,0c>,0d<4.已知奇函数()f x 在R 上是增函数,()()g x x f x =.若2(log 5.1)ag =-,0.8(2)bg =,cg=(3),则a ,b ,c 的大小关系为( )A .ab c<<B .cb a<< C .ba c<< D .bc a<<5.若函数21()f x xa x x=++在1(,)2+∞是增函数,则a 的取值范围是()A .[1-,0]B .[1-,)+∞C .[0,3]D .[3,)+∞6.若定义在R 上的函数()f x 满足(0)1f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( )A .11()f k k <B .11()1f k k >-C .11()11f k k <-- D .1()11k f k k >--7.已知21()s in ()42f x xx π=++,()f x '为()f x 的导函数,则()f x '的图象是()A .B .C .D .二.填空题(共12小题)8.已知函数31()2xxf x x x ee=-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+….则实数a 的取值范围是 . 9.函数()f x 的定义域为R ,(1)2f -=,对任意x R∈,()2f x '>,则()24f x x >+的解集为 . 10.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是 .11.已知函数3(21)34,(),a x a x tf x x x x t-+-⎧=⎨->⎩…,无论t 取何值,函数()f x 在区间(,)-∞+∞总是不单调.则a 的取值范围是 . 12.已知()f x 的定义域为(-∞,0)(0⋃,)+∞,()f x '是()f x 的导函数,且满足()2()0x f x f x '->,若()f x 是偶函数,f(1)1=,则不等式2()f x x>的解集为 .13.函数()(3)xf x x e=-的单调递增区间是 .14.设函数()f x 在R 上存在导数()f x ',对任意的x R∈有2()()f x f x x-+=,且在(0,)+∞上()f x x'>.若(2)f a f--(a )22a-…,则实数a 的取值范围是 .15.已知三次函数32()()32a b f x x xc xd a b =+++<在R 上单调递增,则a b c b a++-的最小值为 . 16.已知函数21()22f x m xln x x=+-在定义域内是增函数,则实数m 的取值范围为 .17.函数212yxln x=-的单调递减区间为 .18.已知函数321()242f x x xx =+-+,则函数的单调减区间为 .19.设定义域为R 的函数()f x 满足()()f x f x '>,则不等式1()(21)x e f x f x -<-的解为 .三.解答题(共5小题) 20.已知函数1()f x x a ln xx=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:1212()()2f x f x a x x -<--.21.设函数2()(1)xf x x e=-⋅.(1)讨论()f x 的单调性;(2)当0x …时,()1f x a x +…,求实数a 的取值范围.22.已知函数2()(2)(1)x f x x e a x =-+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.24.已知函数()1f x x a ln x=--.(1)若()0f x …,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm++⋯+<,求m 的最小值.利用导数研究函数的单调性精选题24道参考答案与试题解析一.选择题(共7小题) 1.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是()A .(-∞,1)(0-⋃,1) B .(1-,0)(1⋃,)+∞C .(-∞,1)(1--⋃,0)D .(0,1)(1⋃,)+∞【分析】由已知当0x >时总有()()0x f x f x '-<成立,可判断函数()()f xg x x=为减函数,由已知()f x 是定义在R 上的奇函数,可证明()g x 为(-∞,0)(0⋃,)+∞上的偶函数,根据函数()g x 在(0,)+∞上的单调性和奇偶性,模拟()g x 的图象,而不等式()0f x >等价于()0x g x ⋅>,数形结合解不等式组即可.【解答】解:设()()f x g x x =,则()g x 的导数为:2()()()x f x f x g x x'-'=,当0x >时总有()()xf x f x '<成立,即当0x>时,()g x '恒小于0, ∴当0x>时,函数()()f xg x x =为减函数,又()()()()()f x f x f xg x g x xxx---====--,∴函数()g x 为定义域上的偶函数又(1)(1)01f g --==-,∴函数()g x 的图象性质类似如图:数形结合可得,不等式()0()0f x xg x >⇔⋅>⇔0()0x g x >⎧⎨>⎩或0()0x g x <⎧⎨<⎩,01x ⇔<<或1x <-.故选:A .【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题. 2.若函数1()s in 2s in 3f x x x a x=-+在(,)-∞+∞单调递增,则a 的取值范围是() A .[1-,1] B .[1-,1]3C .1[3-,1]3D .[1-,1]3-【分析】求出()f x 的导数,由题意可得()0f x '…恒成立,设c o s (11)t x t=-剟,即有25430ta t -+…,对t 讨论,分0t=,01t <…,10t -<…,分离参数,运用函数的单调性可得最值,解不等式即可得到所求范围. 【解答】解:函数1()s in 2s in 3f x x x a x=-+的导数为2()1c o s 2c o s 3f x x a x'=-+,由题意可得()0f x '…恒成立,即为21c o s 2c o s 03x a x -+…, 即有254c o s c o s 033x a x -+…,设co s (11)t x t =-剟,即有25430ta t -+…,当0t =时,不等式显然成立;当01t <…时,534a t t-…,由54tt-在(0,1]递增,可得1t =时,取得最大值1-,可得31a -…,即13a -…;当10t -<…时,534a t t-…,由54tt-在[1-,0)递增,可得1t=-时,取得最小值1,可得31a …,即13a ….综上可得a 的范围是1[3-,1]3.另解:设co s (11)tx t =-剟,即有25430ta t -+…,由题意可得5430a -+…,且5430a --…,解得a 的范围是1[3-,1]3.故选:C .【点评】本题考查导数的运用:求单调性,考查不等式恒成立问题的解法,注意运用参数分离和换元法,考查函数的单调性的运用,属于中档题. 3.函数32()f x a x b x c x d=+++的图象如图所示,则下列结论成立的是()A .0a >,0b <,0c >,0d >B .0a >,0b <,0c <,0d >C .0a<,0b<,0c<,0d>D .0a>,0b>,0c>,0d<【分析】根据函数的图象和性质,利用排除法进行判断即可. 【解答】解:(0)0f d =>,排除D ,当x→+∞时,y →+∞,0a ∴>,排除C , 函数的导数2()32f x a x b x c'=++,则()0f x '=有两个不同的正实根,则12203b x x a+=->且123c x x a=>,(0)a>,b ∴<,0c>,方法22:()32f x a x b x c'=++,由图象知当当1x x <时函数递增,当12x x x <<时函数递减,则()f x '对应的图象开口向上,则0a>,且12203b x x a+=->且123c x x a=>,(0)a >,b ∴<,0c>,方法3:(0)0f d =>,排除D ,函数的导数2()32f x a x b x c'=++,则(0)0f c '=>,排除B ,C ,故选:A .【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合函数的极值及(0)f 的符号是解决本题的关键.4.已知奇函数()f x 在R 上是增函数,()()g x x f x =.若2(log 5.1)ag =-,0.8(2)bg =,cg=(3),则a ,b ,c 的大小关系为( )A .ab c<<B .cb a<< C .ba c<< D .bc a<<【分析】由奇函数()f x 在R 上是增函数,则()()g x x f x =偶函数,且在(0,)+∞单调递增,则22(lo g 5.1)(lo g 5.1)a g g =-=,则22lo g 5.13<<,0.8122<<,即可求得ba c<< 【解答】解:奇函数()f x 在R 上是增函数,当0x>,()(0)0f x f >=,且()0f x '>,()()g x xf x ∴=,则()()()0g x f x xf x '=+'>,()g x ∴在(0,)+∞单调递增,且()()g x x f x =偶函数,22(lo g 5.1)(lo g 5.1)a g g ∴=-=, 则22lo g 5.13<<,0.8122<<,由()g x 在(0,)+∞单调递增,则0.82(2)(lo g 5.1)g g g<<(3),b a c∴<<,故选:C .【点评】本题考查函数奇偶性,考查函数单调性的应用,考查转化思想,属于基础题. 5.若函数21()f x xa x x=++在1(,)2+∞是增函数,则a 的取值范围是()A .[1-,0]B .[1-,)+∞C .[0,3]D .[3,)+∞【分析】由函数21()f x xa x x=++在1(2,)+∞上是增函数,可得21()20f x x a x'=+-…在1(2,)+∞上恒成立,进而可转化为212a xx-…在1(2,)+∞上恒成立,构造函数求出212xx-在1(2,)+∞上的最值,可得a 的取值范围.【解答】解:21()f x x a x x=++在1(2,)+∞上是增函数,故21()20f x x a x'=+-…在1(2,)+∞上恒成立,即212a x x-…在1(2,)+∞上恒成立,令21()2h x x x=-, 则32()2h x x'=--,当1(2x ∈,)+∞时,()0h x '<,则()h x 为减函数.1()()32h x h ∴<=3a ∴….故选:D .【点评】本题考查的知识点是利用导数研究函数的单调性,恒成立问题,是导数的综合应用,难度中档.6.若定义在R 上的函数()f x 满足(0)1f =-,其导函数()f x '满足()1f x k '>>,则下列结论中一定错误的是( )A .11()f k k<B .11()1f k k >- C .11()11f k k <-- D .1()11k f k k >-- 【分析】根据导数的概念得出()(0)1f x f k x->>,用11x k =-代入可判断出11()11f k k >--,即可判断答案. 【解答】解;()(0)(0)limx f x f f x →-'=-()1f x k '>>, ∴()(0)1f x f k x ->>,即()11f x k x+>>,当11xk =-时,11()1111k f k k k k +>⨯=---,即11()1111k f k k k >-=---故11()11f k k >--,所以11()11f k k <--,一定出错,另解:设()()1g x f x kx =-+,(0)0g =,且()()0g x f x k '='->,()g x 在R 上递增,1k >,对选项一一判断,可得C错.故选:C .【点评】本题考查了导数的概念,不等式的化简运算,属于中档题,理解了变量的代换问题. 7.已知21()s in ()42f x xx π=++,()f x '为()f x 的导函数,则()f x '的图象是()A .B .C .D .【分析】先化简2211()s in ()c o s 424f x xx xxπ=++=+,再求其导数,得出导函数是奇函数,排除B ,D .再根据导函数的导函数小于0的x 的范围,确定导函数在(3π-,)3π上单调递减,从而排除C ,即可得出正确答案. 【解答】解:由2211()s in ()c o s 424f x xx xxπ=++=+,1()s in 2f x x x ∴'=-,它是一个奇函数,其图象关于原点对称,故排除B ,D . 又1()c o s 2f x x''=-,当33x ππ-<<时,1c o s 2x>,()0f x ∴''<,故函数()yf x ='在区间(3π-,)3π上单调递减,故排除C .故选:A .【点评】本题主要考查函数的单调性与其导函数的正负之间的关系,即当导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减. 二.填空题(共12小题)8.已知函数31()2xxf x x x ee=-+-,其中e 是自然对数的底数.若2(1)(2)0f a f a -+….则实数a 的取值范围是 [1-,1]2.【分析】求出()f x 的导数,由基本不等式和二次函数的性质,可得()f x 在R 上递增;再由奇偶性的定义,可得()f x 为奇函数,原不等式即为221a a-…,运用二次不等式的解法即可得到所求范围. 【解答】解:函数31()2xxf x x x ee=-+-的导数为: 211()3220xxxxf x x e ee'=-++-+=…,可得()f x 在R 上递增;又331()()()220xxxxf x f x x x e ex x ee--+=-++-+-+-=,可得()f x 为奇函数,则2(1)(2)0f a f a -+…, 即有2(2)(1)f a f a --… 由((1))(1)f a f a --=--,2(2)(1)f a f a -…,即有221a a -…, 解得112a-剟,故答案为:[1-,1]2.【点评】本题考查函数的单调性和奇偶性的判断和应用,注意运用导数和定义法,考查转化思想的运用和二次不等式的解法,考查运算能力,属于中档题. 9.函数()f x 的定义域为R ,(1)2f -=,对任意x R∈,()2f x '>,则()24f x x >+的解集为(1,)-+∞ .【分析】构建函数()()(24)F x f x x =-+,由(1)2f -=得出(1)F -的值,求出()F x 的导函数,根据()2f x '>,得到()F x 在R 上为增函数,根据函数的增减性即可得到()F x 大于0的解集,进而得到所求不等式的解集. 【解答】解:设()()(24)F x f x x =-+,则(1)(1)(24)220F f -=---+=-=,又对任意x R∈,()2f x '>,所以()()20F x f x '='->,即()F x 在R 上单调递增, 则()0F x >的解集为(1,)-+∞,即()24f x x >+的解集为(1,)-+∞.故答案为:(1,)-+∞【点评】本题考查学生灵活运用函数思想求解不等式,解题的关键是构建函数,确定函数的单调性,属于中档题. 10.设函数()f x '是奇函数()()f x x R ∈的导函数,(1)f -=,当0x>时,()()0x f x f x '-<,则使得()0f x >成立的x 的取值范围是(-∞,1)(0-⋃,1) .【分析】构造函数()()f x g x x=,利用()g x 的导数判断函数()g x 的单调性与奇偶性,画出函数()g x 的大致图象,结合图形求出不等式()0f x >的解集.【解答】解:设()()f xg x x=,则()g x 的导数为:2()()()x f x f x g x x'-'=,当0x >时总有()()xf x f x '<成立,即当0x>时,()g x '恒小于0, ∴当0x>时,函数()()f xg x x =为减函数,又()()()()()f x f x f xg x g x xxx---====--,∴函数()g x 为定义域上的偶函数又(1)(1)01f g --==-,∴函数()g x 的大致图象如图所示:数形结合可得,不等式()0()0f x xg x >⇔⋅>⇔0()0x g x >⎧⎨>⎩或0()0x g x <⎧⎨<⎩,01x ⇔<<或1x <-.()0f x ∴>成立的x 的取值范围是(-∞,1)(0-⋃,1).故答案为:(-∞,1)(0-⋃,1).【点评】本题考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式的应用问题,是综合题目. 11.已知函数3(21)34,(),a x a x tf x x x x t-+-⎧=⎨->⎩…,无论t 取何值,函数()f x 在区间(,)-∞+∞总是不单调.则a 的取值范围是 12a ….【分析】首先分析3()f x x x=-,其单调区间.然后根据无论t 取何值,函数()f x 在区间(,)-∞+∞总是不单调,判断()(21)34f x a x a =-+-的单调性,求出a 的取值范围即可.【解答】解:对于函数3()f x x x=-,2()31f x x '=-x t>当2310x ->时,即3x>或3x<-此时3()f x x x=-,为增函数当2310x -<时,33x -<<x t>,3()f x x x∴=-,一定存在单调递增区间要使无论t 取何值, 函数()f x 在区间(,)-∞+∞总是不单调()(21)34f x a x a ∴=-+-不能为增函数210a ∴-…∴12a …故答案为:12a ….【点评】本题考查函数单调性的判定与应用,3次函数与1次函数的单调性的判断,属于中档题. 12.已知()f x 的定义域为(-∞,0)(0⋃,)+∞,()f x '是()f x 的导函数,且满足()2()0x f x f x '->,若()f x 是偶函数,f(1)1=,则不等式2()f x x>的解集为(-∞,1)(1-⋃,)+∞ .【分析】构造函数2()()(0)f xg x x x=≠,依题意可知它是偶函数且在(0,)+∞上单调递增,于是2()f x x>等价转化为()g x g>(1),即(||)(|1|)||1g x g x >⇒>,从而可得答案.【解答】解:令2()()(0)f xg x x x=≠,则243()2()()2()()x f x x f x x f x f x g x xx'-'-'==,因为足()2()0x f x f x '->,所以,当0x>时,()0g x '>,所以()g x 在(0,)+∞上单调递增. 又()f x 是偶函数,故2()()(0)f xg x x x=≠也是偶函数,而f(1)1=,故g (1)2(1)1f f==(1)1=,因此,2()f x x>⇔2()1f x x>,即()g x g >(1),即(||)(|1|)g x g >所以,||1x >,解得:1x >或1x<-.则不等式2()f x x>的解集为(-∞,1)(1-⋃,)+∞,故答案为:(-∞,1)(1-⋃,)+∞.【点评】本题考查利用导数研究函数的单调性,构造函数2()()(0)f xg x x x=≠,并判断它为偶函数且在(0,)+∞上单调递增是关键,考查等价转化思想与逻辑思维能力及运算能力,属于中档题. 13.函数()(3)xf x x e=-的单调递增区间是(2,)+∞ .【分析】先求出函数的导数,令导函数大于0,解不等式求出即可.【解答】解:()(2)xf x x e'=-,令()0f x '>,解得:2x >,()f x ∴在(2,)+∞递增,故答案为:(2,)+∞.【点评】本题考查了函数的单调性,导数的应用,是一道基础题. 14.设函数()f x 在R 上存在导数()f x ',对任意的x R∈有2()()f x f x x-+=,且在(0,)+∞上()f x x'>.若(2)f a f --(a )22a-…,则实数a 的取值范围是(-∞,1] .【分析】令21()()2g x f x x=-,由()()g x g x -+=,可得函数()g x 为奇函数.利用导数可得函数()g x 在R 上是增函数,(2)f a f--(a )22a-…,即(2)g a g-…(a ),可得2a a-…,由此解得a 的范围. 【解答】解:令21()()2g x f x x=-,2211()()()()022g x g x f x xf x x-+=--+-=,∴函数()g x 为奇函数.(0,)x ∈+∞时,()()0g x f x x '='->,故函数()g x 在(0,)+∞上是增函数,故函数()g x 在(,0)-∞上也是增函数, 由(0)0f =,可得()g x 在R 上是增函数. (2)f a f--(a )22a-…,等价于2(2)(2)2a f a f---…(a )22a-,即(2)g a g-…(a ),2a a∴-…,解得1a …,故答案为:(-∞,1].【点评】本题主要考查函数的奇偶性、单调性的应用,体现了转化的数学思想,属于中档题. 15.已知三次函数32()()32a b f x x xc xd a b =+++<在R 上单调递增,则a b c b a++-的最小值为3 .【分析】由题意得2()f x a x b x c'=++在R 上恒大于或等于0,得0a>,△240ba c =-…,将此代入a b c b a++-,将式子进行放缩,以b a为单位建立函数关系式,最后构造出运用基本不等式的模型使问题得到解决. 【解答】解:由题意2()0f x a x b x c '=++…在R 上恒成立,则0a>,△240ba c =-….∴222222111()441b b a a b ba b c aa b a c aa b b aa b aa b aa++++++++==----…令(1)b tt a=>,222111(2)1(13)194(16)31414141t ta b c t t t b at t t t +++++-+===-++-----厖.(当且仅当4t =,即4bc a==时取“=” )故答案为:3【点评】本题考查了利用导数工具研究三次函数的单调性以及函数与方程的综合应用问题,属于中档题. 16.已知函数21()22f x m xln x x=+-在定义域内是增函数,则实数m 的取值范围为[1,)+∞ .【分析】函数21()22f x m xl nx x =+-在定义域(0)x >内是增函数⇔2121()20f x m x mxx x'=+-⇔-厖对于任意0x>.⇔221()m a xm xx-….利用导数即可得出.【解答】解:函数21()22f x m x l n xx =+-在定义域(0)x >内是增函数,∴1()20f x m x x'=+-…,化为221m xx-….令221()g x xx=-,233222(1)()x g x xxx-'=-+=-,解()g x '>,得01x <<;解()0g x '<,得1x >.因此当1x =时,()g x 取得最大值,g (1)1=.1m ∴….故答案为[1,)+∞.【点评】正确把问题等价转化、利用导数研究函数的单调性、极值与最值是解题的关键. 17.函数212yxln x=-的单调递减区间为(0,1] .【分析】根据题意,先求函数212yxln x=-的定义域,进而求得其导数,即211xy x x x-'=-=,令其导数小于等于0,可得210x x -…,结合函数的定义域,解可得答案. 【解答】解:对于函数212yxln x=-,易得其定义域为{|0}x x>,211x y x xx-'=-=,令210x x-…,又由0x>,则221010x x x-⇔-剟,且0x>;解可得01x <…,即函数212yxln x=-的单调递减区间为(0,1],故答案为(0,1]【点评】本题考查利用导数求函数的单调区间,注意首先应求函数的定义域. 18.已知函数321()242f x x xx =+-+,则函数的单调减区间为2[1,]3- .【分析】对函数进行求导即可求出单调区间. 【解答】解:31()242f x x x x =+-+2()32(32)(1)f x x x x x ∴'=+-=-+令2()0,13f x x '-剟?.∴函数的单调减区间为2[1,]3-.【点评】此题较为容易,考查了导数与函数的单调性问题,注意区间端点的取值就可以了. 19.设定义域为R的函数()f x 满足()()f x f x '>,则不等式1()(21)x ef x f x -<-的解为(1,)+∞ .【分析】令()()xf xg x e=,求出函数的导数,根据函数的单调性得到关于x 的不等式,解出即可.【解答】解:令()()xf xg x e=,则()()()xf x f xg x e'-'=>,故()g x 在R 递增, 不等式1()(21)x e f x f x -<-,即21()(21)xx f x f x ee--<,故()(21)g x g x <-,故21xx <-,解得:1x >,故答案为:(1,)+∞【点评】本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道常规题. 三.解答题(共5小题) 20.已知函数1()f x x a ln xx=-+.(1)讨论()f x 的单调性;(2)若()f x 存在两个极值点1x ,2x ,证明:1212()()2f x f x a x x -<--.【分析】(1)求出函数的定义域和导数,利用函数单调性和导数之间的关系进行求解即可. (2)将不等式进行等价转化,构造新函数,研究函数的单调性和最值即可得到结论. 【解答】解:(1)函数的定义域为(0,)+∞, 函数的导数22211()1a xa x f x xxx-+'=--+=-,设2()1g x x a x =-+,当0a …时,()0g x >恒成立,即()0f x '<恒成立,此时函数()f x 在(0,)+∞上是减函数,当0a>时,判别式△24a =-,①当02a <…时,△0…,即()0g x …,即()0f x '…恒成立,此时函数()f x 在(0,)+∞上是减函数, ②当2a>时,x ,()f x ',()f x 的变化如下表:综上当2a …时,()f x 在(0,)+∞上是减函数,当2a>时,在(02和2,)+∞上是减函数,则22上是增函数.(2)由(1)知2a>,不妨设12x x <,则121x x <<<,121x x =,则1221122112121()()()(1)()2()()f x f x x x a ln x ln x x x a ln x ln x x x -=-++-=-+-,则12121212()()()2f x f x a ln x ln x x x x x --=-+--,则问题转为证明12121ln x ln x x x -<-即可,即证明1212ln x ln x x x ->-,则111111ln x lnx x x ->-, 即11111ln x ln x x x +>-,即证11112ln x x x >-在(0,1)上恒成立,设1()2h x ln x x x=-+,(01)x <<,其中h (1)0=, 求导得222222121(1)()10x x x h x xxxx-+-'=--=-=-<,则()h x 在(0,1)上单调递减,()h x h∴>(1),即120ln xx x-+>,故12ln x x x>-,则1212()()2f x f x a x x -<--成立.(2)另解:注意到11()()f x a ln x f x x x=--=-,即1()()0f x f x +=,不妨设12x x <,由韦达定理得121x x =,122x x a +=>,得121x x <<<,121x x =,可得221()()0f x f x +=,即12()()0f x f x +=,要证1212()()2f x f x a x x -<--,只要证2212()()2f x f x a x x --<--,即证22220a a ln x a x x -+<,2(1)x >,构造函数()2a h x a ln x a x x=-+,(1)x >,22(1)()a x h x x--'=…,()h x ∴在(1,)+∞上单调递减,()h x h∴<(1)0=,20a a ln x a x x∴-+<成立,即22220a a ln x a x x -+<,2(1)x >成立.即1212()()2f x f x a x x -<--成立.【点评】本题主要考查函数的单调性的判断,以及函数与不等式的综合,求函数的导数,利用导数的应用是解决本题的关键.综合性较强,难度较大. 21.设函数2()(1)xf x x e=-⋅.(1)讨论()f x 的单调性;(2)当0x …时,()1f x a x +…,求实数a 的取值范围.【分析】(1)求出函数的导数,求出极值点,利用导函数的符号,判断函数的单调性即可. (2)化简()(1)(1)xf x x x e=-+.()1f x a x +…,下面对a 的范围进行讨论:①当1a …时,②当01a <<时,设函数()1xg x e x =--,则()10(0)xg x e x '=->>,推出结论;③当0a …时,推出结果,然后得到a 的取值范围.法二:0x …时,2()(1)10xg x e x a x =-++…恒成立,推出()g x ',求解[()]g x '',当(0)10g a '=-…时,判断函数的单调性,判断满足题意,当(0)10g a '=-<时,推出()(0)0g m g <=,不合题意,得到结果. 【解答】解:(1)因为2()(1)xf x x e=-,x R∈,所以2()(12)xf x x x e'=--,令()0f x '=可知1x=-±当1x<--1x>-+()0f x '<,当11x --<<-+时()0f x '>,所以()f x在(,1-∞--,(1-+)+∞上单调递减,在(1--,1-+上单调递增;(2)由题可知()(1)(1)xf x x x e=-+.下面对a 的范围进行讨论:①当1a …时,设函数()(1)xh x x e=-,则()0(0)xh x x e x '=-<>,因此()h x 在[0,)+∞上单调递减, 又因为(0)1h =,所以()1h x …,所以()(1)()11f x x h x x a x =+++剟;②当01a <<时,设函数()1xg x e x =--,则()10(0)x g x e x '=->>,所以()g x 在[0,)+∞上单调递增, 又(0)1010g =--=,所以1x e x +….因为当01x <<时2()(1)(1)f x x x >-+,所以22(1)(1)1(1)x x a x x a x x -+--=---,取0(0,1)2x =,则2000(1)(1)10x x a x -+--=,所以00()1f x a x >+,矛盾;③当0a …时,取0(0,1)2x =,则20000()(1)(1)11f x x x a x >-+=+…,矛盾;综上所述,a 的取值范围是[1,)+∞. (2)法二:0x …时,2()(1)10x g x e x a x =-++…恒成立,2()(21)x g x e x x a'=+-+,2[()](41)0(0)xg x e x x x ''=++>…,()g x '在0x …时单调递增,当(0)10g a '=-…时,0x>时()0g x '>恒成立,()g x 单调递增,则0x …时,()(0)0g x g =…,符合题意,当(0)10g a '=-<时,(||)0g a '>,于是存在0m>使得()g m '=,当0x m<<时,()0g x '<,()g x 单调递减,有()(0)0g x g <=,不合题意,所以1a ….综上所述,a 的取值范围是[1,)+∞.【点评】本题考查函数的导数的应用,函数的单调性以及函数的最值的求法,考查转化思想以及计算能力. 22.已知函数2()(2)(1)xf x x e a x =-+-.(Ⅰ)讨论()f x 的单调性;(Ⅱ)若()f x 有两个零点,求a 的取值范围.【分析】(Ⅰ)求出()f x 的导数,讨论当0a …时,2e a<-时,2e a=-时,02e a -<<,由导数大于0,可得增区间;由导数小于0,可得减区间;(Ⅱ)由(Ⅰ)的单调区间,对a 讨论,结合单调性和函数值的变化特点,即可得到所求范围.【解答】解:(Ⅰ)由2()(2)(1)x f x x e a x =-+-,可得()(1)2(1)(1)(2)xxf x x e a x x e a '=-+-=-+,①当0a …时,由()0f x '>,可得1x>;由()0f x '<,可得1x<,即有()f x 在(,1)-∞递减;在(1,)+∞递增(如右上图); ②当0a <时,(如右下图), 由20xe a +=,可得(2)x ln a =-,由(2)1ln a -=,解得2e a=-,若2e a =-,则()0f x '…恒成立,即有()f x 在R 上递增;若2e a <-时,由()0f x '>,可得1x<或(2)x ln a >-;由()0f x '<,可得1(2)x ln a <<-.即有()f x 在(,1)-∞,((2)ln a -,)+∞递增;在(1,(2))ln a -递减; 若02e a -<<,由()0f x '>,可得(2)xln a <-或1x>;由()0f x '<,可得(2)1ln a x -<<.即有()f x 在(-∞,(2))ln a -,(1,)+∞递增;在((2)ln a -,1)递减; (Ⅱ)①由(Ⅰ)可得当0a>时,()f x 在(,1)-∞递减;在(1,)+∞递增, 且f(1)0e =-<,x→+∞,()f x →+∞;当x→-∞时()0f x >或找到一个1x <使得()0f x >对于0a>恒成立,()f x 有两个零点;②当0a =时,()(2)xf x x e=-,所以()f x 只有一个零点2x=;③当0a <时, 若2e a<-时,()f x 在(1,(2))ln a -递减,在(,1)-∞,((2)ln a -,)+∞递增,又当1x …时,()0f x <,所以()f x 不存在两个零点;当2e a -…时,在(-∞,(2))ln a -单调增,在(1,)+∞单调增,在((2)ln a -,1)单调减, 只有((2))f ln a -等于0才有两个零点,而当1x …时,()0f x <,所以只有一个零点不符题意.综上可得,()f x 有两个零点时,a 的取值范围为(0,)+∞.【点评】本题考查导数的运用:求单调区间,考查函数零点的判断,注意运用分类讨论的思想方法和函数方程的转化思想,考查化简整理的运算能力,属于难题. 24.已知函数()1f x x a ln x=--.(1)若()0f x …,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm++⋯+<,求m 的最小值.【分析】(1)通过对函数()1(0)f x x a ln x x =-->求导,分0a …、0a>两种情况考虑导函数()f x '与0的大小关系可得结论;(2)通过(1)可知1ln x x -…,进而取特殊值可知11(1)22kkln +<,*k N∈.一方面利用等比数列的求和公式放缩可知2111(1)(1)(1)222ne ++⋯+<,另一方面可知2111(1)(1)(1)2222n++⋯+>,从而当3n …时,2111(1)(1)(1)(2222n++⋯+∈,)e ,比较可得结论.【解答】解:(1)因为函数()1f x x a ln x=--,0x>,所以()1a x a f x x x-'=-=,且f(1)0=.所以当0a …时()0f x '>恒成立,此时()yf x =在(0,)+∞上单调递增,故当01x <<时,()f x f <(1)0=,这与()0f x …矛盾;当0a>时令()0f x '=,解得x a=,所以()y f x =在(0,)a 上单调递减,在(,)a +∞上单调递增,即()m in f x f=(a ),若1a≠,则f (a )f<(1)0=,从而与()0f x …矛盾;所以1a =;(2)由(1)可知当1a =时()10f x x ln x =--…,即1ln x x -…,所以(1)ln xx +…当且仅当0x=时取等号,所以11(1)22kkln +<,*k N∈.221111111(1)(1)(1)112222222nnnln ln ln ++++⋯++<++⋯+=-<,即2111(1)(1)(1)222ne++⋯+<;因为m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm++⋯+<成立,当3n=时,23111135(1)(1)(1)222264+++=>,所以m 的最小值为3.【点评】本题是一道关于函数与不等式的综合题,考查分类讨论的思想,考查转化与化归思想,考查运算求解能力,考查等比数列的求和公式,考查放缩法,注意解题方法的积累,属于难题.。

高三数学利用导数研究函数的单调性试题

高三数学利用导数研究函数的单调性试题

高三数学利用导数研究函数的单调性试题1.(本小题满分13分)设函数(为常数,是自然对数的底数).(Ⅰ)当时,求函数的单调区间;(Ⅱ)若函数在内存在两个极值点,求的取值范围.【答案】(I)的单调递减区间为,单调递增区间为.(II)函数在内存在两个极值点时,k的取值范围为.【解析】(I)函数的定义域为,由可得,得到的单调递减区间为,单调递增区间为.(II)分,,,时,讨论导函数值的正负,根据函数的单调性,明确极值点的有无、多少.试题解析:(I)函数的定义域为,由可得,所以当时,,函数单调递减,当时,,函数单调递增.所以的单调递减区间为,单调递增区间为.(II)由(I)知,时,函数在内单调递减,故在内不存在极值点;当时,设函数,因为,当时,当时,,单调递增,故在内不存在两个极值点;当时,得时,,函数单调递减,时,,函数单调递增,所以函数的最小值为,函数在内存在两个极值点;当且仅当,解得,综上所述,函数在内存在两个极值点时,k的取值范围为.【考点】应用导数研究函数的单调性、极值,分类讨论思想,不等式组的解法.2.函数f(x)=x+eln x的单调递增区间为________.【答案】(0,+∞)【解析】函数定义域为(0,+∞),f′(x)=1+>0,故单调增区间是(0,+∞).3.已知函数函数在处取得极值1.(1)求实数b,c的值;(2)求在区间[-2,2]上的最大值.【答案】(1)(2)详见解析.【解析】(1)根据分段函数可知,时,,根据函数在处,取得极值1,可知,,求出与,并且回代函数,验证能够满足在处函数取得极值;(2)当时,函数,,求函数的极值点,与端点值,判定最大值,当时,,,设,显然大于0,所以只要讨论三种情况的正负,取得函数的单调性,闭区间内求最大值,再与的最大值比较大小.(1)由题意当时,,当时,,依题意得,经检验符合条件. 4分(2)由(1)知,当时,,,令得当变化时,的变化情况如下表:+—由上表可知在上的最大值为. 7分当时,.,令,当时,显然恒成立,当时,在单调递减,所以恒成立.此时函数在上的最大值为;当时,在上,当时, 在上所以在上,函数为单调递增函数.∴在最大值为,,故函数在上最大值为.综上:当时,在上的最大值为;当时, 在最大值为. 12分【考点】1.利用导数求函数的极值;2.利用导致求函数的最值.4.已知函数f(x)=ax3+(a-2)x+c的图象如图所示.(1)求函数y=f(x)的解析式;(2)若g(x)=-2ln x在其定义域内为增函数,求实数k的取值范围.【答案】(1)f(x)=x3-x+3(2)[1,+∞)【解析】(1)∵f′(x)=ax2+a-2,由图可知函数f(x)的图象过点(0,3),且f′(1)=0.得即∴f(x)=x3-x+3.(2)∵g(x)=-2ln x=kx--2ln x,∴g′(x)=k+-=.∵函数y=g(x)的定义域为(0,+∞),∴若函数y=g(x)在其定义域内为单调增函数,则函数g′(x)≥0在(0,+∞)上恒成立,即kx2+k-2x≥0在区间(0,+∞)上恒成立.即k≥在区间(0,+∞)上恒成立.令h(x)=,x∈(0,+∞),则h(x)==≤1(当且仅当x=1时取等号).∴k≥1.∴实数k的取值范围是[1,+∞).5.已知函数其中a是实数.设,为该函数图象上的两点,且.(1)指出函数f(x)的单调区间;(2)若函数f(x)的图象在点A,B处的切线互相垂直,且,求的最小值;(3)若函数f(x)的图象在点A,B处的切线重合,求a的取值范围.【答案】(1)[-1,0),(0,+∞)(2)1(3)(-ln2-1,+∞)【解析】(1)函数f(x)的单调递减区间为(-∞,-1),单调递增区间为[-1,0),(0,+∞).(2)由导数的几何意义可知,点A处的切线斜率为,点B处的切线斜率为,故当点A处的切线与点B处的切线垂直时,有.当x<0时,对函数f(x)求导,得.因为,所以,所以.因此当且仅当,即且时等号成立.所以函数f(x)的图象在点A,B处的切线互相垂直时,的最小值为1.(3)当或时,,故.当时,函数f(x)的图象在点处的切线方程为,即.当时,函数f(x)的图象在点处的切线方程为,即.两切线重合的充要条件是由(1)式及知,.由(1)(2)式得,.设,则.所以是减函数.则.所以.又当且趋近于-1时,无限增大,所以a的取值范围是.故当函数f(x)的图象在点A,B处的切线重合时,a的取值范围是.6.已知函数f(x)=ln x+ax(a∈R).(1)求f(x)的单调区间;(2)设g(x)=x2-4x+2,若对任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求a的取值范围.【答案】(1) f(x)的单调递增区间为,单调递减区间为 (2)【解析】(1)f′(x)=a+= (x>0).①当a≥0时,由于x>0,故ax+1>0,f′(x)>0,所以f(x)的单调递增区间为(0,+∞).②当a<0时,由f′(x)=0,得x=-.在区间上,f′(x)>0,在区间上,f′(x)<0,所以函数f(x)的单调递增区间为,单调递减区间为.(2)由题意得f(x)max <g(x)max,而g(x)max=2,由(1)知,当a≥0时,f(x)在(0,+∞)上单调递增,值域为R,故不符合题意.当a<0时,f(x)在上单调递增,在上单调递减,故f(x)的极大值即为最大值,f=-1+ln=-1-ln(-a),所以2>-1-ln(-a),解得a<-.故a的取值范围为.7.设f(x)=-x3+x2+2ax.(1)若f(x)在(,+∞)上存在单调递增区间,求a的取值范围.(2)当0<a<2时,f(x)在[1,4]上的最小值为-,求f(x)在该区间上的最大值.【答案】(1) a>- (2) f(x)max = 【解析】(1)f(x)=-x 3+x 2+2ax,∴f'(x)=-x 2+x+2a,当x ∈[,+∞)时,f'(x)的最大值为f'()=+2a.函数f(x)在(,+∞)上存在单调递增区间,即导函数在(,+∞)上存在函数值大于零成立, ∴+2a>0a>-.(2)已知0<a<2,f(x)在[1,4]上取到最小值-,而f'(x)=-x 2+x+2a 的图象开口向下,且对称轴为x=, ∴f'(1)=-1+1+2a=2a>0, f'(4)=-16+4+2a=2a-12<0,则必有一点x 0∈[1,4]使得f'(x 0)=0,此时函数f(x)在[1,x 0]上单调递增,在[x 0,4]上单调递减, f(1)=-++2a=+2a>0,∴f(4)=-×64+×16+8a=-+8a, ∴-+8a=-,得a=1,此时,由f'(x 0)=-+x 0+2=0得x 0=2或-1(舍去), 所以函数f(x)max =f(2)=.8. 若函数f(x)=x 3-x 2+ax +4恰在[-1,4]上单调递减,则实数a 的值为________. 【答案】-4【解析】∵f(x)=x 3-x 2+ax +4,∴f′(x)=x 2-3x +a.又函数f(x)恰在[-1,4]上单调递减,∴-1,4是f′(x)=0的两根,∴a =-1×4=-4.9. 函数y =x 2-ln x 的单调减区间是 ( ). A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)【答案】B【解析】y ′=x -,且x >0, 令y ′=x -≤0,解之得0<x ≤1. ∴函数的单调减区间为(0,1]10. 没函数在(0,+)内有定义,对于给定的正数K ,定义函数,取函数,恒有,则A .K 的最大值为B .K 的最小值为C .K 的最大值为2D .K 的最小值为2【答案】B 【解析】由,,得;当时,,当时,,即在时取到最大值,而恒成立,所以,故的最小值为,选B.【考点】应用导数研究函数的单调性及最值,不等式恒成立问题.11.设函数,若时,有极小值,(1)求实数的取值;(2)若数列中,,求证:数列的前项和;(3)设函数,若有极值且极值为,则与是否具有确定的大小关系?证明你的结论.【答案】(1);(2)详见解析;(3)不具有.【解析】(1)对函数求导,再由极小值的定义,代入得到导数为0以及相应的函数值,从而得到;(2)由上问得到数列为递增的数列,所以,将代入即可得证;(3)先对函数求导,计算得极小值点.再通过作出比较大小,即构造函数.再计算该函数的极小值,又因为.从而的极值与不具有明确的大小关系.试题解析:(1) 1分3分4分(2)由条件和第(1)问可知,函数在上单调递增, 5分7分(3),由有极值且的定义域为可知:异号,极小值点为, 8分9分令,构造函数,由条件和第(1)问可知:时,有极小值而 11分所以可能大于0或可能等于0或可能小于0,即的极值与不具有明确的大小关系. 13分【考点】1.函数的求导法则;2.函数的单调性;3.极值;4.作差法比较大小.12.若函数有大于零的极值点,则的取值范围是_________.【答案】【解析】,令,∴,∴.【考点】函数的极值.13.已知定义在上的函数,其中为常数.(1)当是函数的一个极值点,求的值;(2)若函数在区间上是增函数,求实数的取值范围;(3)当时,若,在处取得最大值,求实数的取值范围.【答案】(1);(2);(3) .【解析】(1) 本小题首先由可得,因为是是函数的一个极值点,所以;(2) 本小题首先利用导数的公式和法则求得,根据函数在区间上是增函数,讨论参数的不同取值对单调性的影响;(3)本小题首先求得,然后求得导数,然后讨论单调性,求最值即可.试题解析:(1)由可得因为是是函数的一个极值点,所以(2)①当时,在区间上是增函数,所以符合题意②当时,,令当时,对任意的,,所以符合题意当时,时,,所以,即符合题意综上所述,实数的取值范围为(3)当时,所以令,即显然设方程的两个实根分别为,则不妨设当时,为极小值所以在上的最大值只能是或当时,由于在上是递减函数,所以最大值为所以在上的最大值只能是或由已知在处取得最大值,所以即,解得又因为,所以实数的取值范围为【考点】1.导数公式与法则;2.函数的单调性;3.等价转化.14.若函数在上的导函数为,且不等式恒成立,又常数,满足,则下列不等式一定成立的是 .①;②;③;④.【答案】①【解析】令,.,因为,所以,即在上是增函数.由得,即,所以.所以①成立,③不成立;再令,.所以,因为不能确定是否大于0,所以单调性不能确定,即不知道与的大小关系,所以②④不一定成立.因此本题填①.【考点】利用导数研究函数的单调性、导数的运算法则、利用函数单调性比较大小15.设函数,其中为常数。

导数讨论含参单调性习题(含详解答案)

导数讨论含参单调性习题(含详解答案)

m(x + n}f(x) - lnx T g(x) = --------- m > 0)1 •设函数x T .(1)当m= l|时,函数¥訂(刈与¥ =創刈在"1处的切线互相垂直,求n的值;(2)若函数¥“仪卜創对在定义域内不单调,求m-n的取值范围;2a 3K xf(T 他M f(—) < 0(3)是否存在正实数使得x 2a 对任意正实数K恒成立?若存在,求出满足条件的实数;若不存在,请说明理由.2•已知函数fW = (^ + l)lnx-ax + 3f aG R,g(x)是f闵的导函数,*为自然对数的底数.(1)讨论:的单调性;(2)当白X时,证明:寓(3)当白X时,判断函数f凶零点的个数,并说明理由.bf(«) = + ) + blnx3.已知函数x(其中,忆b€R).(1)当b = Y时,若f")在其定义域内为单调函数,求臼的取值范围;(2)当::八」时,是否存在实数H,使得当’■ ■时,不等式卜心■冷恒成立,如果存在,求b的取值范围,如果不存在,说明理由(其中电是自然对数的底数,“ 2一7182旷).4 •已知函数gW = x2 + ln(x + a)|,其中臼为常数.(1)讨论函数•的单调性;S(Xj) +g(x?) x t +x z(2)若或叮存在两个极值点叫*刈,求证:无论实数臼取什么值都有 2 £ 2 .5 .已知函数肛"油盧2)(玄为常数)是实数集"上的奇函数,函数屮“用刈卡商帥是区间Il上的减函数.(1)求的值;(2)若恥;-「:在卜G 及所在的取值范围上恒成立,求的取值范围;Irx ?=x -2e* + m(3)讨论关于丸的方程f⑷的根的个数.6 •已知函数f x ax ln x, F x e x ax,其中x 0, a 0.(1)若f x和F x在区间0,ln3上具有相同的单调性,求实数a的取值范围;(2) 若a最小值.1,二,且函数g x eax 1 xe 2 ax f x的最小值为M,求M的7.已知函数 f (x) e x m In x .(1)如x1是函数f(x)的极值点,求实数m的值并讨论的单调性 f (x);(2) 若x x。

(完整版)导数与函数的单调性练习题(最新整理)

(完整版)导数与函数的单调性练习题(最新整理)

x
(-∞,b-1) b-1 (b-1,1) (1,+∞)
f ′(x)

0


当 b-1>1,即 b>2 时,f ′(x)的变化情况如下表:
x
(-∞,1) (1,b-1) b-1 (b-1,+∞)
f ′(x)


0

所以,当 b<2 时,函数 f(x)在(-∞,b-1)上单调递减,在(b-1,1)上单调递增,在(1,+∞)
2
2.已知函数 f(x)=x2+2x+alnx,若函数 f(x)在(0,1)上单调,则实数 a 的取值范围是( )
A.a≥0 B.a<-4
C.a≥0 或 a≤-4 D.a>0 或 a<-4
a 答案:C 解析:∵f′(x)=2x+2+ ,f(x)在(0,1)上单调, ∴f′(x)≥0 或 f′(x)≤0 在(0,1)
处的切线方程为 6x y 7 0 .(Ⅰ)求函数 y=f(x)的解析式;(Ⅱ)求函数 y=f(x)的单
调区间. 解:(Ⅰ)由 f(x)的图象经过 P(0,2),知 d=2,
所以 f (x) x3 bx 2 cx 2,
f (x) 3x2 2bx c.
由 在 M(-1,f(-1))处 的 切 线 方 程 是 6x y 7 0 ,
_______________
答 案 : a 0,且b2 3ac
解 析 : f ' (x) 3ax2 2bx c 0 恒 成 立 , 则
a
0 4b2
12ac
,a 0
0, 且b 2
3ac
21.若函数 y=- 4 x3+bx 有三个单调区间,则 b 的取值范围是________. 3

导数题型大全-利用导数求函数单调性问题

导数题型大全-利用导数求函数单调性问题
则不等式f(x)>0的解集是(﹣1,0)∪(1,+∞)
10、【答案】C
【解析】
试题分析:设 ,因为 ,所以 ,即函数 在R上单调递增。又因 ,所以
即 。故选C。
2、【答案】D
【解析】由题意得,当 时,函数 单调递增,故 ;
当 时,函数 先增再减然后再增,故导函数的符号为先正再负然后再正
3、【答案】B
【解析】函数的定义域是 ,令 ,得 函数 的单调递增区间是
4、【答案】D
【解析】由已知有 ,令 ,则 ,函数 在R单调递减, ,由 有 ,则
5、【答案】C
【解析】由函数 ,得 .
若函数 在区间 上单调递增,则 在区间 上恒成立.
即 在区间 上恒成立.
即 , 时, ,所以 在区间 上恒成立.
又 ,所以 .
6、【答案】A
【解析】由函数 ,可得 , 有唯一极值点 有唯一根 , 无根,即 与 无交点,可得 ,由 得, 在 上递增,由 得, 在 上递减, ,即实数 的取值范围是
7、【答案】B
因为 恒成立,所以 即函数F(x)在R上单调递减.
因为 ,所以 ,
则不等式即 ,
据此可得: .
所以 ,即不等式 解集为 .
典型题二综合练习
1、已知函数 ,则其导函数 的图象大致是( )
2、设函数 在定义域内可导, 的图象如图所示,则导函数 可能为
A. B. C. D.
3、函数 的单调递增区间是()
A. B. C. D.
【答案】 , 在 单调增加; ,故 在 单调减少,在 单调增加; , 在 单调减少,在 单调增加;
【解析】 的定义域为 。
2分
(ⅰ)若 即 ,则 ,故 在 单调增加。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.1导数与函数的单调性基础巩固题:1.函数f(x)=21++x ax 在区间(-2,+∞)上为增函数,那么实数a 的取值范围为( ) A.0<a<21 B.a<-1或a>21 C.a>21D.a>-2答案:C 解析:∵f(x)=a+221+-x a 在(-2,+∞)递增,∴1-2a<0,即a>21.2.已知函数f (x )=x 2+2x +a ln x ,若函数f (x )在(0,1)上单调,则实数a 的取值范围是( )A .a ≥0B .a <-4C .a ≥0或a ≤-4D .a >0或a <-4答案:C 解析:∵f ′(x )=2x +2+ax,f (x )在(0,1)上单调, ∴f ′(x )≥0或f ′(x )≤0在(0,1)上恒成立,即2x 2+2x +a ≥0或2x 2+2x +a ≤0在(0,1)上恒成立, 所以a ≥-(2x 2+2x )或a ≤-(2x 2+2x )在(0,1)上恒成立.记g (x )=-(2x 2+2x ),0<x <1,可知-4<g (x )<0, ∴a ≥0或a ≤-4,故选C.3.函数f (x )=x +9x的单调区间为________.答案:(-3,0),(0,3) 解析:f ′(x )=1-9x 2=x 2-9x2,令f ′(x )<0,解得-3<x <0或0<x <3,故单调减区间为(-3,0)和(0,3).4 函数32x x y -=的单调增区间为 ,单调减区间为___________________答案:2(0,)3 ; 2(,0),(,)3-∞+∞ 解析: '22320,0,3y x x x x =-+===或 5.确定下列函数的单调区间:(1)y =x 3-9x 2+24x (2)y =3x -x 3 (1)解:y ′=(x 3-9x 2+24x )′=3x 2-18x +24=3(x -2)(x -4) 令3(x -2)(x -4)>0,解得x >4或x <2.∴y =x 3-9x 2+24x 的单调增区间是(4,+∞)和(-∞,2) 令3(x -2)(x -4)<0,解得2<x <4.∴y =x 3-9x 2+24x 的单调减区间是(2,4)(2)解:y ′=(3x -x 3)′=3-3x 2=-3(x 2-1)=-3(x +1)(x -1) 令-3(x +1)(x -1)>0,解得-1<x <1. ∴y =3x -x 3的单调增区间是(-1,1).令-3(x +1)(x -1)<0,解得x >1或x <-1.∴y =3x -x 3的单调减区间是(-∞,-1)和(1,+∞) 6.函数y =ln(x 2-x -2)的单调递减区间为__________.[答案] (-∞,-1) [解析] 函数y =ln(x 2-x -2)的定义域为(2,+∞)∪(-∞,-1),令f (x )=x 2-x -2,f ′(x )=2x -1<0,得x <12,∴函数y =ln(x 2-x -2)的单调减区间为(-∞,-1)7.已知y =13x 3+bx 2+(b +2)x +3在R 上不是单调增函数,则b 的范围为________.[答案] b <-1或b >2 [解析] 若y ′=x 2+2bx +b +2≥0恒成立,则Δ=4b 2-4(b +2)≤0,∴-1≤b ≤2,由题意b <-1或b >2.8.已知x ∈R ,求证:e x ≥x +1.证明:设f (x )=e x -x -1,则f ′(x )=e x -1.∴当x =0时,f ′(x )=0,f (x )=0.当x >0时,f ′(x )>0,∴f (x )在(0,+∞)上是增函数.∴f (x )>f (0)=0. 当x <0时,f ′(x )<0,f (x )在(-∞,0)上是减函数,∴f (x )>f (0)=0.9.已知函数y =x +x1,试讨论出此函数的单调区间. 解:y ′=(x +x 1)′=1-1·x -2=222)1)(1(1x x x x x -+=- 令2)1)(1(xx x -+>0. 解得x >1或x <-1.∴y =x +x 1的单调增区间;是(-∞,-1)和(1,+∞).令2)1)(1(xx x -+<0,解得-1<x <0或0<x <1. ∴y =x +x1的单调减区间是(-1,0)和(0,1)10.已知函数32()f x x bx cx d =+++的图象过点P (0,2),且在点M (-1,f (-1))处的切线方程为076=+-y x .(Ⅰ)求函数y=f(x)的解析式;(Ⅱ)求函数y=f(x)的单调区间. 解:(Ⅰ)由f(x)的图象经过P (0,2),知d=2, 所以,2)(23+++=cx bx x x f .23)(2c bx x x f ++=' 由在M(-1,f(-1))处的切线方程是76=+-y x , 知.6)1(,1)1(,07)1(6=-'=-=+---f f f 即{{326,23,12 1.0,3.b c b c b c b c b c -+=-=-∴-+-+=-===-即解得 故所求的解析式是 .233)(23+--=x x x x f (Ⅱ)22()36 3.3630,f x x x x x '=----=令2210.x x --=即 解得 .21,2121+=-=x x当;0)(,21,21>'+>-<x f x x 时或 当.0)(,2121<'+<<-x f x 时故)21,()(--∞在x f 内是增函数,在)21,21(+-内是减函数,在),21(+∞+内是增函数. 点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.11.已知函数f(x)=x 3-21x 2+bx+c.(1)若f(x)在(-∞,+∞)上是增函数,求b 的取值范围; 解 (1))(x f '=3x 2-x+b,因f(x)在(-∞,+∞)上是增函数,则)(x f '≥0.即3x 2-x+b≥0,∴b≥x -3x 2在(-∞,+∞)恒成立.设g(x)=x-3x 2.当x=61时,g(x)max =121,∴b≥121. 12.已知函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,试确定实数a 的取值范围.解 f(x)=x(x-1)(x-a)=x 3-(a+1)x 2+ax ∴)(x f '=3x 2-2(a+1)x+a 要使函数f(x)=x(x-1)(x-a)在(2,+∞)上是增函数,只需)(x f '=3x 2-2(a+1)x+a 在(2,+∞)上满足)(x f '≥0即可.∵)(x f '=3x 2-2(a+1)x+a 的对称轴是x=31+a ,∴a 的取值应满足:⎪⎩⎪⎨⎧≥'≤+0(2)231f a 或⎪⎪⎩⎪⎪⎨⎧≥+'>+0)31(231a f a 解得:a≤38.∴a 的取值范围是a≤38.13.已知函数 232()4()3f x x ax x x R =+-∈在区间[]1,1-上是增函数,求实数a 的取值范围.解:'2()422f x ax x =+-,因为()f x 在区间[]1,1-上是增函数,所以'()0f x ≥对[]1,1x ∈-恒成立,即220x ax --≤对[]1,1x ∈-恒成立,解之得:11a -≤≤所以实数a 的取值范围为[]1,1-.点拨:已知函数的单调性求参数的取值范围是一种常见的题型,常利用导数与函数单调性关系:即“若函数单调递增,则'()0f x ≥;若函数单调递减,则'()0f x ≤”来求解,注意此时公式中的等号不能省略,否则漏解.14.已知函数d ax bx x x f +++=23)(的图象过点P (0,2),且在点M (-1,)1(-f )处的切线方程076=+-y x ,(1)求函数)(x f y =的解析式;(2)求函数)(x f y =的单调区间。

解:(1)由)(x f 的图象经过P (0,2),知2=d ,所以2)(23+++=cx bx x x f ,c bx x x f ++='23)(2 由在点M ()1(,1--f )处的切线方程为076=+-y x∴ 6)1(,1)1(=-'=-f f 即 ∴ ⎩⎨⎧=+-+-=+-121623c b c b 解得3-==c b故所求的解析式是233)(23+--=x x x x f(2)363)(2--='x x x f 令03632=--x x ,解得21,2121+=--x x当21-<x 或21+>x 时,0)(>'x f当2121+<<-x 时,0)(<'x f 故23)(23+-=x x x f 在)21,(--∞内是增函数,在)21,21(+-内是减函数在),21(+∞+内是增函数点拨:本题考查函数的单调性、导数的应用等知识,考查运用数学知识分析问题和解决问题的能力.15.已知函数f (x )=2x -b(x -1)2,求导函数f ′(x ),并确定f (x )的单调区间.解析:f ′(x )=2(x -1)2-(2x -b )·2(x -1)(x -1)4=-2x +2b -2(x -1)3=-2[x -(b -1)](x -1)3令f ′(x )=0,得x =b -1且x ≠1.当b -1x(-∞,b -1)b -1(b -1,1)(1,+∞)当b -1(1,+∞)上单调递减.当b >2时,函数f (x )在(-∞,1)上单调递减,在(1,b -1)上单调递增,在(b -1,+∞)上单调递减.当b -1=1,即b =2时,f (x )=2x -1,所以函数f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递减.强化提高题:16.设f (x )、g (x )是R 上的可导函数,f ′(x ),g ′(x )分别为f (x )、g (x )的导函数,且满足f ′(x )g (x )+f (x )g ′(x )<0,则当a <x <b 时,有( ) A .f (x )g (b )>f (b )g (x ) B .f (x )g (a )>f (a )g (x ) C .f (x )g (x )>f (b )g (b ) D .f (x )g (x )>f (b )g (a )答案:C 解析:令y =f (x )·g (x ),则y ′=f ′(x )·g (x )+f (x )·g ′(x ),由于f ′(x )g (x )+f (x )g ′(x )<0,所以y 在R 上单调递减,又x <b ,故f (x )g (x )>f (b )g (b ).17.若函数y =x 3-ax 2+4在(0,2)内单调递减,则实数a 的取值范围是____________.[答案] [3,+∞)[解析] y ′=3x 2-2ax ,由题意知3x 2-2ax <0在区间(0,2)内恒成立, 即a >32x 在区间(0,2)上恒成立,∴a ≥3.18.已知函数f (x )=ax -ln x ,若f (x )>1在区间(1,+∞)内恒成立,实数a 的取值范围为________.[答案] a ≥1[解析] 由已知a >1+ln xx在区间(1,+∞)内恒成立.设g (x )=1+ln x x ,则g ′(x )=-ln xx 2<0 (x >1),∴g (x )=1+ln x x 在区间(1,+∞)内单调递减,∴g (x )<g (1), ∵g (1)=1, ∴1+ln xx <1在区间(1,+∞)内恒成立, ∴a ≥1.19.函数y =x 2e -x 的单调递增区间是________.答案:(0,2)解析:y ′=(2x -x 2)e -x >0⇔0<x <2,故选填(0,2).20 若32()(0)f x ax bx cx d a =+++>在R 增函数,则,,a b c 的关系式为是答案:0,3a b ac >≤且 解析: '2()320f x ax bx c =++>恒成立,则220,0,34120a ab ac b ac >⎧><⎨∆=-<⎩且 21.若函数y =-34x 3+bx 有三个单调区间,则b 的取值范围是________. 答案:b >0 解析: y ′=-4x 2+b ,若y ′值有正、有负,则b >0.22.定义在R 上的奇函数f(x)在[-a,-b ](a>b>0)上是减函数且f(-b)>0,判断F (x )=[f(x)]2在[b,a ]上的单调性并证明你的结论.解析:设b ≤x 1<x 2≤a,则 -b ≥-x 1>-x 2≥-a.∵f(x)在[-a,-b ]上是减函数,∴0<f(-b)≤f(-x 1)<f(-x 2)≤f(-a),∵f(x)是奇函数,∴0<-f(x 1)<-f(x 2),则f(x 2)<f(x 1)<0,[f(x 1)]2<[f(x 2)]2,即F(x 1)<F(x 2). ∴F(x)在[b,a ]上为增函数.23.设函数f (x )=x 3-3ax 2+3bx 的图象与直线12x +y -1=0相切于点(1,-11). (1)求a 、b 的值;(2)讨论函数f (x )的单调性. [解析] (1)求导得f ′(x )=3x 2-6ax +3b .由于f (x )的图象与直线12x +y -1=0相切于点(1,-11),所以f (1)=-11,f ′(1)=-12,即⎩⎪⎨⎪⎧1-3a +3b =-113-6a +3b =-12,解得a =1,b =-3. (2)由a =1,b =-3 得f ′(x )=3x 2-6ax +3b =3(x 2-2x -3)=3(x +1)(x -3). 令f ′(x )>0,解得x <-1或x >3;又令f ′(x )<0,解得-1<x <3.所以当x ∈(-∞,-1)时,f (x )是增函数;当x ∈(3,+∞)时,f (x )也是增函数;当x ∈(-1,3)时,f (x )是减函数.24.若函数3211()(1)132f x x ax a x =-+-+在区间(1,4)内为减函数,在区间(6,)+∞上为增函数,试求实数a 的取值范围.解:2()1(1)[(1)]f x x ax a x x a '=-+-=---, 令()0f x '=得1x =或1x a =-,∴当(1,4)x ∈时,()0f x '≤,当(6,)x ∈+∞时,()0f x '≥, ∴416a ≤-≤,∴57a ≤≤.25.设函数f(x)=x+xa(a>0).(1)求函数在(0,+∞)上的单调区间,并证明之;(2)若函数f(x)在[a-2,+∞]上递增,求a 的取值范围.解析:(1)f(x)在(0,+∞)上的增区间为[a ,+∞],减区间为(0,a ). 证明:∵f ′(x)=1-2xa,当x ∈[a ,+∞]时,∴f ′(x)>0,当x ∈(0,a )时,f ′(x)<0.即f(x)在[a +∞]上单调递增,在(0,a )上单调递减.(或者用定义证) (2)[a-2,+∞]为[a ,+∞]的子区间,所以a-2≥a ⇒a-a -2≥0⇒(a +1)( a -2)≥0⇒a -2≥0⇒a ≥4.26.已知函数y =ax 与y =-bx 在(0,+∞)上都是减函数,试确定函数y =ax 3+bx 2+5的单调区间.解析: 可先由函数y =ax 与y =-bx 的单调性确定a 、b 的取值范围,再根据a 、b 的取值范围去确定y =ax 3+bx 2+5的单调区间.[解] ∵函数y =ax 与y =-bx 在(0,+∞)上都是减函数,∴a <0,b <0.由y =ax 3+bx 2+5得y ′=3ax 2+2bx . 令y ′>0,得3ax 2+2bx >0,∴-2b3a <x <0.∴当x ∈⎝⎛⎭⎫-2b3a ,0时,函数为增函数. 令y ′<0,即3ax 2+2bx <0, ∴x <-2b3a,或x >0.∴在⎝⎛⎭⎫-∞,-2b3a ,(0,+∞)上时,函数为减函数. 27 设xx e aa e x f a +=>)(,0是R 上的偶函数,(1)求a 的值;(2)证明)(x f 在(0,+∞)上是增函数。

相关文档
最新文档