空压机变频改造
空压机改造变频方案
空压机改造变频方案空压机作为工业生产中不可或缺的设备之一,其高能耗一直是企业面临的难题。
为了提高空压机的能效,降低能耗,改造空压机并采用变频技术成为了一种常见的解决方案。
本文将介绍空压机改造变频方案的相关内容。
一、背景简介空压机广泛应用于各个行业的生产流程中,如汽车制造、化工、纺织、食品加工等。
传统的空压机在运行过程中通常保持恒定的转速,无法根据实际需求灵活调节输出功率。
这种固定速度运行的方式导致了能耗的浪费,对企业的运营成本和环境造成了负担。
二、变频技术介绍1. 变频技术原理变频技术是通过改变电机的输入频率,从而调节电机的输出功率。
传统空压机采用的是电机直接驱动方式,转速固定,因此能耗较高。
而变频技术可以实现根据压缩空气需求的变化,智能调节空压机的转速,以达到节能的目的。
2. 变频技术的优势(1)节能效果显著:根据实际的使用需求调整电机的转速,避免了传统空压机长时间高速运转的能耗浪费。
(2)降低噪音:变频空压机运行时转速可以根据负载的需求动态调整,减少了不必要的振动和噪音。
(3)延长设备寿命:传统的空压机长时间高负荷运行容易导致设备过热和损坏,而变频技术可以使空压机在运行过程中根据实际负载进行调节,降低了设备的损耗。
三、空压机改造变频方案1. 需求分析和方案设计在进行空压机改造变频方案前,需要对现有的设备进行需求分析,确定改造的目标和指标。
根据不同的行业和生产需求,制定合理的方案设计,包括选择合适的变频器、电机等设备,并考虑到系统的稳定性和可靠性。
2. 设备改造和调试改造过程中,首先需要对空压机进行电气接线改造,安装变频器和相应的传感器等设备。
接着进行系统的调试和优化工作,确保空压机在变频运行模式下能够稳定运行,达到预期的能效提升效果。
3. 运行监测和维护完成空压机改造后,需要进行运行监测和维护工作。
通过实时监测系统的运行状态和能耗情况,及时发现和解决潜在问题,最大程度地保障系统的稳定运行和节能效果。
空压机变频改造方案
空压机变频改造方案空压机变频改造方案1. 简介空压机是工业生产过程中常用的设备之一,用于为生产提供稳定的空气压力。
传统的空压机通常采用定速电机驱动,这会导致能源的浪费和设备的寿命缩短。
为了节约能源并延长设备的使用寿命,空压机变频改造方案变得越来越受到关注。
2. 变频改造方案的原理空压机变频改造方案基于变频器的技术,通过改变电机的转速来调节空压机的产气量,从而达到节约能源和提高设备效率的目的。
变频器可以根据实际需求调整电机的频率和转速,使空压机在不同负载下工作在最佳状态。
3. 变频改造方案的具体步骤3.1 评估空压机的需求在进行变频改造之前,首先需要评估空压机的实际需求。
这包括生产过程中对空气压力的要求、空气消耗量以及负载变化情况等。
根据评估的结果,确定变频器的规格和性能。
3.2 安装和调试变频器根据空压机的电气系统和变频器的技术参数,进行变频器的安装和调试工作。
这包括连接电源线、电机线和控制线,设置变频器的参数和工作模式等。
在调试过程中,需要对变频器的启动和停止、转速调节、故障保护等功能进行测试,确保其正常运行。
3.3 监控和优化系统性能安装完成后,通过监控系统对空压机的运行状态进行实时监测。
可以监测参数包括电机的转速、电流、功率因数等,以及空气压力、温度和湿度等。
根据监测结果,对系统进行优化和调整,以提高空压机的工作效率和能源利用率。
4. 变频改造方案的优势4.1 节约能源传统的空压机通常采用定速电机驱动,无法根据实际需求进行调节。
而变频改造方案通过调整电机的转速,使得空压机在不同负载下始终工作在最佳点,达到节约能源的效果。
根据实际应用案例,变频改造后的空压机平均节约能源30%以上。
4.2 增强设备寿命空压机变频改造可以使设备在正常负载范围内工作,减少了过高或过低负载对设备的损害,延长了设备的使用寿命。
此外,变频改造还可以减少空压机的启停次数,降低了设备的运行压力和温度,提高了设备的可靠性和稳定性。
空压机变频改造方案
空压机变频改造方案一、背景介绍空压机是一种将气体压缩成高压气体的设备,广泛应用于工农业、建筑和能源等领域。
传统的空压机一般采用定速电机驱动,无法根据实时气压需求的变化调节电机的转速,造成能源的浪费和运行的不稳定。
而采用变频器对空压机进行改造,可以实现无级调速,根据气压需求实时调节电机的转速,减少能源消耗,提高运行效率和稳定性。
二、改造方案1.变频器选择变频器是变频空压机的核心设备,直接影响改造效果和性能。
在选择变频器时,需考虑以下几点:(1)功率匹配:根据现有空压机的功率确定变频器的额定功率。
(2)控制精度:要求变频器具有较高的控制精度,能够快速响应和调整转速。
(3)变频范围:变频器的变频范围越宽,适应性越强。
(4)通信接口:变频器需要支持与空压机控制系统的通信接口,实现实时监控和控制。
(5)供电要求:根据现场的供电条件选择相应的变频器。
2.安装和调试(1)拆卸原定速电机,并根据变频器的要求安装新的变频电机。
(2)安装变频器,接入电源和控制线路。
(3)对变频器进行参数设置和调试,设置转速范围、加速度和减速度等参数。
(4)连接压缩机系统的传感器和控制设备,建立与空压机控制系统的通信。
(5)进行试运行,检查各项指标是否满足要求,如电流、转速和气压等。
3.系统优化和监控(1)建立空压机控制系统,实现对空压机运行状态和参数的实时监控和控制。
(2)根据气压需求和使用情况,对变频器进行优化设置,使其在不同负载下运行更加高效。
(3)进行数据分析和统计,找出运行过程中的优化点和问题,及时调整和修复。
(4)做好周期性的维护和保养工作,保证系统的长期稳定运行。
三、改造效益1.节能降耗:采用变频器改造后,空压机可以根据气压需求实时调整转速,减少无功功率的消耗,节约能源,降低运行成本。
2.提高运行效率:变频器能够使空压机在工作范围内保持较高的运行效率,提高空压机的工作效率和生产能力。
3.减少故障率:变频器能够实时监测和控制电机的运行状态,对电机充分保护,减少故障率和损坏风险。
空压机,变频改造
(3)为了有效滤除变频器输出电流中的高次谐波分量,减小因高次谐波引起的电磁干扰,建议选用输出交流电抗器,还可以减小电机运行噪音和温升,提高电动机的稳定性。
空压机改变频器必须考虑电动机的散热问题 电动机经过变频器变频后,转速降低,其电机风扇的散热效果也降低; 空压机的润滑问题 空压机的转速越低,润滑油的耗量也就越小,其润滑效果就差;系统压力设定问题 在满足生产工艺的要求下,压力设定越低越好,因为空压机的排气压力越高,所需的电机轴功率越大,电机耗电也就越多。
空压机变频改造方案设计要求:
根据原工况存在的问题并结合生产工艺要求,空压机变频改造后系统应满足以下要求:
(1) 主电机变频运行状态保持储气罐出口压力稳定,压力波动范围不超过±0.02Mpa;
(2) 系统应具有变频和工频两套控制回路,确保变频出现异常跳保护时,不影响生产;
(3)在用电气量小的情况下,变频器处在低频运行时,应保障电机绕组温度和电机的噪音不超过允许的范围。
2、空压机电机不允许长时间在低频下运行,所以工作下限应不低于20 Hz。
3、建议选用比空压机功率大一等级的变频器,以免空压机启动时出现变频器频繁跳闸的情况。
4、为了有效的滤除变频器输出电流中的高次谐波分量,减少因高次谐波引起的电磁干扰,建议选用输出交流电抗器,这样还可以减少电机运行的噪音。
5、设计的系统应具备变频和工频两套控制回路,确保变频器出现异常或保护动作时,将变频运行方式切换为工频运行,从而不会影响生产。
对于空压机变频改造注意事项及设计要求,这篇文章开始就先要讲述空压机变频改造的注意事项,然后再来讲述空压机变频改造方案设计要求。
空压机变频改造方案
空压机变频改造方案空压机变频改造方案是为了提高其能源利用率和运行效率,从而降低能源消耗和运行成本。
通过将传统的空压机系统中的电动机更换为变频电动机,可以实现压缩机的电机转速和输出能力的无级调节,从而更好地适应不同工况的需求。
下面是一个关于空压机变频改造方案的详细说明。
1.改造目标:提高空压机系统的能源利用率和运行效率,以降低能源消耗和运行成本。
2.改造内容:将传统的空压机系统中的电动机更换为变频电动机,并配备相应的变频控制器和传感器。
3.改造步骤:(1)选购合适的变频电动机:选择适合空压机工作要求的变频电动机,并确保其额定功率和转速范围满足压缩机系统的需求。
(2)安装变频控制器:将变频控制器安装在空压机系统的控制柜中,并与原有的电路连接。
(3)安装传感器:安装压力传感器和流量传感器,用于实时监控空压机系统的压力和气流,并将监测数据传输给变频控制器。
(4)调试和测试:根据压缩机系统的实际情况和要求,对变频控制器进行调试和测试,确保其正常工作和稳定运行。
4.改造效果:(1)能源利用率提升:通过变频技术,可以将压缩机的输出功率与实际需要相匹配,避免电动机长期处于高功率运行状态,从而提高能源利用率。
(2)运行效率改善:变频电动机能够根据压缩机系统的工况变化,实现无级调速,使空压机系统在不同工况下均能以最佳效率运行。
(3)减少能源消耗:通过控制变频电动机的转速,避免传统空压机系统中由于定速电动机的固定转速而造成的能源浪费,从而减少能源消耗。
(4)降低运行成本:空压机系统的能源消耗是其运行成本的主要组成部分,通过降低能源消耗,可以有效降低空压机系统的运行成本。
(5)提高系统稳定性:变频电动机和变频控制器能够根据压缩机系统的实际需求进行自动调节,提供更稳定和可靠的空气压缩服务。
总结:空压机变频改造方案能够实现空压机系统的高效运行和能源节约。
通过替换传统电动机为变频电动机,并安装相应的变频控制器和传感器,可以实现无级调速和智能控制,提高空压机系统的能源利用率和运行效率,降低能源消耗和运行成本,提高系统稳定性。
空压机变频改造方案
空压机变频改造方案目录1. 传统空压机的局限性1.1 能源消耗大1.2 运行效率低1.3 维护成本高2. 空压机变频改造的意义2.1 节能环保2.2 提升效率2.3 降低维护成本3. 空压机变频改造的关键技术3.1 变频驱动器的安装3.2 控制系统的升级3.3 效率优化的调整4. 空压机变频改造的实施步骤4.1 设计方案制定4.2 设备采购安装4.3 调试测试验收5. 成功案例分析5.1 公司A的变频改造实践5.2 公司B的节能效果对比6. 变频改造的经济效益6.1 投资回收周期6.2 能源消耗降低比例6.3 维护成本节约情况7. 变频改造后的运行管理7.1 监控系统的建立7.2 定期维护保养7.3 数据分析与优化传统空压机的局限性传统空压机在运行过程中存在能源消耗大、运行效率低、维护成本高等问题。
由于传统压缩机采用定速运行方式,无法根据实际需求实现流量的动态调节,导致能源浪费和效率低下。
空压机变频改造的意义通过空压机变频改造,可以实现节能环保、提升运行效率,降低维护成本。
通过变频技术控制压缩机的转速,使其能够根据需求灵活调节输出,大大提高了能效比,降低了运行成本。
空压机变频改造的关键技术空压机变频改造的关键技术包括变频驱动器的安装、控制系统的升级、效率优化的调整。
通过升级这些关键技术,可以有效提高空压机的运行效率和节能性能。
空压机变频改造的实施步骤空压机变频改造的实施步骤包括设计方案制定、设备采购安装、调试测试验收等。
在实施过程中,需要严格按照步骤进行,确保改造工作的顺利进行。
成功案例分析通过对一些公司的成功案例进行分析,可以更直观地了解空压机变频改造的效果。
比如公司A在进行变频改造后,节能效果显著提升,维护成本大幅下降,为企业节省了大量费用。
变频改造的经济效益对于空压机变频改造而言,其经济效益也是非常值得重视的。
通过对投资回收周期、能源消耗降低比例、维护成本节约情况等方面进行分析,可以更好地评估改造的实际收益情况。
空压机变频改造技术方案
空压机变频改造技术方案空压机是一种将电力或者燃气能源转化为压缩空气的设备。
在工业生产中,空压机的能源消耗占据了相当大的比例,因此对其进行改造以提高能源利用效率是非常有必要的。
其中,空压机的变频改造技术是一种有效的节能措施。
下面将介绍空压机变频改造的技术方案。
1.变频器的安装变频器是空压机变频改造的核心设备,其作用是调节空压机的转速,实现空压机的变频运行。
在进行变频改造时,首先需要选择适合空压机的变频器,并按照要求进行安装。
变频器应该具备高效节能的特点,并且适用于该型号的空压机。
2.传感器的安装为了实现对空压机运行状态的监测和控制,需要安装各种传感器。
常见的传感器包括压力传感器、温度传感器、流量传感器等。
这些传感器可以采集到空压机运行过程中的各项数据,并将其传输给变频器进行处理。
通过传感器的安装,可以实时监测和控制空压机的运行状态,从而提高其运行效率。
3.控制系统的优化空压机的控制系统是保证其正常运行的关键。
在进行变频改造时,需要对原有的控制系统进行优化。
首先,可以对控制逻辑进行重新设计,增加变频运行的控制策略,如启停控制、负荷分配等。
其次,可以加入远程控制功能,实现对空压机的远程监控和控制,提高运行的灵活性和可靠性。
4.系统压力控制的优化在空压机的变频改造中,优化系统压力控制是非常重要的。
通过变频运行,可以实现压力的精确控制,避免过高或过低的压力浪费能源。
在进行系统压力控制优化时,需要调整压力传感器的设置,使其能够准确地检测到系统压力,并通过变频器调节空压机的转速,保持系统压力在设定范围内稳定运行。
5.能量回收技术的应用在空压机的变频改造中,可以引入能量回收技术,进一步提高能源利用效率。
常见的能量回收技术包括热回收和压力回收。
热回收技术利用空压机排出的热量进行能量回收,以供其他用途;压力回收技术利用锅炉或发电机回收压缩空气中的能量,提高整体能源利用效率。
通过应用能量回收技术,可以进一步降低空压机的能源消耗。
空压机变频改造
空压机变频应用恒压节能又精准来源:大连普传科技有限公司深圳分公司一、简介1:空压机含义空气压缩机,简称空压机,是一种利用电动机将气体在压缩腔内进行压缩并使压缩的气体具有一定压力的设备。
它的用途广泛,可以用于冶金、机械制造、矿山、电力、纺织、石油化工等各个行业。
空压机占大型工业设备(风机、水泵、锅炉、空压机等)耗电量的15%。
2:空压机原理螺杆式空压机的工作原理图如图所示,空气经空气过滤器和吸气调节阀而吸入,该调节阀主要用于调节气缸、转子及滑片形成的压缩腔,阴、阳转子旋转相对于气缸里偏心方式运转。
滑片安装在转子的槽中,并通过离心力将滑片推至气缸壁,高效的注油系统能够确保压缩机良好的冷却及润滑油的最小舒适耗量,在气缸壁上形成的一层薄薄的油膜可以防止金属部件之间直接接触而造成磨损。
经压缩后的空气温度较高,其中混有一定的油气,经过油气分离器进行分离之后,油气经过油冷却器冷却再经过油过滤器流回储油罐,空气经过气冷却器(空气冷却装置)进行冷却而进入储气罐。
3:空压机问题(1) 当输出压力大于一定值时,自动打开泄载阀,使异步电动机空转,严重浪费能源;(2) 异步电动机易频繁的启动、停止,影响电机的使用寿命;(3) 自动化程度低,输出压力的调节是靠人为调节阀的开度来实现的,调节速度慢,波动大,不稳定,精度低;(4) 空压机工频启动电流大,对电网冲击大,电机轴承磨损大,设备维护量大。
二、空压机改造1:空压机改造原理(1)出气口释放阀全部关闭,取消用出气口释放阀调节供气量方式,以避免由此导致的电能浪费。
代之以变频器调整电机的转速来调整气体流量,使电机输出的功率与流量需求基本上成正比关系,始终使电机高效率工作,以达到明显的节电效果。
(2)利用变频器的节能模式,可使电机在轻载时以最高效率运行,减少不必要的电能损耗;(3)根据严格的EMS标准,高效的PWM变频器使用高速低耗的IGBT,降低谐波失真和电机的电能损失。
(4)可使电机起动、加载时的电流平缓上升,没有任何冲击;可使电机实现软停,避免反生电流造成的危害,有利于延长设备的使用寿命;避免因电流峰值带来的电力公司的罚款;(5)采用变频控制系统后,可以实时监测供气管路中气体的压力,使供气管路中的气体的压力保持恒定,提高生产效率和产品质量;(6)由于电机在高效率状态下运行,功率因数较高,降低了无功损耗,节约了大量电能。
空压机变频节能改造方案
空压机变频节能改造方案空压机是一种常用的工业设备,用于将空气进行压缩。
传统的空压机通常由电动机驱动,通过双向活塞来进行压缩。
然而,传统的空压机存在能源浪费问题,效率较低,造成了不小的能源损耗。
因此,采用变频技术进行空压机节能改造成为一种有效的解决方案。
变频技术是通过调整电动机的转速来实现节能的一种技术。
传统的空压机一般采用固定频率的电动机来驱动压缩机,而变频空压机则采用可变频率电动机。
这种变频电机可以实现按需提供所需的压缩空气,避免了传统空压机长时间运行、无需产生高压空气的情况。
从而避免了能源浪费的问题。
基于变频技术的空压机节能改造方案,主要包括以下几个方面:1.替换电动机:将传统空压机中的固定频率电动机更换为可变频率电动机。
变频电动机可以根据压缩空气需求来调整转速,从而减少电能的消耗。
同时,变频电动机的启动和停止时间也较短,可以更加精确地控制空压机的运行状态,提高了整个系统的效率。
2.安装变频器:在更换电动机的同时,还需要安装一个变频器来控制电动机的转速。
变频器可以根据实时的工作情况,自动调整电动机的转速和输出功率。
通过变频器,可以实现对空压机运行的精确控制,减少能源的浪费。
3.组件优化:除了更换电动机和安装变频器,还可以进行组件的优化。
例如,可以采用高效的压缩机、冷却器和滤芯等,来提高整个系统的效率。
此外,还可以对传统空压机进行系统优化,改善压缩空气的供应和运行方式,进一步降低能源损耗。
4.数据监测和管理:对于变频空压机的运行监测和数据管理也非常重要。
可以通过安装传感器和数据采集设备,实时监测和记录空压机的运行状态和能耗情况。
基于这些数据,可以进行能源消耗与产能的分析,进一步优化空压机的运行策略,实现更高的能源利用效率。
综上所述,通过采用变频技术进行空压机节能改造,可以明显降低能源消耗,提高空压机的效率。
这对于工业生产企业来说,不仅能够减少能源成本,还能够提高生产效率,降低对环境的影响。
因此,空压机变频节能改造方案是一种非常有效的节能措施。
空压机变频改造方案
空压机变频改造方案
1.引言
空压机作为一种重要的工业设备,广泛应用于制造业、化工、电力等
领域。
然而,传统的空压机由于其恒速运转的特点,在实际应用中存在能
耗高、运维成本高、噪音大等问题。
为了解决这些问题,空压机的变频改
造方案应运而生。
本文将全面介绍空压机变频改造方案及其具体实施步骤。
2.变频改造方案的理论基础
2.1空压机的工作原理
2.2变频控制理论
2.3变频改造的优势与技术挑战
3.变频改造方案的设计与选择
3.1需求分析
3.2设计要点
3.3频率变换器的选择
3.4控制系统的设计
4.变频改造方案的具体实施步骤
4.1停机检修
4.2设备安装与布线
4.3系统调试与参数设置
4.4运行监测与维护
5.变频改造后的效果评估
5.1能耗效益评估
5.2运维成本评估
5.3噪音减少效果评估
6.常见问题及解决方案
6.1电网变压器容量不足
6.2老旧设备与新设备之间的配套问题
6.3变频器的故障与维修
7.空压机变频改造案例分析
7.1制造企业的变频改造案例
7.2化工企业的变频改造案例
7.3电力企业的变频改造案例
8.变频改造的发展趋势与展望
8.1新型变频设备的不断涌现
8.2智能化与自动化的发展趋势
8.3能源效率提升的挑战与机遇
9.结论
空压机的变频改造方案能够显著提高其效能,降低能耗,改善环境,
增强运维管理。
然而,在实际应用中仍然存在一些技术难题与挑战。
未来,随着科技的不断进步与创新,空压机的变频改造方案有望得到更广泛的应
用和发展。
某空压机组变频改造技术方案
某空压机组变频改造技术方案一、引言随着工业化进程的不断发展,空压机在工业生产中的重要性日益凸显。
传统的空压机采用定频控制方式,存在能耗高、噪音大、维护保养成本高等问题。
而变频控制技术的出现使得空压机的运行更加灵活高效。
本技术方案旨在对空压机组进行变频改造,提高其能效、降低能耗,并保持其稳定性和可靠性。
二、方案描述1.系统概述本方案将对空压机组进行全面的变频改造,主要包括空压机电机的变频驱动系统和控制系统的升级。
通过将传统的定频电机替换为变频电机,实现空压机的无级调速,进而达到节能减排的目的。
2.变频电机系统将空压机组原有的定频电机更换为变频电机,可以实现空压机的无级调速,根据工艺需求动态地调整机组的出力,避免了定频电机因为转速固定而无法实现负载匹配的问题。
同时,变频电机的启动时无冲击性,可以减小系统的起动电流,保护电气设备。
3.变频控制系统为了实现变频电机的调速和控制,我们将对空压机组的控制系统进行升级。
新的变频控制系统将采用先进的数字化电气控制技术和通讯技术,具备高灵敏度、高可靠性和高精度的特点。
通过系统的可编程控制和数据通信功能,实现对空压机组的智能监控、调度和故障诊断。
4.系统节能优化变频电机系统和控制系统的升级将使得空压机组的能耗得到极大的降低。
变频电机系统的无级调速可以根据实际需求动态调整转速,最大限度地减少系统的能耗。
而变频控制系统将通过对机组的智能监控和调度,优化系统运行参数,减少不必要的能耗,提高系统的能效。
三、技术实施方案1.制定实施计划根据空压机组的实际情况,制定变频改造的实施计划。
明确改造的时间节点、具体任务内容和责任人,确保改造工作顺利进行。
2.进行设备更换将空压机组的定频电机进行更换,选择合适的变频电机,确保其性能和参数与机组相匹配,避免因电机不匹配而影响系统的性能。
3.安装变频控制系统根据机组的具体情况,选择合适的变频控制系统。
安装控制器、传感器等设备,将其与变频电机连接,确保系统的稳定性和可靠性。
空压机改造变频方案
空压机改造变频方案引言空压机是一种常用的工业设备,广泛应用于工厂、制造业等领域。
传统的空压机通过调节进气阀来控制出气压力,但这种控制方式效率低下,对能源的利用率也不高。
为了提高空压机的运行效率和节约能源,可以使用变频器改造空压机,实现变频控制。
本文将介绍空压机改造为变频控制的方案。
变频原理变频控制是通过改变电机的供电频率,来调节电机的转速。
空压机中的电机是主要的动力来源,传统的空压机中电机一般采用定频供电,导致电机转速始终保持不变。
而变频器可以根据需要调整电机的供电频率,从而改变电机的转速,进而调节空压机的出气量。
空压机改造过程步骤一:安装变频器在空压机上安装变频器是实现空压机改造的第一步。
变频器一般包括输入端、输出端和控制端。
输入端接电源,输出端连接空压机的电机,控制端通过控制方式实现变频调速。
安装变频器需要根据空压机和变频器的型号进行具体操作,通常需要一名专业人员进行安装。
步骤二:调试变频器参数安装好变频器后,需要进行参数调试,以实现变频控制效果。
变频器的参数调试需要根据具体的空压机型号、电机功率等因素来确定。
一般需要设置一些基本的参数,如电机的额定功率、额定电压、额定电流等。
同时还需要设置一些保护参数,如过载保护、过压保护等,以确保空压机的安全运行。
步骤三:测试运行在调试好变频器参数后,就可以进行测试运行了。
测试运行时需要观察空压机的运行情况,包括电机的转速、电流、功率等参数。
同时还需要观察空压机的运行稳定性和出气量是否符合要求。
如果发现异常情况,需要及时调整变频器的参数,直到达到理想的运行效果。
变频方案的优势使用变频器改造空压机具有以下几个优势:1.节能:传统的空压机通常以最大负载运行,这样会造成能源的浪费。
而通过变频控制,可以根据实际需求调整电机的转速,从而减少能源的消耗,实现节能效果。
2.运行稳定性:传统的空压机由于转速不可调节,可能在运行过程中产生震动、噪音等问题。
而通过变频控制,可以精确调节空压机的运行状态,使其稳定性更高。
变频改造空压机
■空压机概况空压机,全名为空气压约定宿机,是一种工矿业中最常用的空气动力提供设备。
通常空压机分为螺杆式空压、活赛式空压机等。
●螺杆式空压机工作原理螺杆式空压机是由一对相互平行啮合的阴阳转子(或称杆)在气缸内转动使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,实现螺杆式空压机的气、压缩和排气的全过程。
空压机的进气口和出气口分别位于壳体的两端,阴转子的槽和阳转子的齿被主电机驱动而旋转。
●活赛式空压机工作原理活赛式空压机是由电动机带动皮带轮通过联轴吕直接驱动曲轴,带动边杆与活塞杆,使活塞在压缩机气缸内作往复运动,完成入、压缩、排出等过程,将无压或低压气体升压,并输到储压罐内。
其中,活塞组件,活塞组件,活塞与汽缸内壁及汽缸盖构成容积可变的工作腔,在曲柄连杆带动下,在汽缸内作往复运动以实现汽缸内气体的压缩。
活塞式空压机L型二级双缸水冷式空压机图:■空压机系统控制空压机主电机运行方式为星三角降压起动后全压运行,供气系统具体工作流具体工作流程为:当按下启动按钮,控制系统扫通启动器线圈并打开断油阀,空压机在卸载模式下启动,这时进气阀处于关闭位置,而放气阀打开以排放油气分离器内的压力。
等降压N秒(由时间继电器控制)后空压机开始加载运行,系统压力开始上。
如果系统压力上升到压力开关上限值,即起跳压力,控制器使进气阀关闭,油气分离器放气,压缩机空载运行,直到系统压力降到压力开关下限值后,即回跳压力下,控制吕使进气阀打开,油气分离吕放气阀关闭,压缩机打开,压缩机打开,油气分离器放气阀关闭,压缩机满载运行。
■空压机系统节能分析在管道供气系统中,最基本的制对象是流量,供气充的基本任务就是要满足用户对流量的需求。
目前,常见的气体流理控制方式有加、卸载供气控制方式和转速控制方式两种。
●加、卸载供气控制加、卸载供气控制方式即为进气阀开关控制方式,即压力达到上限时关阀,压缩机进人轻载运行压力抵达下限时开阀,压缩机进入满载运行。
日常空压机变频改造方法及注意事项
⽇常空压机变频改造⽅法及注意事项螺杆空压机变频改造的⽅法:压缩机的改造主要是电路改造,通过替代原⼯频供电⽅式,同时备⽤⼯频供电⽅式。
(1)主电路空⽓压缩机⼤多采⽤Y-D启动,⼤的空⽓压缩机有的采⽤软启动。
将变频输出直接接电机端,即空⽓压缩机接触器下⼝,Y-D启动的注意端⼦的相序,软启动的注意保护软启动器。
(2)控制电路主要的控制电路为⼯频和变频的互锁,必须保证⼯频和变频的可靠互锁,否则变频器会烧毁。
互锁的⽅法可以通过将接触器动作的电路进⾏互锁,在通过中间继电器控制接触器的电路⾥也可以对中间继电器电路互锁。
另外要采集空⽓压缩机的加载和卸载的控制信号,即让加载和卸载的动作信号控制变频器的恒速运⾏。
(3)变频器控制变频器控制中有⼀点很重要。
我们改造时使⽤了第⼆加减速时间选择。
因为空⽓压缩机在开机时属空载启动,空载加速时可以以较快的加速时间t1达到恒速运⾏频率f2,之后等待空⽓压缩机启动完成后进⾏加载。
由于空⽓压缩机之前处于卸载状态,空⽓压缩机处于恒速频率f2,待加载时电机帯载并加速运⾏,电流较⼤,此时加速时间t2需设定的较长,以减⼩运⾏电流,否则容易报警。
减速时间同样在第⼀减速时间t3短,第⼆减速时间t4时设定的较长些。
空压机变频改造的注意事项空⽓压缩机改造也要注意保护设备,保证改造顺利进⾏,需要注意以下⼏个问题。
(1)电机转向电机转向⾄关重要,因为电机反转造成冷却油泵反转,即在加载时没有冷却油对加压⽓体冷却,结果必然造成油缸的温度骤然上升,⾼温使空⽓压缩机转⼦膨胀,使转⼦与缸体抱死。
因此,改造完成后务必进⾏转向测试,转向正确后才能开机试运⾏。
(2)⼲扰有些空⽓压缩机的控制器对系统接地要求⾼,系统没有可靠接地的情况下必然造成变频运⾏时对检测信号的⼲扰,本⼈曾遇到过⼏次。
控制线必须采⽤屏蔽线并可靠接地,最好能和输出电缆分开布线,变频柜的接地必须可靠,最好独⽴接地,空⽓压缩机也要可靠接地,这样才能保证⼲扰得到有效抑制。
空压机变频改造技术方案
空压机变频改造技术方案一、引言随着工业生产的发展,空压机在许多生产过程中扮演着重要的角色。
然而,传统的空压机具有固定的转速和单一的工作方式,无法适应不同工作负荷和能耗的需求。
因此,空压机变频改造技术应运而生。
本文将介绍空压机变频改造技术的原理、实施过程以及效果评估。
二、空压机变频改造技术原理空压机变频改造技术是通过改变空压机的电源电压和频率,实现空压机的转速调节和工作模式变化。
通过安装变频器,可以将原本的恒定转速的电动机转换为变频电动机,实现空压机的转速与负载的匹配,提高能效并延长设备寿命。
三、空压机变频改造技术实施过程1.变频器选型:根据空压机的功率和负载情况,选用合适的变频器。
变频器应具有稳定的性能、高效的控制能力和良好的可靠性。
2.安装调试:将选定的变频器安装在空压机的电源控制柜中,并按照变频器的说明书进行连接和调试。
确保变频器与空压机的各个部件正常工作,并与现有控制系统进行良好的协同。
3.参数调整:根据空压机的负载要求,调整变频器的参数。
包括最大转速、最小转速、转速范围、加速时间、减速时间等。
通过参数调整,使得空压机的转速与负载匹配,实现最佳能效。
4.效果评估:进行一段时间的试运行,并对比改造前后的能耗和生产效率。
通过数据的收集和分析,评估空压机变频改造技术的效果,确定改造效果是否满足预期目标。
四、空压机变频改造技术的效果评估1.能耗节约:通过变频改造,空压机的转速和负载匹配更加合理,减少电力损耗和机械能损失,从而降低能耗。
2.系统可靠性提升:传统空压机由于固定转速和工作方式,容易发生过载和电机过热的情况。
通过变频器的安装,可以实现软启动和软停机,减少电机负荷和机械冲击,降低设备故障的风险。
3.运行稳定性提高:传统空压机往往在工作过程中由于负载的波动导致运行不稳定。
通过变频改造,空压机的转速可以实时调节,能够更好地适应负载的变化,提高运行的稳定性和控制精度。
4.生产效率提升:通过变频改造,空压机的运行效率得到提高,生产过程更加稳定,生产能力和产品质量也会得到一定的提升。
空压机改造变频方案
空压机改造变频方案空压机改造变频方案引言空压机在工业领域中扮演着重要的角色,它们负责向各种设备和工具提供压缩空气。
然而,传统的空压机存在能耗高、噪音大等问题。
为解决这些问题,空压机改造变频方案应运而生。
本文将介绍空压机改造的原理及变频方案的优势、成本等相关内容。
空压机改造原理空压机改造的核心在于采用变频技术替代传统的定频控制方式。
传统的空压机通常采用电动机驱动,工作时以恒定频率运转。
而改造后的变频空压机通过变频器控制电动机的转速,使其实现根据需求来调整输出功率,从而节约能源。
变频空压机的优势使用变频空压机带来了许多优势,下面是其中几点:1. 节能:传统的空压机在低负载时仍然以全负荷运行,造成能源浪费。
而变频空压机能够根据需求调整输出功率,高负荷时提供大功率,低负荷时降低转速来节省能源。
2. 稳定性:变频空压机通过变频器精确控制转速,避免了由于负载波动而导致的气压波动。
这样可以提高系统的稳定性,减少生产过程中产品质量变化的风险。
3. 声音减少:传统的空压机通常产生较大噪音,对工人的身体健康和生产环境造成的干扰。
而变频空压机由于在低负荷时可以降低转速,自然会减少噪音的产生。
4. 调度灵活:变频空压机可以根据需求调整输出功率,使得系统的调度更加灵活。
在需求较小时,可以选择关闭或降低功率,以节省能源。
变频空压机的成本虽然变频空压机具有许多优势,但是其改造成本较高。
除了需要购买变频器外,还需要对空压机进行适配和改造。
这些成本因所使用的变频器和空压机的型号而异。
因此,在进行变频改造之前,需要进行详细的成本分析,并评估回收期和效益。
变频空压机选择要点在选择变频空压机时,有几个关键因素需要考虑:1. 容量:根据工艺流程和生产需求,选择适当容量的变频空压机。
过小的容量可能无法满足需求,过大的容量可能造成能源浪费。
2. 压力范围:确保所选择的变频空压机能够在所需的压力范围内工作。
3. 变频器性能:选择可靠且具有较高效率的变频器。
空压机变频改造合同8篇
空压机变频改造合同8篇篇1甲方(以下简称买方):_____________乙方(以下简称卖方):_____________根据《中华人民共和国合同法》及相关法律法规的规定,为明确双方在空压机变频改造过程中的权利和义务,确保改造工作的顺利进行,经甲、乙双方友好协商,达成如下合同条款:一、改造项目概述1. 项目名称:空压机变频改造工程。
2. 项目内容:对甲方的空压机进行变频技术升级与改造,以提高其运行效率、降低能耗并优化管理。
二、改造范围及要求1. 变频控制系统改造:乙方负责为甲方的空压机安装变频控制系统,确保系统稳定、可靠运行。
2. 设备调试与测试:改造完成后,乙方需对空压机进行调试与测试,确保改造效果符合甲方要求。
3. 技术支持与服务:乙方需提供必要的技术支持与服务,对甲方操作人员进行培训,确保改造后的空压机正常运行。
三、合同金额及支付方式1. 合同总金额:人民币______元(大写:______元整)。
2. 支付方式:甲方在合同签订后______日内支付乙方合同总金额的______%作为预付款;改造工程完工并通过验收后______日内支付剩余款项。
四、改造周期与进度安排1. 改造周期:自合同签订之日起______日历天内完成。
2. 进度安排:乙方应按照甲方的要求,制定详细的改造进度计划,并及时通报甲方。
五、质量保证与售后服务1. 乙方应保证改造后的空压机性能稳定、可靠,满足甲方生产需求。
2. 乙方提供为期______年的质保期,质保期内因改造工程导致的设备故障,乙方负责免费维修。
3. 乙方提供______小时的售后服务热线,对甲方的咨询与问题及时响应。
六、违约责任1. 若因乙方原因未能按照合同约定完成改造工程,乙方应承担违约责任,并赔偿甲方因此造成的损失。
2. 若甲方未按合同约定支付款项,甲方应承担违约责任,并支付逾期付款利息。
七、保密条款1. 双方应对本合同内容以及履行过程中涉及的商业秘密、技术秘密等信息予以保密。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
台达B 系列变频器在空压机上的改造应用台达工业自动化 应用技术中心范昆仑空压机,全名为空气压缩机,是一种工矿企业中最常用的空气动力提供设备,将变频器导入空压机,使得空压机系统的运行成本降低,达到节能的效果。
一、螺杆式空压机工作原理简述:螺杆式空压机是由一对相互平行齿合的阴阳转子(或称螺杆)在气缸内转动,使转子齿槽之间的空气不断地产生周期性的容积变化,空气则沿着转子轴线由吸入侧输送至输出侧,实现螺杆式空压机的吸气、压缩和排气的全过程。
空压机的进气口和出气口分别位于壳体的两端,阴转子的槽也阳转子齿被主电机驱动而旋转。
原空压机的主电机运行方式为Y-△降压起动,然后全速运行。
具体操作程序为:按下启动按钮,控制系统接通启动器线圈并打开断油阀,空压机在卸载模式下启动,这时进气阀处于关闭位置,而放气阀打开以排放油气分离器内的压力。
等降压2秒后空压机开始加载运行,系统压力开始上升。
如果系统压力上升到压力开关上限值,即起跳压力,控制器使进气阀关闭,油气分离器放气,压缩机空载运行,直到系统压力跌到压力开关下限值后,即回跳压力下,控制器使进气阀打开,油气分离器放气阀关闭,压缩机打开,油气分离器放气阀关闭,压缩机满载运行。
空压机的工作过程如下所示:二、空压机运行中自身存在的问题:1、 主电机虽然采用Y -△降压起动,但起动时的电流仍然很大,并且有一定的启动时间,这段时间消耗的电能不容忽视。
另外启动时大电流的冲击会影响电网的稳定及其它用电设备的运行安全。
2、 主电机时常工作在满负荷上,但能量浪费在出口阀门上,属非经济运行,电能浪费严重。
3、 主电机工频运行致使空压机运行时噪音很大。
4、 主电机工频起动设备的冲击大,电机轴承的磨损大,所以设备维护工作时机械量大。
5、当卸荷运行时那部分电流不是做有用功的, 而是机械在额定转速下的空转损耗.这种机械式调节装置虽然也能起到压力调节作用,但是压力调节精度低,压力波动大;压缩机总是在额定转速下工作,机械磨损大、电耗高。
三、空压机变频节能原理由于许多空压机运行方式是加载、卸载方式。
卸载时电机空转,造成能源浪费。
变频控制即通过改变电动机的转速来控制空压机单位时间的出风量,从而达到控制管路的压力。
原理如下:通过压力变送器测得的管网压力值与压力的设定值相比较,得到偏差,经PID调节器计算出变频器作用于异步电动机的频率值。
由变频器输出相应频率和幅值的交流电,调节马达的转速,空压机输出相应的压缩空气至储气罐,使之压力变化,直到管网压力与给定压力值相同。
五、空压机变频改造后的效益1、节约能源变频器控制压缩机与传统控制的压缩机比较,能源节约是最有实际意义的,根据空气量需求来供给的压缩机工况是经济的运行状。
2、运行成本降低传统压缩机的运行成本由三项组成:初始采购成本、维护成本和能源成本。
其中能源成本大约占压缩机运行成本的77%。
通过能源成本降低24.3%,再加上变频起动后对设备的冲击减少,维护和维修量也跟随降低,所以运行成本将大大降低。
3、提高压力控制精度变频控制系统具有精确的压力控制能力。
使压缩机的空气压力输出与用户空气系统所需的气量相匹配。
变频控制压缩机的输出气量随着电机转速的改变而改变。
由于变频控制电机速度的精度提高,所以它可以使管网的系统压力变化保持在3pisg变化范围,也就是0.2bar范围内,有效地提高了工况的质量。
4、延长压缩机的使用寿命变频器从0HZ起动压缩机,它的起动加速时间可以调整,从而减少起动时对压缩机的电器部件和机械部件所造成的冲击,增强系统的可靠性,使压缩机的使用寿命延长。
此外,变频控制能够减少机组起动时电流波动,这一波动电流会影响电网和其它设备的用电,变频器能够有效的将起动电流的峰值减少到最低程度。
5、降低了空压机的噪音根据压缩机的工况要求,变频调速改造后,电机运转速度明显减慢,因此有效地降了空压机运行时的噪音。
现场测定表明,噪音与原系统比较下降约3-7dB。
六、变频器改造要求:现场空压机功率:30KW,最大工作电流59A。
设计要求:1、主电机变频器运行状态保持储气罐出口压力稳定,压力波动范围不超过±0.01Mpa。
2、保持原有的工频控制系统,以确保变频器出现异常保护时,可以直接切入工频,不影响生产。
3、在用气量较小的情况下,变频器处于低频运行或者进入休眠状态,应保障电机绕组温度不超过允许的范围。
根据现场状况:选用台达B系列变频器:VFD300B43A;额定电流:60A;过载能力:变频器额定输出电流150%,1min。
改造电气原理图如下:八、结束语综上所述,由于空压机可以在保证生产所需要的最低压力下运行,电机输入功率大大下降,辅以压力闭环控制,实现空压机的供气压力与转速的动态匹配,减少了电机的实际输入功率,达到节能目的。
即电机的转速由供气压力来控制,压缩机需要多大的功率,电机就输出多大的功率,而不必做无用功,从而取得良好的节能效果,其次,空压机停止了空转,电机不存在轻载运行,这部分能量很可观。
相应带来的其它好处是:供气压力稳定,通过压力调节器,可使空压机保持在设定的压力值下工作,压力稳定可靠性高,而且压力可以无级设定,随时可调。
电机实现软启动,压缩机的使用寿命及检修周期都将得到大大延长。
空压机排气量由空压机的转速来控制,气缸内气阀片不再反复地开启和关闭,阀座、弹簧等工作条件大大改善,避免了高温、高压气体急剧的流动与冲击,维修工作量减少。
台达C2000变频器在机头一体化空压机上的应用作者:AMD产品处 刘元刚【摘要】近年来,随着电力电子技术、新型电机控制理论和稀土永磁材料的快速发展,永磁同步电动机得以迅速的推广应用。
永磁同步电动机具有体积小、损耗低、效率高等优点,在节约能源和环境保护日益受到重视的今天,在很多行业得到广泛应用。
其中机头一体化空压机就是在客户节能减排的大环境下产生的新型节能产品。
由台达C2000驱动的机头一体化空压机取得了非常理想的节能效果。
【关键词】C2000变频器 永磁同步电机 机头一体化空压机【前言】空气压缩机的种类很多,按工作原理可分为容积式压缩机,速度式压缩机,容积式压缩机的工作原理是压缩气体的体积,使单位体积内气体分子的密度增加以提高压缩空气的压力;速度 式压缩机的工作原理是提高气体分子的运动速度,使气体分子具有的动能转化为气体的压力能,从而提高压缩空气的压力。
现在常用的空气压缩机有活塞式空气压缩机,螺杆式空气压缩机,(螺杆空气压缩机又分为双螺杆空气压缩机和单螺杆空气压缩机),离心式压缩机以及滑片式空气压缩机,涡旋式空气压缩机。
目前螺杆式压缩机以其高效率、节能的优势越来越收到市场的欢迎,本文讲述的机头一体化空压机就是在螺杆式压缩机上进行改进的一种压缩机【正文】螺杆式空压机的结构是在压缩机的主机中平行地配置着一对相互啮合的螺旋形转子,通常把节圆外具有凸齿的转子(从横截面看),称为阳转子或阳螺杆;把节圆内具有凹齿的转子(从横截面看),称为阴转子或阴螺杆。
一般阳转子作为主动转子,由阳转子带动阴转子转动。
转子上的球轴承使转子实现轴向定位,并承受压缩机中的轴向力。
转子两端的圆锥滚子推力轴承使转子实现径向定位,并承受压缩机中的径向力和轴向力。
在压缩机主机两端分别开设一定形状和大小的孔口,一个供吸气用的叫吸气口;另一个供排气用的叫排气口。
图1 双螺杆结构图1、螺杆压缩机工作原理螺杆压缩机的工作循环可分为吸气过程(包括吸气和封闭过程)、压缩过程和排气过程。
随着转子旋转每对相互啮合的齿相继完成相同的工作循环。
1、吸气过程(a)吸气过程(b) 封闭过程随着转子的运动,齿的一端逐渐脱离啮合而形成了齿间容积,这个齿间容积的扩大在其内部形成了一定的真空,而此时该齿间容积仅仅与吸气口连通,因此气体便在压差作用下流入其中。
在随后的转子旋转过程中,阳转子的齿不断地从阴转子的齿槽中脱离出来,此时齿间容积也不断地扩大,并与吸气口保持连通。
随着转子的旋转齿间容积达到了最大值,并在此位置齿间容积与吸气口断开,吸气过程结束。
吸气过程结束的同时阴阳转子的齿峰与机壳密封,齿槽内的气体被转子齿和机壳包围在一个封闭的空间中,即封闭过程。
2、压缩过程3、随着转子的旋转,齿间容积由于转子齿的啮合而不断减少,被密封在齿间容积中的气体所占据的体积也随之减少,导致气体压力升高,从而实现气体的压缩过程。
压缩过程可一直持续到齿间容积即将与排气口连通之前。
排气过程齿间容积与排气口连通后即开始排气过程,随着齿间容积的不断缩小,具有内压缩终了压力的气体逐渐通过排气口被排出,这一过程一直持续到齿末端的型线完全啮合为止,此时齿间容积内的气体通过排气口被完全排出,封闭的齿间容积的体积将变为零。
从上述工作原理可以看出,螺杆压缩机是通过一对转子在机壳内作回转运动来改变工作容积,使气体体积缩小、密度增加,从而提高气体的压力。
2、机头一体化空压机结构:省略传动结构永磁同步电机机头一体化空压机主要是省略了传动结构,同时驱动电机采用了永磁同步电机,电机轴与机头采取直接连接的方式进行连接。
3、系统配置图DOP-B07S411 DTC1000 DVP10SX11R VFD220C43A4、调试过程1)将永磁同步电机的相关参数输入驱动器中:主要参数有 01-00 電機最大頻率 MAX Output FREQ Hz 180.0001-01 電機額定頻率 Motor1 Fbase Hz 180.0001-02 電機額定電壓 MAX Out-VOLT 1 V 380.0 05-33 同步電機選擇 IM/PM Selection 1 05-34 額定電流 PM Rated Current Amps 40.00 05-35 額定功率 PM Rated Power 18.50 05-36 額定轉速 PM Rated RPM rpm 3600 05-37 電機極數 PM Pole number 6 05-38 電機慣量PM Intertia kg 90.0 05-39 PM Rs ohm 0.061 05-40 PM Ld mH 0.63 05-41 PM Lq mH 1.83 05-42 變頻器自學習出來的參數PM Magnetic ANGl DEG 0.0 05-43PM Ke CofficientV492)电机参数自学习;设置05-00=13之后,按RUN 运行进行电机参数自学习。
学习波形如下图:3)设置PM 开环控制方式;00-11=6;控制方式设置为PM 马达开环控制方式。
11-00=1;系统惯量自动调整11-01=700;系统惯量自动调整系数。
4)试运行;试运行时,逐步调整电机的运行频率查看电流和频率运行是否稳定,以便进行相应的参数调整。
A B C 相电流波形【结束语】经过客户的长时间的测试,发现C2000变频器在机头一体化空压机上的应用效果非常好,达到客户的需求,客户对我们的C2000变频器的运行效果非常的满意。