中考数学模拟试卷(二)含答案解析

合集下载

2024年海南省海南中学中考数学模拟试卷(二)(含答案)

2024年海南省海南中学中考数学模拟试卷(二)(含答案)

2024年海南省海南中学中考数学模拟试卷(二)一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.实数3的绝对值是( )A. −3B. ±3C. 3D. 132.“致中和,天地位焉,万物育焉.”(出自《礼记》)对称美是我国古人和谐平衡思想的体现,常被用于建筑、绘画、标识等设计上.下列数学经典图形中,是轴对称图形的是( )A. B. C. D.3.新能源汽车已经成为全球汽车产业转型发展的主要方向.据中国乘用车协会统计,2024年1−4月我国新能源汽车销量为294万辆,数据2940000用科学记数法表示为( )A. 2.94×106B. 2.94×107C. 29.4×105D. 294×1044.四个大小相同的正方体搭成的几何体如图所示,它的主视图是( )A. B. C. D.5.某校举行“遵守交通安全,从我做起”演讲比赛,7位评委给选手甲的评分如下:91,95,89,93,88,94,95,则这组数据的众数和中位数分别是( )A. 95,92B. 93,93C. 93,92D. 95,936.下列计算正确的是( )A. (a2)3=a6B. a6÷a2=a3C. a3⋅a4=a12D. a2−a=a7.已知蓄电池的电压为定值,使用某蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则当电阻为6Ω时,电流为( )A. 3AB. 4AC. 6AD. 8A8.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.以点A为圆心,适当长MN的为半径画弧,分别交AC,AB于点M,N,再分别以M,N为圆心,大于12长为半径画弧,两弧交于点P,射线AP与BC交于点D,DE⊥AB,垂足为E.则BE为( )A. 3B. 4C. 4.5D. 59.分式方程xx−2=12−x的解是( )A. x=−1B. x=1C. x=2D. x=310.一副直角三角板如图放置,点C在FD的延长线上,AB//CF,∠F=∠ACB=90°,则∠DBC的度数为( )A. 10°B. 15°C. 18°D. 30°11.如图,在平面直角坐标系中,菱形OABC的边长为26,点B在x轴的正半轴上,且∠AOC=60°,将菱形OABC绕原点O逆时针方向旋转60°,得到四边形OA′B′C′(点A′与点C重合),则点B′的坐标是( )A. (36,32)B. (32,36)C. (32,62)D. (62,36)12.七巧板是大家熟悉的一种益智玩具.用七巧板能拼出许多有趣的图案.小李将一块等腰直角三角形硬纸板(如图①)切割七块,正好制成一副七巧板(如图②).已知AB=40cm,则图中阴影部分的面积为( )A. 25cm2B. 1003cm2 C. 50cm2D. 75cm2二、填空题:本题共4小题,每小题3分,共12分。

【真题汇编】2022年江苏省南通市中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)

【真题汇编】2022年江苏省南通市中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)

2022年江苏省南通市中考数学模拟真题练习 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分) 一、单选题(10小题,每小题3分,共计30分) 1、已知 a 2 +b 2 = 3, a + b = 2, 那么ab 的值( ) A .-12B .12C .-2D .22、如图,在平面直角坐标系中,△ABC 与△DEF 关于直线m :x =1对称,M ,N 分别是这两个三角形中的对应点.如果点M 的横坐标是a ,那么点N 的横坐标是( ) A .-aB .-a +1C .a +2D .2-a 3、一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y - B .1019x y + C .1021x y - D .1017x y -·线○封○密○外4、如图,已知//a b ,直角三角板的直角顶点在直线b 上,若158∠=,则下列结论正确的是( )A .342∠=B .4138∠=C .542∠=D .258∠=5、ABC 中,∠A,∠B,∠C 的对边分别记为a ,b ,c ,由下列条件不能判定ABC 为直角三角形的是( )A .∠A+∠B=∠CB .∠A:∠B:∠C=1:2:3C .a 2=c 2﹣b 2D .a :b :c=3:4:66、如图,在菱形ABCD 中,已知4AB =,60ABC ∠=,60EAF ∠=,点E 在CB 的延长线上,点F 在DC 的延长线上,有下列结论:①BE CF =;②EAB CEF ∠=∠;③ABEEFC ∆∆;④若15BAE ∠=,则点F 到BC 的距离为2.则其中正确结论的个数是( )A .1个B .2个C .3个D .4个7、关于x 的一元二次方程()22213230a x x a a --+--=的一个根为0,则a 的值是( )A .1-B .3C .3-或1D .3或1- 8、2222a ab b x -+与214b ab x +是同类项,a 与 b 的关系是 ( ) A .a>b B .a<b C .a=b D .a ≥ b9、已知a,b,c 是三角形的三边,那么代数式(a −b)2−c 2的值( )A .大于零或等于零B .小于零C .等于零D .大于零 10、若关于x 的方程x 2+3x+a=0有一个根为-1,则另一个根为( ) A .-2 B .2 C .4 D .-4 第Ⅱ卷(非选择题 70分) 二、填空题(5小题,每小题4分,共计20分) 1、如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)⋯根据这个规律,第2019个点的坐标为___. 2、若14m n x x x x ⋅⋅=,m ,n 为正整数且m 比n 大3,mn=______. 3、2009年4月,5.12地震重灾区映秀镇灾后恢复重建基本完成,总投入约20亿元人民币,此数据可以用科学计数法表示为________元. 4、如图:已知△ABC 中,AB =AC ,∠BAC =90°,直角∠EPF 的顶点P 是BC 边上的中点,两边PE ,PF 分别交AB ,AC 于点E ,F ,给出以下四个结论:①AE =CF ;②EF =AP ;③2S 四边形AEPF =S △ABC ;④当∠EPF 在△ABC 内绕顶点P 旋转时(点E 不与A ,B 重合)有BE +CF =EF ;上述结论中始终正确的序号有__________.5、角是轴对称图形,__是它的对称轴.·线○封○密○外三、解答题(5小题,每小题10分,共计50分)1、今年6月初三(1)班同学毕业合影留念,拍摄一张宽幅彩色合影需支付底片费及摄影师劳务费合计58元;冲印一张彩照需3.5元,每位同学预定1张,惠赠6张母校留存;结果参加合影同学分摊的费用没超过5元,问参加合影的同学至少有多少人2、已知三角形的三条边为互不相等的整数,且有两边长分别为7和9,另一条边长为偶数.(1)请写出一个三角形,符合上述条件的第三边长.(2)若符合上述条件的三角形共有a 个,求a 的值.3、为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m ) 绘制成不完整的频数分布表和频数分布直方图.请根据图表中所提供的信息,完成下列问题·线(1)表中a= ,b= ;(2)请把频数分布直方图补充完整;(3)跳远成绩大于等于2.0m为优秀,若该校九年级共有550名学生,估计该年级学生立定跳远成绩优秀的学生有多少人?4、某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?5、计算:(2−m+n)(2+m−n)-(1 - m +n)(1+ m -n)-参考答案-一、单选题1、B【分析】先把a+b平方,再根据a2+b2=3,代入求解即可.【详解】∵a+b=2,∴(a+b)2=4,即(a+b)2=a2+b2+2ab=4,∵a 2+b2= 3,∴3+2ab=4,解得ab=12. 故选B.【点睛】此题考查完全平方公式,解题关键在于掌握计算公式.2、D【分析】根据对应点的中点在对称轴上,可得点N 与M 点的关系,根据解方程,可得答案【详解】解:设N 点的横坐标为b ,由△ABC 与△DEF 关于直线m=1对称,点M 、N 分别是这两个三角形中的对应点,得12a b +=, 解得2b a =-.故选:D .【点睛】此题考查坐标与图形变化对称,解题关键在于列出方程3、A【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x ,x 2,x 3,x 4,…,x n , 第二项依次是y ,-y 3,y 5,-y 7,…,(-1)n+1y 2n-1, 所以第10个式子即当n=10时,·线4、D【解析】【分析】根据平行线的性质:两直线平行,同位角相等,以及对顶角相等等知识分别求出∠2,∠3,∠4,∠5的度数,然后选出正确的选项.【详解】∵//a b , 1=58∠︒,∴3=1=58∠∠︒,2=1=58∠∠︒,4=180318058122∠︒-∠=︒-︒=︒,∵三角板为直角三角板,∴5903905832∠=︒-∠=︒-︒=︒.故选项A. B. C 错误,故选:D.【点睛】此题考查平行线的性质,三角形内角和定理,解题关键在于熟练掌握平行线的性质定理.5、D【分析】由三角形内角和定理及勾股定理的逆定理进行判断即可.【详解】解:A 、∠A+∠B=∠C,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;B 、∠A:∠B:∠C=1:2:3,又∠A+∠B+∠C=180°,则∠C=90°,是直角三角形;C 、由a 2=c 2−b 2,得a 2+b 2=c 2,符合勾股定理的逆定理,是直角三角形;D 、32+42≠62,不符合勾股定理的逆定理,不是直角三角形.故选:D .【点睛】本题考查了直角三角形的判定,注意在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.6、B【分析】①只要证明BAE CAF ∆≅∆即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F 到BC 的距离即可判断.综上即可得答案.【详解】∵四边形ABCD 是菱形,∴AB BC =,ACB ACD ∠=∠,∵∠ABC=60°,∴ABC ∆是等边三角形,∴∠ACD=∠ACB=60°,AB=AC ,∴∠ABE=∠ACF=120°,∵60BAC EAF ∠=∠=,∴∠BAE+∠BAF=∠CAF+∠BAF=60°,∴BAE CAF ∠=∠, ∴ABE ACF ∠=∠, 在BAE ∆和CAF ∆中,BAE CAF AB AC ABE ACF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()BAE CAF SAS ∆≅∆, ·线○∴AE AF =,BE CF =.故①正确;∵60EAF ∠=,∴AEF ∆是等边三角形,∴60AEF ∠=,∵60AEB CEF AEB EAB ∠+∠=∠+∠=,∴EAB CEF ∠=∠,故②正确;∵60ACD ACB ∠=∠=,∴60ECF ∠=,∵60AEB ∠<,∴ABE ∆和EFC ∆不会相似,故③不正确;过点A 作AG BC ⊥于点G ,过点F 作FH EC ⊥于点H ,∵15EAB ∠=,60ABC ∠=,∴45AEB ∠=,∵在Rt AGB ∆中,60ABC ∠=,4AB =,∴2BG =,AG =∵在Rt AEG ∆中,45AEG EAG ∠=∠=,∴AG GE ==∴2EB EG BG =-=,∵AEB AFC ∆≅∆,∴120ABE ACF ∠=∠=,2EB CF ==,∴60FCE ∠=,∴在Rt CHF ∆中,30CFH ∠=,2CF =,∴112CH CF =.∴)13FH === ∴点F 到BC的距离为3,故④不正确.综上,正确结论有①②,共2个,故选B .【点睛】本题考查四边形综合题、菱形的性质、等边三角形的判定、全等三角形的判定和性质等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线,属于中考压轴题.7、B【解析】 【分析】 根据一元二次方程的解的定义,将x=0代入关于x 的一元二次方程()22213230a x x a a --+--=,列出关于a 的一元一次方程,通过解方程即可求得a 的值. 【详解】 根据题意知,x=0是关于x 的一元二次方程()22213230a x x a a --+--=的根 ∴a 2-2a-3=0,解得,a=3或a=-1·线○封又∵a 2-1≠0,∴.a≠±1.∴.a=3.故选:B.【点睛】本题考查了一元二次方程的解的定义,一元二次方程的解使方程的左右两边相等.8、C【分析】利用同类项的定义求出a 与b 的值,原式合并同类项得到最简结果,再利用完全平方公式,即可解答.【详解】2222a ab b x -+与214b ab x +是同类项,得到: a 2-ab+2b 2=b 2+ab,移项的:2220a ab b -+= ,()20a b -= ,∴a=b,故选:C.【点睛】此题考查完全平方公式,同类项,解题关键在于列出方程.9、B【分析】首先利用平方差公式分解因式,进而利用三角形三边关系得出即可.【详解】∵(a −b)2−c 2=(a −b+c)(a −b −c),a ,b ,c 是三角形的三边,∴a+c −b>0,a −b −c<0,∴(a −b)2−c 2的值是负数.故选:B.【点睛】此题考查三角形三边关系,解题关键在于掌握运算公式.10、A【分析】 根据12b x x a +=-求解即可.【详解】设另一根为x 2,则-1+x 2=-3,∴x 2=-2.故选A. 【点睛】 本题考查了一元二次方程ax 2+bx +c =0(a ≠0)根与系数的关系,若x 1,x 2为方程的两个根,则x 1,x 2与系数的关系式:12b x x a +=-,12c x x a⋅= . 二、填空题 1、(45,6) 【分析】 根据图形推导出:当n 为奇数时,第n 个正方形每条边上有(n+1)个点,连同前边所有正方形共有·线○封(n+1)2个点,且终点为(1,n);当n为偶数时,第n个正方形每条边上有(n+1)个点,连同前边所以正方形共有(n+1)2个点,且终点为(n+1,0). 然后根据2019=452-6,可推导出452是第几个正方形连同前边所有正方形共有的点,最后再倒推6个点的坐标即为所求.【详解】解:由图可知:第一个正方形每条边上有2个点,共有4=22个点,且终点为(1,1);第二个正方形每条边上有3个点,连同第一个正方形共有9=32个点,且终点为(3,0);第三个正方形每条边上有4个点,连同前两个正方形共有16=42个点,且终点为(1,3);第四个正方形每条边上有5个点,连同前两个正方形共有25=52个点,且终点为(5,0);故当n为奇数时,第n个正方形每条边上有(n+1)个点,连同前边所有正方形共有(n+1)2个点,且终点为(1,n);当n为偶数时,第n个正方形每条边上有(n+1)个点,连同前边所以正方形共有(n+1)2个点,且终点为(n+1,0).而2019=452-6n+1=45解得:n=44由规律可知,第44个正方形每条边上有45个点,且终点坐标为(45,0),由图可知,再倒着推6个点的坐标为:(45,6).故答案为: (45,6).【点睛】此题考查的是图形的探索规律题,根据图形探索规律并归纳公式是解决此题的关键.2、40【解析】【分析】首先将等式的左边进行化简,再根据底数相等指数相等,列方程求解即可.【详解】解:原式可化为:114m n x x ++=所以可得:114m n ++=因为m ,n 为正整数且m 比n 大3,可得:3m n =+所以可得:1143m n m n ++=⎧⎨=+⎩解得:85m n =⎧⎨=⎩所以mn=40故答案为40.【点睛】本题主要考查同底数幂的指数相等,如果底数相等,则指数必相等.3、9210⨯【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】将20亿用科学记数法表示为2×109.故答案为:2×109.【点睛】 此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 4、①③ ·线○封根据题意,容易证明△AEP≌△CFP,然后能推理得到①③都是正确.【详解】∵AB=AC,∠BAC=90°,点P是BC的中点,∴∠EAP=12∠BAC=45°,AP=12BC=CP.①在△AEP与△CFP中,∵∠EAP=∠C=45°,AP=CP,∠APE=∠CPF=90°-∠APF,∴△AEP≌△CFP,∴AE=CF.正确;②只有当F在AC中点时EF=AP,故不能得出EF=AP,错误;③∵△AEP≌△CFP,同理可证△APF≌△BPE.∴S四边形AEPF=S△AEP+S△APF=S△CPF+S△BPE=12S△ABC,即2S四边形AEPF=S△ABC;正确;④根据等腰直角三角形的性质,,所以,EF随着点E的变化而变化,只有当点E为AB的中点时,,在其它位置时EF≠AP,故④错误;故答案为①③.【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,证得△AEP和△CFP全等是解题的关键,也是本题的突破点.5、角平分线所在的直线【分析】根据角平分线的定义即可解答.解:角的对称轴是“角平分线所在的直线”.故答案为:角平分线所在的直线.【点睛】本题主要考查了轴对称图形,理解轴对称图形沿对称轴折叠能够完全重合是解题的关键.三、解答题1、参加合影的同学至少有53人【解析】【分析】首先设参加合影的同学有x 人,根据题意可得不等关系:底片费及劳务费58元+冲印相片的数量×3.5≤5元×人数,根据不等关系列出不等式即可.【详解】设参加合影的同学至少有x 人,依题意得58 3.56 3.55x x ++⨯≤ 解得,2523x ≥ 因为x 是整数,所以x=53.答:参加合影的同学至少有53人.【点睛】此题主要考查了一元一次不等式的应用,关键是正确理解题意,找出题目中的不等关系,列出不等式. 2、(1)9,7,4;(2)6 【分析】 ·线○封(1)根据三角形三边关系求得第三边的取值范围,即可求解;(2)找到第三边的取值范围内的正整数的个数,即为所求;【详解】解:(1)两边长分别为9和7,设第三边是m,则9-7<m<7+9,即2<m<16,因为m为偶数,所以m=4,6,8,10,12,14,当第三边长是4(答案不唯一)时,三边为:9,7,4;(2)∵由(1)得2<m<16, m的值为4,6,8,10,12,14共六个,∴a=6.【点睛】本题考查三角形三边关系定理:三角形两边之和大于第三边.在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3、(1)8,20 (2)见解析(3)330人【解析】【分析】(1)根据频数分布直方图可知a的值,然后根据题目中随机抽取该年级50名学生进行测试,可以求得b的值;(2)根据(1)中b的值可以将频数分布直方图补充完整;(3)根据频数分布表中的数据,可以算出该年级学生立定跳远成绩优秀的学生有多少人.【详解】(1)由频数分布直方图可知,a=8,b=50-8-12-10=20,故答案为:8,20;(2)由(1)知,b=20,补全的频数分布直方图如图所示;(3)550×201050+=330(人), 答:该年级学生立定跳远成绩优秀的学生有330人.【点睛】本题考查频数分布表、频数分布直方图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.4、(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可. 【详解】 解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-= 解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;·线○封(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+, 解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.5、3【分析】先把式子化为平方差的形式,再根据平方差公式进行计算即可.【详解】原式=22−(m −n)2-1+(m-n)2=3【点睛】此题考查平方差公式,完全平方公式,解题关键在于掌握运算公式.。

中考模拟数学试题及答案(二)

中考模拟数学试题及答案(二)

中考数学模拟试卷(二)一、选择题(本题共10小题;每小题3分,共30分)下列各题都有代号为A 、B 、C 、D 的四个结论供选择,其中只有一个结论是正确的.1.13-的值是 ( )A .-3B .3C .13D .-132.函数(1)y k x =-中,如果y 随着x 增大而增大,那么常数k 的取值范围是( ) A .1k < B .1k ≤ C .1>k D .1k ≥ 3.一个几何体的三视图如图所示,则此几何体是( ) A .圆锥 B .棱柱 C .圆柱 D .棱台3.下列计算正确的是 ( )A.422a a a =+; B .236a a a =÷; C .32a a a =⋅; D .532)(a a =. 4.如果b a <,0<c ,那么下列不等式成立的是( ).A. c b c a +<+;B. c b c a +-<+-;C. bc ac <;D.cbc a <. 5.在一个不透明的袋子中装有2个白球,n 个红球,它们除了颜色不同外,其余均相同. 若从中随机摸出一个球,摸到红球的概率是54,则n 的值等于( ) A .15个 B .8个 C .10个 D .6个6.在平面直角坐标系中,若点P (m ,m+2)在第二象限,则mx 的取值范围为 ( ) A .-2 <m<0 B .m <-2 C .m >0 D .m >-2 7.如图所示,点P 为反比例函数y =2x上的一动点,作PD ⊥x 轴于点D ,△POD 的面积为k ,则函数y =k x -1的图像为 ( )8.如图所示,将矩形ABCD 沿对角线BD 折叠,使C 落在C'处, BC'交AD 于E ,则下列结论不一定成立的是 ( ) A .AD =BC' B .∠EBD =∠EDB C .△ABE ∽△CBD D .sin ∠ABE =AEED9.如图所示,已知Rt △ABC 中,∠ABC =90°,∠BAC =30°,AB =3,将△ABC 绕顶点C 顺时针旋转至△A'B'C 的位置,且A 、C 、B'三点在同一条直线上, 则点A 经过的最短路线的长度是 ( )(第3题图)俯视图 主视图左视图A .8cmB .43cmC .323πcm D .83πcm10.如图所示,AB 为⊙O 的直径,AC 交⊙O 于E 点,BC 交⊙O 于D 点,CD =BD ,∠C =70°.现给出以下四个结论:①∠A =45°; ②AC =AB ;③AE =BE ;④CE ·AB =2BD 2,其中正确结论的序号是 ( ) A .①②B .②③C .②④D .③④二、填空题(本题共8小题;每小题3分,共24分)请把最后结果填在题中横线上.请把最后结果填在题中横线上.11.分解因式:a 3-a =________________.12.如图所示的围棋盘放在平面直角坐标系内,黑棋A 的坐标为(-1, 2),那么白棋B 的坐标是____________.13.4支排球队进行单循环比赛(参加比赛的每两支球队之间都要进行一 场比赛),则总的比赛场数为_______场.14.若关于x 的分式方程311x a x x--=-无解,则a =_______.15.现在一般超市都是使用环保购物袋,某超市有偿..提供可重复使用的三种环保购物袋,每个售价分别为1元、2元和3元,这三种环保购物袋每个最多分别能装大米3kg 、5kg和8kg .6月7日,小明和爸爸在该超市选购了3个环保购物袋用来装刚购买的20kg 散装大米,他们选购的3个环保购物袋至少..应付给超市___________元. 16.如图所示的抛物线是二次函数y =ax 2-3x +a 2-1的图像,那么a 的值是_______. 17.如图所示,在△ABC 中,AB =AC =13,BC =10,D 是AB 的中点,过点D 作DE ⊥AC 于点E ,则DE 的长是________.18.如图所示为手的示意图,在各个手指间标记字母A 、B 、C 、D .请你按图中箭头所指方向(即A →B →C →D →C →B →A →B →C →…的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是_______;当字母C 第201次出现时,恰好数到的数是_______;当字母C 第2n +l 次出现时(n 为正整数),恰好数到的数是_______(用含n 的代数式表示).A B CD E(第10题Ox yE DC A B三、解答题(本题共11小题;共76分.解答应写出文字说明、证明过程或演算步骤)19.(本小题5分)计算:0183221π⎛⎫-+⎪-⎝⎭20.(本小题5分)先化简,再求值:2239(1)x xx x---÷,其中31x=21.(本小题5分)解不等式组:12,132,2xx x->⎧⎪⎨-≤+⎪⎩………………①…………②22.(本小题6分)如图所示,△ABC在方格纸中.(1)请在方格纸上建立平面直角坐标系,使A(2,3),C(6,2).并求出B点坐标.(2)以原点O为位似中心,相似比为2,在第一象限内将△ABC放大,画出放大后的图形△A'B'C'.(3)计算△A'B'C'的面积S.23.(本小题6分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪两个人先下棋,规则如右图所示:(1)请你完成如左图所示游戏一个回合所有可能出现的结果的树状图.(2)求一个回合能确定两人先下棋的概率.解:(1)树状图为:24.(本题满分6分)结合“两纲教育”,某中学600名学生参加了“让青春飞扬”知识竞赛.竞赛组委会从中随机抽取了部分学生的成绩(得分都是整数..,最高分98分)作为样本进行统计分析,并绘制成抽样分析分类统计表和频率分布直方图(如表1和图6,部分数据缺失).试根据所提供的信息解答下列问题:(1) 本次随机抽样调查的样本容量是 ▲ ;(2) 试估计全校所有参赛学生中成绩等第为优良的学生人数;(3) 若本次随机抽样的样本平均数为76.5,又表1中b 比a 大15,试求出a 、b 的值; (4) 如果把满足q x p ≤≤的x 的取值范围记为[p ,q ],表1中a 的取值范围是 ▲ . (A )[69.5,79.5] (B )[65,74] (C )[66.5,75.5] (D )[66,75]25.(本小题8分)如图所示,要在木里县某林场东西方向的两地之间修一条公路MN ,已知C 点周围200m 范围内为原始森林保护区,在MN 上的点A 处测得点C 在点A 的北偏东45°方向上,从A 向东走600m 到达B 处,测得点C 在点B 的北偏西60°方向上. (1)MN 是否穿过原始森林保护区?为什么?(参考数据:3≈1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?26.(本小题8分)如图a 所示,已知正方形ABCD 的边CD 在正方形DEFG 的边DE 上,连接AE 、GC .成绩范围60<x 8060<≤x80≥x 成绩等第 不合格合格优良人数 40平均成绩57a b表1:抽样分析分类统计表抽样分析频率分布直方图(图6)成绩0.01 0.04 组距频率0.020.0349.5 0.1 0.20.3 0.15 59.5 69.5 79.5 89.599.5(1)试猜想AE 与GC 有怎样的位置关系,并证明你的结论.(2)将正方形DEFG 绕点D 按顺时针方向旋转,使点E 落在BC 边上,如图b 所示,连接AE 和CG .你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.27.(本小题9分)如图所示,已知⊙O 的半径为6cm ,射线PM 经过点O ,OP =10cm ,射线PN 与⊙O 相切于点Q .A 、B 两点同时从点P 出发,点A 以5cm/s 的速度沿射线PM 方向运动,点B 以4cm/s 的速度沿射线PN 方向运动,设运动时间为t s . (1)求PQ 的长.(2)当t 为何值时,直线AB 与⊙O 相切?OPQMNAB28.(本小题9分)某茶厂种植“春蕊”牌绿茶,由历年来市场销售行情知道,从每年的3 月25日起的180天内,绿茶市场销售单价y (元)与上市时间t (天)的关系可以近似地用图a 中的一条折线表示.绿茶的种植除了与气候、种植技术有关外,其种植的成本单价z (元)与上市时间t (天)的关系可以近似地用图b 所示的抛物线表示.B C D EFG A a 图 B C D E F G A b 图(1)直接写出图a中表示的市场销售单价y(元)与上市时间£(天)(t>0)的函数关系式.(2)求出图b中表示的种植成本单价z(元)与上市时间t(天)(t>0)的函数关系式.(3)认定市场销售单价减去种植成本单价为纯收益单价,问何时上市的绿茶纯收益单价最大?(说明:市场销售单价和种植成本单价的单位:元/500g.)29.(本小题9分)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=5分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标.(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式.(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.参考答案1~10. BCCAB AACDC 11.()()11a a a +- 12.(-3,-2) 13.6 14.1或-2 15.8 16.-1 17.601318.B 603 6n +3 19.0 20.解:原式=9)32(2-⨯--x xx x x x =)3)(3(3-+⨯-x x x x x=31+x 当13-=x 时,原式=231+=32-21.由①,得x>3. 由②,得x ≤10. ∴原不等式的解集为3<x ≤10. 22.(1)图略.B (2,1) (2)图略(3)16 23.(1)如图所示:(2)3424..解:(1) 80 ; (2) 成绩位于79.5~89.5的频率为25.015.03.02.01.01=+++-)(.所以全校所有参赛学生中成绩等第为优良的学生人数为24015.025.0600=+⨯)((人) (3) 本次随机抽样分析成绩不合格的人数为81.080=⨯(人),成绩优良的人数为324.080=⨯(人),依据题意,可得方程组⎪⎩⎪⎨⎧=+-=++⨯.15,5.76803240857b a ba 解得 ⎩⎨⎧==.87,72b a(4) D .25.(1)MN 不会穿过原始森林保护区 (2)原计划完成这项工程需要25天 26.(1)AE ⊥GC (2)成立 27.(1)8cm (2)当t 为0.5s 或3.5s 时,直线AB 与⊙O 相切28.(1) ()()2160 0<t<120,380 (120t 150),220 150t 1805t y t ⎧-+⎪⎪=≤≤⎨⎪⎪+≤≤⎩(2)()2111020300z t =-+(t>0)(3)在t =10时,纯收益单价最大,最大值为100元。

模拟卷2:2020武汉市中考数学模拟卷(二)—解析版

模拟卷2:2020武汉市中考数学模拟卷(二)—解析版

2020年武汉市中考模拟卷(二)—解析版数学试卷(考试时间:120分钟 满分:120分 )一.选择题(共12小题,每小题3分,共36分) 1. 6.1亿用科学记数法表示为( ).A .6.1×101B .0.61×109C .6.1×108D .61×107【解答】C .2. 式子1a +有意义,则实数a 的取值范围是( )A .a ≥﹣1B .a ≠0C .a >﹣1D .a >0【解答】A .3. 军运会设计运动中,运动员每次射击击中靶的环数为1到10,不考虑脱靶的情况下,下列事件为随机事件的是( )A .某运动员两次射击总环数大于1B .某运动员两次射击总环数等于1C .某运动员两次射击总环数大于20D .某运动员两次涉及总环数等于20 【解答】D . 4. 下列图形中不是轴对称图形的是( )A .B .C .D .【解答】B .5. 下列图形都是由大小相同的正方体搭成的,其三视图都相同的是( )A .B .C .D .【解答】C .6. 将一箱苹果分给若干个小朋友,若每位小朋友分5个苹果,则还剩12个苹果;若每位小朋友分8个苹果,则有一个小朋友分到苹果但不到8个苹果.求这一箱苹果的个数与小朋友的人数.若设有x 人,则可列不等式为( )A .8(1)5128x x -<+<B .05128x x <+<C .05128(1)8x x <+--<D .85128x x <+< 【解答】C 7. 根据规定,我市将垃圾分为了四类:可回收物、易腐垃圾、有害垃圾和其他垃圾四大类.现有投放这四类垃圾的垃圾桶各1个,若将用不透明垃圾袋分类打包好的两袋不同垃圾随机投进两个不同的垃圾桶,投放正确的概率是( )A .16B .18C .112D .116【解答】C 8. 已知点M (2,3)是一次函数y =kx +1的图象和反比例函数my x=的图象的交点,当一次函数的值大于反比例函数的值时,x 的取值范围是( )A .x <﹣3或0<x <2B .x >2C .﹣3<x <0或x >2D .x <﹣3 【解答】C9.如图,在⊙O中,直径CD垂直弦AB于点E,且OE=DE.点P为¶BC上一点(点P不与点B,C重合),连结AP,BP,CP,AC,BC.过点C作CF⊥BP于点F.给出下列结论:①△ABC是等边三角形;②在点P从B→C的运动过程中,CFAP BP-的值始终等于32.则下列说法正确的是()A.①,②都对B.①对,②错C.①错,②对D.①,②都错【解答】A【解析】如图,作CM⊥AP于M,连接AD.∵AE⊥OD,OE=DE,∴AO=AD,∵OA=OD,∴AO=AD=OD,∴△AOD是等边三角形,∴∠D=∠ABC=60°,∵CD⊥AB,∴AE=EB,∴CA=CB,∴△ABC是等边三角形,故①正确,∵∠CP A=∠ABC=60°,∠APB=∠ACB=60°,∴∠CPF=180°﹣60°﹣60°=60°,∵∠CPM=∠CPF=60°,CF⊥PF,CM⊥P A,∴CF=CM,∵PC=PC,∠CFP=∠CMP,∴Rt△CPF≌Rt△CPM(HL),∴PF=PM,∵AC=BC,CM=CF,∠AMC=∠CFB=90°,∴Rt△AMC≌Rt△BFC(HL),∴AM=BF,∴AP﹣PB=PM+AM﹣(BF﹣PF)=2PM=2PF,∴12PFPA PB=-,在Rt△CPF中,∵∠CPF=60°,∠CFP=90°,tan603CF PF PF∴=︒=g,3PF CF∴=,∴3CFPA PB=-,故②正确,10.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=﹣2018,a98=﹣1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为()A.1985 B.﹣1985 C.2019 D.﹣2019 【解答】B【解析】∵任意相邻三个数的和为常数,∴a1+a2+a3=a2+a3+a4,a2+a3+a4=a3+a4+a5,a3+a4+a5=a4+a5+a6,∴a1=a4,a2=a5,a3=a6,∵a7=﹣2018,a98=﹣1,7÷3=2…1,98÷3=32…2,∴a1=﹣2018,a2=﹣1,∴a1+a2+a3=﹣2018+(﹣1)+2020=1,∵100÷3=33…1,∴a100=a1=﹣2018,∴a1+a2+a3+…+a98+a99+a100=(a1+a2+a3)+…+(a97+a98+a99)+a100=1×33+(﹣2018)=﹣1985.二.填空题(共12小题,每小题3分,共36分)11.计算:32736-+==.【解答】3.12.某公司招聘职员,公司对应聘者进行了面试和笔试(满分均为100分),规定笔试成绩占60%,面试成绩占40%,应聘者小菁的笔试成绩和面试成绩分别为95分和90分,她的最终得分是分.【解答】93.13. 化简:2221a ab a b---的结果是 . 【解答】1a b+ 14. 在△ABC 中,D 、E 是边BC 上的两点,DC =DA ,EA =EB ,∠DAE =40°,则∠BAC 的度数是 .【解答】70︒或110︒ 15. 已知实数a ,b ,c 满足a ≠0,且a ﹣b +c =0,9a +3b +c =0,则抛物线y =ax 2+bx +c 图象上的一点(﹣2,4)关于抛物线对称轴对称的点为 . 【解答】(4,4). 16. 如图,在菱形ABCD 中,∠ABC =120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若DG =2,BG =6,则BE 的长为 .【解答】2.8【解析】作EH ⊥BD 于H ,由折叠的性质可知,EG =EA ,BD =DG +BG =8,∵四边形ABCD 是菱形,∴AD =AB ,1602ABD CBD ABC ∠=∠=∠=︒,∴△ABD 为等边三角形,∴AB =BD =8, 设BE =x ,则EG =AE =8﹣x ,在Rt △EHB 中,12BH x =,3EH x =,在Rt △EHG 中,EG 2=EH 2+GH 2,即22231(8)()(6)2x x x -=+-,解得,x =2.8,即BE =2.8,三.解答题(共8小题,共72分) 17. 计算:8a 6÷2a 2+4a 3•2a ﹣(3a 2)2 【解答】解:原式=4a 4+8a 4﹣9a 4=3a 4.18. 如图,直线AB ∥直线CD ,直线EF 分别交AB 、CD 于E 、F 两点,EM 、FN 分别平分∠BEF 、∠CFE ,求证:EM ∥FN .【解答】证明:∵直线AB ∥直线CD ,∴∠BEF =∠CFE ,又∵EM 、FN 分别平分∠BEF 、∠CFE , ∴∠FEM =∠EFN , ∴EM ∥FN .19.某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)本次调查的样本为,样本容量为;(2)在频数分布表中,a=,b=,并将频数分布直方图补充完整;(3)若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?【解答】解:(1)20÷0.1=200(人),所以本次调查的样本为200名初中毕业生的视力情况,样本容量为200;(2)a=200×0.3=60,b=10÷200=0.05;如图,故答案为200名初中毕业生的视力情况,200;60,0.05;(3)5000×(0.35+0.3+0.05)=3500(人),估计全区初中毕业生中视力正常的学生有3500人.20.如图,在平面直角坐标系中,点A(0,4)、B(﹣3,0),将线段AB沿x轴正方向平移n个单位得到菱形ABCD.(1)画出菱形ABCD,并直接写出n的值及点D的坐标;(2)已知反比例函数kyx=的图象经过点D,▱ABMN的顶点M在y轴上,N在kyx=的图象上,求点M的坐标;(3)若点A、C、D到某直线l的距离都相等,直接写出满足条件的直线解析式.【解答】解:(1)如图,∵点A(0,4)、B(﹣3,0),∴AO=4,BO=3∴AB=5∵四边形ABCD是菱形,∴AB=BC=CD=AD=5∵将线段AB沿x轴正方向平移n个单位得到菱形ABCD.∴n=5,点C坐标为(2,0),点D坐标为(5,4),(2)∵反比例函数kyx=的图象经过点D,∴k=4×5=20∵N在20yx=的图象上,∴设点20(,)N aa,如图,过点N作NH⊥OA于点H,∵四边形ABMN是平行四边形,∴AN=BM,AN∥BM,∴∠BMA=∠NAM∴∠BMO=∠NAH,且AN=BM,∠BOM=∠NHA=90°,∴△ANH≌△MBO(AAS)∴HN=BO=3,MO=AH∴HN=a=3,20203HOa==,83OM AH HO AO∴==-=,∴点8 (0,)3 M(3)∵点A、C、D到某直线l的距离都相等,∴直线l是△ACD的中位线所在直线,如图所示:若直线l过线段AC,CD中点,∴直线l的解析式为:y=2若直线l过线段AD,AC中点,即直线l过点(5(2,4),点(1,2)设直线l的解析式为:y=mx+n∴5 422m nm n⎧=+⎪⎨⎪=+⎩,解得:43m=,23n=,∴直线l的解析式为:4233y x=+若直线l过线段AD,CD中点,即直线l过点(5(2,4),点(7(2,2)设直线l解析式为:y=kx+b∴542722k bk b⎧=+⎪⎪⎨⎪=+⎪⎩,解得:k=﹣2,b=9,∴直线l的解析式为:y=﹣2x+921.如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•P A.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是¶AB的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF 的长.【解答】(1)证明:连接OC,如图1所示:∵PC2=PB•P A,即PA PCPC PB=,且∠P=∠P,∴△PBC∽△PCA,∴∠PCB=∠P AC,∵AB为⊙O的直径,∴∠ACB=90°,∴∠A+∠ABC=90°,∵OC=OB,∴∠OBC=∠OCB,∴∠PCB+∠OCB=90°,即OC⊥PC,∴PC是⊙O的切线;(2)解:连接OD,如图2所示:∵PC=20,PB=10,PC2=PB•P A,22204010PCPAPB∴===,∴AB=P A﹣PB=30,∵△PBC∽△PCA,∴2AC PABC PC==,设BC=x,则AC=2x,在Rt△ABC中,x2+(2x)2=302,解得:x=65x=BC=65x=∵点D是¶AB AB为⊙O∴∠AOD=90°,∵DE⊥AC,∴∠AEF=90°,∵∠ACB =90°,∴DE ∥BC ,∴∠DFO =∠ABC ,∴△DOF ∽△ACB , ∴12OF BC OD AC ==,11522OF OD ∴==,即15AF =, ∵EF ∥BC ,∴14EF AF BC AB ==,1354EF BC ∴=.22. 农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p (千克)与销售价格x (元/千克)之间的关系,经过市场调查获得部分数据如下表:销售价格x (元/千克) 30 35 40 45 50 日销售量p (千克)600 450 300 150 0(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p 与x 之间的函数表达式;(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?(3)若农经公司每销售1千克这种农产品需支出a 元(a >0)的相关费用,当40≤x ≤45时,农经公司的日获利的最大值为2430元,求a 的值.(日获利=日销售利润﹣日支出费用) 【解答】 解:(1)假设p 与x 成一次函数关系,设函数关系式为p =kx +b ,则3060040300k b k b +=⎧⎨+=⎩,解得:k =﹣30,b =1500,∴p =﹣30x +1500,检验:当x =35,p =450;当x =45,p =150;当x =50,p =0,符合一次函数解析式, ∴所求的函数关系为p =﹣30x +1500;(2)设日销售利润w =p (x ﹣30)=(﹣30x +1500)(x ﹣30)即w =﹣30x 2+2400x ﹣45000,∴当2400402(30)x =-=⨯-时,w 有最大值3000元, 故这批农产品的销售价格定为40元,才能使日销售利润最大; (3)日获利w =p (x ﹣30﹣a )=(﹣30x +1500)(x ﹣30﹣a ),即w =﹣30x 2+(2400+30a )x ﹣(1500a +45000),对称轴为2400301402(30)2a x a +=-=+⨯-, ①若a >10,则当x =45时,w 有最大值,即w =2250﹣150a <2430(不合题意); ②若a <10,则当1402x a =+时,w 有最大值,将1402x a =+代入,可得2130(10100)4w a a =-+,当w =2430时,21243030(10100)4a a =-+,解得12a =,238a =(舍去),综上所述,a 的值为2.23. (1)在△ACB 中,∠ACB =90°,CD ⊥AB 于D ,点E 在AC 上,BE 交CD 于点G ,EF ⊥BE 交AB 于点F .①如图1,AC =BC ,点E 为AC 的中点,求证:EF =EG ;②如图2,BE 平分∠CBA ,AC =2BC ,试探究EF 与EG 的数量关系,并证明你的结论;(2)如图3,在△ABC 中,若3tan 3B =,点E 在边AB 上,点D 在线段BC 的延长线上,连接DE 交AC 于M ,∠CMD =60°,DE =2AC ,33CD =,直接写出BE 的长.【解答】(1)①证明:如图1,过E 作EM ⊥AB 于M ,EN ⊥CD 于N ,∵∠ACB =90°,AC =BC ,∴∠A =∠ABC =45°,∴AD =CD , ∵点E 为AC 的中点,CD ⊥AB ,EN ⊥DC ,12EN AD ∴=,12EM CD ∴=,∴EN =EM ,∵∠FEB =90°,∠MEN =90°,∴∠NEG =∠FEM , 在△EFM 和△EGN 中,NEG FEMEN EM ENG EMF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EFM ≌△EGN (ASA ),∴EF =EG ; ②解:5EF EG =,理由如下: 如图2,作EP ⊥AB 于点P ,EQ ⊥CD 于点Q ,易证:△EFP ∽△EGQ ,∴EF EPEG EQ=, ∵BE 平分∠ABC ,EC ⊥BC ,EP ⊥AB ,∴EC =EP , ∵EQ ∥AB ,∴∠CEQ =∠A ,∵∠EQC =∠ACB ,∴△ECQ ∽△ABC ,∴2EQ ACCQ BC==, 设CQ =a ,EQ =2a ,则5EC EP a ==,∴55EF a EG ==, (2)解:如图3,过C 作CF ∥DE ,过A 作AF ⊥AC ,交CF 于F ,连接EF ,3tan B =Q ,∴∠ABC =30°, ∵CF ∥DE ,∴∠ACF =∠DMC =60°,∴∠AFC =30°, ∵∠CAF =90°,∴CF =2AC , ∵DE =2AC ,∴DE =CF ,∴四边形EFCD 是平行四边形,∴EF ∥CD ,33EF CD ==,∴∠ABC =∠BEF =30°, ∵∠AFC =∠ABC =30°,∴A 、F 、B 、C 四点共圆, ∴∠FBC +∠CAF =180°,∴∠FBC =90°, ∵EF ∥BC ,∴∠BFE =90°,3cos cos30EF BEF BE ∠=︒==,23363BE ⨯∴==.24. 在平面直角坐标系中,抛物线214y x =沿x 轴正方向平移后经过点A (x 1,y 2),B (x 2,y 2),其中x 1,x 2是方程x 2﹣2x =0的两根,且x 1>x 2,(1)如图1.求A ,B 两点的坐标及平移后抛物线的解析式;(2)平移直线AB 交抛物线于M ,交x 轴于N ,且14AB MN =,求△MNO 的面积; (3)如图2,点C 为抛物线对称轴上顶点下方的一点,过点C 作直线交抛物线于E 、F ,交x 轴于点D ,探究CD CDCE CF+的值是否为定值?如果是,求出其值;如果不是,请说明理由.【解答】解:(1)解方程x 2﹣2x =0得x 1=2,x 2=0.∴点A 坐标为(2,0),抛物线解析式为21(2)4y x =-. 把x =0代入抛物线解析式得y =1.∴点B 坐标为(0,1). (2)如图,过M 作MH ⊥x 轴,垂足为H∵AB ∥MN ∴△ABO ∽△NMH ,∴14BO HN AB MH AO MN ===,∴MH =4,HN =8 将y =4代入抛物线21(2)4y x =-,可得x 1=﹣2,x 2=6∴M 1(﹣2,4),N 1(6,0),M 2(6,4),N 2(14,0) 11164122M N O S =⨯⨯=V ,221144282M N O S =⨯⨯=V(3)设C (2,m ),设直线CD 为y =kx +b将C (2,m )代入上式,m =2k +b ,即b =m ﹣2k .∴CD 解析式为y =kx +m ﹣2k ,令y =0得kx +m ﹣2k =0,∴点D 为(2(k mk-,0)联立221(2)4y kx m k y x =+-⎧⎪⎨=-⎪⎩,消去y 得,212(2)4kx m k x +-=-,化简得,x 2﹣4(k +1)x +4﹣4m +8k =0 由根与系数关系得,x 1+x 2=4k +4,x 1•x 2=4﹣4m +8k .过E 、F 分别作EP ⊥CA 于P ,FQ ⊥CA 于Q , ∴AD ∥EP ,AD ∥FQ ,∴CD CD AD AD EP FQAD CE CF EP FQ EP FQ ++=+=g g 121212()42(2)2(4)x x k m k x x x x +--=-⨯-++g (44)4(448)2(44)4m k k m k k -+-=-+-++g =1 ∴CD CD CE CF+为定值,定值为1。

2023年山东省枣庄市中考数学模拟试卷(二)(含解析)

2023年山东省枣庄市中考数学模拟试卷(二)(含解析)

2023年山东省枣庄市中考数学模拟试卷(二)学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 在下列四个实数中,最大的实数是( )A. −5B. 12C. −1D. 22. 下列运算中,正确的是( )A. a+a=2a2B. a2⋅a3=a6C. (−2a)2=4a2D. (a−1)2=a2+13. 一把直尺和一块三角板ABC(含30°、60°角)如图所示摆放,直尺一边与三角板的两直角边分别交于点D和点E,另一边与三角板的两直角边分别交于点F和点A,且∠CED=50°,那么∠BFA的大小为( )A. 145°B. 140°C. 135°D. 130°4. 对于任意有理数a,b,现用“☆”定义一种运算:a☆b=a2−b2,根据这个定义,代数式(x+y)☆y可以化简为( )A. xy+y2B. xy−y2C. x2+2xyD. x25. 《九章算术》是中国古代数学著作之一,书中有这样的一个问题:五只雀,六只燕共重一斤,雀重燕轻,互换一只,恰好一样重.问:每只雀、燕的重量各为多少?设一只雀的重量为x斤,一只燕的重量为y斤,则可列方程组为( )A. {5x+6y=15x−y=6y−x B. {6x+5y=1 5x+y=6y+xC. {5x+6y=14x+y=5y+x D. {6x+5y=1 4x−y=5y−x6. 已知关于x的方程2x+mx−2=3的解是正数,那么m的取值范围为( ) A. m>−6且m≠−2 B. m<6C. m>−6且m≠−4D. m<6且m≠−27.如图,点C,D在以AB为直径的⊙O上,且CD平分∠ACB,若CD =43,∠CAB=75°,则AB的长是( )A. 83B. 43C. 8D. 48.如图,在平面直角坐标系中,等腰直角三角形ABC的顶点A、B分别在x轴、y轴的正半轴上,∠ABC=90°,CA⊥x轴,点C在函数y=kx(x>0)的图象上,若AB=1,则k的值为( )A. 1B. 22C. 2D. 29.如图,在正方形ABCD中,对角线AC,BD交于点O,折叠正方形A BCD,使AB边落在AC上,点B落在点H处,折痕AE交BC于点E,交BO 于点F,连接FH,下列结论:①AD=DF;②四边形BEHF为菱形;③FHAD=2−1;④S△ABES△ACE =ABAC.其中正确的结论有( )A. 4个B. 3个C. 2个D. 1个10. 如图,已知二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)的图象顶点为P(1,m),经过点A(2,1).有以下结论:①a<0;②abc>0;③4a+2b+c=1;④x>1时,y随x的增大而减小;⑤对于任意实数t,总有at2+bt≤a+b,其中正确的有( )A. 2个B. 3个C. 4个D. 5个第II卷(非选择题)二、填空题(本大题共6小题,共18.0分)11. 新冠肺炎患者喷嚏、咳嗽、说话的飞沫,直接吸入都会导致感染,所以我们要戴口罩,医用口罩可以过滤小至0.00000004米颗粒,用科学记数法表示0.00000004是______ .12. 已知关于x的不等式组{x−a>05−2x≥−1无解,则a的取值范围是______.13.如图,在平面直角坐标系xOy中,点A在第一象限内,点B在x轴正半轴上,△OCD是以点O为位似中心,且与△OAB的相似比的位似图形.若点A的坐标为(3,2),则点C的坐标为______.为1314.如图,在等腰Rt△ABC中,∠BAC=90°,BC=42.分AB的长为半径画弧分别与△ABC别以点A,B,C为圆心,以12的边相交,则图中阴影部分的面积为______ .(结果保留π)15. 如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为______.16. 直线y=x+1与x轴交于点D,与y轴交于点A1,把正方形A1B1C1O1、A2B2C2C1和A3B3C3 C2按如图所示方式放置,点A2、A3在直线y=x+1上,点C1、C2、C3在x轴上,按照这样的规律,则正方形A2022B2022C2022C2021中的点B2022的坐标为______.三、解答题(本大题共8小题,共72.0分。

2020年中考数学模拟试卷(含答案解析) (2)

2020年中考数学模拟试卷(含答案解析) (2)

中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。

福建省2022年中考数学第二次模拟考试(含答案与解析)

福建省2022年中考数学第二次模拟考试(含答案与解析)

福建省2022年中考第二次模拟考试数 学(本卷共25小题,满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答第Ⅱ卷时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:中考全部内容。

一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合要求的。

1.下列用相同的正方体堆放在一起组成的几何体中,主视图和左视图不相同的是( )A .B .C .D .2.安徽省2021年全省户籍人口7119.4万人,比上年增加36.5万人,其中7119.4万用科学记数法表示为( )A .47119.410⨯B .70.7119410⨯C .37119410⨯D .77.119410⨯3.下列式子运算正确的是( )A .2347x x x +=B .2323()x y x y =C .347x x x ⋅=D .347()x x =4.若一次函数y ax b =+22()(a b a -= )A .2a b --B .2a b -C .b -D .2a b -+5.将含有30︒的三角板ABC 按如图所示放置,点A 在直线DE 上,其中15BAD ∠=︒,分别过点B ,C 作直线DE 的平行线FG ,HI ,则HCF ∠的度数为( )A .30︒B .60︒C .45︒D .55︒6.已知a ,b 是方程230x x +-=的两个实数根,则22022a b -+的值是( )A .2023B .2021C .2026D .20197.如图,四边形ABCD 与四边形AEFG 是位似图形,位似比为2:3.若6EF =,则BC 的长为( )A .8B .9C .10D .158.如图,将矩形ABCD 沿EF 折叠,使顶点C 恰好落在AB 边的中点C '上,若4AB =,8BC =,则tan BFC ∠'的值为( )A .34B .815C .817D .15179.若关于x 的不等式组231232x m x x-⎧⎪⎨⎪->-⎩无解,则m 的取值范围是( )A .1m >B .1mC .1m <D .1m10.如图1,正方形ABCD 中,点E 是边AD 的中点,点P 以/lcm s 的速度从点A 出发,沿A B C →→运动到点C 后,再沿线段CA 到达点A .图2是点P 运动时,PEC ∆的面积2()y cm 随时间()x s 变化的部分图象.根据图象判断:下列能表示点P 在整个运动过程中y 随x 变化的完整图象为( )A .B .C .D .二、填空题:本题共6小题,每小题4分,共24分。

黄冈市中考数学全真模拟试卷(二)含答案解析

黄冈市中考数学全真模拟试卷(二)含答案解析

湖北省黄冈市中考数学全真模拟试卷(二)一.选择题(共6小题,满分15分)1.已知x的取值能使|x﹣3|+|x+2|取得最小值,则所有中整数有()A.1个 B.2个 C.3个 D.4个2.(3分)下列运算正确的是()A.m6÷m2=m3B.(x+1)2=x2+1 C.(3m2)3=9m6D.2a3•a4=2a73.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)一个空间几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的表面积是()A.6πB.4πC.8πD.45.(3分)小华五次跳远的成绩如下(单位:m):3.9,4.1,3.9,3.8,4.2.关于这组数据,下列说法错误的是()A.极差是0.4 B.众数是3.9 C.中位数是3.98 D.平均数是3.986.(3分)已知:圆内接四边形ABCD中,对角线AC⊥BD,AB>CD.若CD=4,则AB的弦心距为()A.B.2 C.D.二.填空题(共8小题,满分24分,每小题3分)7.(3分)计算:=.8.(3分)分解因式:3x2﹣6x2y+3xy2=.9.(3分)=.10.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.11.(3分)有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则第n次运算的结果y n=(用含字母x和n的代数式表示).12.(3分)如图,E是正方形ABCD内一点,如果△ABE为等边三角形,那么∠DCE=度.13.(3分)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是cm2(结果保留π).14.(3分)两个直角三角板如图放置,其中AC=5,BC=12,点D为斜边AB的中点.在三角板DEF绕着点D的旋转过程中,边DE与边AC始终相交于点M,边DF与边BC始终相交于点N,则线段MN的最小值为.三.解答题(共10小题,满分64分)15.(5分)解关于x的不等式组:,其中a为参数.16.(6分)如图1,在锐角△ABC中,∠ABC=45°,高线A D、BE相交于点F.(1)判断BF与AC的数量关系并说明理由;(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.17.(6分)已知x1,x2是方程2x2﹣2nx+n(n+4)=0的两根,且(x1﹣1)(x2﹣1)﹣1=,求n的值.18.(6分)甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?19.(7分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.20.(7分)如图,在平面直角坐标系xOy中,直线AB与x轴交于点A,与y轴交于点B,且OA=3,AB=5.点P从点O出发沿OA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AO返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB﹣BO﹣OP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间是t秒(t >0).(1)求直线AB的解析式;(2)在点P从O向A运动的过程中,求△APQ的面积S与t之间的函数关系式(不必写出t的取值范围);(3)在点E从B向O运动的过程中,完成下面问题:①四边形QBED能否成为直角梯形?若能,请求出t的值;若不能,请说明理由;②当DE经过点O时,请你直接写出t的值.21.(7分)如图,反比例函数y=(m≠0)与一次函数y=kx+b(k≠0)的图象相交于A、B两点,点A的坐标为(﹣6,2),点B的坐标为(3,n).求反比例函数和一次函数的解析式.22.(8分)如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是α,然后在水平地面上向建筑物前进了m米,此时自B处测得建筑物顶部的仰角是β.已知测角仪的高度是n米,请你计算出该建筑物的高度.23.(12分)如图,实验数据显示,一般成年人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可以近似的用二次函数y=﹣200x2+400x刻画,1.5小时后(包括1.5小时)y与x可近似的用反比例函数y=(k>0)刻画.(1)根据上述数学模型计算;①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?②当x=5时,y=45,求k的值.(2)按照国家规定,车辆驾驶人员血液中酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早晨7:00能否驾车去上班?请说明理由.24.综合与探究:如图,抛物线y=x2﹣x﹣4与x轴交与A,B两点(点B在点A的右侧),与y 轴交于点C,连接BC,以BC为一边,点O为对称中心作菱形BDEC,点P是x 轴上的一个动点,设点P的坐标为(m,0),过点P作x轴的垂线l交抛物线于点Q.(1)求点A,B,C的坐标.(2)当点P在线段OB上运动时,直线l分别交BD,BC于点M,N.试探究m 为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由.(3)当点P在线段EB上运动时,是否存在点Q,使△BDQ为直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.湖北省黄冈市中考数学全真模拟试卷(二)参考答案与试题解析一.选择题(共6小题,满分15分)1.【解答】解:∵已知x的取值能使|x﹣3|+|x+2|取得最小值,∴当x≥3时,有|x﹣3|+|x+2|=x﹣3+x+2=2x﹣1,∴当x=3时有最小值:2×3﹣1=5;∴当﹣2<x<3时,有|x﹣3|+|x+2|=3﹣x+x+2=5,∴其有最小值5;当x≤﹣2时,有|x﹣3|+|x+2|=3﹣x﹣x﹣2=1﹣2x,∴当x=﹣2时有最小值5,∴﹣2≤x≤3可以使|x﹣3|+|x+2|取得最小值,∴﹣1≤≤,∴所有中整数有﹣1,0,1,共3个,故选:C.2.【解答】解:A、原式=m4,不符合题意;B、原式=x2+2x+1,不符合题意;C、原式=27m6,不符合题意;D、原式=2a7,符合题意,故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:根据题目的描述,可以判断出这个几何体应该是个圆柱,且它的底面圆的半径为1,高为2,那么它的表面积=2π×2+π×1×1×2=6π,故选A.5.【解答】解:A、极差是4.2﹣3.8=0.4;B、3.9有2个,众数是3.9;C、从高到低排列后,为4.2,4.1,3.9,3.9,3.8.中位数是3.9;D、平均数为(3.9+4.1+3.9+3.8+4.2)÷5=3.98.故选:C.6.【解答】解:如图,设AC与BD的交点为O,过点O作GH⊥CD于G,交AB于H;作MN⊥AB于M,交CD于点N.在Rt△COD中,∠COD=90°,OG⊥CD;∴∠DOG=∠DCO;∵∠GOD=∠BOH,∠DCO=∠ABO,∴∠ABO=∠BOH,即BH=OH,同理可证,AH=OH;即H是Rt△AOB斜边AB上的中点.同理可证得,M是Rt△COD斜边CD上的中点.设圆心为O′,连接O′M,O′H;则O′M⊥CD,O′H⊥AB;∵MN⊥AB,GH⊥CD;∴O′H∥MN,OM∥GH;即四边形O′HOM是平行四边形;因此OM=O′H.由于OM是Rt△OCD斜边CD上的中线,所以OM=O′H=CD=2.故选:B.二.填空题(共8小题,满分24分,每小题3分)7.【解答】解:原式==,故答案为:8.【解答】解:原式=3x(x﹣2xy+y2),故答案为:3x(x﹣2xy+y2)9.【解答】解:∵=﹣,∴原式=(﹣)+(﹣)+…+(﹣),=1﹣,=.故答案为.10.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.11.【解答】解:将y1=代入得:y2==;将y2=代入得:y3==,依此类推,第n次运算的结果y n=.故答案为:.12.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠ABC=∠BCD=90°,∵△ABE为等边三角形,∴AE=AB=BE,∠ABE=60°,∴∠EBC=90°﹣60°=30°,BC=BE,∴∠ECB=∠BEC=(180°﹣30°)=75°,∴∠DCE=90°﹣75°=15°.故答案为15.13.【解答】解:底面圆的半径为2,则底面周长=4π,侧面面积=×4π×4=8πcm2.14.【解答】解:当M、N分别为AC、BC的中点时,MN最小.在△ABC中,∵∠C=90°,AC=5,BC=12,∴AB==13.∵M、N分别为AC、BC的中点,∴MN=AB=.故答案为.三.解答题(共10小题,满分64分)15.【解答】解:,解不等式①得:﹣3a<5x≤1﹣3a,﹣a<x≤,解不等式②得:3a<5x≤1+3a,a<x≤,∵当﹣a=a时,a=0,当=时,a=0,当﹣a=时,a=﹣,当a=时,a=,∴当或时,原不等式组无解;当时,原不等式组的解集为:;当时,原不等式组的解集为:.16.【解答】解:(1)BF=AC,理由是:如图1,∵AD⊥BC,BE⊥AC,∴∠ADB=∠AEF=90°,∵∠ABC=45°,∴△ABD是等腰直角三角形,∴AD=BD,∵∠AFE=∠BFD,∴∠DAC=∠EBC,在△ADC和△BDF中,∵,∴△ADC≌△BDF(AAS),∴BF=AC;(2)NE=AC,理由是:如图2,由折叠得:MD=DC,∵D E∥AM,∴AE=EC,∵BE⊥AC,∴AB=BC,∴∠ABE=∠CBE,由(1)得:△ADC≌△BDF,∵△ADC≌△ADM,∴△BDF≌△ADM,∴∠DBF=∠MAD,∵∠DBA=∠BAD=45°,∴∠DBA﹣∠DBF=∠BAD﹣∠MAD,即∠ABE=∠BAN,∵∠ANE=∠ABE+∠BAN=2∠ABE,∠NAE=2∠NAD=2∠CBE,∴∠ANE=∠NAE=45°,∴AE=EN,∴EN=AC.17.【解答】解:∵x1、x2是方程2x2﹣2nx+n(n+4)=0的两根,∴x1+x2=﹣=n ①,x1x2==n(n+4)②,又∵(x1﹣1)(x2﹣1)﹣1=,∴x1x2﹣(x1+x2)=,把①②代入上式得n(n+4)﹣n=,化简得n2=,即n=±.又∵△=b2﹣4ac=4n2﹣4×2×n(n+4)=﹣16n,而原方程有根,∴﹣16n≥0,∴n≤0,∴n=﹣.18.【解答】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,×=解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.19.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)700×=56,所以估计该中学八年级学生中体能测试结果为D等级的学生有56名;(4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率==.20.【解答】解:(1)在Rt△AOB中,OA=3,AB=5,由勾股定理得OB==4.∴A(3,0),B(0,4).设直线AB的解析式为y=kx+b.∴解得∴直线AB的解析式为;(2)如图1,过点Q作QF⊥AO于点F.∵AQ=OP=t,∴AP=3﹣t.由△AQF∽△ABO,得.∴=.∴QF=t,∴S=(3﹣t)•t,∴S=﹣t2+t;(3)四边形QBED能成为直角梯形.①如图2,当DE∥QB时,∵DE⊥PQ,∴PQ⊥QB,四边形QBED是直角梯形.此时∠AQP=90°.由△APQ∽△ABO,得.∴=.解得t=;如图3,当PQ∥BO时,∵DE⊥PQ,∴DE⊥BO,四边形QBED是直角梯形.此时∠APQ=90°.由△AQP∽△ABO,得.即=.3t=5(3﹣t),3t=15﹣5t,8t=15,解得t=;(当P从A向0运动的过程中还有两个,但不合题意舍去)②当DE经过点O时,∵DE垂直平分PQ,∴EP=EQ=t,由于P与Q相同的时间和速度,∴AQ=EQ=EP=t,∴∠AEQ=∠EAQ,∵∠AEQ+∠BEQ=90°,∠EAQ+∠EBQ=90°,∴∠BEQ=∠EBQ,∴BQ=EQ,∴EQ=AQ=BQ=AB所以t=,当P从A向O运动时,过点Q作QF⊥OB于F,EP=6﹣t,即EQ=EP=6﹣t,AQ=t,BQ=5﹣t,∴FQ=(5﹣t)=3﹣t,BF=(5﹣t)=4﹣t,∴EF=4﹣BF=t,∵EF2+FQ2=EQ2,即(3﹣t)2+(t)2=(6﹣t)2,解得:t=.∴当DE经过点O时,t=或.21.【解答】解:把点A(﹣6,2)代入中,得m=﹣12.∴反比例函数的解析式为.把点B(3,n)代入中,得n=﹣4.∴B点的坐标为(3,﹣4).把点A(﹣6,2),点B(3,﹣4)分别代入y=kx+b中,得,解得.∴一次函数的解析式为y=﹣x﹣2.22.【解答】解:由题意得:BE=,AE=,∵AE﹣BE=AB=m米,∴﹣=m(米),∴CE=(米),∵DE=n米,∴CD=+n(米).∴该建筑物的高度为:(+n)米.23.【解答】解:(1)∵y=﹣200x2+400x=﹣200(x﹣1)2+200,①∴当x=1时,y取得最大值,此时y=200,答:喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升;②∵当x=5时,y=45,∴45=,得k=225,即k的值是225;(2)该驾驶员第二天早晨7:00不能驾车去上班,理由:由(1)知k=225,∴y=,∵晚上20:00到第二天早晨7:00是11个小时,∴将x=11代入y=,得y=,∵,∴该驾驶员第二天早晨7:00不能驾车去上班.24.【解答】解:(1)当y=0时,x2﹣x﹣4=0,解得x1=﹣2,x2=8,∵点B在点A的右侧,∴点A的坐标为(﹣2,0),点B的坐标为(8,0).当x=0时,y=﹣4,∴点C的坐标为(0,﹣4).(2)由菱形的对称性可知,点D的坐标为(0,4).设直线BD的解析式为y=kx+b,则,解得k=﹣,b=4.∴直线BD的解析式为y=﹣x+4.∵l⊥x轴,∴点M的坐标为(m,﹣m+4),点Q的坐标为(m,m2﹣m﹣4).如图,当MQ=DC时,四边形CQMD是平行四边形,∴(﹣m+4)﹣(m2﹣m﹣4)=4﹣(﹣4).化简得:m2﹣4m=0,解得m1=0(不合题意舍去),m2=4.∴当m=4时,四边形CQMD是平行四边形.此时,四边形CQBM是平行四边形.解法一:∵m=4,∴点P是OB的中点.∵l⊥x轴,∴l∥y轴,∴△BPM∽△BOD,∴==,∴BM=DM,∵四边形CQMD是平行四边形,∴DM CQ,∴BM CQ,∴四边形CQBM是平行四边形.解法二:设直线BC的解析式为y=k1x+b1,则,解得k1=,b1=﹣4.故直线BC的解析式为y=x﹣4.又∵l⊥x轴交BC于点N,∴x=4时,y=﹣2,∴点N的坐标为(4,﹣2),由上面可知,点M的坐标为(4,2),点Q的坐标为(4,﹣6).∴MN=2﹣(﹣2)=4,NQ=﹣2﹣(﹣6)=4,∴MN=QN,又∵四边形CQMD是平行四边形,∴DB∥CQ,∴∠3=∠4,∵在△BMN与△CQN中,,∴△BMN≌△CQN(ASA)∴BN=CN,∴四边形CQBM是平行四边形.(3)抛物线上存在两个这样的点Q,分别是Q1(﹣2,0),Q2(6,﹣4).若△BDQ为直角三角形,可能有三种情形,如答图2所示:①以点Q为直角顶点.此时以BD为直径作圆,圆与抛物线的交点,即为所求之Q点.∵P在线段EB上运动,∴﹣8≤x Q≤8,而由图形可见,在此范围内,圆与抛物线并无交点,故此种情形不存在.②以点D为直角顶点.连接AD,∵OA=2,OD=4,OB=8,AB=10,由勾股定理得:AD=,BD=,∵AD2+BD2=AB2,∴△ABD为直角三角形,即点A为所求的点Q.∴Q1(﹣2,0);③以点B为直角顶点.如图,设Q2点坐标为(x,y),过点Q2作Q2K⊥x轴于点K,则Q2K=﹣y,OK=x,BK=8﹣x.易证△Q2KB∽△BOD,∴,即,整理得:y=2x﹣16.∵点Q在抛物线上,∴y=x2﹣x﹣4.∴x2﹣x﹣4=2x﹣16,解得x=6或x=8,当x=8时,点Q2与点B重合,故舍去;当x=6时,y=﹣4,∴Q2(6,﹣4).综上所述,符合题意的点Q的坐标为(﹣2,0)或(6,﹣4).。

【解析版】福建省福州市中考数学模拟试卷(二)

【解析版】福建省福州市中考数学模拟试卷(二)

福建省福州市中考数学模拟试卷(二)一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠53.下列交通标志图案是轴对称图形的是()A. B. C. D.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 25.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 46.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 27.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x68.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是度.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.18.先化简,再求值:﹣,其中a=+1,b=﹣1.19.解方程:x2+2x﹣3=0.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.福建省福州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(共10小题,每题3分,满分30分;每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.不等式1﹣x>0的解集在数轴上表示正确的是()A. B. C.D.考点:在数轴上表示不等式的解集;解一元一次不等式.分析:根据解不等式的方法,可得不等式的解集,根据不等式的解集在数轴上的表示方法,可得答案.解答:解;1﹣x>0,解得x<1,故选:A.点评:本题考查了在数轴上表示不等式的解集,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.如图,已知AB∥CD,与∠1是同位角的角是()A.∠2 B.∠3 C.∠4 D.∠5考点:同位角、内错角、同旁内角.分析:根据同位角的定义得出结论.解答:解:∠1与∠5是同位角.故选:D.点评:本题主要考查了同位角的定义,熟记同位角,内错角,同旁内角,对顶角是关键.3.下列交通标志图案是轴对称图形的是()A. B. C. D.考点:轴对称图形.专题:常规题型.分析:根据轴对称的定义结合选项所给的特点即可得出答案.解答:解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误;故选:B.点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4.数据0,1,1,x,3,4的平均数是2,则这组数据的中位数是()A. 1 B. 3 C. 1.5 D. 2考点:中位数;算术平均数.分析:根据平均数的计算公式求出x的值,再把这组数据从小到大排列,根据中位数的定义即可得出答案.解答:解:∵数据0,1,1,x,3,4的平均数是2,∴(0+1+1+x+3+4)÷6=2,解得:x=3,把这组数据从小到大排列0,1,1,3,3,4,最中间两个数的平均数是(1+3)÷2=2,则这组数据的中位数是2;故选:D.点评:此题考查了中位数和平均数,根据平均数的计算公式求出x的值是本题的关键,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).5.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为()A. B. 3 C. 2 D. 4考点:垂径定理;圆周角定理;解直角三角形.专题:计算题.分析:如图,首先证得OA⊥BC;然后由圆周角定理推知∠C=30°,通过解直角△ACD可以求得CD的长度.则BC=2CD.解答:解:如图,设AO与BC交于点D.∵∠AOB=60°,,∴∠C=∠AOB=30°,又∵AB=AC,∴=∴AD⊥BC,∴BD=CD,∴在直角△ACD中,CD=AC•cos30°=2×=,∴BC=2CD=2.故选:C.点评:本题考查了解直角三角形,圆周角定理等知识点.推知△OAB是等边三角形是解题的难点,证得AD⊥BC是解题的关键.6.若代数式x2+ax可以分解因式,则常数a不可以取()A.﹣1 B. 0 C. 1 D. 2考点:因式分解-提公因式法.分析:利用提取公因式法分解因式的方法得出即可.解答:解:∵代数式x2+ax可以分解因式,∴常数a不可以取0.故选:B.点评:此题主要考查了提取公因式法分解因式,理解提取公因式法分解因式的意义是解题关键.7.下列计算正确的是()A. 2a+5a=7a B. 2x﹣x=1 C. 3+a=3a D. x2•x3=x6考点:同底数幂的乘法;合并同类项.分析:根据合并同类项、同底数幂的运算法则计算.解答:解:A、符合合并同类项法则,故本选项正确;B、2x﹣x=x≠1,故本选项错误;C、3和a不是同类项,故本选项错误;D、x2•x3≠x6=x5,故本选项错误.故选:A.点评:本题考查了同底数幂的乘法与合并同类项,熟悉合并同类项法则是解题的关键.8.如图,已知△ABC(AC<BC),用尺规在BC上确定一点P,使PA+PC=BC,则符合要求的作图痕迹是()A. B.C. D.考点:作图—复杂作图.分析:要使PA+PC=BC,必有PA=PB,所以选项中只有作AB的中垂线才能满足这个条件,故D 正确.解答:解:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC故选:D.点评:本题主要考查了作图知识,解题的关键是根据中垂线的性质得出PA=PB.9.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小考点:反比例函数的性质.专题:常规题型.分析:根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x的增大而减小.解答:解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.点评:本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.10.如图,一个半径为r的圆形纸片在边长为a()的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是()A. B. C. D.πr2考点:扇形面积的计算;等边三角形的性质;切线的性质.专题:计算题;压轴题.分析:过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则在Rt△ADO1中,可求得.四边形ADO1E的面积等于三角形ADO1的面积的2倍,还可求出扇形O1DE的面积,所求面积等于四边形ADO1E的面积减去扇形O1DE的面积的三倍.解答:解:如图,当圆形纸片运动到与∠A的两边相切的位置时,过圆形纸片的圆心O1作两边的垂线,垂足分别为D,E,连AO1,则Rt△ADO1中,∠O1AD=30°,O1D=r,.∴.由.∵由题意,∠DO1E=120°,得,∴圆形纸片不能接触到的部分的面积为=.故选:C.点评:本题考查了面积的计算、等边三角形的性质和切线的性质,是基础知识要熟练掌握.二、填空题(共6小题,每题4分,满分24分)11.要使代数式有意义,则实数a的取值范围是a≠﹣1.考点:分式有意义的条件.专题:计算题.分析:使代数式有意义的条件为a+1≠0,就可求得a的取值范围.解答:解:根据题意得:a+1≠0,所以a≠﹣1.故答案为a≠﹣1.点评:此题主要考查了分式的意义,要求掌握.只要令分式中分母不等于0,求得a的取值范围即可.12.将直线y=2x+1平移后经过点,则平移后的直线解析式为y=2x﹣3.考点:一次函数图象与几何变换.分析:根据平移不改变k的值可设平移后直线的解析式为y=2x+b,然后将点代入即可得出直线的函数解析式.解答:解:设平移后直线的解析式为y=2x+b.把代入直线解析式得1=2×2+b,解得 b=﹣3.所以平移后直线的解析式为y=2x﹣3.故答案为:y=2x﹣3.点评:本题考查了一次函数图象与几何变换及待定系数法去函数的解析式,掌握直线y=kx+b(k≠0)平移时k的值不变是解题的关键.13.已知==3,==10,==15,…观察以上计算过程,寻找规律计算=56.考点:规律型:数字的变化类.分析:对于C a b(b<a)来讲,等于一个分式,其中分母是从1到b的b个数相乘,分子是从a开始乘,乘b的个数.解答:解:∵==3,==10,==15,∴==56.故答案为:56.点评:此题主要考查了数字的变化规律,利用已知得出分子与分母之间的规律是解题关键.14.一个扇形的弧长是20πcm,半径是24cm,则此扇形的圆心角是150度.考点:弧长的计算.分析:直接利用弧长公式l=即可求出n的值,计算即可.解答:解:根据l===20π,解得:n=150,故答案为:150.点评:本题考查了扇形弧长公式计算,注意公式的灵活运用是解题关键.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为1.考点:三角形中位线定理.分析:根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.解答:解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.点评:本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.16.若直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,则常数m的取值范围是0<m<2.考点:二次函数的图象;反比例函数的图象.专题:压轴题;图表型.分析:首先作出分段函数y=的图象,根据函数的图象即可确定m的取值范围.解答:解:分段函数y=的图象如图:故要使直线y=m(m为常数)与函数y=的图象恒有三个不同的交点,常数m的取值范围为0<m<2,故答案为:0<m<2.点评:本题考查了二次函数的图象及反比例函数的图象,首先作出分段函数的图象是解决本题的关键,采用数形结合的方法确定答案是数学上常用的方法之一.三、解答题(共10小题,满分96分)17.计算:+|﹣4|+(﹣1)0﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:本题涉及零指数幂、负指数幂、二次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3+4+1﹣2=6.点评:本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.先化简,再求值:﹣,其中a=+1,b=﹣1.考点:分式的化简求值.专题:计算题.分析:原式利用同分母分式的减法法则计算,约分得到最简结果,将a与b的值代入计算即可求出值.解答:解:原式===a+b,当a=+1,b=﹣1时,原式=+1+﹣1=2.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.解方程:x2+2x﹣3=0.考点:解一元二次方程-因式分解法.专题:计算题.分析:观察方程x2+2x﹣3=0,可因式分解法求得方程的解.解答:解:x2+2x﹣3=0∴(x+3)(x﹣1)=0∴x1=1,x2=﹣3.点评:解方程有多种方法,要根据实际情况进行选择.20.如图,点A,C,D在同一条直线上,BC与AE交于点F,AE=AC,AD=BC,FA=FC.求证:∠B=∠D.考点:全等三角形的判定与性质.专题:证明题.分析:根据三角形全等得到对应角相等即可得出结论.解答:证明:∵FA=FC,∴∠FAC=∠FCA,在△ABC和△EDA中,,∴△ABC≌△EDA,∴∠B=∠D.点评:本题考查了全等三角形的判定与性质,找准对应边和对应角是解题的关键.21.某班同学分三组进行数学活动,对七年级400名同学最喜欢喝的饮料情况,八年级300名同学零花钱的最主要用途情况,九年级300名同学完成家庭作业时间情况进行了全面调查,并分别用扇形图、频数分布直方图、表格来描述整理得到的数据.时间 1小时左右 1.5小时左右 2小时左右 2.5小时左右人数 50 80 120 50根据以上信息,请回答下列问题:(1)七年级400名同学中最喜欢喝“冰红茶”的人数是多少;补全八年级300名同学中零花钱的最主要用途情况频数分布直方图;(3)九年级300名同学中完成家庭作业的平均时间大约是多少小时?(结果保留一位小数)考点:加权平均数;用样本估计总体;频数(率)分布直方图;扇形统计图.专题:压轴题;图表型.分析:(1)先求出喝红茶的百分比,再乘总数.先让总数减其它三种人数,再根据数值画直方图.(3)用加权平均公式求即可.解答:解:(1)冰红茶的百分比为100%﹣25%﹣25%﹣10%=40%,冰红茶的人数为400×40%=160(人),即七年级同学最喜欢喝“冰红茶”的人数是160人;补全频数分布直方图如右图所示.(3)(小时).答:九年级300名同学完成家庭作业的平均时间约为1.8小时.点评:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键;条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.乔丹体育用品商店开展“超级星期六”促销活动:运动服8折出售,运动鞋每双减20元.活动期间,标价为480元的某款运动服装(含一套运动服和一双运动鞋)价格为400元.问该款运动服和运动鞋的标价各是多少元?考点:二元一次方程组的应用.分析:设运动服、运动鞋的标价分别为x元/套、y元/双,根据标价为480元的某款运动服装价格为400元,列方程组求解.解答:解:设运动服、运动鞋的标价分别为x元/套、y元/双,由题意得,,解得:.答:运动服、运动鞋的标价分别为300元/套、180元/双.点评:本题考查了二元一次方程的应用,解题的关键是读懂题意,设出未知数,找到题目当中的等量关系,列方程求解.23.已知钝角三角形ABC,点D在BC的延长线上,连接AD,若∠DAB=90°,∠ACB=2∠D,AD=2,AC=,根据题意画出示意图,并求tanD的值.考点:解直角三角形.分析:首先根据题意画出示意图,根据三角形外角的性质得出∠ACB=∠D+∠CAD,而∠ACB=2∠D,那么∠CAD=∠D,由等角对等边得到CA=CD,再根据等角的余角相等得出∠B=∠BAC,则AC=CB,BD=2AC=2×=3.然后解Rt△ABD,运用勾股定理求出AB==,利用正切函数的定义求出tanD==.解答:解:如图,∵∠ACB=∠D+∠CAD,∠ACB=2∠D,∴∠CAD=∠D,∴CA=CD.∵∠DAB=90°,∴∠B+∠D=90°,∠BAC+∠CAD=90°,∴∠B=∠BAC,∴AC=CB,∴BD=2AC=2×=3.在Rt△ABD中,∵∠DAB=90°,AD=2,∴AB==,∴tanD==.点评:本题考查了三角形外角的性质,等腰三角形的判定,余角的性质,解直角三角形,勾股定理,正切函数的定义,难度适中.求出BD的值是解题的关键.24.如图,在△ABC中,以AC为直径作⊙O交BC于点D,交AB于点G,且D是BC中点,DE⊥AB,垂足为E,交AC的延长线于点F.(1)求证:直线EF是⊙O的切线;若CF=5,cos∠A=,求BE的长.考点:切线的判定.专题:几何综合题.分析:(1)连结OD.先证明OD是△ABC的中位线,根据中位线的性质得到OD∥AB,再由DE⊥AB,得出OD⊥EF,根据切线的判定即可得出直线EF是⊙O的切线;先由OD∥AB,得出∠COD=∠A,再解Rt△DOF,根据余弦函数的定义得到cos∠FOD==,设⊙O的半径为R,解方程=,求出R=,那么AB=2OD=,解Rt△AEF,根据余弦函数的定义得到cos∠A==,求出AE=,然后由BE=AB﹣AE即可求解.解答:(1)证明:如图,连结OD.∵CD=DB,CO=OA,∴OD是△ABC的中位线,∴OD∥AB,AB=2OD,∵DE⊥AB,∴DE⊥OD,即OD⊥EF,∴直线EF是⊙O的切线;解:∵OD∥AB,∴∠COD=∠A.在Rt△DOF中,∵∠ODF=90°,∴cos∠FOD==,设⊙O的半径为R,则=,解得R=,∴AB=2OD=.在Rt△AEF中,∵∠AEF=90°,∴cos∠A===,∴AE=,∴BE=AB﹣AE=﹣=2.点评:本题考查了切线的判定,解直角三角形,三角形中位线的性质知识点.要证某线是圆的切线,已知此线过圆上某点,连结圆心与这点(即为半径),再证垂直即可.25.如图,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.(1)求AD的长;点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.考点:相似形综合题.专题:压轴题.分析:(1)过点C作CE⊥AB于E,根据CE=BC•sin∠B求出CE,再根据AD=CE即可求出AD;若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.分两种情况讨论:①当∠PCB=90°时,求出AP,再根据在Rt△ADP中∠DPA=60°,得出∠DPA=∠B,从而得到△ADP∽△CPB,②当∠CPB=90°时,求出AP=3,根据≠且≠,得出△PCB与△ADP不相似.(3)先求出S1=π•,再分两种情况讨论:①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM,在Rt△GBH中求出BG、BN、GN,在Rt△GMN中,求出MN=(x﹣1),在Rt△BMN中,求出BM2=x2﹣x+,最后根据S1=π•BM2代入计算即可.②当0<x≤2时,S2=π(x2﹣x+),最后根据S=S1+S2=π(x﹣)2+π即可得出S的最小值.解答:解:(1)过点C作CE⊥AB于E,在Rt△BCE中,∵∠B=60°,BC=4,∴CE=BC•sin∠B=4×=2,∴AD=CE=2.存在.若以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似,则△PCB必有一个角是直角.①当∠PCB=90°时,在Rt△PCB中,BC=4,∠B=60°,PB=8,∴AP=AB﹣PB=2.又由(1)知AD=2,在Rt△ADP中,tan∠DPA===,∴∠DPA=60°,∴∠DPA=∠CPB,∴△ADP∽△CPB,∴存在△ADP与△CPB相似,此时x=2.②∵当∠CPB=90°时,在Rt△PCB中,∠B=60°,BC=4,∴PB=2,PC=2,∴AP=8.则≠且≠,此时△PCB与△ADP不相似.(3)如图,因为Rt△ADP外接圆的直径为斜边PD,则S1=π•()2=π•,①当2<x<10时,作BC的垂直平分线交BC于H,交AB于G;作PB的垂直平分线交PB于N,交GH于M,连结BM.则BM为△PCB外接圆的半径.在Rt△GBH中,BH=BC=2,∠MGB=30°,∴BG=4,∵BN=PB=(10﹣x)=5﹣x,∴GN=BG﹣BN=x﹣1.在Rt△GMN中,∴MN=GN•tan∠MGN=(x﹣1).在Rt△BMN中,BM2=MN2+BN2=x2﹣x+,∴S2=π•BM2=π(x2﹣x+).②∵当0<x≤2时,S2=π(x2﹣x+)也成立,∴S=S1+S2=π•+π(x2﹣x+)=π(x﹣)2+π.∴当x=时,S=S1+S2取得最小值π.点评:此题考查了相似形综合,用到的知识点是相似三角形的性质与判定、二次函数的最值、勾股定理,关键是根据题意画出图形构造相似三角形,注意分类讨论.26.如图,在平面直角坐标系xOy中,已知抛物线y=a(x﹣1)(x﹣5)与x轴交于B、C两点,与y轴交于点A(0,4),抛物线的对称轴l与x轴相交于点M.(1)则a=;该抛物线的对称轴为x=3;连接AC,在直线AC下方的抛物线上是否存在一点N,使△NAC的面积为14?若存在,请你求出点N的坐标;若不存在,请说明理由;(3)设P(m,n)是抛物线上的一点(m、n为正整数),且它位于对称轴的右侧.若以A、O、M、P为顶点的四边形的四条边的长度是四个连续的正整数,求点P的坐标.考点:二次函数综合题.分析:(1)首先把x=0,y=4代入y=a(x﹣1)(x﹣5),求出a的值是多少;然后求出B、C两点的坐标,确定出该抛物线的对称轴即可.首先过点N作NG∥y轴交AC于G,求出直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5);然后求出△CAN面积的最大值为多少,判断出是否存在一点N,使△NAC的面积为14即可.(3)首先判断出以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,判断出以1、2、3、4为边或以2、3、4、5为边都不符合题意,所以四条边的长只能是3、4、5、6一种情况,然后证明以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,并求出P的坐标是多少即可.解答:解:(1)把x=0,y=4代入y=a(x﹣1)(x﹣5),可得a×(﹣1)×(﹣5)=4,解得a=;∵B、C两点的坐标分别是(1,0)、(5,0),∴该抛物线的对称轴为x=(5+1)÷2=3,即该抛物线的对称轴为x=3.如图1,过点N作NG∥y轴交AC于G,,抛物线y=(x﹣1)(x﹣5)=x2+4,由点A(0,4)和点C(5,0),可得直线AC的解析式为:y=﹣x+4,设N点的横坐标是t,则此时点N(t,t2﹣+4)(0<t<5),把x=t代入y=﹣x+4,可得G(t,﹣t+4),此时NG=﹣t+4﹣(t2﹣+4)=﹣t2+5t,∴S△ACN=S△ANG+S△CGN=×(﹣t2+5t)=﹣2+,∴当t=时,△CAN面积的最大值为:,∴存在一点N,使△NAC的面积为14.(3)如图2,,以A、O、M、P为顶点的四边形有两条边:AO=4,OM=3,又∵点P的坐标中x>5,∴MP>2,AP>2,∴以1、2、3、4为边或以2、3、4、5为边都不符合题意,∴四条边的长只能是3、4、5、6一种情况.在Rt△AOM中,AM==5,∵抛物线的对称轴过点M,∴在抛物线x>5的图象上有关于点A的对称点与M的距离为5,即PM=5,此时点P横坐标为6,即AP=6,∴以A、O、M、P为顶点的四边形的四条边的长是3、4、5、6成立,即P(6,4).故答案为:、x=3.点评:(1)此题主要考查了二次函数综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了从已知函数图象中获取信息,并能利用获取的信息解答相应的问题的能力;此题还考查了三角形的面积的求法,以及数形结合方法的应用,要熟练掌握.。

2020-2021学年河北省数学中考模拟试题(2)含答案解析

2020-2021学年河北省数学中考模拟试题(2)含答案解析

河北省初中毕业生升学文化课模拟考试数学试卷本试卷分卷Ⅰ和卷Ⅱ两部分;卷Ⅰ为选择题,卷Ⅱ为非选择题.本试卷满分为120分,考试时间为120分钟.卷Ⅰ(选择题,共42分)注意事项:1.答卷I前,考生务必将自己的姓名、准考证号、科目填涂在答题卡上. 考试结束,监考人员将试卷和答题卡一并收回.2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑. 答在试卷上无效.一、选择题(本大题共16个小题,1~6小题,每小题2分;7~16小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.如果+30 m表示向东走30 m,那么向西走40 m表示为( ▲)A.+30 m B.-30 m C.+40 m D.-40 m2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨,这个数据用科学记数法表示为( ▲)A.6.75×103吨B.6.75×104吨C.6.75×105吨D.6.75×10-4吨a 的值为( ▲)3. 已知点A(a,2013)与点A′(-2014,b)是关于原点O的对称点,则bA . 1B . 5C . 6D .44.如图,已知一商场自动扶梯的长l 为13米,高度h 为5米,自动扶梯与地面所成的夹角为θ,则tan θ的值等于( ▲ ) A .125 B .512C .135 D .1312 5.一组数据2,4,x ,2,4,7的众数是2,则这组数据的平均数、中位数分别为( ▲ ) A .3,4B .3,3.5C . 3.5,3D .4,36.反比例函数xm y 3-=(m ≠3)在图象所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( ▲ ) A .3m <-B . 3m >-C .3m <D . 3m >7.已知⊙O 1和⊙O 2的半径分别为1和4,如果两圆的位置关系为相交,那么圆心距O 1O 2的取值范围在数轴上表示正确的是( ▲ )8.用棋子按下列方式摆图形,依此规律,第n 个图形比第(n-1)个图形多(▲ )枚棋子.0 0 3 5 3 5 1414ABCDA .4nB . 5n-4C .4n-3D . 3n-29. 如图,平行四边形ABCD 的顶点A 、B 、D 在⊙O 上,顶点C 在⊙O 的直径BE 上,∠ADC=54°,连接AE ,则∠AEB 的度数为( ▲ ) A .27° B .36° C . 46° D .63°10.如图1,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止,设点P 运动的路程为x ,△ABP 的面积为y ,y 关于x 的函数图象如图2所示, 则△ABC 的面积是( ▲ ) A .4 B .3 C .2 D .111.下列图形中,既是轴对称图形又是中心对称图形的是( ) A.菱形、正方形、平行四边形 B.矩形、等腰三角形、圆 C.矩形、正方形、等腰梯形D.菱形、正方形、圆12.有下列命题:①两条直线被第三条直线所截,同位角相等;②两点之间,线段最短;③相等的角是对顶角;④两个锐角的和是锐角;⑤同角或等角的补角相等. 正确命题的个数是( ) A.2个B.3个C.4个D.5个13.若不等式组211x a x a >-⎧⎨<+⎩无解,则a 的取值范围是( )A.2a <B.2a =C.2a >D.2a ≥ABCDP图114.已知,△ABC 中,∠A=90°,∠ABC=30°.将△ABC 沿直线BC 平移得到△111C B A ,1B 为BC 的中点,连结1BA ,则tan BC A 1∠的值为( ) A .43 B .53 C .63 D .73 15.一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是( )A .15个B .13个C .11个D .5个 16.给出以下命题:①已知8215-可以被在60~70之间的两个整数整除,则这两个数是63、65;②若,2=x a ,3=ya 则y x a -2=34; ③已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为6-≠->m m 或; ④若方程x 2-2(m+1)x+m 2=0有两个整数根,且12<m<60, 则m 的整数值有2个. 其中正确的是( )A .①②B .①②④C .①③④ D.②③④ 河北省初中毕业生升学文化课模拟考试(第14题)总 分 核分人(第15题)数学试卷卷II(非选择题,共78分)注意事项:1.答卷II前,将密封线左侧的项目填写清楚.2.答卷II时,将答案用黑色字迹的钢笔、签字笔或圆珠笔直接写在试卷上.题号二三21 22 23 24 25 26得分得分评卷人二、填空题(本大题共4个小题,每小题3分,共12分.把答案写在题中横线上)17.一个不透明的袋中装有除颜色外其他均相同的2个红球和3个黄球,从中随机摸出一个黄球的概率是▲ .18.若实数a、b满足a+b=5,a2b+ab2=-10,则ab的值是▲.19.如图,矩形ABCD中,AB=8,AD=3.点E从D向C以每秒1个单位的速度运动,以AE为一边在AE的右下方作正方形AEFG,同时垂直于CD 的直线MN 也从C 向D 以每秒2个单位的速度运动,当经过 ▲ 秒时,直线MN 和正方形AEFG 开始有公共点?20.如图,Rt △ABC 的斜边AB 在x 轴上,OA=OB=6,点C 在第一象限,∠A=30°, P (m ,n )是线段BC 上的动点,过点P 作BC 的垂线a ,以直线a 为对称轴,将线段OB 轴对称变换后得线段O ′B ′, (1)当点B ′ 与点C 重合时,m 的值为 ▲ ;(2)当线段O ′B ′与线段AC 没有公共点时,m 的取值范围是 ▲ .三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.(本小题满分9分)如图,用两段等长的铁丝恰好可以分别围成一个正五边形和一个正六边形,其中正五边形的边长为(217x +)cm ,正六边形的边长为(22x x +)cm (0)x >其中.求这两段铁丝的总长.得 分评卷人22.(本小题满分10分)已知:图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).操作:将三角尺移向直径为6cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′ 恰好与⊙O 相切(如图2)。

江苏省淮安市2020年中考数学模拟卷02(含解析)

江苏省淮安市2020年中考数学模拟卷02(含解析)

江苏省淮安市2020年中考数学模拟卷021. 试卷分为第I 卷和第II 卷两部分,共6页,全卷满分150分,考试时间120分钟。

2. 第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3. 答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置,答案写在试卷上或答题卡上规定的区域以外无效. 4. 作图要用2B 铅笔,加黑加粗,描写清楚. 5. 考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共有8小题,每小题3分,共24分。

在每小题给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置.......上) 1.2019-的相反数等于( ) A .2019-B .12019C .12019- D .20192.下列各式中,正确的有( ) A .325a a a +=B .32622a a a =gC .326(2)4a a -=D .824a a a ÷=3.截止到2019年9月3日,电影《哪吒之魔童降世》的累计票房达到了47.24亿,47.24亿用科学记数法表示为( ) A .947.2410⨯B .94.72410⨯C .54.72410⨯D .5472.410⨯4.如图所示几何体的左视图正确的是( )A .B .C .D .5.已知ABC ∆的三边长分别为a 、b 、c ,且()()()M a b c a b c a b c =+++---,那么( ) A .0M >B .0M …C .0M =D .0M <6.某篮球运动员在连续7场比赛中的得分(单位:分)依次为23,22,20,20,20,25,18.则这组数据的众数与中位数分别是( ) A .20分,22.5分B .20分,18分C .20分,22分D .20分,20分7.下列关于x 的一元二次方程中,有两个相等的实数根的方程是( ) A .2230x x +-=B .210x +=C .24410x x ++=D .230x x ++=8.如图,矩形ABCD 的边5AB cm =,4BC cm =动点P 从A 点出发,在折线AD DC CB --上以1/cm s 的速度向B 点作匀速运动,则表示ABP ∆的面积()S cm 与运动时间()t s 之间的函数系的图象是( )A .B .C .D .第II 卷 (非选择题 共126分)二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上.) 9.分解因式:29y x y -= .10.某区10名学生参加实际汉字听写大赛,他们得分情况如下表:那么10名学生所得分数的中位数是 . 11.分式方程3104x x+=+的解为 . 12.若n 边形的外角和为(2)180n -⨯︒,则n = . 13.不等式组52124x x -⎧⎨-<⎩…的解集是 .14.圆锥的侧面展开图的圆心角是120︒,其底面圆的半径为2cm ,则其侧面积为 . 15.如图,ABC ∆中,//DE BC ,5AB =,3AC =,若BD AE =,则AD 的长为 .(第15题)(第16题)16.如图,在矩形ABCD 中,3AB =,2BC =,H 是AB 的中点,将CBH ∆沿CH 折叠,点B 落在矩形内点P 处,连接AP ,则tan HAP ∠= .三、解答题(本大题共有11小题,共102分。

数学中考二模试卷(含答案解析)

数学中考二模试卷(含答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________(满分120分,考试用时120分钟)一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−120212.如图所示的几何体,从上面看得到的图形是()A.B.C.D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×1084.下列甲骨文中,不是轴对称图形的是()A.B.C.D.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +17.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.18.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃9.在同一平面直角坐标系中,函数y=x﹣k与y=kx(k为常数,且k≠0)的图象大致是()A.B.C.D.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A .20√3米B .10米C .10√3米D .20米11.如图,从一块直径为2m 的圆形铁皮⊙O 上剪出一个圆心角为90°的扇形ABC ,且点A 、B 、C 都在⊙O 上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 212.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = .14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 .15.若一个多边形的内角和等于其外角和的2倍,则它是 边形.16.方程6x 1+2x =11−2x +3的解是 .17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y (m )与小宁离开出发地的时间x (min )之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为米.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.20.(6分)解不等式组:{2(x−1)+1<x+2x−12>−1把解集在数轴上表示出来,并写出所有整数解.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切(1)求证:点A平分BĈ;(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.24.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店,A种商品每件的售价为48元,B种商品每件的售价为31元,且商店将购进A、B共50件的商品全部售出后,要获得的利润超过348元,求A种商品至少购进多少件?25.(10分)如图,一次函数y1=kx+b的图象与反比例函数y2=6x的图象交于A(2,m),B(n,1)两点,连接OA,OB.(1)求这个一次函数的表达式;(2)求△OAB的面积;(3)问:在直角坐标系中,是否存在一点P,使以O,A,B,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.参考答案一、选择题:本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.2021的相反数是()A.2021 B.﹣2021 C.12021D.−12021【分析】利用相反数的定义分析得出答案,只有符号不同的两个数叫做互为相反数.【解析】2021的相反数是:﹣2021.故选:B.2.如图所示的几何体,从上面看得到的图形是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解析】从上边看是一个六边形,中间为圆.故选:D.3.我国倡导的“一带一路”建设将促进我国与世界一些国家的互利合作,根据规划“一带一路”地区覆盖总人口为4 400 000 000人,这个数用科学记数法表示为()A.44×108 B.4.4×109 C.0.44×1010 D.4.4×108【分析】科学记数法的表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数.其中a是整数数位只有一位的数,10的指数n比原来的整数位数少1.【解析】4 400 000 000=4.4×109,故选:B.4.下列甲骨文中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【解析】A.是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项符合题意;C.是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项不合题意;故选:B.5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为()A.48°B.16°C.14°D.32°【分析】根据平行线的性质和三角板的角度解答即可.【解析】∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.6.下列运算正确的是()A.x2+x=2x3 B.(﹣2x3)2=4x6C.x2•x3=x6 D.(x+1)2=x2 +1【分析】利用合并同类项法则、积的乘方法则、同底数幂的乘法法则、完全平方公式逐个计算得结论.【解析】∵x2与x不是同类项,不能合并,故选项A错误;(﹣2x3)2=4x6,故选项B正确;x2•x3=x5≠x6,故选项C错误;(x+1)2=x2+2x+1≠x2+1,故选项D错误.故选:B.7.计算x2x−1−1x−1的结果是()A.x2﹣1 B.x﹣1 C.x+1 D.1【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解析】原式=(x+1)(x−1)x−1=x +1. 故选:C .8.如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是( )A .极差是8℃B .众数是28℃C .中位数是24℃D .平均数是26℃ 【分析】根据折线统计图中的数据可以判断各个选项中的数据是否正确,从而可以解答本题.【解析】由图可得,极差是:30﹣20=10℃,故选项A 错误,众数是28℃,故选项B 正确,这组数按照从小到大排列是:20、22、24、26、28、28、30,故中位数是26℃,故选项C 错误, 平均数是:20+22+24+26+28+28+307=2537℃,故选项D 错误, 故选:B .9.在同一平面直角坐标系中,函数y =x ﹣k 与y =k x (k 为常数,且k ≠0)的图象大致是( ) A . B .C.D.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断哪个选项中图象是正确的,本题得以解决.【解析】∵函数y=x﹣k与y=kx(k为常数,且k≠0)∴当k>0时,y=x﹣k经过第一、三、四象限,y=kx经过第一、三象限,故选项A符合题意,选项B不符合题意,当k<0时,y=x﹣k经过第一、二、三象限,y=kx经过第二、四象限,故选项C、D不符合题意,故选:A.10.某长江大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索BD与水平桥面的夹角是60°,两拉索底端距离AD=20米,则立柱BC的高为()A.20√3米B.10米C.10√3米D.20米【分析】首先证明BD=AD=20米,解直角三角形求出BC即可.【解析】∵∠BDC=∠A+∠ABD,∠A=30°,∠BDC=60°,∴∠ABD=60°﹣30°=30°,∴∠A=∠ABD,∴BD=AD=20米,∴BC=BD•sin60°=10√3(米),故选:C.11.如图,从一块直径为2m的圆形铁皮⊙O上剪出一个圆心角为90°的扇形ABC,且点A、B、C都在⊙O上,则此扇形的面积是( )A .π2m 2B .√32πm 2C .πm 2D .2πm 2【分析】根据题意,可以求得AB 和BC 的长,从而可以得到此扇形的面积.【解析】连接AC ,∵AB =CB ,∠ABC =90°,AC =2,∴AB =BC =√2,∴此扇形的面积是:90π×(√2)2360=π2m 2, 故选:A .12.已知抛物线y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴交于A 、B 两点(点A 在点B 的右侧),与y 轴交于点C .给出下列结论:①在a >0的条件下,无论a 取何值,点A 是一个定点;②在a >0的条件下,无论a 取何值,抛物线的对称轴一定位于y 轴的左侧;③y 的最小值不大于﹣2;④若AB =AC ,则a =1+√52. 其中正确的结论有( )个.A .1个B .2个C .3个D .4个【分析】①利用抛物线两点式方程进行判断;②根据根的判别式来确定a 的取值范围,然后根据对称轴方程进行计算;③利用顶点坐标公式进行解答;④利用两点间的距离公式进行解答.【解析】①y =ax 2+(2﹣a )x ﹣2=(x ﹣1)(ax +2).则该抛物线恒过点A (1,0).故①正确; ②∵y =ax 2+(2﹣a )x ﹣2(a >0)的图象与x 轴有2个交点,∴△=(2﹣a )2+8a =(a +2)2>0,∴a ≠﹣2.∴该抛物线的对称轴为:x =a−22a =12−1a .无法判定的正负.故②不一定正确;③根据抛物线与y 轴交于(0,﹣2)可知,y 的最小值不大于﹣2,故③正确;④∵A (1,0),B (−2a ,0),C (0,﹣2),∴当AB =AC 时,√(1+2a )2=√12+(−2)2,解得 a =1+√52.故④正确. 综上所述,正确的结论有3个.故选:C .二、填空题:本题共6小题,每小题4分,共24分.13.分解因式:m 2﹣3m = m (m ﹣3) .【分析】首先确定公因式m ,直接提取公因式m 分解因式.【解析】m 2﹣3m =m (m ﹣3).故答案为:m (m ﹣3).14.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数.掷一次骰子,在骰子向上的一面上,出现的点数是偶数的概率是 12 .【分析】骰子共有六个面,每个面朝上的机会是相等的,而偶数有2,4,6,根据概率公式即可计算.【解析】∵骰子六个面中偶数为2,4,6,∴P (向上一面为偶数)=36=12;故答案为:12. 15.若一个多边形的内角和等于其外角和的2倍,则它是 六 边形.【分析】根据多边形的内角和公式与外角和定理列出方程,然后解方程即可.【解析】设这个多边形是n 边形,根据题意得,(n ﹣2)•180°=2×360°,解得n =6.故答案为:六.16.方程6x1+2x =11−2x+3的解是x=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解析】去分母得:6x(1﹣2x)=1+2x+3(1+2x)(1﹣2x),整理得:6x﹣12x2=1+2x+3﹣12x2,解得:x=1,经检验x=1是分式方程的解.故答案为:x=1.17.小宁和弟弟小强分别从家和图书馆出发,沿同一条笔直的马路相向而行,小宁先出发5分钟后,小强骑自行车匀速回家,小宁开始跑步中途改为步行,且步行的速度为跑步速度的一半,到达图书馆恰好用了35分钟,两人之间的距离y(m)与小宁离开出发地的时间x(min)之间的函数图象如图所示,则当弟弟到家时,小宁离图书馆的距离为1500米.【分析】根据题意和函数图象可以求得小宁的跑步速度和步行速度,从而可以求得小宁由跑步变为步行的时刻,进而求得小强骑车速度,再根据题意即可得到则当弟弟到家时,小宁离图书馆的距离.【解析】由图可得,小宁跑步的速度为:(4500﹣3500)÷5=200m/min,则步行速度为:200×12=100m/min,设小宁由跑步变为步行的时刻为a分钟,200a+(35﹣a)×100=4500,解得,a=10,设小强骑车速度为xm/min,200(10﹣5)+(10﹣5)x=3500﹣1000,解得,x=300,即小强骑车速度为300m/min,小强到家用的时间为:4500÷300=15min,则当弟弟小强到家时,小宁离图书馆的距离为:4500﹣10×200﹣(5+15﹣10)×100=1500m,故答案为:1500.18.如图,正方形ABCD的边长为2,对角线AC、BD相交于点O,将△ABD绕着点B顺时针旋转45°得到△BEF,EF交CD于点G,连接BG交AC于点H,连接EH.则下列结论:①△BGE≌△BGC;②四边形EHCG是菱形;③△BDG的面积是8﹣4√2;④OH=2−√2.其中正确结论的序号是①②④.【分析】由正方形的性质可得AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,由旋转的性质可得AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,由“HL”可证Rt△BEG≌Rt△BCG,可得∠EBG=∠CBG=22.5°,由“SAS”可证△BEH≌△BCH,可得CH=EH=EG=CG,∠BCH=∠BEH =45°,可求OH=2−√2,由等腰三角形的性质可求EH=√2OH=2√2−2,可求△BDG的面积.即可求解.【解析】∵四边形ABCD是正方形,∴AB=BC=AD=2,AC=BD=2√2,AO=BO=CO=DO=√2,AC⊥BD,∵将△ABD绕着点B顺时针旋转45°得到△BEF,∴AB=BE=2,AD=EF=2,∠BEF=∠BAD=90°,∴BE=BC=2,在Rt△BEG和Rt△BCG中,{BE=BCBG=BG,∴Rt△BEG≌Rt△BCG(HL),故①正确;∴∠EBG=∠CBG=22.5°,∴∠BGC=67.5°,∠GHC=∠GBC+∠ACB=67.5°,∴∠BGC=∠GHC,∴CH=CG,在△BEH和△BCH中,{BE =BC ∠EBH =∠CBH BH =BH,∴△BEH ≌△BCH (SAS ),∴EH =CH ,∠BCH =∠BEH =45°,∴CH =EH =EG =CG ,∴四边形EHCG 是菱形,故②正确,∵∠BEH =45°,∠EOH =90°,∴∠OEH =∠OHE =45°,∴OH =OE =BE ﹣OB =2−√2,故④正确;∴EH =√2OH =2√2−2,∴CG =EH =2√2−2,∴DG =CD ﹣CG =4﹣2√2,∴△BDG 的面积=12×DG ×BC =12×(4﹣2√2)×2=4﹣2√2,故③错误, 故答案为:①②④.三、解答题(本大题共9个小题,共78分.解答应写出文字说明,证明过程或演算步骤.)19.(6分)计算:(13)−1−(√5−2)0+√12−tan60°.【分析】直接利用负指数幂的性质以及零指数幂的性质、特殊角的三角函数值分别化简得出答案.【解析】原式=3−1+2√3−√3=2+√3.20.(6分)解不等式组:{2(x −1)+1<x +2x−12>−1把解集在数轴上表示出来,并写出所有整数解. 【分析】分别计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集即可.【解析】{2(x −1)+1<x +2①x−12>−1②, 解不等式①得x <3,解不等式②得x >﹣1,∴不等式组的解集为﹣1<x <3,数轴表示为:整数解为:0,1,2.21.(6分)如图,在菱形ABCD中,E、F分别是AD和AB的中点,连接BE、DF.求证:BE=DF.【分析】证明△AFD≌△AEB(SAS),即可得出BE=DF.【解析】证明:∵四边形ABCD是菱形,∴AB=AD,∵E、F分别是AD和AB的中点,∴AF=12AB,AE=12AD,∴AF=AE,又∵∠F AD=∠EAB,∴△AFD≌△AEB(SAS),∴BE=DF.22.(8分)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:(1)此次共调查了多少名学生?(2)将条形统计图补充完整;(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.【解析】(1)此次共调查的学生有:40÷72°360°=200(名); (2)足球的人数有:200﹣40﹣60﹣20﹣30=50(人),补全统计图如下:(3)根据题意画树状图如下:共有25种等可能的情况数,其中他俩选择不同项目的有20种,则他俩选择不同项目的概率是2025=45.23.(8分)如图,平行四边形ABCD的边AD与经过A,B,C三点的⊙O相切̂;(1)求证:点A平分BC(2)延长DC交⊙O于点E,连接BE,若BE=4√13,⊙O半径为13,求BC的长.【分析】(1)连接OA交BC于F.只要证明OF⊥BC即可解决问题.(2)连接OB.连接OA交BC于F.首先证明BE=AB,设OF=x,则AF=13﹣x,可得132﹣x2=(4√13)2−(13−x)2,解方程可求出OF,则BF可求出,由垂径定理可得结果.【解析】(1)证明:如图1,连接OA交BC于F.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAF=∠CFO,∵AD是⊙O的切线,∴∠OAD=90°,∴∠OFC=90°,∴OF⊥BC,̂,∴OA平分BĈ=AĈ.即AB(2)如图2,连接OB.∵AB ∥DE ,∴∠BCE =∠ABC ,∴BÊ=AC ̂=AB ̂, ∴BE =AB =4√13,∵OA ⊥BC ,∴AB 2﹣AF 2=BF 2,OB 2﹣OF 2=BF 2,设OF =x ,则AF =13﹣x ,∴132﹣x 2=(4√13)2−(13−x)2,解得:x =5,∴BF =2−OF 2=√132−52=12,∴BC =2BF =24.24.(10分)某商店欲购进A 、B 两种商品,已知购进A 种商品5件和B 种商品4件共需300元;若购进A 种商品6件和B 种商品8件共需440元;(1)求A 、B 两种商品每件的进价分别为多少元?(2)若该商店,A 种商品每件的售价为48元,B 种商品每件的售价为31元,且商店将购进A 、B 共50件的商品全部售出后,要获得的利润超过348元,求A 种商品至少购进多少件?【分析】(1)设A 种进价为x 元,B 种进价为y 元.由购进A 种商品5件和B 种商品4件需300元和购进A 种商品6件和B 种商品8件需440元建立两个方程,构成方程组求出其解就可以;(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.根据获得的利润超过348元,建立不等式求出其解即可.【解析】(1)设A 种进价为x 元,B 种进价为y 元.由题意,得{5x +4y =3006x +8y =440, 解得:{x =40y =25, 答:A 种进价为40元,B 种进价为25元.(2)设购进A 种商品a 件,则购进B 种商品(50﹣a )件.由题意,得8a +6(50﹣a )>348,解得:a >24,答:至少购进A 种商品24件.25.(10分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=6x的图象交于A (2,m ),B (n ,1)两点,连接OA ,OB .(1)求这个一次函数的表达式;(2)求△OAB 的面积;(3)问:在直角坐标系中,是否存在一点P ,使以O ,A ,B ,P 为顶点的四边形是平行四边形?若存在,直接写出点P 的坐标;若不存在,请说明理由.【分析】(1)由点A ,B 在反比例函数图象上,求出m ,n ,进而求出A ,B 坐标,再代入一次函数解析式中,即可得出结论;(2)利用三角形的面积的差即可得出结论;(3)分三种情况:利用平移的特点,即可得出结论.【解析】(1)∵点A (2,m ),B (n ,1)在反比例函数y 2=6x 上,∴2m =6,n =6,∴m =3,∴A (2,3),B (6,1),∵点A (2,3),B (6,1)在一次函数y 1=kx +b 上,∴{2k +b =36k +b =1, ∴{k =−12b =4, ∴一次函数的表达式为y 1=−12x +4;(2)如图1,记一次函数y 1=−12x +4的图象与x ,y 轴的交点为点D ,C ,针对于y1=−12x+4,令x=0,则y1=4,∴C(0,4),∴OC=6,令y1=0,则−12x+4=0,∴x=8,∴D(8,0),∴OD=8,过点A作AE⊥y轴于E,过点B作BF⊥x轴于F,∵A(2,3),B(6,1),∴AE=2,BF=1,∴S△AOB=S△COD﹣S△AOC﹣S△BOD=12OC•OD−12OC•AE−12OD•BF=12×4×8−12×4×2−12×8×1=8;(3)存在,如图2,当AB和OB为邻边时,点B(6,1)先向左平移6个单位再向下平移1个单位到点O(0,0),则点A 也先向左平移6个单位再向下平移1个单位到点P(2﹣6,3﹣1),即P(﹣4,2);当OA和OB为邻边时,点O(0,0)先向右平移2个单位再向上平移3个单位到点A(2,3),则点B也先向右平移2个单位再向上平移3个单位到点P'(6+2,1+3),即P'(8,4);当AB和OA为邻边时,点A(2,3)先向右平移4个单位再向下平移2个单位到点B(6,1),则点O也先向右平移4个单位再向下平移2个单位到点P''(0+4,0﹣2),即P'(4,﹣2);点P的坐标为(﹣4,2)或(4,﹣2)或(8,4).26.(12分)在正方形ABCD中,E为AD上一点,连接BE.(1)如图1,连接BD,延长BE至点F,使BF=BD,且AF∥BD,①若AB=√2,求AF的长度;②如图2,过点D作BF的垂线DG,垂足为点G,交AF于点H,分别延长BA,DH交于点P,连接PE,过点F作FQ⊥BD于Q.求证:BE=DG+√3FG;(2)如图3,延长DC至点R,使CR=AE,在四边形BCDE内有点M,∠BME=135°,点N为平面上一点,连接ND,MN,若AB=5,AE=1,请直接写出MN+ND+√2NR的最小值.【分析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,由勾股定理求得BD,根据正方形的性质和平行线的性质求得△AGF为等腰直角三角形,在Rt△BGF中根据勾股定理列出x的方程便可得出结果;②证明△ABE≌△ADP,得BE=DP,AE=AP,再由平行线得△BFQ的面积与△ABC的面积相等,从而得FQ与FB的比值,得∠DBF=30°,连接PF,证明△APF≌△AEF,得∠EFP=60°,根据三角函数关系得出PG=√3FG,便可得结论;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,当当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR =OQ的值最小,求出此时的OQ和OM便可求得MN+ND+√2NR的最小值.【解析】(1)①过点F作FG⊥AB,与BA的延长线交于点G,如图1,∵四边形ABCD为正方形,AB=√2,∴∠DAG=∠BAD=∠ADC=∠ABC=90°,BD平分∠ADC和∠ABC,AB=AD=√2,∴∠ADB=45°,BD=√AB2+AD2=2,∵AF∥BD,∴∠DAF=∠ADB=45°,∴∠GAF=45°,∴∠AGF=∠GAF=45°,∴AG=GF,不妨设AG=GF=x,则BG=x+√2,∵BG2+GF2=BF2,BF=BD=2,∴x2+(x+√2)2=22,解得,x=√6−√22,或x=−√6+√22(舍),∴AF=√2AG=√3−1;②连接PF和DF,如图2,∵DG⊥BF,∴∠DGE=∠BAE=90°,∵∠AEB=∠DEG,∴∠ABE=∠GDE,∵∠BAE=∠DAP=90°,AB=AD,∴△ABE≌△ADP(ASA),∴BE=DP,AE=AP,设AB=a,则BF=BE=√2a,∵AF∥BD,∴S△FBD=S△ABD,∴12×√2a⋅FQ=12a2,∴FQ=√22a,∴sin∠QBF=FQBF=√22a√2a=12,∴∠QBF=30°,∵AF∥BD,∴∠AFB=∠DBF=30°,∠EAF=∠ADB=45°,∴∠EAF=∠P AF=45°,∵AF=AF,∴△AEF≌△APF(SAS),∴∠AFE=∠AFP=30°,∴∠EFP=60°,∴PG=√3FG,∵DG+PG=DP=BE,∴BE=DG+√3FG;(2)将△DNR绕点R顺时针旋转90°得△RPQ,作△BME的外接圆⊙O,连接OM、NP、PQ,连接OQ 与⊙O交于M',连接QR,延长AB与QR的延长线交于点K,过O作OL⊥QR于点L,作OF⊥AB于F,作OG⊥BE于点G,与AB交于点H,连接OA,OB,如图3,则QR=DR,RK=BC,KL=OF,CR=BK,OL=FK,∵OE=OM=OB,∴∠OEM=∠OME,∠OBM=∠OMB,∵∠BME=135°,∴∠OEM+∠OBM=∠OME+∠OMB=135°,∴∠BOE=90°,∵四边形ABCD是正方形,AB=5,∴AB=BC=CD=AD=RK=6,∵AE=CR=1,∴QR=DR=5+1=6,BK=1,∴BE=√AB2+AE2=√26,∴OG=BG=12BE=12√26,OA=OB=OM'=√22BE=√13,∵∠BGH=∠BAE=90°,∠HBG=∠EBA,∴△BGH∽△BAE,∴GHAE=BGBA=BHBE,即GH1=12√265=√26,∴GH=110√26,BH=135,∴OH=OG﹣GH=25√26,∵∠OFH=∠BGH=90°,∠OHF=∠BHG,∴△OHF∽△BHG,∴HFHG=OHBH=OFBG,即HF110√26=25√26135=OF12√26,∴HF=25,OF=2,∴KL=OF=2,OL=FK=FH+BH+BK=4,∴QL=QR+RK+KL=12,∴OQ=√OL2+QL2=√42+122=4√10,由旋转知,∠PRN=90°,PR=RN,PQ=DN,∴PN=√2RN,∵OM+MN+ND+√2NR=OM+MN+PN+PQ≥OQ,∴当O、M、N、P、Q五点共线时,OM+MN+ND+√2NR=OQ=4√10的值最小,∵OM=OB=√13,∴MN+ND+√2NR的最小值为:4√10−√13.27.(12分)如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.【分析】(1)x2﹣(a+1)x+a=0,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,即可求解;(2)设点E(m,m2+2m﹣3),点F(﹣3﹣m,m2+4m),四边形EMNF的周长S=ME+MN+EF+FN,即可求解;(3)分当点Q在第三象限、点Q在第四象限两种情况,分别求解即可.【解析】(1)x2﹣(a+1)x+a=0,则x1+x2=a+1,x1x2=a,则AB=√(x1+x2)2−4x1x2=(a﹣1)2=16,解得:a=5或﹣3,抛物线与y轴负半轴交于点C,故a=5舍去,则a=﹣3,则抛物线的表达式为:y=x2+2x﹣3…①;(2)由y=x2+2x﹣3得:点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,﹣3),设点E(m,m2+2m﹣3),OA=OC,故直线AC的倾斜角为45°,EF∥AC,直线AC的表达式为:y=﹣x﹣3,则设直线EF的表达式为:y=﹣x+b,将点E的坐标代入上式并解得:直线EF的表达式为:y=﹣x+(m2+3m﹣3)…②,联立①②并解得:x=m或﹣3﹣m,故点F(﹣3﹣m,m2+4m),点M、N的坐标分别为:(m,﹣m﹣3)、(﹣3﹣m,m+3),则EF=√2(x F﹣x E)=√2(﹣2m﹣3)=MN,四边形EMNF的周长S=ME+MN+EF+FN=﹣2m2﹣(6+4√2)m﹣6√2,∵﹣2<0,故S有最大值,此时m=−3+2√22,故点E的横坐标为:−3+2√22;(3)①当点Q在第三象限时,﹣﹣﹣﹣当QC 平分四边形面积时, 则|x Q |=x B =1,故点Q (﹣1,﹣4); ﹣﹣﹣﹣当BQ 平分四边形面积时, 则S △OBQ =12×1×|y Q |,S 四边形QCBO =12×1×3+12×3×|x Q |, 则2(12×1×|y Q |)=12×1×3+12×3×|x Q |, 解得:x Q =−32,故点Q (−32,−154);②当点Q 在第四象限时, 同理可得:点Q (−5+√372,15−3√372); 综上,点Q 的坐标为:(﹣1,﹣4)或(−32,−154)或(−5+√372,15−3√372).。

安徽省合肥XX中学中考数学模拟试卷(二)及答案解析

安徽省合肥XX中学中考数学模拟试卷(二)及答案解析

安徽省合肥XX中学中考数学模拟试卷(二)一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.22.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)63.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为.10.分解因式:a3﹣4ab2=.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有条鱼.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为.16.已知关于x的方程的解是负数,则n的取值范围为.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得元购物券,最多可得元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 3.41 90% 20%乙组7.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.26.如图,抛物线y=x2﹣2x﹣8交y轴于点A,交x轴正半轴于点B.(1)求直线AB对应的函数关系式;(2)有一宽度为1的直尺平行于y轴,在点A、B之间平行移动,直尺两长边所在直线被直线AB 和抛物线截得两线段MN、PQ,设M点的横坐标为m,且0<m<3.试比较线段MN与PQ的大小.27.如图1,在梯形ABCD中,AB∥CD,∠B=90°,AB=2,CD=1,BC=m,P为线段BC上的一动点,且和B、C不重合,连接PA,过P作PE⊥PA交CD所在直线于E.设BP=x,CE=y.(1)求y与x的函数关系式;(2)若点P在线段BC上运动时,点E总在线段CD上,求m的取值范围;(3)如图2,若m=4,将△PEC沿PE翻折至△PEG位置,∠BAG=90°,求BP长.28.如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.(1)根据劳格数的定义,填空:d(10)=,d(10﹣2)=;(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).根据运算性质,填空:=(a为正数),若d(2)=0.3010,则d(4)=,d(5)=,d(0.08)=;(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.x 1.5 3 5 6 8 9 12 27d(x)3a﹣b+c 2a﹣b a+c 1+a﹣b﹣c 3﹣3a﹣3c 4a﹣2b 3﹣b﹣2c 6a﹣3b安徽省合肥XX中学中考数学模拟试卷(二)参考答案与试题解析一、选择题1.﹣2的倒数是()A.﹣B.C.﹣2 D.2【考点】倒数.【专题】常规题型.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:A.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列运算中,结果是a6的式子是()A.a2•a3B.a12﹣a6C.(a3)3D.(﹣a)6【考点】同底数幂的乘法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.【点评】本题考查同底数幂的乘法、幂的乘方和有理数乘方的定义,熟练掌握运算性质是解题的关键.3.下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D、正确故选D.【点评】正确理解概率的含义是解决本题的关键.4.某几何体的三视图如图所示,则这个几何体是()A.三棱柱B.圆柱C.正方体D.三棱锥【考点】由三视图判断几何体.【分析】如图所示,根据三视图的知识可使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除C、B.主视图以及侧视图都是矩形,可排除D.故选A.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.5.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.6.一个多边形的每个内角均为108°,则这个多边形是()A.七边形B.六边形C.五边形D.四边形【考点】多边形内角与外角.【分析】首先求得外角的度数,然后利用360除以外角的度数即可求解.【解答】解:外角的度数是:180﹣108=72°,则这个多边形的边数是:360÷72=5.故选C.【点评】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理7.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50° B.60°C.70°D.80°【考点】菱形的性质;全等三角形的判定与性质;线段垂直平分线的性质.【专题】几何综合题.【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.8.方程x2+3x﹣1=0的根可视为函数y=x+3的图象与函数的图象交点的横坐标,则方程x3+2x ﹣1=0的实根x0所在的范围是()A.B.C.D.【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】首先根据题意推断方程x3+2x﹣1=0的实根是函数y=x2+2与的图象交点的横坐标,再根据四个选项中x的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x3+2x﹣1=0的实根x所在范围.【解答】解:方程x3+2x﹣1=0,∴x2+2=,∴它的根可视为y=x2+2和的图象交点的横坐标,当x=时,y=x2+2=2,y==4,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==3,此时抛物线的图象在反比例函数下方;当x=时,y=x2+2=2,y==2,此时抛物线的图象在反比例函数上方;当x=1时,y=x2+2=3,y==1,此时抛物线的图象在反比例函数上方.故方程x3+2x﹣1=0的实根x所在范围为:<x<.故选:C.【点评】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.二、填空题9.据了解,截止5月8日,扬泰机场开通一年,客流量累计达到450000人次,数据450000用科学记数法可表示为 4.5×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将450000用科学记数法表示为4.5×105.故答案为:4.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】观察原式a3﹣4ab2,找到公因式a,提出公因式后发现a2﹣4b2符合平方差公式的形式,再利用平方差公式继续分解因式.【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).【点评】本题考查了提公因式法与公式法分解因式,有公因式的首先提取公因式,最后一定要分解到各个因式不能再分解为止.11.在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,当V=200时,p=50,则当p=25时,V=400.【考点】反比例函数的应用.【分析】首先利用待定系数法求得v与P的函数关系式,然后代入P求得v值即可.【解答】解:∵在温度不变的条件下,一定质量的气体的压强p与它的体积V成反比例,∴设P=∵当V=200时,p=50,∴k=VP=200×50=10000,∴P=当P=25时,得v==400故答案为:400.【点评】本题考查了反比例函数的应用,解题的关键是利用待定系数法求得反比例函数的解析式.12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有1200条鱼.【考点】用样本估计总体.【分析】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案.【解答】解:∵打捞200条鱼,发现其中带标记的鱼有5条,∴有标记的鱼占×100%=2.5%,∵共有30条鱼做上标记,∴鱼塘中估计有30÷2.5%=1200(条).故答案为:1200.【点评】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想.13.在△ABC中,AB=AC=5,sin∠ABC=0.8,则BC=6.【考点】解直角三角形;等腰三角形的性质.【分析】根据题意做出图形,过点A作AD⊥BC于D,根据AB=AC=5,sin∠ABC=0.8,可求出AD的长度,然后根据勾股定理求出BD的长度,继而可求出BC的长度.【解答】解:过点A作AD⊥BC于D,如图∵AB=AC,∴BD=CD,在Rt△ABD中,∵sin∠ABC==0.8,∴AD=5×0.8=4,则BD==3,∴BC=BD+CD=3+3=6.故答案为:6.【点评】本题考查了解直角三角形的知识,难度一般,解答本题的关键是构造直角三角形并解直角三角形以及勾股定理的应用.14.如图,在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,则梯形ABCD的周长为30.【考点】等腰梯形的性质.【分析】首先过点A作AE∥BC于点E,由在梯形ABCD中,AD∥BC,AB=AD=CD,BC=12,∠ABC=60°,可得四边形ADCE是平行四边形,△ABE是等边三角形,继而求得AB=AD=CD=BE=CE=6.继而求得答案.【解答】解:过点A作AE∥BC于点E,∵在梯形ABCD中,AD∥BC,∴四边形ADCE是平行四边形,∴AD=EC,AE=CD,∵AB=CD,∴AB=AE,∵∠ABC=60°,∴△ABE是等边三角形,∴AB=BE,∵AB=AD,∴AD=AB=CD=BE=CE=BC=×12=6,∴梯形ABCD的周长为:AB+AD+CD+BC=30.故答案为:30.【点评】此题考查了等腰梯形的性质、等边三角形的判定与性质以及平行四边形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.15.如图,在扇形OAB中,∠AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O 恰好落在上的点D处,折痕交OA于点C,则的长为5π.【考点】弧长的计算;翻折变换(折叠问题).【分析】如图,连接OD.根据折叠的性质、圆的性质推知△ODB是等边三角形,则易求∠AOD=110°﹣∠DOB=50°;然后由弧长公式弧长的公式l=来求的长.【解答】解:如图,连接OD.根据折叠的性质知,OB=DB.又∵OD=OB,∴OD=OB=DB,即△ODB是等边三角形,∴∠DOB=60°.∵∠AOB=110°,∴∠AOD=∠AOB﹣∠DOB=50°,∴的长为=5π.故答案是:5π.【点评】本题考查了弧长的计算,翻折变换(折叠问题).折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.所以由折叠的性质推知△ODB 是等边三角形是解答此题的关键之处.16.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.17.矩形的两邻边长的差为2,对角线长为4,则矩形的面积为6.【考点】勾股定理;矩形的性质.【分析】设矩形一条边长为x,则另一条边长为x﹣2,然后根据勾股定理列出方程式求出x的值,继而可求出矩形的面积.【解答】解:设矩形一条边长为x,则另一条边长为x﹣2,由勾股定理得,x2+(x﹣2)2=42,整理得,x2﹣2x﹣6=0,解得:x=1+或x=1﹣(不合题意,舍去),另一边为:﹣1,则矩形的面积为:(1+)(﹣1)=6.故答案为:6.【点评】本题考查了勾股定理及矩形的性质,难度适中,解答本题的关键是根据勾股定理列出等式求处矩形的边长,要求同学们掌握矩形面积的求法.18.如图,已知⊙O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且∠MEB=∠NFB=60°,则EM+FN=.【考点】垂径定理;含30度角的直角三角形;勾股定理.【专题】压轴题.【分析】延长ME交⊙O于G,根据圆的中心对称性可得FN=EG,过点O作OH⊥MG于H,连接MO,根据圆的直径求出OE,OM,再解直角三角形求出OH,然后利用勾股定理列式求出MH,再根据垂径定理可得MG=2MH,从而得解.【解答】解:如图,延长ME交⊙O于G,∵E、F为AB的三等分点,∠MEB=∠NFB=60°,∴FN=EG,过点O作OH⊥MG于H,连接MO,∵⊙O的直径AB=6,∴OE=OA﹣AE=×6﹣×6=3﹣2=1,OM=×6=3,∵∠MEB=60°,∴OH=OE•sin60°=1×=,在Rt△MOH中,MH===,根据垂径定理,MG=2MH=2×=,即EM+FN=.故答案为:.【点评】本题考查了垂径定理,勾股定理的应用,以及解直角三角形,作辅助线并根据圆的中心对称性得到FN=EG是解题的关键,也是本题的难点.三、解答题19.(1)计算:;(2)先化简,再求值:(x+1)(2x﹣1)﹣(x﹣3)2,其中x=﹣2.【考点】整式的混合运算—化简求值;实数的运算;负整数指数幂;特殊角的三角函数值.【分析】(1)根据负整数指数幂的性质和特殊角的三角函数值代入计算即可;(2)利用整式的乘法和完全平方公式展开化简后代入求值即可.【解答】解(1)原式=4﹣2×+2=4+;(2)原式=2x2﹣x+2x﹣1﹣x2+6x﹣9=x2+7x﹣10,当x=﹣2时,原式=4﹣14﹣10=﹣20.【点评】本题考查了实数的运算、负整数指数幂及特殊角的三角函数值,属于基础题,应重点掌握.20.已知关于x、y的方程组的解满足x>0,y>0,求实数a的取值范围.【考点】解二元一次方程组;解一元一次不等式组.【专题】计算题.【分析】先利用加减消元法求出x、y,然后列出不等式组,再求出两个不等式的解集,然后求公共部分即可.【解答】解:,①×3得,15x+6y=33a+54③,②×2得,4x﹣6y=24a﹣16④,③+④得,19x=57a+38,解得x=3a+2,把x=3a+2代入①得,5(3a+2)+2y=11a+18,解得y=﹣2a+4,所以,方程组的解是,∵x>0,y>0,∴,由①得,a>﹣,由②得,a<2,所以,a的取值范围是﹣<a<2.【点评】本题考查的是二元一次方程组的解法,一元一次不等式组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).21.端午节期间,扬州某商场为了吸引顾客,开展有奖促销活动,设立了一个可以自由转动的转盘,转盘被分成4个面积相等的扇形,四个扇形区域里分别标有“10元”、“20元”、“30元”、“40元”的字样(如图).规定:同一日内,顾客在本商场每消费满100元就可以转动转盘一次,商场根据转盘指针指向区域所标金额返还相应数额的购物券,某顾客当天消费240元,转了两次转盘.(1)该顾客最少可得20元购物券,最多可得80元购物券;(2)请用画树状图或列表的方法,求该顾客所获购物券金额不低于50元的概率.【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图即可求得该顾客最少可得20元购物券,最多可得80元购物券;(2)由(1)中的树状图即可求得所有等可能的结果与该顾客所获购物券金额不低于50元的情况,然后利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则该顾客最少可得20元购物券,最多可得80元购物券;故答案为:20,80;(2)∵共有16种等可能的结果,该顾客所获购物券金额不低于50元的有10种情况,∴该顾客所获购物券金额不低于50元的概率为: =.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.22.为声援扬州“运河申遗”,某校举办了一次运河知识竞赛,满分10分,学生得分为整数,成绩达到6分以上(包括6分)为合格,达到9分以上(包含9分)为优秀.这次竞赛中甲乙两组学生成绩分布的条形统计图如图所示.(1)补充完成下面的成绩统计分析表:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.17.5 1.69 80% 10%(2)小明同学说:“这次竞赛我得了7分,在我们小组中排名属中游略偏上!”观察上表可知,小明是甲组的学生;(填“甲”或“乙”)(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组.但乙组同学不同意甲组同学的说法,认为他们组的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【考点】条形统计图;加权平均数;中位数;方差.【专题】计算题.【分析】(1)将甲组成绩按照从小到大的顺序排列,找出第5、6个成绩,求出平均数即为甲组的中位数;找出乙组成绩,求出乙组的平均分,填表即可;(2)观察表格,成绩为7分处于中游略偏上,应为甲组的学生;(3)乙组的平均分高于甲组,中位数高于甲组,方差小于甲组,所以乙组成绩好于甲组.【解答】解:(1)甲组的成绩为:3,6,6,6,6,6,7,8,9,10,甲组中位数为6,乙组成绩为5,5,6,7,7,8,8,8,8,9,平均分为(5+5+6+7+7+8+8+8+8+9)=7.1(分),填表如下:组别平均分中位数方差合格率优秀率甲组 6.7 6 3.41 90% 20%乙组7.1 7.5 1.69 80% 10%(2)观察上表可知,小明是甲组的学生;(3)乙组的平均分,中位数高于甲组,方差小于甲组,故乙组成绩好于甲组.故答案为:(1)6;7.1;(2)甲【点评】此题考查了条形统计图,加权平均数,中位数,以及方差,弄清题意是解本题的关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,点D在边AB上,连接CD,将线段CD绕点C顺时针旋转90°至CE位置,连接AE.(1)求证:AB⊥AE;(2)若BC2=AD•AB,求证:四边形ADCE为正方形.【考点】旋转的性质;全等三角形的判定与性质;等腰直角三角形;正方形的判定;相似三角形的判定与性质.【专题】证明题.【分析】(1)根据旋转的性质得到∠DCE=90°,CD=CE,利用等角的余角相等得∠BCD=∠ACE,然后根据“SAS”可判断△BCD≌△ACE,则∠B=∠CAE=45°,所以∠DAE=90°,即可得到结论;(2)由于BC=AC,则AC2=AD•AB,根据相似三角形的判定方法得到△DAC∽△CAB,则∠CDA=∠BCA=90°,可判断四边形ADCE为矩形,利用CD=CE可判断四边形ADCE为正方形.【解答】证明:(1)∵∠ACB=90°,AC=BC,∴∠B=∠BAC=45°,∵线段CD绕点C顺时针旋转90°至CE位置,∴∠DCE=90°,CD=CE,∵∠ACB=90°,∴∠ACB﹣∠ACD=∠DCE﹣∠ACD,即∠BCD=∠ACE,在△BCD和△ACE中,∴△BCD≌△ACE,∴∠B=∠CAE=45°,∴∠BAE=45°+45°=90°,∴AB⊥AE;(2)∵BC2=AD•AB,而BC=AC,∴AC2=AD•AB,∵∠DAC=∠CAB,∴△DAC∽△CAB,∴∠CDA=∠BCA=90°,而∠DAE=90°,∠DCE=90°,∴四边形ADCE为矩形,∵CD=CE,∴四边形ADCE为正方形.【点评】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等腰直角三角形的性质、三角形全等、相似的判定与性质以及正方形的判定.24.某校九(1)、九(2)两班的班长交流了为四川雅安地震灾区捐款的情况:(Ⅰ)九(1)班班长说:“我们班捐款总数为1200元,我们班人数比你们班多8人.”(Ⅱ)九(2)班班长说:“我们班捐款总数也为1200元,我们班人均捐款比你们班人均捐款多20%.”请根据两个班长的对话,求这两个班级每班的人均捐款数.【考点】分式方程的应用.【分析】首先设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,然后根据九(1)班人数比九(2)班多8人,即可得方程:﹣=8,解此方程即可求得答案.【解答】解:设九(1)班的人均捐款数为x元,则九(2)班的人均捐款数为(1+20%)x元,则:﹣=8,解得:x=25,经检验,x=25是原分式方程的解.九(2)班的人均捐款数为:(1+20%)x=30(元)答:九(1)班人均捐款为25元,九(2)班人均捐款为30元.【点评】本题考查分式方程的应用.注意分析题意,找到合适的等量关系是解决问题的关键.25.如图,△ABC内接于⊙O,弦AD⊥AB交BC于点E,过点B作⊙O的切线交DA的延长线于点F,且∠ABF=∠ABC.(1)求证:AB=AC;(2)若AD=4,cos∠ABF=,求DE的长.【考点】切线的性质;圆周角定理;解直角三角形.【分析】(1)由BF是⊙O的切线,利用弦切角定理,可得∠1=∠C,又由∠ABF=∠ABC,可证得∠2=∠C,即可得AB=AC;(2)首先连接BD,在Rt△ABD中,解直角三角形求出AB的长度;然后在Rt△ABE中,解直角三角形求出AE的长度;最后利用DE=AD﹣AE求得结果.【解答】(1)证明:∵BF是⊙O的切线,∴∠1=∠C,∵∠ABF=∠ABC,即∠1=∠2,∴∠2=∠C,∴AB=AC;(2)解:如图,连接BD,在Rt△ADB中,∠BAD=90°,∵cos∠ADB=,∴BD====5,。

襄阳市谷城县中考数学模拟试卷(2)含答案解析

襄阳市谷城县中考数学模拟试卷(2)含答案解析

湖北省襄阳市谷城县中考数学模拟试卷(2)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列各数中,﹣3的倒数是()A.3 B.C.D.﹣32.(3分)下列运算正确的是()A.a2+a3=a5 B.(a+2b)2=a2+2ab+b2C.a6÷a3=a2D.(﹣2a3)2=4a63.(3分)如图,已知直线AB、CD被直线AC所截,AB∥CD,E是平面内任意一点(点E不在直线AB、CD、AC上),设∠BAE=α,∠DCE=β.下列各式:①α+β,②α﹣β,③β﹣α,④360°﹣α﹣β,∠AEC的度数可能是()A.①②③B.①②④C.①③④D.①②③④4.(3分)不等式组的解集在数轴上表示为()A.B.C.D.5.(3分)下列各数中最小的数是()A.B.﹣1 C.D.06.(3分)如图是用八块完全相同的小正方体搭成的几何体,从左面看几何体得到的图形是()A.B.C.D.7.(3分)5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人,如表是苏炳添近五次大赛参赛情况:则苏炳添这五次比赛成绩的众数和中位数分别为()比赛日期﹣8﹣4﹣5﹣21﹣9﹣28﹣5﹣20﹣5﹣31比赛地点英国伦敦中国北京韩国仁川中国北京美国尤金成绩(秒)10.1910.0610.1010.069.99A.10.06秒,10.06秒B.10.10秒,10.06秒C.10.06秒,10.10秒D.10.08秒,10.06秒8.(3分)如图,已知E是菱形ABCD的边BC上一点,且∠DAE=∠B=80°,那么∠CDE的度数为()A.20°B.25°C.30°D.35°9.(3分)已知AC⊥BC于C,BC=a,CA=b,AB=c,下列图形中⊙O与△ABC的某两条边或三边所在的直线相切,则⊙O的半径为的是()A.B.C.D.10.(3分)在同一平面坐标系中,函数y=mx+m和y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.(3分)现在网购越来越多地成为人们的一种消费方式,刚刚过去的的“双11”网上促销活动中,天猫和淘宝的支付交易额突破67000000000元,将67000000000元用科学记数法表示为.12.(3分)在﹣2、1、﹣3这三个数中,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是.13.(3分)若干个工人装卸一批货物,每个工人的装卸速度相同,如果这些工人同时工作,则需10小时装卸完毕;现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸完毕,且最后参加的一个人装卸的时间是第一个人的,则按改变的方式装卸,自始至终共需时间小时.14.(3分)如图,从热气球上看一栋高楼顶部的仰角为30°,看这栋高楼底部的俯角为60°,热气球与高楼的水平距离为90m,则这栋楼高为(精确到0.1 m).15.(3分)四边形ABCD是正方形,点E是直线AB上的一动点,且△AEC是以AC为腰的等腰三角形,则∠BCE的度数为.16.(3分)如图,Rt△ABC中,∠ACB=90°,∠CAB=30°,BC=2,O、H分别为边AB、AC的中点,将△ABC绕点B顺时针旋转120°到△A1BC1的位置,则整个旋转过程中线段OH所扫过部分的面积(即阴影部分面积)为.三.解答题(共9小题,满分59分)17.(6分)附加题:(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y﹣2z)2.求的值.18.(6分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC 边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1?19.(6分)已知直线y=kx+b与x轴、y轴分别交于A、B两点,与反比例函数y=交于一象限内的P(,n),Q(4,m)两点,且tan∠BOP=.(1)求双曲线和直线AB的函数表达式;(2)求△OPQ的面积;(3)当kx+b>时,请根据图象直接写出x的取值范围.20.(6分)济南某中学在参加“创文明城,点赞泉城”书画比赛中,杨老师从全校30个班中随机抽取了4个班(用A,B,C,D表示),对征集到的作鼎的数量进行了分析统计,制作了两幅不完整的统计图.请根据以上信息,回答下列问题:(l)杨老师采用的调查方式是(填“普查”或“抽样调查”);(2)请补充完整条形统计图,并计算扇形统计图中C班作品数量所对应的圆心角度数.(3)请估计全校共征集作品的什数.(4)如果全枝征集的作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生,现要在获得一样等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求恰好选取的两名学生性别相同的概率.21.(7分)如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.22.(8分)如图,在△ABC中,AB=8,BC=5,AC=7,点D在△ABC的外接圆⊙O上,BC=BD,CD交AB于点E.(1)求证:△ABC∽△CBE.(2)求BE的长.23.(10分)重庆市的重大惠民工程﹣﹣公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m2)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:z(元/m2)5052545658…x(年)12345…(1)求出z与x的函数关系式;(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.(参考数据:,,)24.(10分)已知:如图,在梯形ABCD中,AB∥CD,∠D=90°,AD=CD=2,点E 在边AD上(不与点A、D重合),∠CEB=45°,EB与对角线AC相交于点F,设DE=x.(1)用含x的代数式表示线段CF的长;(2)如果把△CAE的周长记作C△CAE ,△BAF的周长记作C△BAF,设=y,求y关于x的函数关系式,并写出它的定义域;(3)当∠ABE的正切值是时,求AB的长.25.已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.湖北省襄阳市谷城县中考数学模拟试卷(2)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【解答】解:∵相乘得1的两个数互为倒数,且﹣3×﹣=1,∴﹣3的倒数是﹣.故选:B.2.【解答】解:∵a2+a3≠a5,∴选项A不正确;∵(a+2b)2=a2+4ab+b2,∴选项B不正确;∵a6÷a3=a3,∴选项C不正确;∵(﹣2a3)2=4a6,∴选项D正确.故选:D.3.【解答】解:点E有4种可能位置.(1)如图,由AB∥CD,可得∠AOC=∠DCE1=β,∵∠AOC=∠BAE1+∠AE1C,∴∠AE1C=β﹣α.(2)如图,过E2作AB平行线,则由AB∥CD,可得∠1=∠BAE2=α,∠2=∠DCE2=β,∴∠AE2C=α+β.(3)如图,由AB∥CD,可得∠BOE3=∠DCE3=β,∵∠BAE3=∠BOE3+∠AE3C,∴∠AE3C=α﹣β.(4)如图,由AB∥CD,可得∠BAE4+∠AE4C+∠DCE4=360°,∴∠AE4C=360°﹣α﹣β.∴∠AEC的度数可能为β﹣α,α+β,α﹣β,360°﹣α﹣β.故选:D.4.【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选:A.5.【解答】解:根据实数比较大小的方法,可得﹣<﹣<﹣1<0,∴各数中最小的数是:﹣.故选:C.6.【解答】解:从左面看易得上面一层左边有1个正方形,下面一层有2个正方形.故选:A.7.【解答】解:在这一组数据中10.06是出现次数最多的,故众数是10.06;而将这组数据从小到大的顺序排列为:9.99,10.06,10.06,10.10,10.19,处于中间位置的那个数是10.06,那么由中位数的定义可知,这组数据的中位数是10.06.故选:A.8.【解答】解:∵AD∥BC,∴∠AEB=∠DAE=∠B=80°,∴AE=AB=AD,在三角形AED中,AE=AD,∠DAE=80°,∴∠ADE=50°,又∵∠B=80°,∴∠ADC=80°,∴∠CDE=∠ADC﹣∠ADE=30°.故选:C.9.【解答】解:设⊙O的半径为r,A、∵⊙O是△ABC内切圆,=(a+b+c)•r=ab,∴S△ABC∴r=;B、如图,连接OD,则OD=OC=r,OA=b﹣r,∵AD是⊙O的切线,∴OD⊥AB,即∠AOD=∠C=90°,∴△ADO∽△ACB,∴OA:AB=OD:BC,即(b﹣r):c=r:a,解得:r=;C、连接OE,OD,∵AC与BC是⊙O的切线,∴OE⊥BC,OD⊥AC,∴∠OEB=∠ODC=∠C=90°,∴四边形ODCE是矩形,∵OD=OE,∴矩形ODCE是正方形,∴EC=OD=r,OE∥AC,∴OE:AC=BE:BC,∴r:b=(a﹣r):a,∴r=;D、解:设AC、BA、BC与⊙O的切点分别为D、F、E;连接OD、OE;∵AC、BE是⊙O的切线,∴∠ODC=∠OEC=∠DCE=90°;∴四边形ODCE是矩形;∵OD=OE,∴矩形ODCE是正方形;即OE=OD=CD=r,则AD=AF=b﹣r;连接OB,OF,由勾股定理得:BF2=OB2﹣OF2,BE2=OB2﹣OE2,∵OB=OB,OF=OE,∴BF=BE,则BA+AF=BC+CE,c+b﹣r=a+r,即r=.故选:C.10.【解答】解:解法一:逐项分析A、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,与图象不符,故A选项错误;B、由函数y=mx+m的图象可知m<0,对称轴为x===<0,则对称轴应在y轴左侧,与图象不符,故B选项错误;C、由函数y=mx+m的图象可知m>0,即函数y=﹣mx2+2x+2开口方向朝下,与图象不符,故C选项错误;D、由函数y=mx+m的图象可知m<0,即函数y=﹣mx2+2x+2开口方向朝上,对称轴为x===<0,则对称轴应在y轴左侧,与图象相符,故D选项正确;解法二:系统分析当二次函数开口向下时,﹣m<0,m>0,一次函数图象过一、二、三象限.当二次函数开口向上时,﹣m>0,m<0,对称轴x=<0,这时二次函数图象的对称轴在y轴左侧,一次函数图象过二、三、四象限.故选:D.二.填空题(共6小题,满分18分,每小题3分)11.【解答】解:67 000 000 000=6.7×1010,故答案为:6.7×1010.12.【解答】解:画树状图得:∵共有6种等可能的结果,任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的有2种情况,∴任选两个数的积作为k的值,使反比例函数y=的图象在第一、三象限的概率是:=.故答案为:.13.【解答】解:设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活x+小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,…,平均每人干活的时间也是小时,根据题设,得=10,解得x=16(小时);设共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得16﹣(y﹣1)t=16×,即(y﹣1)t=12,解此不定方程得,,,,,,即参加的人数y=2或3或4或5或7或13.故答案为:16.14.【解答】解:过点A作AD⊥BC,垂足为D.在Rt△ADC中,有CD=ADtan60°=AD=90,在Rt△ABD中,有BD=ADtan30°=AD=30.故这栋楼高BC为90+30=120≈207.8(m).故答案为:207.8m.15.【解答】解:当AC=AE时,以A为圆心,AC为半径作圆交直线AB于点E,当E在BA的延长线时,∴∠EAC=135°,∴∠BEC=22.5°,∴∠BCE=∠BCA+∠BEC=67.5°当E在AB的延长线时,∴∠EAC=45°,∴∠ACE=67.5°∴∠BCE=∠ACE﹣∠ACB=22.5°当AC=CE时,当以C为圆心AC为半径作圆交直线AB于点E ∴∠EAC=∠CEA=45°,∴∠BCE=45°,故答案为:67.5°或45°或22.5°16.【解答】解:连接BH、BH1,∵∠ACB=90°,∠CAB=30°,BC=2,∴AB=4,∴AC==2,在Rt△BHC中,CH=AC=,BC=2,根据勾股定理可得:BH=;∴S扫=S扇形BHH1﹣S扇形BOO1==π.三.解答题(共9小题,满分59分)17.【解答】解:∵(y﹣z)2+(x﹣y)2+(z﹣x)2=(y+z﹣2x)2+(z+x﹣2y)2+(x+y ﹣2z)2.∴(y﹣z)2﹣(y+z﹣2x)2+(x﹣y)2﹣(x+y﹣2z)2+(z﹣x)2﹣(z+x﹣2y)2=0,∴(y﹣z+y+z﹣2x)(y﹣z﹣y﹣z+2x)+(x﹣y+x+y﹣2z)(x﹣y﹣x﹣y+2z)+(z ﹣x+z+x﹣2y)(z﹣x﹣z﹣x+2y)=0,∴2x2+2y2+2z2﹣2xy﹣2xz﹣2yz=0,∴(x﹣y)2+(x﹣z)2+(y﹣z)2=0.∵x,y,z均为实数,∴x=y=z.∴==1.18.【解答】解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有(6﹣x)•2x=8,解得x1=2,x2=4,经检验,x1,x2均符合题意.故经过2秒或4秒,△PBQ的面积等于8cm2;(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有△ABC的面积=×6×8=24,(6﹣y)•2y=12,y2﹣6y+12=0,∵△=b2﹣4ac=36﹣4×12=﹣12<0,∴此方程无实数根,∴线段PQ不能否将△ABC分成面积相等的两部分;(3)①点P在线段AB上,点Q在线段CB上(0<x<4),设经过m秒,依题意有(6﹣m)(8﹣2m)=1,m2﹣10m+23=0,解得m1=5+,m2=5﹣,经检验,m1=5+不符合题意,舍去,∴m=5﹣;②点P在线段AB上,点Q在射线CB上(4<x<6),设经过n秒,依题意有(6﹣n)(2n﹣8)=1,m2﹣10n+25=0,解得n1=n2=5,经检验,n=5符合题意.③点P在射线AB上,点Q在射线CB上(x>6),设经过k秒,依题意有(k﹣6)(2k﹣8)=1,k2﹣10k+23=0,解得k1=5+,k2=5﹣,经检验,k1=5﹣不符合题意,舍去,∴k=5+;综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1.19.【解答】解:(1)过P 作PC ⊥y 轴于C , ∵P (,n ), ∴OC=n ,PC=, ∵tan ∠BOP=, ∴n=4, ∴P (,4),设反比例函数的解析式为y=, ∴a=4,∴反比例函数的解析式为y=, ∴Q (4,),把P (,4),Q (4,)代入y=kx +b 中得,,∴,∴直线的函数表达式为y=﹣x +;(2)过Q 作QD ⊥y 轴于D ,则S △POQ =S 四边形PCDQ =×(+4)×(4﹣)=;(3)由图象知, 当﹣x +>时,或x <020.【解答】解:(1)杨老师从全校30个班中随机抽取了4个班,属于抽样调查.故答案为:抽样调查.(2)所调查的4个班征集到的作品数为:6÷=24件,C班有24﹣(4+6+4)=10件,补全条形图如图所示,扇形统计图中C班作品数量所对应的圆心角度数360°×=150°;故答案为:150°;(3)∵平均每个班=6件,∴估计全校共征集作品6×30=180件.(4)画树状图得:∵共有20种等可能的结果,两名学生性别相同的有8种情况,∴恰好选取的两名学生性别相同的概率为=.21.【解答】(1)解:∵四边形ABCD是平行四边形,∴∠D=∠B,∵BF=DE,∠DCE=∠BCF,∴△CDE≌△CBF(AAS),∴CD=CB,∴▱ABCD是菱形,∴AD=AB,∴AD﹣DE=AB﹣BF,即AE=AF,∵∠A=60°,∴△AEF是等边三角形,∵EF=2,=×22=;∴S△AEF(2)证明:如图2,延长DP交BC于N,连结FN,∵四边形ABCD是菱形,∴AD∥BC,∴∠EDP=∠PNC,∠DEP=∠PCN,∵点P是CE的中点,∴CP=EP.∴△CPN≌△EPD,∴DE=CN,PD=PN.又∵AD=BC.∴AD﹣DE=BC﹣CN,即AE=BN.∵△AEF是等边三角形,∴∠AEF=60°,EF=AE.∴∠DEF=120°,EF=BN.∵AD∥BC,∴∠A+∠ABC=180°,又∵∠A=60°,∴∠ABC=120°,∴∠ABC=∠DEF.又∵DE=BF,BN=EF.∴△FBN≌△DEF,∴DF=NF,∵PD=PN,∴PF⊥PD.22.【解答】(1)证明:∵BC=BD,∴∠BCE=∠BDC.∵∠BDC=∠BAC,∴∠BCE=∠BAC.∵∠CBE=∠ABC,∴△ABC∽△CBE.(2)解:∵△ABC∽△CBE,∴=,即=,∴BE=.23.【解答】解:(1)由题意,z与x是一次函数关系,设z=kx+b(k≠0)把(1,50),(2,52)代入,得∴,∴z=2x+48.(2)当1≤x≤6时,设收取的租金为W1百万元,则W1=()•(2x+48)=∵对称轴∴当x=3时,W1最大=243(百万元)当7≤x≤10时,设收取的租金为W2百万元,则W2=()•(2x+48)=∵对称轴∴当x=7时,W2最大=(百万元)∵243>∴第3年收取的租金最多,最多为243百万元.(3)当x=6时,y=百万平方米=400万平方米当x=10时,y=百万平方米=350万平方米∵第6年可解决20万人住房问题,∴人均住房为:400÷20=20平方米.由题意:20×(1﹣1.35a%)×20×(1+a%)=350,设a%=m,化简为:54m2+14m﹣5=0,△=142﹣4×54×(﹣5)=1276,∴∵,∴m1=0.2,(不符题意,舍去),∴a%=0.2,∴a=20答:a的值为20.24.【解答】解:(1)∵AD=CD.∴∠DAC=∠ACD=45°,∵∠CEB=45°,∴∠DAC=∠CEB,∵∠ECA=∠ECA,∴△CEF∽△CAE,∴,在Rt△CDE中,根据勾股定理得,CE=,∵CA=2,∴,∴CF=;(2)∵∠CFE=∠BFA,∠CEB=∠CAB,∴∠ECA=180°﹣∠CEB﹣∠CFE=180°﹣∠CAB﹣∠BFA,∵∠ABF=180°﹣∠CAB﹣∠AFB,∴∠ECA=∠ABF,∵∠CAE=∠ABF=45°,∴△CEA∽△BFA,∴y====(0<x<2),(3)由(2)知,△CEA∽△BFA,∴,∴,∴AB=x+2,∵∠ABE的正切值是,∴tan∠ABE===,∴x=,∴AB=x+2=.25.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B,∴,解得:,∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣,∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角,∴M(,0),⊙M的半径=.∵P′是抛物线与y轴的交点,∴OP′=2,∴MP′==,∴P′在⊙M上,∴P′的对称点(3,﹣2),∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)方法一:存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP,第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2),又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2),∵AB=5,∴P″(﹣2﹣t,﹣2),要使AC′+BP′最短,只要AC′+AP″最短即可,点C′关于x轴的对称点C″(﹣t,),设直线P″C″的解析式为:y=kx+b,,解得∴直线y=x+t+,当P″、A、C″在一条直线上时,周长最小,∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.方法二:∵AB、P′C′是定值,∴A、B、P′、C′所构成的四边形的周长最短,只需AC′+BP′最小,①若抛物线向左平移,设平移t个单位,∴C′(﹣t,﹣),P″(﹣2﹣t,﹣2),∵四边形P″ABP′为平行四边形,∴AP″=BP′,AC′+BP′最短,即AC′+AP″最短,C′关于x轴的对称点为C″(﹣t,),C″,A,P″三点共线时,AC′+AP″最短,K AC′=K AP″,,∴t=.②若抛物线向右平移,同理可得t=﹣,∴将抛物线向左平移个单位时,A、B、P′、C′所构成的多边形周长最短.。

中考数学二模试题(含解析) (2)

中考数学二模试题(含解析) (2)

中考数学二模试题一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.计算2m2n﹣3nm2的结果为()A.﹣1 B.﹣5m2n C.﹣m2n D.不能合并2.已知,如图,AC与BD相交于点O,AB∥CD,如果∠C=30.2°,∠B=50°56′,那么∠BOC 为()A.80°18′ B.50°58′ C.30°10′ D.81°8′3.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是()A.12cm2B.8cm2C.6cm2D.4cm24.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.乙运动员的成绩比甲运动员的成绩稳定5.已知y是关于x的函数,函数图象如图,则当y>0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<26.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中4×7方格中的格点的连线中,能够与该圆弧相切的格点个数有()A.1个B.2个C.3个D.4个7.超市有一种“喜之郎”果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,横截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,那么要制作这样一个包装盒至少纸板()平方厘米.(不计重合部分)A.253 B.288 C.206 D.2458.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD 并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;② =;③点F是BC的中点;④若=,tanE=.A.①② B.③④ C.①②④D.①②③二、填空题:本大题共6小题,每小题3分,共18分.请把答案填在题中横线上9.因式分解:x2y﹣7y= .10.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为.11.函数y=与y=x﹣2的图象交点的横坐标分别为a,b,则+的值为.12.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为23°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于度;(2)求A、B两点间的距离等于(结果精确到0.1米,参考数据:≈1.41,≈1.73 tan37°≈0.75,tan23°≈1.59,sin37°≈1.60,cos37°≈0.80).13.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x 轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为.14.如图,菱形ABCD的边长为12cm,∠A=60°,点P从点A出发沿线路AB→BD做匀速运动,点Q从点D同时出发沿线路DC→CB→BA做匀速运动.已知点P,Q运动的速度分别为2cm/秒和2.5cm/秒,经过12秒后,P、Q分别到达M、N两点时,点P、Q再分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改为vcm/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与△AMN相似,则v的值为.三、解题题:本大题共8小题,共78分.解答应写出文字说明,证明过程或演算步骤15.(1)计算:﹣2tan60°﹣(﹣1)2015;(2)解不等式组,并把不等式组的解集在数轴上表示出来.16.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.17.杭州市相关部门正在研究制定居民用水价格调整方案,小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量,可承受的水价调整的幅度等进行调查,并把调查结果整理成图1和图2,已知被调查居民美誉每月的用水量在5m3﹣35m3之间,被调查的居民中对居民用水价格调整幅度抱“无所谓”态度的有8户,试回答下列问题:①上述两个统计图表是否完整,若不完整,试把它们补全;②若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?18.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC,交AC于点E,交PC于点F,连接AF.(1)求证:AF是⊙O的切线;(2)已知⊙O的半径为4,AF=3,求线段AC的长.19.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.20.阅读对话,解答问题.(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)小冬抽出(a,b)中使关于x的一元二次方程x2﹣ax+2b=0根为有理数的是小丽赢,方程的根为无理数的是小兵赢,你觉得游戏是否公平?若公平,请说明理由;若不公平,请修改游戏方案.21.如果一条抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)“抛物线三角形”一定是三角形;(2)若抛物线y=﹣x2+bx(b>0)的“抛物线三角形”是等腰直角三角形,求b的值;(3)如图,△OAB是抛物线y=﹣x2+b′x(b′>0)的“抛物线三角形”,是否存在以原点O为对称中心的矩形ABCD?若存在,求出过O、C、D三点的抛物线的表达式;若不存在,说明理由.22.如图,在边长为8的正方形ABCD中,点O为AD上一动点(4<OA<8),以O为圆心,OA的长为半径的圆交边CD于点M,连接OM,过点M作⊙O的切线交边BC于N.(1)图中是否存在与△ODM相似的三角形,若存在,请找出并给于证明.(2)设DM=x,OA=R,求R关于x 的函数关系式;是否存在整数R,使得正方形ABCD内部的扇形OAM围成的圆锥地面周长为π?若存在请求出此时DM的长;不存在,请说明理由.(3)在动点O逐渐向点D运动(OA逐渐增大)的过程中,△CMN的周长如何变化?说明理由.2015年山东省菏泽市鄄城县中考数学二模试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.计算2m2n﹣3nm2的结果为()A.﹣1 B.﹣5m2n C.﹣m2n D.不能合并【考点】合并同类项.【分析】两项是同类项,根据合并同类项的法则把系数相加即可.【解答】解:2m2n﹣3nm2=﹣m2n,故选:C.【点评】本题考查了合并同类项法则的应用,注意:合并同类项时,把同类项的系数相加作为结果的系数,字母和字母的指数不变.2.已知,如图,AC与BD相交于点O,AB∥CD,如果∠C=30.2°,∠B=50°56′,那么∠BOC 为()A.80°18′ B.50°58′ C.30°10′ D.81°8′【考点】平行线的性质;三角形的外角性质.【分析】先由两直线平行,内错角相等得出∠D=∠B=50°56′,再根据三角形的一个外角等于和它不相邻的两个内角的和得到∠BOC=∠C+∠D,即可求解.【解答】解:∵AB∥CD,∴∠D=∠B=50°56′,∴∠BOC=∠C+∠D=30.2°+50°56′=81°8′.故选D.【点评】本题考查了平行线的性质及三角形外角的性质,比较简单,注意单位的换算.3.长方体的主视图与左视图如图所示(单位:cm),则其俯视图的面积是()A.12cm2B.8cm2C.6cm2D.4cm2【考点】由三视图判断几何体.【专题】压轴题.【分析】主视图的矩形的两边长表示长方体的长为4,高为2;左视图的矩形的两边长表示长方体的宽为3,高为2;那么俯视图的矩形的两边长表示长方体的长与宽,那么求面积即可.【解答】解:根据题意,正方体的俯视图是矩形,它的长是4cm,宽是3cm,面积=4×3=12(cm2),故选A.【点评】解决本题的关键是根据所给视图得到俯视图的矩形的边长.4.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数小于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.乙运动员的成绩比甲运动员的成绩稳定【考点】折线统计图;算术平均数;中位数;极差;方差.【分析】结合折线统计图,利用数据逐一分析解答即可.【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,此选项正确,不符合题意;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,此选项错误,符合题意;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,此选项正确,不符合题意;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,所以此选项正确,不符合题意.故选B.【点评】此题主要结合折线统计图,利用极差、中位数、平均数以及方差来进行分析数据,找到解决问题的突破口.5.已知y是关于x的函数,函数图象如图,则当y>0时,自变量x的取值范围是()A.x<0 B.﹣1<x<1或x>2 C.x>﹣1 D.x<﹣1或1<x<2【考点】函数的图象.【分析】观察图象和数据即可求出答案.【解答】解:y>0时,即x轴上方的部分,∴自变量x的取值范围分两个部分是x<﹣1,1<x<2.故选D.【点评】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用,要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件.6.如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与图中4×7方格中的格点的连线中,能够与该圆弧相切的格点个数有()A.1个B.2个C.3个D.4个【考点】切线的性质;勾股定理;垂径定理.【专题】网格型.【分析】由弦AB与弦BC的垂直平分线的交点为圆心,找出圆心O′的位置,确定出圆心坐标,过点B与圆相切时,根据切线的判定方法得到∠O′BF为直角时,BF与圆相切,根据网格找出满足条件的F坐标即可.【解答】解:根据过格点A,B,C作一圆弧,由图形可得:三点组成的圆的圆心为:O′(2,0),只有∠O′BF=∠O′BD+∠EBF=90°时,BF与圆相切,此时△BO′D≌△FBE,EF=BD=2,∴F点的坐标为:(5,1)或(1,3)或(7,0),则点B与下列格点的连线中,能够与该圆弧相切的是(5,1)或(1,3)或(7,0),共3个.故选C.【点评】此题考查了切线的判定与性质,勾股定理,全等三角形的判定与性质,以及点的坐标与直角坐标系,其中确定出圆心O′的坐标是本题的突破点.7.超市有一种“喜之郎”果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,横截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,那么要制作这样一个包装盒至少纸板()平方厘米.(不计重合部分)A.253 B.288 C.206 D.245【考点】二次函数的应用.【分析】图,“喜之郎”果冻礼盒是一长方体.2个底面为矩形A′B′C′D′(如图3),2个侧面为矩形ABCD(如图2),2个侧面是以AB为高,AE为底的矩形.【解答】解:建立如图(2)所示的平面直角坐标系,过切点K作KH⊥OD于点H.依题意知 K(x,2).易求开口向上抛物线的解析式:y=x2,所以 2=x2,解得 x=或x=﹣(舍去),∴OH=HG=,∴BC=BO+OH+HG+GC=3+++3=6+3,∴S矩形ABCD=AB•BC=4×(6+3)=24+12(平方厘米).如图3,S矩形A′B′C′D′=6BC=6×(6+3)(平方厘米).所以,2S矩形ABCD+2S矩形A′B′C′D′+2AB•AE=178+80(平方厘米).2×(24+12)+2×(36+18)+2×4×6=168+60≈253(平方厘米).故选:A.【点评】本题考查了二次函数的应用.此题采用逆向思维,通过补全图形来计算包装盒的表面积.8.如图,AB是⊙O的直径,BC⊥AB,垂足为点B,连接CO并延长交⊙O于点D、E,连接AD 并延长交BC于点F.则下列结论正确的有()①∠CBD=∠CEB;② =;③点F是BC的中点;④若=,tanE=.A.①② B.③④ C.①②④D.①②③【考点】圆的综合题.【分析】(1)运用直角及圆周角的关系证出∠CBD=∠CEB.(2)运用△EBC∽△BDC求证即可,(3)运用反正法来判定.(4)设BC=3x,AB=2x,得出OB、OD及OC、CD的值,运用=得出tanE=.【解答】证明(1)∵BC⊥AB于点B,∴∠CBD+∠ABD=90°,∵∠BAD+∠ABD=90°∴∠CBD=∠BAD,∵∠BAD=∠CEB,∴∠CEB=∠CBD,故①正确.(2)∵∠C=∠C,∠CEB=∠CBD,∴△EBC∽△BDC,∴=,故②正确,(3)∵∠EBD=∠BDF=90°,∴DF∥BE,假设点F是BC的中点,则点D是EC的中点,∴ED=DC,∵ED是直径,长度不变,而DC的长度是不定的,∴DC不一定等于ED,故③是错误的.(4)∵=,设BC=3x,AB=2x,∴OB=OD=x,∴在RT△CBO中,OC=x,∴CD=(﹣1)x∵由(2)知, =∴===,∵tanE=∴tanE=,故④正确,故选:C.【点评】本题主要考查了圆的综合题,涉及相似三角形的判定与性质、圆周角定理、锐角三角函数定义等知识点,解题的关键在于通过求证三角形相似根据对应边成比例的性质求出tan∠E的值.二、填空题:本大题共6小题,每小题3分,共18分.请把答案填在题中横线上9.因式分解:x2y﹣7y= y(x﹣)(x+).【考点】实数范围内分解因式.【分析】首先提取公因式,再进一步利用平方差公式分解因式.【解答】解:x2y﹣7y=y(x2﹣7)=y(x﹣)(x+).故答案为:y(x﹣)(x+).【点评】此题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.10.一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,﹣1,﹣2,﹣3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及两次摸出的小球上两个数字乘积是负数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出的小球上两个数字乘积是负数的有6种情况,∴两次摸出的小球上两个数字乘积是负数的概率为: =.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.函数y=与y=x﹣2的图象交点的横坐标分别为a,b,则+的值为 6 .【考点】反比例函数与一次函数的交点问题.【专题】计算题.【分析】根据反比例函数与一次函数的交点问题得到,利用代入法得到=x﹣2,整理得x2﹣2x﹣1=0,再利用根与系数的关系得a+b=2,ab=﹣1,然后把+变形得到=,再利用整体代入的方法计算即可.【解答】解:根据题意得方程组,消去y得=x﹣2,整理得x2﹣2x﹣1=0,∴a+b=2,ab=﹣1,∴+====6.故答案为6.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了根与系数的关系.12.如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为23°,山脚B处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于30 度;(2)求A、B两点间的距离等于26.0米(结果精确到0.1米,参考数据:≈1.41,≈1.73 tan37°≈0.75,tan23°≈1.59,sin37°≈1.60,cos37°≈0.80).【考点】解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.【分析】(1)根据俯角以及坡度的定义即可求解;(2)在直角△PHB中,根据三角函数即可求得PB的长,然后在直角△PBA中利用三角函数即可求解.【解答】解:(1)∵tan∠ABC=1:,∴∠ABC=30°;(2)由题意得:∠PBH=60°,∵∠ABC=30°,∴∠ABP=90°,又∠APB=60°﹣23°=37°.在直角△PHB中,PB===20.在直角△PBA中,AB=PB•tan∠APB=20×0.75≈26.0(米).故答案为30,26.0米.【点评】本题主要考查了俯角的问题,坡度的定义,解直角三角形,难度适中.正确利用三角函数是解题的关键.13.已知反比例函数y=在第二象限内的图象如图,经过图象上两点A、E分别引y轴与x 轴的垂线,交于点C,且与y轴与x轴分别交于点M、B.连接OC交反比例函数图象于点D,且=,连接OA,OE,如果△AOC的面积是15,则△ADC与△BOE的面积和为17 .【考点】反比例函数系数k的几何意义.【分析】连结AD,过D点作DG∥CM,根据等高的三角形的面积与底成正比,可得△ACD的面积是5,再根据平行线分线段成比例和相似三角形的性质可得△ODF的面积是,根据等量关系可得四边形AMGF的面积=,再根据平行线分线段成比例和相似三角形的性质可得△AOM的面积,根据反比例函数系数k的几何意义可得△BOE的面积,依此即可求解.【解答】解:连结AD,过D点作DG∥CM.∵=,△AOC的面积是15,∴CD:CO=1:3,OG:OM=2:3,∴△ACD的面积是5,△ODF的面积是15×=,∴四边形AMGF的面积=,∴△BOE的面积=△AOM的面积=×=12,∴△ADC与△BOE的面积和为5+12=17.故答案为:17.【点评】考查了反比例函数系数k的几何意义,涉及的知识点有:等高的三角形的面积与底成正比,平行线分线段成比例和相似三角形的性质,反比例函数系数k的几何意义,综合性较强,有一定的难度.14.如图,菱形ABCD的边长为12cm,∠A=60°,点P从点A出发沿线路AB→BD做匀速运动,点Q从点D同时出发沿线路DC→CB→BA做匀速运动.已知点P,Q运动的速度分别为2cm/秒和2.5cm/秒,经过12秒后,P、Q分别到达M、N两点时,点P、Q再分别从M、N同时沿原路返回,点P的速度不变,点Q的速度改为vcm/秒,经过3秒后,P、Q分别到达E、F两点,若△BEF与△AMN相似,则v的值为1或3或6 .【考点】相似三角形的判定与性质;菱形的性质.【专题】动点型.【分析】易得△ABD是等边三角形,经过12秒后,P、Q分别到达M、N两点,则AP,BF都可以求出,就可以判断N,F的位置,根据直角三角形的性质,判断△AMN的形状;然后根据△BEF与△AMN相似得到△BEF为直角三角形,就可以求出S Q的长,已知时间,就可以求出速度.【解答】解:∵∠A=60°,AD=AB=12,∴△ABD为等边三角形,故BD=12,又∵V P=2cm/s∴S P=V P t=2×12=24(cm),∴P点到达D点,即M与D重合v Q=2.5cm/s S Q=V Q t=2.5×12=30(cm),∴N点在AB之中点,即AN=BN=6(cm),∴∠AND=90°即△AMN为直角三角形,∵V P=2m/s t=3s,∴S P=6cm,∴E为BD的中点,又∵△BEF与△AMN相似,∴△BEF为直角三角形,且∠EBF=60°,∠BPF=30°,①Q到达F1处:S Q=BP﹣BF1=6﹣=3(cm),故V Q=1(cm/秒);②Q到达F2处:S Q=BP=9,故V Q=3(cm/秒);③Q到达F3处:S Q=6+2BP=18,故V Q=6(cm/秒).故答案为:1或3或6.【点评】本题考查了菱形的性质、相似三角形的判定和性质,此题也是图形与函数相结合的问题,正确根据条件得出方程是解题关键.三、解题题:本大题共8小题,共78分.解答应写出文字说明,证明过程或演算步骤15.(1)计算:﹣2tan60°﹣(﹣1)2015;(2)解不等式组,并把不等式组的解集在数轴上表示出来.【考点】实数的运算;负整数指数幂;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.【专题】计算题.【分析】(1)原式第一项化为最简二次根式,第二项利用负整数指数幂法则计算,第三项利用特殊角的三角函数值计算,最后一项利用乘方的意义计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=2﹣2﹣2+1=﹣1;(2),由①得:x>﹣;由②得:x≤1,则不等式组的解集为﹣<x≤1,【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(m,3),B(﹣3,n)两点.(1)求一次函数的表达式;(2)观察函数图象,直接写出关于x的不等式>kx+b的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)把A和B代入反比例函数解析式即可求得坐标,然后用待定系数法求得一次函数的解析式;(2)不等式>kx+b的解集就是:对于相同的x的值,反比例函数的图象在上边的部分自变量的取值范围.【解答】解:(1)∵A(m,3),B(﹣3,n)两点在反比例函数y2=的图象上,∴m=2,n=﹣2.∴A(2,3),B(﹣3,﹣2).根据题意得:,解得:,∴一次函数的解析式是:y1=x+1;(2)根据图象得:0<x<2或x<﹣3.【点评】本题综合考查一次函数与反比例函数的图象与性质,同时考查用待定系数法求函数解析式.本题需要注意无论是自变量的取值范围还是函数值的取值范围,都应该从交点入手思考;需注意反比例函数的自变量不能取0.17.杭州市相关部门正在研究制定居民用水价格调整方案,小明想为政府决策提供信息,于是在某小区内随机访问了部分居民,就每月的用水量,可承受的水价调整的幅度等进行调查,并把调查结果整理成图1和图2,已知被调查居民美誉每月的用水量在5m3﹣35m3之间,被调查的居民中对居民用水价格调整幅度抱“无所谓”态度的有8户,试回答下列问题:①上述两个统计图表是否完整,若不完整,试把它们补全;②若采用阶梯式累进制调价方案(如表1所示),试估计该小区有百分之几的居民用水费用的增长幅度不超过50%?【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】①根据扇形统计表中角度的比例关系可得出统计样本的总数,继而可补充完整两个统计表;②设每月每户用水量为xm3的居民调价后用水费用的增长幅度不超过50%,由表一可知分x≤15与x>15两部分讨论,再结合图一可得出结论.【解答】解:①上述表格不完整,360°﹣40°﹣120°=200°.8×﹣15﹣22﹣9﹣6﹣3=72﹣15﹣22﹣9﹣6﹣3=17.补全表格如下.②∵设每月每户用水量为xm3的居民调价后用水费用的增长幅度不超过50%,当x≤15时,水费的增长幅度为×100%<50%,当x>15时,则≤50,解得:x≤20.∵从调查数据看,每月的用水量不超过20m3的居民有54户,∴=75%,又∵调查是随机抽取,∴该小区有75%的居民用水费用的增长幅度不超过50%.【点评】本题考查了条形和扇形统计图以及解一元一次不等式,解题的关键是:①由样本中某项数据得出样本数;②结合表一得出关于x的一元一次不等式.本题难度不大,属于基础题,解决该类型的题目需要熟悉各种统计表.18.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC,交AC于点E,交PC于点F,连接AF.(1)求证:AF是⊙O的切线;(2)已知⊙O的半径为4,AF=3,求线段AC的长.【考点】切线的判定与性质;勾股定理;相似三角形的判定与性质.(1)连接OC,先证出∠3=∠2,由SAS证明△OAF≌△OCF,得对应角相等∠OAF=∠OCF,【分析】再根据切线的性质得出∠OCF=90°,证出∠OAF=90°,即可得出结论;(2)先由勾股定理求出OF,再由三角形的面积求出AE,根据垂径定理得出AC=2AE.【解答】(1)证明:连接OC,如图所示:∵AB是⊙O直径,∴∠BCA=90°,∵OF∥BC,∴∠AEO=90°,∠1=∠2,∠B=∠3,∴OF⊥AC,∵OC=OA,∴∠B=∠1,∴∠3=∠2,在△OAF和△OCF中,,∴△OAF≌△OCF(SAS),∴∠OAF=∠OCF,∵PC是⊙O的切线,∴∠OCF=90°,∴∠OAF=90°,∴FA⊥OA,∴AF是⊙O的切线;(2)∵⊙O的半径为4,AF=3,∠OAF=90°,∴OF===5∵FA⊥OA,OF⊥AC,∴AC=2AE,△OAF的面积=AF•OA=OF•AE,∴3×4=5×AE,解得:AE=,∴AC=2AE=.【点评】本题考查了切线的判定、全等三角形的判定与性质、勾股定理、垂径定理以及三角形面积的计算;熟练掌握切线的判定,并能进行推理计算是解决问题的关键.19.现有一张矩形纸片ABCD(如图),其中AB=4cm,BC=6cm,点E是BC的中点.将纸片沿直线AE折叠,点B落在四边形AECD内,记为点B′,过E作EF垂直B′C,交B′C于F.(1)求AE、EF的位置关系;(2)求线段B′C的长,并求△B′EC的面积.【考点】相似三角形的判定与性质;矩形的性质;翻折变换(折叠问题).【分析】(1)由折线法及点E是BC的中点,可证得△B'EC是等腰三角形,再有条件证明∠AEF=90°即可得到AE⊥EF;(2)连接BB′,通过折叠,可知∠EBB′=∠EB′B,由E是BC的中点,可得EB′=EC,∠ECB′=∠EB′C,从而可证△BB′C为直角三角形,在Rt△AOB和Rt△BOE中,可将OB,BB′的长求出,在Rt△BB′C中,根据勾股定理可将B′C的值求出,【解答】解:(1)由折线法及点E是BC的中点,∴EB=EB′=EC,∠AEB=∠AEB′,∴△B'EC是等腰三角形,又∵EF⊥B′C∴EF为∠B'EC的角平分线,即∠B′EF=∠FEC,∴∠AEF=180°﹣(∠AEB+∠CEF)=90°,即∠AEF=90°,即AE⊥EF;(2)连接BB'交AE于点O,由折线法及点E是BC的中点,∴EB=EB′=EC,∴∠EBB′=∠EB′B,∠ECB′=∠EB′C;又∵△BB'C三内角之和为180°,∴∠BB'C=90°;∵点B′是点B关于直线AE的对称点,∴AE垂直平分BB′;在Rt△AOB和Rt△BOE中,BO2=AB2﹣AO2=BE2﹣(AE﹣AO)2将AB=4cm,BE=3cm,AE=5cm,∴AO=cm,∴BO==cm,∴BB′=2BO=cm,∴在Rt△BB'C中,B′C==cm,由题意可知四边形OEFB′是矩形,∴EF=OB′=,∴S△B′EC=×B′C•EF=××=.【点评】本题考查图形的折叠变化及三角形的内角和定理勾股定理的和矩形的性质综合运用.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.20.阅读对话,解答问题.(1)分别用a、b表示小冬从小丽、小兵袋子中抽出的卡片上标有的数字,请用树状图法或列表法写出(a,b)的所有取值;(2)小冬抽出(a,b)中使关于x的一元二次方程x2﹣ax+2b=0根为有理数的是小丽赢,方程的根为无理数的是小兵赢,你觉得游戏是否公平?若公平,请说明理由;若不公平,请修改游戏方案.【考点】游戏公平性;列表法与树状图法.【分析】(1)首先根据题意列出表格,然后由表格即可求得所有等可能的结果;(2)由表格,结合一元二次方程根的情况,即可求得小丽赢与小兵赢的概率,比较概率的大小,即可知游戏是否公平;设计方案只要赢得概率一样,即游戏就公平.【解答】解:(1)(a,b)对应的表格为:1 2 3ab1 (1,1)(1,2)(1,3)2 (2,1)(2,2)(2,3)3 (3,1)(3,2)(3,3)4 (4,1)(4,2)(4,3)(2)游戏不公平,∵符合有理数根的有2种,而符合无理数根的只有1种;。

中考数学二模试题(有答案解析)

中考数学二模试题(有答案解析)

中考仿真模拟测试数学试卷学校________ 班级________ 姓名________ 成绩________时间100分钟满分150分一.选择题(共6小题,满分24分,每小题4分)1.下列代数式中,为单项式的是()A .B .AC .D .x2+y22.已知x>y,那么下列正确的是()A .x+y>0B .A x>A yC .x﹣2>y+2D .2﹣x<2﹣y3.将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A .(2,4)B .(﹣1,1)C .(5,1)D .(2,﹣2)4.在平面直角坐标系中,以点A (2,1)为圆心,1为半径的圆与x轴的位置关系是()A .相离B .相切C .相交D .不确定5.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出学生共有500人,那么估计全年级外出骑车的学生约有140人6.如图,在△A B C 中,点D 、E分别是边B C 、A C 的中点,A D 和B E交于点G,设=,=,那么向量用向量、表示为()A .B .C .D .二.填空题(共12小题,满分48分,每小题4分)7.分解因式:x2﹣4x=.8.计算:A 3•A ﹣1=.9.已知函数f(x)=,那么f(10)=.10.如果关于x的方程x2﹣6x+m﹣1=0有一个根为2,那么m=.11.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为元.12.某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是.13.用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是.14.如果正六边形的半径是1,那么它的边心距是.15.如果从方程x+1=0,x2﹣2x﹣1=0,x+=3中任意选取一个方程,那么取到的方程是整式方程的概率是.16.已知,在Rt△A B C 中,∠C =90°,A C =9,B C =12,点D 、E分别在边A C 、B C 上,且C D :C E =3:4.将△C D E绕点D 顺时针旋转,当点C 落在线段D E上的点F处时,B F恰好是∠A B C 的平分线,此时线段C D 的长是.17.如图,某人在山坡坡脚A 处测得电视塔塔尖点P的仰角为60°,沿山坡向上走200米到达B 处,在B 处测得点P的仰角为15°.已知山坡A B 的坡度i=1:,且H、A 、B 、P在同一平面内,那么电视塔的高度PH为米.(结果保留根号形式)18.如图,已知在等边△A B C 中,A B =4,点P在边B C 上,如果以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,那么⊙P的半径长是.三.解答题(共7小题,满分78分)19.(10分)先化简,再求值:,其中.20.(10分)解不等式组:,并将解集在数轴上表示出来.21.(10分)如图,是一个地下排水管的横截面图,已知⊙O的半径OA 等于50C m,水的深度等于25C m(水的深度指的中点到弦A B 的距离).求:(1)水面的宽度A B .(2)横截面浸没在水中的的长(结果保留π).22.(10分)一辆汽车从甲地出发前往相距350千米的乙地,在行驶了100千米后,因降雨,汽车每行驶1千米的耗油量比降雨前多0.02升.如图中的折线A B C 反映了该汽车行驶过程中,油箱中剩余的油量y(升)与行驶的路程x(千米)之间的函数关系.(1)当0≤x≤100时,求y关于x的函数解析式(不需要写出定义域);(2)当汽车到达乙地时,求油箱中的剩余油量.23.(12分)如图,已知在直角梯形A B C D 中,A D ∥B C ,∠A B C =90°,A E⊥B D ,垂足为E,联结C E,作EF ⊥C E,交边A B 于点F.(1)求证:△A EF∽△B EC ;(2)若A B =B C ,求证:A F=A D .24.(12分)已知直线交x轴于点A ,交y轴于点C (0,4),抛物线经过点A ,交y轴于点B (0,﹣2),点P为抛物线上一个动点,设P的横坐标为m(m>0),过点P作x轴的垂线PD ,过点B 作B D ⊥PD 于点D ,联结PB .(1)求抛物线的解析式;(2)当△B D P为等腰直角三角形时,求线段PD 的长;(3)将△B D P绕点B 旋转得到△B D ′P′,且旋转角∠PB P′=∠OA C ,当点P对应点P′落在y轴上时,求点P的坐标.25.(14分)如图,已知扇形A OB 的半径OA =4,∠A OB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结C D .点P是弧A B 上一点,PC =PD .(1)当C ot∠OD C =,以C D 为半径的圆D 与圆O相切时,求C D 的长;(2)当点D 与点B 重合,点P为弧A B 的中点时,求∠OC D 的度数;(3)如果OC =2,且四边形OD PC 是梯形,求的值.参考答案一.选择题(共6小题,满分24分,每小题4分)1.下列代数式中,为单项式的是()A .B .AC .D .x2+y2【解答】解:A 、分母中含有字母,不是单项式;B 、符合单项式的概念,是单项式;C 、分母中含有字母,不是单项式;D 、不符合单项式的概念,不是单项式.故选:B .2.已知x>y,那么下列正确的是()A .x+y>0B .A x>A yC .x﹣2>y+2D .2﹣x<2﹣y【解答】解:∵x>y,∴x﹣y>0,A x>A y(A >0),x+2>y+2,2﹣x<2﹣y.故选:D .3.将抛物线y=(x﹣2)2+1向上平移3个单位,得到新抛物线的顶点坐标是()A .(2,4)B .(﹣1,1)C .(5,1)D .(2,﹣2)【解答】解:将抛物线y=(x﹣2)2+1向上平移3个单位,得y=(x﹣2)2+1+3,即y=(x﹣2)2+4,顶点坐标为(2,4),故选:A .4.在平面直角坐标系中,以点A (2,1)为圆心,1为半径的圆与x轴的位置关系是()A .相离B .相切C .相交D .不确定【解答】解:∵点A (2,1)到x轴的距离为1,圆的半径=1,∴点A (2,1)到x轴的距离=圆的半径,∴圆与x轴相切;故选:B .5.如图,反映的是某中学九(3)班学生外出方式(乘车、步行、骑车)的频数(人数)分布直方图(部分)和扇形分布图,那么下列说法正确的是()A .九(3)班外出的学生共有42人B .九(3)班外出步行的学生有8人C .在扇形图中,步行的学生人数所占的圆心角为82°D .如果该校九年级外出的学生共有500人,那么估计全年级外出骑车的学生约有140人【解答】解:A 、由题意知乘车的人数是20人,占总人数的50%,所以九(3)班有20÷50%=40人,故此选项错误;B 、步行人数为:40﹣12﹣20=8人,故此选项正确;C 、步行学生所占的圆心角度数为×360°=72°,故此选项错误;D 、如果该中学九年级外出的学生共有500人,那么估计全年级外出骑车的学生约为500×=150人,故此选项错误;故选:B .6.如图,在△A B C 中,点D 、E分别是边B C 、A C 的中点,A D 和B E交于点G,设=,=,那么向量用向量、表示为()A .B .C .D .【解答】解:∵=,=,∴=+=﹣+,∵A D ,B E是△A B C 的中线,∴G是△A B C 的重心,∴B G= B E,∴=﹣+,故选:A .二.填空题(共12小题,满分48分,每小题4分)7.分解因式:x2﹣4x=x(x﹣4).【解答】解:x2﹣4x=x(x﹣4).故答案为:x(x﹣4).8.计算:A 3•A ﹣1= A 2.【解答】解:原式=A 3+(﹣1)=A 2.故答案为:A 2.9.已知函数f(x)=,那么f(10)=2.【解答】解:∵f(x)=,∴f(10)==2.故答案为:2.10.如果关于x的方程x2﹣6x+m﹣1=0有一个根为2,那么m=9.【解答】解:把x=2代入方程得:22﹣6×2+m﹣1=0.解得m=9.故答案是:9.11.某品牌旗舰店将某商品按进价提高40%后标价,在一次促销活动中,按标价的8折销售,售价为2240元,那么这种商品的进价为2000元.【解答】解:设这种商品的进价是x元,根据题意可以列出方程:由题意得,(1+40%)x×0.8=2240.解得:x=2000,故答案为:2000.12.某校200名学生一次数学测试的分数均大于75且小于150,分数段的频数分布情况如下:75~90有15人,90~105有42人,105~120有58人,135~150有35人(其中每个分数段可包括最小值,不包括最大值),那么测试分数在120~135分数段的频率是0.25.【解答】解:120~135分数段的频数=200﹣15﹣42﹣58﹣35=50人,则测试分数在120~135分数段的频率==0.25.故答案为:0.25.13.用换元法解方程=3时,设=y,那么原方程化成关于y的整式方程是y2﹣3y+2=0.【解答】解:设=y,则.所以原方程可变形为:.方程的两边都乘以y,得y2+2=3y.即y2﹣3y+2=0.故答案为:y2﹣3y+2=0.14.如果正六边形的半径是1,那么它的边心距是.【解答】解:∵A B C D D EF为正六边形,∴∠B OC =360°÷6=60°,OG⊥B C .∴∠B OG=∠B OC =30°.在Rt△B OG中,C os∠B OG=.∵OB =1,∴OG=OB •C os∠B OG=1×=.故答案为:.15.如果从方程x+1=0,x2﹣2x﹣1=0,x+=3中任意选取一个方程,那么取到的方程是整式方程的概率是.【解答】解:∵在所列的6个方程中,整式方程有x+1=0,x2﹣2x﹣1=0,x4﹣1=0这3个,∴取到的方程是整式方程的概率是=,故答案为:.16.已知,在Rt△A B C 中,∠C =90°,A C =9,B C =12,点D 、E分别在边A C 、B C 上,且C D :C E =3:4.将△C D E绕点D 顺时针旋转,当点C 落在线段D E上的点F处时,B F恰好是∠A B C 的平分线,此时线段C D 的长是6.【解答】解:如图所示,设C D =3x,则C E=4x,B E=12﹣4x,∵=,∠D C E=∠A C B =90°,∴△A C B ∽△D C E,∴∠D EC =∠A B C ,∴A B ∥D E,∴∠A B F=∠B FE,又∵B F平分∠A B C ,∴∠A B F=∠C B F,∴∠EB F=∠EFB ,∴EF=B E=12﹣4x,由旋转可得D F=C D =3x,∵Rt△D C E中,C D 2+C E2=D E2,∴(3x)2+(4x)2=(3x+12﹣4x)2,解得x1=2,x2=﹣3(舍去),∴C D =2×3=6,故答案为:6.17.如图,某人在山坡坡脚A 处测得电视塔塔尖点P的仰角为60°,沿山坡向上走200米到达B 处,在B 处测得点P的仰角为15°.已知山坡A B 的坡度i=1:,且H、A 、B 、P在同一平面内,那么电视塔的高度PH为100米.(结果保留根号形式)【解答】解:过B 作B M⊥HA 于M,过B 作B N∥A M,如图所示:则∠A MB =90°,∠A B N=∠B A M,由题意得:A B =200米,∠PB N=15°,∠P A H=60°,∵山坡A B 的坡度i=1:,∴tA n∠B A M=1:=,∴∠B A M=30°,∴∠A B N=30°,∴∠P A B =180°﹣∠P A H﹣∠B A M=90°,∠A B P=∠A B N+∠PB N=45°,∴△P A B 是等腰直角三角形,∴P A =A B =200米,在Rt△P A H中,sin∠P A H==sin60°=,∴PH=P A =100(米),故答案为:100.18.如图,已知在等边△A B C 中,A B =4,点P在边B C 上,如果以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,那么⊙P的半径长是.【解答】解:如图,连接OP,过点O作OH⊥B C 于P,在等边△A B C 中,A B =4,∴A C =B C =A B =4,∠A C B =60°,∵点O是A C 的中点,∴A O=OC =2,∵以线段PB 为半径的⊙P与以边A C 为直径的⊙O外切,∴PO=2+B P,∵OH⊥B C ,∴∠C OH=30°,∴HC =1,OH=,∵OP2=OH2+PH2,∴(2+B P)2=3+(4﹣1﹣B P)2,∴B P=,故答案为.三.解答题(共7小题,满分78分)19.(10分)先化简,再求值:,其中.【解答】解:原式==﹣=,当x=﹣1时,原式==.20.(10分)解不等式组:,并将解集在数轴上表示出来.【解答】解:解不等式3(x+2)>x﹣2,得:x>﹣4,解不等式x﹣≤,得:x≤,则不等式组的解集为﹣4<x≤,将不等式组的解集表示在数轴上如下:21.(10分)如图,是一个地下排水管的横截面图,已知⊙O的半径OA 等于50C m,水的深度等于25C m(水的深度指的中点到弦A B 的距离).求:(1)水面的宽度A B .(2)横截面浸没在水中的的长(结果保留π).【解答】解:(1)过O作OH⊥A B 于H,并延长交⊙O于D ,∵OH⊥A B ,OH过O,∴∠OHA =90°,A H= A B ,=,∵水的深度等于25C m,∴HD =25(C m),∵OA =OD =50C m,∴OH=OD ﹣HD =25(C m),∴A H===25(C m),∴A B =50 C m;(2)连接OB ,∵OA =50C m,OH=25C m,∴OH=OA ,∵∠OHA =90°,∴∠OA H=30°,∴∠A OH=60°,∵OA =OB ,OH⊥A B ,∴∠B OH=∠A OH=60°,即∠A OB =120°,∴的长是=(C m).22.(10分)一辆汽车从甲地出发前往相距350千米的乙地,在行驶了100千米后,因降雨,汽车每行驶1千米的耗油量比降雨前多0.02升.如图中的折线A B C 反映了该汽车行驶过程中,油箱中剩余的油量y(升)与行驶的路程x(千米)之间的函数关系.(1)当0≤x≤100时,求y关于x的函数解析式(不需要写出定义域);(2)当汽车到达乙地时,求油箱中的剩余油量.【解答】解:(1)设当0≤x≤100时,y关于x的函数解析式为y=kx+B ,根据题意,得:,解得,∴y=﹣x+50;(2)由题意可知,前100千米耗油量为10升,后250千米的耗油量为:250×(0.1+0.02)=30(升),油箱中的剩余油量为:50﹣10﹣30=10(升).23.(12分)如图,已知在直角梯形A B C D 中,A D ∥B C ,∠A B C =90°,A E⊥B D ,垂足为E,联结C E,作EF ⊥C E,交边A B 于点F.(1)求证:△A EF∽△B EC ;(2)若A B =B C ,求证:A F=A D .【解答】解:(1)证明:∵A E⊥B D ,EF⊥C E,∴∠A EB =∠C EF=∠A B C =90°,∴∠A B E+∠EA F=∠A B E+∠C B E=90°,∴∠EA F=∠C B E,∵∠A EF+∠B EF=∠B EC +∠B EF=90°,∴∠A EF=∠B EC ,∴△A EF∽△B EC ;(2)证明:∵A D ∥B C ,∠A B C =90°,∴∠B A D =180°﹣∠A B C =90°,∵A E⊥B D ,∴∠A EB =90°=∠B A D ,∵∠A B E=∠D B A ,∴△A B E∽△D B A ,∴=,∵△A EF∽△B EC ,∴=,∴=,∵A B =B C ,∴A F=A D .24.(12分)已知直线交x轴于点A ,交y轴于点C (0,4),抛物线经过点A ,交y轴于点B (0,﹣2),点P为抛物线上一个动点,设P的横坐标为m(m>0),过点P作x轴的垂线PD ,过点B 作B D ⊥PD 于点D ,联结PB .(1)求抛物线的解析式;(2)当△B D P为等腰直角三角形时,求线段PD 的长;(3)将△B D P绕点B 旋转得到△B D ′P′,且旋转角∠PB P′=∠OA C ,当点P对应点P′落在y轴上时,求点P的坐标.【解答】解:(1)∵点C (0,4)在直线y=﹣x+n上,∴n=4,∴y=﹣x+4,令y=0,∴x=3,∴A (3,0),∵抛物线y=x2+B x+C 经过点A ,交y轴于点B (0,﹣2),∴C =﹣2,6+3B ﹣2=0,∴B =﹣,∴抛物线解析式为y=x2﹣x﹣2;(2)∵P的横坐标为m(m>0),且点P在抛物线上,∴P(m,m2﹣m﹣2),∵PD ⊥x轴,B D ⊥PD ,∴点D 坐标为(m,﹣2),若△B D P为等腰直角三角形,则PD =B D ,①当点P在直线B D 上方时,PD =m2﹣m﹣2﹣(﹣2)=m2﹣m,如图1,B D =m.∴m2﹣m=m,解得:m1=0,m2=,∵m>0,∴m=;②当点P在直线B D 下方时,如图2,m>0,B D =m,PD =﹣m2+m,∴﹣m2+m=m,解得:m1=0,m2=,∵m>0,∴m=;综上所述,m=或;即当△B D P为等腰直角三角形时,线段PD 的长为或.(3)∵∠PB P'=∠OA C ,OA =3,OC =4,∴A C =5,∴sin∠PB P'=,C os∠PB P'=,若点P在y轴右侧,①当△B D P绕点B 逆时针旋转,且点P'落在y轴上时,如图3,过点D ′作D ′M⊥x轴,交B D 于M,过点P′作P′N⊥y轴,交MD '的延长线于点N,∴∠D B D ′=∠ND ′P′=∠PB P′,由旋转知,P′D ′=PD =m2﹣m,在Rt△P′D ′N中,sin∠ND ′P′==sin∠PB P′=,∴P′N=P′D ′=(m2﹣m),在Rt△B D ′M中,B D ′=m,C os∠D B D ′==C os∠PB P′=,∴B M= B D ′=m,∵P′N=B M,∴(m2﹣m)=m,∴m=,∴P(,);②当△B D P绕点B 顺时针旋转,且点P'落在y轴上时,如图4,过点P作PT⊥y轴于点T,∴PT=m,B T=OT﹣OB =﹣(m2﹣m﹣2)﹣2=﹣m2+m,∵∠PB P′=∠OA C ,∴tA n∠PB P′=tA n∠OA C ==,∴=,∴PT= B T,∴m=(﹣m2+m),解得:m=0(舍去)或m=,∴P(,﹣);若点P在y轴左侧,仿照上述方法讨论均不存在满足条件的点P;综上所述,点P的坐标为(,)或(,﹣).25.(14分)如图,已知扇形A OB 的半径OA =4,∠A OB =90°,点C 、D 分别在半径OA 、OB 上(点C 不与点A 重合),联结C D .点P是弧A B 上一点,PC =PD .(1)当C ot∠OD C =,以C D 为半径的圆D 与圆O相切时,求C D 的长;(2)当点D 与点B 重合,点P为弧A B 的中点时,求∠OC D 的度数;(3)如果OC =2,且四边形OD PC 是梯形,求的值.【解答】解:(1)如图1中,∵∠C OD =90°,C ot∠OD C ==,∴可以假设OD =3k,OC =4k,则C D =5k,∵以C D 为半径的圆D 与圆O相切,∴C D =D B =5k,∴OB =OD +D B =3K+5K=4,∴k=,∴C D =.(2)如图2中,连接OP,过点P作PE⊥OA 于E,PF⊥OB 于F.∵=,∴∠A OP=∠POB ,∵PE⊥OA ,PF⊥OB ,∴PE=PF,∵∠PEC =∠PFB =90°,PD =PC ,∴Rt△PEC ≌Rt△PFB (HL),∴∠EPC =∠FPB ,∵∠PEO=∠EOF=∠OFP=90°,∴∠EPF=90°,∴∠EPF=∠C PB =90°,∴∠PC B =∠PB C =45°,∵OP=OB ,∠POB =45°,∴∠OB P=∠OPB =67.5°,∴∠C B O=67.5°﹣45°=22.5°,∴∠OC D =90°﹣22.5°=67.5°.(3)如图3﹣1中,当OC ∥PD 时,∵OC ∥PD ,∴∠PD O=∠A OD =90°,∵C E⊥PD ,∴∠C ED =90°,∴四边形OC ED 是矩形,∴OC =D E=2,C E=OD ,设PC =PD =x,EC =OD =y,则有,可得x=2﹣2(不合题意的已经舍弃),∴PD =2﹣2,∴==﹣1.如图3﹣2中,当PC ∥OD 时,∵PC ∥OD ,∴∠C OD =∠OC E=∠C ED =90°,∴四边形OC ED 是矩形,∴OC =D E=2,C E=OD ,∵OP=4,OC =2,∴PC ===2,∴PD =PC =2,∴PE===2,∴EC =OD =2﹣2,∴===3+,综上所述,的值为﹣1或3+.。

备考特训2022年河北邯郸永年区中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)

备考特训2022年河北邯郸永年区中考数学模拟真题练习 卷(Ⅱ)(含答案及解析)

2022年河北邯郸永年区中考数学模拟真题练习 卷(Ⅱ) 考试时间:90分钟;命题人:数学教研组 考生注意: 1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、多项式2835x x -+与多项式323257x mx x +-+相加后,不含二次项,则常数m 的值是( )A .2B .4-C .2-D .8- 2、不等式组137523x x +≤⎧⎨->⎩的解集在数轴上表示正确的是( ) A . B . C . D . 3、点A ,B 在数轴上的位置如图所示,其对应的数分别是a 和b ,对于以下结论:(1)b ﹣a <0;(2)|a|<|b|;(3)a+b >0;(4)b a >0.其中正确的是( ) A .(1)(2) B .(2)(3) C .(3)(4) D .(1)(4) 4、若把分式2x y x y +-中的x 和y 都扩大10倍,那么分式的值( ) A .扩大10倍 B .不变 C .缩小10倍 D .缩小20倍5、已知三角形的一边长是6 cm ,这条边上的高是(x +4)cm ,要使这个三角形的面积不大于30 cm 2,·线○封○密○外则x 的取值范围是( )A .x >6B .x ≤6C .x ≥-4D .-4<x ≤66、若a 是最小的自然数, b 是最小的正整数,c 是绝对值最小的有理数,则a bc -的值为( ) .A .-1B .1C .0D .27、直线PQ 上两点的坐标分别是()20,5P -,()10,20Q ,则这条直线所对应的一次函数的解析式为( )A .1152y x =+B .2y x =C .1152y x =-D .310y x =-8、当n 为自然数时,(n +1)2-(n -3)2一定能被下列哪个数整除( )A .5B .6C .7D .8 9、如图,反比例函数3(0)y x x =->图象经过矩形OABC 边AB 的中点E ,交边BC 于F 点,连接EF 、OE 、OF ,则OEF 的面积是( )A .32 B .94 C .73 D .5210、已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m≤3 B .m≤3且m≠2 C .m <3 D .m <3且m≠2第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将一个圆分割成三个扇形,它们的圆心角度数比为1:7:10,那么最大扇形的圆心角的度数为________.2、下列4个分式:①233a a ++;②22x y x y --;③22m m n ;④21m +,中最简分式有_____个.3、若一扇窗户打开后,用窗钩将其固定,主要运用的几何原理是_________.4、3050'3'2'α︒∠=,则α∠的余角的大小为_________.5、已知圆锥的底面周长为4cm π,母线长为3cm .则它的侧面展开图的圆心角为________度. 三、解答题(5小题,每小题10分,共计50分) 1、在平面直角坐标系xOy 中,对于点P (x ,y )和Q (x ,y ′),给出如下定义:如果y ′=(0)(0)y x y x ≥⎧⎨-<⎩,那么称点Q 为点P 的“关联点”.例如点(5,6)的“关联点”为点(5,6),点(-5,6)的“关联点”为点(-5,-6). (1)在点E (0,0),F (2,5),G (-1,-1),H (-3,5)中, 的“关联点”在函数y =2x +1的图象上; (2)如果一次函数y =x +3图象上点M 的“关联点”是N (m ,2),求点M 的坐标; (3)如果点P 在函数y =-x 2+4(-2<x ≤a )的图象上,其“关联点”Q 的纵坐标y ′的取值范围是-4<y ′≤4,求实数a 的取值范围. 2、已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长2AB =(单位长度),慢车长4CD =(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O 为原点,取向右方向为正方向画数轴,此时快车头A 在数轴上表示的数是a ,慢车头C 在数轴上表示的数是b .若快车·线○封○密○外AB 以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD 以2个单位长度/秒的速度向左匀速继续行驶,且8a +与()216b -互为相反数.(1)求此时刻快车头A 与慢车头C 之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头A 和C 相距8个单位长度.(3)此时在快车AB 上有一位爱动脑筋的六年级学生乘客P ,他发现行驶中有一段时间t 秒钟,他的位置P 到两列火车头A ,C 的距离和加上到两列火车尾B ,D 的距离和是一个不变的值(即PA PC PB PD +++为定值).你认为学生P 发现的这一结论是否正确?若正确,求出这个时间及定值:若不正确,请说明理由.3、如图,在矩形ABCD 中,14cm AB =,12cm AD =,E 是CD 边上的一点,9cm DE =,M 是BC 边的中点,动点P 从点A 出发.沿边AB 以1cm s 的速度向终点B 运动,过点P 作PH AE ⊥于点H ,连接EP .设动点P 的运动时间是()()014t s t <<.(1)当t 为何值时,PM EM ⊥?(2)设EHP △的面积为()2cm y ,写出()2cm y 与()s t 之间的函数关系式. (3)当EP 平分四边形PMEH 的面积时,求t 的值.(4)是否存在时刻t ,使得点B 关于PE 的对称点B '落在线段AE 上?若存在,求出t 的值;若不存在,说明理由.4、已知:二次函数图象的顶点坐标为()3,6-,且经过点()2,10;求此二次函数的解析式.5、如图,在数轴上记原点为点O ,已知点A 表示数a ,点B 表示数b ,且a ,b 满足()2560a b ++-=,我们把数轴上两点之间的距离,用表示两点的大写字母表示,如:点A 与点B 之间的距离记作AB . (1)=a ______,b =______;(2)若动点P ,Q 分别从A ,B 同时出发向右运动,点P 的速度为每秒2个单位长度,点Q 的速度为每秒1个单位长度,当点P 和点Q 重合时,P ,Q 两点停止运动.当点P 到达原点O 时,动点R 从原点O 出发,以每秒3个单位长度的速度也向右运动,当点R 追上点Q 后立即返回,以同样的速度向点P 运动,遇到点P 后再立即返,以同样的速度向点Q 运动,如此往返,直到点P 、Q 停止运动时,点R 也停止运动,求在此过程中点R 行驶的总路程,以及点R 停留的最后位置在数轴上所对应的有理数; (3)动点M 从A 出发,以每秒1个单位的速度沿数轴在A ,B 之间运动,同时动点N 从B 出发,以每秒2个单位的速度沿数轴在A ,B 之间往返运动,当点M 运动到B 时,M 和N 两点停止运动.设运动时间为t 秒,是否存在t 值,使得OM ON =?若存在,请直接写出t 值;若不存在,请说明理由. -参考答案- 一、单选题1、B【分析】 合并同类项后使得二次项系数为零即可; 【详解】 解析:()()23232835+3257=3(28)812x x x mx x x m x x -++-+++-+,当这个多项式不含二次项时,有280m +=,解得4m =-. 故选B . 【点睛】·线○封○密○外本题主要考查了合并同类项的应用,准确计算是解题的关键.2、C【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可.【详解】137523x x ①②+≤⎧⎨->⎩ ∵解不等式①得:x ≤2,解不等式②得:x >1,∴不等式组的解集为1<x ≤2,在数轴上表示为:.故选C .【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解答此题的关键.3、B【分析】根据图示,判断a 、b 的范围:﹣3<a <0,b >3,根据范围逐个判断即可.【详解】解:根据图示,可得﹣3<a <0,b >3,∴(1)b﹣a >0,故错误;(2)|a|<|b|,故正确;(3)a+b >0,故正确;(4)b a <0,故错误. 故选B . 【点睛】 此题主要考查了绝对值的意义和有理数的运算符号的判断,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a 、b 的取值范围.4、B【分析】 把x 和y 都扩大10倍,根据分式的性质进行计算,可得答案. 【详解】 解:分式2x y x y +-中的x 和y 都扩大10倍可得:1021010(2)2101010()x y x y x y x y x y x y+⨯++==---, ∴分式的值不变,故选B .【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变.5、D【解析】【分析】根据三角形面积公式列出不等式组,再解不等式组即可.【详解】 由题意得:4016(4)302x x +>⎧⎪⎨⨯⨯+≤⎪⎩,解得:-4<x ≤6. 故选D . ·线○封○密○外【点睛】本题考查了一元一次不等式组的应用.解题的关键是利用三角形的面积公式列出不等式组.6、C【分析】由a是最小的自然数,b是最小的正整数,c是绝对值最小的数可分别求出a、b、c的值,可求出a-bc的值.【详解】解:因为a是最小的自然数,b是最小的正整数,c是绝对值最小的有理数,所以a=0,b=1,c=0,所以a-bc=0-1×0=0,故选:C.【点睛】本题考查有理数的有关概念,注意:最小的自然数是0;最小的正整数是1,绝对值最小的有理数是0.7、A【分析】利用待定系数法求函数解析式.【详解】解:∵直线y=kx+b经过点P(-20,5),Q(10,20),∴205 1020k bk b-+=⎧⎨+=⎩,解得1215kb⎧=⎪⎨⎪=⎩,所以,直线解析式为1152y x =+. 故选A . 【点睛】 本题主要考查待定系数法求函数解析式,是中考的热点之一,需要熟练掌握.解题的关键是掌握待定系数法.8、D【分析】 用平方差公式进行分解因式可得. 【详解】 ∵(n +1)2﹣(n ﹣3)2=(n +1+n ﹣3)(n +1﹣n +3)=8(n ﹣1),且n 为自然数,∴(n +1)2﹣(n ﹣3)2能被8整除. 故选D . 【点睛】 本题考查了因式分解的应用,关键是能用平方差公式熟练分解因式. 9、B 【分析】 连接OB .首先根据反比例函数的比例系数k 的几何意义,得出S △AOE =S △COF =1.5,然后由三角形任意一边的中线将三角形的面积二等分及矩形的对角线将矩形的面积二等分,得出F 是BC 的中点,则S △BEF =12S △OCF =0.75,最后由S △OEF =S 矩形AOCB ﹣S △AOE ﹣S △COF ﹣S △BEF ,得出结果. 【详解】 连接OB . ∵E 、F 是反比例函数y =﹣3x (x >0)图象上的点,EA ⊥x 轴于A ,FC ⊥y 轴于C ,∴S △AOE =S △COF =1.5. ∵矩形OABC 边AB 的中点是E ,∴S △BOE =S △AOE =1.5,S △BOC =S △AOB =3,∴S △BOF =S △BOC ﹣S △COF =3﹣1.5=1.5,∴F ·线○封○密○外是BC 的中点,∴S △OEF =S 矩形AOCB ﹣S △AOE ﹣S △COF ﹣S △BEF =6﹣1.5﹣1.5﹣0.5×1.5=94.故选B .【点睛】本题主要考查了反比例函数的比例系数k 与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系,即S =12|k |.得出点F 为BC 的中点是解决本题的关键.10、D【分析】解方程得到方程的解,再根据解为负数得到关于m 的不等式结合分式的分母不为零,即可求得m 的取值范围.【详解】21m x -+=1, 解得:x=m ﹣3,∵关于x 的分式方程21m x -+=1的解是负数, ∴m﹣3<0,解得:m <3,当x=m ﹣3=﹣1时,方程无解,则m≠2,故m 的取值范围是:m <3且m≠2,故选D .【点睛】本题考查了分式方程的解,熟练掌握分式方程的解法以及分式方程的分母不为零是解题关键.二、填空题1、200 【分析】 根据它们的圆心角的度数和为周角,则利用它们所占的百分比计算它们的度数. 【详解】 最大扇形的圆心角的度数=360°×101710++=200°. 故答案为200°.【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等. 2、①④ 【分析】 根据最简分式的定义逐式分析即可. 【详解】 ①2a 3a 3++是最简分式;②22x y x y --=1x y +,不是最简分式 ;③2m 2m n =12mn ,不是最简分式;④2m 1+是最简分式. 故答案为2. 【点睛】 ·线○封○密○外本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.3、三角形的稳定性【详解】一扇窗户打开后,用窗钩可将其固定,这里所运用的几何原理是三角形的稳定性.故应填:三角形的稳定性4、599'37''︒【分析】根据互为余角的两个角的和为90度即可得出答案.【详解】解:α∠的余角的大小为903050'23''599'37''︒-︒=︒.故答案为:599'37''︒【点睛】本题考查两角互余的概念:和为90度的两个角互为余角.熟记定义是解答本题的关键. 5、240【分析】根据弧长=圆锥底面周长=4π,弧长=180n r π计算. 【详解】由题意知:弧长=圆锥底面周长=4πcm ,3180n π⨯=4π,解得:n =240. 故答案为240.【点睛】本题考查了的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系.三、解答题1、(1)F 、H(2)点M (-5,-2)(3)2≤<a 【分析】 (1)点E (0,0)的“关联点”是(0,0),点F (2,5)的“关联点”是(2,5),点G (-1,-1)的“关联点”是(-1,1),点H (-3,5)的“关联点”是(-3,-5),将点的坐标代入函数y =2x +1,看是否在函数图象上,即可求解; (2)当m ≥0时,点M (m ,2),则2=m +3;当m <0时,点M (m ,-2),则﹣2=m +3,解方程即可求解; (3)如图为“关联点”函数图象:从函数图象看,“关联点”Q 的纵坐标y '的取值范围是-4<y '≤4,而-2<x ≤a ,函数图象只需要找到最大值(直线y =4)与最小值(直线y =-4)直线x =a 从大于等于0开始运动,直到与y =-4有交点结束.都符合要求-4<y '≤4,只要求出关键点即可求解. (1) 解:由题意新定义知:点E (0,0)的“关联点”是(0,0), 点F (2,5)的“关联点”是(2,5), 点G (-1,-1)的“关联点”是(-1,1), 点H (-3,5)的“关联点”是(-3,-5), 将点的坐标代入函数y =2x +1, 得到:F (2,5)和H (-3,-5)在函数y =2x +1图象上; (2) 解:当m ≥0时,点M (m ,2), 则2=m +3,解得:m =-1(舍去); 当m <0时,点M (m ,-2),·线○封○密○外-2=m+3,解得:m=-5,∴点M(-5,-2);(3)解:如下图所示为“关联点”函数图象:从函数图象看,“关联点”Q的纵坐标y'的取值范围是-4<y'≤4,而-2<x≤a,函数图象只需要找到最大值(直线y=4)与最小值(直线y=-4)直线x=a从大于等于0开始运动,直到与y=-4有交点结束,都符合要求,∴-4=-a2+4,解得:a=舍去负值),观察图象可知满足条件的a的取值范围为:2≤<a【点睛】本题考查二次函数的性质,一次函数的性质等知识,解题的关键是理解题意,属于创新题目,读懂题意是解决本类题的关键.2、(1)14单位长度;(2)0.75秒或2.75秒;(3)正确,这个时间是0.5秒,定值是6单位长度.【分析】(1)根据非负数的性质求出a =﹣6,b =8,求差即可求解;(2)根据时间=路程和÷速度和,设行驶t 秒钟两列火车行驶到车头A 和C 相距8个单位长度,列方程即可求解; (3)由于PA +PB =AB =2,只需要PC +PD 是定值,从快车AB 上乘客P 与慢车CD 相遇到完全离开之间都满足PC +PD 是定值,依此分析即可求解. (1) 解:(1)∵|a +6|与(b ﹣8)2互为相反数, ∴|a +6|+(b ﹣8)2=0, ∴a +6=0,b ﹣8=0, 解得a =﹣6,b =8. ∴此时刻快车头A 与慢车头C 之间相距8﹣(﹣6)=14(单位长度); 答:此时快车头A 与慢车头C 之间相距14单位长度; (2) 解:设行驶t 秒钟两列火车行驶到车头A 和C 相距8个单位长度,两车相遇前可列方程为 62148t t +=-, 解得,0.75t =. 两车相遇后可列方程为 62148t t +=+, 解得, 2.75t =. 答:再行驶0.75秒或2.75秒两列火车行驶到车头AC 相距8个单位长度; (3) 正确, ·线○封○密·○外∵PA +PB =AB =2,当P 在CD 之间时,PC +PD 是定值4,即路程为4,所以,行驶时间t =4÷(6+2)=4÷8=0.5(秒),此时PA +PC +PB +PD =(PA +PB )+(PC +PD )=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.【点睛】本题考查了一元一次方程的应用,数轴、绝对值和偶次方的非负性,熟练掌握行程问题的等量关系:时间=路程÷速度,根据数形结合的思想理解和解决问题.3、(1)t =245;(2)y =−625t 2+6t (0<t <14);(3)t =754;(4)152 【分析】(1)通过证明△CEM ∽△BMP ,可得PB BM CM EC =,即可求解; (2)利用锐角三角函数分别求出EH ,HP ,由三角形面积公式可求解;(3)由S △EHP =S △EMP ,列出等式可求解;(4)由对称性可得∠AEP =∠BEP ,由角平分线的性质可得PF =PH ,由面积关系可求解.【详解】解:(1)∵四边形ABCD 是矩形∴AB =CD ,BC =AD∵M 是BC 边的中点,∴CM =BM =6cm ,∵14cm AB =,DE =9cm ,∴EC =5cm ,∵PM⊥EM,∴∠PMB+∠CME=90°,又∵∠BMP+∠BPM=90°,∴∠BPM=∠EMC,又∵∠B=∠C=90°,∴△CEM∽△BMP,∴PB BM CM EC=,∴146 65t-=,∴t=245;(2)∵四边形ABCD是矩形,∴∠D=90°,∴AE2=AD2+DE2,∵AD=12cm,DE=9cm,∴AE15=cm,∵AB∥CD,∴∠DEA=∠EAB,∴sin∠DEA=sin∠EAB,∴AD HP AE AP=,∴1215HPt=,∴HP=45t,·线○封○密·○外∴AH 35t , ∴HE =15−35t , ∵S △EHP =12×EH ×HP ,∴y =12(15−35t )×45t =−625t 2+6t (0<t <14); (3)∵EP 平分四边形PMEH 的面积,∴S △EHP =S △EMP , ∴12(15−35t )×45t =12×12×(5+14−t )−12×6×(14−t )−12×6×5,解得:t 1=754,t 2=754+∵0<t <14,∴t =754; (4)如图2,连接BE ,过点P 作PF ⊥BE 于F ,∵点B 关于PE 的对称点B ',落在线段AE 上,∴∠AEP =∠BEP ,又∵PH ⊥AE ,PF ⊥BE ,∴PF =PH =45t ,∵EC =5cm ,BC =12cm ,∴BE13=cm ,∵S △ABE =S △AEP +S △BEP , ∴12×14×12=12×(15+13)×45t , ∴t =152. 【点睛】 本题是四边形综合题,考查了矩形的性质,相似三角形的判定和性质,勾股定理,轴对称的性质,锐角三角函数等知识,利用面积关系列出等式是本题的关键. 4、216(3)6y x =-- 【分析】 根据抛物线的顶点坐标设出,抛物线的解析式为:2(3)6y a x =--,再把()2,10代入,求出a 的值,即可得出二次函数的解析式. 【详解】解:设抛物线的解析式为:2(3)6y a x =--,把()2,10代入解析式得16a =, 则抛物线的解析式为:216(3)6y x =--. 【点睛】 本题主要考查了用待定系数法求二次函数解析式,解题的关键是掌握在已知抛物线顶点坐标的情况下,通常用顶点式设二次函数的解析式. 5、 (1)5,6- (2)点R 行驶的总路程为25.5;R 停留的最后位置在数轴上所对应的有理数为17 ·线○封○密○外(3)13t =或113或7或11 【分析】(1)根据非负数的意义分析即可;(2)根据题意,,,P Q R 三点重合,则只需计算P 点的位置以及运动时间即可;(3)根据题意分情况讨论,根据情况建立一元一次方程解决问题.(1)()2560a b ++-=5,6a b ∴=-= 故答案为:5,6-(2)当点P 到达原点O 时,动点R 从原点O 出发,则P 到达O 点需要:52 2.5÷=秒则此时Q 点的位置为2.568.5+=设t 秒后停止运动,则28.5t t =+解得8.5t =此时P 点的位置在28.517⨯=,即R 点也在P 点位置,其对应的有理数为:17 R 点的运动时间为8.5,速度为3个单位长度每秒,则总路程为8.5325.5⨯=(3)存在,t 的值为:111,7,1133, 理由如下:()6511--=,111÷11=∴11秒后,M N 点停止运动①当,O M 分别位于O 的两侧时,如图,此时,OM ON = M 表示的有理数为5t -+,N 表示的有理数为62t - 5620t t ∴-++-= 解得13t = ②当,M N 重合时,即第一次相遇时,如图, 则562t t -+=- 解得113t = ③当N 点从A 点返回时,则点N 表示的有理数为()5211216t t -+-=- 若此时点M 未经过点O ,则5t <则2165t t -=-+ 解得11t =,则此种情况不存在·线○封○密·○外则此时点M 已经过点O ,5t >,如图,则()21650t t -+-+=解得7t =④当,M N 在O 点右侧重合时,如图,则2165t t -=-+解得11t =此时点,M N 都已经到达点B ,此时即,,M N B 三点重合,,M N 停止运动故t 的值为:111,7,1133, 【点睛】本题考查了绝对值的非负性,用数轴上的点表示有理数,两点之间的距离,动点问题,一元一次方程的应用,数形结合是解题的关键.。

2022年中考第二次模拟考试《数学试题》含答案解析

2022年中考第二次模拟考试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题1. 16的算术平方根是()A. 2B. 4C. 2±D. 4±2. 下列运算正确的是( )A. (ab)2=ab2B. a2·a3= a6C (-2)2=4 D. m5÷m3=m23. 下列图形既是轴对称图形又是中心对称图形是( )A. B. C. D.4. 如图所示的几何体的俯视图是()A. B. C. D.5. 在学校开展的”争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是()参赛者编号 1 2 3 4 5成绩/分96 88 86 93 86A. 96,88,B. 86,88,C. 88,86,D. 86,866. 下列调查中,最合适采用抽样调查的是( )A. 乘坐高铁对旅客的行李的检查B. 了解抚顺市民对春节晚会节目的满意程度C. 调查九年一班全体同学的身高情况D. 对新研发的新型战斗机的零部件进行检查7. 不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为( )A. B.C. D.8. 小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A. 25321.6x x-=15 B.3225151.6x x-=C.322511.64x x-= D.253211.64x x-=9. 如图,在△ABC中,∠ACB=90°,过B,C两点⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O 于点F.连接BF,CF.若∠EDC=135°,CF=22,则AE2+BE2的值为( )A. 8B. 12C. 16D. 2010. 如图,△ABC为直角三角形,∠C=90°,BC=2cm,∠A=30°,四边形DEFG为矩形,DE=23cm, EF=6cm,且点C、B、E、F在同一条直线上,点B与点E重合.Rt△ABC以每秒1cm的速度沿矩形DEFG的边EF向右平移,当点C与点F重合时停止.设Rt△ABC与矩形DEFG的重叠部分的面积为ycm2,运动时间xs.能反映ycm2与xs之间函数关系的大致图象是( )A. B. C. D.二、填空题11. 截止北京时间7月5日19时,新冠肺炎累计确诊病例超过11320000例,用科学记数法表示为_____.12. 分解因式:xy2﹣2x2y+x3=_____.13. 底面半径为4,高为3的圆锥的侧面积是____________.14. 已知关于x的一元二次方程kx2﹣23x+1=0有两个不相等的实数根,则k的取值范围是__.15. 如图,已知点A是双曲线y=﹣2x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第一象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx(k>0)上运动,则k的值是______.16. 如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作C E⊥A D于E,连接B E,在点D变化的过程中,线段B E的最小值是_____c m.17. 如图,直线1:12l y x=-+与坐标轴交于AB两点,点(),0M m是轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线相切时,的值为__________________.18. 如图,已知在Rt△ABC中,AB=AC=32△ABC内作第一个内接正方形DEFG;然后取GF的中点P,连接PD、PE,在△PDE内作第二个内接正方形HIKJ;再取线段KJ的中点Q,在△QHI内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为_____.三.解答题19. 先化简,再求值:(1﹣x+31x+)÷2441x xx+++,其中x=tan45°+(12)﹣1.20. “食品安全”受到全社会的广泛关注,育才中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中”基本了解”部分所对应扇形的圆心角为_________;(2)请补全条形统计图;(3)若对食品安全知识达到”了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取人参加食品安全知识竞赛,则恰好抽到个男生和个女生的概率________.21. 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?22. 如图,某数学活动小组要测量楼AB的高度,楼AB在太阳光的照射下在水平面的影长BC为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)23. 如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点⊙O交AB 于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC是⊙O的切线;(2)若sin∠EFA=45,AF=52,求线段AC的长.24. 某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?25. (1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①ACBD的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M .请判断ACBD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.26. 如图,抛物线2y a 3x bx =++与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C ,点D 和点C 关于抛物线对称轴对称,直线AD 与y 轴交于点E . (1)求抛物线的解析式;(2)如图1,直线AD 上方的抛物线上有一点F ,过点F 作FG 垂直AD 于点G ,作FH 平行于x 轴的直线AD 与点H ,求△FGH 周长的最大值;(3)点M 是抛物线顶点,点P 是y 轴上一点,点Q 是坐标平面内一点,以A ,M ,P ,Q 为顶点的四边形是矩形,请直接写出P 点坐标.答案与解析一、选择题1. ( )A. 2B. 4C. 2±D. 4±【答案】A 【解析】 【分析】4,=2. 故选A .. 2. 下列运算正确的是( ) A (ab )2=ab 2 B. a 2·a 3= a 6C. ()2=4D. m 5÷m 3=m 2 【答案】D 【解析】 【分析】根据同底数幂的乘除、幂的乘方、积的乘方、二次根式的运算法则进行计算解答.【详解】解:A ,222()ab a b =,故本选项错误;B ,235a a a ⋅=,故本选项错误;C ,2(2=,故本选项错误;D ,532m m m ÷=,故本选项正确; 故选:D .【点睛】本题主要考查了同底数幂的乘除法,幂的乘方、积的乘方、二次根式的运算;熟练掌握其运算法则是解题的关键.3. 下列图形既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A选项:是中心对称图形,但不是轴对称图形,不符合题意;B选项:既是轴对称图形,又是中心对称图形,符合题意;C选项:是轴对称图形,但不是中心对称图形,不符合题意;D选项:是轴对称图形,但不是中心对称图形,不符合题意,故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图形重合.4. 如图所示的几何体的俯视图是()A. B. C. D.【答案】D【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】此几何体的俯视图是一个正方形,右下角是个矩形,如图:故选:D.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.5. 在学校开展的”争做最优秀中学生”的一次演讲比赛中,编号1,2,3,4,5的五位同学最后成绩如下表所示:那么这五位同学演讲成绩的众数与中位数依次是()A. 96,88,B. 86,88,C. 88,86,D. 86,86【答案】B【解析】【分析】中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),众数是一组数据中出现次数最多的数据,据此判断即可.【详解】解:∵这组数据中86出现的次数最多,是2次,∴这五位同学演讲成绩的众数是86;这五位同学演讲成绩排序得:86,86,88,93,96,∴这五位同学演讲成绩的中位数是88,∴这五位同学演讲成绩的众数与中位数依次是86,88.故选:B.【点睛】此题主要考查了众数、中位数的含义和求法,要熟练掌握,解答此题的关键是要明确:将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,众数是一组数据中出现次数最多的数据.6. 下列调查中,最合适采用抽样调查的是( )A. 乘坐高铁对旅客的行李的检查B. 了解抚顺市民对春节晚会节目的满意程度C. 调查九年一班全体同学的身高情况D. 对新研发的新型战斗机的零部件进行检查【答案】B【解析】试题解析:A、乘坐高铁对旅客的行李的检查,是事关重大的调查,适合普查,故A错误;B、了解抚顺市民对春节晚会节目的满意程度,调查范围广,适合抽样调查,故B正确;C、调查九年一班全体同学的身高情况,调查范围小,适合普查,故C错误;D、对新研发的新型战斗机的零部件进行检查,是事关重大的调查,适合普查,故D错误;故选B.考点:全面调查与抽样调查.7. 不等式组312840xx->⎧⎨-≤⎩的解集在数轴上表示为( )A. B.C. D.【答案】A【解析】【分析】分别求得不等式组中两个不等式的解集,再确定不等式组的解集,表示在数轴上即可.【详解】解:不等式组为:3x1284x0->⎧⎨-≤⎩①②,解不等式①,解得:x>1,解不等式②,解得:x≥2,在数轴上表示为:故选:A.【点睛】本题考查了一元一次不等式组的解法并在数轴上画图表示,正确求得不等式组中每个不等式的解集是解决问题的关键,在坐标上画图时要注意:能取到该点的值的时候,要画实心点,不取到该点值的时候,画空心点.8. 小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A. 25321.6x x-=15 B.3225151.6x x-=C.322511.64x x-= D.253211.64x x-=【答案】D 【解析】解:设走路线A时的平均速度为x千米/小时,根据题意得:25x﹣321.6x=14.故选D.9. 如图,在△ABC中,∠ACB=90°,过B,C两点的⊙O交AC于点D,交AB于点E,连接EO并延长交⊙O于点F.连接BF,CF.若∠EDC=135°,CF=22,则AE 2+BE 2的值为 ( )A. 8B. 12C. 16D. 20【答案】C【解析】【分析】 根据圆内接四边形的性质及邻补角的定义可得∠ADE=∠ABC=45°,再证得∠ADE=∠A=45°即可得AE=AD ;根据直径所对的圆周角是直角可得∠FCE=90°,在Rt △EFC 中求得EF=4;连接BD ,可证得BD 为为⊙O 的直径,在Rt △BDE 中根据勾股定理可得2222416BE DE BD +===,由此即可得结论.【详解】∵∠EDC=135°, ∴∠ADE=45°,∠ABC=180°-∠EDC =180°-135°=45°;∵∠ACB=90°,∴∠A=45°,∴∠ADE=∠A=45°,∴AE=AD ,∠AED=90°;∵EF 为⊙O 的直径,∴∠FCE=90°,∵∠ABC=∠EFC=45°,CF=22,∴EF=4;连接BD ,∵∠AED=90°,∴∠BED=90°,∴BD 为⊙O 的直径,∴BD=4;在Rt △BDE 中,2222416BE DE BD +===,∴AE 2+BE 2=16.故选C.【点睛】本题考查了圆周角定理及其推论、圆内接四边形的性质及勾股定理等知识点,会综合运用所学的知识点解决问题是解题的关键.10. 如图,△ABC 为直角三角形,∠C=90°,BC=2cm ,∠A=30°,四边形DEFG 为矩形,DE=23cm , EF=6cm ,且点C 、B 、E 、F 在同一条直线上,点B 与点E 重合.Rt△ABC 以每秒1cm 的速度沿矩形DEFG 的边EF 向右平移,当点C 与点F 重合时停止.设Rt△ABC 与矩形DEFG 的重叠部分的面积为ycm 2,运动时间xs .能反映ycm 2与xs 之间函数关系的大致图象是( )A. B. C. D. 【答案】A【解析】∵∠C =90°,BC =2cm ,∠A =30°, ∴AB =4,由勾股定理得:AC 3,∵四边形DEFG 为矩形,∠C =90,∴DE =GF 3∠C =∠DEF =90°, ∴AC ∥DE ,此题有三种情况:(1)当0<x <2时,AB 交DE 于H ,如图∵DE ∥AC , ∴EH BE AC BC =, 即223EH x =, 解得:EH =3x ,所以y =12•3x •x =32x 2, ∵x 、y 之间是二次函数,所以所选答案C 错误,答案D 错误,∵a =32>0,开口向上; (2)当2≤x ≤6时,如图,此时y =12×2×23=23, (3)当6<x ≤8时,如图,设△ABC 的面积是s 1,△FNB 的面积是s 2,BF =x ﹣6,与(1)类同,同法可求FN 3﹣3∴y =s 1﹣s 2,=12×2×312×(x ﹣6)×3X ﹣3, =﹣32x 23﹣3∵﹣2<0, ∴开口向下,所以答案A 正确,答案B 错误,故选A .点睛:本题考查函数的图象.在运动的过程中正确区分函数图象是解题的关键.二、填空题11. 截止北京时间7月5日19时,新冠肺炎累计确诊病例超过11320000例,用科学记数法表示为_____.【答案】1.132710⨯【解析】【分析】科学计数法指的是将一个数表示成a 与10的n 次幂相乘的形式(1a 10≤<,a 不为分数形式,n 为整数),即可求出答案.【详解】解:题中:711320000=1.13210⨯,题中a=1.132,n=7,满足科学计数法要求,故答案为:71.13210⨯.【点睛】本题主要考察了科学计数法的表示方法,要清楚地知道科学计数法是将一个数表示成a 与10的n 次幂相乘的形式(1a 10≤<,a 不为分数形式,n 为整数),其中a 、n 必须要满足上述条件.12. 分解因式:xy 2﹣2x 2y +x 3=_____.【答案】x(y ﹣x)2【解析】分析:首先提取公因式x ,然后利用完全平方公式进行因式分解.详解:原式=()()222x 2xy x y x y x -+=-. 点睛:本题主要考查是因式分解的方法,属于基础题型.因式分解的方法有:提取公因式、公式法和十字相乘法.13. 底面半径为4,高为3的圆锥的侧面积是 ____________.【答案】20【解析】【分析】首先根据底面半径和高利用勾股定理求得母线长,然后直接利用圆锥侧面积公式代入求出即可.【详解】解:∵圆锥的底面半径为4,高为3,∴母线长为5,∴圆锥的侧面积为:πrl=π×4×5=20π,故答案为:20π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键.14. 已知关于x的一元二次方程kx2﹣23x+1=0有两个不相等的实数根,则k的取值范围是__.【答案】k<3且k0【解析】【分析】根据关于x的一元二次方程kx2−23x+1=0有两个不相等的实数根,可得出判别式大于0,再求得k的取值范围,需注意:二次项系数不等于零.【详解】解:∵关于x的一元二次方程kx2−23x+1=0有两个不相等的实数根,∴△=(−23)2-4×1×k>0,解得k<3,∵k≠0,∴k的取值范围k<3且k≠0,故答案是:k<3且k≠0.【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15. 如图,已知点A是双曲线y=﹣2x在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第一象限内,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=kx(k>0)上运动,则k的值是______.【答案】6【解析】【分析】 设点2()A a a,,连接OC ,则AB OC ⊥,表示出OC ,过点C 作CD x ⊥轴于点D ,设出点C 坐标,在Rt △COD 中,利用勾股定理可得出2212x a =,继而求出y 与x 的函数关系. 【详解】解:设2()A a a ,,∵点A 与B 关于原点对称,∴OA =AB∵△ABC 为等边三角形,∴AB OC ⊥,OC =∵OA =∴OC ===过点C 作CD x ⊥轴于点D ,则可得BOD OCD ∠=∠(都是COD ∠的余角), 设点C 的坐标为(x ,y ),则tan tan BOD OCD ∠=∠,即2x a a y=, 解得:22a y x =, 在Rt △COD 中,222CD OD OC +=,即2222123x y a a +=+,将22a y x =代入,可得:2212x a =,故x a=y =, 则6k xy ==,故答案为:6.【点睛】本题考查了反比例函数的综合题,涉及解直角三角形、等边三角形的性质及勾股定理的知识,解答本题的关键是将所学知识融会贯通,注意培养自己解答综合题的能力.16. 如图,在△ABC中,AB=13cm,AC=12cm,BC=5cm.D是BC边上的一个动点,连接AD,过点C作C E⊥A D于E,连接B E,在点D变化的过程中,线段B E的最小值是_____c m.-【答案】616【解析】【分析】如图,连接B、BC. 在点D移动的过程中,点E在AC为直径的圆上运动,当、E、B共线时,BE的值最小,最小值为B-E,利用勾股定理求出B即可解决问题.【详解】解:如图,以AC直径作圆,连接B、E.∵CE⊥AD,∴∠AEC=90°,在△ABC中,AB=13cm,AC=12cm,BC=5cm,AB2=AC2+BC2,∴△ABC为Rt△,在Rt△BC中,2222'+5661BC CO+=∵、E、B、共线时,BE的值最小,最小值为B–E=61–6,故答案为61–6.【点睛】本题考查圆综合题、勾股定理,点与圆的位置关系等知识,解题的关键是确定点E的运动轨迹,是以AC 为直径的圆上运动,属于中考填空中压轴题.17. 如图,直线1:12l y x=-+与坐标轴交于AB两点,点(),0M m是轴上一动点,以点M为圆心,2个单位长度为半径作⊙M,当⊙M与直线相切时,的值为__________________.【答案】2-25或25+2【解析】试题分析:直线112y x=-+与y轴、x轴的交点坐标为A(0,1),B(2,0),由勾股定理可得AB=5.如图(1)当圆M与直线AB相切于点C时,△AOB∽△MCB,OA ABMC BM=,即152BM=,解得BM=25.所以BM-OB=25-2,即m=2-25.如图(2)△AOB∽△MDB,OA ABMD BM=,即152BM=,解得BM=25.m= BM+OB=25+2.图(1) 图(2)考点:一次函数与圆,三角形相似18. 如图,已知在Rt △ABC 中,AB =AC =32,在△ABC 内作第一个内接正方形DEFG ;然后取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形…依次进行下去,则第2014个内接正方形的边长为_____.【答案】201212【解析】 【分析】 首先根据勾股定理得出BC 的长,进而利用等腰直角三角形的性质得出DE 的长,再利用锐角三角函数的关系得出12EI PF KI EF ==,即可得出正方形边长之间的变化规律,得出答案即可. 【详解】∵在Rt △ABC 中,AB=AC=32, ∴∠B=∠C=45°,BC=22AB AC =6,∵在△ABC 内作第一个内接正方形DEFG; ∴EF=EC=DG=BD ,∴DE=13BC ∴DE=2,∵取GF 的中点P ,连接PD 、PE ,在△PDE 内作第二个内接正方形HIKJ ;再取线段KJ 的中点Q ,在△QHI 内作第三个内接正方形…依次进行下去,∴12EI PF KI EF ==, ∴EI=12KI=12HI , ∵DH=EI , ∴HI=12DE=(12)2−1×2, 则第n 个内接正方形的边长为:2×(12)n−1,∴则第2014个内接正方形的边长为2×(12)2014−1=2×201312=201212. 故答案201212.【点睛】此题主要考查了正方形的性质以及数字变化规律和勾股定理等知识,根据已知得出正方形边长的变化规律是解题关键.三.解答题19. 先化简,再求值:(1﹣x+31x +)÷2441x x x +++,其中x=tan45°+(12)﹣1. 【答案】-15【解析】【分析】先根据分式混合运算顺序和运算法则化简原式,再根据三角函数值、负整数指数幂得出x 的值,最后代入计算可得. 【详解】原式=(21311x x x -+++)÷()221x x ++ =()()()2221·12x x x x x +-+++ =22x x-+, 当x=tan45°+(12)﹣1=1+2=3时,原式=231235-=-+. 【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序、特殊角的三角函数值、负指数幂的运算是解题的关键.20. “食品安全”受到全社会的广泛关注,育才中学对部分学生就食品安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面的两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中”基本了解”部分所对应扇形的圆心角为_________;(2)请补全条形统计图;(3)若对食品安全知识达到”了解”程度的学生中,男、女生的比例恰为2:3,现从中随机抽取人参加食品安全知识竞赛,则恰好抽到个男生和个女生的概率________.【答案】(1)60,90;(2)图见详解;(3)35 【解析】【分析】(1)根据了解很少的人数和所占的百分比求出抽查的总人数,再用”基本了解”所占的百分比乘以360°,即可求出”基本了解”部分所对应扇形的圆心角的度数;(2)用调查的总人数减去”基本了解”“了解很少”和”不了解”的人数,求出了解的人数,从而补全统计图;(3)根据题意先画出树状图,再根据概率公式即可得出答案.【详解】解:(1)接受问卷调查的学生共有30÷50%=60(人), 扇形统计图中”基本了解”部分所对应扇形的圆心角为360°×1560=90°, 故答案为:60,90.(2)了解的人数有:60−15−30−10=5(60−15−30−10=5(人)),补图如下:(3)画树状图得:∵共有20种等可能的结果,恰好抽到1个男生和1个女生的有12种情况,∴恰好抽到1个男生和1个女生的概率为1220=35. 【点睛】此题考查了条形统计图、扇形统计图以及用列表法或树状图法求概率,读懂题意,根据题意求出总人数是解题的关键;概率==所求情况数与总情况数之比.21. 某图书馆计划选购甲、乙两种图书.已知甲图书每本价格是乙图书每本价格的2.5倍,用800元单独购买甲图书比用800元单独购买乙图书要少24本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本乙图书?【答案】(1)乙图书每本价格为20元,则甲图书每本价格是50元;(2)该图书馆最多可以购买28本乙图书.【解析】【分析】根据两种图书的倍数关系,设乙图书每本的价格为x 元,则甲图书每本的价格为2.5x 元,再根据同样多的钱购买图书数量相差24本,列方程,求出方程的解即可,分式方程一定要验根.设购买甲图书m 本,则购买乙图书(2m +8)本,再根据总经费不超过1060元,列不等式,求出不等式的解集,进而求得最多可买乙图书的本数.【详解】解:(1)设乙图书每本价格为元,则甲图书每本价格是2.5x 元, 根据题意可得:800800242.5x x-=, 解得:20x =,经检验得:20x =是原方程的根,则2.550x =,答:乙图书每本价格为20元,则甲图书每本价格是50元;(2)设购买甲图书本数为,则购买乙图书的本数为:28x +,故()5020281060x x ++,解得:10x ,故2828x +,答:该图书馆最多可以购买28本乙图书.【点睛】本题考查分式方程的运用,一元一次不等式组的运用,理解题意,抓住题目蕴含的数量关系解决问题.22.如图,某数学活动小组要测量楼AB 的高度,楼AB 在太阳光的照射下在水平面的影长BC 为6米,在斜坡CE的影长CD为13米,身高1.5米的小红在水平面上的影长为1.35米,斜坡CE的坡度为1:2.4,求楼AB的高度.(坡度为铅直高度与水平宽度的比)【答案】楼AB的高度为15米.【解析】试题分析:作DN⊥AB,垂足为N,作CM⊥DN,垂呯为M,设CM=5x,根据坡度的概念求出CM、DM,根据平行线的性质列出比例式,计算即可.试题解析:作DN⊥AB,垂足为N,作CM⊥DN,垂足为M,则CM:MD=1:2.4=5:12,设CM=5x,则MD=12x,由勾股定理得22CM DM∴x=1∴CM=5,MD=12,四边形BCMN为矩形,MN=BC=6,BN=CM=5,太阳光线为平行光线,光线与水平面所成的角度相同,角度的正切值相同,∴AN:DN=1.5:1.35=10:9,∴9AN=10DN=10×(6+12)=180,AN=20,AB=20-5=15,答:楼AB的高度为15米.考点:解直角三角形的应用---坡度坡角问题.23. 如图,在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,O是AB上一点,经过A,E两点的⊙O交AB 于点D,连接DE,作∠DEA的平分线EF交⊙O于点F,连接AF.(1)求证:BC 是⊙O 的切线;(2)若sin ∠EFA=45,AF=52,求线段AC 的长.【答案】(1)证明见解析;(2)6.4.【解析】【分析】(1)连接OE ,根据等腰三角形的性质和角平分线定义可得OEA CAE ∠=∠,根据平行线的判定可得OE ∥AC ,再由平行线的性质可得∠BEO=∠C=90°,即可证得结论;(2)连接DF ,根据已知条件易证52DF AF ==.在Rt ADF ∆中,根据勾股定理求得10AD =.根据同弧所对的圆周角相等及已知条件可得4sin sin 5EDA EFA ∠=∠=.在Rt ADE ∆中求得AE 的长,再证明ΔACE ∽ΔAED ,根据相似三角形的性质即可求得线段AC 的长.【详解】证明:(1)如图1,连接OE ,∵OA OE =,∴OEA OAE ∠=∠.∵AE 平分BAC ∠,∴OAE CAE ∠=∠.∴OE ∥AC ,∴90BEO C ∠=∠=︒.∴OE BC ⊥∵OE 为O 的半径, ∴BC 是O 的切线.(2)如图2,连接DF .由题可知AD 为O 的直径,∴F 90DEA A D ∠=∠=︒.∵EF 平分DEA ∠,∴45DEF AEF ∠=∠=︒.∴45DAF DEF ∠=∠=︒.∴△AFD 为等腰直角三角形, ∴52DF AF ==在Rt ADF ∆中,222AF DF AD +=, ∴((2225252100AD =+=. ∴10AD =.∵EFA EDA ∠=∠,4sin 5EFA ∠=, ∴4sin sin 5EDA EFA ∠=∠=. 在Rt ADE ∆中,sin AE EDA AD∠=. ∴4sin 1085AE AD EDA =⋅∠=⨯= . ∵CAE EAD ∠=∠,90C AED ∠=∠=︒,∴AC AE AE AD=.∴22832105AEACAD===(或6.4)【点睛】本题属于圆的综合题,运用的知识点有:切线的判定与性质,相似三角形的判定与性质,锐角三角函数定义,勾股定理,以及平行线的判定与性质,熟练掌握各自的性质是解本题的关键.24. 某商品的进价为每件40元,如果售价为每件50元,每个月可卖出210件;如果售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件;如果售价超过80元后,若再涨价,则每涨1元每月少卖3件.设每件商品的售价为x元,每个月的销售量为y件.(1)求y与x的函数关系式并直接写出自变量x的取值范围;(2)设每月的销售利润为W,请直接写出W与x的函数关系式;(3)每件商品的售价定为多少元时,每个月可获得最大利润?最大的月利润是多少元?【答案】(1)260(5080)4203(80140)y x xy x x-≤≤⎧⎨-⎩==<<;(2)w=-x2+300x-10400(50≤x≤80);w=-3x2+540x-16800(80<x<140);(3)售价定为90元.利润最大为7500元.【解析】【分析】(1)当售价超过50元但不超过80元,每件商品的售价每上涨1元,则每个月少卖1件,y=260-x,50≤x≤80,当如果售价超过80元后,若再涨价,则每涨1元每月少卖3件,y=420-3x,80<x<140,(2)由利润=(售价-成本)×销售量列出函数关系式,(3)分别求出两个定义域内函数的最大值,然后作比较.【详解】(1)当50≤x≤80时,y=210-(x-50),即y=260-x,当80<x<140时,y=210-(80-50)-3(x-80),即y=420-3x.则260(5080)4203(80140)y x xy x x-≤≤⎧⎨-⎩==<<,(2)由利润=(售价-成本)×销售量可以列出函数关系式w=-x2+300x-10400(50≤x≤80)w=-3x2+540x-16800(80<x<140),(3)当50≤x≤80时,w=-x2+300x-10400,当x=80有最大值,最大值为7200,当80<x <140时,w=-3x 2+540x-16800,当x=90时,有最大值,最大值为7500,故售价定为90元.利润最大为7500元.【点睛】此题考查二次函数的应用,解题关键在于应用二次函数解决实际问题比较简单.25. (1)问题发现如图1,在△OAB 和△OCD 中,OA=OB ,OC=OD ,∠AOB=∠COD=40°,连接AC ,BD 交于点M .填空: ①AC BD 的值为 ; ②∠AMB 的度数为 .(2)类比探究如图2,在△OAB 和△OCD 中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC 交BD 的延长线于点M .请判断AC BD的值及∠AMB 的度数,并说明理由; (3)拓展延伸在(2)的条件下,将△OCD 绕点O 在平面内旋转,AC ,BD 所在直线交于点M ,若OD=1,OB=7,请直接写出当点C 与点M 重合时AC 的长.【答案】(1)①1;②40°;(2390°;(3)AC 的长为3或3【解析】【分析】(1)①证明△COA ≌△DOB (SAS ),得AC=BD ,比值为1;②由△COA ≌△DOB ,得∠CAO=∠DBO ,根据三角形的内角和定理得:∠AMB=180°-(∠DBO+∠OAB+∠ABD )=180°-140°=40°;(2)根据两边的比相等且夹角相等可得△AOC ∽△BOD ,则3AC OC BD OD=,由全等三角形的性质得∠AMB 的度数;。

人教版中考第二次模拟测试《数学试题》含答案解析

人教版中考第二次模拟测试《数学试题》含答案解析

人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、填空题(每小题3分,共24分)1.如果|a |+a =0,则22(1)a a -+=______.2.已知x 2-x -1=0,则代数式-x 3+2x 2+2002的值为______.3.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.4.升国旗时,某同学站在离旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为_______米.5.如图,某涵洞截面是抛物线型,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO =2.4m ,在图中直角坐标系内涵洞截面所在抛物线的表达式是______________.6.已知一个圆的弦切角等于40°,那么这个弦切角所夹的弧所对的圆心角的度数是______.7.如图,在Rt △ABC 中,腰AC =BC =1,按下列方法折叠Rt △ABC ,点B 不动,使BC 落在AB 上,点A 不动,使AB 落在AC 的延长线上;点C 不动,使CA 落在CB 上,设点A 、B 、C 对应的落点分别为A ′、B ′、C ′,则△A ′B ′C ′的面积是______.8.如图,⊙O 1的半径是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于B ,若AB 的度数是48°,那么AC 的度数是______.二、选择题(每小题3分,共18分)9.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A. 3B. 4C. 5D. 610.在一次汽车性能测试中,型号不同甲、乙两辆汽车同时从A 地出发,匀速向距离560千米的B 地行驶,结果甲车7小时到达,乙车8小时到达,则两车行驶时离A 地的距离s (千米)与行驶时间t (小时)的函数关系对应的图象大致是( )A B.C. D.11.两圆的圆心坐标分别为(3,0)、(0,4),直径分别为4和6,则这两圆的位置关系是( )A. 外离B. 相交C. 外切D. 内切12.在Rt ABC 中,C Rt ∠=∠,若30A ∠=,则cos sin A B +等于( ) A. 312 B. 1 3 D. 21213.在直角坐标系中,O 为坐标原点,A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A. 4个B. 3个C. 2个D. 1个14.当今材料科学已发展到纳米时代,1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为()A. 4×10-9米B. 0.4×10-8米C. 4×10-10米D. 0.4×10-9米三、解答题(15~19每小题8分,共40分)15.解方程21023x xx x-+=-.16.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.17.声音在空气中传播的速度y(米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速.气温x/摄氏度0 5 10 15 20音速y/(米/秒) 331 334 337 340 343(1)求y 与x之间的函数关系式(2)气温x=22(摄氏度)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地相距多远?18.某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1)正中间留出一条宽2米的道路(如图);(2)道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3)设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0.1米).19.已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图 (1)所示,当P 在线段AB 上时,求证:P A ·PB =PE ·PF ;(2)如图 (2)所示,当P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.四、解答题(每题9分,共18分)20.先仔细阅读下列材料,然后回答问题:如果a >0,b >0,那么(a -b )2≥0,即a +b -2ab ≥0 得2a b +≥ab ,其中,当a =b 时取等号,我们把2a b +称为a 、b 算术平均数, ab 称为a 、b 的几何平均数. 如果a >0,b >0,c >0,同样可以得到3a b c ++≥3abc ,其中,当a =b =c 时取等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数.请用上述定理解答问题:把边长为30 cm 的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图)(1)设剪去的小正方形边长为x cm ,无盖纸盒的容积为V ,求V 与x 的函数关系式及x 的取值范围.(2)当x 为何值时,容积V 有最大值,最大值是多少?21.以△ABC 的边AC 为直径的半圆交AB 边于D 点,∠A 、∠B 、∠C 所对边长为a 、b 、c ,且二次函数y =12(a +c )x 2-bx +12(c -a )顶点在x 轴上,a 是方程z 2+z -20=0的根. (1)证明:∠ACB =90°;(2)若设b =2x ,弓形面积S 弓形AED =S 1,阴影面积为S 2,求(S 2-S 1)与x 的函数关系式;(3)在(2)条件下,当BD为何值时,(S2-S1)最大?答案与解析一、填空题(每小题3分,共24分)1.如果|a |+a =0______.【答案】-2a +1【解析】【分析】由0a a +=得到0,a ≤ 根据0a ≤ 【详解】解:0,a a +=,a a ∴=-0,a ∴≤10,a ∴-<1112.a a a a a =-+=--=-故答案为:12.a -a =是解题的关键.2.已知x 2-x -1=0,则代数式-x 3+2x 2+2002值为______.【答案】2003【解析】【分析】由210x x --=得到221,1,x x x x -==+把原多项式降次处理,进而可得答案.【详解】解:210,x x --=221,1,x x x x ∴-==+32222002(1)22002x x x x x ∴-++=-+++22002120022003.x x =-+=+=故答案为:2003.【点睛】本题考查的是代数式的值,把待求值的代数式进行降次处理是解题的关键.3.若由你选择一个喜欢的数值m ,使一次函数()2y m x m =-+的图象经过第一、二、四象限,则m 的值可以是___________.【答案】1 (答案不唯一,满足02m <<均可)【解析】【分析】一次函数()2y m x m =-+的图象经过第一、二、四象限,列出不等式组200,m m -<⎧⎨>⎩求解即可. 【详解】解:一次函数()2y m x m =-+的图象经过第一、二、四象限,200m m -<⎧⎨>⎩解得:02m <<m 值可以是1.故答案为:1(答案不唯一,满足02m <<均可).【点睛】此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况:①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限;②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限;③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限;④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.4.升国旗时,某同学站在离旗杆底部18米处行注目礼,当国旗升至旗杆顶端时,该同学视线的仰角恰为45°,若该同学双眼离地面1.6米,则旗杆高度为_______米.【答案】19.6【解析】【分析】由题意可知,在直角三角形中,已知角和邻边,要求出对边,直接用正切即可解答.【详解】解:根据题意可得:旗杆高度为1.6+18×tan45°=1.6+18=19.6(m ).故答案为:19.6.【点睛】本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.5.如图,某涵洞的截面是抛物线型,现测得水面宽AB =1.6m ,涵洞顶点O 到水面的距离CO =2.4m ,在图中直角坐标系内涵洞截面所在抛物线的表达式是______________.【答案】y =-154x 2 【解析】 【详解】解:设涵洞所在抛物线的解析式为y=ax 2,由题意可知点B 坐标为(0.8,-2.4),代入得-2.4=a×0.82 解得a=-154, 所以y=-154x 2 故答案为:y =-154x 2 【点睛】本题考查二次函数的应用.6.已知一个圆的弦切角等于40°,那么这个弦切角所夹的弧所对的圆心角的度数是______.【答案】80°【解析】【分析】根据题意画出图形,利用切线的性质与等腰三角形的性质可得答案.【详解】解:如图,AB 为O 的切线,切点为,40,DAB ∠=︒,OA AB ∴⊥90,OAB ∴∠=︒50,OAD ∴∠=︒,OA OD =50,OAD ODA ∴∠=∠=︒80.AOD ∴∠=︒故答案为:80°.【点睛】本题考查了切线的性质定理,等腰三角形的性质,掌握以上知识点是解题的关键.7.如图,在Rt △ABC 中,腰AC =BC =1,按下列方法折叠Rt △ABC ,点B 不动,使BC 落在AB 上,点A 不动,使AB 落在AC 的延长线上;点C 不动,使CA 落在CB 上,设点A 、B 、C 对应的落点分别为A ′、B ′、C ′,则△A ′B ′C ′的面积是______.【答案】12【解析】分析】 过'C 作''C H AB ⊥,利用轴对称的性质求解''',,,BC AB AC 利用勾股定理求解',C H 由''''''A B C ABB AB C S S S ∆∆∆=-可得答案.【详解】解:如图:过'C 作''C H AB ⊥,结合题意知:'AC H ∆是等腰直角三角形,由对折知:'1,BC BC ==Rt△ABC 中,腰AC =BC =1, 2,AB ∴='21,AC ∴=-'22(21)1,22C H ∴=-=- ''12212(1),2222AC B S ∆∴=⨯-=- 由对折知:'2,AB AB =='1221,22ABB S ∆∴=⨯⨯= ''''''2211(),2222A B C ABB AB C S S S ∆∆∆∴=-=--= 故答案为:12.【点睛】本题考查的是轴对称的性质,勾股定理,图形面积的计算,掌握轴对称的性质是解题的关键. 8.如图,⊙O 1的半径是⊙O 2的直径,⊙O 1的半径O 1C 交⊙O 2于B ,若AB 的度数是48°,那么AC 的度数是______.【答案】24°【解析】【分析】连接2BO ,得到等腰21O O B ∆,结合已知条件求解21O O B ∠,从而可得答案.【详解】解:如图,连接2,BOAB 的度数是48°, 248,AO B ∴∠=︒212,O O O B =212124,O O B O BO ∴∠=∠=︒AC ∴的度数是24︒,故答案是:24.︒【点睛】本题考查的是等腰三角形的性质,弧的度数等于它所对的圆心角的度数,掌握以上知识点是解题的关键.二、选择题(每小题3分,共18分)9.已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是( )A. 3B. 4C. 5D. 6【答案】D【解析】【分析】本题主要考查了多边形内角与外角.n 边形的内角和可以表示成(n-2)•180°,外角和为360°,根据题意列方程求解.【详解】解:设多边形的边数为n ,依题意,得(n-2)•180°=2×360°,解得n=6,故选D【点睛】错因分析较易题.失分原因:没有掌握多边形的内角和与外角和公式.逆袭突破多边形的性质,详见逆袭必备P24必备23.10.在一次汽车性能测试中,型号不同的甲、乙两辆汽车同时从A地出发,匀速向距离560千米的B地行驶,结果甲车7小时到达,乙车8小时到达,则两车行驶时离A地的距离s(千米)与行驶时间t(小时)的函数关系对应的图象大致是()A. B.C. D.【答案】C【解析】【分析】由甲乙列车同时出发,符合条件的有,C D,又因为甲车7小时到达,乙车8小时到达,所以甲车所花的时间少于乙车所花的时间,从而可得答案.【详解】解:因为甲乙列车同时出发,所以两个图像都经过原点,符合条件的有,C D,又因为甲车7小时到达,乙车8小时到达,所以甲车所花的时间少于乙车所花的时间,而图表示乙车还没有到达地,不符合题意,所以正确答案为C.故选C.【点睛】本题考查的是实际问题中的一次函数图像问题,掌握自变量的范围对函数图像的影响,以及路程与时间图像中,速度的大小对图像的影响,掌握以上知识是解题的关键.11.两圆的圆心坐标分别为(3,0)、(0,4),直径分别为4和6,则这两圆的位置关系是()A. 外离B. 相交C. 外切D. 内切【答案】C【解析】【分析】根据两圆的位置关系的判定:外切(两圆圆心距离等于两圆半径之和),内切(两圆圆心距离等于两圆半径之差),外离(两圆圆心距离大于两圆半径之和),相交(两圆圆心距离小于两圆半径之和大于两圆半径之差),内含(两圆圆心距离小于两圆半径之差).【详解】解:∵两圆直径分别为4和6,∴两圆的半径分别为2和3.∵两圆的圆心坐标分别为(3,0)、(0,4),∴根据勾股定理,得两圆的圆心距离为5.∵2+3=5,即两圆圆心距离等于两圆半径之和, ∴这两圆的位置关系是是外切.故选C .【点睛】本题考查勾股定理,两圆的位置关系.12.在Rt ABC 中,C Rt ∠=∠,若30A ∠=,则cos sin A B +等于( )B. 1 【答案】C【解析】解:∠B =90°﹣∠A =90°﹣30°=60°,则cos A +sin B =22+.故选C . 13.在直角坐标系中,O 为坐标原点,A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】【分析】有三种情况:当OA=OP 时,以O 为圆心,以OA 为半径画弧交x 轴于两点;当OA=AP 时,以A 为圆心,以OA 为半径画弧交x 轴于一点;当OP=AP 时,根据线段垂直平分线的性质作OA 的垂直平分线,交x 轴于点P ,综上即可得答案.【详解】如图,当OA=OP 时,以O 为圆心,以OA 为半径画弧交x 轴于两点(P 2、P 3),当OA=AP 时,以A 为圆心,以OA 为半径画弧交x 轴于一点(P 1),当OP=AP 时,作OA 的垂直平分线,交x 轴于一点(P 4).∴符合使△AOP 为等腰三角形的点P 有4个,故选A.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.14.当今材料科学已发展到纳米时代,1纳米等于1米的十亿分之一,我国科学家已研制成功直径为0.4纳米的碳米管,如果用科学记数法表示这种碳米管的直径,应为( )A. 4×10-9米B. 0.4×10-8米C. 4×10-10米D. 0.4×10-9米【答案】C【解析】【分析】 科学记数法的形式是:10n a ⨯ ,其中110,a ≤<为整数,所以4,a =,取决于原数小数点的移动位数与移动方向,是小数点的移动位数,往左移动,为正整数,往右移动,为负整数,本题小数点往右移动到4的后面,所以10.n =-【详解】解:0.4纳米910810.40.4104101010--=⨯=⨯=⨯⨯ 米. 故选C .【点睛】本题考查的知识点是用科学记数法表示绝对值较小的数,关键是在理解科学记数法的基础上确定好,a n 的值,同时掌握小数点移动对一个数的影响. 三、解答题(15~19每小题8分,共40分)15.解方程21023x x x x -+=-. 【答案】x 1=-1,x 2=3.【解析】【分析】去分母把方程化为整式方程,得到整式方程的解,检验可得答案.【详解】解:21023x x x x -+=- 223(2)310(2),x x x x ∴-+=-2230,x x ∴--=(3)(1)0,x x ∴-+=121, 3.x x ∴=-=经检验:121,3x x =-=都是原方程的根,所以原方程的根是121,3x x =-=.【点睛】本题考查的是分式方程的解法,掌握把分式方程化为整式方程再求解,并检验是解题关键. 16.某校初二年级四个班的同学外出植树一天,已知每小时5个女生种3棵树,3个男生种5棵树,各班人数如图所示,则植树最多的是初二几班.【答案】三班.【解析】【分析】由条形统计图得到各班的男女学生人数,由每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,计算剩下的男生与女生种的数的数量即可得到答案.【详解】解:由图可知一班 二班 三班 四班 女生数(人)22 18 13 15 男生数(人)18 20 22 21因为每班男、女生种树的速度相同,所以每班人数减去相同的女生数和男生数,比较结果不变,每个班减去13个女生和18个男生,一班余下女生9人,可植树35×9=525(棵).二班余下女生5人和男生2人,可植树35×5+53×2=613(棵).三班余下男生4人,可植树53×4=623(棵).四班余下女生2人和男生3人,可植树35×2+53×3=615(棵).所以种树最多的班级是三班. 【点睛】本题考查的是条形统计图的应用,掌握条形统计图的特点是解题的关键.17.声音在空气中传播的速度y (米/秒)是气温x (摄氏度)的一次函数,下表列出了一组不同气温时的音速.(1)求y 与 x 之间的函数关系式(2)气温x=22(摄氏度)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地相距多远?【答案】(1)33315y x =+(2)1721 【解析】【分析】(1)由表中的数据可知,温度每升高5℃,声速就提高3米/秒,所以y 是x 的一次函数,利用待定系数法即可求出该函数解析式;(2)令x=22,求出此时的声速y ,然后利用路程=速度×时间即可求出该距离.【详解】(1)根据表中数据可知y 与x 成一次函数关系,故设y=kx+b ,取两点(0,331),(5,334)代入关系式得 3313345b k b =⎧⎨=+⎩,解得35331k b ⎧=⎪⎨⎪=⎩, ∴函数关系式为y=35x+331; (2)把x=22代入y=35x+331, 得y=35×22+331=344.2, 334.2×5=1721m ,∵光速非常快,传播时间可以忽略,故此人与燃放烟花的所在地相距约1721m .【点睛】本题考查了一次函数的应用,解题的关键是仔细分析表中的数据,利用待定系数法求出函数解析式.18.某广场有一块长50米、宽30米的空地,现要将它改造为花园,请你设计一个修建方案,使满足下列条件:(1)正中间留出一条宽2米的道路(如图);(2)道路两旁修建花坛,且花坛总面积占整个面积(不包括道路)的一半;(3)设计好的整个图形既是轴对称图形,又是中心对称图形.(计算结果精确到0.1米).【答案】x 的值约取3.9米.【解析】【分析】如图,设计成下图所示,设设花坛的边与空地之间的距离为米,由题意列出方程求解即可.【详解】解:设计成如下图方案.设花坛的边与空地之间的距离为米,由题意可列方程: (502)30(5024)(302),2x x -⨯---=227900,x x ∴-+= 解得: 123.93,2.1x x ≈≈(舍去),x 的值约取3.9米.花坛四周与空地的距离,中间与道路的距离都约为3.9米.【点睛】本题考查轴对称图形与中心对称图形,考查了一元二次方程的解法,掌握以上知识是解题的关键. 19.已知:△ABC 是⊙O 的内接三角形,BT 为⊙O 的切线,B 为切点,P 为直线AB 上一点,过P 作BC 的平行线交直线BT 于点E ,交直线AC 于点F .(1)如图 (1)所示,当P 在线段AB 上时,求证:P A ·PB =PE ·PF ;(2)如图 (2)所示,当P 为线段BA 延长线上一点时,第(1)题的结论还成立吗?如果成立,请给出证明;如果不成立,请说明理由.【答案】(1)证明见解析;(2)对谁成立,证明见解析【解析】【分析】(1)利用圆周角、弦切角间的关系证明△APF ∽△BPE ,根据相似三角形的性质证明 PA •PB=PE •PF 成立.(2)当点P 在线段BA 的延长线上时,(1)的结论仍成立.先证明∠AFP=∠PBE ,再由∠BPE=∠FPA ,可得△PAF ∽△PEB ,根据成比例线段证明 PA •PB=PE •PF 成立.【详解】证明:(1) 如图1,连接,BO 延长BO 与圆交于,H∵EB 为⊙O 的切线,90,ABE HBA ∴∠+∠=︒ BH 为⊙O 的直径,90,BAH ∴∠=︒90,AHB ABH ∴∠+∠=︒,AHB ACB ∠=∠90,ACB ABH ∴∠+∠=︒∴∠ACB=∠ABE ,∵EF ∥BC ,∴∠AFP=∠ACB ,故∠AFP=∠ABE .∠APF=∠EPB ,∴△APF ∽△BPE , ,PA PF PE PB∴= ∴PA•PB=PE•PF .(2)结论成立,理由如下:∵EB 为⊙O 的切线,结合(1)问:∴∠ACB=∠ABT ,∵EF ∥BC ,∴∠ACB =∠AFP ,,ACB ABT AFP ∴∠=∠=∠∴∠AFP=∠PBE .∠BPE=∠FPA ,△PAF ∽△PEB ,,PA PF PE PB ∴= ∴PA•PB=PE•PF .当点P 在线段BA 的延长线上时,(1)的结论仍成立.【点睛】本题主要考查圆的相交弦及切线的性质,用三角形全等证明线段间的关系,体现了数形结合的数学思想,属于中档题.四、解答题(每题9分,共18分)20.先仔细阅读下列材料,然后回答问题:如果a >0,b >0,那么(a -b )2≥0,即a +b -2ab ≥0 得2a b +≥ab ,其中,当a =b 时取等号,我们把2a b +称为a 、b 的算术平均数, ab 称为a 、b 的几何平均数. 如果a >0,b >0,c >0,同样可以得到3a b c ++≥3abc ,其中,当a =b =c 时取等号于是就有定理:几个正数的算术平均数不小于它们的几何平均数.请用上述定理解答问题:把边长为30 cm 的正方形纸片的4角各剪去一个小正方形,折成无盖纸盒(如图)(1)设剪去的小正方形边长为x cm ,无盖纸盒的容积为V ,求V 与x 的函数关系式及x 的取值范围.(2)当x 为何值时,容积V 有最大值,最大值多少?【答案】(1)V =4x (15-x )2(0<x <15);(2)当剪去的小正方形边长为5 cm 时,无盖空盒的容积最大为2×103 cm 3 【解析】【分析】(1)由剪去的小正方形边长为x cm ,表示纸盒的底边与高,利用容积公式得到答案,(2)利用3a b c ++3abc 【详解】解:(1) 设剪去的小正方形边长为x cm ,纸盒底边为(302),x cm -纸盒的高是,xcmV =x (30-2x )(30-2x )=4x (15-x )2(0<x <15),(2) V =332(15)(15)22(15)(15)2210,3x x x x x x +-+-⎡⎤••--≤=⨯⎢⎥⎣⎦这时,当2x =15-x ,即x =5时取等号.∴ 当剪去的小正方形边长为5 cm 时,无盖空盒的容积最大为2×103 cm 3 【点睛】本题考查的是阅读题型,掌握题干给的信息解决实际问题,同时考查了列函数关系式,求函数的最大值等问题,知识迁移能力是解题关键.21.以△ABC 的边AC 为直径的半圆交AB 边于D 点,∠A 、∠B 、∠C 所对边长为a 、b 、c ,且二次函数y =12(a +c )x 2-bx +12(c -a )顶点在x 轴上,a 是方程z 2+z -20=0的根. (1)证明:∠ACB =90°;(2)若设b =2x ,弓形面积S 弓形AED =S 1,阴影面积为S 2,求(S 2-S 1)与x 的函数关系式;(3)在(2)的条件下,当BD 为何值时,(S 2-S 1)最大?【答案】(1)证明见解析;(2)S 2-S 1=-2πx 2+4x ;(3)BD 244ππ+. 【解析】【分析】(1)由抛物线的顶点在轴上,得到0,∆= 从而可得结论.(2)利用a 是z 2+z -20=0的根,求解的值,再利用S 2-S 1=S △ABC -(S 半圆-S 1)-S 1=S △ABC -S 半圆,从而可得答案,(3)由(2)的函数关系式求解(21S S -)最大时,,a b c ,利用直径所对的圆周角是直角,得到,BCD BAC ∆∆利用相似三角形的性质可得答案. 【详解】(1)因为二次函数y =12(a +c )x 2-bx +12(c -a )的顶点在x 轴上, ∴ Δ=0,即:b 2-4×12(a +c )×12(c -a )=0, ∴ c 2=a 2+b 2,得∠ACB =90°.(2)∵ z 2+z -20=0.∴ z 1=-5,z 2=4,∵ a >0,得a =4.设b =AC =2x ,有S △ABC =12AC ·BC =4x ,S 半圆=12π x 2∴ S 2-S 1=S △ABC -(S 半圆-S 1)-S 1=S △ABC -S 半圆=-2πx 2+4x (3) S 2-S 1=-2π(x -4π)2+8π, ∴ 当x =4π时,(S 2-S 1)有最大值8π. 这时,b =8π,a =4,c =244ππ+, 如图,连接,CDAC 为圆的直径,90,90,ADC CDB ∴∠=︒∠=︒90,ACB ∠=︒,BCD BAC ∴∆∆,BC BD BA BC∴= BD =22244BC a BA c ππ+==. 当BD 为22444ππ++时,(S 2-S 1)最大. 【点睛】本题考查二次函数与轴只有一个交点的性质,考查一元二次方程的解法,二次函数的最值,三角形相似的判定与性质,直径所对的圆周角是直角等知识点,掌握相关的知识点是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试卷(二)(解析版)一.选择题1.如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣C.D.22.长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米3.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米4.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF5.图中∠BOD的度数是()A.75°B.80°C.135°D.150°6.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B. C.D.8.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱二.填空题9.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式.10.汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h 的汽车前方80m处,发现停放一辆故障车,此时刹车有危险.11.如下图,直线a∥b,则∠A=度.12.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为.三.解答题13.计算:.14.化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.15.解方程:.16.一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.17.如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.18.如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.19.已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.20.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?中考数学模拟试卷(二)参考答案与试题解析一.选择题1.如果a与﹣2互为倒数,那么a是()A.﹣2 B.﹣C.D.2【考点】倒数.【分析】根据乘积是1的两个数叫做互为倒数解答.【解答】解:∵a与﹣2互为倒数,∴a是﹣.故选:B.【点评】本题考查了倒数的定义,倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.是基础题,熟记概念是解题的关键.2.长城总长约为6700010米,用科学记数法表示为(保留两位有效数字)()A.6.7×105米B.6.7×106米C.6.7×107米D.6.7×108米【考点】科学记数法与有效数字.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定a×10n (1≤|a|<10,n为整数)中n的值是易错点;有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:6700 010=6.70001×106≈6.7×106,故选B.【点评】本题考查了对科学记数法的掌握和有效数字的运用.用科学记数法表示数,一定要注意a的形式,以及指数n的确定方法.3.在相同时刻的物高与影长成比例.小明的身高为1.5米,在地面上的影长为2米,同时一古塔在地面上的影长为40米,则古塔高为()A.60米B.40米C.30米D.25米【考点】相似三角形的应用.【分析】在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似【解答】解:据相同时刻的物高与影长成比例,设旗杆的高度为xm,则可列比例式,,解得x=30.故选C.【点评】本题考查同学们利用所学知识解决实际问题的能力,属于基础题.4.如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是()A.CD、EF、GH B.AB、EF、GH C.AB、CD、GH D.AB、CD、EF【考点】勾股定理;勾股定理的逆定理.【分析】设出正方形的边长,利用勾股定理,解出AB、CD、EF、GH各自的长度,再由勾股定理的逆定理分别验算,看哪三条边能够成直角三角形.【解答】解:设小正方形的边长为1,则AB2=22+22=8,CD2=22+42=20,EF2=12+22=5,GH2=22+32=13.因为AB2+EF2=GH2,所以能构成一个直角三角形三边的线段是AB、EF、GH.故选:B.【点评】考查了勾股定理逆定理的应用.5.图中∠BOD的度数是()A.75°B.80°C.135°D.150°【考点】圆周角定理.【分析】连接OC,根据圆周角定理求解即可.【解答】解:连接OC,由圆周角定理知,∠BOD=2(∠A+∠E)=2×(35°+40°)=150°,故选D.【点评】本题利用了圆周角定理求解.6.甲乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象,如图所示.根据图中提供的信息,有下列说法:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了0.5小时.④相遇后甲的速度<乙的速度.⑤甲、乙两人同时到达目的地.其中符合图象描述的说法有()A.2个B.3个C.4个D.5个【考点】函数的图象.【分析】要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.【解答】解:根据题意和图象可知:①他们都行驶了18千米.②甲车停留了0.5小时.③乙比甲晚出发了1﹣0.5=0.5小时.④相遇后甲的速度<乙的速度.⑤乙先到达目的地.故只有⑤不正确.故选C.【点评】主要考查了函数图象的读图能力.7.如图是由几个小立方块所搭几何体的俯视图,小正方形的数字表示在该位置的小立方块的个数,这个几何体的主视图是()A.B. C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到,左边2个正方形,中间1个正方形,右边1个正方形.故选D.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.如图,用不同颜色的马赛克覆盖一个圆形的台面,估计15°的圆心角的扇形部分大约需要34片马赛克片.已知每箱装有125片马赛克片,那么应该购买多少箱马赛克片才能铺满整个台面()A.5﹣6箱B.6﹣7箱C.7﹣8箱D.8﹣9箱【考点】圆心角、弧、弦的关系.【分析】设需要x箱马赛克片,由题意:×34=125x,解方程即可.【解答】解:设需要x箱马赛克片.由题意:×34=125x,∴x≈6.5.∴需要马赛克片6﹣7箱.故选B.【点评】本题考查圆心角、弧弦之间的关系,一元一次方程等知识,解题的关键是学会设未知数列方程解决问题,属于中考常考题型.二.填空题9.如图,在边长为a的正方形中剪去一个边长为b的小正方形(a>b),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式a2﹣b2=(a+b)(a﹣b).【考点】平方差公式的几何背景.【分析】左图中阴影部分的面积是a2﹣b2,右图中梯形的面积是(2a+2b)(a﹣b)=(a+b)(a﹣b),根据面积相等即可解答.【解答】解:a2﹣b2=(a+b)(a﹣b).【点评】此题主要考查的是平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.10.汽车刹车距离S(m)与速度v(km/h)之间的函数关系是S=v2,在一辆车速为100km/h 的汽车前方80m处,发现停放一辆故障车,此时刹车会有危险.【考点】二次函数的应用.【分析】把v值代入解析式求出S,即刹车距离,和80进行比较即可.【解答】解:把v=100代入S=v2得:汽车刹车距离s=100>80,因此会有危险.故答案为:会.【点评】本题利用求二次函数的值,判断实际问题.11.如下图,直线a∥b,则∠A=25度.【考点】三角形的外角性质;平行线的性质;三角形内角和定理.【分析】本题主要利用平行线的性质以及三角形内角与外角之间的关系解题.【解答】解:∵直线a∥b,∴∠1=∠ECD=55°,∵∠1是△ABD的外角,∴∠1=∠ABD+∠A,即55°=30°+∠A,∠A=55°﹣30°=25°.故∠A=25°.【点评】本题应用的知识点为:两直线平行,内错角相等及三角形的外角等于与它不相邻的两个内角的和.12.如图所示,▱ABCD中,点E在边AD上,以BE为折痕,将△ABE向上翻折,点A正好落在CD上的点F,若△FDE的周长为8,△FCB的周长为22,则FC的长为7.【考点】翻折变换(折叠问题).【分析】由平行四边形可得对边相等,由折叠,可得AE=EF ,AB=BF ,结合两个三角形的周长,通过列方程可求得FC 的长,本题可解.【解答】解:设DF=x ,FC=y ,∵▱ABCD ,∴AD=BC ,CD=AB ,∵BE 为折痕,∴AE=EF ,AB=BF ,∵△FDE 的周长为8,△FCB 的周长为22,∴BC=AD=8﹣x ,AB=CD=x +y ,∴y +x +y +8﹣x=22,解得y=7.故答案为7.【点评】本题考查了平行四边形的性质及图形的翻折问题;解决翻折问题的关键是找着相等的边,利用等量关系列出方程求得答案.三.解答题13.(2016•海淀区校级模拟)计算:. 【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】根据实数的运算顺序,首先计算乘方、开方,然后计算乘法、除法,最后计算加法,求出算式的值是多少即可.【解答】解:=﹣8×+2÷(﹣)=﹣4+2÷=﹣4﹣2(2)=﹣4﹣12﹣6=﹣16﹣6【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.14.(2005•福州)化简求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=2.【考点】整式的混合运算—化简求值.【分析】本题应将代数式去括号,合并同类项,从而将整式化为最简形式,然后把a、b的值代入即可.【解答】解:(a+b)2﹣2a(b+1)﹣a2b÷b,=a2+2ab+b2﹣2ab﹣2a﹣a2b÷b,=b2﹣2a,当a=,b=2时,原式=22﹣2×=3.【点评】本题主要利用完全平方公式,单项式乘多项式的法则,单项式除单项式的法则,熟练掌握运算法则是化简的关键.15.(2007•溧水县一模)解方程:.【考点】解分式方程.【分析】观察可得最简公分母是(x﹣1)(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:去分母得:3(x﹣1)=5(x+1),(2分)3x﹣3=5x+5,3x﹣5x=5+3,(4分)﹣2x=8,(5分)x=﹣4.(6分)经检验:x=﹣4是原方程的解.故原方程的解是:x=﹣4.【点评】本题主要考查了分式方程的解法,解方程时要主要:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.16.(2005•浙江)一个矩形,两边长分别为xcm和10cm,如果它的周长小于80cm,面积大于100cm2.求x的取值范围.【考点】一元一次不等式组的应用.【分析】已知矩形的周长为2(x+10)cm,面积为10xcm2,列出不等式方程组即可解.【解答】解:矩形的周长是2(x+10)cm,面积是10xcm2,(2分)根据题意,得,(4分)解这个不等式组得.(2分)所以x的取值范围是10<x<30.(2分)【点评】解决问题的关键是读懂题意,找到关键描述语,根据矩形的周长<80cm,面积>100cm2列不等式组解答.17.(2016•海淀区校级模拟)如图,梯形ABMN是直角梯形.(1)请在图中拼上一个直角梯形,使它与梯形ABMN构成一个等腰梯形;(2)将(1)中补上的直角梯形以点M为旋转中心,逆时针方向旋转180°,画出这个梯形.【考点】作图-旋转变换.【分析】(1)画出梯形关于MN的轴对称图形即可;(2)再将梯形各点与点M的连线,并逆时针方向旋转180°,找到对应点,顺次连接画出这个梯形.【解答】解:如图:【点评】本题综合考查了轴对称图形,及旋转变换图形,注意在做这类题时,找对应点是关键.18.(2016•海淀区校级模拟)如图所示,△ABO中,OA=OB,以O为圆心的圆经过AB 的中点C,且分别交OA、OB于点E、F.求证:AB是⊙O的切线.【考点】切线的判定.【分析】连接OC,根据等腰三角形性质推出OC⊥AB,根据切线判定推出即可.【解答】证明:连接OC,∵OA=OB,C为AB中点,∴OC⊥AB,∵OC为半径,∴AB是⊙O的切线.【点评】本题考查了等腰三角形性质和切线的判定的应用,关键是推出OC⊥AB.19.(2016•海淀区校级模拟)已知二次函数的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,(1)求这个二次函数的解析式及顶点坐标;(2)设这个二次函数的图象与直线y=x+t(t≤1),相交于(x1,y1),(x2,y2)两点(x1≠x2),求:t的取值范围.【考点】待定系数法求二次函数解析式;一次函数的性质.【分析】(1)设抛物线y=ax2+bx+c,把三点坐标代入二次函数解析式求出a,b,c的值,即可确定出二次函数解析式;(2)因为二次函数与直线有两个交点,根据函数图象的交点个数与它们组成的方程组的解的个数的关系,可以利用根的判别式解答.【解答】解:(1)设抛物线y=ax2+bx+c∵二次函数y=ax2+bx+c的图象经过(0,0)、(1,﹣1)、(﹣2,14)三点,∴,解得:.则这个二次函数的表达式为y=2x2﹣3x;(2)①当t=1时,直线y=x+t(t≤1)可化为y=x+1,代入二次函数解析式y=2x2﹣3x得,2x2﹣4x﹣1=0,△=(﹣4)2﹣4×2×(﹣1)=24>0,故直线与抛物线有两个不同的交点.②当直线与抛物线相切时t取得最小值,把y=x+t代入抛物线y=2x2﹣3x得,2x2﹣4x﹣t=0.△=(﹣4)2﹣4×2×(﹣t)=0,即t=﹣2,故t的取值范围是﹣2<t≤1.【点评】此题将用待定系数法求函数解析式、函数图象的交点个数与它们组成的方程组的解的个数的关系以及根的判别式结合起来,综合性较强,有一定的难度.20.(2016•海淀区校级模拟)某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌的电脑中各选购一种型号的电脑.(1)写出所有选购方案(利用树状图或列表方法表示);(2)如果(1)中各种选购方案被选中的可能性相同,那么A型电脑被选中的概率是多少?(3)现知希望中学购买甲、乙两种品牌的电脑共36台(价格如表所示),恰好用了10万元人民币,其中甲品牌电脑为A型号电脑,求购买的A型号电脑有多少台?【考点】列表法与树状图法;概率公式.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得A型号电脑被选中的情况,然后利用概率公式求解即可求得答案;(3)分别从选用方案AD时,与选用方案AE时,去分析求解即可求得答案.【解答】解:(1)列表如图:有6种可能结果:(A,D),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E );(2)因为选中A 型号电脑有2种方案,即(A ,D )(A ,E ),所以A 型号电脑被选中的概率是;(3)由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得 解得,经检验不符合实际,舍去;当选用方案(A ,E )时,设购买A 型号、E 型号电脑分别为a ,b 台,根据题意,得解得. 所以希望中学购买了7台A 型号电脑.【点评】本题考查的是用列表法或画树状图法求概率,同时考查了二元一次方程组的应用,综合性比较强.用到的知识点为:概率=所求情况数与总情况数之比.。

相关文档
最新文档