二次函数求最大利润问题导学案

合集下载

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计

人教版九年级上册22.3实际问题与二次函数(最大利润问题)教案教学设计
4.练习:布置一定数量的练习题,巩固学生对最大利润问题的解决方法。
5.总结:对本节课的内容进行总结,强调二次函数在实际问题中的应用。
6.课后作业:布置与最大利润问题相关的作业,让学生在课后进一步巩固所学知识。
教学评价:
1.课堂表现:关注学生在课堂上的参与程度,积极思考、提问的表现。
2.作业完成情况:评价学生对最大利润问题解决方法的掌握程度。
(2)鼓励学生尝试用不同的方法解决同一问题,提高他们的思维灵活性和创新意识。
3.拓展作业:
(1)引导学生关注生活中的最大利润问题,如超市促销、工厂生产等,要求学生运用所学知识进行分析,并提出解决方案。
(2)鼓励学生查找相关资料,了解二次函数在其他领域的应用,如经济学、管理学等。
4.作业要求:
(1)要求学生在作业本上规范书写,保持卷面整洁。
4.通过对最大利润问题的探讨,培养学生的数感和运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过小组合作、讨论交流等形式,培养学生合作探究、解决问题的能力。
2.引导学生运用数学建模的思想,从实际问题中抽象出数学模型,提高学生的数学思维能力。
3.运用数形结合的方法,让学生在解决最大利润问题的过程中,深入理解二次函数的性质和图像。
(2)新课:讲解二次函数在实际问题中的应用,通过例题让学生体会最大利润问题的解决方法。
(3)练习:设计不同难度的练习题,让学生在解决最大利润问题的过程中,巩固所学知识。
(4)总结:对本节课的重点知识进行总结,强调二次函数在实际问题中的应用。
3.教学策略:
(1)关注学生的个体差异,实施分层教学,使每个学生都能在原有基础上得到提高。
三、教学重难点和教学设想
(一)教学重难点

人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计

人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计

人教版九年级数学上册22.3.2《二次函数与最大利润问题》教学设计一. 教材分析《二次函数与最大利润问题》这一节内容,是在学生学习了二次函数的基础上进行的。

教材通过实例引出二次函数在实际问题中的应用,让学生感受数学与生活的紧密联系,培养学生的应用意识。

同时,本题也是中考的热点题型,对于学生来说,理解和掌握二次函数在最大利润问题中的应用,对于提高他们的数学素养和解决问题的能力具有重要意义。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对于二次函数的图像和性质有一定的了解。

但是,将二次函数应用于实际问题中,求最大利润问题,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们解决问题的能力。

三. 教学目标1.理解二次函数在最大利润问题中的应用。

2.能够列出二次函数表示的生产成本函数,并求出最大利润。

3.培养学生的应用意识和解决问题的能力。

四. 教学重难点1.重点:二次函数在最大利润问题中的应用。

2.难点:如何将实际问题转化为二次函数问题,并求解最大利润。

五. 教学方法采用问题驱动的教学方法,通过实例引导学生主动探究二次函数在最大利润问题中的应用,培养学生的动手能力和解决问题的能力。

同时,辅以小组合作学习,让学生在讨论中加深对知识的理解。

六. 教学准备1.准备相关的实例,用于引导学生探究二次函数在最大利润问题中的应用。

2.准备PPT,用于展示问题和解答过程。

七. 教学过程1.导入(5分钟)通过一个实际问题引出本节内容:某工厂生产一种产品,固定成本为8000元,每生产一件产品的成本为200元,售价为300元,问工厂每月生产多少件产品时,可以获得最大利润?2.呈现(10分钟)引导学生将实际问题转化为数学问题,列出二次函数表示的生产成本函数和利润函数。

设每月生产x件产品,利润函数为:y = 300x - 200x - 8000 = 100x - 8000。

3.操练(10分钟)让学生尝试求解最大利润,引导他们发现这是一个二次函数的最大值问题。

实际问题与二次函数--利润最大导学案

实际问题与二次函数--利润最大导学案

实际问题与二次函数--利润最大导学案班级: 姓名:【学习目标】1. 知识与技能:通过本节学习,巩固二次函数y=2ax bx c ++(a ≠0)的图象与性质,理解顶点与最值的关系,会求解最值问题。

2. 过程与方法:通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。

3. 情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。

【学习重、难点】利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求利润最值问题【学习过程】 基础扫描1.二次函数y=ax 2+bx+c 的图象是一条 ,它的对称轴是 ,顶点坐标是 . 当a>0时,抛物线开口向 ,有最 点,函数有最 值,是 ;当 a<0时,抛物线开口向 ,有最 点,函数有最 值,是 。

2. 二次函数y=-3(x+4) 2-1的对称轴是 ,顶点坐标是 。

当x= 时,函数有最 值,是 。

3.二次函数y=2x 2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最 值,是 。

一、自主探究问题1.已知某商品的进价为每件40元,售价是每件60元,每星期可卖出300件。

市场调查反映:如果调整价格,每涨价1元,每星期要少卖出10件。

要想每周获得6090元的利润,该商品定价应为多少元? 分析:没调价之前商场一周的利润为 ,设销售单价上调了x 元,那么每件商品的利润可表示为 ,每周的销售量可表示为 ,一周的利润可表示为 ,要想获得6090元利润可列方程 。

解:若设商品销售单价上调了x 元,那么每件商品的利润可表示为 ,每周的销售量可表示为 ,一周的利润可表示为 ,要想获得6090元利润可列方程 。

二.合作交流问题2.已知某商品的进价为每件40元。

18二次函数与最大利润问题教案

18二次函数与最大利润问题教案

二次函数与最大利润问题一、教学目标(一)知识与技能:1.会列出实际问题中变量之间的二次函数关系,并感受数学的应用价值;2.运用配方法或公式法求出实际问题的最大值、最小值,发展解决问题的能力.(二)过程与方法:经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.(三)情感态度与价值观:1.体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心;2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.二、教学重点、难点重点:探素销售中最大利润问题,从数学角度理解“何时获得最大利润”的意义.难点:从实际问题中抽象出二次函数建立函数模型,以利用二次函相关知识解决实际生活中的最大(小)值问题.三、教学过程教材导学1.二次函数y=2x2-8x+1图象的顶点坐标是________,当x=____时,y的最小值为____.2.某旅行社要接团去外地旅游,经计算所获利润y(元)与旅行团人数x(人)满足关系式y=-x2+100x.(1)二次函数y=-x2+100x的图象开口向___,有最___值,为_____;(2)要使旅行团所获利润最大,则此时旅行团应有___人.利润问题一.几个量之间的关系.1.总价、单价、数量的关系:总价=单价×数量2.利润、售价、进价的关系:利润=售价-进价3.总利润、单件利润、数量的关系:总利润=单件利润×数量二.在商品销售中,通常采用哪些方法增加利润?探究2某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,如何定价才能使利润最大?没调整价格之前的利润是_____元.解:(1)设每件商品涨价x元,每星期售出的利润为y元.则每星期少卖_____件,实际卖出_________件,销售额为_______________元,买进商品需付___________元.因此,所得利润y=___________________________,即y=_______________,其中,0≤x≤30.方法2:设每件商品涨价x元,每星期售出的利润为y元.则每件利润是___________元,每星期少卖____件,实际卖出________件,因此,所得利润y=_____________即y=___________,其中,0≤x≤30.解:(1)设每件商品涨价x元,每星期售出的利润为y元.y=-10x2+100x+6000,其中,0≤x≤30.根据上面的函数,填空:当x=____时,y最大,也就是说,在涨价的情况下,涨价____元,即定价_____元时,利润最大,最大利润是______元.解:(2)设每件商品降价x元,每星期售出的利润为y元.则每件利润是___________元,每星期多卖_____件,实际卖出_________件,因此,所得利润y =_____________________,即y =_______________,其中,_________.解:(2)设每件商品降价x 元,每星期售出的利润为y 元.y =-20x 2+100x +6000,其中,0≤x ≤20.根据上面的函数,填空:当x =____时,y 最大,也就是说,在降价的情况下,降价____元,即定价_____元时,利润最大,最大利润是______元.(1)涨价5元,即定价65元时,利润最大,最大利润是6250元;(2)降价2.5元,即定价57.5元时,利润最大,最大利润是6125元.由(1)(2)的讨论及现在的销售情况,你知道应如何定价能使利润最大了吗?当定价为65元时,能使利润最大,最大利润是6250元.某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.在上述问题中,种多少棵橙子树,可以使果园橙子的总产量最多?解:设果园增种x 棵橙子树,总产量为y 个.则果园共有_______棵橙子树,这时平均每棵树结_________个橙子.y =(100+x )(600-5x ) 即 y =-5x 2+100x +60000 (0≤x ≤120)∵ a =-5<0∴ 当x ==10,y 最大=60500即果园增种10棵橙子树,总数为110棵时,可以使果园橙子的总产量最多,最多为60500个.归纳总结此类问题一般是先利用“总利润=总售价-总成本”或“总利润=每件商品的利润×销售数量”建立利润与价格之间的函数关系式(一般是二次函数),求出这个函数关系式的顶点坐标,从而可得最大利润.同时还要注意实际问题中自变量的取值范围.练习某商店经营某种商品,已知成批购进时单价是2.5元.根据市场调查,销售量与单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.请你帮助分析,销售单价是多少时,可以获利最多?解:设每件商品降价x 元,总获利为y 元.依题意得y =(13.5-2.5-x )(500+200x ) 即 y =-200x 2+1700x +5500 (0≤x ≤11)∵ a =-200<0,∴ 当x =4.25,y 最大=9112.5即每件商品降价4.25元,销售单价是9.25元时,可以获得最大利润,最大利润是9112.5元.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思教学过程中,强调学生自主探索和合作交流,经历将实际问题转化为函数问题,并利用函数的性质进行决策.)5(2100-⨯-。

人教版九年级数学上册2232二次函数与最大利润问题教学设计

人教版九年级数学上册2232二次函数与最大利润问题教学设计

第二十二章二次函数
22.3 实际问题与二次函数
第2课时二次函数与最大利润问题
(续表)
(续表)
(续表)
(续表)
活动四:课堂总结反思
1.课堂总结:
(1)谈一谈你在本节课中有哪些收获?哪些进步?
(2)学习本节课后,还存在哪些困惑?
2.布置作业:
教材第51页习题22.3第2,8题.
小结环节的设置能
够让学生养成自主
归纳课堂重点的习
惯,提高学生的学习
能力.
【知识网络】
提纲挈领,重点突出
【教学反思】
①[授课流程反思]
在创设情境和探究新知环节中,通过解决实际生活中的利
润问题,从而得到解答此类问题的一般方法,构建函数模
型;在课堂训练环节中,教师给予学生充分的自由讨论时
间,提高学生解答问题的积极性.
②[讲授效果反思]
教师强调:(1)利用利润公式列函数解析式;(2)在数
量与价格的变化中利用表格形式表示数量关系.
③[师生互动反思]
从课堂发言和练习来看,借助实际问题和开放自由的讨论
给予课堂活力,使学生能够充分理解利润问题的函数模型.
④[习题反思]
好题题号
错题题号
反思教学过程和教
师表现,进一步提升
操作流程和自身素
质.。

二次函数最大利润

二次函数最大利润
y=x2 开始,然后是 y=ax2.y= 2 2 2 2 教学活动 1 ax +c,最后是 y=a(x-h) ,y=a(x-h) +k,y=ax +bx+c,掌握了二 次函数的三种表示方式.本节课我们将进一步用二次函数来研究 获取最大利润的实际问题。 (出示多媒体课件,复习巩固二次函数的有关性质)
17 2 ) 9112 .5 4
b 100 10 ∵ 2a 2 (5) 4ac b 2 4 (5) 60000 1002 60500 4a 4 (5)
∴当 x=10 时,y 最大=60500. [师]回忆一下我们前面的猜测正确吗? [生]正确. (2) 、议一议 (1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的 关系. (2)增种多少棵橙子树,可以使橙子的总产量在 60400 个以上? (学生思考后多媒体课件显示) 3、实践应用 某商店购进一批单价为 20 元的日用品,如果以单价 30 元销 售,那么半个月内可以售出 400 件。根据销售经验,提高销售单 价会导致销售量的减少,即销售单价每提高 1 元,销售量相应减 少 20 件。如何提高售价,才能在半个月内获得最大利润? 解:设销售单价提高 x 元,销售利润为 y 元,则 y=(x+30-20)(400-20x) =-20x2+200x+4000 =-20(x-5)2+4500 ∴当 x=5 时,y 最大 =4500 答:当售价提高 5 元时,半月内可获最大利润 4500 元
《何时获得最大利润》教学设计方案
课题名称 科 目 教学时间
何时获得最大利润 数学 1 课时(40 分钟) 年 级 九年级
在九年级下册第二章前五节中学生已研究了二次函数的图像与性 质,掌握了研究二次函数常用的方法,能用配方法或公式法求二 次函数的最值。而何时获得最大利润是运用二次函数解决实际问 学习者分析 题,学生的兴趣较浓,积极性较高。在此条件下只要对学生适时 引导,采用适当的方法学生便可掌握本节内容,从而发展其数学 应用能力。

6.4二次函数的应用(4)导学案

6.4二次函数的应用(4)导学案

6.4二次函数的应用(4)学习目标:体会二次函数是一类最优化问题的数学模型.了解数学的应用价值,掌握实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大值、最小值.学习重点:重点是应用二次函数解决实际问题中的最值.学习难点:难点在于能正确理解题意,找准数量关系.学习方法:在教师的引导下自主学习。

学习过程:一、有关利润问题:某种粮大户去年种植优质水稻360亩,今年计划增加承租x (100≤x ≤150)亩。

预计,原种植的360亩水稻今年每亩可收益440元,新增地今年每亩的收益为(440-2x )元。

试问:该种粮大户今年要增加承租多少亩水稻,才能使总收益最大?最大收益是多少?二、做一做:某果园有100棵橙子树,每一棵平均结600个橙子。

现准备多种一些橙子树以提高产量,但是如果多种树,树之间的距离和每一棵树所接收的阳光就会减少,根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子。

⑴假设果园增种x 棵橙子树,那么果园共有多少棵橙子树?这时平均每棵树结多少个橙子? ⑵如果果园橙子的总产量为y 个,那么请你写出y 与x 之间的关系式;⑶y 与x 是怎样的函数关系?自变量x 的取值范围有何限制?三、举例:【例题】某化工材料经销公司购进了一种化工原料共7000kg ,购进价格为30元/kg ,物价部门规定其销售单价不得高于70元/kg ,也不得低于30元/kg .市场调查发现,单价定为70元时,日均销售60kg ;单价每降低1元,日均多售出2kg .在销售过程中,每天还要支出其他费用500元(天数不足一天时,按整天计算).设销售单价为x 元,日均获利为y 元.(1)求y 关于x 的二次函数表达式,并注明x 的取值范围.(2)将(1)中所求出的二次函数配方成y=a (x +a b 2)2+ab ac 442 的形式,写出顶点坐标,在图所示的坐标系中画出草图.观察图象,指出单价定为多少元时日均获利最多?是多少?(3)若将这种化工原料全部售出比较日均获利最多和销售单价最高这两种方式,哪一种获总利较多?多多少?四、随堂练习:1.某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?2.某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40元~70元之间.市场调查发现,若每箱以50元销售,平均每天可销售90箱;价格每降低1元,平均每天多销售3箱;价格每升高1元,平均每天少销售3箱.(1)写出平均每天销售量y(箱)与每箱售价x(元)之间的函数表达式(注明范围);(2)求出商场平均每天销售这种年奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数表达式;(每箱利润=售价-进价)(3)求出(2)中二次函数图象的顶点坐标,并求出当x=40,70时W的值,在直角坐标系中画出函数图象的草图;(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润是多少?五、课后练习1.将进货为40元的某种商品按50元一个售出时,能卖出500个.已知这时商品每涨价一元,其销售数就要减少20个.为了获得最大利益,售价应定为多少?2.某医药研究所进行某一治疗病毒新药的开发,经过大量的服用试验后知,成年人按规定的剂量服用后,每毫升血液中含药量y微克(1微克=10-3毫克)随时间x小时的变化规律与某一个二次函数y=ax2+bx+c(a≠0)相吻合.并测得服用时(即时间为0时)每毫升血液中含药量为0微克;服用后2小时每毫升血液中含药量为6微克;服用后3小时,每毫升血液中含药量为7.5微克.(1)试求出含药量y(微克)与服药时间x(小时)的函数表达式,并画出0≤x≤8内的函数图象的示意图.(2)求服药后几小时,才能使每毫升血液中含药量最大?并求出血液中的最大含药量.3.某公司生产的A种产品,它的成本是2元,售价是3元,年销售量为10万件.为了获得更好的效益,公司准备拿出一定的资金做广告.根据经验,每年投入的广告费是x(10万元)时,产品的年销售量将是原销售量的y倍,且y是x的二次函数,它们的关系如下表:(1)求y与x(2)如果把利润看作是销售总额减去成本和广告费,试写出年利润S(10万元)与广告费x (10万元)函数表达式;(3)如果投入的广告费为10万元~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增大?。

人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)

人教版九年级上册22.3实际问题与二次函数(最大利润问题)(教案)
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了二次函数在最大利润问题中的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对这一知识点的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
在学生小组讨论环节,虽然学生们提出了很多有见地的观点,但我感觉他们在分析问题和解决问题的能力上还有待提高。为此,我计划在今后的教学中,多设计一些开放性的问题,引导学生深入思考,培养他们的逻辑思维和分析能力。
总之,在本次教学过程中,我深刻认识到了自身在教学方法和策略上的不足,也看到了学生在学习过程中遇到的困难。在今后的教学中,我将不断调整和改进,努力提高教学效果,让每个学生都能在数学学习的道路上取得更好的成绩。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“二次函数在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
-二次函数模型的建立:如何根据问题的具体情境,正确地建立二次函数模型,包括确定自变量和因变量,理解函数中各个参数的实际意义。
-实际问题与数学模型的关联:将实际问题抽象成数学模型,理解数学模型背后的实际背景,以及如何将数学结果应用到实际问题中去。
举例:在农产品销售问题中,重点在于让学生理解售价、销售量和成本之间的关系,并将其表达为二次函数的形式。

实际问题与二次函数------最大利润问题

实际问题与二次函数------最大利润问题

22.3.2实际问题与二次函数------最大利润问题一、教学目标:1、知识与技能:通过探究实际问题与二次函数关系,能用配方法或公式法求二次函数最值,并由自变量的取值范围确定实际问题的最值。

2、过程与方法:(1)、通过研究生活中实际问题,体会建立数学建模的思想. (2)、通过学习和探究“销售利润”问题,渗透转化及分类的数学思想方法.3、情感态度:通过将“二次函数的最大值”的知识灵活用于实际,让学生亲自体会到学习数学的价值,从而提高学生学习数学的兴趣。

二、学情分析:学生已经学习了二次函数的定义、图象和性质,学习了列代数式,列方程解应用题,这些内容的学习为本节课奠定了基础,使学生具备了一定的建模能力,但运用二次函数的知识解决实际问题要求学生能比较灵活的运用知识,对学生来说要完成这一建模过程难度较大。

三、教学重难点:教学重点:1、理解数学建模的基本思想,能从实际问题中抽象出二次函数的数学模型。

2、能根据实际问题,确立二次函数解析式,并用配方法或公式法求最值教学难点:从实际情景中抽象出函数模型。

四、教学过程:【活动1】小视频导入本节课的探究内容:某运动服的进价为每套40元,售价是每套60元时,每星期可卖出300套,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10套,每降价1元,每星期可多卖出20套,问:如何定价才能使利润最大?(设计说明:教师通过小视频将这个实际问题呈现给学生,但本问题是一道较复杂的市场营销问题,不能直接建立函数模型,需要分类讨论,初中学生分类讨论的思想较薄弱,这给解题造成了障碍,造成学习上的困难,因此,并没有马上去处理这个问题而是先进行一下知识储备。

)【活动2】小组合作探究解决自主学习中存在的问题:1、与利润有关的几个等式:(1)总价、单价、数量的关系;(2)单件利润、售价、进价的关系;(3)总利润、单件利润、数量的关系。

2、如何求2(0)y ax bx c a=++≠的最值?你有几种方法?3、二次函数2=-+的对称轴是直线,顶点坐标是y x2(3)5当x= 时,y有最值,是。

北师大版九年级数学下册:2.4《二次函数的应用——何时利润最大》教案

北师大版九年级数学下册:2.4《二次函数的应用——何时利润最大》教案

北师大版九年级数学下册:2.4《二次函数的应用——何时利润最大》教案一. 教材分析《二次函数的应用——何时利润最大》这一节内容,主要让学生了解二次函数在实际生活中的应用,学会利用二次函数解决实际问题。

通过本节课的学习,学生能够掌握二次函数在利润最大化问题中的应用,提高他们运用数学知识解决实际问题的能力。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有一定的了解。

但是,将二次函数应用于实际问题中,求解利润最大值,可能对学生来说较为复杂。

因此,在教学过程中,教师需要引导学生将实际问题转化为数学问题,利用已学的二次函数知识进行求解。

三. 教学目标1.让学生了解二次函数在实际生活中的应用,体会数学与生活的紧密联系。

2.培养学生运用二次函数解决实际问题的能力。

3.提高学生分析问题、解决问题的能力。

四. 教学重难点1.重点:二次函数在实际问题中的应用,求解利润最大值。

2.难点:将实际问题转化为数学问题,利用二次函数求解利润最大值。

五. 教学方法1.情境教学法:通过生活实例,引导学生感受二次函数在实际问题中的应用。

2.启发式教学法:引导学生主动思考,分析问题,解决问题。

3.小组合作学习:让学生在小组内讨论、交流,共同解决问题。

六. 教学准备1.教学课件:制作课件,展示二次函数在实际问题中的应用。

2.练习题:准备一些相关的练习题,让学生在课堂上进行操练。

七. 教学过程1.导入(5分钟)利用生活实例,如一家企业的利润与销售量之间的关系,引出二次函数在实际问题中的应用。

让学生感受数学与生活的紧密联系。

2.呈现(10分钟)呈现一个具体的利润最大化问题,如一家企业的利润与生产成本、销售价格之间的关系。

引导学生将实际问题转化为数学问题,列出二次函数的表达式。

3.操练(10分钟)让学生在小组内讨论、交流,共同解决问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)让学生独立完成一些类似的练习题,巩固所学知识。

《中考数学疑难问题---利润问题》教学设计

《中考数学疑难问题---利润问题》教学设计

《中考数学疑难问题---利润问题》教学设计一、疑难点分析二次函数是初等函数中的重要函数,在解决各类数学问题和实际问题中有着广泛的应用,是中考的热点之一。

学习二次函数,对于学生数形结合、函数方程等重要数学思想方法的培养,对扩宽学生解题思路、发展智力、培养能力具有十分重要意义。

本节课把一元二次方程和二次函数紧密联系在一起,并在自变量的取值范围内,根据函数的单调性求 y 的最大值。

让学生体会数学建模思想和数形结合的方法解决实际问题。

二、学情分析学生的知识技能基础:学生已经掌握了一元二次方程解决实际问题,二次函数的图像与性质,能用性质解决简单的实际问题。

学生的活动经验基础:学生对简单的利润问题能够解决,较复杂的问题无法入手,急需要对利润问题有个突破。

三、教学目标1.知识与能力:能正确列出函数关系,知道最大值就是顶点的纵坐标;根据题意会用二次函数顶点坐标及非顶点求出实际问题中的最大利润;2.过程与方法:经历从实际问题中建立函数模型,并应用二次函数的性质解决实际问题的过程,体会数学来源于生活,服务于生活的本质,探索并解决不同情况之下的最大值问题,进而提高学生分析问题、解决问题的能力;3.情感、态度与价值观培养学生认真参与、积极交流意识和乐于探索、勇于创新的科学精神。

让学生体验数学活动中充满着探索和创造,增强学好数学的信心。

四、重难点教学重点:能正确列出函数关系,知道最大值就是顶点的纵坐标;教学难点:根据题意会用二次函数顶点坐标及非顶点坐标,在自变量的定义域内根据函数的单调性求实际问题中的最大利润;七、教学反思①[授课流程反思]本节课紧密的把一元二次方程和二次函数联系起来,通过一个一元二次方程的实际问题派生出二次函数问题,在二次函数的背景下,结合实际生活派生出在自变量X 的取值范围内,根据函数的单调性及数形结合求函数的最大值,体现数学的建模思想.本节课采用“研学后教”和“生态课堂”的教学模式,充分发挥学生的积极性,针对难题采用合作探究、小组讨论的方式,效果较好。

二次函数与最大利润问题 教学案例

二次函数与最大利润问题 教学案例

二次函数与最大利润问题教学案例=-0.6(x-180)2+19440。

因此,每间客房的日租金提高到 180 元时,客房总收入最高,最高收入为 19440 元。

(续表)五:变式拓展(2010•武汉)某宾馆有 50 个房间供游客住宿,当每个房间的房价为每天 180 元时,房间会全部住满.当每个房间每天的房价每增加 10 元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出 20元的各种费用.根据规定,每个房间每天的房价不得高于 340 元.设每个房间的房价增加 x 元(x 为 10的正整数倍)。

(1)设一天订住的房间数为 y,直接写出 y 与 x 的函数关系式及自变量 x 的取值范围;(2)设宾馆一天的利润为 w 元,求 w 与 x 的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?分析:本题是二次函数的应用,特别容易出现的错误是在求最值时不考虑自变量 x 的取值范围,直接求顶点坐标。

(1)理解每个房间的房价每增加 x 元,则减少房间x间,则可以得到 y 与x 之间的关系;10(2)每个房间订住后每间的利润是房价减去 20元,每间的利润与所订的房间数的积就是利润;(3)求出二次函数的对称轴,根据二次函数的增减性以及 x 的范围即可求解。

解题过程:解:(1)由题意得: y = 50 -x,且(0≤x≤160,且 x10为 10 的正整数倍)(2) w =(180 - 20 +x)(3) w =-1x2 + 34x +8000 =-1 (x -170)2 +1089010 10抛物线的对称轴是: x =-b= 170 ,抛物线的开口向2a下,当 x<170 时,w 随x 的增大而增大,但0≤x≤160,因而当 x=160 时,即房价是 340 元时,利润最本题是对上一题的变式,其易错点在于没能充分考虑自变量x 的取值范围(x为 10 的正整数倍)。

分析题目中的每个问题,理清思路,整理出解题过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数求最大利润问题
复习回顾
1、请说出下列抛物线的开口方向,顶点坐标,对称轴,增减性,最值,并画草图。

y=−x2+2x+3 y=−(x+1)(x−3)
2、填空
单件商品的利润=—
商品的总利润=⨉
3、某种商品的进价为30元,在某段时间内若以每件元出售,可以卖出(100−x)件,此时商家可以获
利w元。

①请写出w与x之间的函数关系式。

②在商家有利可图的情况下请写出x的取值范围。

例1、已知某商品的进价是40元/件。

原来的售价为60元/件,每星期可以卖出300件。

经过市场调查发现:
如果调整价格,每涨价1元,每星期要少卖10件;
每降价1元,每星期要多卖20件。

(1)在涨价的前提条件下,如何定价才能使利润最大,最大利润是多少?
分析:若假设每件商品涨价x元,商家每星期可以获利w元,则
①x的取值范围是
②涨价后每件商品的实际利润为元;
③涨价后每星期实际可以卖出件商品;
④根据总利润=单间商品的实际利润⨉实际的销量即可以得到w与x之间的函数关系式为:
w=(60+x−40)(300−10x);
⑤在x的取值范围求出函数w=(60+x−40)(300−10x)的最值即可;
解:设每件商品涨价x元,商家每星期可以获利w元
由题意得:w=(60+x−40)(300−10x)(0<x<30)
即:w=−10x2+100x+6000
∵a=−10<0,该抛物线开口向下,函数有最大值;
∴∴当x=−b
2a =−100
2⨉−10
=5时
w max=
4ac−b2
4a
=
4⨉−10⨉6000−1002
4⨉(−10)
=6250

利用二次函数求最大利润时,若列出的二次函数图象的对称轴恰好在题目限定的自变量的范围内,则二次函数的最大值就是所要求的最大利润;
(2)在降价的前提条件下,如何定价才能使利润最大,最大利润是多少?
练习一
某商店经营一种水产品,成本为40元/千克,据市场分析,若按50元/千克销售,一个月能售出500千克;销售价每涨1元,月销售量就减少10千克,针对这种水产品的销售情况,销售单价定为多少元时,获得的利润最多,是多少?
练习二
某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱苹果的售价不能高于55元。

原来每箱以50元的价格销售,平均每天可以销售90箱,经过市场调查发现,若价格每提高1元,平均每天少销售3箱。

在涨价的前提下,每箱苹果的售价定为多少元时,商家的利润最大,最大利润是多少?
小结:
利用二次函数求最大利润时,若列出的二次函数图象的对称轴恰好在题目限定的自变量的范围内,则二次函数的最大值就是所要求的最大利润;
当求得的二次函数图象的对称轴不在题目限定的自变量的范围内,我们先要搞清自变量的取值在对称轴左侧还是右侧侧,然后结合二次函数的增减性求出最大利润.。

相关文档
最新文档