最新导数与恒成立、能成立问题及课后练习(含答案)
高考专题二 恒成立、能成立问题
24
所以当 g(m)=0 时,m=3a- 2 1, 同理可得 h(n)=f (n)-f (a)=16(n-a)2(2n+a-3), 所以当 h(n)=0 时,n=3-2 a, 所以此时 n-m=3-2 a-3a- 2 1=2-2a,即 n-m 的最大值为 2-2A.
返回导航
25
规律总结
“双变量”的恒(能)成立问题一定要正确理解其实质,深刻挖掘内含条件,进行等价 变换,常见的等价转换有
返回导航
6
若 a≤0,则 h′(x)=eax-ex+axeax<1-1+0=0,所以 h(x)在(0,+∞)上为减函数,所 以 h(x)<h(0)=0,即 f (x)<-1.
综上,a≤12.
返回导航
7
规律总结
利用导数解决不等式的恒成立或有解问题的主要策略:①构造函数,利用导数求出 最值,进而求出参数的取值范围;②分离变量,构造函数,直接把问题转化为函数的最 值问题.有些不易分参的也可采用“同构”技巧.
返回导航
22
(2)(2022·新疆乌鲁木齐二模)已知函数 f (x)=13x3-1+2 ax2+ax+1(a∈R). ①讨论函数 y=f (x)的单调性; ②设 a<1,若∀x1∈[m,n],∃x2∈[m,n],且 x1≠x2,使得 f (x1)=f (x2),求 n-m 的最大值.
解:①因为 f (x)=13x3-1+2 ax2+ax+1(a∈R),所以 f ′(x)=x2-(1+a)x+a=(x-1)(x -a),
第三章 一元函数的导数及其应用
专题二 恒成立、能成立问题
内容索引
第一部分 课时作业
命题角度 1 恒成立问题 【典例 1】 (2022·新高考Ⅱ卷)已知函数 f (x)=xeax-ex. (1)当 a=1 时,讨论 f (x)的单调性; (2)当 x>0 时,f (x)<-1,求 a 的取值范围.
第10讲 恒成立能成立3种常见题型(解析版)
第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(1−1)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =,所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln x g x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()xe g x x =,则2(1)()xe x g x x'-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,eB .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e 2e g =+,所以()()22max 2e 2e g x g ==+,则222e a -≥+,则222ea ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,()ln +1f x x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.。
函数恒成立、能成立问题及课后练习(含问题详解)
恒成立、能成立问题专题 一、基础理论回顾1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;二、经典题型解析题型一、简单型例1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .例2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围.分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤;方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x xax h ++=)(求导,22))((1)(xa x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .例3、已知两函数2)(x x f =,m x g x-⎪⎭⎫⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为 答案:41≥m 题型二、更换主元和换元法例1、已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数,(Ⅰ)求a 的值;(Ⅱ)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围;(Ⅱ)分析:在不等式中出现了两个字母:λ及t ,关键在于该把哪个字母看成是一个变量,另一个作为常数。
恒成立与能成立的七类问题【解析版】--高中数学
恒成立与能成立的七类问题热点题型速览热点一分离参数法解答恒(能)成立问题1(2023·全国·统考高考真题)已知函数f x =ae x -ln x 在区间1,2 上单调递增,则a 的最小值为( ).A.e 2B.eC.e -1D.e -2【答案】C【分析】根据f x =ae x -1x≥0在1,2 上恒成立,再根据分参求最值即可求出.【详解】依题可知,f x =ae x -1x ≥0在1,2 上恒成立,显然a >0,所以xe x ≥1a,设g x =xe x ,x ∈1,2 ,所以g x =x +1 e x>0,所以g x 在1,2 上单调递增,g x >g 1 =e ,故e ≥1a ,即a ≥1e=e -1,即a 的最小值为e -1.故选:C .2(2023春·江苏无锡·高二统考期末)已知函数f (x )=a ln x +x 2,在区间(0,2)上任取两个不相等的实数x 1,x 2,若不等式f x 1 -f x 2x 1-x 2>0恒成立,则实数a 的取值范围是()A.[-8,+∞)B.(-∞,-8]C.[0,+∞)D.(-∞,0]【答案】C【分析】根据f x 1 -f x 2x 1-x 2>0可知f x 在(0,2)上单调递增,进而由导数即可求解.【详解】由f x 1 -f x 2 x 1-x 2>0可知f x 在(0,2)上单调递增,所以f (x )=ax +2x ≥0在(0,2)上恒成立,即a ≥-2x 2在(0,2)上恒成立,故a ≥-2x 2 max ,所以a ≥0,故选:C3(2023春·河南南阳·高二统考期末)若f x =log 0.5x 3-3x 2+ax +6 在区间1,2 上单调递增,则实数a 的取值范围为()热点一:分离参数法解答恒(能)成立问题热点二:构造函数法解答恒(能)成立问题热点三:最值比较法解答恒(能)成立问题热点四:“先分离后构造”解答恒(能)成立问题热点五:两次构造函数,解答恒(能)成立问题热点六:先分离参数、再两次构造函数,解答恒(能)成立问题热点七:构造函数法证明恒成立问题恒成立问题能成立问题“隐性”恒成立A.-∞,0B.-1,+∞C.-1,0D.-1,0【答案】C【分析】令f (t )=log 0.5t ,t =x 3-3x 2+ax +6,根据复合函数的单调性可得需满足t >0,且t =x 3-3x 2+ax +6在1,2 上单调递减,结合导数。
第4讲 第2课时 利用导数解决不等式恒(能)成立问题
求解不等式恒成立问题的方法 (1)构造函数分类讨论:遇到 f(x)≥g(x)型的不等式恒成立问题时,一般 采用作差法,构造“左减右”的函数 h(x)=f(x)-g(x)或“右减左”的函数 u(x)=g(x)-f(x),进而只需满足 h(x)min≥0 或 u(x)max≤0,将比较法的思想融 入函数中,转化为求解函数最值的问题,适用范围较广,但是往往需要对 参数进行分类讨论. (2)分离函数法:分离函数法的主要思想是将不等式变形成一个一端是 参数 a,另一端是变量表达式 v(x)的不等式后,若 a≥v(x)在 x∈D 上恒成立, 则 a≥v(x)max;若 a≤v(x)在 x∈D 上恒成立,则 a≤v(x)min.
第四章 导数及其应用
第4讲 导数与函数的综合应用 第2课时 利用导数解决不等式恒(能)
成立问题
1
PART ONE
核心考向突破
考向一 恒成立问题
例 1 (2020·新高考卷Ⅰ节选)已知函数 f(x)=aex-1-ln x+ln a.若 f(x)≥1,求 a 的取值范围.
解 解法一:∵f(x)=aex-1-ln x+ln a, ∴f′(x)=aex-1-1x,且 a>0. 设 g(x)=f′(x),则 g′(x)=aex-1+x12>0, ∴g(x)在(0,+∞)上单调递增,即 f′(x)在(0,+∞)上单调递增,
解
(2)对于任意的 s,t∈[12,2],都有 f(s)≥g(t)成立,等价于在[12,2]上, 函数 f(x)min≥g(x)max.
由(1)可知在[12,2]上,g(x)的最大值为 g(2)=1. 在12,2 上,f(x)=ax+xln x≥1 恒成立等价于 a≥x-x2ln x 恒成立. 设 h(x)=x-x2ln x,则 h′(x)=1-2xln x-x, 令 φ(x)=1-2xln x-x,φ′(x)=-(2ln x+3),当 x∈[12,2]时,φ′(x)<0,
第5讲 第1课时 利用导数研究恒(能)成立问题
13
突破核心命题 9拓展提能 限时规范训练
反思感悟 根据不等式恒成立求参数范围的关键是将恒成立问题转化为最值问 题,此类问题关键是对参数分类讨论,在参数的每一段上求函数的最 值,并判断是否满足题意,若不满足题意,只需找一个值或一段内的函 数值不满足题意即可.
14
突破核心命题 9拓展提能 限时规范训练
1
突破核心命题 9拓展提能 限时规范训练
第1课时 利用导数 研究恒(能)成立问题
2
突破核心命题 9拓展提能 限时规范训练
命题解读 恒(能)成立问题是高考的常考考点,其中不等式的恒(能) 成立问题经常与导数及其几何意义、函数、方程等相交汇,综合考查学 生分析问题、解决问题的能力,一般作为压轴题出现,试题难度略大.
③lim
x→a
f′ g′((xx))=A,那么lxi→ma
gf((xx))=lxi→ma
f′ g′((xx))=A.
注意:高中阶段能使用洛必达法则的题目一般都能使用分类讨论,
但分类讨论难度较大,所以可采用分参求最值的方式,一般大题中对使
用洛必达法则的赋分可能因标准不同而不同.
28
突破核心命题 9拓展提能 限时规范训练
15
突破核心命题 9拓展提能 限时规范训练
①当a≤0时,φ′(x)>0, ∴φ(x)在[1,+∞)上单调递增, ∴φ(x)min=φ(1)=1-a+a-1=0≥0恒成立,∴a≤0符合题意. ②当a>0时,令φ′(x)=0,得x=ln a+1. 当x∈(-∞,ln a+1)时,φ′(x)<0, 当x∈(ln a+1,+∞)时,φ′(x)>0, ∴φ(x)在(-∞,ln a+1)上单调递减, 在(ln a+1,+∞)上单调递增.
高考数学专题:导数恒成立问题(含答案)
1、设函数f(x)=13x3-a2x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.(1)求b,c的值;(2)若a>0,求函数f(x)的单调区间;(3)设函数g(x)=f(x)+2x,且g(x)在区间(-2,-1)内存在单调递减区间,求实数a的取值范围.2、已知函数f(x)=e x-ax(a为常数)的图象与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1.(1)求a的值及函数f(x)的极值;(2)证明:当x>0时,x2<e x;(3)证明:对任意给定的正数c,总存在x0,使得当x∈(x0,+∞)时,恒有x2<c e x.3、设函数f(x)=a e x ln x+b e x-1x,曲线y=f(x)在点(1,f(1))处的切线方程为y=e(x-1)+2.(1)求a,b;(2)证明:f(x)>1.4、已知函数f(x)=ax2-(a+2)x+ln x,其中a∈R.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当a>0时,若f(x)在区间[1,e]上的最小值为-2,求a的取值范围;(3)若∀x1,x2∈(0,+∞),且x1<x2,f(x1)+2x1<f(x2)+2x2恒成立,求a的取值范围.5、若不等式2x ln x≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是( ) A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞)答案: B 2x ln x≥-x2+ax-3,则a≤2ln x+x+3x.设h(x)=2ln x+x+3x(x>0),则h′(x)=(x+3)(x-1)x2.当x∈(0,1)时,h′(x)<0,函数h(x)单调递减;当x∈(1,+∞)时,h′(x)>0,函数h(x)单调递增,所以h(x)min=h(1)=4.所以a≤h(x)min=4.故a的取值范围是(-∞,4].6、已知函数f(x)=12x2-a ln x(a∈R).(1)若函数f(x)的图象在x=2处的切线方程为y=x+b,求a,b的值;(2)若函数f(x)在(1,+∞)上为增函数,求a的取值范围.7、已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎢⎡⎦⎥⎤f ′(x )+m 2在区间(t ,3)内总不是单调函数,求m 的取值范围.8、已知a ∈R ,函数f (x )=4x 3-2ax +a .(1)求f (x )的单调区间;(2)证明:当0≤x ≤1时,f (x )+|2-a |>0.9、已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.(1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围; (3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e -1的大小,并证明你的结论.答案:1、解:(1)f ′(x )=x 2-ax +b , 由题意得⎩⎨⎧f (0)=1,f ′(0)=0,即⎩⎨⎧c =1,b =0.(2)由(1)得,f ′(x )=x 2-ax =x (x -a )(a >0), 当x ∈(-∞,0)时,f ′(x )>0; 当x ∈(0,a )时,f ′(x )<0; 当x ∈(a ,+∞)时,f ′(x )>0.所以函数f (x )的单调递增区间为(-∞,0),(a ,+∞),单调递减区间为(0,a ). (3)g ′(x )=x 2-ax +2,依题意,存在x ∈(-2,-1),使不等式g ′(x )=x 2-ax +2<0成立, 即x ∈(-2,-1)时, a <⎝ ⎛⎭⎪⎫x +2x max =-22即可,所以满足要求的a 的取值范围是(-∞,-22).2、【解析】 (1)由f (x )=e x -ax ,得f ′(x )=e x -a .又f ′(0)=1-a =-1,得a =2. 所以f (x )=e x -2x ,f ′(x )=e x -2. 令f ′(x )=0,得x =ln 2.当x <ln 2时,f ′(x )<0,f (x )单调递减; 当x >ln 2时,f ′(x )>0,f (x )单调递增.所以当x =ln 2时,f (x )取得极小值,且极小值为f (ln 2)=e ln 2-2ln 2=2-ln 4,f (x )无极大值. (2)证明:令g (x )=e x -x 2,则g ′(x )=e x -2x , 由(1)得g ′(x )=f (x )≥f (ln 2)>0,故g (x )在R 上单调递增.又g (0)=1>0, 因此,当x >0时,g (x )>g (0)>0,即x 2<e x . (3)证明:方法一:①若c ≥1,则e x ≤c e x . 又由(2)知,当x >0时,x 2<e x . 所以当x >0时,x 2<c e x .取x 0=0,当x ∈(x 0,+∞)时,恒有x 2<c e x .②若0<c <1,令k =1c >1,要使不等式x 2<c e x 成立,只要e x >kx 2成立. 而要使e x >kx 2成立,则只要x >ln(kx 2),只要x >2ln x +ln k 成立. 令h (x )=x -2ln x -ln k ,则h ′(x )=1-2x =x -2x .所以当x >2时,h ′(x )>0,h (x )在(2,+∞)内单调递增. 取x 0=16k >16,所以h (x )在(x 0,+∞)内单调递增, 又h (x 0)=16k -2ln(16k )-ln k =8(k -ln 2)+3(k -ln k )+5k ,易知k >ln k ,k >ln 2,5k >0,所以h (x 0)>0. 即存在x 0=16c ,当x ∈(x 0,+∞)时,恒有x 2<c e x .综上,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法二:对任意给定的正数c ,取x 0=4c, 由(2)知,当x >0时,e x >x 2, 所以e x=e x 2·e x 2>⎝ ⎛⎭⎪⎫x 22⎝ ⎛⎭⎪⎫x 22,当x >x 0时,e x>⎝ ⎛⎭⎪⎫x 22⎝ ⎛⎭⎪⎫x 22>4c ⎝ ⎛⎭⎪⎫x 22=1c x 2,因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x . 方法三:首先证明当x ∈(0,+∞)时,恒有13x 3<e x . 证明如下:令h (x )=13x 3-e x ,则h ′(x )=x 2-e x . 由(2)知,当x >0时,x 2<e x ,从而h ′(x )<0,h (x )在(0,+∞)内单调递减, 所以h (x )<h (0)=-1<0,即13x 3<e x.取x 0=3c ,当x >x 0时,有1c x 2<13x 3<e x .因此,对任意给定的正数c ,总存在x 0,当x ∈(x 0,+∞)时,恒有x 2<c e x .3、解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=a e x ln x +a x ·e x -b x 2e x -1+b xe x -1.由题意可得f (1)=2,f ′(1)=e. 故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x -2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0.故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增,从而g (x )在(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e =-1e .设函数h (x )=x e -x -2e , 即h ′(x )=e -x (1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0,故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)的最大值为h (1)=-1e .综上,当x >0时,g (x )>h (x ), 即f (x )>1.4、解:(1)当a =1时,f (x )=x 2-3x +ln x (x >0),f ′(x )=2x -3+1x =2x 2-3x +1x,则f (1)=-2,f (1)=0.所以切线方程是y =-2.(2)函数f (x )=ax 2-(a +2)x +ln x 的定义域是(0,+∞).当a >0时,f ′(x )=2ax -(a +2)+1x =2ax 2-(a +2)x +1x =(2x -1)(ax -1)x(x >0).令f ′(x )=0,得x =12或x =1a .①当0<1a ≤1,即a ≥1时,f (x )在[1,e]上单调递增,所以f (x )在[1,e]上的最小值是f (1)=-2;②当1<1a <e ,即1e <a <1时,f (x )在⎣⎢⎡⎦⎥⎤1,1a 上单调递减,在⎣⎢⎡⎦⎥⎤1a ,e 上单调递增,所以f (x )在[1,e]上的最小值是f ⎝ ⎛⎭⎪⎫1a <f (1)=-2,不合题意,故1e <a <1舍去;③当1a ≥e ,即0<a ≤1e 时,f (x )在[1,e]上单调递减,所以f (x )在[1,e]上的最小值是f (e)<f (1)=-2,不合题意,故0<a ≤1e 舍去.综上所述,a 的取值范围为[1,+∞).(3)设g (x )=f (x )+2x ,则g (x )=f (x )+2x =ax 2-ax +ln x ,只要g (x )在(0,+∞)上单调递增,即g ′(x )≥0在(0,+∞)上恒成立即可.而g ′(x )=2ax -a +1x =2ax 2-ax +1x(x >0).①当a =0时,g ′(x )=1x >0,此时g (x )在(0,+∞)上单调递增;②当a ≠0时,因为x >0,依题意知,只要2ax 2-ax +1≥0在(0,+∞)上恒成立.记h (x )=2ax 2-ax +1,则抛物线过定点(0,1),对称轴x =14.故必须⎩⎨⎧a >0,Δ=a 2-8a ≤0,即0<a ≤8. 综上可得,a 的取值范围为[0,8].6、解:(1)因为f ′(x )=x -ax(x >0),且f (x )在x =2处的切线方程为y =x +b , 所以⎩⎪⎨⎪⎧2-a ln 2=2+b ,2-a 2=1,解得a =2,b =-2ln 2.(2)若函数f (x )在(1,+∞)上为增函数,则f ′(x )=x -ax ≥0在(1,+∞)上恒成立,即a ≤x 2在(1,+∞)上恒成立.所以a ≤1.7、解:(1)f ′(x )=a (1-x )x(x >0),当a >0时,f (x )的单调增区间为(0,1),减区间为[1,+∞); 当a <0时,f (x )的单调增区间为[1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数. (2)由(1)得f ′(2)=-a2=1,即a =-2, ∴f (x )=-2ln x +2x -3, ∴g (x )=x 3+⎝ ⎛⎭⎪⎫m 2+2x 2-2x ,∴g ′(x )=3x 2+(m +4)x -2.∵g (x )在区间(t ,3)内总不是单调函数, 即g ′(x )=0在区间(t ,3)内有变号零点. 由于g ′(0)=-2, ∴⎩⎨⎧g ′(t )<0,g ′(3)>0.当g ′(t )<0时,即3t 2+(m +4)t -2<0对任意t ∈[1,2]恒成立, 由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0, 即m <-5且m <-9,即m <-9; 由g ′(3)>0,得m >-373. 所以-373<m <-9.8、解:(1)由题意得f ′(x )=12x 2-2a .当a ≤0时,f ′(x )≥0恒成立,此时f (x )的单调递增区间为(-∞,+∞). 当a >0时,f ′(x ) =12⎝⎛⎭⎪⎫x -a 6⎝ ⎛⎭⎪⎫x +a 6, 此时函数f (x )的单调递增区间为⎝⎛⎦⎥⎤-∞,-a 6和⎣⎢⎡⎭⎪⎫a 6,+∞, 单调递减区间为⎣⎢⎡⎦⎥⎤-a 6,a 6. (2)证明:由于0≤x ≤1,故当a ≤2时,f (x )+|a -2|=4x 3-2ax +2≥4x 3-4x +2.当a >2时,f (x )+|a -2| =4x 3+2a (1-x )-2≥4x 3+4(1-x )-2=4x 3-4x +2. 设g (x )=2x 3-2x +1,0≤x ≤1,则 g ′(x )=6x 2-2=6⎝⎛⎪⎫x -3 ⎛⎪⎫x +3.于是所以g (x )min =g ⎝ ⎛⎭⎪⎫33=1-439>0.所以当0≤x ≤1时,2x 3-2x +1>0. 故f (x )+|a -2|≥4x 3-4x +2>0.9、解:(1)证明:因为对任意x ∈R ,都有f (-x )=e -x +e-(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令t =e x (x >0),则t >1, 所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立. 因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.因此实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-13.(3)令函数g (x )=e x +1e x -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0,所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e -x 0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0,故e +e-1-2a <0,即a >e +e -12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x .令h ′(x )=0,得x =e -1.当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数. 所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0; 当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. ①当a ∈⎝ ⎛⎭⎪⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝ ⎛⎭⎪⎫e +e -12,e时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a -1>a e -1.。
专题04 利用导数解决恒成立与存在性问题(解析版)
专题04 利用导数解决恒成立与存在性问题常见考点考点一 恒成立问题典例1.已知函数()e xf x ax b =++(e 是自然对数的底数),曲线()y f x =在点()()0,0f 处的切线为y a b =-.(1)求a ,b 的值;(2)若不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,求正实数m 的取值范围.【答案】(1)1a =-,1b =- (2)()0,e 1- 【解析】 【分析】(1)求导,由切线为y a b =-,可得(0)10(0)1f a f b a b=+=⎧⎨=+=-'⎩,运算即得解;(2)参变分离可得e 1x m x <-,令()e 1xg x x=-,求导分析单调性,可得()g x 的最小值为()1e 1g =-,分析即得解 (1)()e x f x ax b =++可得()e x f x a '=+,因为曲线()y f x =在点()()0,0f 处的切线为y a b =-.所以(0)10(0)1f a f b a b =+=⎧⎨=+=-'⎩,解得1a =-,1b =-.(2)由(1)知()e 1xf x x =--,∵不等式()1f x mx >-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,∴e xx mx ->在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立,即e1xm x<-在1,e e x ⎡⎤∈⎢⎥⎣⎦上恒成立.令()e 1xg x x=-,∵()()2e 1x x g x x ='-,当()()2e 10x x g x x '-==时,解得1x =. ∴当11ex <<时,()0g x '<,()g x 为减函数,当1e x <≤时,()0g x '>,()g x 为增函数,∴()g x 的最小值为()1e 1g =-,∴e 1m <-,∴正实数m 的取值范围为()0,e 1-. 变式1-1.已知函数()ln xf x x=, ()()1g x k x =-. (1)证明: R k ∀∈,直线y g x 都不是曲线()y f x =的切线;(2)若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立,求实数k 的取值范围.【答案】(1)证明见解析 (2)e ,e 1⎡⎫+∞⎪⎢-⎣⎭【解析】 【分析】(1)求出()f x 的导数,设出切点,可得切线的斜率,根据斜率相等,进而构造 函数()h =ln 1x x x +-,求出导数和单调区间,即可证明;(2)由2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1x k x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦,再 利用导数法求出()()n 1l x x x x ϕ-=在2e,e ⎡⎤⎣⎦的最大值即可求解.(1)由题意可知,()f x 的定义域为()()0,11,+∞, 由()ln x f x x=,得()()2ln 1ln x f x x -'=, 直线y g x 过定点()1,0,若直线y g x 与曲线()y f x =相切于点()00000,01ln x x x x x ⎛⎫>≠ ⎪⎝⎭且,则 ()002000ln 1ln 1ln x x x k x x --==-,即00ln 10x x +-=① 设()()h =ln 1,0x x x x +-∈+∞,则(),1=10h x x+>,所以()h x 在()0+∞上单调递增,又()h 1ln1110=+-=, 从而当且仅当01x =时,①成立,这与01x ≠矛盾.所以,R k ∀∈,直线y g x 都不是曲线()y f x =的切线. (2)由()()f x g x ≤,得()1ln xxk x ≤-, 22e e ,0e 11e 1x x ∴≤≤∴<-≤-≤-,()l 1n xk x x -∴≥若2e,e x ⎡⎤∀∈⎣⎦,使()()f x g x ≤恒成立转化为()maxln 1xk x x ⎡⎤≥⎢⎥⎢⎥⎣⎦-2e,e x ⎡⎤∈⎣⎦即可. 令()()n 1l x x x x ϕ-=,2e,e x ⎡⎤∈⎣⎦,则()()2ln 1ln 1x x x x x ϕ---+'=⎡⎤⎣⎦,令()ln 1t x x x =--+,2e,e x ⎡⎤∈⎣⎦,则()11x t x x xx +⎛⎫'=--=- ⎪⎝⎭221110e e ,011e ex x x +∴<≤≤∴<+≤≤+,所以()0t x '<, 所以()t x 在2e,e ⎡⎤⎣⎦上是单调递减;所以()()e lne e 1e<0t x t ≤=--+=-,故()0ϕ'<x()ϕx 在2e,e ⎡⎤⎣⎦上是单调递减;当e x =时,()ϕx 取得最大值为,()()e e e e 1ln e e 1ϕ==--,即e e 1k ≥-. 所以实数k 的取值范围为e ,e 1⎡⎫+∞⎪⎢-⎣⎭【点睛】解决此题的关键利用导数的几何意义及两点求斜率,再根据同一切线斜率相等即可证明, 对于恒成立问题通常采用分离常数法,进而转化为求函数的最值问题,利用导数法即可求解.变式1-2.已知函数()ln(1)xf x e a x =++.(1)当1a =-时,求函数()f x 的单调区间; (2)若()1f x ≥恒成立,求实数a 的值.【答案】(1)递减区间为(1,0)-,递增区间为(0,)+∞; (2)1-.【解析】 【分析】(1)当1a =-时,求得()11x x xe e f x x +-'=+,令()1x xg x xe e =+-,得到()0g x '>,且()00g =,即可求得函数的单调区间;(2)求得()(1)1x x e a f x x ++'=+,设()(1)xg x x e a =++,当0a ≥时,不满足题意;当0a <时,得到()g x 单调递增,设()0g x =有唯一的零点0x ,使得00(1)0xx e a ++=,结合函数单调性得到()()00min 01[(1)1]ln()ln()1f x f x a x a a a a a x ==-++-+-≥-+-+,再令()ln(),(,0)h a a a a a =-+-∈-∞,结合单调性求得()1f x ≤,即可求解. (1)解:当1a =-时,函数()ln(1)xf x e x =-+,其定义域为(1,)-+∞可得()1111x x xxe e f x e x x +-'=-=++, 令()1x x g x xe e =+-,可得()(2)0xg x e x '=+>,()g x 单调递增,又由()00g =,当(1,0)x ∈-时,()0g x '<,可得()0f x '<,()f x 单调递减; 当,()0x ∈+∞时,()0g x '>,可得()0f x '>,()f x 单调递增, 所以()f x 的递减区间为(1,0)-,递增区间为(0,)+∞. (2)解:由()ln(1)xf x e a x =++,可得()(1)11x xa x e a f x e x x ++'=+=++, 设()(1)xg x x e a =++,当0a ≥时,()0g x >,可得()0f x '>,()f x 单调递增, 当1x →-时,()f x →-∞,不满足题意;当0a <时,由()(2)0xg x x e '=+>,()g x 单调递增,设()0g x =有唯一的零点0x ,即00(1)0xx e a ++=,当0(1,)x x ∈-时,()0g x '<,可得()0f x '<,()f x 单调递减; 当0(,)x x ∈+∞时,()0g x '>,可得()0f x '<,()f x 单调递增,所以()()000000min ln(1)lnln()x xx x af x f x e a x e a e a a ax e-==++=+=+-- 00001ln()()ln()11a ax a a a x a a x x =--+-=-++-++ 001[(1)1]ln()1a x a a x =-++-+-+ 因为010x +>,可得001121x x ++≥+, 当且仅当00x =时,等号成立,所以001(1)111x x ++-≥+,所以001[(1)1]ln()ln()1a x a a a a a x -++-+-≥-+-+,因为()1f x ≥恒成立,即ln()1a a a -+-≥恒成立,令()ln(),(,0)h a a a a a =-+-∈-∞,可得()1ln()1ln()h a a a '=-+-+=-, 当(,1)a ∈-∞-时,()0h a '>,()h a 单调递增; 当(1,0)a ∈-时,()0h a '<,()h a 单调递减, 所以()()11h a h ≤-=,即()1f x ≤,又由()1f x ≥恒成立,即()ln()0h a a a a =-+-=,所以1a =-.变式1-3.已知函数()2ln x x f x ax x =--(a R ∈)恰有两个极值点12,x x 且12x x <.(1)求实数a 的取值范围;(2)若不等式122ln ln 2x x λλ+>+恒成立,求实数λ的取值范围. 【答案】(1)10,2e ⎛⎫ ⎪⎝⎭(2)[)2,+∞ 【解析】 【分析】(1)对()f x 求导后分析其导数的零点(2)将12,x x 代入后消去a ,然后为不等式恒成立问题,换元后分类讨论最值 (1)∵()'ln 2f x x ax =-,依题意得12,x x 为方程ln 20x ax -=的两不等正实数根, ∴0a ≠,ln 2x a x =,令()ln x g x x=,()21ln 'xg x x -=, 当()0,e x ∈时,()'0g x >;当()e,x ∈+∞时,()'0g x <,∴()g x 在(0,e)上单调递增,在()e,+∞上单调递减,且()10g =,当e x >时,()0g x >, ∴()102e ea g <<=,解得102e a <<,故实数a 的取值范围是10,2e ⎛⎫ ⎪⎝⎭; (2)由(1)得11ln 2x ax =,22ln 2x ax =,两式相减得()1212ln ln 2x x a x x -=-,1212ln ln 2x x a x x -=-, ()12122ln ln 2222x x a x x λλλλ+>+⇔+>+()()1112122211222ln2ln ln 221x x x x x x x x x x x x λλλλ⎛⎫+ ⎪+-⎝⎭⇔>+⇔>+--, ∵120x x <<,令()120,1x t x =∈,∴()2ln 21t t t λλ+>+-,即()()()2ln 210t t t λλ+-+-<, 令()()()()2ln 21h t t t t λλ=+-+-,则需满足()0h t <在()0,1上恒成立, ∵()'2ln h t t tλλ=+-,令()2ln I t t tλλ=+-,则()2222't I t t t tλλ-=-=(()0,1t ∈), ①当2λ≥时,()'0I t <,∴()'h t 在()0,1上单调递减,∴()()''10h t h >=, ∴()h t 在(0,1)上单调递增,∴()()10h t h <=,符合题意,②当0λ≤时,()'0I t >,∴()'h t 在()0,1上单调递增,∴()()''10h t h <=, ∴()h t 在()0,1上单调递减,∴()()10h t h >=,不符合题意, ③当02λ<<时,()'012I t t λ>⇔<<,∴()'h t 在,12λ⎛⎫⎪⎝⎭上单调递增,∴()()''10h t h <=, ∴()h t 在,12λ⎛⎫⎪⎝⎭上单调递减,∴()()10h t h >=,不符合题意,综上所述,实数λ的取值范围是[)2,+∞.考点二 存在性问题典例2.已知函数2()(2)ln (0)f x ax a x x a =-++>. (1)讨论函数()f x 的单调性;(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,求实数a 的取值范围. 【答案】(1)答案见解析 (2)10,e ⎛⎤⎥⎝⎦ 【解析】 【分析】(1)求得()'f x ,对a 进行分类讨论,由此求得()f x 的单调区间.(2)根据(1)的结论对a 进行分类讨论,由min e ()f x ≤-,结合构造函数法以及导数来求得a 的取值范围. (1)已知函数2()(2)ln f x ax a x x =-++,定义域为(0,)+∞,212(2)1(1)(21)()2(2)ax a x ax x f x ax a x x x-++--=-++==',①当02a <<时,11>,()f x 在110,,,2a ⎛⎫⎛⎫+∞⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减; ②当2a =时,2142()0x f x x⎛⎫- ⎪⎝⎭'=≥,函数()f x 在(0,)+∞单调递增; ③当2a >时,112a <,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减. 综上所述,02a <<时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫⎪⎝⎭上单调递减;2a =时,()f x 在(0,)+∞单调递增;2a >时,()f x 在110,,,2a ⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减.(2)若存在[1,)x ∈+∞,使得()e 0f x +≤成立,即使得min e ()f x ≤-.由(1),可知当1a ≥时,()f x 在[1,)+∞上单调递增,()min (1)2f f x ==-, 不满足min e ()f x ≤-; 当01a <<时,11a>min 11()1ln f x f a a a ⎛⎫==--- ⎪⎝⎭,所以e 11ln a a ---≤-,即1ln 1e a a +≥-,令1()ln (01)g x x x x =+<<,∴22111()0x g x x x x-='=-<, ∴1()ln g x x x=+在(0,1)上单调递减,又∵1e 1e g ⎛⎫=- ⎪⎝⎭,由1ln 1e a a +≥-,得10ea <≤.综上,实数a 的取值范围为10,e ⎛⎤⎥⎝⎦.变式2-1.已知函数()()ln 11xf x x x =>-.(1)判断函数()f x 的单调性;(2)已知0λ>,若存在()1,x ∈+∞时使不等式()()1eln 0xx f x λ--≥成立,求λ的取值范围.【答案】(1)函数()y f x =在区间()1,+∞上单调递减; (2)1(0,]e. 【解析】 【分析】(1)求出函数()f x 的导数()f x ',判断()f x '的符号作答.(2)对给定不等式作等价变形,借助(1)脱去法则“f ”,分离参数构造函数,再求出函数最值作答. (1) 函数ln 1xf xx ,1x >,求导得:()()211ln 1x x f x x --'=-,令()11ln g x x x =--,1x >,则()210xg x x-'=<,即函数()y g x =在区间()1,+∞单调递减, 而()10g =,则当()1,x ∈+∞时,()(1)0g x g <=,即()0f x '<, 所以函数()y f x =在区间()1,+∞上单调递减. (2)当1x >时ln 0x >,()()()()()ln 1eln 0e e 1xxxxx f x f f f x x λλλ--≥⇔≥⇔≥-, 因0λ>且1x >,则()e 1,xλ∈+∞,由(1)知,()y f x =在()1,+∞单调递减,则存在()1,x ∈+∞,不等式()()ln e e ln x xxf f x x x x xλλλλ≥⇔≤⇔≤⇔≤成立, 令()()ln 1x x x x ϕ=>,则()21ln xx xϕ-'=,当()1,e x ∈时,()0x ϕ'>,当()e,x ∈+∞时,()0x ϕ'<, 因此,函数()x ϕ在()1,e 上单调递增,在()e,+∞上单调递减,()()max 1e e x ϕϕ==,于是得10eλ<≤, 所以λ的取值范围是1(0,]e. 【点睛】关键点睛:涉及不等式恒成立问题,将给定不等式等价转化,构造函数,再利用函数的导数探讨解决问题.变式2-2.已知函数()()222ln f x x a x =++.(1)当5a =-时,求()f x 的单调区间; (2)若存在[]2,e x ∈,使得()2242a f x x x x+->+成立,求实数a 的取值范围. 【答案】(1)单调递减区间为()0,2,单调递增区间为()2,+∞;(2)2e e 2,e 1∞⎛⎫-++⎪-⎝⎭. 【解析】 【分析】(1)当5a =-时,()28ln f x x x =-,得出()f x 的定义域并对()f x 进行求导,利用导数研究函数的单调性,即可得出()f x 的单调区间; (2)将题意等价于()24222ln 0a x a x x ++-+<在[]2,e 内有解,设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <,对()h x 进行求导,令()0h x '=,得出2x a =+,分类讨论2a +与区间[]2,e 的关系,并利用导数研究函数()h x 的单调和最小值,结合()min 0h x <,从而得出实数a 的取值范围. (1)解:当5a =-时,()28ln f x x x =-,可知()f x 的定义域为()0,+∞,则()28282,0x f x x x x x-'=-=>, 可知当()0,2x ∈时,0f x ;当()2,x ∈+∞时,0fx ;所以()f x 的单调递减区间为()0,2,单调递增区间为()2,+∞. (2)解:由题可知,存在[]2,e x ∈,使得()2242a f x x x x+->+成立, 等价于()24222ln 0a x a x x++-+<在[]2,e 内有解, 可设()()24222ln a h x x a x x+=+-+,即在[]2,e 上,函数()min 0h x <, ()()()()()()()22222122422222242x x a a a x a x a h x x xx x ⎡⎤+-+++-+-+⎣⎦∴=--==',令()0h x '=,即()()120x x a ⎡⎤+-+=⎣⎦,解得:2x a =+或1x =-(舍去), 当2e a +≥,即e 2a ≥-时,()0h x '<,()h x 在[]2,e 上单调递减,()()min24e 2e+220e a h x h a +∴==--<,得2e e 2e 1a -+>-,又2e e 2e 2e 1-+>--,所以2e e 2e 1a -+>-; 当22a +≤时,即0a ≤时,()0h x '>,()h x 在[]2,e 上单调递增,()()()min 2622ln 20h x h a a ∴==+-+<,得6ln 40ln 41a ->>-,不合题意; 当22e a <+<,即0e 2a <<-时,则()h x 在[]2,2a +上单调递减,在[]2,e a +上单调递增,()()()()min 22622ln 2h x h a a a a ∴=+=+-++,()ln 2ln 2lne 1a <+<=,()()()22ln 222ln 2222a a a a ∴+<++<+, ()()()22622ln 226224h a a a a a a ∴+=+-++>+--=,即()min 4h x >,不符合题意;综上得,实数a 的取值范围为2e e 2,e 1∞⎛⎫-++ ⎪-⎝⎭.【点睛】思路点睛:本题考查利用导数研究函数的单调性,以及利用导数解决不等式成立的综合问题: (1)利用导数解决单调区间问题,应先确定函数的定义域,否则,写出的单调区间易出错;利用导数解决含有参数的单调性问题,要注意分类讨论和化归思想的应用;(2)利用导数解决不等式的综合问题的一般步骤是:构造新函数,利用导数研究的单调区间和最值,再进行相应证明.变式2-3.已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围.【答案】(1)极小值为1,无极大值(2)单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)21,1e e ⎛⎫++∞⎪-⎝⎭【解析】 【分析】(1)研究()ln f x x x =-的单调区间,进而求出()f x 的极值;(2)先求()h x ',再解不等式()0h x '>与()0h x '<,求出单调区间,注意题干中的0a >的条件;(3)先把题干中的问题转化为在[]1x e ∈,上有()min 0h x <,再结合第二问研究的()h x 的单调区间,对a 进行分类讨论,求出不同范围下的()min h x ,求出最后结果 (1)当1a =时,()ln f x x x =-,定义域为()0,∞+,()111x f x x x-'=-=令()0f x '=得:1x =,当1x >时,()0f x '>,()f x 单调递增;当01x <<时,()0f x '<,()f x 单调递减,故1x =是函数()f x 的极小值点,()f x 的极小值为()11f =,无极大值 (2)()()()()1ln 0ah x f x g x x a x a x+=-=-+>,定义域为()0,∞+ ()()()222211111x x a a a x ax a h x x x x x+--+---'=--== 因为0a >,所以10a +>,令()0h x '>得:1x a >+,令()0h x '<得:01x a <<+,所以()h x 在()1,a ++∞单调递增,在()0,1a +单调递减.综上:()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +. (3)存在[]01x e ∈,,使得()()00f x g x <成立,等价于存在[]01x e ∈,,使得()00h x <,即在[]1x e ∈,上有()min 0h x <由(2)知,()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +,所以当1a e +≥,即1a e ≥-时,()h x 在[]1x e ∈,上单调递减,故()h x 在x e =处取得最小值,由()()min10a h x h e e a e +==-+<得:211e a >e +-,因为2111e e e +>--,故211e a >e +-. 当11a e <+<,即01a e <<-时,由(2)知:()h x 在()1,1x a ∈+上单调递减,在()1,x a e ∈+上单调递增,()h x 在[]1x e ∈,上的最小值为 令()()12ln 1h a a a a +=+-+因为()0ln 11a <+<,所以()0ln 1a a a <+<,则()2ln 12a a a +-+>,即()12h a +>,不满足题意,舍去综上所述:a 的取值范围为21,1e e ⎛⎫++∞⎪-⎝⎭【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.巩固练习练习一 恒成立问题1.已知函数()1ln x f x x+=. (1)求()f x 在1x =处的切线方程; (2)当e x ≥时,不等式()ekf x x ≥+恒成立,求实数k 的取值范围; 【答案】(1)1y = (2)(],4∞- 【解析】 【分析】(1)利用导数的几何意义直接求解即可;(2)分离变量可得()()()e 1ln x x k g x x++≤=,利用导数可求得()()e 4g x g ≥=,由此可得k 的取值范围. (1)()2211ln ln x xf x x x--'==-,()10f '∴=,又()11f =, ()f x ∴在1x =处的切线方程为1y =;(2)当e x ≥时,由()e k f x x ≥+得:()()()()e 1ln e x x k x f x x++≤+=,令()()()e 1ln x x g x x++=,则()2eln x xg x x -'=, 令()eln h x x x =-,则()ee1x h x xx-'=-=, ∴当e x ≥时,()0h x '≥,()h x ∴在[)e,+∞上单调递增,()()e e elne 0h x h ∴≥=-=,()0g x '∴≥,()g x ∴在[)e,+∞上单调递增,()()()2e 1ln e e 4eg x g +∴≥==, 4k ∴≤,即实数k 的取值范围为(],4∞-.【点睛】方法点睛:本题考查导数的几何意义、利用导数解决函数中的恒成立问题;解决恒成立问题的基本思路是采用分离变量的方式,将问题转化为变量与函数最值之间关系,即由()a f x ≥得()max a f x ≥;由()a f x ≤得()min a f x ≤.2.已知函数2()e 1x f x ax x =---. (1)当1a =-时,讨论()f x 的单调性;(2)当0x ≥时,321()22f x x ax ≥-恒成立,求实数a 的取值范围.【答案】(1)()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)274e a -≥【解析】 【分析】(1)直接求导,先确定导数的单调性及零点,即可确定()f x 的单调性;(2)当0x =时, a R ∈,当0x >时,参变分离得3211e 2xx x a x ++-≥,构造函数()h x 求导得()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再构造函数21e 12()x m x x x ---=确定()h x 单调性后,即可求出实数a 的取值范围.(1)当1a =-时,2()e 1x f x x x =+--,()e 21x f x x '=+-,易得()'f x 在R 上递增,又(0)0f '=,故当()0x ∈+∞,时,()0f x '>,()f x 单调递增;故当(),0x ∈-∞时,()0f x '<,()f x 单调递减, 所以()f x 在()0+∞,上单调递增,在()0-∞,上单调递减; (2)当0x =时,不等式321()22f x x ax ≥-恒成立,可得a R ∈;当0x >时,由2321e 122x ax x x ax ---≥-恒成立可得3211e 2xx x a x++-≥恒成立,设3211e 2()x x x h x x ++-=,则()4223333111e 222(2)1e e 22x x x h x x x x x x x x x x x⎛⎫⎛⎫+-⋅-⋅+'+=--+-- ⎪ ⎪⎝⎭⎭=⎝()()()33322211e 22e 1222x x x x x x x x x x x x⎛⎫ ⎪⎝⎭=⎛⎫-+-+-----⎪⎝⎭=-, 可设21e 12()x m x x x ---=,可得e 1()x x m x =--',设e 1,e 1()()x x k x k x x '-=--=,由0x >,可得()0k x '>恒成立,可得()k x 在()0+∞,递增,即()m x '在()0+∞,递增,所以()(0)0m x m ''>=,即()0m x '>恒成立,即()m x 在()0+∞,递增, 所以()(0)0m x m >=,再令()0h x '=,可得2x =,当02x <<时,()0h x '>,()h x 在()0,2上递增,当2x >时,()0h x '<,()h x 在()2,+∞递减,所以2max 7e ()(2)4h x h -==,所以274e a -≥;综上可得274e a -≥. 【点睛】本题关键点在于参变分离构造函数求导后,通过因式分解将导数变为()321e 2()21xx x h x x x ⎛⎫⎪⎝⎭'--=--,再把分子的因式构造成函数21e 12()x m x x x ---=,确定()(0)0m x m >=后,即得()h x '的正负,进而求解.3.已知函数()()e x f x x m =+⋅.(1)若()f x 在(],1-∞上是减函数,求实数m 的取值范围;(2)当0m =时,若对任意的0x ≥,不等式()2e x ax f x ⋅≤恒成立,求实数a 的取值范围. 【答案】(1)(],2-∞-(2)2e ,4⎛⎤-∞ ⎥⎝⎦【解析】 【分析】(1)求出导函数,得到11m --≥,即可求出m 的取值范围;(2)把题意转化为2xax e ≤,分类讨论:当0x =时,求出R a ∈;当0x >时,转化为2x e a x≤,令2()x e g x x =,利用导数求出min ()g x ,即可求出实数a 的取值范围. (1)因为()()e x f x x m =+⋅,所以()(1)e x f x x m '=++⋅,令()0f x '≤,得1x m ≤--,则()f x 的单调递减区间为(,1]m -∞--, 因为()f x 在(,1]-∞上是减函数,所以11m --≥,即2m ≤-, 故m 的取值范围是(],2-∞-; (2)由题知:()e x f x x =⋅,则22e 0,e x x x ax ∀≥⋅≤,即2e x ax ≤, 当0x =时,01≤恒成立,则a R ∈,当0x >时,2e x a x≤,令2(e )x g x x =,则2432e e e (2)()x x x x x x g x x x ⋅-⋅⋅-'==,则当02x <<时,()0g x '<,()g x 递减;当2x >时,()0g x '>,()g x 递增, 故2mine ()(2)4g x g ==,则2e 4a ≤,综上所述,实数a 的取值范围是2e ,4⎛⎤-∞ ⎥⎝⎦.4.已知函数()()e 11xf x b x a=+-+(1)当114a b ==-,时,求曲线()y f x =在点(0,f (0))处的切线方程; (2)当20e <≤a ,且2x >时,()()ln 1f x b a x ⎡>-⎣]恒成立,求b 的取值范围. 【答案】(1)25y x =+ (2)[1,)-+∞ 【解析】 【分析】(1)求出()'f x ,然后算出(0),(0)f f '即可;(2)由条件可得e (ln )1ln(1)xb x a x b x a +->-+-恒成立,构造函数()ln (1)h x x b x x =+>,则原不等式等价于e ()x h a(1)h x >-在(2,)x ∈+∞上恒成立,然后可证明2e 1e 10x x x x a --+≥-+>,然后得()h x 在()1,+∞上单调递增,然后即可求解. (1)当114a b ==-,时,()4e 21x f x x =-+,则()4e 2x f x '=- 又因为(0)5,(0)2f f '==所以曲线()y f x =在点(0,f (0))处的切线方程为25y x =+. (2)()()ln 1f x b a x ⎡>-⎣恒成立,即e 1ln(1)ln x bx x b x b a a +-+>-+恒成立.等价于e (ln )1ln(1)xb x a x b x a+->-+-恒成立.构造函数()ln (1)h x x b x x =+>,则e e ln 1ln(1)x x b x b x a a +>-+-在(2,)x ∈+∞上恒成立等价于e()x h a(1)h x >-在(2,)x ∈+∞上恒成立.因为20e <≤a ,所以2e e ,xx a-≥令函数2()e 1(2)x H x x x -=-+>,则2()e1x H x -'=-,显然()H x '是增函数,则()(2)0,()H x H H x ''>=在()2,+∞上单调递增,所以()()20H x H >=,故2e 1e 10xx x x a--+≥-+>,从而可得()h x 在()1,+∞上单调递增, 所以当()1,x ∈+∞时,()10b h x x'=+≥恒成立.所以b x ≥-,所以1b ≥-,即b 的取值范围是[-1,+∞) 【点睛】关键点睛:解答本题第二问的关键是将原不等式变形,构造出函数()ln (1)h x x b x x =+>,属于函数的同构类型,解答的关键是观察不等式的特点,变成同一函数在两个变量处的取值.练习二 存在性问题5.己知函数()2ln f x x ax x =+-.(1)当1a =时,求()f x 的单调区间.(2)存在1≥x ,使得()3112f x x ≥+成立,求整数a 的最小值. 【答案】(1)增区间为()0,∞+,无单减区间 (2)2 【解析】 【分析】(1)利用导数与函数的单调性之间的关系可求得结果; (2)由题意可知,存在1≥x ,使得2111ln 2x a x x x -≥++,构造函数()211ln 12x g x x x x +=+-,其中1≥x ,利用导数分析函数()g x 的单调性,求出()min g x 的取值范围,可求得整数a 的最小值. (1)解:当1a =时,()2ln f x x x x =+-,该函数的定义域为()0,∞+,则()121110f x x x'=+-≥=>,当且仅当2x =时,等号成立, 故函数()f x 的增区间为()0,∞+,无单减区间. (2)解:存在1≥x ,使得231ln 12x ax x x +-≥+成立,即2111ln 2xa x x x -≥++,令()211ln 12x g x x x x +=+-,其中1≥x ,则()min a g x ≥, ()323312ln 3112ln 322x x x x g x x x x-+--'=-+=,令()312ln 32h x x x x =-+-,则()3232324122x x h x x x x-+'=-+=,令()3324m x xx =-+,()2920m x x '=->对任意的1≥x 恒成立,故函数()m x 在[)1,+∞上为增函数,则()()15m x m ≥=, 即()0h x '>对任意的1≥x 恒成立,则函数()h x 为增函数. 因为34532ln 02162h ⎛⎫=-+< ⎪⎝⎭,()22ln 210h =->,所以存在3,22t ⎛⎫∈ ⎪⎝⎭,使得()()312ln 302h t g t t t t '==-+-=,当()1,x t ∈时,()0g x '<,此时函数()g x 单调递减, 当(),x t ∞∈+时,()0g x '>,此时函数()g x 单调递增, 所以,()()3333222min 111131ln 1322224224t t t t t t t t t g xg t t t t +-++++--+-====,3,22t ⎛⎫∈ ⎪⎝⎭, 设()2311422t t t t ϕ=+-,则()3233311324424t t t t t t ϕ-+'=-+=, 令()3324p t t t =-+,则()2920p t t '=->对任意的3,22t ⎛⎫∈ ⎪⎝⎭恒成立,故函数()p t 在3,22⎛⎫⎪⎝⎭上为增函数,则()302p t p ⎛⎫>> ⎪⎝⎭,即()0t ϕ'>对任意的3,22t ⎛⎫∈ ⎪⎝⎭恒成立,故函数()t ϕ在3,22⎛⎫⎪⎝⎭为增函数,故()()322t ϕϕϕ⎛⎫<< ⎪⎝⎭,即()8913728t ϕ<<,即()min 8913728g x <<, 因为a 为整数,所以整数a 的最小值为2. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.6.已知函数()321sin 1,,462f x x x x ππαα⎡⎤=-++∈-⎢⎥⎣⎦,(1)讨论函数()f x 的单调性;(2)证明:存在,62ππα⎡⎤∈-⎢⎥⎣⎦,使得不等式()e xf x > 有解(e 是自然对数的底).【答案】(1)讨论见解析 (2)证明见解析 【解析】 【分析】(1)对原函数求导后利用判别式对α 进行分类讨论即可;(2)理解“有解”的含义,构造函数将原不等式转化为求函数的最大值. (1)()f x 的定义域为R ,()232sin 14f x x x α'=-+, ()22332sin 44sin 44αα⎛⎫∆=--⨯=- ⎪⎝⎭ ,①当,32ππα⎛⎤∈ ⎥⎝⎦时,0∆> ,()0f x '=有两个不等实数根为:x =x ⎛∈-∞ ⎝⎭时,()0f x '>,()f x 单调递增,x ∈⎝⎭时, ()0f x '<,()f x 单调递减,x ⎫∈+∞⎪⎪⎝⎭时,()0f x '>,()f x 单调递增, ②当,63a ππ⎛⎤∈- ⎥⎝⎦时,0∆≤ ,()0f x '≥,所以()f x 在(),-∞+∞上单调递增; (2)不等式()e xf x > 等价于321sin 1e 14x x x x α-⎛⎫-++> ⎪⎝⎭,所以只需证321sin 1e 4xx x x α-⎛⎫-++ ⎪⎝⎭的最大值大于1,因为,62a ππ⎡⎤∈-⎢⎥⎣⎦,11sin 2α-≤-≤,又[)20,x ∈+∞,所以221sin 2x x α-≤,6πα=-时等号成立, 所以3232111sin 1e 1e 442x x x x x x x x α--⎛⎫⎛⎫-++≤+++ ⎪ ⎪⎝⎭⎝⎭, 设函数()32111e 42x g x x x x -⎛⎫=+++ ⎪⎝⎭ ,()()211e 4x g x x x -'=-- , (),1x ∈-∞,()0g x '≥,()g x 单调递增,()1,x ∈+∞,()0g x '<,()g x 单调递减,因为()1111 2.754211e eg +++==> ,所以存在,62a ππ⎡⎤∈-⎢⎥⎣⎦,使不等式()e x f x > 有解. 【点睛】对于第二问使用函数的缩放法是核心, 对原函数321sin 1e 4x x x x α-⎛⎫-++ ⎪⎝⎭由于α的不确定性使得求其最大值很困难, “化繁为简”,“化难为易”的数学思想就显得特别重要,通过本题的计算应该能够体会到这种数学思想,在以后的数学计算中遇到很复杂的计算应该首先考虑这种数学思想.7.已知函数()(1)e 1x f x x ax =---.(1)当0a >时,证明函数()f x 在区间(0,)+∞上只有一个零点;(2)若存在x ∈R ,使不等式()e 1f x <--成立,求a 的取值范围.【答案】(1)证明见解析(2){0|a a <或}e a >【解析】【分析】(1)首先求得导函数的解析式,然后讨论函数的单调性,结合函数的性质即可确定函数零点的个数;(2)首先讨论函数的单调性,然后结合函数的最小值构造新函数,结合构造函数的性质分类讨论即可确定a 的取值范围.(1)证明:当0a >时,()()e ,0,x f x x a x ∞'=-∈+,令()()()(),1e 0x g x f x g x x =+''=>,∴()e x f x x a '=-在(0,)+∞上为增函数,∵()()00,e 0a f a f a a a ''=-<=->,∴()00,x a ∃∈,使()000e 0x f x x a '=-=, ∴当()00,x x ∈时,()0f x '<;当0(,)x x ∈+∞时,0f x ,因此,()f x 在()00,x 上为减函数,()f x 在 0(,)x +∞上为增函数,当()00,x x ∈时,()()020f x f <=-<,当x >时,()()()211120f x x x ax x ax >-+--=-->, 故函数f(x)在(0,)+∞上只有一个零点.(2)解:当0a >时,()e ,x f x x a '=-,由(1)可知,()00f x '=,即00e x a x =, ∴当0x x <时,()0f x '<,()f x 在0(,)x -∞上为减函数,当0x x >时,0f x,()f x 在 0(,)x +∞上为增函数, ∴()()()()()0000220000000min 1e 11e e 11e 1x x x x f x f x x ax x x x x ==---=---=-+--, 由00e x a x =,知00x >, 设()()()21e 10x h x x x x =-+-->,则()()()2e 00x h x x x x '=--<>,∴()h x 在(0,)+∞上为减函数,又()1e 1h =--,∴当001x <<时,()0e 1f x >--,当01x >时,()0e 1f x <--,∴存在0x R ∈,使不等式()01f x e <--成立,此时00e e x a x =>;当0a =时,由(1)知,()f x 在(,0)∞-上为减函数,()f x 在(0,)∞+上为增函数,所以()()02e 1f x f ≥=->--,所以不存在x ∈R ,使不等式 ()e 1f x <--成立,当0a <时,取e 10x a+<<,即e 1ax -<--,所以()1e 1e 1x x ax ---<--, 所以存在x ∈R ,使不等式 ()1f x e <--成立,综上所述,a 的取值范围是{0|a a <或}e a >.【点睛】方法点睛:在解决能成立问题时一般是将不等式能成立问题转化为求函数的最值问题,利用()f x m >能成立max ()f x m ⇔>;()f x m <能成立min ()f x m ⇔<.8.已知函数()()e R x f x ax a =-∈,()ln x g x x=. (1)当1a =时,求函数()f x 的极值;(2)若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立,求实数a 的取值范围.【答案】(1)函数()f x 在(),0∞-上递增,在()0,∞+上递减,极大值为1-,无极小值 (2)12ea ≤ 【解析】【分析】(1)求出函数的导函数,再根据导数的符号求得单调区间,再根据极值的定义即可得解;(2)若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立,问题转化为()2maxln ,0x a x x ⎛⎫≤> ⎪⎝⎭,令()2ln x h x x =,0x >,利用导数求出函数的最大值即可得出答案.(1)解:当1a =时,()e x f x x =-,则()'1e x f x =-,当0x <时,()0f x '>,当0x >时,()0f x '<,所以函数()f x 在(),0∞-上递增,在()0,∞+上递减,所以函数()f x 的极大值为()01f =-,无极小值;(2)解:若存在()0,x ∈+∞,使不等式()()e x f x g x ≤-成立, 则()ln ,0x ax x x ≤>,即()2ln ,0x a x x≤>, 则问题转化为()2max ln ,0x a x x ⎛⎫≤>⎪⎝⎭,令()2ln x h x x =,0x >, ()432ln 12ln x x x x h x x x --'==,当0x <<()0h x '>,当x >()0h x '<,所以函数()h x 在(递增,在)+∞上递减, 所以()max 12e h x =, 所以12e a ≤.。
(完整版)导数与恒成立、能成立问题及课后练习(含答案),推荐文档
导数与恒成立、能成立问题专题一、基础理论回顾1、恒成立问题的转化: a >f (x)恒成立⇒a >f (x)2、能成立问题的转化: a >f (x)能成立⇒a >f (x) ; a ≤f (x)恒成立⇒a ≤f (x) ; a ≤f (x)能成立⇒a ≤f (x)minmax3、恰成立问题的转化: a >f (x)在 M 上恰成立⇔a >f (x)的解集为 M ⇔⎨⎪a >f (x)在上M恒成立⎩a ≤f (x)在上C R恒M成立另一转化方法:若x ∈D, f (x) ≥A 在D 上恰成立,等价于f (x) 在D 上的最小值f min (x) =A ,若x ∈D, f (x) ≤B 在 D 上恰成立,则等价于 f (x) 在 D 上的最大值 f max (x) =B .4、设函数f (x)、g(x),对任意的x1∈[a , b],存在x2∈[c , d ],使得f (x1)≥g(x2),则f min (x)≥g min (x)5、设函数f (x)、g(x),对任意的x1∈[a , b],存在x2∈[c , d ],使得f (x1)≤g(x2),则f max(x)≤g max(x)6、设函数 f (x)、 g(x),存在 x1∈[a , b],存在 x2∈[c , d ],使得 f (x1)≥g(x2),则f max(x)≥ g min(x)7、设函数 f (x)、 g(x),存在 x1∈[a , b],存在 x2∈[c , d ],使得 f (x1)≤g(x2),则f min(x)≤ g max(x)8、若不等式 f (x)>g (x)在区间 D 上恒成立,等价于在区间 D 上函数 y = 象上方;9、若不等式 f (x)<g (x)在区间 D 上恒成立,等价于在区间 D 上函数 y = 象下方;f (x)和图象在函数y =g (x)图f (x)和图象在函数y =g (x)图max min> 0 4 与题型一、简单型二、经典题型解析例 1、已知函数 f (x ) = x 2 - 2ax + 1, g (x ) = a,其中 a > 0 , x ≠ 0 .x1)对任意 x ∈[1,2] ,都有 f (x ) > g (x ) 恒成立,求实数 a 的取值范围;(构造新函数) 2)对任意 x 1 ∈[1,2], x 2 ∈[2,4],都有 f (x 1 ) > g (x 2 ) 恒成立,求实数 a 的取值范围;(转化)x 2 - 2ax + 1 - a > 0 ⇒ a < x 3 + x (x ) = x 3+ x简解:(1)由 x 3 + x x 2x 2 + 1 成立,只需满足 ' 2x 4 + x 2 + 1 2x 2 + 1 的最小值大于 a 即可.对(x ) = 2x 2 + 1 求导, (x ) = (2x 2 + 1)2 ,故(x ) 在 x ∈[1,2] 是增函数, min(x ) = (1) = 23 ,所以 a的取值范围是 0 < a < 2 3 . a 例 2、设函数 h (x ) x x b ,对任意 a ∈[ 1 ,2] 2 ,都有 h (x ) ≤ 10 在 x ∈[ 1,1] 4 恒成立,求实数b 的范围.分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最 值解决.方法 1:化归最值,h (x ) ≤ 10 ⇔ h max (x ) ≤ 10 ;b ≤ 10 - ( a + x )方法 2:变量分离, x 或a ≤ -x 2 + (10 - b )x ;(a ) = 1 ⋅ a + x + b - 10 ≤ 0 a ∈[ 1 ,2]方法 3:变更主元(新函数, x ,2 h '(x ) = 1- a= 简解:方法 1:对h (x ) = a + x + b 求导, x 2x 1 1 x 2 ,(单调函数)由此可知, h (x ) [ ,1] 在 4 h ( 上的最大值为 ) h (1) 中的较大者. ⎧ 1 ⎧ 1 ⎧ 39∴⎪h (4) ≤ 10 ⇒ ⎪4a + 4+ b ≤ 10 ⇒ ⎪b ≤ 4 - 4a 1 7 ⎨ ⎩h (1) ≤ 10 ⎨ ⎩1 + a + b ≤ 10 f (x ) = x 2 ⎨ ⎩b ≤ 9 - a ,对于任意g (x ) =⎛ 1 ⎫ xa ∈[ 2 ,2]b ≤,得b 的取值范围是4 .2 ⎪ - m x ∈ [0,2] x ∈ [1,2] f (x ) ≥ g (x )例 3、已知两函数 ,⎝ ⎭ ,对任意 1 ,存在 2 ,使得 1 2 ,(x - a )(x + a )3 m ≥1则实数m 的取值范围为答案:4题型二、更换主元和换元法例 1、已知函数f (x) = ln(e x +a )(a为常数)是实数集R 上的奇函数,函数g (x)= f (x) + sin x 是区间[-1,1]上的减函数,(Ⅰ) a g(x) ≤t 2+t+ 1在x ∈[-1,1]t求的值;(Ⅱ)若上恒成立,求的取值范围;(Ⅱ)分析:在不等式中出现了两个字母:及t ,关键在于该把哪个字母看成是一个变量,另一个作为常数。
高考数学-导数专题 恒成立、能成立问题专题
高三数学-导数专题 恒成立、能成立问题专题 基础理论回顾1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()af x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()af x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥ 5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤ 6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方; 9、若不等式()()f x g x <在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;导数专题 恒成立、能成立问题专题 经典题型题型一、简单型 例1、已知函数12)(2+-=ax x x f ,xa x g =)(,其中0>a ,0≠x .1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)例2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围. 例3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m的取值范围为题型二、更换主元和换元法例1、已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数,(Ⅰ)求a 的值;(Ⅱ)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围;例2、已知二次函数1)(2++=x ax x f 对[]2,0∈x 恒有0)(>x f ,求a 的取值范围。
数学-22年高考导数压轴题单变量与双变量不等式恒成立、能成立问题
2022年高考导数压轴题单变量与双变量不等式恒成立、能成立问题【原件版】一、单变量不等式恒成立、能成立问题题型一 证明不等式成立1、已知函数()xf x e ax =+.(a R ∈)(1)若0a <,求函数()f x 的单调区间;(2)若3a =,证明:当0x >时,()231f x x x >++恒成立.2、已知()ln 1f x x x =+,2()1g x x mx =-+-.(1)对一切实数()0,x ∈+∞,2()()f x g x ≥,求实数m 的取值范围; (2)求证:任意()0,x ∈+∞,12ln x x e ex>-.3、已知函数()xe f x x=.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-.4、已知函数1()ln ()f x a x a R x=+∈. (1)讨论函数()f x 在区间[1,2]上的最小值;(2)当1a =时,求证:对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.题型2 根据恒(能)成立求参数范围 类型1 根据恒成立求参数范围 1、已知函数2()(21)ln f x ax a x x =-++. (1)当1a =时,求()f x 的单调区间与极值; (2)若()0f x <恒成立,求a 的取值范围.2、已知函数()()()e e 0xf x a x a =-≠.(1)讨论()f x 的单调性:(2)若()1f x x >+对[)2,x ∈+∞恒成立,求a 的取值范围.3、已知()2sin xf x e x x =-+,()3122sin 3g x x x x m =-++.(1)求()f x 的单调区间;(2)若0x ≥时,()()f x g x ≥恒成立,求m 的取值范围.4、已知函数()axf x e x =-.(1)若曲线()y f x =在点()()0,0f 处切线的斜率为1,求()f x 的单调区间;(2)若不等式()2ln ax f x e x ax ≥-对(]0,x e ∈恒成立,求a 的取值范围.5、已知函数1()ln f x a x x =-,()a g x x x=+,其中a ∈R . (1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()()g x f x >对于任意的[1,e]x ∈恒成立,求实数a 的取值范围.类型2 根据能成立求参数范围 1、已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围.2、已知函数22()ln f x ax x bx c =--在1x =处取得极值3c -,其中,,a b c 为常数. (1)试确定,a b 的值;(2)讨论函数()f x 的单调区间;(3)若对任意0x >,不等式2()2f x c ≥有解,求c 的取值范围.3、已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.4、已知函数()()()2122ln 2f x x a x a x a =-++∈R . (1)若曲线()y f x =在点()()1,1f 处的切线方程为2y x b =+,求2+a b 的值; (2)若0a >,讨论函数()f x 的单调性;(3)设函数()()2g x a x =-+,若至少存在一个[]0,4x e ∈,使得()()00f x g x >成立,求实数a 的取值范围.5、已知函数()ln bf x x a x x=-+,a ,b ∈R . (1)若a >0,b >0,且1是函数()f x 的极值点,求12a b+的最小值; (2)若b =a +1,且存在0x ∈[1e,1],使0()0f x <成立,求实数a 的取值范围.6、已知函数1()ln f x a x x=+(a R ∈且0a ≠). (1)若1a =,求函数()f x 的极值;(2)若存在(]00,x e ∈,使得()00f x <成立,求实数a 的取值范围.二、双变量不等式恒成立、能成立问题1、已知曲线()()3,f x ax bx a b =+∈R 在点()()1,1f 处的切线方程是20y +=.(1)求()f x 的解析式;(2)若对任意[]12,2,3x x ∈-,都有()()12f x f x m -,求实数m 的取值范围.2、已知函数1()ln ,()2xf x x xg x m ⎛⎫=+=- ⎪⎝⎭, (1)先证明单调性,再求函数()f x 在[]1,2上的最小值;(2)若对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,求实数m 的取值范围.3、已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x 都成立,求实数a 的取值范围.4、已知函数2()(2)ln ()f x a x ax x a R =++-∈. (Ⅰ)当0a =时,求证:2()22x f x x >-. (Ⅱ)设232()3g x x x =-,若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x 成立,求实数a 的取值范围.5、已知函数21()(1)ln 2f x x a x a x =-++. (1)求函数()f x 的单调递增区间;(2)任取[3,5]a ∈,函数()f x 对任意1212,[1,3]()x x x x ∈≠,恒有1212|()()|||f x f x x x λ-<-成立,求实数λ的取值范围.6、设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.7、已知函数f (x )=x -1-a ln x (a <0). (1)讨论函数f (x )的单调性; (2)当0<x 1<x 2≤1时,都有f (x 1)−f(x 2)x 1−x 2<4x1x 2,求实数a 的取值范围.8、已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围.9、已知函数()13ln 144f x x x x=-+- (1)求函数()f x 的单调区间; (2)设()224gx x bx =-+-,若对任意()[]120,2,1,2x x ∈∈,不等式()()12f x g x ≥恒成立,求实数b的取值范围.10、已知函数321()1()32x a f x x ax a R +=-++∈. (1)若3x =是函数()f x 的一个极值点,求a 的值; (2)当2a <时,1x ∀,2[0x ∈,2],122|()()|3f x f x -恒成立,求a 的取值范围.11、已知函数2()3()f x lnx ax x a R =+-∈.(1)若函数()f x 在点(1,f (1))处的切线方程为2()y bx b R =-∈,求a ,b 的值及()f x 的极值; (2)若1a =,对1x ∀,2[1x ∈,2],当12x x <时,不等式1221()()m mf x f x x x ->-恒成立,求实数m 的取值范围.2022年高考导数压轴题单变量与双变量不等式恒成立、能成立问题【详细解析版】一、单变量不等式恒成立、能成立问题题型一 证明不等式成立1、已知函数()xf x e ax =+.(a R ∈)(1)若0a <,求函数()f x 的单调区间;(2)若3a =,证明:当0x >时,()231f x x x >++恒成立.【答案】(1)在()(),ln a -∞-上单调递减,在()()ln ,a -+∞上单调递增;(2)证明见解析.【分析】(1)求导可得()'f x 解析式,令()0f x '=,解得ln()x a =-,分别讨论()(),ln x a ∈-∞-和()()ln ,a -+∞时,()'f x 的正负,可得()f x 的单调区间.(2)令()22()(+3+1)=e 1x g x f x x x x =---,可得()2x g x e x '=-,再令()e 2x h x x =-,利用导数求得()h x 的单调区间和最值,即可得()0g x '>恒成立,可得()g x 的单调性和最值,得证.【解析】(1)()xf x e a '=+,当0a <时,令()0f x '=,解得ln()x a =-. 当x 变化时,()f x ',()f x 的变化情况如下表:所以0a <时,f x ,ln a -∞-ln ,a -+∞.(2)证明:令()22()(+3+1)=e 1x g x f x x x x =---,则()2xg x e x '=-.令()e 2xh x x =-,则()2x h x e '=-,当0ln2x <<时,()0h x '<,()h x 单调递减, 当ln2x >时,()0h x '>,()h x 单调递增;所以()()ln2ln2e 2ln222ln20h x h ≥=-=->,即()0g x '>恒成立.所以()g x 在()0,∞+上单调递增,所以()()01010g x g >=--=,所以2e 10x x -->,即当0x >时,()231f x x x >++恒成立.3、已知函数()xe f x x=.(1)函数()()f xg x x=,求()g x 的单调区间和极值. (2)求证:对于()0,x ∀∈+∞,总有()13ln 44f x x >-.【答案】(1)()g x 在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;极小值()2e 24g =,无极大值;(2)证明见解析.【分析】(1)写出()g x 的函数表达式,通过求导写出单调区间和极值即可(2)证明()13ln 44f x x >-恒成立,结合(1)得,等价于2e 1(ln 3)4x x x x>-恒成立,且已知左式的最小值,只要大于右式的最大值,则不等式恒成立【解析】(1)2243e e 2e e (2)()()x x x x x x x g x g x x x x --'=⇒==,当02x <<时,()0g x '<;当0x <或2x >时,()0g x '>,()g x ∴在(0,2)上单调递减,在(,0)-∞和(2,)+∞上单调递增;故()g x 有一个极小值2e (2)4g =,无极大值. (2)证明:要证13()ln 44f x x >-成立,只需证e 13ln 44x x x >-成立,即证2e 1(ln 3)4x x x x>-成立,令1()(ln 3)4h x x x =-,则24ln ()=4xh x x -', 当40e x <<时,()0h x '>;当4e x >时,()0h x '<, ()h x ∴在()40,e 上单调递增,在()4e ,+∞上单调递减, ()4max 41()e 4e h x h ==∴, 2e ()x g x x =∵由(1)可知2min e ()(2)4g x g ==,min max ()()g x h x >∴,()()g x h x >∴,13()ln 44f x x >-∴.4、已知函数1()ln ()f x a x a R x=+∈. (1)讨论函数()f x 在区间[1,2]上的最小值;(2)当1a =时,求证:对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.【解析】(1)函数1()ln =+f x a x x的定义域是(0,)+∞, 2211()a ax f x x x x-'=-=. 当0a 时,2110,0ax ax x --<<,则()0f x '<,则函数()f x 在(0,)+∞上单调递减,即函数()f x 在区间[1,2]上单调递减,故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+. 当0a >时,令()0f x '<,得10x a <<;令()0f x '>,得1x a>;故函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递减,在1,a ⎛⎫+∞ ⎪⎝⎭上单调递增.当11a,即1a 时,函数()f x 在区间[1,2]上单调递增, 故函数()f x 在区间[1,2]上的最小值为(1)1f =;当12a,即102a <时,函数()f x 在区间[1,2]上单调递减,故函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+;当112a <<,即112a <<时,函数()f x 在11,a ⎡⎫⎪⎢⎣⎭上单调递减,在1,2a ⎛⎤ ⎥⎝⎦上单调递增,此时函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭. 综上,当12a时,函数()f x 在区间[1,2]上的最小值为1(2)ln 22f a =+; 当112a <<时,函数()f x 在区间[1,2]上的最小值为11ln f a a a a ⎛⎫=+ ⎪⎝⎭;当1a 时,函数()f x 在区间[1,2]上的最小值为(1)1f =.(2)当1a =时,1()ln f x x x=+, 要证cos ()x e x f x x +<,即证1cos ln x e xx x x++<,因为0x >,所以两边同时乘x ,得ln 1cos x x x e x +<+, 即证ln cos 1x x x e x <+-.当01x <时,ln 0x x ,而cos 11cos11cos10x e x +->+-=>,所以ln cos 1xx x e x <+-成立,即cos ()x e xf x x+<成立.当1x >时,令()cos ln 1(1)xh x e x x x x =+-->,则()sin ln 1xh x e x x '=---.设()sin ln 1(1)xg x e x x x =--->,,则因为1()cos xg x e x x'=--. 因为1x >,所以1()cos 110xg x e x e x'=-->-->, 所以当1x >时,()g x 单调递增,所以()sin110g x e >-->,即()0h x '>,所以()h x 在(1,)+∞上单调递增,所以()cos110h x e >+->,即cos ()x e xf x x +<成立.综上,对任意(0,)x ∈+∞,恒有cos ()x e xf x x+<成立.题型2 根据恒(能)成立求参数范围 类型1 根据恒成立求参数范围 1、已知函数2()(21)ln f x ax a x x =-++. (1)当1a =时,求()f x 的单调区间与极值; (2)若()0f x <恒成立,求a 的取值范围.【答案】(1)单调递增区间为10,2⎛⎫ ⎪⎝⎭,(1,)+∞,单调递减区间为1,12⎛⎫⎪⎝⎭,极大值15ln 224f ⎛⎫=-- ⎪⎝⎭,极小值(1)2f =-(2)(1,0]-【分析】(1)由题可求导函数,利用导数求出函数的单调区间,进而再求出极值即可;(2)分情况讨论,利用导数研究函数的单调性和极值即可求解.【解析】(1)当1a =时,函数2()3ln =-+f x x x x ,定义域为(0,)+∞,()21231(21)(1)23x x x x f x x x x x-+--'=-+==. 当()0f x '>时,102x <<或1x >;当()0f x '<时,112x <<,所以函数()f x 的单调递增区间为10,2⎛⎫ ⎪⎝⎭,(1,)+∞,单调递减区间为1,12⎛⎫⎪⎝⎭,所以当12x =时,函数()f x 取得极大值15ln 224f ⎛⎫=-- ⎪⎝⎭,当1x =时,函数()f x 取得极小值(1)2f =-. (2)()1(21)(1)2(21)ax x f x ax a x x--'=-++=. ①当0a >时,2()(21)ln f x ax a x x =-++,(0,)x ∈+∞, 令2(21)0ax a x -+>,解得12x a>+,则当01(2,)x a∈++∞时,200(21)0ax a x -+>,且0ln ln 20x >>,所以函数2()(21)ln 0f x ax a x x =-++>恒成立,不符合题意,舍去;②当0a ≤时,令()0f x '>,解得01x <<;令()0f x '<,解得1x >, 则函数()f x 在(0,1)上为增函数,在(1,)+∞上为减函数, 所以函数()f x 在1x =处取得极大值,也是最大值,要使得()0f x <恒成立,则只需(1)(21)0f a a =-+<,解得1a >-,故10a -<≤. 综上,a 的取值范围是(1,0]-.2、已知函数()()()e e 0xf x a x a =-≠.(1)讨论()f x 的单调性:(2)若()1f x x >+对[)2,x ∈+∞恒成立,求a 的取值范围. 【答案】(1)答案不唯一,具体见解析(2)23,e 2e ⎛⎫+∞ ⎪-⎝⎭【分析】(1)求导得()()e e xf x a '=-,在分0a >,0a <两种情况讨论求解即可;(2)根据题意将问题转化为1e e x x a x+>-对[)2,x ∈+∞恒成立,进而构造函数,求解函数最值即可. 【解析】(1)函数的定义域为R ,()()e e xf x a '=-.当0a >时,令()0f x '>,得1x >,令()0f x '<,得1x <; 当0a <时,令()0f x '>,得1x <,令()0f x '<,得1x >.综上,当0a >时,()f x 在(),1-∞上单调递减,在()1,+∞上单调递增; 当0a <时,()f x 在(),1-∞上单调递增,在()1,+∞上单调递减.(2)由(1)知,函数()e e xg x x =-在[)2,+∞上单调递增,则()()()2e e 20g x g ≥=->,所以()1f x x >+对[)2,x ∈+∞恒成立等价于1e e x x a x+>-对[)2,x ∈+∞恒成立. 设函数()()12e e x x h x x x +=≥-,则()()2e e e e xx x h x x -=-', 设()()e e 2x p x x x =-≥,则()()1e 0xp x x =-+<',则()p x 在[)2,+∞上单调递减, 所以()()22e 2e 0p x p ≤=-<,则()0h x '<,所以()h x 在[)2,+∞上单调递减, 所以()()2max 32e 2eh x h ==-; 故23e 2e a >-,即a 的取值范围是23,e 2e ⎛⎫+∞ ⎪-⎝⎭.3、已知()2sin xf x e x x =-+,()3122sin 3g x x x x m =-++.(1)求()f x 的单调区间;(2)若0x ≥时,()()f x g x ≥恒成立,求m 的取值范围. 【答案】(1)在(,0)-∞单调递减,在(0,)+∞单调递增.(2)m ≤1【分析】(1)先对函数进行求导,再进行分类讨论判断导数值的正负,即可得到答案;(2)将问题转化为31sin 3x m e x x --在0x 恒成立,令31()sin (0)3x u x e x x x =--,再利用(1)的结论进行求解,即可得到答案;【解析】(1)()2sin x f x e x x =-+,∴()2cos x f x e x '=-+,①当0x 时,2(2,1],1cos 1x e x -∈---,∴2cos 0x e x -+在0x 恒成立,∴()0f x ',∴()f x 在(,0)-∞单调递减,②当0x >时,令()2cos x g x e x =-+,则()sin 0x g x e x '=->在0x >恒成立,∴()g x 在(0,)+∞单调递增,且(0)0g =,∴()0>g x 在(0,)+∞恒成立,即()0f x '>在(0,)+∞恒成立,∴()f x 在(0,)+∞单调递增,综上所述:()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.(2)当0x 时,312sin 22sin 3xe x xx x x m -+-++ 31sin 3x m e x x ∴--在0x 恒成立,令31()sin (0)3x u x e x x x =--,2()cos x x u x e x '=--,令2()cos (0)x v x e x x x =--,由(1)得()()2sin '01xv x e x x v ='-+=,()v x ∴在(0,)+∞单调递增,且(0)0v =,()0u x '∴在0x ≥恒成立,()u x ∴在[0,)+∞单调递增,(0)1u =,∴min ()(0)1m u x u ≤==.4、已知函数()axf x e x =-.(1)若曲线()y f x =在点()()0,0f 处切线的斜率为1,求()f x 的单调区间; (2)若不等式()2ln axf x e x ax ≥-对(]0,x e ∈恒成立,求a 的取值范围.【答案】(1)单调递减区间为ln 2,2⎛⎫-∞-⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭;(2)1,e ⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)由题设()1axf x ae '=-,根据导数的几何意义有()01f '=,可求a ,即()221xf x e'=-,进而可求()f x 的单调区间;(2)由题意,函数不等式恒成立可转化为(]0,x e ∈上ln 1ln 1ax ax xe e x --≥恒成立, 构造函数()ln 1x g x x -=,应用导数研究其单调性可得ln xa x ≥在(]0,x e ∈上恒成立, 即在(]0,x e ∈上max ln ()xa x≥即可求a 的取值范围. 【解析】(1)()1axf x ae '=-,则()011f a '=-=,即2a =.所以()221xf x e '=-,令0fx ,得ln 22x =-. 当ln 22x <-时,0f x ;当ln 22x >-时,0f x .故()f x 的单调递减区间为ln 2,2⎛⎫-∞-⎪⎝⎭,单调递增区间为ln 2,2⎛⎫-+∞ ⎪⎝⎭. (2)由()2ln axf x e x ax ≥-,即()2ln 1axax x ex -≥-,有1ln 1ax a x e x x --≥,故仅需ln 1ln 1ax axxe e x --≥即可. 设函数()ln 1x g x x -=,则ln 1ln 1ax axxe e x --≥等价于()()axg e g x ≥. 因为()22ln x g x x-'=, 所以当(]0,x e ∈时,0g x,则()g x 在(]0,e 上单调递增, 所以当(]0,x e ∈时,()()axg e g x ≥等价于当(]0,x e ∈时,()()ax g e g x ≥,ax e x ≥,即ln xa x≥恒成立. 设函数()ln x h x x =,(]0,x e ∈,则()21ln 0xh x x -'=≥, 即()h x 在(]0,x e ∈递增,所以()()max 1h x h e e==,则1a e ≥即可,所以a 的取值范围为1,e ⎡⎫+∞⎪⎢⎣⎭.5、已知函数1()ln f x a x x =-,()a g x x x=+,其中a ∈R . (1)若1a =,求曲线()y f x =在点(1,(1))f 处的切线方程;(2)若()()g x f x >对于任意的[1,e]x ∈恒成立,求实数a 的取值范围.【答案】(1)230x y --=;(2)2e 12e 1a +-<<-.【分析】(1)求导,利用导数的几何意义求出切线斜率,进而可得切线方程;(2)将不等式1ln a x a x x x+>-对于任意的[1,e]x ∈恒成立转化为任意的[1,e]x ∈, 1ln 0a x a x x+-+>恒成立,设1()ln a h x x a x x +=-+,[1,e]x ∈,求导,分11a +≤,1e a +≥,11e a <+<讨论,通过求min ()0h x >求实数a 的取值范围.【解析】(1)由题意知:1()ln f x x x=-,(1)1f =-,即切点为(1,1)-, ()211f x x x '=+,()12f '=, 故切线方程为:12(1)y x +=-,即230x y --=. (2)由题意知:不等式1ln a x a x x x+>-对于任意的[1,e]x ∈恒成立, 任意的[1,e]x ∈,1ln 0a x a x x+-+>恒成立, 设1()ln a h x x a x x+=-+,[1,e]x ∈, 2(1)(1)()x x a h x x +--'=,[1,e]x ∈①当11a +≤,即0a ≤时,()0h x '≥,()h x 为增函数, min ()(1)20h x h a ∴==+>,即2a >-,20a -<≤满足.②当1e a +≥,即e 1a ≥-时,()0h x '≤,()h x 为减函数,min1()(e)e e 0a h x h a +∴==-+>,即22e 1e 1a +<-,2e 1e 1e 1a +∴-≤<-满足③当11e a <+<时,即0e 1a <<-时,当[1,1]x a ∈+时,()0h x '≤,当(1,e]x a ∈+时,()0h x '≥,∴只需min ()(1)2ln(1)0h x h a a a a =+=+-+>,即min 2()ln(1)10h x a a a ⎡⎤=-++>⎢⎥⎣⎦,设2()ln(1)1F a a a=-++,其中0e 1a <<-, 2()ln(1)1F a a a =-++为递减函数,2()(e 1)0e 1F a F ∴>-=>-, 故0e 1a <<-,min ()(1)2ln(1)0h x h a a a a =+=+-+>,综上:2e 12e 1a +-<<-.类型2 根据能成立求参数范围 1、已知函数()ln f x x a x =-,()1(0)ag x a x+=->. (1)若1a =,求函数()f x 的极值;(2)设函数()()()h x f x g x =-,求函数()h x 的单调区间;(3)若存在[]01x e ∈,,使得()()00f x g x <成立,求a 的取值范围. 【答案】(1)极小值为1,无极大值(2)单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)21,1e e ⎛⎫++∞ ⎪-⎝⎭【分析】(1)研究()ln f x x x =-的单调区间,进而求出()f x 的极值;(2)先求()h x ',再解不等式()0h x '>与()0h x '<,求出单调区间,注意题干中的0a >的条件;(3)先把题干中的问题转化为在[]1x e ∈,上有()min 0h x <,再结合第二问研究的()h x 的单调区间,对a 进行分类讨论,求出不同范围下的()min h x ,求出最后结果【解析】(1)当1a =时,()ln f x x x =-,定义域为()0,∞+,()111x f x x x-'=-= 令()0f x '=得:1x =,当1x >时,()0f x '>,()f x 单调递增; 当01x <<时,()0f x '<,()f x 单调递减,故1x =是函数()f x 的极小值点,()f x 的极小值为()11f =,无极大值 (2)()()()()1ln 0ah x f x g x x a x a x+=-=-+>,定义域为()0,∞+ ()()()222211111x x a a a x ax a h x x x x x+--+---'=--== 因为0a >,所以10a +>,令()0h x '>得:1x a >+,令()0h x '<得:01x a <<+, 所以()h x 在()1,a ++∞单调递增,在()0,1a +单调递减.综上:()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +.(3)存在[]01x e ∈,,使得()()00f x g x <成立, 等价于存在[]01x e ∈,,使得()00h x <,即在[]1x e ∈,上有()min 0h x < 由(2)知,()h x 单调递增区间为()1,a ++∞,单调递减区间为()0,1a +,所以当1a e +≥,即1a e ≥-时,()h x 在[]1x e ∈,上单调递减,故()h x 在x e =处取得最小值, 由()()min10a h x h e e a e +==-+<得:211e a >e +-,因为2111e e e +>--,故211e a >e +-. 当11a e <+<,即01a e <<-时,由(2)知:()h x 在()1,1x a ∈+上单调递减,在()1,x a e ∈+上单调递增,()h x 在[]1x e ∈,上的最小值为()()12ln 1h a a a a +=+-+ 因为()0ln 11a <+<,所以()0ln 1a a a <+<,则()2ln 12a a a +-+>,即()12h a +>,不满足题意,舍去综上所述:a 的取值范围为21,1e e ⎛⎫++∞⎪-⎝⎭2、已知函数22()ln f x ax x bx c =--在1x =处取得极值3c -,其中,,a b c 为常数. (1)试确定,a b 的值;(2)讨论函数()f x 的单调区间;(3)若对任意0x >,不等式2()2f x c ≥有解,求c 的取值范围.【答案】(1)6a =-;3b =-;(2)单调递增区间为()0,1,()f x 的单调递减区间为()1,+∞;(3)3,12⎡⎤-⎢⎥⎣⎦【分析】(1)由()13f c =-,求得b ,由()10f '=,得a ;(2)将(1)中得到的,a b 的值代入函数表达式,进而得到()12ln f x x x '=-.判定导数的正负区间,进而得到单调区间;(3)由(2)知,得到函数()f x 最大值,根据不等式有解得到c 的不等式求解即得.【解析】(1)由题意知()13f c =-,因此3b c c --=-,从而3b =-.由题意求导得()10f '=,因此20a b -=,解得6a =-; (2)由(1)知()12ln f x x x '=-.令()0f x '=,解得1x =.因此()f x ()1,+∞; (3)由(2)知,()f x 在1x =处取得极大值()13f c =-,此极大值也是最最值.要使()22f x c ≥(0x >)有解,只需232c c -≥.即2230c c +-≤,从而()()2310c c +-≤.解得312c -≤≤. 所以c 的取值范围为3,12⎡⎤-⎢⎥⎣⎦.3、已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.【答案】(1)极小值()00f =,无极大值;(2)e 2a ≥-.【分析】(1)利用导数求得()f x 的单调区间,由此求得()f x 的极值.(2)将()2f x x ≤转化为2e 10x x ax ---≤,采用分离常数法,通过构造函数,结合导数求得a 的取值范围.【解析】(1)当1a =时,()e 1x f x x =--,所以()e 1xf x '=-,当0x <时()0f x '<;当0x >时()0f x '>,所以()f x 在(),0-∞上单调递减,在()0,∞+上单调递增, 所以当0x =时函数()f x 有极小值()00f =,无极大值.(2)因为()2f x x ≤在[)0,+∞上有解,所以2e 10x x ax ---≤在[)0,+∞上有解, 当0x =时,不等式成立,此时R a ∈, 当0x >时e 1x a x x x ⎛⎫≥-+ ⎪⎝⎭在()0,∞+上有解,令()e 1x g x x x x ⎛⎫=-+ ⎪⎝⎭,则()()()()22221e 1e 11xx x x x x g x x x x ⎡⎤--+-⎛⎫-⎣⎦'=-= ⎪⎝⎭, 由(1)知0x >时()()00f x f >=,即()e 10xx -+>,当01x <<时()0g x '<;当1x >时()0g x '>, 所以()g x 在()0,1上单调递减,在()1,+∞上单调递增, 所以当1x =时,()min e 2g x =-, 所以e 2a ≥-,综上可知,实数a 的取值范围是e 2a ≥-.4、已知函数()()()2122ln 2f x x a x a x a =-++∈R . (1)若曲线()y f x =在点()()1,1f 处的切线方程为2y x b =+,求2+a b 的值; (2)若0a >,讨论函数()f x 的单调性;(3)设函数()()2g x a x =-+,若至少存在一个[]0,4x e ∈,使得()()00f x g x >成立,求实数a 的取值范围. 【答案】(1)210a b +=-;(2)答案见解析;(3)2,ln 2⎛⎫-+∞ ⎪⎝⎭. 【分析】(1)利用导数的几何意义可得出关于实数a 、b 的方程组,解出这两个未知数的值,即可求得2+a b 的值; (2)求得()()()2xf x x x a --=',分2a =、02a <<、2a >三种情况讨论,分析导数的符号变换,由此可得出函数()f x 的增区间和减区间;(3)分析可知不等式222ln x a x>-在[],4e 上有解,利用导数求出函数()22ln x h x x=-在区间[],4e 上的最小值,由此可求得实数a 的取值范围.【解析】(1)()f x 的定义域为()0,∞+,()()22af x x a x'=-++. 由题意得()()11222f a b =-+=+,()()11222f a a '=-++=, 即32212a b a ⎧--=+⎪⎨⎪-=⎩,解得3132a b =⎧⎪⎨=-⎪⎩,因此,210a b +=-;(2)()()()()2222x a x ax x a f x xx-++--'==.当2a =时,()0f x '≥且()f x '不恒为0,所以,()f x 在()0,∞+上单调递增; 当02a <<时,由()0f x '>,得0x a <<或2x >,由()0f x '<,得2a x <<, 此时,()f x 在()0,a 和()2,+∞上单调递增,在(),2a 上单调递减; 当2a >时,由()0f x '>,得02x <<或x a >,由()0f x '<,得2x a <<, 此时,()f x 在()0,2和(),a +∞上单调递增,在()2,a 上单调递减. 综上所述,当2a =时,()f x 在()0,∞+上单调递增;当02a <<时,()f x 在()0,a 和()2,+∞上单调递增,在(),2a 上单调递减; 当2a >时,()f x 在()0,2和(),a +∞上单调递增,在()2,a 上单调递减;(3)若至少存在一个[]0,4x e ∈,使得()()00f x g x >成立,则当[],4x e ∈时,212ln 02x a x +>有解.当[],4x e ∈时,ln 1x ≥,即222ln x a x >-有解,令()22ln x h x x=-,[],4x e ∈,则()min 2a h x >.()()()()2212ln 2ln 02ln 2ln x x x x x h x x x --'=-=<,所以,()h x 在[],4e 上单调递减,所以,()()min 44ln 2h x h ==-, 所以,42ln 2a >-,即2ln 2a >-,因此,实数a 的取值范围是2,ln 2⎛⎫-+∞ ⎪⎝⎭.5、已知函数()ln bf x x a x x=-+,a ,b ∈R . (1)若a >0,b >0,且1是函数()f x 的极值点,求12a b+的最小值; (2)若b =a +1,且存在0x ∈[1e,1],使0()0f x <成立,求实数a 的取值范围.【答案】(1)最小值3+;(2)()211e a e e +<-+.【分析】(1)由1是函数()f x 的极值点得1a b +=,对12a b+用基本不等式中“1的代换”求最值; (2)把“存在0x ∈[1e ,1],使0()0f x <成立”转化为函数()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值小于0, 利用导数讨论单调性,找到最小值,解出a 的范围即可.【解析】(1)()21,a bf x x x =--'因为1是函数()f x 的极值点, 所以()110,f a b '=--=即 1.a b +=此时()()()()222222111x b x b x x b a b x ax b f x x x x x x----+--=--=='= 当()01,0;x f x '<<<当()1,0,x f x >'>所以函数()f x 在1x =处取极小值.所以()121223b a a b a b a b a b⎛⎫+=++=++ ⎪⎝⎭因为0,0a b >>,所以2b a a b +≥=(当且仅当21a b =-=时等号成立) 此时12a b+有最小值3+. (2)当1b a =+时,()1ln a f x x a x x+=-+, 存在01,1x e ⎡⎤∈⎢⎥⎣⎦使()00f x <成立,即函数()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值小于0. ()()()221111(0)x x a a a f x x x x x ⎡⎤+-'++⎣⎦=-==>①当11,a +≥即0a ≥时,() f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()11120f a a =++=+<,所以2a <-,不符,舍去;②当11,a e+≤即11ae 时,()f x 在1,1e ⎡⎤⎢⎥⎣⎦上单调递增, 所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()()111110,f a e a e a e e e e⎛⎫=+++=+++< ⎪⎝⎭所以()211e a e e +<-+,又11,a e≤-所以()211e a e e +<-+;(3)当111a e <+<时,即110a e-<<时,()f x 在1,1a e ⎡⎤+⎢⎥⎣⎦上单调递增,在[]1,1a +上单调递减,所以()f x 在1,1e ⎡⎤⎢⎥⎣⎦上的最小值为()()()111ln 11ln 12f a a a a a a ⎡⎤+=++-+=-++⎣⎦ 因为111,a e<+<所以()1ln 10,a -<+<所以()11ln 12a <-+<所以()1ln 12a a a a ⎡⎤>-+>⎣⎦,所以()()11ln 12220,f a a a a ⎡⎤+=-++>+>⎣⎦不符,舍去,综上可得,a 的取值范围是()211e a e e +<-+.6、已知函数1()ln f x a x x=+(a R ∈且0a ≠). (1)若1a =,求函数()f x 的极值;(2)若存在(]00,x e ∈,使得()00f x <成立,求实数a 的取值范围. 【答案】(1)()1f x =极小值,()f x 无极大值;(2)()1,,e e ⎛⎫-∞-+∞ ⎪⎝⎭.【分析】(1)求出导函数21()x f x x -'=,利用导数与函数单调性之间的关系判断函数的单调性, 由单调性求出函数的极值.(2)由题意只需函数()f x 在(]0,e 上的最小值小于0,求出2211()a ax f x x x x-'=-+=, 讨论a 的取值范围,利用导数判断函数的单调性,进而求出函数的最小值,即可.【解析】(1)依题意,当1a =时,1()ln f x x x=+,定义域为()0,∞+, 22111()x f x x x x-'=-+=,令()0f x '=,得1x =. 当()0,1x ∈时,()0f x '<,()f x 为减函数; 当()1,x ∈+∞时,()0f x '>,()f x 为增函数, 所以()()11f x f ==极小值,()f x 无极大值.(2)若存在(]00,x e ∈,使得()00f x <成立,即函数()f x 在(]0,e 上的最小值小于0.2211()a ax f x x x x -'=-+=,且0a ≠.令()0f x '=,得1x a=, 当10a<,即0a <时,()0f x '<恒成立,函数()f x 在(]0,e 单调递减,()min 1()f x f e a e==+, 由10a e +<,得1a e <-,即1,a e ⎛⎫∈-∞- ⎪⎝⎭;当1e a ≥,即10a e<≤时,()0f x '≤恒成立, 函数()f x 在(]0,e 上单调递减,()min 1()0f x f e a e==+>,不合题意; 当10e a<<,即1a e >时,在10,a ⎛⎫⎪⎝⎭上,()0f x '<,()f x 为减函数;2、已知函数1()ln ,()2xf x x xg x m ⎛⎫=+=- ⎪⎝⎭,(1)先证明单调性,再求函数()f x 在[]1,2上的最小值;(2)若对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,求实数m 的取值范围. 【答案】(1)证明见解析(导数或定义),1;(2)34m ≥-.【分析】(1)求出()f x 的定义域和()'f x ,由()0f x '>可得()f x 的单调性及在[]1,2上的最小值;(2)转化为1min 2min ()()f x g x ≥,由(1)知min ()1f x =,利用单调性可得()g x 在[]0,2上单调性求得最值,解不等式可得答案.【解析】(1)函数()f x 的定义域为0x >,所以11()10xf x x x+'=+=>, 所以()f x 在()0,∞+上单调递增,所以()f x 在[]1,2上的最小值为min ()(1)1f x f ==.(2)若对[][]121,2,0,2x x ∀∈∃∈,使得12()()f x g x ≥,则1min 2min ()()f x g x ≥,由(1)知min()1f x =,因为1()2⎛⎫= ⎪⎝⎭xg x 是减函数, 所以1()2xg x m ⎛⎫=- ⎪⎝⎭在[]0,2上单调递减,所以2min 1()(2)4g x g m ==-,所以114m ≥-,即34m ≥-. 所以实数m 的取值范围为3,4⎡⎫-+∞⎪⎢⎣⎭.3、已知函数()223x xe f x e -+=,其中e 为自然对数的底数.(1)证明:()f x 在(),0-∞上单调递减,()0,∞+上单调递增; (2)设0a >,函数()212cos cos 3g x x a x a =+--,如果总存在[]1,x a a ∈-,对任意2x R ∈,()()12f x g x 都成立,求实数a 的取值范围.【答案】(1)证明见解析;(2)ln 2a ≥.【分析】(1)直接对函数求导,判断导函数在对应区间上的符号即可证明;(2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值; 借助单调性换元法,结合二次函数的性质分别求最值列不等式求解即可【解析】(1)证明:()()23x xe ef x -='-令()0f x '>,解得0x >,∴()f x 在()0,∞+上单调递增 令()0f x '<,解得0x <,∴()f x 在(),0-∞上单调递减 (2)总存在1[x a ∈-,](0)a a >,对任意2x R ∈都有12()()f x g x ,即函数()y f x =在[a -,]a 上的最大值不小于()y g x =,x ∈R 的最大值()()()()max 23a af x f a f a e e -=-==+ 令[]()cos 1,1t x t =∈-,∴()2123g t t at a =+--,对称轴02a t =-< ∴()()max 513g t g == ∴()2533a a e e -+≥,52a ae e -+≥, 令(),0ae m m =>,∴152m m +≥,∴2m ≥∴2a e ≥,∴ln 2a ≥4、已知函数2()(2)ln ()f x a x ax x a R =++-∈. (Ⅰ)当0a =时,求证:2()22x f x x >-. (Ⅱ)设232()3g x x x =-,若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x 成立,求实数a 的取值范围. 【答案】(Ⅰ)证明见解析;(Ⅱ)1a -.【分析】(1)将0a =代入,只需证明()2202xf x x -+>成立即可,然后构造函数, 利用导数讨论单调区间及最小值,利用最值证明即可; (2)若1(0,1]x ∀∈,2[0,1]x ∃∈,使得()()12f x g x 成立,只需使()()min 1min 2f x g x 在1(0,1]x ∈,2[0,1]x ∈上恒成立, 然后分别讨论函数()f x 与()g x 的最小值,利用最值分析求解.【解析】(Ⅰ)当0a =时,要证222()22ln 2022x x f x x x x x -+=--+≥,只需证ln 02xx -<, 令()ln (0)2x h x x x =->,则112()22xh x x x-'=-=当(0,2)x ∈时,()0,()h x h x '>单调递增;当(2,)x ∈+∞时,()0,()h x h x '<单调递减;所以max ()(2)ln 210h x h ==-<,()(2)0h x h ≤<故ln 02x x -<,所以2()22x f x x >-. (Ⅱ)问题等价于1(0,1]x ∀∈,2[0,1]x ∃∈,()()12minmin f x g x由232()3g x x x =-得2()22g x x x '=-, 由2()220g x x x '=-得01x ,所以在[0,1]上,()g x 是增函数,故min ()(0)0g x g ==.()f x 定义域为(0,)+∞,而()()()()()22121221122x a x a x ax f x a x a x x x⎡⎤++-++-⎣⎦=++-=='. 当2a -时,()0f x '<恒成立,()f x 在(0,1]上是减函数,所以min ()(1)2(1)01f x f a a ==+⇒-,不成立; 当2a >-时,由()0f x '<,得102x a <<+;由()0f x '>,得12x a >+, 所以()f x 在10,2a ⎛⎫ ⎪+⎝⎭单调递减,在1,2a ⎛⎫+∞⎪+⎝⎭单调递减. 若112a >+,即21a -<<-时,()f x 在(0,1]是减函数, 所以min ()(1)2(1)01f x f a a ==+⇒-,不成立; 若1012a <+,即1a -时,()f x 在12x a =+处取得最小值min 11()1ln(2)22f x f a a a ⎛⎫==++- ⎪++⎝⎭, 令1()1ln(2)(1)2h a a a a =++--+, 则22113()02(2)(2)a h a a a a +'=+=>+++在[1,)-+∞上恒成立, 所以()h a 在[1,)-+∞是增函数且min ()(1)0h a h =-=, 此时min 1()02f x f a ⎛⎫=⎪+⎝⎭成立,满足条件. 综上所述,1a -.5、已知函数21()(1)ln 2f x x a x a x =-++. (1)求函数()f x 的单调递增区间;(2)任取[3,5]a ∈,函数()f x 对任意1212,[1,3]()x x x x ∈≠,恒有1212|()()|||f x f x x x λ-<-成立,求实数λ的取值范围.【答案】(1)答案见解析;(2)[6)-+∞.【分析】(1)求函数导数,分类讨论求()0f x '>的解即可求解;(2)由(1)知()f x 在[1.3]上单调递减,不妨设12x x <,从而把不等式中的绝对值去掉得:1122()()f x x f x x λλ+<+,构造函数()()(13)h x f x x x λ=+≤≤,把问题转化为恒成立问题,求得实数λ的取值范围.【解析】(1)(1)()()1(0)a x x a f x x a x x x----+'==> 当1a = 时,2(1)()0x f x x-=≥',所以()f x 在 (0,)+∞ 上单调递增;当1a > 时,由(1)()()0x x a f x x -'-=>解得(0,1)x ∈或(,)a +∞,所以()f x 在(0,1),(,)a +∞上单调递增; 当01a <<时,由(1)()()0x x a f x x-'-=>解得(0,)x a ∈或(1,)+∞,所以()f x 在(0,)a ,(1,)+∞ 上单调递增; 当0a ≤时,由(1)()()0x x a f x x-'-=>解得(1,)x ∈+∞,所以()f x 在(1,)+∞上单调递增.综上所述:当1a > 时,单调递增区间为(0,1)和(,)a +∞;当1a = 时,单调递增区间为(0,)+∞;当01a << 时,单调递增区间为(0,)a 和(1,)+∞; 当0a ≤ 时,单调递增区间为(1,)+∞(2)因为[3,5]a ∈,由(1)得,()f x 在[1,3]上单调递减,不妨设 12x x < , 由1212|()()|||f x f x x x λ-<-得1221()()f x f x x x λλ-<-, 即1122()()f x x f x x λλ+<+令()()(13)h x f x x x λ=+≤≤ ,()1ah x x a xλ'=+--+, 只需()0h x '≥恒成立,即1(1)1a x xλ≥--+([3,5]a ∈,[1,3]x ∈)恒成立,[]1,3x ∈ , 110x∴-≥max 1()1(5(1)111)a x x x x ∴=---++-即15(1)1x x λ≥--+([1,3]x ∈)恒成立, 即56()x x λ≥-+([1,3]x ∈)恒成立,因为56()6x x-+≤-x =,所以实数λ的取值范围是[6)-+∞.6、设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ; (2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.【解析】(1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M 成立.g ′(x )=3x 2-2x =x (3x -2), 令g ′(x )=0,得x =0或x =23,∵g ⎝⎛⎭⎫23=-8527, 又g (0)=-3,g (2)=1,∴当x ∈[0,2]时,g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527, ∴M ≤1-⎝⎛⎭⎫-8527=11227, ∴满足条件的最大整数M 为4.(2)对任意的s ,t ∈⎣⎡⎦⎤12,2有f (s )≥g (t ),则f (x )min ≥g (x )max .由(1)知当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (2)=1,∴当x ∈⎣⎡⎦⎤12,2时,f (x )=ax +x ln x ≥1恒成立,即a ≥x -x 2ln x 恒成立. 令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2, ∴h ′(x )=1-2x ln x -x , 令φ(x )=1-2x ln x -x , ∴φ′(x )=-3-2ln x <0, h ′(x )在⎣⎡⎦⎤12,2上单调递减,又h ′(1)=0,∴当x ∈⎣⎡⎦⎤12,1时,h ′(x )≥0,当x ∈[1,2]时,h ′(x )≤0, ∴h (x )在⎣⎡⎦⎤12,1上单调递增,在[1,2]上单调递减, ∴h (x )max =h (1)=1,故a ≥1. ∴实数a 的取值范围是[1,+∞).7、已知函数f (x )=x -1-a ln x (a <0). (1)讨论函数f (x )的单调性; (2)当0<x 1<x 2≤1时,都有f (x 1)−f(x 2)x 1−x 2<4x1x 2,求实数a 的取值范围.【解析】(1)由题意知f ′(x )=1-a x =x -ax(x >0),因为x >0,a <0,所以f ′(x )>0, 所以f (x )在(0,+∞)上单调递增. (2)∵0<x 1<x 2≤1,∴x 1-x 2<0,∴原不等式等价于f (x 1)−f (x 2)>4(x 1−x 2)x 1x 2,即f (x 1)-f (x 2)>4x 2-4x 1,即f (x 1)+4x 1>f (x 2)+4x 2.设g (x )=f (x )+4x,x ∈(0,1],|f (x 1)-f (x 2)|<4⎪⎪⎪⎪1x 1-1x 2等价于g (x )在(0,1]上单调递减,所以g ′(x )≤0在(0,1]上恒成立⇔1-a x -4x 2=x 2-ax -4x 2≤0在(0,1]上恒成立⇔a ≥x -4x在(0,1]上恒成立,易知y =x -4x在(0,1]上单调递增,其最大值为-3.因为a <0,所以-3≤a <0,所以实数a 的取值范围为[-3,0).8、已知函数f (x )=x -(a +1)ln x -a x (a ∈R ),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)成立,求a 的取值范围. 【解析】(1)f ′(x )=(x−1)(x−a)x 2.。
高考数学导数专题专讲 专题35 双变量恒成立与能成立问题概述(含答案)
专题35双变量恒成立与能成立问题概述【方法总结】1.最值定位法解双变量不等式恒成立问题的思路策略(1)用最值定位法解双变量不等式恒成立问题是指通过不等式两端的最值进行定位,转化为不等式两端函数的最值之间的不等式,列出参数所满足的不等式,从而求解参数的取值范围.(2)有关两个函数在各自指定范围内的不等式恒成立问题,这里两个函数在指定范围内的自变量是没有关联的,这类不等式的恒成立问题就应该通过最值进行定位.2.常见的双变量恒成立能成立问题的类型(1)对于任意的x1∈[a,b],x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)min≥g(x2)max.(如图1)(2)若存在x1∈[a,b],总存在x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)max≥g(x2)min.(如图2)(3)对于任意的x1∈[a,b],总存在x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)min≥g(x2)min.(如图3)(4)若存在x1∈[a,b],对任意的x2∈[m,n],使得f(x1)≥g(x2)⇔f(x1)max≥g(x2)max.(如图4)(5)若存在x1∈[a,b],对任意的x2∈[m,n],使得f(x1)=g(x2)⇔f(x1)max≥g(x2)max.(如图4)(6)若存在x1∈[a,b],总存在x2∈[m,n],使得f(x1)=g(x2)⇔f(x)的值域与g(x)的值域的交集非空.(如图5)考点一双任意与双存在不等问题(1)f(x),g(x)是在闭区间D上的连续函数且∀x1,x2∈D,使得f(x1)>g(x2),等价于f(x)min>g(x)max.其等价转化的目标是函数y=f(x)的任意一个函数值均大于函数y=g(x)的任意一个函数值.如图⑤.(2)存在x1,x2∈D,使得f(x1)>g(x2),等价于f(x)max>g(x)min.其等价转化的目标是函数y=f(x)的某一个函数值大于函数y=g(x)的某些函数值.如图⑥.【例题选讲】[例1]已知函数f (x )=a +1x+a ln x ,其中参数a <0.(1)求函数f (x )的单调区间;(2)设函数g (x )=2x 2f ′(x )-xf (x )-3a (a <0),存在实数x 1,x 2∈[1,e 2],使得不等式2g (x 1)<g (x 2)成立,求a 的取值范围.解析(1)∵f (x )=a +1x +a ln x ,定义域为(0,+∞).∴f ′(x )=-a +1x 2+a x =ax -(a +1)x 2.①当-1<a <0时,a +1a<0,恒有f ′(x )<0.∴函数f (x )的单调减区间是(0,+∞).②当a =-1时,f ′(x )=-1x <0,∴f (x )的减区间是(0,+∞).③当a <-1时,x 0,a +1a f ′(x )>0,∴f (x )的增区间是0,a +1a x a +1a,+∞f ′(x )<0,∴f (x )a +1a ,+∞(2)g (x )=2ax -ax ln x -(6a +3)(a <0),因为存在实数x 1,x 2∈[1,e 2],使得不等式2g (x 1)<g (x 2)成立,∴2g (x )min <g (x )max .又g ′(x )=a (1-ln x ),且a <0,∴当x ∈[1,e)时,g ′(x )<0,g (x )是减函数;当x ∈(e ,e 2]时,g ′(x )>0,g (x )是增函数.∴g (x )min =g (e)=a e -6a -3,g (x )max =max{g (1),g (e 2)}=-6a -3.∴2a e -12a -6<-6a -3,则a >32e -6.又a <0,从而32e -6<a <0,即a 32e -6,0[例2]已知函数f (x )=12ln x -mx ,g (x )=x -a x(a >0).(1)求函数f (x )的单调区间;(2)若m =12e 2,对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,求实数a 的取值范围.解析(1)因为f (x )=12ln x -mx ,x >0,所以f ′(x )=12x-m ,当m ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当m >0时,由f ′(x )=0得x =12m ;f ′(x )>0,x >0得0<x <12m ;由f ′(x )<0,x >0得x >12m.所以f (x )0,12m 上单调递增,在12m,+∞上单调递减.综上所述,当m ≤0时,f (x )的单调递增区间为(0,+∞),无单调递减区间;当m >0时,f (x )0,12m ,单调递减区间为12m ,+∞.(2)若m =12e 2,则f (x )=12ln x -12e2x .对∀x 1,x 2∈[2,2e 2]都有g (x 1)≥f (x 2)成立,等价于对∀x ∈[2,2e 2]都有g (x )min ≥f (x )max ,由(1)知在[2,2e 2]上f (x )的最大值为f (e 2)=12,又g ′(x )=1+ax 2>0(a >0),x ∈[2,2e 2],所以函数g (x )在[2,2e 2]上是增函数,所以g (x )min =g (2)=2-a 2.由2-a 2≥12,得a ≤3,又a >0,所以a ∈(0,3],所以实数a 的取值范围为(0,3].[例3]已知f (x )=x +a 2x(a >0),g (x )=x +ln x .(1)若对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,求实数a 的取值范围;(2)若存在x 1,x 2∈[1,e],使得f (x 1)<g (x 2),求实数a 的取值范围.解析(1)对任意的x 1,x 2∈[1,e],都有f (x 1)≥g (x 2)成立,等价于x ∈[1,e]时,f (x )min ≥g (x )max .当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在[1,e]上单调递增,所以g (x )max =g (e)=e +1.只需证f (x )≥e +1,即x +a 2x ≥e +1⇔a 2≥(e +1)x -x 2在[1,e]上恒成立即可.令h (x )=(e +1)x -x 2,当x ∈[1,e]时,h (x )=(e +1)x -x 2=-x -e +12+e +12的最大值为e +12=e +122.所以a 2e +122,即a ≥e +12(舍去负值).故实数a 的取值范围是e +12,+∞(2)存在x 1,x 2∈[1,e],使得f (x 1)<g (x 2),等价于x ∈[1,e]时,f (x )min <g (x )max .当x ∈[1,e]时,g ′(x )=1+1x >0,所以g (x )在[1,e]上单调递增,所以g (x )max =g (e)=e +1.又f ′(x )=1-a 2x2,令f ′(x )=0,得x =a ,故f (x )=x +a 2x(a >0)在(0,a )上单调递减,在(a ,+∞)上单调递增.当0<a <1时,f (x )在[1,e]上单调递增,f (x )min =f (1)=1+a 2<e +1,符合题意;当1≤a ≤e 时,f (x )在[1,a ]上单调递减,在[a ,e]上单调递增,f (x )min =f (a )=2a ,此时,2a <e +1,解得1≤a <e +12;当a >e 时,f (x )在[1,e]上单调递减,f (x )min =f (e)=e +a 2e ,此时,e +a 2e<e +1,即a <e ,与a >e 矛盾,不符合题意.综上可知,实数a 的取值范围是0,e +12.点拨(1)本题第(1)问从数的角度看,问题的本质就是f (x )min ≥g (x )max .从形的角度看,问题的本质就是函数f (x )图象的最低点不低于g (x )图象的最高点.(2)本题第(2)问从数的角度看,问题的本质就是f (x )min <g (x )max .从形的角度看,问题的本质就是函数f (x )图象的最低点低于g (x )图象的最高点.[例4]设f (x )=ax+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.解析(1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M .由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3x -23g ′(x )<0,解得0<x <23;由g ′(x )>0,解得x <0或x >23.又x ∈[0,2],所以g (x )在区间0,23上单调递减,在区间23,2上单调递增,又g (0)=-3,g (2)=1,故g (x )max =g (2)=1,g (x )min =g 23=-8527.所以[g (x 1)-g (x 2)]max =g (x )max -g (x )min =1+8527=11227≥M ,则满足条件的最大整数M =4.(2)对于任意的s ,t ∈12,2,都有f (s )≥g (t )成立,等价于在区间12,2上,函数f (x )min ≥g (x )max .由(1)可知在区间12,2上,g (x )的最大值为g (2)=1.在区间12,2上,f (x )=ax+x ln x ≥1恒成立等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,x ∈12,2,则h ′(x )=1-2x ln x -x ,易知h ′(x )在区间12,2上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0.所以函数h (x )=x -x 2lnx 在区间12,1上单调递增,在区间[1,2]上单调递减,所以h (x )max =h (1)=1,所以实数a 的取值范围是[1,+∞).考点二存在与任意嵌套不等问题(1)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)>g (x 2),等价于函数f (x )在D 1上的最小值大于g (x )在D 2上的最小值,即f (x )min >g (x )min (这里假设f (x )min ,g (x )min 存在).其等价转化的目标是函数y =f (x )的任意一个函数值大于函数y =g (x )的某一个函数值.如图⑦.(2)∀x 1∈D 1,∃x 2∈D 2,使f (x 1)<g (x 2),等价于函数f (x )在D 1上的最大值小于g (x )在D 2上的最大值,即f (x )max <g (x )max .其等价转化的目标是函数y =f (x )的任意一个函数值小于函数y =g (x )的某一个函数值.如图⑧.【例题选讲】[例5]设函数f (x )=e(x 2-ax +a )e x(a ∈R ).(1)若曲线y =f (x )在x =1处的切线过点M (2,3),求a 的值;(2)设g (x )=x +1x +1-13,若对任意的n ∈[0,2],存在m ∈[0,2],使得f (m )≥g (n )成立,求a 的取值范围.解析(1)因为f (x )=e(x 2-ax +a )e x ,所以f ′(x )=e·(2x -a )e x -(x 2-ax +a )e xe 2x =-(x -2)(x -a )ex -1.又f (1)=1,即切点为(1,1),所以k =f ′(1)=1-a =3-12-1,解得a =-1.(2)“对任意的n ∈[0,2],存在m ∈[0,2],使得f (m )≥g (n )成立”,等价于“在[0,2]上,f (x )的最大值大于或等于g (x )的最大值”.因为g (x )=x +1x +1-13,g ′(x )=x 2+2x (x +1)2≥0,所以g (x )在[0,2]上单调递增,所以g (x )max =g (2)=2.令f ′(x )=0,得x =2或x =a .①当a ≤0时,f ′(x )≥0在[0,2]上恒成立,f (x )单调递增,f (x )max =f (2)=(4-a )e -1≥2,解得a ≤4-2e ;②当0<a <2时,f ′(x )≤0在[0,a ]上恒成立,f (x )单调递减,f ′(x )≥0在[a ,2]上恒成立,f (x )单调递增,f (x )的最大值为f (2)=(4-a )e -1或f (0)=a e ,所以(4-a )e -1≥2或a e≥2.解得:a ≤4-2e 或a ≥2e ,所以2e≤a <2;③当a ≥2时,f ′(x )≤0在[0,2]上恒成立,f (x )单调递减,f (x )max =f (0)=a e≥2,解得a ≥2e ,所以a ≥2.综上所述:a ≤4-2e 或a ≥2e .[例6]已知函数f (x )=x -(a +1)ln x -a x (a ∈R 且a <e),g (x )=12x 2+e x -x e x .(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解析(1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x 2.①若a ≤1,当x ∈[1,e]时,f ′(x )≥0,则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a .②若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数;当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数.所以f (x )min =f (a )=a -(a +1)ln a -1,综上,当a ≤1时,f (x )min =1-a ;当1<a <e 时,f (x )min =a -(a +1)ln a -1;(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值.由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae ,又g ′(x )=(1-e x )x .当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数,则g (x )min =g (0)=1,所以e -(a +1)-ae <1,解得a >e 2-2e e +1,所以a 的取值范围为e 2-2ee +1,1考点三双任意与存在相等问题(1)∃x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)等价于函数f (x )在D 1上的值域A 与g (x )在D 2上的值域B 的交集不是空集,即A ∩B ≠∅,如图⑨.其等价转化的目标是两个函数有相等的函数值.图⑨图⑩(2)∀x 1∈D 1,∃x 2∈D 2,使得f (x 1)=g (x 2)等价于函数f (x )在D 1上的值域A 是g (x )在D 2上的值域B 的子集,即A ⊆B ,如图⑩.其等价转化的目标是函数y =f (x )的值域都在函数y =g (x )的值域之中.说明:图⑨,图⑩中的条形图表示函数在相应定义域上的值域在y 轴上的投影.【例题选讲】[例7]已知函数f (x )=ax -ln x +x 2.(1)若a =-1,求函数f (x )的极值;(2)若a =1,∀x 1∈(1,2),∃x 2∈(1,2),使得f (x 1)-x 21=mx 2-13mx 32(m ≠0),求实数m 的取值范围.解析(1)依题意知,当a =-1时,f (x )=-x -ln x +x 2,f ′(x )=-1-1x +2x =2x 2-x -1x =(2x +1)(x -1)x,因为x ∈(0,+∞),故当x ∈(0,1)时,f ′(x )<0,当x ∈(1,+∞)时,f ′(x )>0,故当x =1时,f (x )有极小值,极小值为f (1)=0,无极大值.(2)当a =1时,f (x )=x -ln x +x 2.因为∀x 1∈(1,2),∃x 2∈(1,2),使得f (x 1)-x 21=mx 2-13mx 32(m ≠0),故ln x 1-x 1=13mx 32-mx 2.设h (x )=ln x -x ,g (x )=13mx 3-mx ,当x ∈(1,2)时,h ′(x )=1x -1<0,即函数h (x )在(1,2)上单调递减,故h (x )的值域为A =(ln 2-2,-1).又g ′(x )=mx 2-m =m (x +1)(x -1).①当m <0时,g (x )在(1,2)上单调递减,此时g (x )的值域为B =2m 3,-2m 3,因为A ⊆B ,又-2m 3>0>-1,故2m 3≤ln 2-2,即m ≤32ln 2-3;②当m >0时,g (x )在(1,2)上单调递增,此时g (x )的值域为B =-2m 3,2m3,因为A ⊆B ,又2m 3>0>-1,故-2m 3≤ln 2-2,故m ≥-32(ln 2-2)=3-32ln 2.综上所述,实数m -∞,32ln 2-3∪3-32ln 2,+∞[例8]已知函数f (x )=a ln x -x +2,a ∈R .(1)求函数f (x )的单调区间;(2)若对任意的x 1∈[1,e],总存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,求实数a 的值.解析(1)因为f (x )=a ln x -x +2,所以f ′(x )=ax -1=a -x x,x >0,当a ≤0时,对任意的x ∈(0,+∞),f ′(x )<0,所以f (x )的单调递减区间为(0,+∞),无单调递增区间;当a >0时,令f ′(x )=0,得x =a ,因为x ∈(0,a )时,f ′(x )>0,x ∈(a ,+∞)时,f ′(x )<0,所以f (x )的单调递增区间为(0,a ),单调递减区间为(a ,+∞).(2)①当a ≤1时,由(1)知,f (x )在[1,e]上是减函数,所以f (x )max =f (1)=1.因为对任意的x 1∈[1,e],x 2∈[1,e],f (x 1)+f (x 2)≤2f (1)=2<4,所以对任意的x 1∈[1,e],不存在x 2∈[1,e],使得f (x 1)+f (x 2)=4.②当1<a <e 时,由(1)知,f (x )在[1,a ]上是增函数,在(a ,e]上是减函数,所以f (x )max =f (a )=a ln a -a +2.因为对任意的x 1∈[1,e],x 2∈[1,e],f (x 1)+f (x 2)≤2f (a )=2a (ln a -1)+4,又1<a <e ,所以ln a -1<0,2a (ln a -1)+4<4,所以对任意的x 1∈[1,e],不存在x 2∈[1,e],使得f (x 1)+f (x 2)=4.③当a ≥e 时,由(1)知,f (x )在[1,e]上是增函数,f (x )min =f (1)=1,f (x )max =f (e)=a -e +2,由题意,对任意的x 1∈[1,e],总存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则当x 1=1时,要使存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则f (1)+f (e)≥4,同理当x 1=e 时,要使存在x 2∈[1,e],使得f (x 1)+f (x 2)=4,则f (e)+f (1)≤4,所以f (1)+f (e)=4.(对任意的x 1∈(1,e),令g (x )=4-f (x )-f (x 1),x ∈[1,e],g (x )=0有解.g (1)=4-f (1)-f (x 1)=f (e)-f (x 1)>0,g (e)=4-f (e)-f (x 1)=f (1)-f (x 1)<0,所以存在x 2∈(1,e),g (x 2)=4-f (x 2)-f (x 1)=0,即f (x 1)+f (x 2)=4.)所以由f (1)+f (e)=a -e +3=4,得a =e +1.综上可知,实数a 的值为e +1.[例9]已知函数f (x )=ln x -x ,g (x )=13mx 3-mx (m ≠0).(1)求曲线y =f (x )在点(1,f (1))处的切线方程;(2)若对任意的x 1∈(1,2),总存在x 2∈(1,2),使得f (x 1)=g (x 2),求实数m 的取值范围.解析(1)易知切点为(1,-1),f ′(x )=1x-1,切线的斜率k =f ′(1)=0,故切线方程为y =-1.(2)设f (x )在区间(1,2)上的值域为A ,g (x )在区间(1,2)上的值域为B ,则由题意可得A ⊆B .∵f (x )=ln x -x ,∴f ′(x )=1x -1=1-x x <0在(1,2)上恒成立,∴函数f (x )在区间(1,2)上单调递减,∴值域A 为(ln 2-2,-1).又g ′(x )=mx 2-m =m (x +1)(x -1),当m >0时,g ′(x )>0在x ∈(1,2)上恒成立,则g (x )在(1,2)上是增函数,此时g (x )在区间(1,2)上的值域B 为-23m ,23m,则m ,23m ≥-1,-23m ≤ln 2-2,解得m ≥-32(ln 2-2)=3-32ln 2.当m <0时,g ′(x )<0在x ∈(1,2)上恒成立,则g (x )在(1,2)上是减函数,此时g (x )在区间(1,2)上的值域B 为23m ,-23m,m ,-23m ≥-1,23m ≤ln 2-2,解得m ≤32(ln 2-2)=32ln 2-3.∴实数m -∞,32ln 2-3∪3-32ln 2,+∞[例10]已知函数f (x )=(1-x )e x -1.(1)求f (x )的极值;(2)设g (x )=(x -t )2+ln x -mt ,存在x 1∈(-∞,+∞),x 2∈(0,+∞),使方程f (x 1)=g (x 2)成立,求实数m 的最小值.解析(1)f ′(x )=-x e x ,当x ∈(0,+∞)时,f ′(x )<0,当x ∈(-∞,0)时,f ′(x )>0,∴当x =0时,f (x )有极大值f (0)=e 0-1=0,f (x )没有极小值.(2)由(1)知f (x )≤0,又因为g (x )=(x -t )2ln x -mt ≥0,所以要使方程f (x 1)=g (x 2)有解,必然存在x 2∈(0,+∞),使g (x 2)=0,所以x =t ,ln x =m t,等价于方程ln x =mx 有解,即方程m =x ln x 在(0,+∞)上有解,记h (x )=x ln x ,x ∈(0,+∞),则h ′(x )=ln x +1,令h ′(x )=0,得x =1e,所以当x ∈0,1e 时,h ′(x )<0,h (x )单调递减,当x ∈1e ,+∞h ′(x )>0,h (x )单调递增,所以当x =1e 时,h (x )min =-1e ,所以实数m 的最小值为-1e .[例11]已知函数f (x )=x 2-23ax 3,a >0,x ∈R ,g (x )=1x 2(1-x ).(1)若∃x 1∈(-∞,-1],∃x 2∈-∞,-12f (x 1)=g (x 2),求实数a 的取值范围;(2)当a =32时,求证:对任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)=g (x 2).解析(1)∵f (x )=x 2-23ax 3,∴f ′(x )=2x -2ax 2=2x (1-ax ).令f ′(x )=0,得x =0或x =1a.∵a >0,∴1a >0,∴当x ∈(-∞,0)时,f ′(x )<0,∴f (x )在(-∞,-1]上单调递减,f (x )≥f (-1)=1+2a3,故f (x )在(-∞,-1]上的值域为1+2a3,+∞∵g (x )=1x 2(1-x ),∴g ′(x )=3x 2-2x x 4(1-x )2=3x -2x 3(1-x )2.当x <-12时,g ′(x )>0,∴g (x )在-∞,-12上单调递增,g (x )<-12=83,故g (x )在-∞,-12上的值域为-∞,83若∃x 1∈(-∞,-1],∃x 2∈-∞,-12f (x 1)=g (x 2),则1+2a 3<83,解得0<a <52,故实数a 的取值范围是0,52(2)当a =32时,f (x )=x 2-x 3,∴f ′(x )=2x -3x 2=323-x 当x >2时,f ′(x )<0,∴f (x )在(2,+∞)上单调递减,且f (2)=-4,∴f (x )在(2,+∞)上的值域为(-∞,-4).则g (x )=1x 2(1-x )=1f (x )在(1,+∞)上单调递增,∴g (x )=1x 2(1-x )在(1,+∞)上的值域为(-∞,0).∵(-∞,-4)(-∞,0),∴对于任意的x 1∈(2,+∞),都存在x 2∈(1,+∞),使得f (x 1)=g (x 2).点拨本题第(1)问等价转化的基本思想是:两个函数有相等的函数值,即它们的值域有公共部分;第(2)问等价转化的基本思想是:函数f(x)的任意一个函数值都与函数g(x)的某一函数值相等,即f(x)的值域都在g(x)的值域中.。
利用导数研究恒(能)成立问题(经典导学案及练习答案详解)
§3.5 利用导数研究恒(能)成立问题题型一 分离参数求参数范围例1 (2022·北京模拟)已知函数f (x )=(x -2)e x -12ax 2+ax (a ∈R ). (1)当a =0时,求曲线y =f (x )在点(0,f (0))处的切线方程;(2)当x ≥2时,f (x )≥0恒成立,求a 的取值范围.解 (1)当a =0时,f (x )=(x -2)e x ,f (0)=(0-2)e 0=-2,f ′(x )=(x -1)e x ,k =f ′(0)=(0-1)e 0=-1,所以切线方程为y +2=-(x -0),即x +y +2=0.(2)方法一 当x ≥2时,f (x )≥0恒成立,等价于当x ≥2时,(x -2)e x -12ax 2+ax ≥0恒成立. 即⎝⎛⎭⎫12x 2-x a ≤(x -2)e x 在[2,+∞)上恒成立. 当x =2时,0·a ≤0,所以a ∈R .当x >2时,12x 2-x >0, 所以a ≤(x -2)e x 12x 2-x =2e x x 恒成立. 设g (x )=2e x x ,则g ′(x )=2(x -1)e x x 2, 因为x >2,所以g ′(x )>0,所以g (x )在区间(2,+∞)上单调递增.所以g (x )>g (2)=e 2,所以a ≤e 2.综上所述,a 的取值范围是(-∞,e 2].方法二 f ′(x )=(x -1)(e x -a ),①当a ≤0时,因为x ≥2,所以x -1>0,e x -a >0,所以f ′(x )>0,则f (x )在[2,+∞)上单调递增,f (x )≥f (2)=0成立.②当0<a ≤e 2时,f ′(x )≥0,所以f (x )在[2,+∞)上单调递增,所以f (x )≥f (2)=0成立.③当a >e 2时,在区间(2,ln a )上,f ′(x )<0;在区间(ln a ,+∞)上,f ′(x )>0,所以f (x )在(2,ln a )上单调递减,在(ln a ,+∞)上单调递增,f (x )≥0不恒成立,不符合题意.综上所述,a 的取值范围是(-∞,e 2]. 教师备选(2022·重庆模拟)已知函数f (x )=x 22-(m +1)x +m ln x +m ,f ′(x )为函数f (x )的导函数. (1)讨论f (x )的单调性;(2)若xf ′(x )-f (x )≥0恒成立,求m 的取值范围.解 (1)f ′(x )=x -(m +1)+m x =x 2-(m +1)x +m x =(x -m )(x -1)x, ①当m ≤0,x ∈(0,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.②当0<m <1,x ∈(0,m )时,f ′(x )>0,f (x )单调递增;当x ∈(m,1)时,f ′(x )<0,f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.③当m =1,x ∈(0,+∞)时,f ′(x )≥0,f (x )单调递增.④当m >1,x ∈(0,1)时,f ′(x )>0,f (x )单调递增;当x ∈(1,m )时,f ′(x )<0,f (x )单调递减;当x ∈(m ,+∞)时,f ′(x )>0,f (x )单调递增.(2)由题意知xf ′(x )-f (x )≥0恒成立,即x 22-m ln x ≥0恒成立, ∴x 22≥m ln x . 当x =1时,x 22≥m ln x 恒成立, 当x >1时,x 22ln x≥m ; 当0<x <1时,x 22ln x≤m . 令g (x )=x 22ln x, 则g ′(x )=x (2ln x -1)2(ln x )2, 当0<x <1时,g ′(x )<0,g (x )单调递减且g (x )<0,∴x →0时,x 22ln x→0, ∴m ≥0.当x >1时,令g ′(x )=0,得x =e ,∴当1<x <e 时,g ′(x )<0,g (x )单调递减,当x >e 时,g ′(x )>0,g (x )单调递增,∴g (x )≥g (e)=e ,∴m ≤e.综上知0≤m ≤e.思维升华 分离参数法解决恒(能)成立问题的策略(1)分离变量.构造函数,直接把问题转化为函数的最值问题.(2)a ≥f (x )恒成立⇔a ≥f (x )max ;a ≤f (x )恒成立⇔a ≤f (x )min ;a ≥f (x )能成立⇔a ≥f (x )min ;a ≤f (x )能成立⇔a ≤f (x )max .跟踪训练1 已知函数f (x )=x ln x (x >0).(1)求函数f (x )的极值;(2)若存在x ∈(0,+∞),使得f (x )≤-x 2+mx -32成立,求实数m 的最小值. 解 (1)由f (x )=x ln x ,得f ′(x )=1+ln x ,令f ′(x )>0,得x >1e; 令f ′(x )<0,得0<x <1e. 所以f (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,+∞上单调递增. 所以f (x )在x =1e处取得极小值, 且为f ⎝⎛⎭⎫1e =-1e,无极大值. (2)由f (x )≤-x 2+mx -32, 得m ≥2x ln x +x 2+3x. 问题转化为m ≥⎝⎛⎭⎫2x ln x +x 2+3x min .令g (x )=2x ln x +x 2+3x =2ln x +x +3x(x >0).则g ′(x )=2x +1-3x 2=x 2+2x -3x 2=(x +3)(x -1)x 2. 由g ′(x )>0,得x >1;由g ′(x )<0,得0<x <1.所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增.所以g (x )min =g (1)=4,则m ≥4.故m 的最小值为4.题型二 等价转化求参数范围例2 已知函数f (x )=e x -1-ax +ln x (a ∈R ).(1)若函数f (x )在x =1处的切线与直线3x -y =0平行,求a 的值;(2)若不等式f (x )≥ln x -a +1对一切x ∈[1,+∞)恒成立,求实数a 的取值范围.解 (1)f ′(x )=e x -1-a +1x, ∴f ′(1)=2-a =3,∴a =-1,经检验a =-1满足题意,∴a =-1,(2)f (x )≥ln x -a +1可化为e x -1-ax +a -1≥0,x >0,令φ(x )=e x -1-ax +a -1,则当x ∈[1,+∞)时,φ(x )min ≥0,∵φ′(x )=e x -1-a ,①当a ≤1e时,φ′(x )>0, ∴φ(x )在[1,+∞)上单调递增,∴φ(x )min =φ(1)=1-a +a -1=0≥0恒成立,∴a ≤1e符合题意. ②当a >1e时,令φ′(x )=0,得x =ln a +1. 当x ∈(0,ln a +1)时,φ′(x )<0,当x ∈(ln a +1,+∞)时,φ′(x )>0,∴φ(x )在(0,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增.当ln a +1≤1,即1e <a ≤1时,φ(x )在[1,+∞)上单调递增,φ(x )min =φ(1)=0≥0恒成立, ∴1e<a ≤1符合题意. 当ln a +1>1,即a >1时,φ(x )在[1,ln a +1)上单调递减,在(ln a +1,+∞)上单调递增, ∴φ(x )min =φ(ln a +1)<φ(1)=0与φ(x )≥0矛盾.故a >1不符合题意.综上,实数a 的取值范围为(-∞,1].教师备选(2022·衡阳模拟)已知函数f (x )=-ax 2+ln x (a ∈R ).(1)讨论f (x )的单调性﹔(2)若存在x ∈(1,+∞),f (x )>-a ,求a 的取值范围. 解 (1)函数f (x )的定义域为(0,+∞),f ′(x )=-2ax +1x =1-2ax 2x, 当a ≤0时,f ′(x )>0,则f (x )在(0,+∞)上单调递增,当a >0时﹐由f ′(x )=0,得x =12a , 由f ′(x )>0,得x ∈⎝⎛⎭⎫0,12a , 由f ′(x )<0,得x ∈⎝⎛⎭⎫12a ,+∞, 于是有f (x )在⎝⎛⎭⎫0,12a 上单调递增,在⎝⎛⎭⎫12a ,+∞上单调递减. (2)由f (x )>-a ,得a (x 2-1)-ln x <0,x ∈(1,+∞),-ln x <0,x 2-1>0,当a ≤0时,a (x 2-1)-ln x <0,满足题意;当a ≥12时, 令g (x )=a (x 2-1)-ln x (x >1),g ′(x )=2ax 2-1x>0,g (x )在(1,+∞)上单调递增,则g (x )>g (1)=0,不符合题意, 当0<a <12时, 由g ′(x )>0,得x ∈⎝⎛⎭⎫12a ,+∞, 由g ′(x )<0,得x ∈⎝⎛⎭⎫1,12a ,于是有g (x )在⎝⎛⎭⎫1,12a 上单调递减,在⎝⎛⎭⎫12a ,+∞上单调递增, g (x )min =g ⎝⎛⎭⎫12a <g (1)=0, 则当0<a <12时,∃x ∈(1,+∞),g (x )<0, 综上,a 的取值范围为⎝⎛⎭⎫-∞,12. 思维升华 根据不等式恒成立构造函数转化成求函数的最值问题,一般需讨论参数范围,借助函数单调性求解.跟踪训练2 已知函数f (x )=x 2-(a +2)x +a ln x .(1)当a >2时,求函数f (x )的单调区间;(2)若存在x ∈[1,+∞),使f (x )<a 成立,求实数a 的取值范围.解 (1)∵x >0,f ′(x )=2x -(a +2)+a x =2x 2-(a +2)x +a x =(2x -a )(x -1)x, 又a 2>1, ∴当f ′(x )>0时,0<x <1或x >a 2, 当f ′(x )<0时,1<x <a 2, ∴f (x )的单调递增区间为(0,1),⎝⎛⎭⎫a 2,+∞, 单调递减区间为⎝⎛⎭⎫1,a 2. (2)∵存在x ∈[1,+∞)使f (x )<a 成立⇔a >f (x )min .由(1)可得,①当a >2时,f (x )min =f ⎝⎛⎭⎫a 2=-a 24-a +a ln a 2<a , 即ln a 2-a 4<2, 令t =a 2,φ(t )=ln t -t 2(t >1), φ′(t )=1t -12=2-t 2t(t >1), ∴φ(t )在(1,2)上单调递增,在(2,+∞)上单调递减,∴φ(t )max =φ(2)=ln 2-1<2恒成立,即当a >2时,不等式恒成立;(另解:当a >2时,f (x )在⎝⎛⎭⎫1,a 2上单调递减,在⎝⎛⎭⎫a 2,+∞上单调递增,∴f (x )min =f ⎝⎛⎭⎫a 2<f (1)=-1-a <a .)②当a ≤2时,f (x )在x ∈[1,+∞)上单调递增,f (x )min =f (1)=-a -1<a ,a >-12, ∴-12<a ≤2, 综合①②得,实数a 的取值范围为⎝⎛⎭⎫-12,+∞. 题型三 双变量的恒(能)成立问题例3 设f (x )=a x+x ln x ,g (x )=x 3-x 2-3. (1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈⎣⎡⎦⎤12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.解 (1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于[g (x 1)-g (x 2)]max ≥M 成立.g ′(x )=3x 2-2x =x (3x -2),令g ′(x )=0,得x =0或x =23, ∵g ⎝⎛⎭⎫23=-8527, 又g (0)=-3,g (2)=1,∴当x ∈[0,2]时,g (x )max =g (2)=1,g (x )min =g ⎝⎛⎭⎫23=-8527, ∴M ≤1-⎝⎛⎭⎫-8527=11227, ∴满足条件的最大整数M 为4.(2)对任意的s ,t ∈⎣⎡⎦⎤12,2有f (s )≥g (t ),则f (x )min ≥g (x )max .由(1)知当x ∈⎣⎡⎦⎤12,2时,g (x )max =g (2)=1,∴当x ∈⎣⎡⎦⎤12,2时,f (x )=a x+x ln x ≥1恒成立, 即a ≥x -x 2ln x 恒成立.令h (x )=x -x 2ln x ,x ∈⎣⎡⎦⎤12,2,∴h ′(x )=1-2x ln x -x ,令φ(x )=1-2x ln x -x ,∴φ′(x )=-3-2ln x <0,h ′(x )在⎣⎡⎦⎤12,2上单调递减,又h ′(1)=0,∴当x ∈⎣⎡⎦⎤12,1时,h ′(x )≥0,当x ∈[1,2]时,h ′(x )≤0,∴h (x )在⎣⎡⎦⎤12,1上单调递增,在[1,2]上单调递减,∴h (x )max =h (1)=1, 故a ≥1.∴实数a 的取值范围是[1,+∞).教师备选已知函数f (x )=a (x 2-x -1)e x(x ∈R ),a 为正实数. (1)求函数f (x )的单调区间;(2)若∀x 1,x 2∈[0,4],不等式|f (x 1)-f (x 2)|<1恒成立,求实数a 的取值范围.解 (1)因为f (x )=a (x 2-x -1)e x(x ∈R ), 所以f ′(x )=-ax (x -3)e x(x ∈R ), 因为a >0,所以令f ′(x )>0,得0<x <3;令f ′(x )<0,得x <0或x >3.所以f (x )的单调递增区间为(0,3),单调递减区间为(-∞,0)和(3,+∞).(2)由(1)知f (x )在(0,3)上单调递增,在(3,4)上单调递减,所以f (x )在[0,4]上的最大值是f (3)=5a e3. 又f (0)=-a <0,f (4)=11a e -4>0,所以f (0)<f (4),所以f (x )在[0,4]上的最小值为f (0)=-a .若∀x 1,x 2∈[0,4],不等式|f (x 1)-f (x 2)|<1恒成立,则需f (x )max -f (x )min <1在x ∈[0,4]上恒成立,即f (3)-f (0)<1,即5a e 3+a <1,解得a <e 35+e 3. 又a >0,所以0<a <e 35+e 3.故实数a 的取值范围为⎝⎛⎭⎫0,e 35+e 3. 思维升华 “双变量”的恒(能)成立问题一定要正确理解其实质,深刻挖掘内含条件,进行等价变换,常见的等价转换有(1)∀x 1,x 2∈D ,f (x 1)>g (x 2)⇔f (x )min >g (x )max .(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)⇔f (x )min >g (x )min .(3)∃x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)⇔f (x )max >g (x )max .跟踪训练3 设f (x )=x e x ,g (x )=12x 2+x . (1)令F (x )=f (x )+g (x ),求F (x )的最小值;(2)若任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,求实数m 的取值范围.解 (1)因为F (x )=f (x )+g (x )=x e x +12x 2+x , 所以F ′(x )=(x +1)(e x +1),令F ′(x )>0,解得x >-1,令F ′(x )<0,解得x <-1,所以F (x )在(-∞,-1)上单调递减,在(-1,+∞)上单调递增,故F (x )min =F (-1)=-12-1e. (2)因为任意x 1,x 2∈[-1,+∞),且x 1>x 2,有m [f (x 1)-f (x 2)]>g (x 1)-g (x 2)恒成立,所以mf (x 1)-g (x 1)>mf (x 2)-g (x 2)恒成立,令h (x )=mf (x )-g (x )=mx e x -12x 2-x ,x ∈[-1,+∞),即只需h (x )在[-1,+∞)上单调递增即可.故h ′(x )=(x +1)(m e x -1)≥0在[-1,+∞)上恒成立,故m ≥1e x ,而1ex ≤e ,故m ≥e , 即实数m 的取值范围是[e ,+∞). 课时精练1.(2022·大同模拟)已知函数f (x )=x (m e x -1).(1)当m =1时,求函数f (x )的图象在(1,f (1))处的切线方程;(2)当x >0时,f (x )≥x 2-2x ,求实数m 的取值范围.解 (1)当m =1时,f (x )=x (e x -1),则f (1)=e -1,由f ′(x )=e x -1+x e x 可得,f ′(1)=2e -1.所以函数f (x )的图象在(1,f (1))处的切线方程为y -(e -1)=(2e -1)(x -1), 即(2e -1)x -y -e =0.(2)由x (m e x -1)≥x 2-2x 及x >0,得m ≥x -1e x . 令g (x )=x -1e x (x >0), 则g ′(x )=2-x e x , 当x ∈(0,2)时,g ′(x )>0;当x ∈(2,+∞)时,g ′(x )<0,所以g (x )在(0,2)上单调递增,在(2,+∞)上单调递减,所以x =2是g (x )的极大值点,也是g (x )的最大值点,即g (x )max =g (2)=1e 2. 所以m ≥1e 2, 故m 的取值范围为⎣⎡⎭⎫1e 2,+∞. 2.(2022·长春模拟)设函数f (x )=x 2-(a +2)x +a ln x (a ∈R ).(1)若x =3是f (x )的极值点,求f (x )的单调区间;(2)若f (x )≥1恒成立,求a 的取值范围.解 (1)f ′(x )=2x -(a +2)+a x=(2x -a )(x -1)x(x >0), 又f ′(3)=4-2a 3=0, 所以a =6,经检验符合条件,所以f ′(x )=2(x -3)(x -1)x, 令f ′(x )>0,有0<x <1或x >3;令f ′(x )<0,有1<x <3,所以f (x )的单调递增区间是(0,1),(3,+∞),单调递减区间是(1,3).(2)由题意f (x )≥1⇔f (x )min ≥1,当a ≤0时,令f ′(x )>0,有x >1;令f ′(x )<0,有0<x <1,所以f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,所以f (x )min =f (1)=-a -1,所以-a -1≥1,即a ≤-2,当a >0时,①0<a 2<1,即0<a <2时, 存在f (1)=-a -1<0;②a 2>1,即a >2时,存在f (1)=-a -1<0; ③a 2=1,即a =2时,f ′(x )≥0,f (x )在(0,+∞)上单调递增,存在f (1)=-3<0, 可知a >0时,f (x )≥1不恒成立.综上,a ≤-2.3.(2022·沈阳模拟)已知f (x )是定义在[-1,1]上的奇函数,当x >0时,f (x )=x 2+sin x ,g (x )是定义在(0,+∞)上的函数,且g (x )=ax +1x-2(a >0). (1)求函数f (x )的解析式;(2)若对于∀x 1∈[-1,1],∃x 2∈(0,+∞),使得f (x 1)>g (x 2)成立,求实数a 的取值范围. 解 (1)设x <0,则-x >0,所以f (-x )=x 2-sin x ,又f (x )是奇函数,所以f (-x )=-f (x ),所以f (x )=-f (-x )=-x 2+sin x ,又f (0)=0,所以f (x )=⎩⎪⎨⎪⎧x 2+sin x (x ≥0),-x 2+sin x (x <0). (2)由题意得f (x )min >g (x )min .当x ∈[0,1]时,f ′(x )=2x +cos x >0,所以f (x )在[0,1]上单调递增,所以f (x )min =f (0)=0;当x ∈[-1,0)时,f ′(x )=-2x +cos x >0,所以f (x )在[-1,0)上单调递增,所以f (x )min =f (-1)=-1-sin 1<0,所以f (x )min =-1-sin 1.对于g (x ),因为a >0,x >0,所以ax +1x -2≥2a -2, 当且仅当ax =1x,即x =1a时等式成立. 所以g (x )min =2a -2,所以-1-sin 1>2a -2,整理得a <(1-sin 1)24, 所以实数a 的取值范围是⎝⎛⎭⎫0,(1-sin 1)24.4.(2022·昆明联考)已知函数f (x )=e ax -x .(1)若曲线y =f (x )在点(0,f (0))处切线的斜率为1,求f (x )的单调区间;(2)若不等式f (x )≥e ax ln x -ax 2对x ∈(0,e]恒成立,求a 的取值范围. 解 (1)f ′(x )=a e ax -1,则f ′(0)=a -1=1,即a =2.∴f ′(x )=2e 2x -1,令f ′(x )=0,得x =-ln 22. 当x <-ln 22时,f ′(x )<0; 当x >-ln 22时,f ′(x )>0. 故f (x )的单调递减区间为⎝⎛⎭⎫-∞,-ln 22,单调递增区间为⎝⎛⎭⎫-ln 22,+∞. (2)由f (x )≥e ax ln x -ax 2,x ∈(0,e],即ax 2-x ≥e ax (ln x -1),有ax -1e ax ≥ln x -1x, 故仅需ln e ax -1e ax ≥ln x -1x即可. 设函数g (x )=ln x -1x, 则ln e ax -1e ax ≥ln x -1x等价于g (e ax )≥g (x ). ∵g ′(x )=2-ln x x 2, ∴当x ∈(0,e]时,g ′(x )>0,则g (x )在(0,e]上单调递增, ∴当x ∈(0,e]时,g (e ax )≥g (x )等价于e ax ≥x ,即a ≥ln x x恒成立. 设函数h (x )=ln x x,x ∈(0,e], 则h ′(x )=1-ln x x 2≥0,即h (x )在(0,e]上单调递增,∴h (x )max =h (e)=1e ,则a ≥1e即可, ∴a 的取值范围为⎣⎡⎭⎫1e ,+∞.。
专题二 不等式恒成立、能成立问题(解析版)
强化专题2 不等式恒成立、能成立问题在解决不等式恒成立、能成立的问题时,常常使用不等式解集法、分离参数法、主参换位法和数形结合法解决,方法灵活,能提升学生的逻辑推理,数学运算等素养.【技巧目录】一、“Δ”法解决恒成立问题二、数形结合法解决恒成立问题三、分离参数法解决恒成立问题四、主参换位法解决恒成立问题五、利用图象解决能成立问题六、转化为函数的最值解决能成立问题【例题详解】一、“Δ”法解决恒成立问题例1 若关于x 的不等式2220ax ax --<恒成立,则实数a 的取值范围为( )A .[]2,0-B .(]2,0-C .()2,0-D .()(),20,-∞-⋃+∞ 【答案】B【分析】讨论0a =和0a <两种情况,即可求解.【详解】当0a =时,不等式成立;当0a ≠时,不等式2220ax ax --<恒成立,等价于()()20,2420,a a a <⎧⎪⎨∆=--⨯-<⎪⎩20a ∴-<<. 综上,实数a 的取值范围为(]2,0-.故选:B .【小结】(1)如图①一元二次不等式ax 2+bx +c >0(a ≠0)在R 上恒成立⇔一元二次不等式ax 2+bx +c >0(a ≠0)的解集为R ⇔二次函数y =ax 2+bx +c (a ≠0)的图象恒在x 轴上方⇔y min >0⇔⎩⎪⎨⎪⎧a >0,Δ<0.(2)如图②一元二次不等式ax 2+bx +c <0(a ≠0)在R 上恒成立⇔一元二次不等式ax 2+bx +c <0(a ≠0)的解集为R ⇔二次函数y =ax 2+bx +c (a ≠0)的图象恒在x 轴下方⇔y max <0⇔⎩⎪⎨⎪⎧a <0,Δ<0.二、数形结合法解决恒成立问题例2 当1≤x ≤2时,不等式x 2+mx +4<0恒成立,求m 的取值范围.【详解】令y =x 2+mx +4.∵y <0在[1,2]上恒成立.∴x 2+mx +4=0的根一个小于1上,另一个大于2.如图,得⎩⎪⎨⎪⎧ 1+m +4<0,4+2m +4<0, ∴⎩⎪⎨⎪⎧m +5<0,2m +8<0. ∴m 的取值范围是{m |m <-5}.【小结】结合函数的图象将问题转化为函数图象的对称轴,区间端点的函数值或函数图象的位置(相对于x 轴)关系求解.可结合相应一元二次方程根的分布解决问题.三、分离参数法解决恒成立问题例3 若不等式x 2+ax +1≥0在x ∈[-2,0)时恒成立,则实数a 的最大值为( )A .0B .2C .52D .3 【答案】B【分析】用分离参数法分离参数,然后用基本不等式求最值后可得结论.【详解】不等式x 2+ax +1≥0在[2,0)x ∈-时恒成立,即不等式x x x x a 112--=+-≤在[2,0)x ∈-时恒成立.()()()2121-=-⋅-≥-+x x x x ,当且仅当1x x -=-,即x =-1时,等号成立,所以a ≤2,所以实数a 的最大值为2. 故选:B .【小结】通过分离参数将不等式恒成立问题转化为求函数最值问题.四、主参换位法解决恒成立问题例4 已知[]1,1a ∈-,不等式()24420x a x a +-+->恒成立,则x 的取值范围为___________. 【答案】(,1)(3,)-∞+∞【分析】设()()2244f a x a x x =-+-+,即当[]1,1a ∈-时,()0f a >,则满足()()1010f f ⎧->⎪⎨>⎪⎩解不等式组可得x 的取值范围.【详解】[]1,1a ∈-,不等式()24420x a x a +-+->恒成立即[]1,1a ∈-,不等式()22440x a x x -+-+>恒成立设()()2244f a x a x x =-+-+,即当[]1,1a ∈-时,()0f a >所以()()1010f f ⎧->⎪⎨>⎪⎩,即22320560x x x x ⎧-+>⎨-+>⎩,解得3x >或1x < 故答案为:(,1)(3,)-∞+∞【小结】转换思维角度,即把变元与参数变换位置,构造以参数为变量的函数,根据原变量的取值范围求解.五、利用图象解决能成立问题例5 当1<x <2时,关于x 的不等式x 2+mx +4>0有解,则实数m 的取值范围为________.【答案】{m |m >-5}【详解】记y =x 2+mx +4,则由二次函数的图象知,不等式x 2+mx +4>0(1<x <2)一定有解,即m +5>0或2m +8>0,解得m >-5.【小结】结合二次函数的图象,将问题转化为端点值的问题解决.六、转化为函数的最值解决能成立问题例6 若存在x ∈R ,使得4x +m x 2-2x +3≥2成立,求实数m 的取值范围. 【详解】∵x 2-2x +3=(x -1)2+2>0,∴4x +m ≥2(x 2-2x +3)能成立,∴m ≥2x 2-8x +6能成立,令y =2x 2-8x +6=2(x -2)2-2≥-2,∴m ≥-2,∴m 的取值范围为{m |m ≥-2}.【小结】能成立问题可以转化为m >y min 或m <y max 的形式,从而求y 的最大值与最小值,从而求得参数的取值范围.【过关训练】1.若关于x 的不等式220mx x m ++>的解集是R ,则m 的取值范围是( )A .(1,+∞)B .(0,1)C .(-1,1)D .[1,+∞) 【答案】A【分析】分0m =和0m ≠两种情况求解【详解】当0m =时,20x >,得0x >,不合题意,当0m ≠时,因为关于x 的不等式220mx x m ++>的解集是R , 所以20Δ440m m >⎧⎨=-<⎩,解得1m , 综上,m 的取值范围是(1,+∞),故选:A2.若集合2{|10}A x ax ax =-+≤=∅,则实数a 的取值集合为( )A .{|04}a a <<B .{|04}a a ≤<C .{|04}a a <≤D .{|04}a a ≤≤【答案】B【分析】分00a a =≠,,两种情况求解即可【详解】当0a =时,不等式等价于10<,此时不等式无解; 当0a ≠时,要使原不等式无解,应满足20Δ40a a a >⎧⎨=-<⎩,解得04a <<; 综上,a 的取值范围是[)0,4.故选:B .3.若R x ∈,210ax ax ,则实数a 的取值范围是( )A .()4,0-B .(]4,0-C .[)4,0-D .[]4,0-【答案】B【分析】分两种情况讨论:0a =和0Δ0a <⎧⎨<⎩,解出实数a 的取值范围,即得. 【详解】对R x ∈,210ax ax ,当0a =时,则有10-<恒成立;当0a <时,则20Δ40a a a <⎧⎨=+<⎩,解得40a . 综上所述,实数a 的取值范围是(]4,0-.故选:B.4.“x ∀∈R ,2230x ax a -+>”的充要条件是( )A .12a -<<B .0<<3aC .13a <<D .35a << 【答案】B【分析】“x ∀∈R ,2230x ax a -+>”等价于24120a a ∆=-<,解不等式求得答案.【详解】“x ∀∈R ,2230x ax a -+>”等价于24120a a ∆=-< ,即0<<3a ,故“x ∀∈R ,2230x ax a -+>”的充要条件是0<<3a ,故选:B5.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( )A .[]0,1B .(]0,1C .()(),01,-∞⋃+∞D .(][),01,-∞+∞ 【答案】A【分析】当0k =时,该不等式成立,当0k ≠时,根据二次函数开口方向及判别式列不等式解决二次不等式恒成立问题.【详解】当0k =时,该不等式为80≥,成立;当0k ≠时,要满足关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,只需()2036480k k k k >⎧⎨-+≤⎩,解得01k <≤,综上所述,k 的取值范围是[]0,1,故选:A.6.已知关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立,则有( )A .4m ≤-B .3m ≥-C .30m -≤<D .40m -≤< 【答案】A【分析】由题意可得2min (4)m x x ≤-,由二次函数的性质求出24y x x =-在(]0,3上的最小值即可 【详解】因为关于x 的不等式²4x x m -≥对任意(]0,3x ∈恒成立, 所以2min (4)m x x ≤-,令224(2)4y x x x =-=--,(]0,3x ∈,所以当2x =时,24y x x =-取得最小值4-,所以4m ≤-故选:A7.若对任意的2[1,0],2420x x x m ∈--+++≥恒成立,则m 的取值范围是( )A .[4,)+∞B .[2,)+∞C .(,4]-∞D .(,2]-∞ 【答案】A【分析】由题知对任意的2[1,0],242x m x x ≥-∈--恒成立,进而求[1,0]x ∈-,()2214y x =--最值即可得答案.【详解】解:因为对任意的2[1,0],2420x x x m ∈--+++≥恒成立,所以对任意的2[1,0],242x m x x ≥-∈--恒成立,因为当[1,0]x ∈-,()[]22142,4y x =--∈-,所以()2max 2424m x x --≥=,[1,0]x ∈-, 即m 的取值范围是[4,)+∞故选:A8.若两个正实数,x y 满足12+1=x y ,且不等式2+32+<y x m m 有解,则实数m 的取值范围是( ) A .(4,1)- B .(1,4)-C .()(),41,-∞-+∞ D .()(),14,-∞-⋃+∞ )()1,+∞.9.已知命题p :“15x ∃≤≤,250x ax -->”为真命题,则实数a 的取值范围是( )A .4a <B .4aC .4a >D .4a >-【答案】A【分析】依据题意可将题目转换为非p 命题为真的补集,即“15x ∀≤≤,250x ax --≤恒成立”对应a 取值集合的补集,进一步只需限制端点小于等于0即可求解【详解】由题意,当15x ≤≤时,不等式250x ax -->有解,等价于“15x ∀≤≤,250x ax --≤恒成立”为真时对应a 取值集合的补集若15x ∀≤≤,250x ax --≤恒成立为真命题,需满足, 25550a --≤且150a --≤,解得4a ≥.因此p 命题成立时a 的范围时4a <故选:A .10.若关于x 的不等式2420x x a --->在区间(1,4)内有解,则实数a 的取值范围是( )A .(,2)-∞B .(,2)-∞-C .(6,)-+∞D .(,6)-∞-【答案】B【分析】构造函数2()42f x x x a =---,若不等式2420x x a --->在区间(1,4)内有解,可得函数2()42f x x x a =---在区间(1,4)内的最大值大于0即可,根据二次函数的图象和性质可得答案.【详解】令2()42f x x x a =---,则函数的图象为开口朝上且以直线2x =为对称轴的抛物线,故在区间(1,4)上,()f x f <(4)2a =--,若不等式2420x x a --->在区间(1,4)内有解,则20a -->,解得2a <-,即实数a 的取值范围是(,2)-∞-.故选:B .11.已知关于x 的不等式2240ax x a -+<在(0,2]上有解,则实数a 的取值范围是( )A .1,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .(2,)+∞12.设函数2()2f x ax ax =--,若对任意的[1,3]x ∈,()22f x x a >--恒成立,则实数a 的取值范围为_____________.13.已知关于x 的不等式244x mx x m +>+-.(1)若对任意实数x ,不等式恒成立,求实数m 的取值范围;(2)若对于04m ≤≤,不等式恒成立,求实数x 的取值范围.【详解】(1)若对任意实数x ,不等式恒成立,即2440x mx x m +--+>恒成立则关于x 的方程2440x mx x m +--+=的判别式()()24440m m ∆=---+<,即240m m -<,解得04m <<,所以实数m 的取值范围为(0,4).(2)不等式244x mx x m +>+-,可看成关于m 的一次不等式()21440m x x x -+-+>,又04m ≤≤, 所以224404(1)440x x x x x ⎧-+>⎨-+-+>⎩,解得2x ≠且0x ≠,所以实数x 的取值范围是()()(),00,22,-∞⋃⋃+∞.14.设2(1)2y ax a x a =+-+-, 若不等式2y ≥-对一切实数x 恒成立,求实数a 的取值范围;19.设函数()21f x mx mx =--.(1)若对于2,2x ,()5f x m <-+恒成立,求m 的取值范围;(2)若对于[]2,2m ∈-,()5f x m <-+恒成立,求x 的取值范围. 2,2x,f 2,2x 恒成立,对于2,2x 恒成立.261324x ⎫-+⎪⎭2,2x ,则1,2.20.已知函数y =mx 2-mx -6+m ,若对于1≤m ≤3,y <0恒成立,求实数x 的取值范围.【详解】y <0⇔mx 2-mx -6+m <0⇔(x 2-x +1)m -6<0.∵1≤m ≤3,∴x 2-x +1<6m恒成立, ∴x 2-x +1<63⇔x 2-x -1<0⇔1-52<x <1+52. ∴x 的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪1-52<x <1+52.。
函数恒成立、能成立问题及课后练习——学生版
恒成立、能成立问题专题 一、基础理论回顾1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;二、经典题型解析题型一、简单型例1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)例2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围.分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤;方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a例3、已知两函数2)(x x f =,m x g x-⎪⎭⎫⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、更换主元和换元法例1、已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数,(Ⅰ)求a 的值;(Ⅱ)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围;例2、已知二次函数1)(2++=x ax x f 对[]2,0∈x 恒有0)(>x f ,求a 的取值范围。
微专题09导数解答题之恒成立与能成立问题 高考数学
试卷讲评课件
′ = − + = − − ,
令 = − −
,则′
=
−
≥ ,
所以函数′ 在[, +∞)上单调递增,
于是′ ≥ ′ = ,所以函数 在[, +∞)上单调递增,
所以[ ] = = ,于是 ≤ ,因此实数的取值范围是
, >,则
= =
,所以
≥
,即正实数的取值范围是[ , +∞).
试卷讲评课件
例3.(2024 ⋅四川泸州·二模)已知函数f x = 2x 3 − ax 2 + 2 a>0 .
(1)求曲线y = f x 在点 0, f 0 处的切线方程;
【解析】因为 = − + > ,所以 = ,
则 ′
=
− −
=
− +
,设
= − + , ≠
则 ′ = ,令 ′ >,得>,令 ′ <,得<,
所以 > = ,即 ′ >在 −∞, ∪ , +∞ 上恒成立,
,又>,
′
所以当<< 时 <,当<或> 时 ′ >,
所以 在 , 上单调递减,在 −∞, , , +∞ 上单调递增,
则在区间[−, ]内存在 , ,使得 ⋅ ≥ ,
等价于在区间[−, ]内存在,使得 ≥ ,
所以函数 的单调增区间为 −∞, , , +∞ ,无单调减区间;
高考解答题专项突破(一)利用导数解决不等式恒(能)成立问题--2025年高考数学复习讲义及练习解析
[考情分析]高考对本部分的考查一般有三个层次:(1)主要考查求导公式,求导法则与导数的几何意义;(2)导数的简单应用,包括求函数的单调区间、极值、最值等;(3)综合考查,如零点、证明不等式、恒成立问题、求参数取值范围、解决应用问题等,还可能将导数内容和传统内容中有关不等式、数列及函数单调性有机结合,设计综合题.第1课时利用导数解决不等式恒(能)成立问题考点一“分离参数法”解决不等式恒(能)成立问题例1(2024·福建连城县第一中学高三上学期月考)已知函数f (x )=2ax -2ln x .(1)讨论f (x )的单调性;(2)若函数g (x )=x -2,且∀x >0,都有g (x )≤f (x ),求a 的取值范围.解(1)f ′(x )=2a -2x =2ax -2x(x >0),当a ≤0时,f ′(x )<0,所以函数f (x )在(0,+∞)上单调递减,当a >0时,当0<x <1a 时,f ′(x )<0,当x >1a时,f ′(x )>0,所以函数f (x ),+.综上所述,当a ≤0时,函数f (x )在(0,+∞)上单调递减;当a >0时,函数f (x ),+.(2)g (x )≤f (x ),即2ax -2ln x ≥x -2(x >0),即a ≥ln x x -1x +12,令h (x )=ln x x -1x +12(x >0),则h ′(x )=1-ln x x 2+1x 2=2-ln x x 2(x >0),当0<x <e 2时,h ′(x )>0,当x >e 2时,h ′(x )<0,所以函数h (x )在(0,e 2)上单调递增,在(e 2,+∞)上单调递减,所以h (x )max =h (e 2)=1e 2+12,所以a ≥1e 2+12.所以a 的取值范围是1e 2+12,+用分离参数法解含参不等式恒成立问题,可以根据不等式的性质将参数分离出来,得到一个一端是参数,另一端是变量表达式的不等式,具体步骤如下:(1)分离参数(注意分离参数时自变量x 的取值范围是否影响不等号的方向).(2)转化:①若a >f (x )对x ∈D 恒成立,则只需a >f (x )max ;②若a <f (x )对x ∈D 恒成立,则只需a <f (x )min ;③若∃x ∈D ,使得a >f (x )有解,则只需a >f (x )min ;④若∃x ∈D ,使得a <f (x )有解,则只需a <f (x )max .(3)求最值.1.已知函数f (x )=12x 2-(a +2)x +2a ln x (a ∈R ).(1)若a >2,讨论函数f (x )的单调性;(2)设函数g (x )=-(a +2)x ,若至少存在一个x 0∈[e ,4],使得f (x 0)>g (x 0)成立,求实数a 的取值范围.解(1)函数f (x )=12x 2-(a +2)x +2a ln x 的定义域是(0,+∞),f ′(x )=x 2-(a +2)x +2a x =(x -2)(x -a )x.当a >2时,由f ′(x )>0,得0<x <2或x >a ;由f ′(x )<0,得2<x <a ,∴函数f (x )在(0,2)和(a ,+∞)上单调递增,在(2,a )上单调递减.(2)至少存在一个x 0∈[e ,4],使得f (x 0)>g (x 0)成立,即当x ∈[e ,4]时,12x 2+2a ln x >0有解.∵当x ∈[e ,4]时,ln x ≥1,∴2a >-12x 2ln x有解,令h (x )=-12x 2ln x,x ∈[e ,4],则2a >h (x )min .∵h ′(x )=-x ln x -12x 2·1x (ln x )2=-,∴h (x )在[e ,4]上单调递减,∴h (x )min =h (4)=-4ln 2,∴2a >-4ln 2,即a >-2ln 2,∴实数a -2ln 2,+考点二“最值法”解决不等式恒(能)成立问题例2已知定义在(0,+∞)上的函数f (x )=(x -1)e x -ax 22.(1)若a =e ,讨论函数f (x )的单调性;(2)若f (x )≤3在(0,2]上恒成立,求实数a 的取值范围.解(1)f ′(x )=x e x -ax =x (e x -a ),当a =e 时,f ′(x )=x (e x -e).在(0,1)上,f ′(x )<0,f (x )单调递减;在(1,+∞)上,f ′(x )>0,f (x )单调递增.(2)函数f (x )的导数为f ′(x )=x (e x -a ).①若a ≤1,则在(0,2]上,f ′(x )>0恒成立,f (x )单调递增,因此f (x )max =f (2)=e 2-2a >3,不符合题意;②若1<a <e 2,令f ′(x )=0,得x =ln a ,当x ∈(0,ln a )时,f ′(x )<0,当x ∈(ln a ,2]时,f ′(x )>0,因此f (x )在(0,ln a )上单调递减,在(ln a ,2]上单调递增,又因为当x 从右侧趋近于0时,f (x )趋近于-1,小于3,所以只需f (2)≤3即可,即e 2-2a ≤3,解得e 2-32≤a <e 2;③若a ≥e 2,则在(0,2]上,f ′(x )≤0恒成立,f (x )单调递减,因此f (x )<-1<3,符合题意.综上所述,实数a 的取值范围是e 2-32,+在不等式恒成立问题中,如果不能分离参数或分离参数后的函数的最值比较难求,可以把含参不等式整理成f (x ,a )>(<)0或f (x ,a )≥(≤)0的形式,然后从研究函数的性质入手,通过讨论函数的单调性和极值,直接用参数表达函数的最值,然后根据题意,建立关于参数的不等式,解不等式即得参数的取值范围.(1)如果f (x ,a )有最小值g (a ),则①f (x ,a )>0恒成立⇔g (a )>0;②f (x ,a )<0有解⇔g (a )<0.(2)如果f (x ,a )有最大值g (a ),则①f (x ,a )<0恒成立⇔g (a )<0;②f (x ,a )>0有解⇔g (a )>0.2.已知函数f (x )=a ln (x +1),a ∈R .(1)当a =1时,求曲线y =f (x )在x =3处的切线方程;(2)若对任意的x ∈[0,+∞),都有f (x )≥x -12x 2恒成立,求实数a 的取值范围.解(1)当a =1时,f (x )=ln (x +1),所以切点为(3,ln 4).因为f ′(x )=1x +1,所以切线的斜率为k =f ′(3)=14,所以曲线y =f (x )在x =3处的切线方程为y -ln 4=14(x -3),化简得x -4y +8ln 2-3=0.(2)对任意的x ∈[0,+∞),都有f (x )≥x -12x 2恒成立,即a ln (x +1)-x +12x 2≥0恒成立.令h (x )=a ln (x +1)-x +12x 2(x ≥0),则h ′(x )=a x +1-1+x =x 2+a -1x +1(x ≥0).①当a ≥1时,h ′(x )≥0恒成立,所以函数h (x )在[0,+∞)上单调递增,因此h (x )min =h (0)=0,所以a ≥1符合条件.②当a <1时,由h ′(x )=0,x ≥0,解得x =1-a ,当x ∈(0,1-a )时,h ′(x )<0;当x ∈(1-a ,+∞)时,h ′(x )>0,h (x )min =h (1-a )<h (0)=0,这与h (x )≥0矛盾,应舍去.综上可知,实数a 的取值范围为[1,+∞).考点三双变量不等式恒(能)成立问题例3设f (x )=a x+x ln x ,g (x )=x 3-x 2-3.(1)如果存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,求满足上述条件的最大整数M ;(2)如果对于任意的s ,t ∈12,2,都有f (s )≥g (t )成立,求实数a 的取值范围.解(1)存在x 1,x 2∈[0,2],使得g (x 1)-g (x 2)≥M 成立,等价于g (x )max -g (x )min ≥M .由g (x )=x 3-x 2-3,得g ′(x )=3x 2-2x =3由g ′(x )>0,得x <0或x >23,由g ′(x )<0,得0<x <23,又x ∈[0,2],所以g (x )在0,23上单调递减,2上单调递增,又g (0)=-3,=-8527,g (2)=1,所以g (x )min ==-8527,g (x )max =g (2)=1.故g (x )max -g (x )min =11227≥M ,则满足条件的最大整数M =4.(2)对于任意的s ,t ∈12,2,都有f (s )≥g (t )成立,等价于在12,2上,f (x )min ≥g (x )max .由(1)可知在12,2上,g (x )的最大值为g (2)=1.故在12,2上,f (x )=a x+x ln x ≥1恒成立,等价于a ≥x -x 2ln x 恒成立.设h (x )=x -x 2ln x ,则h ′(x )=1-2x ln x -x ,令φ(x )=1-2x ln x -x ,φ′(x )=-(2ln x +3),当x ∈12,2时,φ′(x )<0,可知h ′(x )在12,2上是减函数,又h ′(1)=0,所以当1<x <2时,h ′(x )<0;当12<x <1时,h ′(x )>0,所以函数h (x )=x -x 2ln x 在12,1上单调递增,在(1,2]上单调递减,所以h (x )max =h (1)=1,即实数a 的取值范围是[1,+∞).“双变量”的恒(能)成立问题一定要正确理解其实质,深刻挖掘内含条件,进行等价变换,常见的等价转换有:(1)∀x 1,x 2∈D ,f (x 1)>g (x 2)⇔f (x )min >g (x )max ;(2)∀x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)⇔f (x )min >g (x )min ;(3)∃x 1∈D 1,∀x 2∈D 2,f (x 1)>g (x 2)⇔f (x )max >g (x )max ;(4)∃x 1∈D 1,∃x 2∈D 2,f (x 1)>g (x 2)⇔f (x )max >g (x )min .3.(2024·陕西渭南高三上学期第一次检测)已知函数f (x )=ln x -ax +1(a ∈R ).(1)求f (x )的单调区间;(2)设g (x )=ln x -x 4+34x,若对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,求实数a 的取值范围.解(1)函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x,当a ≤0时,f ′(x )>0,f (x )在(0,+∞)上单调递增.当a >0时,,f ′(x )>0,f (x )单调递增;+,f ′(x )<0,f (x )单调递减.综上,当a ≤0时,f (x )的单调递增区间是(0,+∞);当a >0时,f (x )+(2)g ′(x )=1x -14-34×1x 2=-x 2+4x -34x 2=(-x +1)(x -3)4x 2,在(1,3)上,g ′(x )>0,g (x )单调递增;在(3,+∞)上,g ′(x )<0,g (x )单调递减,所以g (x )max =g (3)=ln 3-12.因为对任意的x 1∈(0,+∞),存在x 2∈(1,+∞),使得f (x 1)<g (x 2)成立,等价于f (x )max <g (x )max ,由(1)知,当a ≤0时,f (x )无最值;当a >0时,f (x )max =ln a ,所以-ln a <ln 3-12,所以ln a >ln e 3,解得a >e 3.故实数a +课时作业1.(2024·湖南长沙明德中学高三上学期入学考试)已知函数f (x )=a ln x +1x+bx 且曲线y =f (x )在点(1,f (1))处的切线方程为2x -y +1=0.(1)求实数a ,b 的值及函数f (x )的单调区间;(2)若关于x 的不等式f (x )-2≥32x +m 2x恒成立,求实数m 的取值范围.解(1)将x=1代入2x-y+1=0,得y=3,所以切点为(1,3).f′(x)=ax-1x2+b,=1+b=3,=a-1+b=2=1,=2,所以f(x)=ln x+1x+2x.f′(x)=1x-1x2+2=2x2+x-1x2=(2x-1)(x+1)x2(x>0),令f′(x)=0,解得x=12,x=-1(舍去).所以当x,f′(x)<0,f(x)为减函数;当x+,f′(x)>0,f(x)为增函数.(2)因为f(x)-2≥32x+m2x恒成立,即ln x+1x+2x-2≥32x+m2x恒成立,化简为m≤x2+2x ln x-4x+2恒成立.设g(x)=x2+2x ln x-4x+2,则m≤g(x)min即可.g′(x)=2x+2ln x+2-4=2x+2ln x-2(x>0),因为g′(x)在(0,+∞)上为增函数,且g′(1)=0,所以当x∈(0,1)时,g′(x)<0,g(x)为减函数,当x∈(1,+∞)时,g′(x)>0,g(x)为增函数.g(x)min=g(1)=-1,即m≤-1.故实数m的取值范围为(-∞,-1].2.(2023·河南省部分名校高三二模)已知函数f(x)=12mx2+(m-1)x-ln x(m∈R),g(x)=x2-12e x +1.(1)讨论f(x)的单调性;(2)当m>0时,若对于任意x1∈(0,+∞),总存在x2∈[1,+∞),使得f(x1)≥g(x2),求m的取值范围.解(1)f′(x)=mx+m-1-1x=(mx-1)(x+1)x,x>0.当m≤0时,f′(x)<0恒成立,f(x)在(0,+∞)上单调递减;当m>0时,由f′(x)>0,解得x+即f(x)+,由f ′(x )<0,解得x 即f (x ).(2)当m >0时,由(1)知f (x )min =ln m +1-12m,g ′(x )=2x +12e -x >0(x ≥1)恒成立,g (x )在[1,+∞)上单调递增,所以g (x )min =g (1)=2-12e,由题意知f (x )min ≥g (x )min ,即ln m +1-12m ≥2-12e.设h (m )=ln m +1-12m,则h ′(m )=12m 2+1m>0,所以h (m )为增函数,又h (e)=2-12e,所以m ≥e ,即m 的取值范围是[e ,+∞).3.(2023·甘肃武威教育局第一次联考)已知函数f (x )=e x x +3.(1)求f (x )在(-3,+∞)上的极值;(2)若∀x ∈(-3,+∞),1f (x )-3≤ax 2-2x ,求a 的最小值.解(1)f ′(x )=(x +2)e x (x +3)2,令f ′(x )=0,得x =-2,当x ∈(-3,-2)时,f ′(x )<0,f (x )单调递减,当x ∈(-2,+∞)时,f ′(x )>0,f (x )单调递增,故f (-2)=1e2为极小值,f (x )无极大值.所以f (x )在(-3,+∞)上的极小值为1e2,无极大值.(2)由题意知1f (x )-3=x +3e x -3,令g (x )=x +3e x -3-ax 2+2x ,g ′(x )=-x +2e x-2ax +2,g (0)=0,g ′(0)=0,令h (x )=g ′(x )=-x +2e x-2ax +2,则h ′(x )=x +1ex -2a ,设u (x )=h ′(x )=x +1ex -2a ,则u ′(x )=-x e x ,当-3<x <0时,u ′(x )为正,u (x )=h ′(x )在(-3,0)上单调递增,当x >0时,u ′(x )为负,u (x )=h ′(x )在(0,+∞)上单调递减,故u (0)=h ′(0)=1-2a 为极大值.若1-2a ≤0,即a ≥12,此时h ′(x )≤0,则h (x )=g ′(x )在(-3,+∞)上单调递减,又g ′(0)=0,所以当-3<x <0时,g ′(x )>0,g (x )在(-3,0)上单调递增,当x >0时,g ′(x )<0,g (x )在(0,+∞)上单调递减,故g (0)=0为极大值,所以g (x )≤0,则当a ≥12时,符合条件;若1-2a >0,即a <12,此时h ′(0)>0,所以存在-3<x 1<0,当x ∈(x 1,0)时,u (x )=h ′(x )>0,则h (x )=g ′(x )在(x 1,0)上单调递增,又h (0)=g ′(0)=0,则在区间(x 1,0)上,g ′(x )<g ′(0)=0,所以在区间(x 1,0)上,g (x )单调递减,则g (x )>g (0)=0,不满足条件.综上所述,a 的最小值为12.4.已知函数f (x )=x 36-ax (a ∈R ).(1)讨论f (x )的单调性;(2)若对任意x ∈[0,+∞),f (x )≥-sin x 恒成立,求a 的取值范围.解(1)由题意,得f (x )的定义域为R ,且f ′(x )=x 22-a ,当a ≤0时,f ′(x )≥0恒成立,所以f (x )在R 上单调递增.当a >0时,由f ′(x )>0,得x <-2a 或x >2a ;由f ′(x )<0,得-2a <x <2a ,所以f (x )在(-∞,-2a )上单调递增,在(-2a ,2a )上单调递减,在(2a ,+∞)上单调递增.(2)f (x )≥-sin x ⇔x 36+sin x -ax ≥0,设g (x )=x 36+sin x -ax (x ≥0),则g ′(x )=x 22+cos x -a ,设h (x )=x 22+cos x -a (x ≥0),则h ′(x )=x -sin x ,设m (x )=x -sin x (x ≥0),则m ′(x )=1-cos x ≥0,所以h ′(x )在[0,+∞)上单调递增,所以h ′(x )≥h ′(0)=0,所以g ′(x )在[0,+∞)上单调递增,当a ≤1时,g ′(0)=1-a ≥0,所以g ′(x )≥0在[0,+∞)上恒成立,故g (x )在[0,+∞)上单调递增,结合g (0)=0知g (x )≥0恒成立,符合题意;当a >1时,g ′(0)=1-a <0,g ′(2a )=a (2a -1)+cos2a >0,所以g ′(x )在(0,2a )上有一个零点x 0,且当x ∈[0,x 0)时,g ′(x )<0,所以g (x )在[0,x 0)上单调递减,结合g (0)=0知,当x ∈(0,x 0)时,g (x )<0,从而f (x )<-sin x ,不符合题意.综上所述,a 的取值范围为(-∞,1].5.(2024·河南省实验中学高三第一次月考)已知函数f (x )=a e x +x +1.(1)讨论f (x )的单调性;(2)当x >1时,f (x )>lnx -1a +x ,求实数a 的取值范围.解(1)依题意,得f ′(x )=a e x +1.当a ≥0时,f ′(x )>0,所以f (x )在(-∞,+∞)上单调递增.当a <0时,令f ′(x )>0,可得x <-ln (-a );令f ′(x )<0,可得x >-ln (-a ),所以f (x )在(-∞,-ln (-a ))上单调递增,在(-ln (-a ),+∞)上单调递减.综上所述,当a ≥0时,f (x )在(-∞,+∞)上单调递增;当a <0时,f (x )在(-∞,-ln (-a ))上单调递增,在(-ln (-a ),+∞)上单调递减.(2)因为当x >1时,f (x )>lnx -1a +x ,所以a e x +x +1>ln x -1a+x ,即e ln a e x +x +1>ln (x -1)-ln a +x ,即e x +ln a +ln a +x >ln (x -1)+x -1,即e x +ln a +x +ln a >e ln (x -1)+ln (x -1).令h (x )=e x +x ,则有h (x +ln a )>h (ln (x -1))对任意x ∈(1,+∞)恒成立.因为h ′(x )=e x +1>0,所以h (x )在(-∞,+∞)上单调递增,故只需x +ln a >ln (x -1),即ln a >ln (x -1)-x 对任意x ∈(1,+∞)恒成立.令F (x )=ln (x -1)-x ,则F ′(x )=1x -1-1=2-x x -1,令F ′(x )=0,得x =2.当x ∈(1,2)时,F ′(x )>0;当x ∈(2,+∞)时,F ′(x )<0,所以F (x )在(1,2)上单调递增,在(2,+∞)上单调递减,所以F (x )≤F (2)=-2.因此ln a >-2,所以a >1e2.即实数a +6.(2023·安徽舒城中学高三仿真模拟(三))已知f (x )=a ln x +12x 2-2x (a ∈R 且a ≠0),g (x )=cos x +x sin x .(1)求g (x )在[-π,π]上的最小值;(2)如果对任意x 1∈[-π,π],存在x 2∈1e ,e ,使得f (x 2)x 2-a ≤g (x 1)成立,求实数a 的取值范围.解(1)g ′(x )=-sin x +sin x +x cos x =x cos x ,显然g (x )为偶函数,当x >0时,当x ,x cos x >0,g ′(x )>0,∴g (x )当x ,x cos x <0,g ′(x )<0,∴g (x ),又g (0)=1,=π2,g (π)=-1,∴g (x )在(0,π]上的最小值为-1.由偶函数图象的对称性可知,g (x )在[-π,π]上的最小值为-1.(2)先证ln x ≤x -1,设h (x )=ln x -x +1,则h ′(x )=1x -1=1-x x,令h ′(x )>0,得0<x <1,令h ′(x )<0,得x >1,∴h (x )在(0,1)上单调递增,在(1,+∞)上单调递减.h (x )≤h (1)=0,故ln x ≤x -1①恒成立.由题意可得∃x 2∈1e ,e ,使得f (x 2)x 2-a ≤-1成立,即a (x 2-ln x 2)≥12x 22-x 2成立.由①可知x 2-ln x 2≥1>0,参变分离得a ≥12x 22-x 2x 2-ln x 2.设φ(x )=12x 2-x x -ln x,x ∈1e ,e ,即只需a ≥φ(x )min 即可.φ′(x )=(x -1)(x -ln x )2-·x -1x (x -ln x )2由①知ln x ≤x -1,得-ln x ≥1-x ,∴12x -ln x +1≥12x +1-x +1=2-12x =4-x 2>0,令φ′(x )>0,得1<x <e ,令φ′(x )<0,得1e <x <1,∴φ(x ),在(1,e)上单调递增.∴φ(x )min =φ(1)=-12,∴a ≥-12,又已知a ≠0,故实数a 的取值范围为-12,(0,+∞).。
微专题23 恒成立、能成立问题(解析版)
解得 ,所以 的取值范围为
(3)当 时, ,开口向上,对称轴为
当 时, , , ,
时, ,由题意,
对任意 ,总存在 ,使 成立,
即函数 的值域是函数 的值域的子集,
即 , ,
解得 ,所以 的取值范围为 .
例11.(2022·浙江·杭十四中高一期末)已知函数 , ,
(1)当 时,求函数 的单调递增与单调递减区间(直接写出结果);
A. B.
C. D.
【答案】B
【解析】因为对任意 ,有 恒成立,
所以 ,
因为 ,所以 ,
所以 ,
故选:B
例2.(2022·天津·高一期末)对于满足等式 的任意正数 及任意实数 ,不等式 恒成立,则实数 的取值范围为()
A. B. C. D.
【答案】B
【解析】因为任意正数 满足等式 ,
所以 ,
当且仅当 ,即 时等号成立,
所以当 时, ,
又 的对称轴为 , ,
当 时, 在 上单调递增, ,解得 ,
所以 ;
当 时, 在 上单调递减,在 上单调递增,
,解得 ,所以 ;
当 时, 在 上单调递减, ,解得 ,
所以 ,
综上可知,实数m的取值范围是 .
变式9.(2022·山西·晋城市第一中学校高一阶段练习)已知函数 ,
(1)判断函数 在区间 上的单调性,并利用定义证明;
,可得 ,
,可得 .
(2)证明:对任意的正实数 、 都有 恒成立,
令 ,则 ,可得 ,
对任意的正数 、 ,则 ,
所以, ,
故 .
(3)由 ,可得 ,
由(2)可知,函数 在 上为增函数.
导数与不等式恒(能)成立-高考数学复习
可知 h′(x)在区间12,2上是减函数,
第三章 导数及其应用
高考一轮总复习 • 数学
返回导航
又h′(1)=0, 所以当1<x<2时,h′(x)<0; 当12<x<1 时,h′(x)>0. 即函数 h(x)=x-x2ln x 在区间12,1上单调递增,在区间(1,2)上单调 递减,所以 h(x)max=h(1)=1, 所以a≥1,即实数a的取值范围是[1,+∞).
第三章 导数及其应用
高考一轮总复习 • 数学
【卡壳点】不能把a+a 1看作整体,分离出来 设函数 F(x)=2xx-ex 1(x>0), 则 F′(x)=-2x+x12exx-1.
返回导航
第三章 导数及其应用
高考一轮总复习 • 数学
返回导航
【易错点】导数运算 当0<x<1时,F′(x)>0;当x>1时,F′(x)<0, 所以函数 F(x)在(0,1)上单调递增,在(1,+∞)上单调递减,所以 F(x)max =F(1)=1e.
第三章 导数及其应用
高考一轮总复习 • 数学
返回导航
【变式训练】 已知函数 f(x)=(x-1)ex+1+mx2,当 0<m≤6 时,g(x)=x3-4x-mx,x ∈(0,2].若存在 x1∈R,x2∈(0,2],使 f(x1)≤g(x2)成立,求实数 m 的取值 范围.
第三章 导数及其应用
高考一轮总复习 • 数学
gfxx=lxi→ma
gf′′xx=A.
第三章 导数及其应用
高考一轮总复习 • 数学
返回导航
已知函数f(x)=(x+1)ln(x+1).若对任意x>0都有f(x)>ax成立,求实 数a的取值范围.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数与恒成立、能成立问题专题一、基础理论回顾1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若 ,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 8、若不等式()()f x g x >在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方; 9、若不等式()()f x g x <在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;二、经典题型解析题型一、简单型例1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a . 例2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围. 分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤; 方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x xax h ++=)(求导,22))((1)(xa x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者. ⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b . 例3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为 答案:41≥m 题型二、更换主元和换元法例1、已知函数()ln()(x f x e a a =+为常数)是实数集R 上的奇函数,函数()()sin g x f x x λ=+是区间[]1,1-上的减函数,(Ⅰ)求a 的值;(Ⅱ)若[]2()11,1g x t t x λ≤++∈-在上恒成立,求t 的取值范围;(Ⅱ)分析:在不等式中出现了两个字母:λ及t ,关键在于该把哪个字母看成是一个变量,另一个作为常数。
显然可将λ视作自变量,则上述问题即可转化为在(],1-∞-内关于λ的一次函数大于等于0恒成立的问题。
(Ⅱ)略解:由(Ⅰ)知:()f x x =,()sin g x x x λ∴=+,()g x Q 在[]11-,上单调递减,()cos 0g x x λ'∴=+≤cos x λ∴≤-在[]11-,上恒成立,1λ∴≤-,[]max ()(1)sin1g x g λ=-=--,∴只需2sin11t t λλ--≤++,2(1)sin110t t λ∴++++≥(其中1λ≤-)恒成立,由上述②结论:可令()2(1)sin110(1f t t λλλ=++++≥≤-),则2t 101sin110t t +≤⎧⎨--+++≥⎩,21sin10t t t ≤-⎧∴⎨-+≥⎩,而2sin10t t -+≥恒成立,1t ∴≤-。
例2、已知二次函数1)(2++=x ax x f 对[]2,0∈x 恒有0)(>x f ,求a 的取值范围。
解: 对[]2,0∈x 恒有0)(>x f 即012>++x ax 变形为)1(2+->x ax当0=x 时对任意的a 都满足0)(>x f 只须考虑0≠x 的情况2)1(x x a +->即211x x a --> 要满足题意只要保证a 比右边的最大值大就行。
现求211x x --在(]2,0∈x 上的最大值。
令211≥∴=t x t 41)21()(22++-=--=t t t t g (21≥t )43)21()(max -==g t g 所以43->a又1)(2++=x ax x f 是二次函数0≠∴a 所以43->a 且0≠a例3、对于满足0≤a ≤4的所有实数a 求使不等式342-+>+a x ax x都成立的x 的取值范围答案:1-<x 或3>x题型三、分离参数法(欲求某个参数的范围,就把这个参数分离出来)此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧看成新函数,于是将问题转化成新函数的最值问题:若对于x 取值范围内的任一个数都有()()f x g a ≥恒成立,则min ()()g a f x ≤;若对于x 取值范围内的任一个数都有()()f x g a ≤恒成立,则max ()()g a f x ≥. 例1、当()1,2x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .解析: 当(1,2)x ∈时,由240x mx ++<得24x m x+<-.∴5m ≤-.例2、已知函数()ln()xf x e a =+(a 为常数)是实数集R 上的奇函数,函数()cosg x x x λ=-在区间2,33ππ⎡⎤⎢⎥⎣⎦上是减函数.(Ⅰ)求a 的值与λ的范围;(Ⅱ)若对(Ⅰ)中的任意实数λ都有()1g x t λ≤-在2,33ππ⎡⎤⎢⎥⎣⎦上恒成立,求实数t 的取值范围. (Ⅲ)若0m >,试讨论关于x 的方程2ln 2()xx ex m f x =-+的根的个数. 解:(Ⅰ)、(Ⅲ)略(Ⅱ)由题意知,函数()cos g x x x λ=-在区间2,33ππ⎡⎤⎢⎥⎣⎦上是减函数. max 1()(),332g x g ππλ∴==-()1g x t λ≤-在2,33ππ⎡⎤⎢⎥⎣⎦上恒成立11,32t πλλ⇔-≥-132t πλ∴≤+(1)λ≤-Q 1,.32t π∴≤- 题型四、数形结合(恒成立问题与二次函数联系(零点、根的分布法)) 例1、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________ 解析:对∀x R ∈,不等式||x ax ≥恒成立、则由一次函数性质及图像知11a -≤≤,即11a -≤≤。
例2、不等式)4(x x ax -≤在]3,0[∈x 内恒成立,求实数a 的取值范围。
解:画出两个凼数ax y =和)4(x x y -=在]3,0[∈x 上的图象如图|ax=yxy33=a 知当3=x 时3=y , 当33≤a ]3,0[∈x 时总有)4(x x ax -≤所以33≤a例4、已知函数36,2(),63,2x x y f x x x +≥-⎧==⎨--<-⎩若不等式()2f x x m ≥-恒成立,则实数m 的取值范围是 .解:在同一个平面直角坐标系中分别作出函数2y x m =-及()y f x =的图象,由于不等式()2f x x m ≥-恒成立,所以函数2y x m =-的图象应总在函数()y f x =的图象下方,因此,当2x =-时,40,y m =--≤所以4,m ≥-故m 的取值范围是[)4,.-+∞题型五、其它(最值)处理方法 若在区间D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()f x B <成立,则等价于在区间D 上的()min f x B <.|ax=yxy利用不等式性质1、存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______。
解:设()31f x x x =++-,由()23f x a a ≤-有解,()2min 3a a f x ⇒-≥,又()()31314x x x x ++-≥+--=,∴234a a -≥,解得41a a ≥≤-或。
2、若关于x 的不等式a x x ≥++-32恒成立,试求a 的范围解:由题意知只须a 比32++-x x 的最小值相同或比其最小值小即可,得min )32(++-≤x x a由5)3(232=+--≥++-x x x x 所以 5≤a利用分类讨论 1、已知函数422)(+-=ax x x f 在区间[-1,2] 上都不小于2,求a 的值。