2013通信电子电路实验指导书 2解析

合集下载

通信电子电路实验指导书

通信电子电路实验指导书

实验一高频小信号调谐放大器实验一、实验目的1、掌握小信号调谐放大器的基本工作原理;2、掌握谐振放大器电压增益、通频带及选择性的定义、测试及计算;3、了解高频小信号放大器动态范围的测试方法;二、实验内容1、测量单调谐、双调谐小信号放大器的静态工作电2、测量单调谐、双调谐小信号放大器的增益3、测量单调谐、双调谐小信号放大器的通频带三、实验仪器1、信号源模块1块2、频率计模块1块3、2 号板1块4、双踪示波器1台5、万用表1块6、扫频仪(可选)1台四、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图1-1所示。

该电路由晶体管Q1、选频回路T1二部分组成。

它不仅对高频小信号进行放大,而且还有一定的选频作用。

本实验中输入信号的频率f S=10.7MHz。

基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。

调节可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。

图1-1 单调谐小信号放大电路放大器各项性能指标及测量方法如下: 1、谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LC f π210式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为ie oe C P C P C C 2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。

谐振频率f 0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。

通信(电子)电路上机实验指导书(第二版)1

通信(电子)电路上机实验指导书(第二版)1
L4 1 1.7uH 2 193p C3
R3 1 50
L5 2 551nh 1
Q1
1 L3 158n C2 1.6n C4 260p R2 50
Q2N2222 L1 1mh 2 C1 30u
0
V2 VOFF = 0 VAMPL = 2.5 FREQ = 10meg
0
0
C5 100p
C6 700p
C7 762p 2
Z equ
图 1-9 等效原理图 在 PSpice 中对图 1-8 三极管基极加入信号源, 设置频率 f = 10MHz , 对于 Vs 的选取值应使三极管工作于临界状态,通过仿真观察三极管集电极输出电流波 形,大致确定其 Vs ,这里选取 Vs = 2.5V 电源内阻 Z s = 50Ω ,对于电流取出 Ii 中的 基频成分 I [1] 则仿真后得到基极电压和电流波形为图 1-10、图 1-11 所示。
(VCC − Vces )
2 RP Rp
2
≥ 1.5W
2
(12 − 1) ≤
3
≈ 40Ω
在本实验中选取 Rp = 30Ω ,并联谐振电路如下图 1-4 所示。 IS
C
L
Rp
3
杭州电子科技大学通信工程学院
图 1-4 并联谐振电路 对于并联谐振回路有:
ωL =
Q=
1 ωC Rp
其中 ω = 10MHz
图 1-12 输入端匹配网络原理图 其中实现条件为:
2 Re < RL (1 + Qe1 ),
7
杭州电子科技大学通信工程学院
各个元件转换表达式为: R X C1 = − e − X C0 Qe1
X C2 = − RL XL =

通信电路实验指导书

通信电路实验指导书

实验注意事项1、实验系统接通电源前请确保电源插座接地良好。

2、每次安装实验模块之前应确保主机箱右侧的交流开关处于断开状态。

为保险起见,建议拔下电源线后再安装实验模块。

3、安装实验模块时,模块右边的双刀双掷开关要拨上,将模板四角的螺孔和母板上的铜支柱对齐,然后用黑色接线柱固定。

确保四个接线柱要拧紧,以免造成实验模块与电源或者地接触不良。

经仔细检查后方可通电实验。

4、各实验模块上的双刀双掷开关、拨码开关、复位开关、自锁开关、手调电位器和旋转编码器均为磨损件,请不要频繁按动或旋转。

5、请勿直接用手触摸芯片、电解电容等元件,以免造成损坏。

6、各模块中的3362电位器(蓝色正方形封装)是出厂前调试使用的。

出厂后的各实验模块功能已调至最佳状态,无需另行调节这些电位器,否则将会对实验结果造成严重影响。

若已调动请尽快复原;若无法复原,请与指导老师联系。

7、在关闭各模块电源之后,方可进行连线。

连线时在保证接触良好的前提下应尽量轻插轻放,检查无误后方可通电实验。

拆线时若遇到连线与孔连接过紧的情况,应用手捏住线端的金属外壳轻轻摇晃,直至连线与孔松脱,切勿旋转及用蛮力强行拔出。

8、按动开关或转动电位器时,切勿用力过猛,以免造成元件损坏。

目录高频电子线路实验箱简介 (3)实验一非线性丙类功率放大器实验 (8)实验二正弦波振荡器 (16)(一)三点式正弦波振荡器 (16)(二)晶体振荡器与压控振荡器 (19)实验三模拟乘法器调幅(AM、DSB、SSB) (22)实验四混频器实验 (27)(一)二极管的双平衡混频器 (27)(二)模拟乘法混频 (32)实验五包络检波及同步检波实验 (37)实验六变容二极管调频实验 (43)实验七正交鉴频及锁相鉴频实验 (51)实验八自动增益控制(AGC) (55)通信电路课程设计小功率调频发射机 (61)高频电子线路实验箱简介一、实验箱组成该实验箱由10个实验模块及实验箱体(含电源)组成。

1、实验模块及电路组成如下:1)模块1:单元选频电路模块该模块属于选件,非基本模块包含LC并联谐振回路、LC串联谐振回路、集总参数LC低通滤波器、陶瓷滤波器、石英晶体滤波器等五种选频回路。

通信电子线路实验指导书(8个实验)

通信电子线路实验指导书(8个实验)

目录第一章高频IV型实验系统介绍 (1)一、高频IV型实验系统概述 (1)二、实验箱箱体结构 (1)三、箱体各组成部分说明 (2)四、高频模块介绍及实验说明 (4)五、高频电路实验要求 (4)第二章高频电路实验部分 (6)实验一单调谐回路谐振放大器 (6)实验二高频功率放大器 (10)实验三正弦波振荡器 (15)实验四振幅调制器 (21)实验五变容二极管调频器与相位鉴频器实验 (26)实验六混频器实验 (35)实验七检波器实验 (40)实验八调频发射、接收系统实验 (46)第一章 高频IV 型实验系统介绍一、高频IV 型实验系统概述本系统由实验箱体和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。

箱体上带有一个最高频率1MHz 的低频信号源、最高频率10MHz 的高频信号源、语音与麦克风模块和电源引出端,可进行部分数字电路和模拟电路实验。

而插上选配的高频模块,则可进行相应的高频实验。

二、实验箱箱体结构箱体平面结构如图1所示,主要由以下几部分组成:● 扬声器● 高频信号源、低频信号源区 ● 电源输出区扬声器 麦克风电源输出低频信号源外接实验模块高频信号源模块电源座图1 GP-IV 实验箱平面布局图●外接实验模块区●实验模块电源座区三、箱体各组成部分说明1.电源输出区电源接通时,电源输出区电源指示灯亮2.扬声器和麦克风其输入输出为汉字标示3.直流电压输出区:系统的电源为220V交流输入,5路直流输出:±5V/2A,±12V/0.5A,-8V/0.5A。

在本区内设有这5组直流电压的输出接口,以方便使用。

4.高频信号源、低频信号源高低频信号源均采用DDS芯片输出正弦波、三角波、方波三种波形的信号,峰峰值最大可达6V,同时幅值、偏移可调。

1).操作:●频率设置键“MENU”:第一次按下此键,数码管第一位开始闪烁,即进入了“频率设置”状态,此时功能键“NEXT”、“ADD”有效;第二次按下此键,退出“频率设置”状态,功能键“NEXT”“ADD”无效。

《通信电子线路》实验指导书

《通信电子线路》实验指导书

《通信电⼦线路》实验指导书实验⼀、⾼频⼩信号放⼤器实验⼀、实验⽬的1、了解谐振回路的幅频特性分析——通频带与选择性。

2、了解信号源内阻及负载对谐振回路的影响,并掌握频带的展宽。

3、掌握放⼤器的动态范围及其测试⽅法。

⼆、主要实验仪器与设备1、⾼频电⼦线路综合实验箱(TKGP系列);2、扫频仪;3、⾼频信号发⽣器;4、双踪⽰波器。

三、实验原理1、⼩信号调谐放⼤器基本原理⾼频⼩信号放⼤器电路是构成⽆线电设备的主要电路,它的作⽤是⼤信道中的⾼频⼩信号。

为使放⼤信号不失真,放⼤器必须⼯作在线性范围内,例如⽆线电接收机中的⾼放电路,都是典型的⾼频窄带⼩信号放⼤电路。

窄带放⼤电路中,被放⼤信号的频带宽度⼩于或远⼩于它的中⼼频率。

如在调幅接收机的中放电路中,带宽为9KHz,中⼼频率为465KHz,相对带宽Δf/f0约为百分之⼏。

因此,⾼频⼩信号放⼤电路的基本类型是选频放⼤电路,选频放⼤电路以选频器作为线性放⼤器的负载,或作为放⼤器与负载之间的匹配器。

它主要由放⼤器与选频回路两部分构成。

⽤于放⼤的有源器件可以是半导体三极管,也可以是场效应管,电⼦管或者是集成运算放⼤器。

⽤于调谐的选频器件可以是LC谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC集中滤波器,声表⾯波滤波器等。

本实验⽤三极管作为放⼤器件,LC 谐振回路作为选频器。

在分析时,主要⽤如下参数衡量电路的技术指标:中⼼频率、增益、噪声系数、灵敏度、通频带与选择性。

单调谐放⼤电路⼀般采⽤LC回路作为选频器的放⼤电路,它只有⼀个LC回路,调谐在⼀个频率上,并通过变压器耦合输出,图1-1为该电路原理图。

1f中⼼频率为f0+带宽为Δf=f2-f1图1-1、单调谐放⼤电路为了改善调谐电路的频率特性,通常采⽤双调谐放⼤电路,其电路如图1-2所⽰。

双调谐放⼤电路是由两个彼此耦合的单调谐放⼤回路所组成。

它们的谐振频率应调在同⼀个中⼼频率上。

两种常见的耦合回路是:1)两个单调谐回路通过互感M耦合,如图1-2(a)所⽰,称为互感耦合双调谐振回路;2)两个单调谐回路通过电容耦合,如图1-2(b)所⽰,称为电容耦合双调谐回路。

北邮通信电子电路实验指导书

北邮通信电子电路实验指导书

通信电子电路实验指导书电路实验中心2016年4月目录实验1 单调谐回路谐振放大器 (2)实验2 双调谐回路谐振放大器 (8)实验3 集成乘法器幅度调制电路 (15)实验4 振幅解调器(包络检波) (23)实验5 振幅解调器(同步检波) (28)附录高频信号发生器使用简介 (32)实验1 单调谐回路谐振放大器—、实验准备1.本实验时应具备的知识点(1)放大器静态工作点(2)LC并联谐振回路(3)单调谐放大器幅频特性2.本实验时所用到的仪器(1)①号实验板《小信号调谐放大器电路》板(2)⑤号实验板《元件库》板及库元件。

注意:元件库板与库元件一一对应,实验结束后,请对应放好,便于实验后检查。

(3)双踪示波器(模拟)(4)电源(5)高频信号发生器(6)万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路图1-2 实验电路图(此图为典型原理图,图中标号与所用电路标号不一致)42.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

通信电子电路实验报告

通信电子电路实验报告

一、实验目的1. 了解通信电子电路的基本组成和工作原理。

2. 掌握通信电子电路的基本实验技能和操作方法。

3. 培养分析问题和解决问题的能力。

二、实验仪器与设备1. 信号发生器2. 示波器3. 数字万用表4. 通信电子电路实验板5. 连接线三、实验原理通信电子电路是现代通信系统中的核心组成部分,其主要功能是将信号进行调制、放大、解调等处理,以实现信号的传输。

本实验主要涉及以下通信电子电路:1. 模拟调制解调电路:将模拟信号进行调制和解调,实现信号的传输。

2. 数字调制解调电路:将数字信号进行调制和解调,实现信号的传输。

3. 放大电路:对信号进行放大,提高信号的传输质量。

四、实验内容1. 模拟调制解调电路实验(1)实验目的:掌握模拟调制解调电路的原理和操作方法。

(2)实验步骤:① 按照实验电路图连接实验板。

② 将信号发生器输出的信号接入调制电路的输入端。

③ 使用示波器观察调制电路的输出波形。

④ 改变调制电路的参数,观察输出波形的变化。

⑤ 将调制电路的输出信号接入解调电路的输入端。

⑥ 使用示波器观察解调电路的输出波形。

⑦ 改变解调电路的参数,观察输出波形的变化。

2. 数字调制解调电路实验(1)实验目的:掌握数字调制解调电路的原理和操作方法。

(2)实验步骤:① 按照实验电路图连接实验板。

② 将信号发生器输出的信号接入调制电路的输入端。

③ 使用示波器观察调制电路的输出波形。

④ 改变调制电路的参数,观察输出波形的变化。

⑤ 将调制电路的输出信号接入解调电路的输入端。

⑥ 使用示波器观察解调电路的输出波形。

⑦ 改变解调电路的参数,观察输出波形的变化。

3. 放大电路实验(1)实验目的:掌握放大电路的原理和操作方法。

(2)实验步骤:① 按照实验电路图连接实验板。

② 将信号发生器输出的信号接入放大电路的输入端。

③ 使用示波器观察放大电路的输出波形。

④ 改变放大电路的参数,观察输出波形的变化。

⑤ 使用数字万用表测量放大电路的增益。

通信电子线路实验指导书

通信电子线路实验指导书

实验一 LC 与晶体振荡器实验一、实验目的1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。

2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。

3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。

4)、比较LC 与晶体振荡器的频率稳定度。

二、实验预习要求实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。

三、实验原理说明三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。

1、起振条件1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质的电抗,且它们之间满足下列关系:2)、幅度起振条件: 图1-1 三点式振荡器式中:q m ——晶体管的跨导,LCX X X X Xc o C L ce be 1 |||| )(=-=+-=ω,即)(Au1* 'ie L oe m q q q Fu q ++>F U——反馈系数,A U——放大器的增益,q ie——晶体管的输入电导,q oe——晶体管的输出电导,q'L——晶体管的等效负载电导,F U一般在0.1~0.5之间取值。

2、电容三点式振荡器1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。

L1L1(a)考毕兹振荡器(b)交流等效电路图1-2 考毕兹振荡器2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。

C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。

(a ) 克拉泼振荡器 (b ) 交流等效电路图1-3 克拉泼振荡器3)、并联改进型电容反馈三点式电路——西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L 1两端并联一个小电容C 4,调节C 4可改变振荡频率。

通信原理实验指导书(2013年修改)

通信原理实验指导书(2013年修改)

实验一信源编码验证实验一、实验目的1、了解数字存储示波器的使用方法。

2、了解集中插入帧同步码时分复用信号的编码方法。

3、掌握集中插入帧同步码时分复用信号的帧结构特点。

二、实验内容1、观察数字示波器自带的方波信号,掌握使用光标测量信号幅度的方法,测量信号频率的方法。

2、用示波器观察集中插入帧同步码时分复用编码电路中,晶振信号的波形,位同步信号的波形,帧同步信号的波形。

3、用示波器观察编码完成后的输出波形。

三、基本原理1、数字信源本模块是整个实验系统的发终端,其原理方框图如图1-1所示。

本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。

帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。

此NRZ信号为集中插入帧同步码时分复用信号。

发光二极管亮状态表示1码,熄状态表示0码。

图1-1 数字信源方框图图1-2 帧结构本模块有以下测试点及输入输出点:∙ CLK 晶振信号测试点∙ BS-OUT 信源位同步信号输出点/测试点∙ FS 信源帧同步信号输出点/测试点∙ NRZ-OUT NRZ信号输出点/测试点∙晶振CRY:晶体;U1:反相器7404∙分频器 U2:计数器74161;U3:计数器74193;U4:计数器40160 ∙并行码产生器 K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数据1、数据2相对应;发光二极管左起分别与一帧中的24位代码相对应.∙八选一U5、U6、U7:8位数据选择器4512∙三选一U8:8位数据选择器4512∙倒相器U20:非门74HC04∙抽样U9:D触发器74HC74下面对分频器,八选一及三选一等单元作进一步说明。

(1)分频器74161进行13分频,输出信号频率为341kHz。

74161是一个4位二进制加计数器,预置在3状态。

74193完成÷2、÷4、÷8、÷16运算,输出BS、S1、S2、S3等4个信号。

通信电子线路实验讲义讲解

通信电子线路实验讲义讲解

目录实验守则1实验箱使用注意事项21、高频小信号调谐放大器32、高频谐振功率放大器83、LC振荡器的研究164、串联型晶体振荡器研究205、模拟乘法器的应用(一)226、模拟乘法器的应用(二)297、模拟乘法器的应用(三)338、压控调频和解调369、锁相环应用研究41附录:高频C3电子实验箱总体简介49通信电子线路综合实验箱简介52实验守则一、实验前必须预习相关的实验内容,了解实验步骤,要求及仪器操作方法。

在实验课教师讲解后或经实验室老师同意后才能做实验。

二、实验中不得应用和本实验无关的仪器、设备和器材。

不要乱搬仪器设备、乱拧仪器设备的旋钮。

在做扩展实验内容时确要使用其他仪器等,应征得实验室老师的同意。

三、遵守实验室纪律,保持室内安静、整洁,按指定位置就坐。

四、在实验室内,要注意公共卫生。

不大声喧哗,不抽烟、不随地吐痰,不乱扔杂物纸屑等。

五、实验时必须注意安全,谨防人身事故和仪器仪表的损坏。

如实验中发生事故,应立即切断电源,报告指导教师进行处理;如仪器设备损坏应立即报告实验室备案。

六、实验完毕,应切断所用仪器设备的电源、将连接线和其他元件放回原处,打扫好实验台周边卫生,经指导教师同意后方可离开。

七、认真整理实验数据,理论联系实际,写好实验报告。

实验箱使用注意事项一、实验箱内所有地均连通,但做实验时测试仪器探头的地线应就近接地。

二、在进行信号连接时,应优先选择较短的信号连接线。

三、两只无感起子,窄口用于调磁心为细的中周,宽口用于调磁心为粗的中周和可调电容。

四、调中周磁心时,应将无感批垂直放置,旋转无感批时不应用力过猛。

五、更换实验板时,不要摇晃插拔电源线,应均匀用力操作,避免电源插座松动。

六、各实验单元直流供电开关(黄色),只在所在单元工作时才打开,以免各实验单元之间互相影响。

七、为避免频率计对示波器观察波形时产生干扰,应尽量避免两者同时挂在信号的输入(输出)端。

八、中周外壳接地。

实验连线过程中,要注意连线端口的线头或鳄鱼夹子不要与外壳相碰,以防短路。

通信电子电路 实验二

通信电子电路 实验二

一、实验目的1、掌握高频小信号调谐放大器的工作原理;2、掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算方法。

二、实验内容1、测量各放大器的电压增益;2、测量放大器的通频带与矩形系数(选做);3、测试放大器的频率特性曲线(选做)。

三、实验仪器1、BT-3扫频仪(选做)一台2、20MHz示波器一台3、数字式万用表一块4、调试工具一套四、实验基本原理1、单级单调谐放大器C17R28Q2R30C18C19R31 CC2R27 W3T2+12VTT2TP5图1-1 单级单调谐放大器实验原理图实验原理图如图1-1所示,本实验的输入信号(10.7MHz)由正弦波振荡器模块的石英晶体振荡器或高频信号源提供。

信号从TP5处输入,从TP10处输出。

调节电位器W3可改变三极管Q2的静态工作点,调节可调电容CC2和中周T2可改变谐振回路的幅频特性。

2、单级双调谐放大器C17R28Q2R30C18C19R31CC2R27C21C22CC3C20W3T2+12V T3TT2TP5TP7TP11TP12图1-2 单级双调谐放大器实验原理图实验原理图如图1-2所示,单级双调谐放大器和单级单调谐放大器共用了一部分元器件。

两个谐振回路通过电容C20(1nF )或C21(10 nF )耦合,若选择C20为耦合电容,则TP7接TP11;若选择C21为耦合电容,则TP7接TP12。

3、双级单调谐放大器C17R28Q2R30C18C19CC2R27R33Q3R35C24C25CC4R32W3C23FL3TT2R31T2T4W4+12VTP5TP14TP15TP16图1-3 双级单调谐放大器实验原理图实验原理图如图1-3所示,若TP5处输入信号的峰峰值为几百毫伏,经过第一级放大器后可达几伏,此信号幅度远远超过了第二级放大器的动态范围,从而使第二级放大器无法发挥放大的作用。

同时由于输入信号不可避免地存在谐波成分,经过第一级谐振放大器后,由于谐振回路频率特性的非理想性,放大器也会对残留的谐波成分进行放大。

通信电子电路 实验报告

通信电子电路 实验报告

实验八 三点式LC 振荡器及压控振荡器一、实验目的1、掌握三点式LC 振荡器的基本原理;2、掌握反馈系数对起振和波形的影响;3、掌握压控振荡器的工作原理;4、掌握三点式LC 振荡器和压控振荡器的设计方法。

二、实验内容1、测量振荡器的频率变化范围;2、观察反馈系数对起振和输出波形的影响;三、实验仪器20MHz 示波器一台、数字式万用表一块、调试工具一套四、实验原理1、三点式LC 振荡器三点式LC 振荡器的实验原理图如图8-1所示。

图 8-1 三点式LC 振荡器实验原理图图中,T2为可调电感,Q1组成振荡器,Q2组成隔离器,Q3组成放大器。

C6=100pF ,C7=200pF ,C8=330pF ,C40=1nF 。

通过改变K6、K7、K8的拨动方向,可改变振荡器的反馈系数。

设C7、C8、C40的组合电容为C ∑,则振荡器的反馈系数F =C6/ C ∑。

通常F 约在0.01~0.5之间。

同时,为减小晶体管输入输出电容对回路振荡频率的影响,C6和C ∑取值要大。

当振荡频率较高时,有时可不加C6和C ∑,直接利用晶体管的输入输出电容构成振荡电容,使电路振荡。

忽略三极管输入输出电容的影响,则三点式LC 振荡器的交流等效电路图如图8-2所示。

C6图8-2 三点式LC 振荡器交流等效电路图图8-2中,C5=33pF ,由于C6和C ∑均比C5大的多,则回路总电容450C C C += 则振荡器的频率f 0可近似为:)(2121452020C C T C T f +==ππ调节T2则振荡器的振荡频率变化,当T2变大时,f 0将变小,振荡回路的品质因素变小,振荡输出波形的非线性失真也变大。

实际中C6和C ∑也往往不是远远大于C5,且由于三极管输入输出电容的影响,在改变C ∑,即改变反馈系数的时候,振荡器的频率也会变化。

五、实验步骤1、三点式LC 振荡器(1)连接实验电路在主板上正确插好正弦波振荡器模块,开关K1、K9、K10、K11、K12向左拨,K2、K3、K4、K7、K8向下拨,K5、K6向上拨。

通信电子电路实验教案_新)

通信电子电路实验教案_新)

实验一小信号调谐放大器[1][2]一.实验目的1.了解调谐放大器的选频放大特性;2.熟悉谐振回路的幅频特性分析——通频带与选择性的测量方法;3.熟悉小信号谐振放大器通频带与选频性能之间的关系4.熟悉信号源内阻及负载对谐振回路的影响,正确选择测量仪器和测试点;5.掌握放大器动态范围的测试方法。

二.实验原理1.小信号谐振放大器的工作电路的输入信号中,除了所需要的信号外还有不需要的信号,他们的频谱往往不同,所以用选频的方法,选取需要的频率分量,抑制不需要的频率分量。

另外,其中有用信号的幅度往往也很小,处理这种信号必须具有选频和放大双重功能。

2.通频带与选择性:作为谐振放大电路一方面要通过所需的频率成分,因而对其具有通频带的要求,另一方面,要抑制不需要的信号的频率成分,这种通过有效成分抑制无效成分的性质称为选择性。

但在实际应用中往往要求通频带以内传输系数尽可能大,通频带以外传输系数尽可能小,这样信号失真小,抑制干扰能力强,由此可见通频带与选择性相矛盾,故用矩形系数K0.1说明。

理想谐振放大器的频率特性曲线,其矩形系数K0.1应等于1,实际的谐振放大器的矩形系数总是大于1的。

3.小信号谐振放大器的主要特点:调谐放大器的主要特点是放大器的负载不是纯电阻,而是由L、C组成的并联谐振回路。

由于L、C并联谐振回路的阻抗是随频率变化的,在谐处,其阻抗呈现纯电阻性,且达到最大值,因此放大振频率点f0器具有最大的放大倍数,稍离开谐振频率,放大倍数就会迅速减小。

因此,用这种放大器可以有选择性地放大所需要的某一频率信号,而抑制不需要的信号或外界干扰噪声。

所以,调谐放大器在无线电通讯等方面被广泛用作高频和中频的选频放大器。

调谐放大器的电路形式很多,但基本的单元电路有两种:一种是单调谐放大器,另一种是双调谐放大器。

本实验主要讨论单调谐放大器。

由于小信号调谐放大器用在接收机前端,用于放大从天线进来的微弱信号,因此高频小信号放大器应具备的特性如下:只允许所需频带的信号通过(Q:选择性);功率增益要足够(Gp:功率增益);放大器的噪声要小(NF:noise figure);放大器的直线领域要宽。

通信电子电路实验报告

通信电子电路实验报告

实验二 振幅调制器一、实验目的:1.掌握用集成模拟乘法器实现全载波调幅和抑止载波双边带调幅的方法。

2.研究已调波与调制信号及载波信号的关系。

3.掌握调幅系数测量与计算的方法。

4.通过实验对比全载波调幅和抑止载波双边带调幅的波形。

二、实验内容:1.调测模拟乘法器MC1496正常工作时的静态值。

2.实现全载波调幅,改变调幅度,观察波形变化并计算调幅度。

3.实现抑止载波的双边带调幅波。

三、基本原理略四、实验步骤:1. 静态工作点调测:使调制信号V Ω=0,载波Vc=0(短路块J11、J17开路),调节VR7、VR8使各引脚偏置电压接近下列参考值:V 8 V 10 V 1 V 4 V 6 V 12 V 2 V 3 V 55.62V 5.62V 0V 0V 10.38V 10.38V -0.76V -0.76V –7.16VR39、R46与电位器VR8组成平衡调节电路,改变VR8可以使乘法器实现抑止载波的振幅调制或有载波的振幅调制。

2.加大V Ω,观察波形变化,画出过调制波形并记下对应的V Ω、V C 值进行分析。

附:调制信号V Ω可以用外加信号源,也可直接采用实验箱上的低频信号源。

将示波器接入J22处,(此时J17短路块应断开)调节电位器VR3,使其输出1KHz 信号不失真信号,改变VR9可以改变输出信号幅度的大小。

将短路块J17短接,示波器接入J19处,调节VR9改变输入V Ω的大小。

c U图2-3(a ) 抑制载波调幅波形 图2-3(b ) 普通调幅波波形五、实验记录1.整理实验数据,写出实测MC1496各引脚的实测数据。

静态工作点调测,实验测得结果:经比对,各引脚偏置电压接近参考值,测试结果正常。

2.调幅实验调幅波形:(1)先观察生成载波的波形,在振荡器与频率调制模块的ZD-OUT上用示波器观察载波输出波形:(2)由低频信号模块产生1.6~1.7kHz的语音频率信号,接入振幅调制模块,利用产生幅度调制波,用示波器观察TF-OUT端的包络信号。

《通信电子线路》实验指导书XXX版

《通信电子线路》实验指导书XXX版

《通信电子线路》实验指导书XXX版《通信电子线路》实验指导书主编校对审核北方民族大学电气信息工程学院二○一三年九月目录实验一小信号谐振放大器的性能分析 (2)实验二LC正弦波振荡器的综合分析 (8)实验三振幅调制与解调电路研究与综合测试 (12)实验四频率调制与解调电路研究与综合测试 (22)实验五锁相环的工作过程及综合分析 (29)实验一 小信号谐振放大器的性能分析(综合性实验)一、实验目的1.把握小信号谐振放大电路的组成和性能特点。

2.熟悉小信号谐振放大器的要紧性能指标。

3.学会频响特性的测试。

二、实验仪器与器材1. 高频电子技术实验箱中小信号谐振放大器实验模块电路(RK-050)2. 示波器3. 信号源4. 扫频仪三、小信号调谐放大器实验电路图1-1为小信号调谐放大器实验电路(RK-050)。

图中,201P 为信号输入铆孔,当做实验时,高频信号由此铆孔输入。

201TP 为输入信号测试点。

接收天线用于构成收发系统时接收发方发出的信号。

变压器21T 和电容12C 、22C 组成输入选频回路,用来选出所需要的信号。

晶体三极管21BG 用于放大信号,12R 、22R 和52R 为三极管21BG 的直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态。

三极管21BG 集电极接有LC 调谐回路,用来谐振于某一工作频率上。

本实验电路设计有单调谐与双调谐回路,由开关22K 操纵。

当22K 断开时,为电容耦合双调谐回路,12L 、22L 、42C 和52C 组成了初级回路,32L 、42L 和92C 组成了次级回路,两回路之间由电容62C 进行耦合,调整62C 可调整其耦合度。

当开关22K 接通时,即电容62C 被短路,现在两个回路合并成单个回路,故该电路为单调谐回路。

图中12D 、22D 为变容二极管,通过改变ADVIN 的直流电压,即可改变变容二极管的电容,达到对回路的调谐。

三个二极管的并联,其目的是增大变容二极管的容量。

通信电子线路实验报告

通信电子线路实验报告

一、实验目的1. 理解通信电子线路的基本原理和组成;2. 掌握通信电子线路实验仪器的使用方法;3. 通过实验验证通信电子线路理论知识的正确性;4. 培养实验操作能力和分析问题、解决问题的能力。

二、实验原理通信电子线路是研究信号在传输过程中,如何通过电子电路进行调制、解调、放大、滤波等处理的学科。

本实验主要涉及以下内容:1. 调制:将信息信号(基带信号)加载到高频载波上,以便于信号的传输;2. 解调:将调制后的信号还原为基带信号;3. 放大:提高信号强度,满足传输要求;4. 滤波:去除信号中的噪声,提高信号质量。

三、实验器材1. 通信电子线路实验箱;2. 双踪示波器;3. 高频信号发生器;4. 万用表;5. 长度可调同轴电缆。

四、实验内容1. 调制实验(1)实验目的:掌握调制原理和调制电路的设计方法。

(2)实验步骤:① 调制信号发生:使用示波器观察调制信号波形,确保其频率、幅度等参数符合要求;② 载波信号发生:使用高频信号发生器产生高频载波信号,频率与调制信号频率相同;③ 调制电路搭建:将调制信号和载波信号接入调制电路,观察调制后的信号波形;④ 分析调制效果:根据调制后的信号波形,分析调制深度、相位等参数,判断调制效果。

2. 解调实验(1)实验目的:掌握解调原理和解调电路的设计方法。

(2)实验步骤:① 解调信号发生:使用示波器观察解调信号波形,确保其频率、幅度等参数符合要求;② 解调电路搭建:将解调信号接入解调电路,观察解调后的信号波形;③ 分析解调效果:根据解调后的信号波形,分析解调深度、相位等参数,判断解调效果。

3. 放大实验(1)实验目的:掌握放大电路的设计方法,提高信号强度。

(2)实验步骤:① 放大信号发生:使用示波器观察放大信号波形,确保其频率、幅度等参数符合要求;② 放大电路搭建:将放大信号接入放大电路,观察放大后的信号波形;③ 分析放大效果:根据放大后的信号波形,分析放大倍数、频率响应等参数,判断放大效果。

通信原理实验指导书2

通信原理实验指导书2

南开大学信息技术科学学院LTE-TX-02E型通信原理实验指导书目录目录 (I)第一章信号源实验 (1)实验一CPLD可编程数字信号发生器实验 (1)实验二模拟信号源实验 (6)第二章语音编码技术 (12)实验三抽样定理和PAM调制解调实验 (12)实验四脉冲编码调制解调实验 (20)第三章数字调制技术 (34)实验五振幅键控(ASK)调制与解调实验 (34)实验六移频键控FSK调制与解调实验 (40)实验七移相键控(PSK/DPSK)调制与解调实验 (46)第四章数字基带传输技术 (54)实验八码型变换实验 (54)第五章同步技术 (61)实验九载波同步提取实验 (61)实验十位同步提取实验 (67)实验十一帧同步提取实验 (76)第六章时分复用技术 (85)实验十二两路PCM时分复用实验 (85)实验十三两路PCM解复用实验 (91)第七章系统实验 (94)实验十四载波传输系统实验 (94)实验十五数字基带传输系统实验 (96)南开大学信息技术科学学院LTE-TX-02E型通信原理实验指导书第一章信号源实验实验一CPLD可编程数字信号发生器实验一、实验目的1、熟悉各种时钟信号的特点及波形。

2、熟悉各种数字信号的特点及波形。

二、实验内容1、熟悉CPLD可编程信号发生器各测量点波形。

2、测量并分析各测量点波形及数据。

3、学习CPLD可编程器件的编程操作。

三、实验器材1、信号源模块一块2、连接线若干3、20M双踪示波器一台四、实验原理CPLD可编程模块用来产生实验系统所需要的各种时钟信号和各种数字信号。

它由CPLD 可编程器件ALTERA公司的EPM240T100C5、下载接口电路和一块晶振组成。

晶振JZ1用来产生系统内的32.768MHz主时钟。

1、CPLD数字信号发生器包含以下五部分:1)时钟信号产生电路将晶振产生的32.768MH Z时钟送入CPLD内计数器进行分频,生成实验所需的时钟信号。

通信电子线路实验报告

通信电子线路实验报告

通信电子线路实验报告通信电子线路实验报告概述:通信电子线路是现代通信系统中不可或缺的组成部分。

本实验旨在通过搭建和测试不同类型的通信电子线路,深入了解其原理和功能。

本报告将详细介绍实验过程、结果分析以及对通信电子线路的应用前景进行探讨。

实验一:放大器电路在本实验中,我们搭建了一个基本的放大器电路,通过输入信号的放大来实现信号传输。

我们使用了共射极放大器电路,该电路具有较高的电压增益和较低的输出电阻。

通过测量输入和输出信号的幅度,我们可以计算出电压增益。

实验结果表明,放大器电路能够有效地放大输入信号,从而提高信号的传输质量。

实验二:滤波器电路滤波器电路是通信电子线路中常用的组件,它可以通过选择性地通过或阻断特定频率的信号来实现信号的处理和调整。

我们搭建了一个RC低通滤波器电路,并通过改变电容和电阻的数值来调整滤波器的截止频率。

实验结果显示,滤波器电路能够有效地滤除高频杂波,使得输出信号更加纯净和稳定。

实验三:调制解调电路调制解调电路是现代通信系统中必不可少的部分,它能够将信息信号转换为适合传输的载波信号,并在接收端将载波信号还原为原始信息信号。

我们搭建了一个简单的调制解调电路,通过改变调制信号的幅度和频率来观察调制效果。

实验结果表明,调制解调电路能够有效地实现信号的传输和还原,为通信系统的正常运行提供了基础支持。

实验四:数字信号处理电路随着数字通信技术的发展,数字信号处理电路在通信系统中的作用日益重要。

我们搭建了一个简单的数字信号处理电路,通过数字滤波器对输入信号进行滤波和调整。

实验结果显示,数字信号处理电路能够有效地抑制噪声和干扰,提高信号的传输质量和可靠性。

应用前景:通信电子线路在现代通信系统中具有广泛的应用前景。

随着通信技术的不断发展,人们对通信电子线路的需求也越来越高。

通信电子线路的应用领域涵盖了移动通信、卫星通信、光纤通信等多个领域。

例如,在移动通信领域,通信电子线路可以实现无线信号的放大和调整,提高信号的传输距离和质量。

数字电子技术实验指导书2013解读

数字电子技术实验指导书2013解读

《数字电子技术》实验指导书安阳工学院电子信息与电气工程学院实验要求一、实验前必须充分预习,完成指定的预习任务。

二、用仪器和实验箱前必须了解其性能、操作方法及注意事项,在操作时应严格遵守。

三、实验时接线要认真,相互仔细检查,确定无误才能接通电源。

四、实验时应注意观察,若发现有破坏性异常现象,例如元件冒烟、发烫或有异味等,应立即关断电源,保持现场,报告指导老师。

找出原因、排除故障,经指导老师同意后再继续做实验。

五、实验过程中需要改接线时,应关断电源后才能拆、接线,使用自锁紧插头时,严禁用力拉线,拆线时,应手捏线端并旋转轻微向上用力拔起,以防线被拉断。

六、实验过程中要仔细观察实验现象,记录实验结果(数据、波形、现象)。

所记录的实验结果经指导老师审阅签字后再拆除实验线路。

七、实验结束后,必须关断电源、拔出电源插头,并将仪器、设备、工具、导线等按规定整理。

八、实验后每个学生必须按要求独立完成实验报告。

数字电路实验箱使用说明本实验箱可以完成数字电路课程实验,由实验板和保护箱组成。

该实验箱的实验板采用独特的两用板工艺,正面贴膜,印有原理图及符号,反面为印制导线并焊有相应元器件,需要测量及观察的部分装有自锁紧式接插件,使用直观、可靠。

一、技术性能及配置1、电源输入 : AC220V 士 10 %。

输出 : DC 5V/1A 、 DC 1、25V ~ 15V/0、2A (两路) 有过载保护及自动恢复功能。

2、信号源单脉冲:为消抖动脉冲,可同时输出正负两个脉冲,前后沿≤20ns ,脉冲宽度≤0、2μs ,脉冲幅值为 TTL 电平。

连续脉冲:两组,一组为 4 路固定频率的方波。

其频率分别为 200KHZ 、100KHz、50KHz、25KHz 。

另一组为: 1Hz~5KHz 连续可调方波,分二档由开关切换,两路输出均为 TTL 电平。

3、八组逻辑电平开关:可输出“O”、“1”电平。

置于H时输出为+5V,置于L时输出为0。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录目录 (1)实验1 单调谐回路谐振放大器 (2)实验2 双调谐回路谐振放大器 (8)实验3 电容三点式LC振荡器 (14)实验4 石英晶体振荡器 (21)实验5 晶体三极管混频实验 (24)实验6 集成乘法器混频器实验 (28)实验7 中频放大器 (32)实验8 集成乘法器幅度调制电路 (36)实验9 振幅解调器(包络检波、同步检波) (45)实验10 高频功率放大与发射实验 (54)实验11 变容二极管调频器 (64)实验12 斜率鉴频与相位鉴频器 (68)实验13 锁相、频率合成与频率调制 (73)附录 (81)实验1 单调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●放大器静态工作点●LC并联谐振回路●单调谐放大器幅频特性2.做本实验时所用到的仪器:●单调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路1T P01图1-2 单调谐回路谐振放大器实验电路图812.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

其基本部分与图1-1相同。

图中,1C2用来调谐,1K02用以改变集电极电阻,以观察集电极负载变化对谐振回路(包括电压增益、带宽、Q值)的影响。

1W01用以改变基极偏置电压,以观察放大器静态工作点变化对谐振回路(包括电压增益、带宽、Q值)的影响。

1Q02为射极跟随器,主要用于提高带负载能力。

五、实验步骤1.实验准备(1)插装好单调谐回路谐振放大器模块,接通实验箱上电源开关,按下模块上开关1K01。

(2)接通电源,此时电源指示灯亮。

2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。

扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。

点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路揩振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。

(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。

用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-3 扫频仪测量的幅频特性(2)点测发,其步骤如下:① 1K02置“off“位,即断开集电极电阻1R3,调整1W01使1Q01的基极直流电压为2.5V左右(用三用表直流电压档测量1R1下端),这样放大器工作于放大状态。

高频信号源输出连接到单调谐放大器的输入端(1P01)。

示波器CH1接放大器的输入端1TP01,示波器CH2接单调谐放大器的输出端1TP02,调整高频信号源频率为6.3MHZ (用频率计测量),高频信号源输出幅度(峰-峰值)为200mv (示波器CH1监测)。

调整单调谐放大器的电容1C 2,使放大器的输出为最大值(示波器CH2监测)。

此时回路谐振于6.3MHZ 。

比较此时输入输出幅度大小,并算出放大倍数。

②按照表1-2改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度为200mv (示波器CH1监视),从示波器CH2上读出与频率相对应的单调谐放大器的电压幅值,并把数据填入表1-2。

输入信号频率f(MHZ) 5.4 5.5 5.6 5.7 5.85.96.06.16.26.36.46.56.66.76.86.97.07.1输出电压幅值U(mv)③以横轴为频率,纵轴为电压幅值,按照表1-2,画出单调谐放大器的幅频特性曲线。

3.观察静态工作点对单调谐放大器幅频特性的影响。

顺时针调整1W 01(此时1W 01阻值增大),使1Q 01基极直流电压为1.5V ,从而改变静态工作点。

按照上述幅频特性的测量方法,测出幅频特性曲线。

逆时针调整1W 01(此时1W 01阻值减小),使1Q 01基极直流电压为5V ,重新测出幅频特性曲线。

可以发现:当1W 01加大时,由于I CQ 减小,幅频特性幅值会减小,同时曲线变“瘦”(带宽减小);而当1W 01减小时,由于I CQ 加大,幅频特性幅值会加大,同时曲线变“胖”(带宽加大)。

用扫频仪测出不同工作点时的特性曲线,如下图:1Q01基极直流电压为1.5V 时扫频曲线 1Q01基极直流电压为5V 时扫频曲线4.观察集电极负载对单调谐放大器幅频特性的影响当放大器工作于放大状态下,按照上述幅频特性的测量方法测出接通与不接通1R3的幅频特性曲线。

可以发现:当不接1R3时,集电极负载增大,幅频特性幅值加大,曲线变“瘦”,Q值增高,带宽减小。

而当接通1R3时,幅频特性幅值减小,曲线变“胖”,Q值降低,带宽加大。

用扫频仪测出接通与不接通1R3的幅频特性曲线,如下图:不接1R3时的幅频特性曲线接1R3时的幅频特性曲线六、实验报告要求1.对实验数据进行分析,说明静态工作点变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。

2.对实验数据进行分析,说明集电极负载变化对单调谐放大器幅频特性的影响,并画出相应的幅频特性。

3.总结由本实验所获得的体会。

实验2 双调谐回路谐振放大器—、实验准备1.做本实验时应具备的知识点:●双调谐回路●电容耦合双调谐回路谐振放大器●放大器动态范围2.做本实验时所用到的仪器:●双调谐回路谐振放大器模块●双踪示波器●万用表●频率计●高频信号源二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.熟悉耦合电容对双调谐回路放大器幅频特性的影响;3.了解放大器动态范围的概念和测量方法。

1.采用点测法测量双调谐放大器的幅频特性;2.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;3.用示波器观察放大器动态范围。

四、基本原理1.双调谐回路谐振放大器原理顾名思义,双调谐回路是指有两个调谐回路:一个靠近“信源”端(如晶体管输出端),称为初级;另一个靠近“负载”端(如下级输入端),称为次级。

两者之间,可采用互感耦合,或电容耦合。

与单调谐回路相比,双调谐回路的矩形系数较小,即:它的谐振特性曲线更接近于矩形。

电容耦合双调谐回路谐振放大器原理图如图2-1所示。

与图1-1相比,两者都采用了分压偏置电路,放大器均工作于甲类,但图2-1中有两个谐振回路:L1、C1组成了初级回路,L2、C2组成了次级回路;两者之间并无互感耦合(必要时,可分别对L1、L2加以屏蔽),而是由电容C3进行耦合,故称为电容耦合。

2.双调谐回路谐振放大器实验电路双调谐回路谐振放大器实验电路如图2-2所示,其基本部分与图2-1相同。

图中,2C04、2C11用来对初、次级回路调谐,2K02用以改变耦合电容数值,以改变耦合程度。

2K01用以改变集电极负载。

图中T1为输入变压器,将天线上的信号耦合至放大器的输入端。

图中2Q02用来对选频后的信号进行进一步放大。

图 2-2 双调谐回路谐振放大器实验电路81五、实验步骤1.实验准备在实验箱主板上插上双调谐回路谐振放大器模块。

接通实验箱上电源开关,按下模块上开关2K1接通电源,此时电源指示灯点亮。

2.双调谐回路谐振放大器幅频特性测量本实验采用点测法,即保持输入幅度不变,改变输入信号的频率,测出与频率相对应的双调谐放大器的输出幅度,然后画出频率与幅度的关系曲线,该曲线即为双调谐回路放大器的幅频特性(如果有扫频仪,可直接测量其幅频特性曲线)。

下图为用扫频仪测得的幅频特性曲线。

用扫频仪测得的幅频特性曲线点测法,步骤如下:①2K02往上拨,接通2C05(10 P),2K02至“off”。

高频信号源输出频率6.3MHZ (用频率计测量),幅度300mv,然后用铆孔线接入双调谐放大器的输入端(2P01)。

示波器CH1接2TP01,示波器CH2接放大器的输出(2TP02)端。

调整双调谐放大器电位器2W01使输出为最大值。

②按照表2-1改变高频信号源的频率(用频率计测量),保持高频信号源输出幅度峰——峰值为300mv(示波器CH1监视),从示波器CH2上读出与频率相对应的双调谐放大器的幅度值,并把数据填入表2-1。

表2-1放大器输入信号频率f(Mhz) 5.7 5.8 5.9 6.0 6.1 6.2 6.3 6.4放大器输出幅度U(mv)放大器输入信号频率f(Mhz) 6.5 6.6 6.7 6.8 6.9 7.0 7.1 7.2放大器输出幅度U(mv)③测出两峰之间凹陷点的大致频率是多少。

④以横轴为频率,纵轴为幅度,按照表2-1,画出双调谐放大器的幅频特性曲线。

⑤按照上述方法测出耦合电容为2C06(20P)(2K02拨向下方)时幅频特性曲线。

下图为用扫频仪测得的耦合电容为2C05 和2C06时的幅频特性曲线。

耦合电容为2C05时扫频曲线耦合电容为2C06时扫频曲线3. 放大器动态范围测量2K02拨向下方,接通2C06。

高频信号源输出接双调谐放大器的输入端(2P01),调整高频信号源频率至谐振频率,幅度100mv。

示波器CH1接2TP01,示波器CH2接双调谐放大器的输出(2TP02)端。

按照表2-2放大器输入幅度,改变高频信号源的输出幅度(由CH1监测)。

从示波器CH2读取出放大器输出幅度值,并把数据填入表2-2,且计算放大器电压放大倍数值。

可以发现,当放大器的输入增大到一定数值时,放大倍数开始下降,输出波形开始畸变(失真)。

表2-2放大器输入(mV) 100 200 300 400 600 800 1000 1200 1400 1600 1800 2000 放大器输出(V)放大器电压放大倍数六、实验报告要求1.画出耦合电容为2C05和2C06两种情况下的幅频特性,计算幅值从最大值下降到0.707时的带宽,并由此说明其优缺点。

相关文档
最新文档