植物生理学 呼吸作用

合集下载

植物生理学呼吸作用详解演示文稿

植物生理学呼吸作用详解演示文稿

植物生理学呼吸作用详解演示文稿一、引言植物是通过光合作用制造能量的,但是在夜间或者黑暗环境中,植物无法进行光合作用,此时就需要进行呼吸作用来获得能量。

本文将详细介绍植物呼吸作用的过程和重要性。

二、呼吸作用的定义和概念呼吸作用是植物细胞在无氧条件下将有机物氧化分解为能量的过程,产生能量的同时释放出二氧化碳和水。

呼吸作用主要发生在植物的线粒体中。

三、呼吸作用的过程1.糖酵解过程:植物细胞首先将葡萄糖分解为苹果酸,在胞质中进行糖酵解过程。

此过程产生少量的能量和二氧化碳。

2.乳酸发酵过程:在无氧条件下,植物细胞继续将苹果酸进一步分解为乳酸,产生少量的能量。

3.呼吸链过程:乳酸在线粒体中进一步氧化分解,产生更多的能量和二氧化碳。

此过程参与了ATP的合成,提供了植物细胞的能量需求。

四、呼吸作用与光合作用的关系虽然光合作用和呼吸作用都是植物细胞中的能量代谢过程,但它们之间是互补的关系。

光合作用通过吸收光能来合成有机物质,释放氧气,并且将部分有机物质储存起来。

而呼吸作用则是将储存的有机物质氧化分解为能量,并释放出二氧化碳和水。

五、呼吸作用的重要性1.能量供应:呼吸作用通过氧化分解有机物质来提供植物细胞所需的能量。

这种能量不仅用于植物的生长和发育,也用于繁殖、抵抗病原体和适应环境的压力等。

2.维持生命活动:呼吸作用是维持植物细胞正常生命活动的基本过程。

它使细胞得以运作,完成各种代谢活动,并维持细胞内环境的稳定性。

3.发散二氧化碳:呼吸作用产生的二氧化碳释放到大气中,为其他生物的光合作用提供原料,维持了生态系统的平衡。

六、呼吸作用的调控呼吸作用的速率受到多种因素的调节,包括温度、氧气浓度、光照强度和水分状况等。

例如,高温和高光照可以提高呼吸作用的速率,而低温和低氧气浓度则会降低呼吸作用的速率。

七、结语呼吸作用是植物生命活动的重要组成部分,它为植物细胞提供能量,并维持细胞的正常代谢。

通过了解呼吸作用的过程和重要性,我们可以更好地理解植物的生物学特性,并为农业生产和植物科学研究提供理论指导。

植物生理学课件第四章呼吸作用

植物生理学课件第四章呼吸作用
体进一步氧化产生ATP。 通过底物水平磷酸化,直接合成ATP。 (2)TCA是植物体进行有氧呼吸的主要途径,是
物质代谢的枢纽。 TCA既是糖、脂类和氨基酸 等彻底分解的共同途径,其中间产物又是合成 糖、脂类和氨基酸的原料。
3. 戊糖磷酸途径(pentose phosphate pathway, PPP)
CO2+H2O
中间代谢产物是合成糖类、脂类、蛋白 质和维生素及各种次生物质的原料
二、生物氧化(biological oxidation)
生物氧化是指发生在生物体细胞线粒 体内的一系列传递氢、电子的氧化还原反 应。生物氧化过程中释放的能量一部分以 热能形式散失,一部分贮存在高能磷酸化 合物ATP中。
简称TCA)
TCA循环中 虽然没有O2的 参加,但必须 在有氧条件下 经过呼吸链电 子传递,使 NAD+ 和FAD、 UQ在线粒体中 再生,该循环 才可继续,否 则TCA循环就会 受阻。
三羧酸循环的生理意义:
(1)TCA是植物体获得能量的最主要形式。 使NAD+和FAD还原成NADH和FADH2。这些电子供
1. 为植物生命活动提供能量
需呼吸作用提供 能量的生理过程有: 离子的主动吸收和运 输、细胞的分裂和伸 长、有机物的合成和 运输、种子萌发等。
不需呼吸作用直 接提供能量的生理过 程有:干种子的吸胀 吸水、离子的被动吸 收、蒸腾作用、光反 应等。
2. 中间产物是合成重要有机物质的原料
呼吸作用的中间产物如,
如:细胞色素系统、铁硫蛋白、铁氧还蛋白等。
呼吸传递体中除 UQ外,大多数组分是与 蛋白质结合,以复合体形式嵌入膜内存在的。
植物线粒体的电子传递链位于线粒体 的内膜上,由五种蛋白复合体组成。

植物生理学—植物呼吸作用

植物生理学—植物呼吸作用

植物生理学—植物呼吸作用植物呼吸作用是植物进行生命活动所必需的过程之一、它是指植物通过呼吸作用吸取氧气,并释放二氧化碳。

植物呼吸是在光照条件下进行的,它通过细胞线粒体内的氧化还原反应产生能量,维持植物的生长和代谢活动。

植物呼吸的过程是气体交换的过程,与动物呼吸有所不同。

植物通过气孔进行气体交换,它们位于叶片的表面。

气孔可以根据植物的需求调节开闭,以控制二氧化碳和水分的流失。

植物吸收的氧气主要通过叶片和根部进行。

在叶片上,气孔将二氧化碳排出,在气孔的内部,氧气被吸入。

根部吸收来自土壤中微量氧气,这些氧气主要供植物的根部进行呼吸作用。

植物在氧化还原反应中产生能量,这一过程称为细胞呼吸。

细胞呼吸主要涉及线粒体,线粒体是细胞内的重要器官,里面有多种酶参与氧化还原反应。

在细胞呼吸中,植物将葡萄糖等有机物氧化分解为二氧化碳、水和能量,这个过程是植物生命必需的。

植物呼吸作用对植物的生长和代谢活动起着重要的作用。

它提供了细胞所需的能量,维持了植物体内的各种生化过程,包括物质合成、信号传导和细胞分裂等。

同时,植物呼吸还协助根系吸收水分和营养物质,并提供了分布在整个植物体内的氧气。

植物呼吸作用的速率受到多种因素的影响。

光照是一个重要的因素,光照充足时,植物进行光合作用,氧气产生速率增加,呼吸作用速率相应增加。

此外,温度也是影响植物呼吸速率的关键因素,一般来说,温度越高,呼吸速率越快。

植物呼吸在一定程度上会导致二氧化碳的排出,从而促进了大气中的二氧化碳浓度增加。

这对气候变化产生了影响,因为二氧化碳是一种温室气体,它可在大气中滞留并加剧温室效应。

然而,植物在光合作用中吸收二氧化碳,并通过光合作用将其转化为有机物质。

因此,植物呼吸作用和光合作用共同调控着大气中二氧化碳的浓度,从而维持了地球生态系统的平衡。

总之,植物呼吸作用是植物生理学中非常重要的一个方面,它通过氧化还原反应产生能量,并维持了植物的生长和代谢活动。

植物呼吸作用对大气中二氧化碳的浓度和地球气候具有影响,同时与光合作用共同调节着地球生态系统的平衡。

植物生理学第4-1章章呼吸作用

植物生理学第4-1章章呼吸作用

戊糖磷酸途径 (PPP) pentose phosphate pathway 在高等植物中,还发现可以不经过EMP生成丙酮酸而进行有氧呼吸的途径,就是PPP途径。即葡萄糖被胞质溶胶和质粒中的可溶性酶直接氧化,产生NADPH和一些磷酸糖的酶促过程。 6G6P+12NADP++7H2O 6CO2 +12NADPH + 12H+ +5G6P+Pi 发生在细胞质中 在成熟和老年组织中及逆境时发生较多
葡萄糖 ATP ATP 磷酸葡萄糖 → 磷酸果糖 二磷酸果糖 磷酸甘油醛 乙醇 2 NADH 二磷酸甘油酸 乙醛 2ATP 2ATP 丙酮酸 磷酸烯醇 磷酸甘油酸 式丙酮酸
淀粉、葡萄糖或果糖在细胞质内,在一系列酶的参与下分解成丙酮酸的过程。
C6H12O6+2ADP+2NAD++2Pi
2丙酮酸+2ATP+2NADH+2H+ +2H2O
对高等植物来说,不管是有氧呼吸还是无氧呼吸,糖的分解都先经过糖酵解阶段,形成丙酮酸, 然后才分道扬镳。
葡萄糖→→丙酮酸 无氧 →无氧呼吸→酒精或乳酸 有氧 → TCA循环→CO2
呼吸代谢途径※
糖酵解途径(EMP)---在细胞质进行
乙醇发酵和乳酸发酵---在细胞质进行
三羧酸循环 (TCA)---在线粒体进行
磷酸戊糖途径(PPP)---在细胞质进行
乙醛酸循环---在乙醛酸体、线粒体进行
乙醇酸氧化途径---在细胞质进行
第二节 植物的呼吸代谢途径
糖酵解(EMP) Embden,Meyerhof,Parnas
无氧呼吸(发酵) 指细胞在无氧条件下,把淀粉、葡萄糖等有机物质分解为不彻底的氧化产物,同时释放能量的过程。 高等植物无氧呼吸可产生酒精或乳酸: C6H12O6 2C2H5OH+2CO2 +Δ G(-226kj) C6H12O6 2CH3CHOHCOOH+Δ G(-197kj) 苹果、香蕉等贮藏过久有酒味,稻谷酿酒。 胡萝卜和甜菜的块根等贮藏过久有乳酸味。 无氧呼吸是植物适应生态多样性的表现。

植物生理学名词解释

植物生理学名词解释

第四章呼吸作用一、名词解释1、呼吸作用:生物体内的有机物质通过氧化还原而产生CO2,同时释放能量的过程。

2、有氧呼吸:指生活细胞在氧气的参与下,把某些有机物质彻底氧化分解,放出CO2并形成水,同时释放能量的过程。

3、三羧酸循环:丙酮酸在有氧条件下由细胞质进入线粒体逐步氧化分解,最终生成水和二氧化碳。

4、生物氧化:指有机物质在生物体内进行氧化分解,生成CO2和H2O,放出能量的过程。

5、呼吸链:呼吸代谢中间产物的电子和质子,沿着一系列有序的电子传递体组成的电子传递途径,传递到氧分子的总轨道。

6、氧化磷酸化:在生物氧化过程中,电子经过线粒体的呼吸链传递给氧(形成水分子),同时使ADP被磷酸化为ATP的过程。

7、呼吸商:又称呼吸系数。

是指在一定时间内,植物组织释放CO2的摩尔数与吸收氧的摩尔数之比。

8.糖酵解:胞质溶胶中的己糖在无氧或有氧状态下分解成丙酮酸的过程。

二、填空题1、呼吸作用的糖的分解代谢途径中,糖酵解和戊糖磷酸途径在细胞质中进行;三羧酸循环途径在线粒体中进行。

三羧酸循环是英国生物化学家Krebs 首先发现的。

2、早稻浸种催芽时,用温水淋种和时常翻种,其目的就是使呼吸作用正常进行。

当植物组织受伤时,其呼吸速率加快。

春天如果温度过低,就会导致秧苗发烂,这是因为低温破坏了线粒体的结构,呼吸“空转”,缺乏能量,引起代谢紊乱的缘故。

3.呼吸链的最终电子受体是 O2氧化磷酸化与电子传递链结偶联,将影响_ ATP _的产生。

4.糖酵解是在细胞细胞基质中进行的,它是有氧呼吸和无氧呼吸呼吸的共同途径。

5.氧化磷酸化的进行与 ATP合酶密切相关,氧化磷酸化与电子传递链解偶联将影响__ ATP__的产生。

6.植物呼吸过程中,EMP的酶系位于细胞的细胞基质部分,TCA的酶系位于线粒体的线粒体基质部位,呼吸链的酶系位于线粒体的嵴部位。

7. 一分子葡萄糖经有氧呼吸彻底氧化,可净产生__38__分子ATP,•需要经过__6_底物水平的磷酸化。

植物生理学-呼吸作用

植物生理学-呼吸作用

二、呼吸作用的生理意义
1.为植物生命活动提供能量 为植物生命活动提供能量 呼吸氧化有机物, 呼吸氧化有机物,将其中的 化学能以ATP形式贮存起来。 ATP形式贮存起来 化学能以ATP形式贮存起来。 ATP分解时 分解时, 当ATP分解时,释放能量以满 足各种生理过程的需要。 足各种生理过程的需要。 呼吸放热可提高植物体温, 呼吸放热可提高植物体温, 有利种子萌发、 有利种子萌发、开花传粉受 精等。 精等。 2.中间产物是合成植物体内重要有机物质的原料 2.中间产物是合成植物体内重要有机物质的原料 呼吸产生许多中间产物,其中有些十分活跃, 呼吸产生许多中间产物,其中有些十分活跃,是进一步合成其他 有机物的物质基础。 有机物的物质基础。 3.在植物抗病免疫方面有着重要作用 3.在植物抗病免疫方面有着重要作用 呼吸作用氧化分解病原微生物分泌的毒素,以消除其毒害。 呼吸作用氧化分解病原微生物分泌的毒素,以消除其毒害。 植物受伤或受到病菌侵染时,通过旺盛的呼吸,促进伤口愈合, 植物受伤或受到病菌侵染时,通过旺盛的呼吸,促进伤口愈合, 加速木质化或栓质化,以减少病菌的侵染。 加速木质化或栓质化,以减少病菌的侵染。
2、乳酸发酵(lactate fermentation) 在含有乳酸脱氢
酶的组织里,丙酮酸便被NADH还原为乳酸, 酶的组织里,丙酮酸便被NADH还原为乳酸, NADH还原为乳酸 COCOOH+NADH+ CHOHCOOH+ (5CH3COCOOH+NADH+H+ 乳酸脱氢酶 CH3CHOHCOOH+NAD+ (5-7) 每分子葡萄糖经乳酸发酵产生2分子乳酸和2分子ATP ATP。 每分子葡萄糖经乳酸发酵产生2分子乳酸和2分子ATP。 C6H12O6 酶 2CH3CHOHCOOH + 2ATP +2H2O 许多细菌能利用葡萄糖产生乳酸, 许多细菌能利用葡萄糖产生乳酸 , 产生乳酸的这类细菌通 常称为乳酸菌。 常称为乳酸菌。 利用乳酸菌的发酵可以制造酸牛奶、泡菜、 利用乳酸菌的发酵可以制造酸牛奶 、 泡菜 、 酸菜和青贮饲 料的发酵等。由于乳酸菌缺少蛋白酶, 料的发酵等。由于乳酸菌缺少蛋白酶,它不会消化组织细胞 中的原生质, 中的原生质,而只利用了汁液中的糖分及氨基酸等可溶性含 氮物质作为营养,因而组织仍保持坚脆状态。 氮物质作为营养,因而组织仍保持坚脆状态。由于乳酸的积 PH值可降至 值可降至< 从而又抑制了其它分解蛋白质的腐败 累 , PH 值可降至 <4 , 从而又抑制 了其它分解蛋白质的腐败 细菌及丁酸菌的生长,起到了防腐作用。 细菌及丁酸菌的生长,起到了防腐作用。 在无氧条件下, 通过酒精发酵或乳酸发酵,实现了NAD 在无氧条件下 , 通过酒精发酵或乳酸发酵 , 实现了 NAD+ 的 再生,这就使糖酵解得以继续进行。 再生,这就使糖酵解得以继续进行。

植物生理学植物的呼吸作用

植物生理学植物的呼吸作用
2、无氧呼吸利用葡萄糖产生的能量很少, 植物要维持正常的生理需要就要消耗更多的有 机物;
3、没有丙酮酸氧化过程,缺乏新物质合成 的原料。
(3) CO2 CO2浓度增高, 呼吸受抑,
>5%时,明显抑制, 土壤积累CO2可达4%~10%
(4)水分
➢种 子 含 水 量 是制约种子呼 吸强弱的重要 因素。
<10%
呼吸开始 有氧呼吸 下降
无氧呼吸出现并 逐步增强,有氧 呼吸迅速下降。
过高? O2 过低?
无氧呼吸的消失点
氧饱和点 oxygen saturation point
氧 饱 和 点 与 温 度 有 关
长时间的无氧呼吸为什么会使植物受到伤害?
1、无氧呼吸产生酒精,酒精使细胞质的蛋 白质变性;
电子传递体包括细胞色素系统和某些黄素蛋白、铁硫蛋白 呼吸链传递体传递电子的顺序是: 代谢物→NAD+→FAD→CoQ→细胞色素系统→O2。
氢传递体包括一些脱氢酶的辅助因子, 主要有NAD+、FMN、FAD、CoQ等。 它们既传递电子,也传递质子;
2.呼吸链上的传递体
H+
图示五种酶复合体
呼吸链的组成 呼吸链中五种酶复合体 (1)复合体Ⅰ(NADH:泛醌氧化还原酶) (2)复合体Ⅱ(琥珀酸:泛醌氧化还原酶) (3)复合体Ⅲ(UQH2 :细胞色素C氧化还原酶) (4)复合体Ⅳ(Cytc:细胞色素氧化酶) (5)复合体Ⅴ(ATP合成酶)
呼吸底物的含量 机械损伤
4.乙醛酸循环(glyoxylic acid cycle) GAC
脂肪
5.乙醇酸氧化途径 (glycolic acid oxidation pathway) GAP
水稻根系 H2O2
(二)电子传递途径的多样性

植物生理学 呼吸作用

植物生理学  呼吸作用
1. 定义: 糖酵解到丙酮酸以后,有氧的情况下丙酮酸进入
线粒体,逐步氧化分解,形成CO2和水。将这一过 程称为三羧酸循环。
中间重要产物为柠檬酸—— 柠檬酸循环
2. 途径
由于丙酮酸不能直接进入TCA环,首先要进行氧化 脱羧乙酰CoA(CH3CO-S-CoA)TCA环。
20
(1)乙酰CoA的形成(丙酮酸脱羧氧化)
FADH2 2ATP P/O=2
1/2 O2
H2O 1/2 O2
H2O
46
47
EMP:
2NADH、2ATP、
丙酮酸+TCA:8NADH 、2FADH2、2ATP
EMP+TCA
光合作用 ( Photosynthesis )
绿色植物吸收太阳的光能,利用光能将水分解,放出 氧气,并将CO2还原为有机物,将光能转化成化学能 并贮藏在有机物中。这样一个过程被称为光合作用。
光合反应过程:
•光反应 (光下进行,基粒上完成)
•暗反应 (不需光, 基质中完成)
1
•光反应
光能的吸收和传递,水的光解释放氧气,光能转化 成电能,电能转化成活泼化学能(NADPH和 ATP 的形成)
10
一、糖酵解
EMP途径 ( Embden, Meyerhof and Parnus) 1. 概念
呼吸过程中糖的逐步分解,转化成丙酮酸的过程; 不需要氧。 是有氧呼吸与无氧呼吸共同具有的糖分解途径。
11
2. 过程
(1)准备阶段(磷酸化阶段)
消耗2 ATP
磷酸己糖激酶
G ATP
ADP
G -6- P
G
G-6-P
6P G
RU-5-P
每1分子葡萄糖氧化成核酮糖-5-磷酸:

植物生理学04呼吸作用

植物生理学04呼吸作用

植物生理学04呼吸作用呼吸作用是植物维持生命活动的关键过程之一、它是指植物通过氧气和糖在细胞内进行氧化还原反应,从而产生能量和二氧化碳的过程。

呼吸作用不仅能提供生命活动所需的能量,还能使植物控制体内的氧气和二氧化碳浓度。

呼吸作用在植物中分为两个过程:有氧呼吸和乳酸发酵。

有氧呼吸是指在充分供氧的条件下,植物以糖为底物,通过线粒体中的氧化还原反应产生能量、二氧化碳和水。

这是植物维持正常生命周期和生长发育的主要途径,也是光合作用的产物被利用的途径。

乳酸发酵是指在供氧不足的情况下,植物将糖转化为乳酸来产生能量。

有氧呼吸是通过三个主要步骤实现的:糖酵解、三羧酸循环和氧化磷酸化。

在糖酵解阶段,糖分子被分解成两分子的丙酮酸,然后再转化为乙酸,并进一步氧化生成还原辅酶NADH。

在三羧酸循环中,乙酸被氧化为二氧化碳,进一步产生ATP。

氧化磷酸化是最终产生ATP的过程,通过线粒体内部的电子传递链和ATP合成酶,将NADH和FADH2的能量转化为ATP和水。

其次,呼吸作用能够调节植物体内的氧气和二氧化碳浓度。

在光合作用中,植物通过吸收二氧化碳、释放氧气来合成有机物质。

然而,当光照强度降低或夜间无光时,植物停止光合作用,而进行呼吸作用。

这时,植物通过呼吸作用释放二氧化碳,保持了氧气和二氧化碳之间的平衡。

另外,呼吸作用还受到许多生态因素的调节。

温度是一个重要的调节因子,温度升高可以促进呼吸作用的进行,但也增加了氧化酶的活性,进而加速能量的消耗。

光照和氧气浓度也会影响呼吸作用。

高光照强度和氧气浓度会抑制呼吸作用,因为它们促进了光合作用,提供了足够的能量。

而低光照和氧气浓度则有助于呼吸作用的进行。

总之,呼吸作用是植物维持生命活动的重要过程之一,通过氧气和糖的氧化还原反应产生能量和二氧化碳。

它不仅提供了生长和发育所需的能量,还能调节植物体内的氧气和二氧化碳浓度,以适应不同的环境条件。

了解植物的呼吸作用有助于我们更好地理解植物的生命活动和生态适应性。

植物生理学第4章 呼吸作用

植物生理学第4章   呼吸作用

14.丙酮酸脱羧酶,15.乙醇脱氢酶,16.乳酸脱氢酶
无氧呼吸过程中,葡萄糖分子的大部分能量 仍保存在乳酸或酒精分子中。无氧呼吸导致细胞 有机物消耗大,能量利用效率低,乳酸和酒精积 累对原生质有毒害作用。
毕希纳(Eduard Buchner):德国化学 家,他于 1897 年发表《无细胞的发酵》 论文,证明离体酵母提取物可以象活体 酵母细胞一样将葡萄糖转变为酒精和二 氧化碳。这一研究成果结束了长达半个 世纪有关发酵的本质生命力论和机械论 的争论。 Eduard Buchner 由于毕希纳在微生物学和现代酶化 学方面做出重大项献,他被授予 1907 年 度诺贝尔化学奖。
糖酵解:葡萄糖到丙酮酸(在细胞质中)
葡萄糖的磷酸化作用 6—磷酸果糖的磷酸化作用 2分子1,3—DPGA的脱磷酸作用 2分子磷酸烯醇式丙酮酸的脱磷酸作用 2分子3—磷酸甘油醛氧化时生成的2NADH+H+ 丙酮酸转化为乙酰CoA(线粒体内)
(由于往返过程的消耗每分子NADH只能生成2ATP)
形成2NADH+H+
三羧酸循环(线粒体内 2分子琥珀酰CoA形成2分子GTP 2分子异柠檬酸,α —酮戊二酸和苹果酸氧化 作用中生成6NADH+H+ 2分子琥珀酰的氧化作用中生成2FADH2 每mol葡萄糖净生成
+6
+2 +18 +4 38molATP
1分子的葡萄糖通过糖酵解、三羧酸循环和电 子传递链彻底氧化成 CO2 和 H2O 时,总共产生 38 个ATP。
复合体I 鱼藤酮 复合体III 抗霉素A 复合体IV
氰化物,CO
2、电子传递支路1
H2O2 又在过氧化氢酶催化下分解释放氧
气,可氧化水稻根系周围的各种还原性物质 (如 H2S 、 Fe2+ 等),从而消除还原性物质对 水稻根的毒害,使水稻能在还原条件下的水田 中正常生长发育。

植物生理学04呼吸作用

植物生理学04呼吸作用
一 呼吸作用与作物栽培 保证正常呼吸,避免不正常呼吸。
二 呼吸作用与粮食储藏 降水、控温、控湿、控气、控微生物。
三 呼吸作用与果蔬储藏 降温、控氧(3-6%)、保湿、充N2等
第四章练习题 1 何谓植物的呼吸作用?它有什么生理作用? 2 EMP、HMP、TCA 途径的主要过程及各自特点是什么? 3 分析线粒体结构与呼吸作用的相关性。 4 举例说明植物呼吸过程中末端氧化具有多样性的生理义。 5 简述植物通过光合作用和呼吸作用所驱动的能量流动过程。 6 分析植物的光合作用和呼吸作用的相互关系。 7 空气中的氧对植物的呼吸有何影响?为什么? 8 指出柠檬酸、NADPH、NADH 对植物呼吸作用调控的作用 位
促进 抑制ຫໍສະໝຸດ 三腺苷酸能荷调节(一)能荷(EC) 1 定义:用以表示细胞中腺苷酸系统能量状态的指标。
75 100
[ATP] + 1/2 [ADP] 能荷=
[ATP] + [ADP] + [AMP]
ATP合成反应
相对速度(%)
2 能荷与代谢调节
50
通过反馈抑制,话细胞的
25
能荷一般稳定在0.75~0.95
间。能荷是细胞中ATP合
ATP利用反应
成反应和利用反应的调节
0
因素。
0.0
0.5
1.0
能荷
第六节 影响呼吸作用的因素
一 呼吸速率和呼吸商
(一)呼吸速率:
是度量呼吸强度的最常 用的生理指标。通常用植 物的单位鲜重、干重或原生质,在一定时间内所放出 CO2的量或吸收O2的量来表示。
(二)呼吸商
1 定义:呼吸商又称呼吸系数。是表示呼吸底物性
细胞质(基质):糖酵解 戊糖磷酸途径 线粒体:三羧酸循环 生物氧化

植物生理学-呼吸作用

植物生理学-呼吸作用

糖酵解途径分三个阶段:
(1) 已糖磷酸化 (2) 已糖磷酸的裂解 (3) ATP和丙酮酸的生成
糖酵解
和发酵途径
植物的呼吸代谢途径
糖酵解的生理意义

普遍存在于生物体中,是有氧呼吸和无氧呼吸的共同 途径

糖酵解一些中间产物(如丙糖磷酸)和最终产物丙酮酸
的化学性质十分活跃,参与不同物质的合成

为糖的异生提供了基本途径 糖酵解释放一些能量,供生物体需要,对于厌氧生物 来说是糖分解和获取能量的主要方式
呼吸作用的概念和生理意义
呼吸作用的生理意义

提供植物生命活动所需要的大部分能量 为其他化合物合成提供原料
呼吸作用的概念和生理意义
在进化上
无氧呼吸早于有氧呼吸,因为地球开始时无游离氧,只 有绿色光合生物出现后才有氧,进而有了有氧呼吸

至今仍有专性嫌气微生物只能在无氧下生活,有氧 反而有害

高等植物虽有各种氧化酶,但仍保存了无氧呼吸的 方式,在种子萌发初期和体积大的延存器官中(块根、 块茎及果实)内部仍进行无氧呼吸; 在水淹时也可进 行无氧呼吸
第四章 植物的呼吸作用
Plants carry on both photosynthesis and respiration
ቤተ መጻሕፍቲ ባይዱ
第四章 植物的呼吸作用
呼吸作用的概念和生理意义 植物的呼吸代谢途径 电子传递与氧化磷酸化
呼吸作用中能量的储存与利用 呼吸作用的调节和控制 影响呼吸作用的因素 呼吸作用与农业生产
影响呼吸作用的因素
O2 O2浓度下降时,有氧呼吸抑制,无氧呼吸增强 长时间无氧呼吸会造成植物受伤死亡 CO2
CO2对呼吸作用具有抑制作用,但只有在CO2浓度远远超

植物生理学—植物呼吸作用

植物生理学—植物呼吸作用
• 反应特点: 1.不需要氧气参与; 2.最终产物:丙酮酸; 3.反应部位:细胞质中进行。
• 糖酵解专一抑制剂:碘代乙酸、氟化物 • 糖酵解全过程净产生2个ATP,2个NADH,折合8个ATP。
C6H12O6+2Pi+2ADP+2NAD+ ------→2CH3COCOOH+2ATP+2NADH+2H+ • 无氧条件下丙酮酸脱羧还原成酒精或直接还原成乳酸; • 有氧条件下脱羧形成乙酰辅酶A(Ac-CoA),进入TCAC。 可见,EMP是有氧呼吸和无氧呼吸必经的共同途径。
酸磷酸) FMN 黄素单核苷酸(flavin
mononucleotide) FAD 黄素腺嘌呤二核苷酸(flavin
adenine dinucleotide) UQ 泛醌(ubiquinone)辅酶Q(UQ或CoQ)
电子传递体: 在呼吸链中指细胞色素体系和Fe-S蛋白,只传递电子。细胞色素是一类以 铁卟啉为辅基的结合蛋白,可分为Cyta、Cytb、Cytc三类。
第五章 植物的呼吸作用
• §1 • §2 • §3 • §4 • §5 • §6
呼吸作用的概念和意义 植物的呼吸代谢途径 生物氧化 呼吸作用的调节和控制 影响呼吸作用的因素
呼吸作用与农业生产
植物代谢中心
• 呼吸作用和光合作用共同组成了绿色植物代谢 核心。
• 植物通过光合作用捕获太阳能,合成有机物, 而通过呼吸作用将有机物氧化分解,释放能量 用于生命活动,它的中间产物在植物体各种主 要物质转变中起枢纽作用,所以呼吸作用是植 物代谢中心。
氧化磷酸化抑制剂
• 氧化磷酸化抑制剂分两类: (1)电子传递抑制剂:如果将电子传递链打断,磷酸化
作用因得不到氧化作用释放出的能量,氧化磷酸化无 法进行;

植物生理学的呼吸作用的名词解释

植物生理学的呼吸作用的名词解释

植物生理学的呼吸作用的名词解释植物是地球上最古老的生物之一,它们通过光合作用将太阳能转化为化学能,从而为地球上的生物提供食物和氧气。

然而,植物并不只是光合作用的受益者,它们也需要进行呼吸作用来维持自身的生命活动。

本文将对植物生理学中呼吸作用相关的名词进行解释。

1. 呼吸作用呼吸作用是指植物通过氧气代谢有机物质并释放出能量的过程。

与动物不同,植物的呼吸作用并不涉及外部空气的吸入和排出,而是通过气孔和根系进行气体交换。

呼吸作用在植物的每个细胞中发生,为植物提供所需的能量,用于生长、细胞分裂、物质运输等生物学过程。

2. 呼吸速率呼吸速率是指单位时间内细胞呼吸释放的二氧化碳量。

呼吸速率是植物活动状态的重要指标,通常与生理状态和环境条件密切相关。

在气候温暖、光照充足的条件下,植物的呼吸速率较高;而在低温、暗处或其他不利生长因素下,呼吸速率会降低甚至停止。

3. 有氧呼吸有氧呼吸是指植物利用氧气来氧化有机物质并释放能量的呼吸过程。

这是一种高效的能量产生方式,其主要发生在植物细胞的线粒体中。

在有氧条件下,植物通过有氧呼吸将光合作用产生的葡萄糖转化为ATP(三磷酸腺苷),以供植物细胞的生理活动使用。

4. 无氧呼吸无氧呼吸是指在缺乏氧气的情况下,植物细胞利用发酵途径进行能量产生的呼吸形式。

这种呼吸方式相对低效,并会产生乳酸、酒精等副产物。

无氧呼吸通常在光合作用暂停或无法进行的情况下发生,例如夜间或根系缺氧的情况下。

5. 呼吸代谢呼吸代谢是指植物通过呼吸作用将有机物质氧化分解,释放出能量和二氧化碳的过程。

呼吸代谢不仅在植物的生长发育过程中起着重要作用,同时也参与了植物对环境的响应。

植物在遭受脆弱条件下(如干旱、低温等)会调节呼吸代谢以适应环境变化。

6. 呼吸节律呼吸节律是指植物呼吸速率在一定时间范围内周期性变化的现象。

植物的呼吸节律受到光周期、温度、水分等内外环境因素的影响。

光周期调节的呼吸节律主要与植物的光合活动有关,而温度和水分则会直接影响细胞呼吸速率的调节。

植物生理学-第四章植物的呼吸作用

植物生理学-第四章植物的呼吸作用
单击此处添加标题
指植物组织在一定时间内,释放CO2与吸收O2的数量比值。
单击此处添加标题
释放CO2的量 R·Q = 吸收O2的量
单击此处添加标题
R·Q是表示呼吸底物的性质和氧气供应状态的一种指标。
单击此处添加标题
R·Q = 6CO2 / 6O2= 1
1、呼吸底物的性质 (1)呼吸底物为糖类(G)而又完全氧化时,R·Q为1。
乙醇酸氧化E(过氧化物体)
章节一
细胞色素氧化
交替氧化E
酚氧化E
Vc氧化E
乙醇酸氧化E
分布部位
所含金属
对O2亲 和力
对氰 化物敏感
线粒体 线粒体 质体 细胞质 过氧化 微体 物体
若糖类在缺氧情况下进行酒精发酵,呼吸商大于1,异常的高; 若在呼吸过程中形成不完全氧化的有机酸,呼吸商小于1。如G不完全氧化成苹果酸:
三、呼吸速率的影响因素
(一)内部因素的影响 1、不同植物种类,呼吸速率不同。
植物种类 呼吸速率(氧气,鲜重) μl · g-1 · h-1 仙人掌 3.00 蚕豆 96.60 小麦 251.00 细菌 10 000.00
二、呼吸商的影响因素
C6H12O6 + 6O2 6CO2 + 6H2O
R·Q = 4CO2 / 11O2= 0.36
如:油料种子萌发初期,棕榈酸先氧化为蔗糖。
(2)若呼吸底物是富含氢的物质,如蛋白质或脂肪,则呼吸商小于1。
C16H32O2 + 11O2 C12H22O11 + 4CO2 +5H2O
乙醇酸氧化途径
PPP在G降解中所占的比例与生理过程有关:
感病、受旱、受伤的组织中,PPP加强 植物组织衰老时,PPP所占比例上升 水稻、油菜等种子形成过程中,PPP所占比例上升

植物的呼吸作用 植物生理学

植物的呼吸作用 植物生理学

第二章植物的呼吸作用本章内容提要呼吸作用是高等植物的重要生理功能。

呼吸作用的停止,就意味生物体的死亡。

呼吸作用将植物体内的物质不断分解,提供了植物体内各种生命活动所需的能量和合成重要有机物质的原料,还可增强植物的抗病力。

呼吸作用是植物体内代谢的中心。

呼吸作用按照其需氧状况,可分为有氧呼吸和无氧呼吸两大类型。

在正常情况下,有氧呼吸是高等植物进行呼吸的主要形式,但至今仍保留着无氧呼吸的能力。

呼吸代谢通过多条途径控制其他生理过程的运转,同时又受基因和激素、环境等通过影响酶活性所控制。

呼吸代谢的多样性是植物长期进化中形成的一种对多变环境的适应性表现。

EMP-TCAC是植物体内有机物质氧化分解的主要途径,而PPP、GAC途径和抗氰呼吸在植物呼吸代谢中也占有重要地位。

呼吸底物的彻底氧化,包括CO2的释放与H2O的产生,同时将底物中的能量转换成ATP 形式的活跃化学能。

EMP-TCAC只有CO2的形成,没有H2O的形成,绝大部分能量还贮存在NADH 和UQH2中。

这些物质经过电子传递和氧化磷酸化将部分能量贮存于高能键中,ATP中的高能磷酸键是最重要的能量贮存形式,因而,呼吸电子传递链和氧化磷酸化在植物生命活动中至关重要。

呼吸代谢与植物体内氨基酸、蛋白质、脂肪、激素、次生物质的合成、转化有密切关系。

植物呼吸代谢各条途径都可通过中间产物,辅酶、无机离子及能荷加以反馈调节。

植物呼吸代谢受着内、外多种因素(主要是生理状态、温度、O2、CO2)的影响。

呼吸作用影响植物生命活动的全局,因而与农作物栽培、育种和种子、果蔬、块根块茎的贮藏都有着密切的关系。

可根据人类的需要和呼吸作用自身的规律采取有效措施,加以调节、利用。

植物的一个重要特征就是新陈代谢(metabolism)进行物质与能量的转变,新陈代谢包括许多物质与能量的同化(assimilation)与异化(disassimilation)过程。

植物呼吸代谢集物质代谢与能量代谢为一体,是植物生长发育得以顺利进行的物质、能量和信息的源泉,是代谢的中心枢纽,没有呼吸就没有生命。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(三)氧化磷酸化的解偶联剂和抑制剂
2.3 磷酸戊糖途径(PPP)
作用: 1.提供还原力NADPH2, 2.提供中间产物, 3.也能产生能量。 R-5-P→dR5P……nuclear acid. E4P + PEP→C7……莽草酸途径→芳香族氨 基酸、 植物激素。酚、醌类
油料种子形成,病虫害,开花等PPP增加。 判断: 最初脱下的CO2中C6/ C1比值。 全为PPP时C6/ C1为0;EMP-TCAC6/ C1 为 1。 如比值在0-1之间,说明两条途径都有。
重要中间产物: Pyr(丙酮酸)→Ala PEP→OAA PEP+E4P→C7…… 莽草酸途径……芳 香族氨基酸、植物 激素。
2.2
TCA cycle (Tricarboxylic acid cycle)
• 丙酮酸,在有 氧条件下, 逐 步氧化分解, 最终形成水和 CO2的过程。 Krebs cycle。
2)Alternate oxidase(Cyanide-resistant oxidase) -- 对氰化物不敏感的氧化酶。 不受CN-和N3-及CO等呼吸抑制剂所抑制的呼 吸被称为抗氰呼吸。


在氰化物存在条件下仍运行的呼吸作用称为抗氰呼吸,也即 是对氰化物不敏感的那一部分呼吸。 抗氰呼吸可以在某些条件下与细胞色素电子传递主路(CP)交 替运行,抑制正常电子传递途径就可促进抗氰呼吸的发生, 因此,抗氰呼吸又称为交替途径(alternative pathway AP),
有氧呼吸与无氧呼吸共有的道路(阶段)
是什么?
Section 2. 呼吸作用途径
2.1 糖酵解Glycolysis--- EMP pathway
糖酵解指在细胞质中己糖降解成丙酮酸过程
• 以葡萄糖为例,糖酵解总的反应可以概括成: • C6H12O6+2NAD+2ADP+2Pi→2丙酮酸 +2NADH2+2ATP+2H2O
Chapter 4 呼吸作用
Section 1. 概念及生理意义
1.1 呼吸作用的概念 1.1.1 有氧呼吸Aerobic respiration 指生活细胞在O2的参与下,可把某些有 机物质彻底氧化分解,放出CO2并形成 H2O,同时释放能量的过程。 呼吸底物:糖、脂肪和蛋白质。常用的 呼吸底物是G。

杀青:100- 300℃,破坏酚 酶活性
制绿茶的3个工序: 杀青 揉捻 干燥 干燥:可用 炒、烘或晒 3种方法除 去水分
揉捻: 使叶 卷成条形,并 破坏其组织, 以利于冲泡浸 出茶汁。
末端氧化酶的多样性
这是植物在长期进化过程中对多变环境的适 应表现。然而,植物体内存在着的多条化学 途径并不是同等运行的。 随着不同的植物种类、不同的发育时期、不 同的生理状态和环境条件而有很大的差异。 在正常情况下以及在幼嫩的部位,生长旺盛 的组织中均是TCA途径占主要地位。
(2)酚酶与植物的呈色、褐变有关 在制茶,烤烟和水果加工中都要根据酚酶的特性加以利用在 制茶工艺上酚酶是决定茶品质的关键酶类:

绿茶:鲜叶经 杀青-揉捻-干燥 3 个工序 杀青:100-300℃,破坏酚酶活性,保留较多的叶绿素、 多酚类、维生素C等 揉捻:使叶卷成条形,破坏其组织,以利于冲泡浸出茶汁, 干燥:可用炒、烘或晒3种方法除去水分。 红茶:鲜叶经 萎淍-揉捻-发酵-干燥 4个工序 萎淍:将鲜叶摊成薄层,水分蒸发,脱去20%-30%的水,增 强酶活性,以利多酚类氧化 揉捻:要求对叶细胞组织有较大的破坏,使酚类和酚酶与空 气充分接触 发酵:使多酚类的没食子茶素及其没食子酸酯先行氧化为邻 醌,再逐步氧化缩合,成为茶黄素和茶红素(20-40℃) 干燥:蒸发水分,破坏酶活性,固定发酵过程中形成的有效 物质。
最著名的抗氰呼吸例子是 天南星科植物的佛焰花序, 它的呼吸速率很高,O2的吸 收可达每 g 鲜重 15 000 ~ 20 000μl·g-1·h-1 ,比一般植 物呼吸速率快 100 倍以上, 同时由于呼吸放热 ,可使 组织温度比环境温度高出 10~20℃。 抗氰呼吸又称为放热呼吸。
雌花
天南星科植物的佛焰花序
TCA循环的生理意义: 1)生命活动所需能量来源的主要途径。 丙酮酸经过TCA循环有5步氧化反应脱下5对 氢,其中4对氢用于还原NAD+,形成 NADH+H+ 另一对从琥珀酸脱下的氢,是将膜可溶性的 泛醌(UQ)还原为UQH2,它们再经过呼吸 链将H+和电子传给分子氧结合成水,同时发 生氧化磷酸化生成ATP。
吸氧和产生
H2O的过程。
3.1
线粒体的结构与功能
• 线粒体呈球形 或短杆状,直 径为0.5~ 1.0μm,长约 1~2μm, 500~2000/cell。
3.2

呼吸链
呼吸链是指在线粒体内膜上按氧化还原电位 高低有序排列的一系列氢及电子传递体构成的 链系统。
3.3
末端氧化酶 末端氧化酶是把底物的电子传递到分子氧并 形成H2O或H2O2的酶。 • 3.3.1 线粒体内的末端氧化酶 • 1)Cytochrome oxidase—Cy taa3
2)体内各类有机物相互转变的中心环节。 TCA循环不仅是糖代谢的重要途径,也是脂肪、 蛋白质和核酸代谢的最终氧化成CO2和H2O的 重要途径。
2.3 磷酸戊糖途径(PPP)
PPP是发生在细胞质中的G-6-P直接脱H、脱羧 氧化, 放出CO2的过程。 1.G6P后经两次脱氢,一次脱羧形成Ru5P。 2. 6Ru5P通过分子重排(C3、C4、C5、C7)重 新形成G6P(每1循环实际消耗1G)。
海 竽
Alocasia macrorrhiza (Linn.) Schott 天南星科是单子叶植物中主产 于热带的大科。本科多为荫湿环境下的多汁草本植物,大型佛焰苞包围 的肉穗花序是本科的重要特征。 以海竽为例,看佛焰苞和肉穗花序。花后果序红色艳丽,亦具有观赏意 义。 海竽属大型草本,叶盾状着生,阔卵形,基部心状箭形,佛焰苞粉 绿色。生荫湿林下,有毒植物,根茎亦入药。
呼吸底物的降解主要由哪三组相联系的反应
过程组成? 什么是糖酵解?其发生的部位在哪里?有几次 脱氢氧化,脱氢辅酶是什么?消耗、产生ATP 的数目? 糖酵解(EMP)的终产物是什么? 什么是TCA循环?其发生位置、脱氢次数、脱 氢辅酶、脱羧次数、产生ATP的数目? PPP发生位置、脱氢次数、脱氢辅酶、脱羧次 数?

电子自NADH脱下后,经FMN—FeS传递到UQ,然后不是进入细胞 色素电子传递系统,而是从UQ处分岔,经FP和交替氧化酶 (alternative oxidase AO ,也即抗氰氧化酶),把电子交给 分子氧.
该途径可被鱼藤酮抑制,不被抗霉素A和氰化物抑制, 其P/O比为1或低于1。 在高等植物中抗氰呼吸是广泛存在的,例如天南星科、 睡莲科和白星海芋科的花器官与花粉,玉米、水稻、豌 豆、绿豆和棉花的种子、马铃薯的块茎、甘薯的块根和 胡萝卜的根等。此外在黑粉菌、酵母菌(许多真菌、藻类、原 生动物、酵母) 等多种微生物中也发现有抗氰呼吸的存在。 抗氰呼吸虽然普遍,但并非存在于所有植物中,而且抗氰 的程度也有很大差别。

在缺氧条件下,植物体内丙酮酸有氧分解被 抑制而积累,并进行无氧呼吸,其产物也是 多种多样的。 而在衰老,感病、受旱、受伤的组织中,则 戊糖磷酸途径加强。 富含脂肪的油料种子在吸水萌发过程中,则 会通过乙醛酸循环将脂肪酸转变为糖。 水稻根系在淹水条件下则有乙醇酸氧化途径 运行。

什么是呼吸链、呼吸链上的电子传递体、氢传
TCA是多步可逆,但柠檬酸的合成,α-酮戊二酸脱 氢脱羧上不可逆的,故整个循环是单方向的。 TCA循环可以通过产物调节和底物调节 调节的关键因素是:[NADH]/[NAD]、 [ATP]/[TDP]、OAA和乙酰CoA浓度等代谢物 的浓度。
酶的调控主要在三个调控酶,包括: 柠檬酸合成酶:关键限速酶,NAD+为别构激 活剂,NADH和ATP为别构抑制剂。OAA,乙酰 CoA浓度高时可激活,琥珀酰CoA抑制此酶。 异柠檬酸脱氢酶:NAD+为别构激活 剂,NADH和ATP为别构抑制剂。ADP激活, 琥珀酰CoA抑制。 α-酮戊二酸脱氢酶:NAD+为别构激活 剂,NADH和ATP为别构抑制剂,受琥珀酰CoA 抑制。
TCA cycle总结
在细胞的线粒体间质中进行 脱去3分子CO2。 脱去5对氢,4NADH2,1FADH2。 三羧酸循环总反应式:
2Pyr+8NAD +2FAD+2ADP+2Pi +4H2O →6 CO2+2ATP+8NADH2+2FADH2 TCA循环的重要中间产物。 α-KG→Glu, 叶绿素, OAA → Asp, CH3COCoA →脂肪酸,NADH2
• 3.3.2 线粒体外的末端氧化酶
1)
酚氧化

• 2) 抗坏血酸 氧化酶
酚氧化酶(phenol oxidase) 也称多酚氧化酶、酚酶, 普遍存在的质体、微体中,可催化分子氧对多种酚的氧化, 酚氧化后变成醌,并进一步聚合成棕褐色物质。



(1)酚酶与植物的“愈伤反应”有关系 植物组织受伤后呼吸作用增强,这部分呼吸作用称为“伤呼 吸” (wound respiration)。伤呼吸把伤口处释放的酚类氧 化为醌,而醌类往往对微生物是有毒的,这样就可避免感染。 当苹果或马铃薯被切伤后,伤口迅速变褐,就是酚氧化酶的作 用。在没有受到伤害的组织细胞中,酚类大部分都在液泡中, 酚酶在质体中,底物与酶不在一处,所以酚类不被氧化。
Section 3 生物氧化
生物氧化:
广义上指在活细胞内,有机物质氧化降解,包括消
耗O2,生成CO2和H2O及放出能量的总过程。
它是经一系列酶催化、在常温和以H2O为介质的环境中进行,并 且是逐步完成的,能量也是逐步释放出来的。这些能量的相当大 部分是以高能键形式贮存,供各种生理活动之需。 狭义上指电子传递、氧化磷酸化,
相关文档
最新文档