通信电子电路高频实验报告

合集下载

高频电子线路实验报告

高频电子线路实验报告

实验一高频小信号放大器1.1 实验目的1、掌握高频小信号谐振电压放大器的电路组成与基本工作原理。

2、熟悉谐振回路的调谐方法及测试方法。

3、掌握高频谐振放大器处于谐振时各项主要技术指标意义及测试技能。

1.2、实验容1.2.1 单调谐高频小信号放大器仿真1、根据电路中选频网络参数值,计算该电路的谐振频率ωp 。

MHz CLw p 936.2105801020011612=⨯⨯⨯==--2、通过仿真,观察示波器中的输入输出波形,计算电压增益A v0。

,708.356uV V I = ,544.1mV V O = 电压增益===357.0544.10I O v V V A 4.3253、利用软件中的波特图仪观察通频带,并计算矩形系数。

波特图如下:4、改变信号源的频率(信号源幅值不变),通过示波器或着万用表测量输出电压的有效值,计算出输出电压的振幅值,完成下列表,并汇出f~A v相应的图,根据图粗略计算出通频带。

f0(KHz)65 75 165 265 365 465106516652265286534654065 U0(mv) 0.9771.0641.3921.4831.5281.5481.4571.2821.0950.4790.840.747A V 2.7362.9743.8994.1544.284.3364.0813.5913.0671.3412.3522.092BW0.7=6.372MHz-33.401kHz5、在电路的输入端加入谐振频率的2、4、6次谐波,通过示波器观察图形,体会该电路的选频作用。

1.2.2 双调谐高频小信号放大器1、通过示波器观察输入输出波形,并计算出电压增益A v0。

,285.28mV V I =,160.5V V O =33.1820283.0160.50===I O v V V A 输入端波形:输出端波形1、利用软件中的波特图仪观察通频带,并计算矩形系数。

BW0.7=11.411MHz-6.695MHz BW0.1=9.578MHz-7.544MHz 矩形系数K=0.431实验二高频功率放大器2.1 实验目的1、掌握高频功率放大器的电路组成与基本工作原理。

高频仿真实验报告

高频仿真实验报告

实验报告实验课程:通信电子线路实验(软件部分)学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期: 2014-10-24 实验成绩:、实验三非线性丙类功放仿真设计(软件)一、实验目的1.了解丙类功率放大器的基本工作原理.掌握丙类放大器的调谐特性以及负载改变时的动态特性。

2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。

3. 掌握丙类放大器的计算与设计方法。

二、实验内容1. 观察高频功率放大器丙类工作状态的现象.并分析其特点2. 测试丙类功放的调谐特性3. 测试丙类功放的负载特性4. 观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。

功率放大器电流导通角越小.放大器的效率越高。

非线性丙类功率放大器的电流导通角小于90°.效率可达到80%.通常作为发射机末级功放以获得较大的输出功率和较高的效率。

特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小).基极偏置为负值.电流导通角小于90°.为了不失真地放大信号.它的负载必须是LC谐振回路。

在丙类谐振功放中.若将输入谐振回路调谐在输出信号频率n次谐波上.则可近似的认为.输出信号回路上仅有ic中的n次谐波分量产生的高频电压.而它的分量产生的电压均可忽略。

因而.在负载RL上得到了频率为输入信号频率n倍的输出信号功率。

通信电子电路高频谐振功率放大器实验报告

通信电子电路高频谐振功率放大器实验报告

实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师高频谐振功率放大器预习报告实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。

2.掌握输入激励电压,集电极电源电压及负载变化对放大器工作状态的影响。

3.通过实验进一步了解调幅的工作原理。

实验内容1.实验准备在实验箱主板上装上幅度调制与无线发射模块,接通电源即可开始实验。

2.测试前置放大级输入、输出波形高频信号源频率设置为6.3MHZ,幅度峰-峰值300mV左右,用铆孔线连接到1P05,用示波器测试1P05和1TP07的波形的幅度,并计算其放大倍数。

由于该级集电极负载是电阻,没有选频作用。

3. 激励电压、电源电压及负载变化对丙类功放工作状态的影响U对放大器工作状态的影响(1)激励电压bE=5V左右(用万用表测1TP08直流电压, 1W05 1K03置“右侧”。

保持集电极电源电压cR=10KΩ左右(1K04置“右侧”,用万用表测1TP11电阻, 1W6逆时针调到底),负载电阻L顺时针调到底,然后1K04置“左侧”)不变。

高频信号源频率1.9MHZ左右,幅度200mv(峰—峰值),连接至功放模块输入端(1P05)。

示波器CH1接1P08,CH2接1TP09。

调整高频信号源频率,使功放谐振即输出幅度(1TP08)U,观察1TP09电压波形。

信号源幅度变化最大。

改变信号源幅度,即改变激励信号电压b时,应观察到欠压、临界、过压脉冲波形。

其波形如图7-7所示(如果波形不对称,应微调高频信号源频率,如果高频信号源是DDS信号源,注意选择合适的频率步长档位)。

实验报告1.认真整理实验数据,对实验参数和波形进行分析,说明输入激励电压、集电极电源电压,负载电阻对工作状态的影响。

2.用实测参数分析丙类功率放大器的特点。

3.总结由本实验所获得的体会。

高频电子线路课程设计实验报告

高频电子线路课程设计实验报告

高频电子线路课程设计报告班级姓名指导教师日期前言:课程设计是电子技术课程的实践性教学环节,是对学生学习电子技术的综合性训练,该训练通过学生独立进行某一课题的设计、安装和调试来完成。

学生通过动脑、动手解决若干个实际问题,巩固和运用在高频电子线路课程中所学的理论知识和实验技能,基本掌握常用电子电路的一般设计方法,提高设计能力和实验技能,为以后从事电子电路设计、研制电子产品打下基础。

本文设计了包括选频网络的设计、超外差技术的应用和三点式振荡器在内的基础设计以及振幅调制与解调电路的设计。

选频网络应用非常广泛,可以用作放大器的负载,具有阻抗变换、频率选择和滤波的功能;超外差技术是指利用本地产生的振荡波与输入信号混频,将输入信号频率变换为某个预定的频率的电路,主要指混频电路;三点式振荡器用于产生稳定的高频振荡波,在通信领域应用广泛;振幅调制解调都属于频谱的线性搬移电路,是通信系统及其它电子线路的重要部件。

在设计过程中查阅了大量相关资料,对所要设计的内容进行了初步系统的了解,并与老师和同学进行了充分的讨论与交流,最终通过独立思考,完成了对题目的设计。

实验过程及报告的完成中存在的不足,希望老师给予纠正。

目录摘要 (4)设计内容 (5)设计要求 (5)一、基础设计 (6)1、选频网络的设计 (6)2、超外差技术的设计 (9)3、三点式振荡器的设计 (11)二、综合设计:调幅解调电路的设计 (15)1、调幅电路的设计: (15)2、解调电路的设计 (20)结束语 (26)参考文献: (26)心得体会 (27)高频电子线路课程设计摘要本次课程设计主要任务是完成选频网络的设计、超外差技术的应用、三点式振荡器的设计这三个基础设计以及调幅解调电路的综合设计。

其中采用LC并联谐振回路实现谐振频率为8.2MHz,通频带为600KHZ的选频网络;对超外差技术原理进行了学习并针对其主要应用收音机进行详细的说明;对三点式振荡器的构造原则和主要类型进行简明扼要地介绍,采用电容串联改进型电容三点式振荡电路完成一定振荡频率的振荡器的设计;充分了解了调幅解调的原理并进行详细说明,在此基础上设计幅度调制和解调电路。

高频电子电路实验报告一

高频电子电路实验报告一

调频接收机设计与调试一设计目的通过本课程设计与调试,提高动手能力,巩固已学的理论知识,能建立无线电调频接收机的整机概念,了解调频接收机整机各单元电路之间的关系及相互影响,从而能正确设计、计算调频接收机的单各元电路:输入回路、高频放大、混频、中频放大、鉴频及低频功放级。

初步掌握调频接收机的调整及测试方法。

二调频接收机的主要技术指标1.选择性接收机从各种信号和干扰中选出所需信号(或衰减不需要的信号)的能力称为选择性,单位用dB(分贝)表示dB数越高,选择性越好。

调频收音机的中频干扰应大于50dB。

2.灵敏度接收机接收微弱信号的能力称为灵敏度,通常用输入信号电压的大小来表示,接收的输入信号越小,灵敏度越高。

调频广播收音机的灵敏度一般为5~30uV。

3.工作频率范围接收机可以接受到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。

接收机的工作频率必须与发射机的工作频率相对应。

如调频广播收音机的频率范围为88~108MH,是因为调频广播收音机的工作范围也为88~108MHz4.频率特性接收机的频率响应范围称为频率特性或通频带。

调频机的通频带一般为200KHz。

5.输出功率接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。

三基本设计原理调频接收机的组成一般调频接收机的组成框图如图所示。

其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。

本机振荡器输出的另一高频 f2亦进入混频级,则混频级的输出为含有f1、f2、(f1+f2)、(f2-f1)等频率分量的信号。

混频级的输出接调频回路选出中频信号(f2-f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。

由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。

中放的任务,是把变频器输出的中频信号放大后,输入到检波器。

通信电子电路高频实验报告

通信电子电路高频实验报告

实验一高频小信号谐振放大器一、实验目的1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。

2.了解高频小信号的质量指标和谐振放大器的性能。

3.掌握L,C参数对谐振频率的影响。

4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。

二、预习要求1.复习高频小信号放大器的功用。

答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。

由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。

就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。

一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。

2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,宽带放大器。

三、实验内容1.参照电路原理图1-1连线。

,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f电感。

图1-1 小信号谐振放大器1.在选用三极管时要查晶体管手册,使参数合理。

2.观察瞬态分析的波形输出及频谱分析是否合理。

3.在pspice中设定:参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。

V2参数CD=12V。

V1在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。

②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。

、Lntervat为10。

③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V1四、实验报告1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成表1-12.画出输入信号和输出信号的波形;(根据图形输出)仿真图如下:3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;=60Au=UoUi(2)测量放大器的通频带;谐振回路的通频带:BW=fH-fL =0.02MHz实验二三点式振荡器一、实验目的1.熟悉三点式振荡器的工作原理及电路构成。

高频单级两级小信号单双调谐放大器通信电子电路硬件实验报告

高频单级两级小信号单双调谐放大器通信电子电路硬件实验报告

实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

二、实验内容1、测量各放大器的电压增益;三、实验仪器BT-3扫频仪(选做)一台、20MHz 示波器一台、数字式万用表一块、调试工具一套四、实验基本原理1、单级单调谐放大器图1-1单级单调谐放大器实验原理图实验原理图如图1 —1所示,本实验的输入信号(10.7MHz )由正弦波振荡器模块的石英晶体振荡器或高频信号源提供。

信号从TP5处输入,从TP10处输出。

调节电位器W3可改变三极管Q2的静态工作点,调节可调电容CC2和中周T2可改变谐振回路的幅频特性。

2、单级双调谐放大器图1-2单级双调谐放大器实验原理图实验原理图如图1-2所示,单级双调谐放大器和单级单调谐放大器共用了一部分元器件。

两个谐振回路通过电容C20 (1nF)或C21 (10 nF)耦合,若选择C20为耦合电容,则TP7接TP11;若选择 C21为耦合电容,则 TP7接TP12。

3、双级单调谐放大器+ 12 V图1-3双级单调谐放大器实验原理图实验原理图如图1-3所示,若TP5处输入信号的峰峰值为几百毫伏,经过第一级放大 器后可达几伏,此信号幅度远远超过了第二级放大器的动态范围, 从而使第二级放大器无法发挥放大的作用。

同时由于输入信号不可避免地存在谐波成分,经过第一级谐振放大器后, 由于谐振回路频率特性的非理想性,放大器也会对残留的谐波成分进行放大。

所以在第一级与第二级放大器之间又加了一个陶瓷滤波器( FL3), 一方面滤除放大的谐波成分,另一方面使第二级放大器输入信号的幅度满足要求。

实验时若采用外置专用函数信号发生器,调节第一级放大器输入信号的幅度,使第一级 放大器输出信号的幅度满足第二级放大器的输入要求, 则第一级与第二级放大器之间可不用再经过FL3。

4、双级双调谐放大器实验原理图如图1-4所示,第一级放大器两谐振回路的耦合电容( C20、C21)可选,第二级放大器两谐振回路的耦合电容不可选(固定为 C26, 1 nF ),两级放大器之间是否接FL3及相应原因与两级单调谐放大器相同。

高频电子线路实验报告

高频电子线路实验报告

高频电子线路实验报告起止日期:年至年第学期学生姓名班级学号成绩指导教师电气与信息工程学院实验一高频小信号调谐放大器(3课时)一、实验目的1.掌握小信号调谐放大器的基本工作原理。

2.谐振放大器电压增益、通频带、选择性的定义、测试及计算。

二、实验仪器、器材1.THCGP-1 型高频电子线路综合实验箱 1 台2.双踪示波器 DS-5042M 1台万用表 MF-47 型 1 块3.器材:单调谐小信号放大模块 1 块三、实验原理单调谐小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图 2-1 所示(模块②上)。

图 2-1 实验电路该电路由三极管 Q1 及其集电极选频回路 T1 组成。

它对输入的高频小信号进行放大,并具有一定的选频作用。

基极偏置电阻 W3、R22、R4 和射极电阻 R5 决定三极管的静态工作点。

可变电阻 W3 改变基极偏置电阻将改变三极管的静态工作点,从而可改变放大器的增益。

四、实验步骤(一)单调谐小信号放大器单元电路实验1.根据图 2-1 实验电路熟悉实验板电路,并在电路板上找出与原理图对应的各测试点。

2.按图 2-2 所示图连接好实验电路。

3.打开实验箱电源,按下信号源和频率计的电源开关,此时开关下方的工作指示灯点亮。

4.打开小信号调谐放大器的电源开关,并观察工作指示灯是否点亮。

5.调节信号源“RF 幅度”和“频率调节”旋钮,使输出端口“RF1”“RF2”输出。

频率为 10.5MHz 左右的高频信号。

将信号输入到 2 号板的 J4 口。

先用示波器在 TH1 处观察信号峰-峰值约为 50mV。

(先调频率再调幅度)图 2-2 测试连接图6.调节高频信号发生器的输出信号频率,使单调谐放大器谐振:操作方法:将示波器探头接在调谐放大器的输出端 TH2,调节示波器直至能观察到输出信号的波形,先调节 W3 使输出信号幅度最大,再调节高频信号发生器的输出信号频率使示波器上的信号幅度最大(先用 500KHz 档调节,再用 20 KHz 档调节,直到示波器上的信号幅度最大),此时放大器即被调谐到输入信号的频率点上。

高频电子电路实习报告(实习报告).doc

高频电子电路实习报告(实习报告).doc

高频电子电路实习报告(实习报告)高频电子电路实习报告一:实习目的1、学习焊接电路板的相关知识,熟练掌握焊接的具体操作。

2、阅读收音机的原理电路图,了解收音机的基本原理,并学会手工组装和焊接收音机。

3、学会调试收音机并清楚地接收收音机。

4、学习使用protel电路设计软件并手动绘制电路图。

焊接技巧或注意事项焊接是安装电路的基础,我们必须注意自己的技巧和注意事项。

1、焊接前,插入电熨斗并加热。

当2、焊接时,焊料和电路板之间的角度、烙铁和电路板之间的角度优选为45度,使得焊料和烙铁之间的角度为90度。

3、在焊接过程中,焊料和电烙铁之间的接触时间不应太长,以免焊料过多或漏锡。

也不要太短,以免造成虚焊。

4、元素的腿应该尽可能直,并且不要延伸太长。

最好用1毫米,多余的可以剪掉。

当5、焊接完成时,焊料应优选为光滑的圆锥形,并具有金属光泽。

三:无线电原理该无线电由输入环路高电平混频级、一级中间级、二级中间级、前端低电平和检测级、低电平和功率放大级等组成。

接收频率范围为535千赫至1065千赫的中段。

1、的具体原理如图所示:2、安装工艺要求:焊接前用万用表测量各部件,以便于掌握。

在安装过程中,安装低层和耐热部件(如电阻),然后安装较大的部件(如中循环、变压器),最后安装耐热部件(如三极管)。

电阻器的安装:在选择电阻器的电阻值后,根据两个孔之间的距离弯曲电阻器腿,可以水平安装在靠近电路板的地方,也可以垂直安装在高度一致的地方。

陶瓷电容和三极管剪刀撑的长度应适中,不应超过中间圆的高度。

电解电容器与电路板垂直紧密焊接,如果过高,将影响后盖的安装。

、棒线圈的四个引线头可以直接用电烙铁和松香焊丝来回摩擦数次自动镀锡,四个引线头对应焊接在电路板的铜面上。

由于安装时调音用的双盘离电路板很远,焊接前用斜口钳切断其周边较高部分的元器件脚,以避免安装或配合时的障碍。

影响刻度盘调谐的元件包括T2和T4引脚和接地片、 3双、开关引脚的引出引脚和电位计的一个引脚。

高频电子的实验报告

高频电子的实验报告

一、实验名称:高频电子线路实验二、实验目的:1. 掌握高频电子线路的基本原理和实验方法。

2. 熟悉高频电子线路中常用元件的性能和特点。

3. 培养实验操作技能,提高分析问题和解决问题的能力。

三、实验原理:高频电子线路是指频率在1MHz以上的电子线路,其设计原理与低频电子线路有所不同。

本实验主要研究高频放大器、振荡器和调制解调器等基本电路。

四、实验器材:1. 高频信号发生器2. 双踪示波器3. 万用表4. 高频电路实验板5. 高频电子元件(如晶体管、电容、电感等)五、实验步骤:1. 高频放大器实验:(1)搭建高频放大器电路,包括输入、输出匹配网络和晶体管放大电路。

(2)调节输入信号幅度和频率,观察输出信号的变化,分析放大器的频率响应和增益。

(3)测量放大器的输入输出阻抗,分析匹配网络的设计。

2. 振荡器实验:(1)搭建LC振荡器电路,包括LC谐振回路和晶体管振荡电路。

(2)调节LC回路参数,观察振荡频率的变化,分析振荡器的工作原理。

(3)测量振荡器的输出波形,分析振荡器的频率稳定性和幅度稳定性。

3. 调制解调器实验:(1)搭建AM调制器和解调器电路,包括调制信号源、调制电路、解调电路和滤波器。

(2)调节调制信号幅度和频率,观察调制信号的波形,分析调制和解调过程。

(3)测量调制信号的频率、幅度和相位,分析调制和解调效果。

六、实验结果及分析:1. 高频放大器实验:(1)通过调节输入信号幅度和频率,观察到输出信号随输入信号的变化而变化,说明放大器具有放大作用。

(2)测量放大器的输入输出阻抗,发现匹配网络对放大器的性能有重要影响。

(3)分析放大器的频率响应和增益,发现放大器的增益随着频率的升高而降低。

2. 振荡器实验:(1)通过调节LC回路参数,观察到振荡频率随LC回路参数的变化而变化,说明振荡器的工作原理。

(2)测量振荡器的输出波形,发现振荡器的频率稳定性和幅度稳定性较好。

(3)分析振荡器的频率稳定性和幅度稳定性,发现晶体管的静态工作点对振荡器的性能有重要影响。

高频功率放大器实验报告

高频功率放大器实验报告

《通信电子线路》实验报告实验名称:高频功率放大器一、实验环境Multisim 14.0二、实验目的1、进一步了解Multisim仿真步骤,熟练操作获取波形2、仿真验证高频功率放大器原理,观察高频功率放大器工作在过压、临界、和欠压状态的波形三、实验原理和设计高频功率放大器工作在三极管截止区,导通角小于90度,属于丙类放大器。

故三极管输出波形为尖顶余弦脉冲序列(临界或欠压)或是凹顶余弦脉冲序列(过压),信号经过选频网络后,能够恢复指定频率的波形信号。

原理图如图2.1所示。

图2.1输出电流Ic和Vce 关系曲线,如图2.2图2.2四、实验步骤1,按照原理图连接电路。

2,计算电路谐振频率,画出幅频响应和相频响应。

3,选择合适的电源电压值,使三极管发射结反偏,集电结反偏。

4,调节基极偏置电压源、信号源幅度、并联回路电阻值和集电极电源,观察输出电压Vc 、输出电流ic波形,判断电路状态五、实验结果及分析1、并联谐振回路的幅频响应和相频响应,如图4.1所示图4.1并联谐振回路谐振频率为11.56MHz,与电路参数计算相吻合。

其0.707带宽为15.65MHz2、输入信号改为f= 11,56MHz,计算频谱如图4.2.1所示图4.2.1输出信号频谱如图4.2.2所示图4.2.23、观察时域波形。

调节参数Vbb= 0.7V反偏,Vi = 0.9Vrms,Vcc = 10V,波形如图4.3.1所示图4.3.1根据三极管特性,发射极反偏时,电流信号Ib需克服Vbb和Vbz才能导通,所以Ib和Ic应为尖顶余弦脉冲。

但是仿真出波形为完整余弦脉冲,不符合理论。

可能的原因有,三极管导通电压参数与理论值差异较大,发射结反偏程度低。

三极管模型不符合实际特性,无截止区。

调节Vbm,使Vi = 1.0V,其余参数不变,观察时域波形,如图4.3.2输出电压Vc产生失真,可能因放大倍数等参数不合适导致。

图4.3.2波形出现尖顶余弦脉冲,电路为欠压状态,导通角2θ=(202.6-188.6)ns * 11.56Mhz*360°= 58.26°,半导通角θ= 29.13°信号电压,ic的频谱如图4.3.3所示图4.3.3继续增大信号电压至1.2V,波形如图4.3.4图4.3.4观察输出波形Ic,类似出现了凹顶余弦脉冲,所以电路处于过压状态,半导通角θ= 28°输入输出信号频谱如图4.3.5.1和4.3.5.2所示图4.3.5.1图4.3.5.2六、小结本次实验验证高频功率放大器的欠压和过压状态,观察欠压状态的尖顶余弦脉冲序列和过压时的凹顶余弦脉冲序列。

通信电路制作实验报告(3篇)

通信电路制作实验报告(3篇)

第1篇一、实验目的1. 理解通信电路的基本组成和工作原理。

2. 掌握通信电路中常用元件的性能和作用。

3. 学习通信电路的调试方法和故障排除技巧。

4. 提高实际操作能力和动手能力。

二、实验器材1. 通信电路实验箱2. 双踪示波器3. 函数信号发生器4. 信号源5. 测试仪6. 连接线7. 阻抗箱三、实验原理通信电路主要包括发送电路、接收电路和传输线路。

本实验主要涉及以下原理:1. 调制与解调:将信息信号转换成适合传输的信号(调制),在接收端再将信号还原为信息信号(解调)。

2. 放大与滤波:放大信号,增强信号强度,同时滤除干扰信号。

3. 编码与解码:将信息信号进行编码,以便于传输和识别,接收端再将编码信号解码为信息信号。

四、实验步骤1. 搭建通信电路:根据实验要求,搭建通信电路,包括发送电路、接收电路和传输线路。

2. 调试电路:调整电路参数,使电路工作在最佳状态。

3. 测试电路性能:使用测试仪测量电路的各项性能指标,如增益、带宽、信噪比等。

4. 分析实验结果:根据实验数据,分析电路性能,找出存在的问题,并提出改进措施。

五、实验内容1. 调制与解调实验:- 使用函数信号发生器产生基带信号。

- 使用调制电路将基带信号调制为高频信号。

- 使用解调电路将调制信号解调为基带信号。

- 比较调制前后信号的变化,验证调制和解调电路的工作原理。

2. 放大与滤波实验:- 使用信号源产生信号。

- 使用放大电路放大信号。

- 使用滤波电路滤除干扰信号。

- 测量放大和滤波后的信号强度,验证放大和滤波电路的工作原理。

3. 编码与解码实验:- 使用编码电路将信息信号编码。

- 使用解码电路将编码信号解码。

- 比较编码前后信号的变化,验证编码和解码电路的工作原理。

六、实验结果与分析1. 调制与解调实验:- 通过实验验证了调制和解调电路的工作原理。

- 发现调制后的信号频率较高,带宽较宽,有利于信号的传输。

- 解调后的信号与基带信号基本一致,说明解调电路能够有效还原信息信号。

通信电子电路实验报告

通信电子电路实验报告

实验二 振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。

2.研究已调波与调制信号及载波信号的关系。

3.掌握调幅系数测量与计算的方法。

4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。

二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

三、基本原理略四、实验步骤:1. 静态工作点调测:使调制信号V Ω=0,载波Vc=0(短路块J11、J17开路),调节VR7、VR8使各引脚偏置电压接近下列参考值:V 8 V 10 V 1 V 4 V 6 V 12 V 2 V 3 V 55.62V 5.62V 0V 0V 10.38V 10.38V -0.76V -0.76V –7.16VR39、R46与电位器VR8组成平衡调节电路,改变VR8可以使乘法器实现抑止载波的振幅调制或有载波的振幅调制。

2.加大V Ω,观察波形变化,画出过调制波形并记下对应的V Ω、V C 值进行分析。

附:调制信号V Ω可以用外加信号源,也可直接采用实验箱上的低频信号源。

将示波器接入J22处,(此时J17短路块应断开)调节电位器VR3,使其输出1KHz 信号不失真信号,改变VR9可以改变输出信号幅度的大小。

将短路块J17短接,示波器接入J19处,调节VR9改变输入V Ω的大小。

c U图2-3(a ) 抑制载波调幅波形 图2-3(b ) 普通调幅波波形五、实验记录1.整理实验数据,写出实测MC1496各引脚的实测数据。

静态工作点调测,实验测得结果:经比对,各引脚偏置电压接近参考值,测试结果正常。

2.调幅实验调幅波形:(1)先观察生成载波的波形,在振荡器与频率调制模块的ZD-OUT上用示波器观察载波输出波形:(2)由低频信号模块产生1.6~1.7kHz的语音频率信号,接入振幅调制模块,利用产生幅度调制波,用示波器观察TF-OUT端的包络信号。

高频电子线路实验报告

高频电子线路实验报告

学生姓名:组号:实验名称:高频电子线路实验报告实验一一、实验名称:信号放大电路设计与测试。

二、实验目的:(1)进一步学习信号放大电路的工作原理。

(2)掌握信号放大电路的设计、计算和测量方法。

三、使用仪器设备、部件、实验内容:(1):实验中用到的部件。

图1-2。

OP27引脚定义和连接图(2):实验仪器:(1)示波器一台(2)万用表一块(3)调试工具一套(4)双路稳压电源一台(5)信号源一台(3):实验器材:1.运算放大器:OP27 二块2 8脚插座二块3.1KΩ电阻三支4.50KΩ电位器一个5. 1µF电容(105) 二个6.33KΩ电阻二个四、实验过程及数据、现象记录:输入Vi:1 mVpp。

五、实验数据分析、误差分析、现象分析:(1)根据原理电路计算出放大倍数A1、A2:A1=-R2/R1=-33kΩ/1kΩ=-33A2=(1+(R5+RW1)/R4)=1+(33kΩ+20KΩ)/1 kΩ=54A0=-33*54=-1782(2)测量出实际电路的放大倍数A0,与计算结果比较。

A(实际)相对误差:18671782100% 4.77% 1782-⨯=数据分析:相对误差有点大,但波形美观,放大倍数明显,较为成功。

估计误差主要是由器件测量误差引起的。

六、回答思考题:(1)信号放大电路与哪些电路参数有关?答:电阻接入方式,以及接入的电阻的阻值大小有关。

(2)电容C1、C2在电路中起什么作用?答:起隔直作用。

防止相互之间产生干扰。

实验二一、实验名称:正弦波振荡电路二、实验目的:(1)进一步学习RC正弦波振荡电路的工作原理。

(2)掌握RC正弦波振荡频率的调整和测量方法。

三、使用仪器设备、部件、实验内容:(1):实验中用到的部件。

图2-2 OP37引脚定义和连接图(2):实验仪器:(1)示波器一台(2)万用表一块(3)调试工具一套(4)双路稳压电源一台(3):实验器材:1.运算放大器:OP37 一块2 8脚插座一块3.10KΩ电阻三支4.10KΩ电位器一个5.15KΩ电阻一支6.2.2KΩ电阻一支7. 0.01µF电容(103) 二个8. 二极管二个四、实验过程及数据、现象记录:五、实验数据分析、误差分析、现象分析:相对误差:1.591 1.477100%7.17%1.591-⨯=RC 桥式振荡电路的工作原理及分析方法:为了使振荡幅度稳定,通常在放大电路的负反馈回路里加入非线性元件来自动调整负反馈放大电路的增益,从而维持输出电压幅度的稳定。

高频电子线路实验报告

高频电子线路实验报告

高频实验报告2013年12月实验一、调幅发射系统实验、实验目的与内容:通过实验了解与掌握调幅发射系统,了解与掌握LC 三点式振荡器电路、三极 管幅度调制电路、高频谐振功率放大电路。

二、实验原理:1、LC 三点式振荡器电路:曲0KSA匡T3-1 H 嫌斎戎验或幣隔吨堕原理:LC 三点式振荡器电路是采用LC 谐振回路作为相移网络的LC 正弦波振 荡器,用来产生稳定的正弦振荡。

图中5R5, 5R6, 5W2和5R8为分压式偏置电阻, 电容5C7或5C8或5C9或5C10或5C11进行反馈的控制。

5R3 5W1 5L2以及5C4 构成的回路调节该电路的振荡频率,在V5-1处输出频率为30MHZE 弦振荡信号。

原理:三极管幅度调制电路是通过输入调制信号和载波信号,在它们的共同 作用下产生所需的振幅调制信号。

图中7R1, 7R4, 7W1和7R3为分压式偏置电阻, 电容7C10 7C2以及电感7L1构成的谐振滤波网络,7W2控制输出幅度,在信号 输出处输出所需的振幅调制信号。

3、高频谐振功率放大电路:V5-1—1廿4FilKrT、ITl “I .-------osc IP 5UTSG TU J 曰r I —RKI二乍工 朋U 2SI * o J I ---- (SClO-Ll cH __.5C1J-IWSCJ印會艸:I 1UUKETt3sr 2原理:高频谐振功率放大电路是工作频率在几十放大电路。

图中前级高频功放电路中,6R2和6R3分压式偏置电阻,供给三极管 6BG1偏置电压,输出采用6C5 6C6 6L1构成的T 型滤波匹配网络,末级高频 功放电路中,基极采用由6R4产生偏置电压供给电路,输出采用 6C13 6C13 6L3和6L4构成的T 型滤波匹配网络。

4、调幅发射系统:原理:首先LC 振荡电路产生一个频率为30MHZ 幅度为lOOmV 的信号源,然 后加入频率为1KHZ 幅度为lOOmV 的本振信号,通过三极管幅度调制,再经过 咼频谐振功率放大器输出稳定的最大不失真的正弦波。

高频电子电路实验报告

高频电子电路实验报告

实验十 调幅系统实验课程 高频电子电路 实验名称 调幅系统实验一、实验目的1.在模块实验的基础上掌握调幅发射机、接收机,整机组成原理,建立调幅系统概念。

2.掌握系统联调的方法,培养解决实际问题的能力。

二、实验内容:1.完成调幅发射机整机联调 2.完成调幅接收机整机联调 3.进行调幅发送与接收系统联调。

三、实验环境1.硬件:通信电子电路实验箱GP-4A 2.实验箱模块分布图:3.实验组成原理框图:图10-1(a)调幅发射机实验组成原理框图J36(J.H.OUT)图10-1 (b)调幅接收机实验组成原理框图四、实验步骤:(一)AM发射机实验:1.将振荡模块中拨码开关S2中“4”置于“ON”即为晶振。

将振荡模块中拨码开关S4中“3”置于“ON”,“S3”全部开路。

用示波器观察J6输出10MHZ 载波信号,调整电位器VR5,使其输出幅度为0.3V左右。

波形图:分析:测的是J6的信号,输出幅度大概为0.3V左右。

2.低频调制模块中开关S6拨向左端,短路块J11,J17连通到下横线处,将示波器连接到振幅调制模块中J19处(TZXH1),调整低频调制模块中VR9,使输出1KHZ正弦信号V=0.1~0.2V。

PP波形图:分析:没有信号,可能是实验误差。

3.将示波器接在J23处可观察到普通调幅波。

波形图:分析:J23处的波形。

4.(选作)将前置放大模块中J15连通到TF下横线处,用示波器在J26处可观察到放大后的调幅波。

改变VR10可改变前置放大单元的增益。

波形图:分析:从J15换到J26之后波形被放大,周期信号。

5.(选作)调整前置放大模块VR10使J26输出1Vpp左右的不失真AM波,将功率放大模块中J4连通,调节VR4使J8(JF.OUT)输出3Vpp左右不失真的放大信号.。

波形图:分析:输出3Vpp左右不失真放大信号。

S拨向右端(+12V)处,示波6.(选作)将J5,J10连通到下横线处,开关1器在J13(BF.OUT)可观察到放大后的调幅波,改变电位器VR6可改变丙放的放大量。

高频电子线路实验报告

高频电子线路实验报告

《高频电子线路》课程实验报告学院: 信息学院专业: 电子信息科学与技术班级:姓名学号:指导教师:实验一高频(单级、两级)小信号(单、双)调谐放大器一、实验目的1.掌握高频小信号调谐放大器的工作原理;2.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

二、实验内容1.测量各放大器的电压增益;2.测量放大器的通频带与矩形系数(选做);3.测试放大器的频率特性曲线(选做)。

放大器:V i1p-p(V)0.4 2.54 4 32.5 16 18单级双调谐放大器高频小信号放大器的主要技术指标有那些?主要有谐振频率, 谐振增益, 通频带, 增益带宽积, 矩形系数.实验二场效应管谐振放大器一、实验目的1.了解双栅场效应管放大器的工作原理;2.了解场效应管调谐放大器与三极管放大器的优缺点。

二、实验内容1.观察场效应管调谐放大器的输出波形;2.测量场效应管放大器的电压增益。

三、实验结果数据和截图V ip-p(V)V op-p(V)电压增益(dB)0.5 5.92 21讨论场效应管调谐放大器与晶体管放大器的优缺点。

场效应晶体管放大器是电压控制器件, 具有输入阻抗高、噪声低、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽、热稳定性好等优点,的优点, 被广泛应用在电子电路中。

场效应管可应用于放大, 由于场效应管放大器的输入阻抗很高,因此耦合电容可以容量较小,不必使用电解电容器。

场效应管可以用作电子开关, 场效应管很高的输入阻抗非常适合作阻抗变换, 常用于多级放大器的输入级作阻抗变换。

场效应管可以用作可变电阻,场效应管可以方便地用作恒流源.调谐放大器以电容器和电感器组成的回路为负载, 增益和负载阻抗随频率而变的放大电路。

这种回路通常被调谐到待放大信号的中心频率上。

由于调谐回路的并联谐振阻抗在谐振频率附近的数值很大, 放大器可得到很大的电压增益。

而在偏离谐振点较远的频率上, 回路阻抗下降很快, 使放大器增益迅速减小;因而调谐放大器通常是一种增益高和频率选择性好的窄带放大器。

通信电子线路实验报告

通信电子线路实验报告

一、实验目的1. 理解通信电子线路的基本原理和组成;2. 掌握通信电子线路实验仪器的使用方法;3. 通过实验验证通信电子线路理论知识的正确性;4. 培养实验操作能力和分析问题、解决问题的能力。

二、实验原理通信电子线路是研究信号在传输过程中,如何通过电子电路进行调制、解调、放大、滤波等处理的学科。

本实验主要涉及以下内容:1. 调制:将信息信号(基带信号)加载到高频载波上,以便于信号的传输;2. 解调:将调制后的信号还原为基带信号;3. 放大:提高信号强度,满足传输要求;4. 滤波:去除信号中的噪声,提高信号质量。

三、实验器材1. 通信电子线路实验箱;2. 双踪示波器;3. 高频信号发生器;4. 万用表;5. 长度可调同轴电缆。

四、实验内容1. 调制实验(1)实验目的:掌握调制原理和调制电路的设计方法。

(2)实验步骤:① 调制信号发生:使用示波器观察调制信号波形,确保其频率、幅度等参数符合要求;② 载波信号发生:使用高频信号发生器产生高频载波信号,频率与调制信号频率相同;③ 调制电路搭建:将调制信号和载波信号接入调制电路,观察调制后的信号波形;④ 分析调制效果:根据调制后的信号波形,分析调制深度、相位等参数,判断调制效果。

2. 解调实验(1)实验目的:掌握解调原理和解调电路的设计方法。

(2)实验步骤:① 解调信号发生:使用示波器观察解调信号波形,确保其频率、幅度等参数符合要求;② 解调电路搭建:将解调信号接入解调电路,观察解调后的信号波形;③ 分析解调效果:根据解调后的信号波形,分析解调深度、相位等参数,判断解调效果。

3. 放大实验(1)实验目的:掌握放大电路的设计方法,提高信号强度。

(2)实验步骤:① 放大信号发生:使用示波器观察放大信号波形,确保其频率、幅度等参数符合要求;② 放大电路搭建:将放大信号接入放大电路,观察放大后的信号波形;③ 分析放大效果:根据放大后的信号波形,分析放大倍数、频率响应等参数,判断放大效果。

高频电子线路实验报告(总10页)

高频电子线路实验报告(总10页)

高频电子线路实验报告(总10页)摘要高频电子线路是指在高频范围内运作的电子设备和电路,具有良好的信号传输和处理能力。

本实验以微带衰减器为例,研究了高频电路的设计和制作方法,并测试了衰减器的性能指标。

实验结果表明,在合理的设计和制作条件下,微带衰减器能够实现准确的信号衰减和频率响应。

关键词:高频电子线路;微带衰减器;设计;制作;测试AbstractHigh frequency electronic circuit refers to electronic devices and circuits that operate in the high frequency range and have good signal transmission and processing capabilities. In this experiment, a microstrip attenuator was taken as an example to study the design and manufacturing methods of high frequency circuits, and the performance indicators of the attenuator were tested. The experimental results show that under reasonable design and manufacturing conditions, microstrip attenuators can achieve accurate signal attenuation and frequency response.Keywords: high frequency electronic circuit; microstrip attenuator; design; manufacturing; testing1.实验目的通过设计和制作微带衰减器,学习高频电子线路的设计原理和制作方法。

高频电子线路试验报告-高频电子试验心得

高频电子线路试验报告-高频电子试验心得

一、试验目的把握 LC 三点式振荡电路的基本原理,把握 LC 电容三 点
输入电压 Vi ,将高频信号发生器的输出端接至 电路的输入端,调整频率 式振荡器设计及 电参数的计算把握振荡回路 Q 值对频率稳定度的影响
f,使其为,调整 Ct 使回路谐振, 使输出电压幅度为最大,此时的回路
把握振荡器反馈系数不同时,静态工作电流 IEQ 对振
振荡电压的峰峰值,并填入表 3-1 :表 3-1
表 3-4
CT 51pf 100pf 150pf f(MHz) Vp-p 3.测虽当
IEQ(m) Vp-p(V) 12 34
C,C 不同时,起振点,振幅与工作电流 IER 的关系(Rpf、C =C4=1200pf,调电位器 RP 使 IEQ 分另 U 为表
第1页共1页
表 1-2
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
度的失真的现象,是于经三极管放大后相对谐振回路输入过 大造成的。
Vi(V) Re=1K Vo Re=500 Re=2K 320mv 940mv 失 真失真失真失真失真 测放大器频率特性时,应留意选择谐振点附近的 频率下的输出,找出 Vo
表 1-1 实测 Vb Ve 实测计算是否工作在放大区 Ic Vce 是动态讨论 Vce 是 动态讨论 *Vb,Ve 是三极管的基极和发射极对地电压 3. 测虽放大器的动态范围 Vi ~ Vo 选 R=10K , Re=1K。把高频信号发生器接到电路输入 端,电路输出端接示波器。选择正常放大区的输入电压 Vi, 调整频率 f 使其为,调整 Ct,使回路“谐振〞,此时调整 Vi 变到, 逐点记录 Vo 电压,完成表 1-2 的第二行。当 Re 分别为 500 Q , 2KQ 时, 重复上述过程,完成 表 1-2 的第三、四行。在同一坐标纸上画出 Ic 不同时的动 态范围曲线 Vo— Vi,并进行比较与分析。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一高频小信号谐振放大器
一、实验目的
1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。

2.了解高频小信号的质量指标和谐振放大器的性能。

3.掌握L,C参数对谐振频率的影响。

4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放
大器的频率。

二、预习要求
1.复习高频小信号放大器的功用。

答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。

由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。

就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。

一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。

2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大
器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,
宽带放大器。

三、实验内容
1.参照电路原理图1-1连线。

,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f
电感。

图1-1 小信号谐振放大器
1.在选用三极管时要查晶体管手册,使参数合理。

2.观察瞬态分析的波形输出及频谱分析是否合理。

3.在pspice中设定:
参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。

V2参数CD=12V。

V
1
在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。

②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。

、Lntervat为10。

③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V
1
四、实验报告
1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成
表1-1
2.画出输入信号和输出信号的波形;(根据图形输出)
仿真图如下:
3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;
=60
Au=Uo
Ui
(2)测量放大器的通频带;
谐振回路的通频带:BW=fH-fL =0.02MHz
实验二三点式振荡器
一、实验目的
1.熟悉三点式振荡器的工作原理及电路构成。

2.掌握L,C参数对振荡频率的影响。

3.了解不同静态工作点对振荡器起振、振荡幅度和振荡波形的影响。

4.知道振荡器工作的起振条件,了解加速技术在起振中的作用。

二、预习要求
1.复习三点式振荡器的工作原理。

答:三点式振荡电路放大器可由分立元件构成单级或多级放大电路,也可用集成运放组成同相或反相比例放大电路。

Z1、Z2、Z3表示纯电抗元件或电抗网络。

如果要使电路振荡,要求AF=1,由此得:X1 + X2 + X3=0,即X1、X2为同类电抗,X3为与X1、X2相反种类的电抗。

三点式振荡电路工作原理特性:(1)在LC振荡电路中,如果Z1、Z2为电感,则Z3为电容,成为电感三点式振荡器;如果Z1、Z2为电容,则Z3为电感,成为电容三点式振荡器。

(2)两个相同性质电抗的连接点必须接放大器的同相端,(三极管为发射极);另一端接反相端(三极管为基极)即所谓的射同基反的原则。

2.复习正弦波振荡电路的基本组成。

答:为了产生稳定的正弦振荡,正弦波振荡器除应该满足起振条件、平衡条件和稳定条件外,还应有选频网络以得到单一的频率输出。

因此正弦波振荡器必须具有以下四个基本部分:
1)放大电路:是能量转换装置,振荡过程是将直流能量转换为交流能量的过程。

2)正反馈网络:正反馈网络与放大器一起构成了自激振荡的必要条件。

3)选频网络:是获得单一正弦波的必要条件。

无选频网络的自激振荡器输出含有许多谐波成份,故称多谐振荡器。

4)稳幅环节:它是振荡器能够迸人振幅平衡状态并维持幅度稳定的条件。

三、实验内容
1.参照图2-1连线。

2-1 三点式振荡器电路原理图
2.进入‘Probe’观察输出波形,测量出振荡频率。

3.改变频率(通过改变L,C的参数)。

4.思考:电源‘V2’是什么源及在电路中的作用?
(V的设定:在元器件库中调出脉冲源VPVLSE,在原理图中双击VPVLSE。

填入AC=100m V V1=0、V2=1、TD=2ns、TR=2ns、TF=2ns、PW=2us)
四、实验报告
1.电路中的哪些元件参数与频率有关?将振荡频率的实测值与理论估算值比较,分析产生误差的原因。

答:电源的稳定性;电感L2与电容C2的稳定性;都会影响频率的变化。

振荡频率的实测值与理论估算值比较有误差,可能是由于计算过程中的计算误差和实验仿真过程中的仿真误差造成的,对此我们可以提高计算和仿真精度,在满足工程要求上尽量提高精度。

2.观察波形输出是否为等幅的正弦振荡?如果不是等幅振荡,则不满足振荡器的相位平衡条件,找出原因并且解决之。

答:不是等幅振荡,不满足振荡器的相位平衡条件,静态工作点调节之后正弦波有所改善。

3.根据L、C参数的不同得到不同频率,完成表2-1。

表2-1
L1(uH) L2(uH) C1(pF) C2(pF) 频率(KHz)理论值
1 0.01 0.03 0.11 13.
2 2381.52
2 0.0
3 0.03 0.18 13.2 2483.85
3 0.06 0.07 0.18 13.8 1666.11
4.测出振荡频率与理论值相比较?如果数值相差很大,找出原因并且解决。

答:振荡频率理论值如表2-1所示,振荡频率的实测值与理论估算值比较有误差,可能是由于计算过程中的计算误差和实验仿真过程中的仿真误差造成的。

对此我们可以提高计算和仿真精度,在满足工程要求上尽量提高精度。

5.画出输出波形(仿真结果)。

相关文档
最新文档