小学奥数——流水行船问题整理
奥数之复习八:行程问题——流水行船问题及答案
复习八:行程问题——流水行船问题1.甲、乙两港间的水路长432千米,一只船从上游甲港航行到下游乙港需要18小时。
从乙港返回甲港,需要24小时,求船在静水中的速度和水流速度。
2.一艘船在静水中的速度为每小时15千米,它从上游甲地开往下游乙地共花去了8小时,已知水速为每小时3千米,那么从乙地返回甲地需多少小时?3.一艘轮船从甲港开往乙港,顺水而行每小时行28千米,返回甲港时逆水而行用了6小时,已知水速是每小时4千米,甲、乙两港相距多少千米?4.一条大河,河中间(主航道)水的流速为每小时8千米,沿岸边水的速度为每小时6千米。
一条船在河中间顺流而下,13小时行驶520千米,求这条船沿岸边返回原地需要多少小时?5.有人在河中游泳逆流而上,丢失了水壶,水壶顺流而下,经30分钟才发觉此事,他立即返回寻找。
结果在离丢失地点下游6千米处找到水壶,他返回寻找用了多少时间?水流速度是多少?6.一艘货轮顺流航行36千米,逆流航行12千米,共用了10小时,顺流航行20千米,再逆流航行20千米也用了10小时,顺流航行12千米,又逆流航行24千米要用多少小时?7.一只船在水中航行,水速为每小时2千米,它在静水中航行每小时行8千米。
问这只船顺水航行50千米需要多少小时?8.一艘轮船在静水中的速度是每小时15千米,它逆水航行88千米用了11小时,问这艘船返回原地需用几小时?9.一只船往返于一段长120千米的航道,上行时用了10小时,下行时用了6小时。
船在静水中航行的速度与水速各是多少?10.两港口相距432千米,轮船顺水行这段路程需要16小时,逆水每小时比顺水少行9千米。
问行驶这段路程逆水比顺水多用几小时?11.一艘轮船往返于相距198千米的甲、乙两个码头,已知这段水路的水速是每小时2千米,从甲码头到乙码头顺流而下需要9小时。
这艘船往返于甲、乙两码头共需几小时?12.一条船在静水中的速度是每小时16千米,它逆水航行了12小时,行了144千米,如果这是按原路返回,每小时要行多少千米?13.甲、乙之间的水路是234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时。
第十一讲-六年级奥数-流水行船问题
第十一讲流水行船问题【知识导航】解答这类题的要素有下列几点: 水速、流速、船速、距离, 解答这类题与和差问题相似。
划速相当于和差问题中的大数, 水速相当于小数, 顺流速相当于和数, 逆流速相当于差速。
顺流船速=船速+水速;逆流船速=船速—水速;船速=(顺流船速+逆流船速)÷2;水速=(顺流船速—逆流船速)÷2;顺流船速=逆流船速+水速×2;逆流船速=顺流船速—水速×2。
例题1: 一条轮船往返于A.B两地之间, 由A地到B地是顺水航行, 由B地到A 地是逆水航行。
已知船在静水中的速度是每小时20千米, 由A地到B地用了6小时, 由B地到A地所用的时间是由A地到B地所用时间的倍, 求水流速度。
答: 水流速度为每小时()千米。
【随堂练习1】水流速度是每小时15千米。
现在有船顺水而行, 8小时行320千米。
若逆水行320千米需几小时答: 若逆水行320千米需()小时。
例题2:有一船行驶于120千米长的河中, 逆行需10小时, 顺行要6小时, 求船速和水速。
答: 船速是每小时行()千米, 水速是每小时行()千米。
【随堂练习2】有只大木船在长江中航行。
逆流而上5小时行5千米, 顺流而下1小时行5千米。
求这只木船每小时划船速度和河水的流速各是多少答: 木船每小时行()千米;河水的流速是每小时行()千米。
例题3:轮船以同一速度往返于两码头之间。
它顺流而下, 行了8小时;逆流而上, 行了10小时。
如果水流速度是每小时3千米, 求两码头之间的距离。
在同一线段图上做下列游动性示意图36-1演示:答: 两码头之间相距()千米。
【随堂练习3】一艘轮船以同样的速度往返于甲、乙两个港口, 它顺流而下行了7小时, 逆流而上行了10小时。
如果水流速度是每小时千米, 求甲、乙两个港口之间的距离。
答: 甲、乙两个港口之间的距离是()千米。
例题4:甲、乙、丙三人沿着湖边散步, 同时从湖边一固定点出发。
小学奥数-流水行船问题
流水行船问题【1】知识要点船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题。
流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到。
此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速⑴逆水速度=船速-水速⑵由公式⑴可以得到:水速=顺水速度-船速,船速=顺水速度-水速。
由公式⑵可以得到:水速=船速-逆水速度,船速=逆水速度+水速。
根据公式⑴和公式⑵,相加和相减就可以得到:船速=(顺水速度+逆水速度),水速=(顺水速度-逆水速度)。
两只船在河流中相遇问题:当甲、乙两船(甲在上游、乙在下游)在江河里相向开出,它们单位时间靠拢的路程等于甲、乙两船速度和。
这是因为:甲船顺水速度乙船逆水速度=(甲船速+水速)(乙船速-水速)=甲船船速+乙船船速。
这就是说,两船在水中的相遇问题与静水中的及两车在陆地上的相遇问题一样,与水速没有关系。
同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关。
这是因为:甲船顺水速度-乙船顺水速度 =(甲船速+水速)-(乙船速+水速)=甲船速-乙船速。
如果两船逆向追赶时,也有甲船逆水速度-乙船逆水速度 =(甲船速-水速)-(乙船速-水速)=甲船速-乙船速。
这说明水中追及问题与在静水中追及问题及两车在陆地上追及问题一样。
常见流水行船问题1.乙船顺水航行小时,行了千米,返回原地用了小时。
甲船顺水航行同一段水路,用了小时。
甲船返回原地比去时多用了几小时?甲乙两港相距,一艘船往返两港需要,顺流航行比逆流航行少花了,现有另一船顺水航行同一段路程,用了,求此船返回原地比去时多用了多少小时?3.甲乙两港相距,一艘船往返两港需要,顺流航行比逆流航行少花了,现有另一船静水速度是,求船往返两港需要的时间是多少?4.甲、乙两船在静水中速度分别为每小时千米和每小时千米,两船从某河相距千米的两港同时出发相向而行,几小时相遇?如果同向而行,甲船在前,乙船在后,几小时后乙船追上甲船?5.两码头间河流长为千米,甲、乙两船分别从码头同时启航。
数学专项复习小升初典型奥数之流水行船问题
数学专项复习小升初典型奥数之流水行船问题在小升初的数学学习中,流水行船问题是一个较为常见且重要的知识点。
对于孩子们来说,理解并掌握这一问题的解题方法,不仅有助于提升数学思维能力,还能为今后更复杂的数学学习打下坚实的基础。
接下来,让我们一起深入探讨流水行船问题。
一、什么是流水行船问题流水行船问题,简单来说,就是研究船在流动的水中行驶的速度、时间和路程之间关系的问题。
在这类问题中,船的行驶速度会受到水流速度的影响。
我们需要清楚两个基本概念:船在静水中的速度(简称“船速”)和水流的速度(简称“水速”)。
船速是指船在平静的水中行驶的速度,如果水是静止不动的,那么船速就是船实际行驶的速度。
水速则是水流本身的速度。
当船顺着水流行驶时,船的实际速度等于船速加上水速,我们称之为“顺水速度”;当船逆着水流行驶时,船的实际速度等于船速减去水速,这就是“逆水速度”。
二、流水行船问题的基本公式1、顺水速度=船速+水速2、逆水速度=船速水速3、船速=(顺水速度+逆水速度)÷ 24、水速=(顺水速度逆水速度)÷ 2这几个公式是解决流水行船问题的关键,一定要牢记哦!三、典型例题分析例 1:一艘船在静水中的速度是每小时 20 千米,水流速度是每小时5 千米。
这艘船顺水航行 4 小时,能行驶多远?首先,我们求出顺水速度:20 + 5 = 25(千米/时)然后根据路程=速度×时间,可得行驶的路程为:25 × 4 = 100(千米)例 2:一艘船从甲地开往乙地,顺水航行需要 8 小时,逆水航行需要 12 小时。
已知水流速度是每小时 4 千米,求甲乙两地的距离。
设船在静水中的速度为 x 千米/时。
根据顺水速度=船速+水速,可得顺水速度为(x + 4)千米/时;逆水速度=船速水速,逆水速度为(x 4)千米/时。
因为路程=速度×时间,且甲乙两地的距离是固定的,所以可列方程:8(x + 4) = 12(x 4)8x + 32 = 12x 484x = 80x = 20则顺水速度为 20 + 4 = 24(千米/时)甲乙两地的距离为 24 × 8 = 192(千米)例 3:一艘轮船在两个港口之间往返航行,顺流而下需要 4 小时,逆流而上需要 6 小时。
小学奥数流水问题题型大集合
小学奥数流水问题题型大集合流水问题(1)根据流水问题公式,顺水速度=船速+水速,逆水速度=船速-水速,船速=(顺水速度+逆水速度)/2,水速=(顺水速度-逆水速度)/2,顺水路程=顺水速度×时间,逆水路程=逆水速度×时间。
1、已知船在逆水中航行4小时航程为24千米,求水流速度。
解:根据逆水速度公式,逆水速度=船速-水速,带入已知数据,得到船速为6千米/小时。
再根据顺水速度公式,顺水速度=船速+水速,带入船速和已知时间,得到水流速度为3千米/小时。
2、已知船在顺水中航行140千米,河流水速为每小时7千米,求船需要多长时间才能到达目的地。
解:根据顺水速度公式,顺水速度=船速+水速,带入已知数据,得到船速为13-7=6千米/小时。
再根据顺水路程公式,顺水路程=顺水速度×时间,带入已知数据,得到时间为140/6=23.33小时。
3、已知甲乙两港间的水路长208千米,船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水的速度。
解:根据顺水速度公式,顺水速度=船速+水速,带入已知数据,得到船速为208/8=26千米/小时。
再根据逆水速度公式,逆水速度=船速-水速,带入已知数据,得到船速为208/13=16千米/小时。
根据船速公式,船速=(顺水速度+逆水速度)/2,带入已知数据,得到船在静水的速度为21千米/小时。
4、已知两个码头相距___,汽艇顺水行完全程需9小时,水流速度为每小时5千米,求汽艇逆水行完全程需要多长时间。
解:根据顺水速度公式,顺水速度=船速+水速,带入已知数据,得到船速为360/9-5=35千米/小时。
再根据逆水速度公式,逆水速度=船速-水速,带入船速和已知水速,得到逆水速度为30千米/小时。
根据逆水路程公式,逆水路程=逆水速度×时间,带入已知数据,得到时间为360/30=12小时。
5、已知船顺水行60千米需要5小时,逆水航行这段水路需要10小时,求船速和水流速度。
小升初奥数第26讲 行程问题 (六)流水行船
1
练习:一只渔船逆水行 25 千米,用了 5 小时,水流的速度是每小时 1 千 米。此船在静水中的速度是多少?
例 2 一只渔船在静水中每小时航行 4 千米,逆水 4 小时航行 12 千米。水 流的速度是每小时多少千米?
1.李刚驾驶一只小船在河中行驶,顺流划行的速度时每小时 10 千米,逆流划 行的速度时每小时 6 千米,水流的速度是多少?
2. 甲、乙之间的水路是 234 千米,一只船从甲港到乙港需 9 小时,从乙港返回 甲港需 13 小时,问船速和水速各为每小时多少千米?
3.一只油轮,逆流而行,每小时行 12 千米,7 小时可以到达乙港。从乙港返航 需要 6 小时,求船在静水中的速度和水流速度?
6.一轮船在甲、乙两个码头之间航行,顺水航行要 8 小时行完全程,逆水航行 要 10 小时行完全程。已知水流速度是每小时 3 千米,求甲、乙两码头之间的 距离?
4
7.某河有相距 12 0 千米的上下两个码头,每天定时有甲、乙两艘同样速度的 客船从上、下两个码头同时相对开出。这天,从甲船上落下一个漂浮物,此物 顺水漂浮而下,5 分钟后,与甲船相距 2 千米,预计乙船出发几小时后,可与 漂浮物相遇?
例 4 甲、乙两个码头相距 144 千米,一艘汽艇在静水中每小时行 20 千米, 水流速度是每小时 4 千米。求由甲码头到乙码头顺水而行需要几小时,由乙码 头到甲码头逆水而行需要多少小时?
练习甲、乙两个码头相距 400 千米,一艘汽艇在静水中每小时行 15 千米, 水流速度是每小时 5 千米。求由甲码头到乙码头顺水而行需要几小时,由乙码 头到甲码头逆水而行需要多少小时?
小学阶段行程问题核心难点之流水行船问题,难点解析,归纳总结
小学阶段行程问题核心难点之流水行船问题,难点解析,归纳
总结
船在水中航行时,除了自身的速度外,还受到水流的影响,在这种情况下计算船只的航行速度、时间和行程,研究水流速度与船只自身速度的相互作用问题,叫作流水行船问题。
三个基本量
流水行船问题是行程问题中的一种,因此行程问题中的速度、时间、路程三个基本量之间的关系在这里也当然适用。
流水问题公式
行船问题基本公式
经典例题解析
例1:
解:顺水速度:13+3=16(千米/小时)
逆水速度:13-3=10(千米/小时)
全程:16×15=240(千米)
返回所需时间:240÷10=20(千米/小时)
答:从乙港返回甲港需要24小时。
例2:
解:逆水速度:120÷15=8(千米/小时)
顺水速度:120÷12=10(千米/小时)
船速:(10+8)÷2=9(千米/小时)
水速:(10--8)÷2=1(千米/小时)
答:船在静水中航行的速度是每小时9千米,水速是每小时1千米。
五年级奥数流水行船问题
五年级奥数流水行船问题Document number:NOCG-YUNOO-BUYTT-UU986-1986UT流水行船问题:顺水速度=静水速度(船速)+水速逆水速度=静水速度(船速)-水速静水速度(船速)=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷21、两个码头相距352千米,一船顺流而下,行完全程需要11小时,逆流而上,行完全程需要16小时,求这条河的水流速度和船的静水速度。
2、长江沿岸甲乙两城的水路距离为240千米,一条船从甲城开往乙城,顺水10小时可以到达,从乙城返回甲城,逆水则需要15小时才能到达,求船速和水速。
3、两个港口相距528千米,一艘轮船顺水航行要24小时走完全程,已知这条河的水速是每小时3千米,那么它返回逆流航行时要多少小时4、两个港口相距480千米,一艘轮船顺水航行要24小时走完全程,已知这条河流的水速是每小时4千米,那么它返回逆流航行要多少小时5、甲乙两地相距234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米6、一只船在长江里航行,顺流每小时20千米,已知这艘船顺流4小时恰好与逆流5小时的路程相等,求船速与水速7、船行于120千米一段长的江河中,逆流而上用10小时,顺流而下用6小时,水速和船速各是多少千米8、一只船逆流而上,水速2千米,船速32千米,4小时行多少千米9、甲乙两地之间的距离是140千米,一艘轮船从甲港开往乙港,顺水7小时到达,从乙港返回甲港,逆水10小时到达,这艘轮船在静水中的速度和水流速度各是多少10、一只船在静水中的速度是每小时18千米,水流速度是每小时2千米。
这只船从甲港逆水航行到乙港需要15小时,甲、乙两港的距离是多少千米11、两码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河流的水流速度为每小时4千米,求逆水行完全程需要多少小时12、甲、乙两船分别从A港出发逆流而上行驶向B港,甲船的顺水速度是每小时30千米,静水中乙船每小时航行20千米,水流的速度是每小时5千米,乙船出发后4小时,甲船才出发,当甲船追上乙船的时候,甲船已经离开A港多少千米13、甲乙两船分别从A港顺流而下至B港,甲船的逆水速度为每小时30千米,静水中乙船的速度为每小时25千米,水速为每小时5千米,乙船出发后3小时甲船才出发,当甲船追上乙船的时候甲船离开A港多少千米14、已知一艘轮船顺水行48千米需要4小时,逆水行48千米需要6小时,现在轮船从上游的A城驶向下游的B城,已知两城的水路长72千米,开船时一位旅客站在船边看风景,不小心把一只鞋掉进水里,问:船到B城时这只鞋距离B城有多远15、某人顺水游360米需要12分钟,逆水游360米需要15分钟,此人现在从河的下游A处游向上游的B处,A、B两地相距480千米,他从A处刚开始游的时候向水里放了一块木板,当游到B处的时候,木板距离他多少米16、一条船顺水航行60千米需要3小时,水流速度为每小时5千米,这条船逆流行驶60千米需要多少小时17、一条船在河流中顺水航行的速度是每小时40千米,逆水速度是每小时32千米,这条河流的水速每小时多少千米18、甲乙两地相距180千米,一只船从甲地开往乙地,顺水9小时到达,从乙地开往甲地,逆水15小时到达,求水流的速度。
五年级数学思维 奥数专项:流水行船问题
五年级数学思维奥数专项:流水行船问题1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度。
解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米。
2、一艘轮船从甲港开往乙港顺水航行平均每小时行36km,15小时到达.沿原路从乙港返回甲港,逆水航行平均每小时行30km,多长时间能够返回甲港?解:设x小时返回甲港.30x=36×15x=18答:18小时返回甲港.3、一艘船,第一次顺水航行210千米,逆水航行40千米,用5.5小时;第二次用同样的时间顺水航行120千米,逆水航行70千米.这艘船在静水中的速度是多少千米/时?解:顺水速度:(210+40×3)÷5.5=60(千米)逆水速度:40÷(5.5﹣210÷60)=20(千米)船速:(60+20)÷2=40(千米)答:这只船队在静水中的速度是每小时40千米.4、甲、乙两港间的水路长216千米,一只船在静水中的速度为每小时20千米,它从乙地顺水航行到甲地用了8小时,再从甲地返回乙地时,由于涨水,水速变为原来的2倍.请问:返回时需要多少时间?解:216÷8﹣20=7(千米)216÷(20﹣7×2)=36(小时)答:返回时需要36小时.5、某河上、下两港相距60千米.每天定时有甲、乙两艘船速相同的客轮同时出发.相向而行.这天甲船从上港出发时掉下一油桶.油桶顺水漂下,半小时后.与甲船相距15千米.那么油桶再过多长时间与乙船相遇?解:船速15÷0.5=30(千米每小时)油桶再过60÷30﹣0.5=1.5(小时)答:油桶再过1.5小时与乙船相遇.6、一条船顺流行90千米用6小时,如果水流速度为每小时5千米,那么这条船逆流行40千米要用多少小时?解:顺流速度:90÷6=15(千米/小时)船速:15﹣5=10(千米/小时)逆水速度=10﹣5=5(千米)逆流时间:40÷5=8(小时)答:这条船逆流航行40千米用8小时.。
(完整版)奥数专题_流水行船问题(带答案完美排版)
流水行船问题船在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.流水行船问题,是行程问题中的一种,因此行程问题中三个量(速度、时间、路程)的关系在这里将要反复用到.此外,流水行船问题还有以下两个基本公式:顺水速度=船速+水速,(1)逆水速度=船速-水速.(2)这里,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程.水速,是指水在单位时间里流过的路程.顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程.根据加减法互为逆运算的关系,由公式(l)可以得到:水速=顺水速度-船速,船速=顺水速度-水速.由公式(2)可以得到:水速=船速-逆水速度,船速=逆水速度+水速.这就是说,只要知道了船在静水中的速度,船的实际速度和水速这三个量中的任意两个,就可以求出第三个量。
另外,已知船的逆水速度和顺水速度,根据公式(1)和公式(2),相加和相减就可以得到:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2。
例1、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达,求船在静水中的速度和水流速度.分析:根据题意,要想求出船速和水速,需要按上面的基本数量关系先求出顺水速度和逆水速度,而顺水速度和逆水速度可按行程问题的一般数量关系,用路程分别除以顺水、逆水所行时间求出.解:顺水速度:208÷8=26(千米/小时)逆水速度:208÷13=16(千米/小时)船速:(26+16)÷2=21(千米/小时)水速:(26—16)÷2=5(千米/小时)答:船在静水中的速度为每小时21千米,水流速度每小时5千米.例2、某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?分析:要想求从乙地返回甲地需要多少时间,只要分别求出甲、乙两地之间的路程和逆水速度。
(完整版)五年级奥数流水行船问题
流水行船问题:顺水速度=静水速度(船速)+水速逆水速度=静水速度(船速)-水速静水速度(船速)=(顺水速度+逆水速度)÷2水速=(顺水速度-逆水速度)÷21、两个码头相距352千米,一船顺流而下,行完全程需要11小时,逆流而上,行完全程需要16小时,求这条河的水流速度和船的静水速度。
2、长江沿岸甲乙两城的水路距离为240千米,一条船从甲城开往乙城,顺水10小时可以到达,从乙城返回甲城,逆水则需要15小时才能到达,求船速和水速。
3、两个港口相距528千米,一艘轮船顺水航行要24小时走完全程,已知这条河的水速是每小时3千米,那么它返回逆流航行时要多少小时?4、两个港口相距480千米,一艘轮船顺水航行要24小时走完全程,已知这条河流的水速是每小时4千米,那么它返回逆流航行要多少小时?5、甲乙两地相距234千米,一只船从甲港到乙港需9小时,从乙港返回甲港需13小时,问船速和水速各为每小时多少千米?6、一只船在长江里航行,顺流每小时20千米,已知这艘船顺流4小时恰好与逆流5小时的路程相等,求船速与水速?7、船行于120千米一段长的江河中,逆流而上用10小时,顺流而下用6小时,水速和船速各是多少千米?8、一只船逆流而上,水速2千米,船速32千米,4小时行多少千米?9、甲乙两地之间的距离是140千米,一艘轮船从甲港开往乙港,顺水7小时到达,从乙港返回甲港,逆水10小时到达,这艘轮船在静水中的速度和水流速度各是多少?10、一只船在静水中的速度是每小时18千米,水流速度是每小时2千米。
这只船从甲港逆水航行到乙港需要15小时,甲、乙两港的距离是多少千米?11、两码头相距192千米,一艘汽艇顺水行完全程需要8小时,已知这条河流的水流速度为每小时4千米,求逆水行完全程需要多少小时?12、甲、乙两船分别从A港出发逆流而上行驶向B港,甲船的顺水速度是每小时30千米,静水中乙船每小时航行20千米,水流的速度是每小时5千米,乙船出发后4小时,甲船才出发,当甲船追上乙船的时候,甲船已经离开A港多少千米?13、甲乙两船分别从A港顺流而下至B港,甲船的逆水速度为每小时30千米,静水中乙船的速度为每小时25千米,水速为每小时5千米,乙船出发后3小时甲船才出发,当甲船追上乙船的时候甲船离开A港多少千米?14、已知一艘轮船顺水行48千米需要4小时,逆水行48千米需要6小时,现在轮船从上游的A城驶向下游的B城,已知两城的水路长72千米,开船时一位旅客站在船边看风景,不小心把一只鞋掉进水里,问:船到B城时这只鞋距离B 城有多远?15、某人顺水游360米需要12分钟,逆水游360米需要15分钟,此人现在从河的下游A处游向上游的B处,A、B两地相距480千米,他从A处刚开始游的时候向水里放了一块木板,当游到B处的时候,木板距离他多少米?16、一条船顺水航行60千米需要3小时,水流速度为每小时5千米,这条船逆流行驶60千米需要多少小时?17、一条船在河流中顺水航行的速度是每小时40千米,逆水速度是每小时32千米,这条河流的水速每小时多少千米?18、甲乙两地相距180千米,一只船从甲地开往乙地,顺水9小时到达,从乙地开往甲地,逆水15小时到达,求水流的速度。
通用版小学四年级奥数《流水行船问题》讲义(含答案)
流水行船知识框架一、参考系速度通常我们所接触的行程问题可以称作为“参考系速度为0”的行程问题,例如当我们研究甲乙两人在一段公路上行走相遇时,这里的参考系便是公路,而公路本身是没有速度的,所以我们只需要考虑人本身的速度即可。
二参考系速度——“水速”但是在流水行船问题中,我们的参考系将不再是速度为0的参考系,因为水本身也是在流动的,所以这里我们必须考虑水流速度对船只速度的影响,具体为:①水速度=船速+水速;②逆水速度=船速-水速。
(可理解为和差问题)由上述两个式子我们不难得出一个有用的结论:船速=(顺水速度+逆水速度)÷2;水速=(顺水速度-逆水速度)÷2此外,对于河流中的漂浮物,我们还会经常用到一个常识性性质,即:漂浮物速度=流水速度。
三、流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关.甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题精讲【例 1】一艘每小时行25千米的客轮,在大运河中顺水航行140千米,水速是每小时3千米,需要行几个小时?【考点】行程问题之流水行船【难度】☆☆【题型】解答【解析】顺水速度为25328+=(千米/时),需要航行140285÷=(小时).【答案】5小时【巩固】某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?【考点】行程问题之流水行船【难度】☆☆【题型】解答【解析】从甲地到乙地的顺水速度为15318+=(千米/时),甲、乙两地路程为188144⨯=(千米),从乙地到甲地的逆水速度为15312÷=(小时).-=(千米/时),返回所需要的时间为1441212【答案】12小时【例 2】一只小船在静水中的速度为每小时 25千米.它在长144千米的河中逆水而行用了 8小时.求返回原处需用几个小时?【考点】行程问题之流水行船【难度】☆☆【题型】解答【解析】4.5小时【答案】4.5小时【巩固】一只小船在静水中速度为每小时30千米.它在长176千米的河中逆水而行用了11小时.求返回原处需用几个小时?【考点】行程问题之流水行船【难度】☆☆【题型】解答【解析】这只船的逆水速度为:1761116÷=(千米/时);水速为:301614-=(千米/时);返回原处所需时间为:176(3014)4÷+=(小时).【答案】4小时【例 3】两个码头相距352千米,一船顺流而下,行完全程需要11小时.逆流而上,行完全程需要16小时,求这条河水流速度。
完整版)奥数——流水行船问题
完整版)奥数——流水行船问题船在XXX的问题叫做行船问题。
行船问题除了具备行程问题中路程、速度和时间之间的基本数量关系外,还涉及到水流的影响。
在江、河中航行时,船的前进速度除了船本身的速度外,还会受到水流的顺推或逆阻。
行船问题中常用的概念有:船速、水速、顺水速度和逆水速度。
船在静水中航行的速度叫做船速;江河水流动的速度叫做水速;船从上游向下游顺水而行的速度叫做顺水速度;船从下游往上游逆水而行的速度叫做逆水速度。
除了行程问题中路程、速度和时间之间的基本数量关系,行船问题还有几个基本公式要用到。
顺水速度=船速速+水,逆水速度=船速-水速。
公式(1)表明,船顺水航行时的速度等于船在静水中的速度与水流速度之和。
这是因为顺水时,船一方面按自己在静水中的速度在水面上行进,同时这艘船又在按着水的流动速度前进,因此船相对地面的实际速度等于船速与水速之和。
公式(2)表明,船逆水航行时的速度等于船在静水中的速度与水流速度之差。
根据加减互为逆运算的原理,由公式(1)可得:水速=顺水速度-船速,船速=顺水速度-水速;由公式(2)可得:水速=船速-逆水速度,船速=逆水速度+水速。
这就是说,只要知道了船在静水中的速度、船的实际速度和水速这三者中的任意两个,就可以求出第三个。
另外,已知某船的逆水速度和顺水速度,还可以求出船速和水速。
因为顺水速度就是船速与水速之和,逆水速度就是船速与水速之差,根据和差问题的算法,可知:船速=(顺水速度+逆水速度)÷2,水速=(顺水速度-逆水速度)÷2.例1:船在静水中的速度为每小时13千米,水流的速度为每小时3千米,船从甲港顺流而下到达乙港用了15小时,从乙港返回甲港需要多少小时?解:顺水速度:13+3=16(千米/小时),逆水速度:13-3=10(千米/小时)。
根据顺水速度公式,甲港到乙港的路程为16×15=240千米。
根据逆水速度公式,乙港到甲港的时间为240÷10=24小时。
小学奥数-流水行船
流水行船—基本问题(二)
①一只小船在静水中的速度是每小时25千米,它在长144千米的河中逆水而行用了8小时。求返回原处需用几个小时? ②一只小船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去10小时,已知水速为每小时3千米,那么从乙地返回 甲地需要多少小时?
基本公式
顺水的速度 = 船的速度(船速)+ 水流的速度(水速) 逆水的速度 = 船的速度(船速) - 水流的速度(水速) 船速 = (顺水速度 + 逆水速度) ÷ 2 水速 = (顺水速度 – 逆水速度) ÷ 2
①题中,顺水速度 = 船速18千米/小时 + 水速3千米/小时 = 21千米/小时
②题中,水速 = (顺水速度 – 逆水速度) ÷ 2 =(40千米/小时 – 30千米/小时)÷ 2 = 5千米/小时
可得水速为(顺水速度 – 逆水速度)÷2 = (24 - 18) = 3千米/小时 帆船顺水航行耗时:360 ÷ (12+3) = 24小时,
逆水航行耗时: 360 ÷(12 - 3) = 40小时 ➢ 可得这艘帆船往返两港需要24+40=64小时
基本公式
顺水的速度 = 船的速度(船速)+ 水流的速度(水速) 逆水的速度 = 船的速度(船速) - 水流的速度(水速) 船速 = (顺水速度 + 逆水速度) ÷ 2 水速 = (顺水速度 – 逆水速度) ÷ 2
基本公式
顺水的速度 = 船的速度(船速)+ 水流的速度(水速) 逆水的速度 = 船的速度(船速) - 水流的速度(水速) 船速 = (顺水速度 + 逆水速度) ÷ 2 水速 = (顺水速度 – 逆水速度) ÷ 2
四年级奥数流水行船问题
四年级奥数流水行船问题甲船逆水行驶的速度是36-水速,乙船顺水行驶的速度是28+水速。
所以,他们相向而行的速度是36-水速+28+水速=64千米/小时。
因此,两船相遇所需的时间为192÷64=3小时。
3、两码头相距231千米,轮船顺水行驶这段路需要11小时,逆水比顺水每小时少行10千米。
那么行驶这段路程逆水要比顺水需要多用多少小时?设轮船的船速为x千米/小时,水速为y千米/小时。
根据题意,可以列出方程:231÷(x+y)=11231÷(x-y)=11+(x-y)÷10解方程得到x=21千米/小时,y=3千米/小时。
因此,轮船逆水行驶这段路程需要的时间为231÷(21-3)-231÷(21+3)=21小时。
4、甲船逆水航行360千米需18小时,返回原地需10小时,乙船逆水航行同样一段距离需15小时,返回原地需要几个小时?设甲船的船速为x千米/小时,水速为y千米/小时。
根据题意,可以列出方程:360÷(x-y)=18360÷(x+y)=10解方程得到x=24千米/小时,y=6千米/小时。
同样地,可以列出乙船的方程:360÷(x-y)=15360÷(x+y)=t解方程得到t=12小时。
因此,乙船返回原地需要的时间为15+12=27小时。
5、一艘轮船每小时行15千米,它逆水6小时行了72千米,如果它顺水行驶同样长的航程需要几个小时?设水速为x千米/小时。
根据题意,可以列出方程:15-x=72÷615+x=72÷t解方程得到t=8小时。
因此,轮船顺水行驶同样长的航程需要8小时。
6、甲、乙两港间的水路长208千米,一只船从甲港开往乙港,顺水8小时到达,从乙港返回甲港,逆水13小时到达。
求船在静水中的速度和水速各是多少?设船在静水中的速度为x千米/小时,水速为y千米/小时。
根据题意,可以列出方程:208÷(x+y)=8208÷(x-y)=13解方程得到x=24千米/小时,y=4千米/小时。
小学奥数之流水行船问题
流水行船问题【例1】乙船顺水航行2小时,行了120千米,返回原地用了4小时.甲船顺水航行同一段水路,用了3小时.甲船返回原地比去时多用了几小时?【解析】乙船顺水速度:120÷2=60(千米/小时).乙船逆水速度:120÷4=30(千米/小时)。
水流速度:(60-30)÷2=15(千米/小时).甲船顺水速度:12O÷3=4O(千米/小时)。
甲船逆水速度:40-2×15=10(千米/小时).甲船逆水航行时间:120÷10=12(小时)。
甲船返【例2小时。
由.【例32710小时,【例4】一艘轮船顺流航行120千米,逆流航行80千米共用16时;顺流航行60千米,逆流航行120千米也用16时。
求水流的速度。
【解析】两次航行都用16时,而第一次比第二次顺流多行60千米,逆流少行40千米,这表明顺流行60千米与逆流行40千米所用的时间相等,即顺流速度是逆流速度的1.5倍。
将第一次航行看成是16时顺流航行了120+80×1.5=240(千米),由此得到顺流速度为240÷16=15(千米/时),逆流速度为15÷1.5=10(千米/时),最后求出水流速度为(15-10)÷2=2.5(千米/时)。
【例5】一条河上有甲、乙两个码头,甲在乙的上游50千米处。
客船和货船分别从甲、乙两码头出发向上游行驶,两船的静水速度相同且始终保持不变。
客船出发时有一物品从船上落入水中,10分钟后此物距客船5千米。
客船在行驶20千米后折向下游追赶此物,追上时恰好和货船相遇。
求水流的速度。
【解析】5÷1/6=30(千米/小时),所以两处的静水速度均为每小时30千米。
50÷30=5/3(小时),所以货船与物品相遇需要5/3小时,即两船经过5/3小时候相遇。
由于两船静水速度相同,所以客船行驶20千米后两船仍相距50千米。
50÷(30+30)=5/6(小时),所以客船调头后经过5/6小时两船相遇。
小升初典型奥数之流水行船问题
小升初典型奥数之流水行船问题在小升初的奥数学习中,流水行船问题是一个较为常见且重要的知识点。
对于很多同学来说,初次接触这类问题可能会感到有些困惑,但只要掌握了其中的关键要点和解题方法,就会发现其实并没有那么难。
首先,咱们来了解一下什么是流水行船问题。
想象一下,一艘船在河里航行,河水是流动的,这时候船的行驶速度就会受到河水流动速度的影响。
如果船顺着水流的方向行驶,那么水流会帮助船加快速度;如果船逆着水流的方向行驶,水流就会阻碍船的前进,让船的速度变慢。
在流水行船问题中,有几个关键的概念咱们得弄清楚。
第一个是船在静水中的速度,也就是船在没有水流影响时自己本身的速度,咱们通常用“船速”来表示。
第二个是水流的速度,一般称为“水速”。
第三个是船顺流航行的速度,这个速度等于船速加上水速,我们简称为“顺流速度”。
第四个是船逆流航行的速度,它等于船速减去水速,也就是“逆流速度”。
了解了这些基本概念后,咱们来看几个具体的例子。
比如说,有一艘船在静水中的速度是每小时 20 千米,水流的速度是每小时 5 千米。
那么船顺流航行的速度就是 20 + 5 = 25 千米/小时,逆流航行的速度就是 20 5 = 15 千米/小时。
接下来,咱们说说解决流水行船问题的常用公式。
顺流速度=船速+水速逆流速度=船速水速船速=(顺流速度+逆流速度)÷ 2水速=(顺流速度逆流速度)÷ 2有了这些公式,咱们就可以来解决各种具体的问题啦。
比如这样一道题:一艘船从 A 地顺流而下到 B 地,用了 6 小时,已知船在静水中的速度是每小时 25 千米,水流速度是每小时 5 千米。
求 A、B 两地的距离。
这道题中,我们已经知道了顺流速度=船速+水速= 25 + 5 =30 千米/小时,又知道顺流航行的时间是 6 小时,根据距离=速度×时间,A、B 两地的距离就是 30×6 = 180 千米。
再来看一道稍微复杂点的题:一艘船从 A 地到 B 地顺流航行需要 4 小时,从 B 地返回 A 地逆流航行需要 6 小时。
小学奥数思维拓展:流水行船问题
奥数思维拓展:流水行船问题一.填空题(共8小题)1.某轮船顺流航行3h,逆流航行1.5h,已知轮船在静水中的速度为akm/h,水流速度为ykm/h,则轮船共航行了km。
2.甲、乙两个景点相距15千米,一艘观光游船从甲景点出发,抵达乙景点后立即返回,共用3小时.已知第三小时比第一小时少行12千米,那么这条河的水流速度为每小时千米.3.一艘轮船的静水速度为每小时36千米,在河中逆水航行140千米用了4小时,那么这条河的水流速度是每小时千米.4.甲、乙两城相距350千米,一艘客轮在其间往返航行,从甲城到乙城是顺流,用去10小时;从乙城返回甲城是逆流,用去14小时.那么,船在静水中的速度是千米/时,水流速度是千米/时.5.甲乙两游船顺水航行的速度均是每小时7千米,逆水航行的速度均是每小时5千米.现甲乙两船从某地同时出发,甲先逆流而上再顺流而下,乙先顺流而下再逆流而上,1小时后他们又都回到了出发点.那么两船在这段时间内共有分钟行进方向相同.6.一只船在河中顺水航行了4小时,行程为48千米.已知水速为每小时3千米,则该船的静水速度为每小时千米.7.甲乙两港相距360千米,一轮船往返两港需要35小时,逆流航行比顺流航行多花了5小时,现有一机帆船,速度每小时12千米.这只机帆船往返两港要小时.8.一只小船从甲港到乙港顺流航行需1小时,水流速度增加一倍后,再从甲港到乙港航行需50分钟,水流速度增加后,从乙港返回甲港需航行.二.应用题(共13小题)9.甲船逆水航行360千米需18小时,返回原地需要10小时:乙船逆水航行同样一段距离需要15小时,返回原地需要多少小时?10.甲、乙两港相距334千米,此时风平浪静,一艘客船和一艘货船同时自两港相向航行,开出4.5小时后两船相距100千米,已知客船每小时行进比货船快4千米,货船每小时行多少千米?有几种可能?(用方程解)11.甲、乙两港相距100千米,一艘轮船从甲港到乙港是顺水航行,船在静水中的速度是每小时23.5千米,水流速度是每小时3.5千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2:静水中客船速度是每小时25 千米,货船速度是每小时15千米,货 船先从某港开出顺水航行,3小时后客 般同方向开 若水流速度为每小5千米, 客船几小时可以追上货船?
• 提示:追击时间=追击路程÷速度差
追击路程=顺水速度×先行时间
• • • • • • (15+5)×3=60(千米) 每小时可以追上的路程=两船速度差 25-15=10(千米) 追击时间 60÷10=6(小时) 答:客船6小时可以追上货船。
刻 舟 求 剑
刻 舟 求 剑
刻 舟 求 剑
刻 舟 求 剑
刻 舟 求 剑
他为什么找不到剑?
基本概念: 船速:船在静水中的速度
水速:水流的速度,或船不受任何 动力,在水中漂流的速度 顺水速度:船顺水而下时的速度 逆水速度:船逆水而上时的速度
基本关系式:
顺水速度=船速+水速 逆水速度=船速-水速
船速=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2
滚动思考:
帮他找剑吧
逆流而上 宝剑落水
行了124千米到岸
船的速度每小时35千米, 水流速度每小时4千米。
船需要行几小时到岸?
例1.两个码头相距192千 米,一艘汽艇顺水行完全 程需要8小时,已知这条河 的水流速度为4千米/小时, 求逆水行完全程需几小时?
例3.两个码头相距432千米, 轮船顺水行这段路程需要16小 时,逆水每小时比顺水少行9千 米,逆水比顺水需要多用几个 小时行完全程?
例4.甲、乙两港之间的距 离是140千米。一艘轮船从甲 港开往乙港,顺水7小时到达, 从乙港返回甲港逆水10小时 到达。这艘轮船在静水中的 速度和水流速度各是多少?
例5.一艘轮船从乙港开往甲港, 逆流而上每小时行18千米,返 回乙港时顺流而下用了4小时。 已知这段航道的水速是每小时3 千米,甲、乙两港相距多少千 米?
Байду номын сангаас