工程力学答案 - 副本
工程力学教程第二版课后习题答案
工程力学教程第二版课后习题答案工程力学是一门应用力学原理研究工程结构和材料力学性能的学科。
作为工程学的基础课程之一,工程力学的学习对于培养工程师的分析和解决实际工程问题的能力至关重要。
而工程力学教程第二版是一本经典的教材,其中的课后习题是帮助学生巩固所学知识的重要辅助材料。
本文将为读者提供工程力学教程第二版课后习题的答案,帮助读者更好地理解和掌握工程力学的知识。
第一章:静力学1. 问题:一根长度为L,截面为矩形的梁,其宽度为b,高度为h。
梁的两端分别固定在支座上,中间有一个集中力P作用在梁上。
求梁在P作用下的最大弯矩和最大剪力。
答案:根据静力学原理,我们可以通过平衡力和力矩来求解该问题。
首先,根据平衡力的原理,梁在P作用下的最大剪力等于P。
其次,根据力矩的原理,梁在P作用下的最大弯矩等于P乘以梁的长度L的一半。
因此,最大弯矩为PL/2。
第二章:动力学1. 问题:一个质量为m的物体以速度v沿着水平方向运动,突然撞击到一个质量为M的静止物体上。
求撞击后两个物体的速度。
答案:根据动量守恒定律,撞击前后两个物体的总动量保持不变。
设撞击后质量为m的物体的速度为v1,质量为M的物体的速度为v2。
由动量守恒定律可得mv = mv1 + Mv2。
另外,根据能量守恒定律,撞击前后两个物体的总动能保持不变。
设撞击前质量为m的物体的动能为1/2mv^2,撞击后质量为m的物体的动能为1/2mv1^2,质量为M的物体的动能为0(静止)。
由能量守恒定律可得1/2mv^2 = 1/2mv1^2 + 0。
综上所述,可以解得v1 = (m - M)v / (m + M),v2 = 2m / (m + M)。
第三章:应力分析1. 问题:一个长方体的尺寸为a×b×c,其材料的杨氏模量为E,泊松比为v。
求该长方体在x、y、z方向上的应力分量。
答案:根据应力分析的原理,我们可以通过应力的定义和杨氏模量、泊松比的关系来求解该问题。
工程力学习题 及最终答案
第一章第二章第三章绪论思考题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么?4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R。
12030200N习题2-1图页脚内容页脚内容2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
2-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和角。
245601习题2-2图(b)xy4530F 1=30NF 2=20NF3=40N A xy4560F 1=600NF 2=700NF 3=500NA 习题2-3图(a )x70F 2F 1=1.25kN A习题2-4图30F 1=500NAF 2页脚内容2-6 画出图中各物体的受力图。
(b)B (a )A (c)(d)DACDB页脚内容2-7 画出图中各物体的受力图。
2-8 试计算图中各种情况下F 力对o 点之矩。
习题2-6图(d)习题2-7图(a )C DB DABCBABC页脚内容2-9 求图中力系的合力F R 及其作用位置。
习题2-8图P (d)PF( a )F 3M =6kN m F 3F 2页脚内容2-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
( a )q 1=600N/mq=4kN/m( b )q A =3kN/m习题2-9图( c ) F 4F 3页脚内容2-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
《工程力学》课后习题答案全集
工程力学习题答案第一章 静力学基础知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1.根据三力汇交定理,画出下面各图中A 点的约束反力方向。
解:(a )杆AB 在A 、B 、C 三处受力作用。
由于力p 和B R的作用线交于点O 。
如图(a )所示,根据三力平衡汇交定理,可以判断支座A 点的约束反力必沿通过A 、O 两点的连线。
(b )同上。
由于力p 和B R的作用线交于O 点,根据三力平衡汇交定理,可判断A 点的约束反力方向如下图(b )所示。
2.不计杆重,画出下列各图中AB 解:(a )取杆AB 为研究对象,杆除受力p外,在B 处受绳索作用的拉力B T ,在A 和E 两处还受光滑接触面约束。
约束力A N 和E的方向分别沿其接触表面的公法线,并指向杆。
其中力E N与杆垂直,力A N通过半圆槽的圆心O 。
AB 杆受力图见下图(a )。
(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力B N 和C N ,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且B N =C N 。
研究杆A N 和B N,以及力偶m 的作用而平衡。
根据力偶的性质,A N 和B N必组成一力偶。
(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力A T 和C T,在B 点受到支座反力B N 。
A T 和C T相交于O 点,根据三力平衡汇交定理,可以判断B N必沿通过B 、O 两点的连线。
见图(d).第二章力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1.平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。
工程力学教程第4版第3章思考题答案_副本
工程力学教程第4版第3章思考题答案_副本1. 问题一问题描述:某物体质量为5kg,受到平行于地面的水平拉力F。
已知物体在水平方向上的加速度为2m/s^2,求拉力F的大小。
解答:根据牛顿第二定律,物体受力F与物体的质量m和加速度a之间的关系为F = m * a。
将已知的质量和加速度代入,可得到拉力F的大小为F = 5kg * 2m/s^2 = 10N。
2. 问题二问题描述:一辆质量为1000kg的汽车在直线上匀速行驶,速度为20m/s。
求汽车所受到的摩擦力大小。
解答:由于汽车在匀速行驶,所以其加速度为0。
根据牛顿第二定律可知,物体所受的合力为0。
在水平方向上,合力等于摩擦力,因此摩擦力的大小为0。
3. 问题三问题描述:一辆质量为1500kg的汽车以10m/s的速度通过一个无摩擦的弯道,弯道的半径为50m。
求汽车通过弯道时所受到的向心力大小。
解答:汽车通过弯道时所受到的向心力可以通过向心加速度求得。
向心加速度的大小为a = v^2 / r,其中v为汽车的速度,r为弯道的半径。
将已知的速度和半径代入,可得到向心加速度的大小为a = (10m/s)^2 / 50m = 2m/s^2。
根据牛顿第二定律可知,向心力的大小等于物体的质量乘以向心加速度,因此汽车通过弯道时所受到的向心力大小为F = 1500kg *2m/s^2 = 3000N。
4. 问题四问题描述:一个物体从2米高的位置自由下落,求物体下落到地面时的速度。
解答:根据重力加速度对物体的作用,可以使用物体自由落体公式来求解。
自由落体公式为v = sqrt(2 * g * h),其中v 为物体的速度,g为重力加速度,h为物体的下落高度。
将已知的重力加速度和下落高度代入,可得到物体下落到地面时的速度为v = sqrt(2 * 9.8m/s^2 * 2m) ≈ 6.26m/s。
5. 问题五问题描述:一个物体从静止开始沿一个半径为5米的斜面滚动,斜面的倾角为30°。
(完整版)工程力学课后详细答案
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
工程力学答案
1.过受力构件内任一点,取截面的不同方位,各个面上的()。
A.正应力相同,切应力不同B.正应力不同,切应力相同C.正应力相同,切应力相同D.正应力不同,切应力不同2.滚动支座约束的约束反力大小未知、作用线过铰链中心、方向()。
A.与活动方向垂直B.与活动方向平行C.为铅锤方向D.为水平方向3.对称循环时,交变应力的循环特征 r= ()。
A.-1;B.0;C.0.5;D.1。
4.二力杆约束的约束反力大小未知、作用点铰链中心、方向()。
A.未知B.平行于两个铰链的中心连线C.垂直于两个铰链的中心连线D.为水平方向5.下列说法中不正确的是: ()A 力使物体绕矩心逆时针旋转为负B 平面汇交力系的合力对平面内任一点的力矩等于力系中各力对同一点的力矩的代数和C 力偶不能与一个力等效也不能与一个力平衡D 力偶对其作用平面内任一点的矩恒等于力偶矩,而与矩心无关6.圆轴扭转时,表面上任一点处于()应力状态。
A.单向B.二向C.三向D.零7.梁的截面为 T 字型, Z 轴通过横截面的形心,弯矩图如图所示,则有()。
A.最大拉应力和最大压应力位于同一截面 CB.最大拉应力位于截面 C,最大压应力位于截面 DC.最大拉应力位于截面 D,最大压应力位于截面 CD.最大拉应力和最大压应力位于同一截面 D8.下列说法中不正确的是:()。
A 力使物体绕矩心逆时针旋转为负B 平面汇交力系的合力对平面内任一点的力矩等于力系中各力对同一点的力矩的代数和C 力偶不能与一个力等效也不能与一个力平衡D 力偶对其作用平面内任一点的矩恒等于力偶矩,而与矩心无关9.低碳钢材料由于冷作硬化,会使()提高:A 比例极限、屈服极限B 塑性C 强度极限D 脆性10.下列表述中正确的是()。
A.主矢和主矩都与简化中心有关。
B.主矢和主矩都与简化中心无关。
C.主矢与简化中心有关,而主矩与简化中心无关。
D.主矢与简化中心无关,而主矩与简化中心有关。
11.图所示阶梯形杆 AD 受三个集中力 F 作用,设AB、BC、CD 段的横截面面积分别为 2A、3A、A,则三段杆的横截面上()。
(完整版)工程力学课后习题答案
工程力学练习册学校学院专业学号教师姓名第一章静力学基础 1第一章静力学基础1-1 画出下列各图中物体A,构件AB,BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)2 第一章静力学基础(d)(e)(f)(g)第一章静力学基础 3 1-2 试画出图示各题中AC杆(带销钉)和BC杆的受力图(a)(b)(c)(a)4 第一章静力学基础1-3 画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(a)第一章静力学基础 5 (b)(c)(d)6 第一章静力学基础(e)第一章静力学基础7 (f)(g)8 第二章 平面力系第二章 平面力系2-1 电动机重P=5000N ,放在水平梁AC 的中央,如图所示。
梁的A 端以铰链固定,另一端以撑杆BC 支持,撑杆与水平梁的夹角为30 0。
如忽略撑杆与梁的重量,求绞支座A 、B 处的约束反力。
题2-1图∑∑=︒+︒==︒-︒=PF F FF F F B A yA B x 30sin 30sin ,0030cos 30cos ,0解得: N P F F B A 5000===2-2 物体重P=20kN ,用绳子挂在支架的滑轮B 上,绳子的另一端接在绞车D 上,如第二章 平面力系 9图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为铰链连接。
当物体处于平衡状态时,求拉杆AB 和支杆BC 所受的力。
题2-2图∑∑=-︒-︒-==︒-︒--=030cos 30sin ,0030sin 30cos ,0P P F FP F F F BC yBC AB x解得: PF P F AB BC 732.2732.3=-=2-3 如图所示,输电线ACB 架在两电线杆之间,形成一下垂线,下垂距离CD =f =1m ,两电线杆间距离AB =40m 。
电线ACB 段重P=400N ,可近视认为沿AB 直线均匀分布,求电线的中点和两端的拉力。
《工程力学》课后习题答案全集
工程力学习题答案第一章 静力学基础知识思考题:1. ×;2. √;3. √;4. √;5. ×;6. ×;7. √;8. √习题一1.根据三力汇交定理,画出下面各图中A 点的约束反力方向。
解:(a )杆AB 在A 、B 、C 三处受力作用。
由于力和的作用线交于点O 。
如图(a )所示,根据三力平衡汇交定理, 可以判断支座A 点的约束反力必沿 通过A 、O 两点的连线。
(b )同上。
由于力和的作用线 交于O 点,根据三力平衡汇交定理, 可判断A 点的约束反力方向如 下图(b )所示。
2.不计杆重,画出下列各图中AB 杆的受力图。
解:(a )取杆AB 为研究对象,杆除受力外,在B 处受绳索作用的拉力,在A 和E 两处还受光滑接触面约束。
约束力和的方向分别沿其接触表面的公法线,并指向杆。
其中力与杆垂直,力通过半圆槽的圆心O 。
AB 杆受力图见下图(a )。
(b)由于不计杆重,曲杆BC 只在两端受铰销B 和C 对它作用的约束力和,故曲杆BC 是二力构件或二力体,此两力的作用线必须通过B 、C 两点的连线,且=。
研究杆AB ,杆在A 、B 两点受到约束反力和,以及力偶m 的作用而平衡。
根据力偶的性质,和必组成一力偶。
(d)由于不计杆重,杆AB 在A 、C 两处受绳索作用的拉力和,在B 点受到支座反力。
和相交于O 点,根据三力平衡汇交定理,可以判断必沿通过pB RpB Rp B T A N E N E N A N B N C N BN CN A N B N A N B N A T C T B N A T C TB NB、O两点的连线。
见图(d).第二章 力系的简化与平衡思考题:1. √;2. ×;3. ×;4. ×;5. √;6. ×;7. ×;8. ×;9. √.1. 平面力系由三个力和两个力偶组成,它们的大小和作用位置如图示,长度单位为cm ,求此力系向O 点简化的结果,并确定其合力位置。
《工程力学》详细版习题参考答案
∑ Fx
=FAx
+
FBx
+
FCx
=− 1 2
F
+
F
−
1 2
F
=0
∑ Fy
= FAy
+
FBy
+
FCy
= − 3 2
F
+
3 F = 0 2
∑ M B= FBy ⋅ l=
3 Fl 2
因此,该力系的简化结果为一个力偶矩 M = 3Fl / 2 ,逆时针方向。
题 2-2 如图 2-19(a)所示,在钢架的 B 点作用有水平力 F,钢架重力忽 略不计。试求支座 A,D 的约束反力。
(a)
(b)
图 2-18
解:(1)如图 2-18(b)所示,建立直角坐标系 xBy。 (2)分别求出 A,B,C 各点处受力在 x,y 轴上的分力
思考题与练习题答案
FAx
= − 12 F ,FAy
= − 3 F 2
= FBx F= ,FBy 0
FCx
= − 12 F ,FCy
= 3 F 2
(3)求出各分力在 B 点处的合力和合力偶
(3)根据力偶系平衡条件列出方程,并求解未知量
∑ M =0 − aF + 2aFD =0
《工程力学》
可解得 F=Ay F=D F /2 。求得结果为正,说明 FAy 和 FD 的方向与假设方向相同。 题 2-3 如 图 2-20 ( a ) 所 示 , 水 平 梁 上 作 用 有 两 个 力 偶 , 分 别 为
3-4 什么是超静定问题?如何判断问题是静定还是超静定?请说明图 3-12 中哪些是静定问题,哪些是超静定问题?
(a)
工程力学课后答案
工程力学课后答案篇一:工程力学习题解答(详解版)工程力学答案详解1-1试画出来以下各题中圆柱或圆盘的受到力图。
与其它物体碰触处的摩擦力均省略。
b(a)(b)a(d)(e)解:aa(a)(b)a(d)(e)1-2试画出来以下各题中ab杆的受到力图。
(a)(b)(c)a(c)(c)(d)解:b(a)(b)(c)bb(e)1-3试画出来以下各题中ab梁的受到力图。
f(a)(b)(c)(d)(e)求解:d(d)(a)(b)fw(c)fbx(e)1-4试画出来以下各题中选定物体的受到力图。
(a)拱abcd;(b)半拱ab部分;(c)踏板ab;(d)杠杆ab;(e)方板abcd;(f)节点b。
解:(a)(b)(c)bfdb(d)(e)(f)(a)dw(b)(c)1-5试画出来以下各题中选定物体的受到力图。
(a)结点a,结点b;(b)圆柱a和b及整体;(c)半拱ab,半拱bc及整体;(d)杠杆ab,切刀cef及整体;(e)秤杆ab,秤盘架bcd及整体。
(b)(c)(e)解:(a)atfc(d)(e)fbc(f)w(d)ffba(b)(c)ac(d)’c(e)dbacdc’篇二:工程力学课后习题答案工程力学学学专学教姓习册校院业号师名练第一章静力学基础1-1画出下列各图中物体a,构件ab,bc或abc的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
(a)(b)(c)(d)(e)(f)(g)1-2试画出图示各题中ac杆(带销钉)和bc杆的受力图(a)(b)(c)(a)1-3图画Theil中选定物体的受到力图。
所有摩擦均数等,各物蔡国用除图中已图画出来的外均数等。
(a)篇三:工程力学习题及答案1.力在平面上的投影(矢量)与力在坐标轴上的投影(代数量)均为代数量。
正确2.力对物体的促进作用就是不能在产生外效应的同时产生内效应。
错误3.在静力学中,将受力物体视为刚体(d)a.没特别必要的理由b.是因为物体本身就是刚体c.是因为自然界中的物体都是刚体d.是为了简化以便研究分析。
工程力学练习册答案
工程力学练习册答案问题1:请简述牛顿三大定律的内容。
答案:1. 牛顿第一定律(惯性定律):物体在没有外力作用时,将保持静止状态或匀速直线运动。
2. 牛顿第二定律(动力定律):物体的加速度与作用在物体上的净外力成正比,与物体的质量成反比,即\[ F = ma \]。
3. 牛顿第三定律(作用与反作用定律):对于两个相互作用的物体,它们之间的作用力和反作用力总是大小相等、方向相反。
问题2:何为应力和应变?它们之间的关系是什么?答案:- 应力:是单位面积上的内力,表示材料内部抵抗变形的能力。
- 应变:是材料尺寸的相对变化,表示材料的变形程度。
- 它们之间的关系通常通过应力-应变曲线来描述,该曲线反映了材料在不同应力水平下的变形特性。
问题3:简述材料力学中的弹性模量和剪切模量。
答案:- 弹性模量:也称为杨氏模量,是材料在弹性范围内应力与应变比值,表示材料的刚性。
- 剪切模量:材料在剪切应力作用下,剪切应力与剪切应变的比值,反映材料抵抗剪切变形的能力。
问题4:什么是静水压力?如何计算?答案:- 静水压力:是液体内部各点受到的均匀压力,与液体的密度、深度和重力加速度有关。
- 计算公式为:\[ P = \rho g h \],其中\( P \)是压力,\( \rho \)是液体密度,\( g \)是重力加速度,\( h \)是液体深度。
问题5:请解释什么是材料的疲劳失效,并给出一个实际应用的例子。
答案:- 疲劳失效:是指材料在反复加载和卸载的过程中,即使应力水平低于材料的屈服强度,也可能发生断裂的现象。
- 实际应用例子:汽车的悬挂系统在长时间的行驶过程中,由于路面的不平,反复受到交变载荷的作用,可能会发生疲劳断裂。
结束语:工程力学是一门将理论知识与实际应用紧密结合的学科。
通过练习和理解上述问题的答案,可以帮助我们更好地掌握工程力学的基本概念和应用方法,为解决实际工程问题打下坚实的基础。
希望这些答案能够帮助你在学习工程力学的道路上更进一步。
工程力学习题解答(详解版)
工程力学答案详解1-1试画出以下各题中圆柱或圆盘的受力图。
与其它物体接触处的摩擦力均略去。
解:1-2 试画出以下各题中AB 杆的受力图。
(a) B(b)(c)(d)A(e)A(a)(b) A(c)A(d)A(e)(c)(a)(b)解:1-3 试画出以下各题中AB 梁的受力图。
(d)(e)BB(a)B(b)(c)F B(a)(c)F (b)(d)(e)解:1-4 试画出以下各题中指定物体的受力图。
(a) 拱ABCD ;(b) 半拱AB 部分;(c) 踏板AB ;(d) 杠杆AB ;(e) 方板ABCD ;(f) 节点B 。
解:(a)F (b)W(c)(d)D(e)F Bx(a)(b)(c)(d)D(e)W(f)(a)D(b)B(c)BF D1-5 试画出以下各题中指定物体的受力图。
(a) 结点A ,结点B ;(b) 圆柱A 和B 及整体;(c) 半拱AB ,半拱BC 及整体;(d) 杠杆AB ,切刀CEF 及整体;(e) 秤杆AB ,秤盘架BCD 及整体。
解:(a)(d) FC(e)WB (f)F FBC(c)(d)AT F BAF (b)(e)(b)(c)(d)(e)CAA C’CDDB2-2 杆AC 、BC 在C 处铰接,另一端均与墙面铰接,如图所示,F 1和F 2作用在销钉C 上,F 1=445 N ,F 2=535 N ,不计杆重,试求两杆所受的力。
解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3 水平力F 作用在刚架的B 点,如图所示。
如不计刚架重量,试求支座A 和D 处的约束力。
解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2)F 1F FDF F AF D211 1.122D A D D A F F FF F BC AB AC F F F F F =====∴===2-4 在简支梁AB 的中点C 作用一个倾斜45o 的力F ,力的大小等于20KN ,如图所示。
工程力学课后详细答案
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)——(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=——(b)解:受力分析如图所示:由x=∑cos45cos45010RA RBF F P⋅--=Y=∑sin45sin45010RA RBF F P⋅+-=联立上二式,得:22.410RARBF KNF KN==2-5解:几何法:系统受力如图所示三力汇交于点D,其封闭的力三角形如图示所以:5RAF KN=(压力)5RBF KN=(与X轴正向夹150度)2-6解:受力如图所示:——已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=——联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=——DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭——取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BCF KN=-(压力)2-13解:(1)取DEH部分,对H点列平衡x=∑05RD REF F'=Y=∑05RDF Q=联立方程后解得:5RDF Q=2REF Q'=(2)取ABCE部分,对C点列平衡x=∑cos450RE RAF F-=Y=∑sin450RB RAF F P--=且RE REF F'=联立上面各式得:22RAF Q=2RBF Q P=+(3)取BCE部分。
(完整版)工程力学课后习题答案
工程力学练习册学校 ______________学院 _______________专业 ______________学号 _______________教师 _______________姓名 ______________第一章静力学基础1-1画出下列各图中物体A,构件AB, BC或ABC的受力图,未标重力的物体的重量不计,所有接触处均为光滑接触。
1-3画出图中指定物体的受力图。
所有摩擦均不计,各物自重除图中已画出的外均不计。
(1 J AB杆(2)CTJff(3)整体(1 ) K段槊(2) CD段梁r 3)鹫佐t 1)滑轮日⑵ABff(3) DF 样C I 】CDW⑵曲杵⑶CA杵(e)t 1,直(并tlikkiv t n OA IT(g)第二章平面力系2-1电动机重P=5000N,放在水平梁AC的中央,如图所示。
梁的A端以皎链固定,另一端以撑杆BC支持,撑杆与水平梁的夹角为30 °。
如忽略撑杆与梁的重量,求绞支座A、B处的约束反力。
F x0, F B CO S30F A COS300F y0, F A sin30F B sin30P解得:F A F B P5000N2-2 物体重P=20kN,用绳子挂在支架的滑轮B上,绳子的另一端接在绞车D上,如图所示。
转动绞车,物体便能升起。
设滑轮的大小及轴承的摩擦略去不计,杆重不计,A 、B 、C 三处均为皎链连接。
当物体处于平衡状态时,求拉杆 AB 和支杆BC 所受的力。
2-3如图所示,输电线 ACB 架在两电线杆之间,形成一下垂线,下垂距离 CD=f=1m, 两电线杆间距离 AB=40m 。
电线ACB 段重P=400N,可近视认为沿 AB 直线均匀分布,求电 线的中点和两端的拉力。
F x0, F AB F BC F y0, F BC sin 30 解得:F BC 3.732P F AB 2.732Pcos30 Psin30 0 Pcos30 P 0F x 0,F A COS F C,F y 0, F A Sin F Gtan 1/10解得:F A 201NF C 2000 N2-4 图示为一拔桩装置。
(完整版)工程力学课后详细答案
第一章静力学的基本概念受力图第二章 平面汇交力系2-1解:由解析法,23cos 80RX F X P P Nθ==+=∑12sin 140RY F Y P P Nθ==+=∑故:22161.2R RX RY F F F N=+=1(,)arccos2944RYR RF F P F '∠==2-2解:即求此力系的合力,沿OB 建立x 坐标,由解析法,有123cos45cos453RX F X P P P KN==++=∑13sin 45sin 450RY F Y P P ==-=∑故: 223R RX RY F F F KN=+= 方向沿OB 。
2-3 解:所有杆件均为二力杆件,受力沿直杆轴线。
(a ) 由平衡方程有:0X =∑sin 300AC AB F F -=0Y =∑cos300AC F W -=0.577AB F W=(拉力)1.155AC F W=(压力)(b ) 由平衡方程有:0X =∑ cos 700AC AB F F -=0Y =∑sin 700AB F W -=1.064AB F W=(拉力)0.364AC F W=(压力)(c ) 由平衡方程有:0X =∑cos 60cos300AC AB F F -=0Y =∑sin 30sin 600AB AC F F W +-=0.5AB F W= (拉力)0.866AC F W=(压力)(d ) 由平衡方程有:0X =∑sin 30sin 300AB AC F F -=0Y =∑cos30cos300AB AC F F W +-=0.577AB F W= (拉力)0.577AC F W= (拉力)2-4 解:(a )受力分析如图所示:由x =∑ 22cos 45042RA F P -=+15.8RA F KN∴=由Y =∑ 22sin 45042RA RB F F P +-=+7.1RB F KN∴=(b)解:受力分析如图所示:由x =∑3cos 45cos 45010RA RB F F P ⋅--=0Y =∑1sin 45sin 45010RA RB F F P ⋅+-=联立上二式,得:22.410RA RB F KN F KN==2-5解:几何法:系统受力如图所示三力汇交于点D ,其封闭的力三角形如图示所以:5RA F KN= (压力)5RB F KN=(与X 轴正向夹150度)2-6解:受力如图所示:已知,1R F G = ,2AC F G =由x =∑cos 0AC r F F α-=12cos G G α∴=由0Y =∑ sin 0AC N F F W α+-=22221sin N F W G W G G α∴=-⋅=--2-7解:受力分析如图所示,取左半部分为研究对象由x =∑cos 45cos 450RA CB P F F --=0Y =∑sin 45sin 450CBRA F F '-=联立后,解得:0.707RA F P=0.707RB F P=由二力平衡定理0.707RB CB CBF F F P '===2-8解:杆AB ,AC 均为二力杆,取A 点平衡由x =∑cos 60cos300AC AB F F W ⋅--=0Y =∑sin 30sin 600AB AC F F W +-=联立上二式,解得:7.32AB F KN=-(受压)27.3AC F KN=(受压)2-9解:各处全为柔索约束,故反力全为拉力,以D ,B 点分别列平衡方程(1)取D 点,列平衡方程由x =∑sin cos 0DB T W αα-=DB T Wctg α∴==(2)取B 点列平衡方程:由0Y =∑sin cos 0BDT T αα'-=230BD T T ctg Wctg KN αα'∴===2-10解:取B 为研究对象:由0Y =∑sin 0BC F P α-=sin BC PF α∴=取C 为研究对象:由x =∑cos sin sin 0BCDC CE F F F ααα'--=由0Y =∑ sin cos cos 0BC DC CE F F F ααα--+=联立上二式,且有BCBC F F '= 解得:2cos 12sin cos CE P F ααα⎛⎫=+⎪⎝⎭取E 为研究对象:由0Y =∑ cos 0NH CEF F α'-=CECE F F '= 故有:22cos 1cos 2sin cos 2sin NH P PF ααααα⎛⎫=+= ⎪⎝⎭2-11解:取A 点平衡:x =∑sin 75sin 750AB AD F F -=0Y =∑cos 75cos 750AB AD F F P +-=联立后可得: 2cos 75AD AB PF F ==取D 点平衡,取如图坐标系:x =∑cos5cos800ADND F F '-=cos5cos80ND ADF F '=⋅由对称性及ADAD F F '=cos5cos5222166.2cos80cos802cos 75N ND AD P F F F KN'∴===⋅=2-12解:整体受力交于O 点,列O 点平衡由x =∑cos cos300RA DC F F P α+-=0Y =∑sin sin 300RA F P α-=联立上二式得:2.92RA F KN=1.33DC F KN=(压力)列C 点平衡x =∑405DC AC F F -⋅=0Y =∑ 305BC AC F F +⋅=联立上二式得: 1.67AC F KN=(拉力)1.0BC F KN=-(压力)2-13解:(1)取DEH 部分,对H 点列平衡x =∑05RD REF F '= 0Y =∑05RD F Q =联立方程后解得: 5RD F Q =2REF Q '=(2)取ABCE 部分,对C 点列平衡x =∑cos 450RE RA F F -=0Y =∑sin 450RB RA F F P --=且RE REF F '=联立上面各式得: 22RA F Q =2RB F Q P=+(3)取BCE 部分。
工程力学习题 及最终答案
工程力学习题及最终答案(总63页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 绪论思 考 题1) 现代力学有哪些重要的特征2) 力是物体间的相互作用。
按其是否直接接触如何分类试举例说明。
3) 工程静力学的基本研究内容和主线是什么 4) 试述工程力学研究问题的一般方法。
第二章 刚体静力学基本概念与理论习 题2-1 求图中作用在托架上的合力F R 。
2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
习题2-1图NN22-3 求图中汇交力系的合力F R 。
2-4 求图中力F 2的大小和其方向角?。
使 a )合力F R =, 方向沿x 轴。
b)合力为零。
2-5 二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和?角。
2习题2-2图(b )F 1F 1F 2习题2-3图(a )F 1习题2-4图2-6 画出图中各物体的受力图。
F12习题2-5图(b) B(a)A(c)(d)(eA42-7 画出图中各物体的受力图。
) 习题2-6图(b ))(d(a ) A BC DB ABCB52-8 试计算图中各种情况下F 力对o 点之矩。
2-9 求图中力系的合力F R 及其作用位置。
习题2-7图习题2-8图P(d )(c ))) 1F 362-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
q 1=600N/m2习题2-9图F 3F 2( c1F 4F 372-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b 的大小。
第三章 静力平衡问题q=4kN/m( b )q( c )习题2-10图B习题2-11图8习 题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm ,压力p =6N/mm 2,若?=30?, 求工件D 所受到的夹紧力F D 。
工程力学课后习题答案(-章 版本2)
3.3 图3.3所示钢架的点B 作用一个水平力F ,钢架重量忽略不计。
求支座A 、D 的约束力。
解:由图3.3可以确定D 点受力的方向,这里将A 点的力分解为x 、y 方向,如图3.3.1根据力与矩平衡有0)2(:)(0:)(0:)(=-=-=-∑∑∑FL L F A M F F y F F F x F Dy D x (1)解上面三个方程得到)(2),(2),(↑=↓=←=F F F F F F D y x3.5如图3.5铰链四杆机构ABCD 的CD 边固定,在铰链A 、B 处有力F1、F2作用,如图所示。
该机构在图示位置平衡,杆重忽略不计。
求力F1和力F2的关系。
解:(1)对A 点分析,如图3.5.1,设AB 杆的内力为T ,则将力投影到垂直于AC 方向的AM 上有0)15cos()30cos(:)(1=︒-︒∑T F AM F ① 图3.5(2)对B 点分析,如图3.5.2,将力投影到垂直于BD 方向的BN 有0)30cos()60cos(:)B N (2=︒-︒∑T F F ②由①、②可得22108593790.64395055332F F F ≈+=3.8如图3.8有5根杆件组成的结构在A 、B 点受力,且CA 平行于DB ,CA DE BE DB ===。
F=20kN,P=12kN 。
求BE 杆的受力。
解:(1)对A 点受力分析,将力投影到垂直于AC 方向的AN 上有 060sin :)(=-︒∑F F AN F AB ①(2)对B 点受力分析,如图3.8.2.将力投影到垂直于BD 方向的BM 上有060cos 60sin 30cos :)B M (=︒-︒-︒∑P F F F BE AB ②由①、②可得373095kN 16.1658075kN 328≈=BE F (方向斜向上)3.9如图(见书上)所示3根杆均长2.5m ,其上端铰结于K 处,下端A 、B 、C 分别与地基铰结,且分布在半径r=1.5m 的圆周上,A 、B 、C 的相对位置如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工程力学答案2-2解:(1) 取节点C 为研究对象,画受力图,注意AC 、BC 都为二力杆,(2) 列平衡方程:12140 sin 600530 cos 6005207 164 o y AC o x BC AC AC BC F F F F F F F F F N F N=⨯+-==⨯--=∴==∑∑ AC 与BC 两杆均受拉。
2-3解:(1) 取整体ABCD 为研究对象,受力分析如图,画封闭的力三角形:(2) 由力三角形得215151.1222D A D AD A F F FF F F BC AB AC F F F F F =====∴===2-4解:(1) 研究AB ,受力分析并画受力图: (2) 画封闭的力三角形:相似关系:B A F F FCDE cde CD CE ED∆≈∆∴== 几何尺寸:221155222CE BD CD ED CD CE CE CD ===+== 求出约束反力:F AC F BCC F 2F 1xyFF DF ADACBF F AF DFF BF A dceA B45o FF BF ACD Eα12010 252010.4 245arctan 18.4B A o oCE F F kNCDED F F kN CDCECDα=⨯=⨯==⨯=⨯==-=2-6解:(1) 取DE 为研究对象,DE 为二力杆;F D = F E(2) 取ABC 为研究对象,受力分析并画受力图;画封闭的力三角形:'15166.7 23A D E F F F F N ===⨯= 2-7解:(1)取铰链B 为研究对象,AB 、BC 均为二力杆,画受力图和封闭力三角形;12BC F F =(2) 取铰链C 为研究对象,BC 、CD 均为二力杆,画受力图和封闭力三角形;223cos302o CB F F F ==由前二式可得:12122213 2260.61 1.634BC CB F F F F F F F or F F ==∴===2-9 解:(1) 取整体为研究对象,受力分析,AB 、AB 、AD 均为二力杆,画受力图,得到一个空间汇交力系;(2) 列平衡方程:0 cos 45 cos 4500 cos6000 sin 60sin 45sin 450o ox AC ABo yAD o o o zAD AC AB F F F F F F FF F F =⨯-⨯==-==--=∑∑∑EDF EF D FF A F ’D B DAFF ’D F A 34 3 B F 1F BCF ABF BC F ABF 1 45oCF 2F CBF CDF 2F CBF CD解得:62 1.2 0.735 4AD AC AB AD F F kN F F F kN ===== AB 、AC 杆受拉,AD 杆受压。
3-1 解:(a) 受力分析,画受力图;A 、B 处的约束力组成一个力偶;列平衡方程:0 0 B B A B MM F l M F lM F F l=⨯-==∴==∑(b) 受力分析,画受力图;A 、B 处的约束力组成一个力偶; 列平衡方程:0 0 B B A B MM F l M F lMF F l=⨯-==∴==∑(c) 受力分析,画受力图;A 、B 处的约束力组成一个力偶;列平衡方程: 0 cos 0 cos cos B B A B MM F l M F l M F F l θθθ=⨯⨯-==∴==∑3-2 解:(1) 取BC 为研究对象,受力分析,BC 为二力杆,画受力图;B C F F =(2) 取AB 为研究对象,受力分析,A 、B 的约束力组成一个力偶,画受力图;l/2B lM F AF Bl/3 B l M F AF B l/2 B l MF BF A θ BF BF CC BF ’BM()''2030 0.3542220.354B B AC M M M F a a M F a aMF F a=⨯+-===∴==∑ 3-3 齿轮箱的两个轴上作用的力偶如题图所示,它们的力偶矩的大小分别为M 1=500 Nm ,M 2 =125 Nm 。
求两螺栓处的铅垂约束力。
图中长度单位为cm 。
解:(1) 取整体为研究对象,受力分析,A 、B 的约束力组成一个力偶,画受力图;(2) 列平衡方程:12125001250 0 750 50750 B B A B M M M F l M M F Nl F F N--=⨯-+====∴==∑ 3-5 四连杆机构在图示位置平衡。
已知OA=60cm ,BC=40cm ,作用BC 上的力偶的力偶矩大小为M 2=1N.m ,试求作用在OA上力偶的力偶矩大小M 1和AB 所受的力F AB 所受的力。
各杆重量不计。
解:(1) 研究BC 杆,受力分析,画受力图:列平衡方程:220 sin 30015 0.4sin 30sin 30oBB oo M FBC M M F NBC =⨯-====⨯∑ (2) 研究AB (二力杆),受力如图:可知:'' 5 A B B F F F N ===(3) 研究OA 杆,受力分析,画受力图:2M 1AB50F B F A OACBM 2M 130oCBM 230oF BF CAB F ’BF ’A AF A列平衡方程:110 050.6 3 AA M FOA M M F OA Nm=-⨯+=∴=⨯=⨯=∑3-7 O 1和O 2圆盘与水平轴AB 固连,O 1盘垂直z 轴,O 2盘垂直x 轴,盘面上分别作用力偶(F 1,F ’1),(F 2,F ’2)如题图所示。
如两半径为r =20 cm, F 1 =3 N, F 2 =5 N,AB =80 cm,不计构件自重,试计算轴承A 和B 的约束力。
解:(1) 取整体为研究对象,受力分析,A 、B 处x 方向和y 方向的约束力分别组成力偶,画受力图。
(2) 列平衡方程:22110 20222052.5 2.5 800 20222031.5 1.5 80xBz Bz Az Bz z Bx Bx Ax Bx MF AB F r rF F N F F NABM F AB F r rF F N F F NAB=-⨯+⨯=⨯⨯======-⨯+⨯=⨯⨯=====∑∑AB 的约束力:()()()()22221.52.58.5 8.5 A Ax Az B A F F F NF F N=+=+===3-8 在图示结构中,各构件的自重都不计,在构件BC 上作用一力偶矩为M 的力偶,各尺寸如图。
求支座A 的约束力。
解:(1) 取BC 为研究对象,受力分析,画受力图;0 0 C C MM F l M F l=-⨯+==∑ (2) 取DAC 为研究对象,受力分析,画受力图;Bzyx AOF 1 F 2F ’2F ’1O 1 O 2F Bz F Az F AxF BxAMBCDll ll MB CF B F C CD F ’CF D画封闭的力三角形;解得'2cos 45C A oF MF l== F A F ’CF D4-1 试求题4-1图所示各梁支座的约束力。
设力的单位为kN ,力偶矩的单位为kN ⋅m ,长度单位为m ,分布载荷集度为kN/m 。
(提示:计算非均布载荷的投影和与力矩和时需应用积分)。
解:(b):(1) 整体受力分析,画出受力图(平面任意力系);(2) 选坐标系Axy ,列出平衡方程;0: 0.400.4 kNxAx Ax FF F =-+==∑()0: 20.80.5 1.60.40.7200.26 kNA B B M F F F =-⨯+⨯+⨯+⨯==∑0: 20.501.24 kNyAy B Ay FF F F =-++==∑约束力的方向如图所示。
(c):(1) 研究AB 杆,受力分析,画出受力图(平面任意力系);(2) 选坐标系Axy ,列出平衡方程;AB CD 0.80.80.40.50.40.7 2(b)ABC1 2q =2(c) M=330oA B CD 0.8 0.8 0.8 200.8 M =8q =20(e) ABC12q =2 M=330oF BF AxF A yy xdx2⨯dxxA BCD 0.8 0.8 0.4 0.5 0.40.7 2 F B F AxF A y y x2()0: 33200.33 kNBAy Ay MF F dx x F =-⨯-+⨯⨯==∑⎰20: 2cos3004.24 kNo y Ay B B F F dx F F =-⨯+==∑⎰0: sin3002.12 kNo xAx B Ax FF F F =-==∑约束力的方向如图所示。
(e):(1) 研究C ABD 杆,受力分析,画出受力图(平面任意力系);(2) 选坐标系Axy ,列出平衡方程;0: 0xAx FF ==∑0.8()0: 208 1.620 2.4021 kNAB B MF dx x F F =⨯⨯++⨯-⨯==∑⎰0.80: 2020015 kNy Ay B Ay F dx F F F =-⨯++-==∑⎰约束力的方向如图所示。
4-5 AB 梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D ,设重物的重量为G ,又AB 长为b ,斜绳与铅垂线成α角,求固定端的约束力。
解:(1) 研究AB 杆(带滑轮),受力分析,画出受力图(平面任意力系);ABαDbA B C D0.8 0.8 0.8 20 0.8M =8q =20 F BF AxF A yy x20⨯dxx dxA BbF AxyxM A(2) 选坐标系Bxy ,列出平衡方程;0: -sin 0sin xAx Ax FF G F G αα=+==∑0: cos 0(1cos )y Ay Ay F F G G F G αα=--==+∑()0: 0(1cos )BA Ay A MF M F bG R G R M G bα=-⨯+⨯-⨯==+∑约束力的方向如图所示。
4-7 练钢炉的送料机由跑车A 和可移动的桥B 组成。
跑车可沿桥上的轨道运动,两轮间距离为2 m ,跑车与操作架、平臂OC以及料斗C 相连,料斗每次装载物料重W =15 kN ,平臂长OC =5 m 。
设跑车A ,操作架D 和所有附件总重为P 。
作用于操作架的轴线,问P 至少应多大才能使料斗在满载时跑车不致翻倒?解:(1) 研究跑车与操作架、平臂OC 以及料斗C ,受力分析,画出受力图(平面平行力系);(2) 选F 点为矩心,列出平衡方程;()0: -214022FE E MF F P W PF W=⨯+⨯-⨯==-∑(3) 不翻倒的条件;0460 kNE F P W ≥∴≥=4-13 活动梯子置于光滑水平面上,并在铅垂面内,梯子两部分AC 和A B 各重为Q ,重心在A 点,彼此用铰链A 和绳子DE连接。