北邮通信电子电路实验指导书.pdf

合集下载

电子电路测量实验(北邮)

电子电路测量实验(北邮)

北京邮电大学电子电路综合设计实验实验报告课题名称:函数信号发生器院系:电子工程学院摘要本实验的目的在于使用集成运算放大器设计一个方波—三角波—正弦波发生器。

其中,由施密特触发器组成的多谐振荡器产生方波,再经积分运算电路产生三角波。

最后,经过差分放大器,利用晶体管的非线性特性将三角波变换为正弦波。

并要求波形达到一定的幅值、频率等要求。

关键词函数信号发生器方波三角波正弦波集成运放正文一、设计任务要求1基本要求(1)信号输出频率在1~10kHz范围内连续可调,无明显失真。

(2)方波信号输出电压U opp=12V(误差≤20%),上升、下降沿小于10us,占空比范围为30%~70%。

(3)三角波信号输出电压U opp=8V(误差≤20%)。

(4)正弦波信号输出电压U opp≥1V2提高要求(1)将输出方波改为占空比可调的矩形波,占空比可挑范围为30%‐70%;(2)三种波形的输出峰峰值U opp均可在1V-10V 范围内连续可调。

3+二、实验原理及设计过程1总体思路函数信号发生器的构成方法多样。

本实验来看,可以先产生方波,由方波积分得到三角波,在由三角波经过整形得到正弦波;也可以先产生正弦波,将正弦波进行整形得到方波,在通过积分器产生三角波。

在器件使用上,可以是分立元件电路,也可以采用集成电路。

根据提供的器材和资料,选择设计由集成运算放大器和晶体管放大器构成的方波—三角波—正弦波发生电路(如下图二)。

2原理结构框图三、Multisim仿真过程及波形输出1元器件选择(1)方波—三角波发生电路(最终电路见附录)●芯片选择:对比uA741CP与LM318N的相关参数。

选择转换速度较快的LM318N作为矩形波发生电路的芯片,uA741CP作为三角波发生电路的芯片。

●稳压管选择:根据方波U opp =12V,方波幅度限制在-(U Z+U D)~+(U Z+U D),故选择稳压值为U Z =6V的稳压管。

查阅资料,在Multisim中选择1N4734A单稳压管,放置为稳压对管。

《通信电子线路》实验指导书XXXX版(简)

《通信电子线路》实验指导书XXXX版(简)

北方民族大学《通信电子线路》实验指导书主编校对审核北方民族大学电气信息工程学院二○一三年九月ﻬ目录实验一小信号谐振放大器的性能分析 (2)实验二LC正弦波振荡器的综合分析 (8)实验三ﻩ振幅调制与解调电路研究与综合测试 (12)实验四ﻩ频率调制与解调电路研究与综合测试 (22)实验五ﻩ锁相环的工作过程及综合分析 (29)实验一小信号谐振放大器的性能分析(综合性实验)一、实验目的1.掌握小信号谐振放大电路的组成和性能特点。

2.熟悉小信号谐振放大器的主要性能指标。

3.学会频响特性的测试。

二、实验仪器与器材1. 高频电子技术实验箱中小信号谐振放大器实验模块电路(RK -050) 2. 示波器 3. 信号源 4. 扫频仪三、小信号调谐放大器实验电路图1-1为小信号调谐放大器实验电路(R K-050)。

图中,201P 为信号输入铆孔,当做实验时,高频信号由此铆孔输入。

201TP 为输入信号测试点。

接收天线用于构成收发系统时接收发方发出的信号。

变压器21T 和电容12C 、22C 组成输入选频回路,用来选出所需要的信号。

晶体三极管21BG 用于放大信号,12R 、22R 和52R 为三极管21BG 的直流偏置电阻,用以保证晶体管工作于放大区域,且放大器工作于甲类状态。

三极管21BG 集电极接有LC 调谐回路,用来谐振于某一工作频率上。

本实验电路设计有单调谐与双调谐回路,由开关22K 控制。

当22K 断开时,为电容耦合双调谐回路,12L 、22L 、42C 和52C 组成了初级回路,32L 、42L 和92C 组成了次级回路,两回路之间由电容62C 进行耦合,调整62C 可调整其耦合度。

当开关22K 接通时,即电容62C 被短路,此时两个回路合并成单个回路,故该电路为单调谐回路。

图中12D 、22D 为变容二极管,通过改变ADVIN 的直流电压,即可改变变容二极管的电容,达到对回路的调谐。

三个二极管的并联,其目的是增大变容二极管的容量。

北京邮电大学电子电路基础实验报告

北京邮电大学电子电路基础实验报告

电子电路基础实验报告——晶体管β值检测电路的设计2012211117班2012210482号信通院17班01号张仁宇一、摘要:晶体管β值测量电路的功能是利用晶体管的电流分配特性,将放大倍数β值的测量转化为对晶体管电流的测量,同时实现用发光二极管显示出被测晶体管的放大倍数β值。

该电路主要由晶体管类型判别电路、β-V转换电路、晶体管放大倍数档位判断电路、显示电路、报警电路及电源电路六个基本部分组成。

首先通过LED发光二极管的亮灭实现判断三极管类型,并将β值的变化转化为电压的变化从而利用电压比较器及LED管实现β值档位(<150、150~200、200~250、>250)的判断与显示、并在β>250时通过LED管闪烁报警。

二、关键字:β值;晶体管;档位判断;闪烁报警三、实验目的1、加深对晶体管β值意义的理解2、了解掌握电压比较器的实际使用3、了解发光二极管的使用4、提高电子电路综合设计能力四、设计任务要求1、基本要求设计一个简易的晶体管放大倍数β值检测电路,该电路能够实现对放大倍数β值大小的初步测定1)电路能够测出NPN,PNP三极管的类型2)电路能将NPN晶体管的β值分别为大于250,大于200小于250,大于150小于200和小于150共四个档位进行判断3)用发光二极管指示被测三极管的放大倍数β值在哪一个档位4)在电路中可以用手动调节四个档位值得具体大小5)当β值大于250时可以光闪报警2、扩展要求1)电路能将PNP晶体管的β值分别为大于250,大于200小于250,大于150小于200和小于150共四个档位进行判断在电路中可以用手动调节四个档位值得具体大小。

2)NPN,PNP三极管β值的档位的判断可以通过手动或自动切换3)用PROTEL软件绘制该电路及其电源电路的印制电路版图。

五、设计思路与总体结构框图晶体管类型判别电路β-V转换电路放大倍数档位判断电路显示电路报警电路电源电路三极管类型判别电路的功能是利用NPN 型和PNP 型三极管的电流流向相反的特性判别晶体管的类型。

北京邮电大学电子电路实验报告

北京邮电大学电子电路实验报告

北京邮电大学电子电路实验报告实验一:函数信号发生器的设计与调测院系:信息与通信工程学院班级:2009211129姓名:班内序号:学号:指导教师:王老师课题名称:函数信号发生器的设计与调测摘要:本实验由两个电路组成,方波—三角波发生电路和三角波—正弦波变换电路。

方波—三角波发生电路采用运放组成,由自激的单线比较器产生方波,通过积分电路产生三角波,在经过差分电路可实现三角波—正弦波变换。

该电路振荡频率和幅度用电位器调节,输出方波幅度的大小有稳压管的稳压值决定;而正弦波幅度和电路的对称性也分别由两个电位器调节,以实现良好的正弦波输出图形。

关键词:方波、三角波、正弦波、频率调节、幅度调节,占空比调节设计任务要求:基本要求:a)设计一个设计制作一个可输出方波、三角波、正弦波信号的函数信号发生器。

1,输出频率能在1—10KHz范围内连续可调,无明显失真;2,方波输出电压Uopp = 12V,上升、下降沿小于10us,占空比可调范围30%—70%;3,三角波Uopp = 8V;4,正弦波Uopp≥1V。

b)用PROTEL软件绘制完整的电路原理图(SCH)设计思路:1,原理框图:2,系统的组成框图:分块电路和总体电路的设计:函数发生器是指能自动产生方波、三角波和正弦波的电压波形的电路或者仪器。

电路形式可以采用由运放及分离元件构成;也可以采用单片集成函数发生器。

根据用途不同,有产生三种或多种波形的函数发生器,本课题采用由集成运算放大器与晶体差分管放大器共同组成的方波—三角波、三角波—正弦波函数发生器的方法。

本课题中函数信号发生器电路组成如下:第一个电路是由比较器和积分器组成方波—三角波产生电路。

单限比较器输出的方波经积分器得到三角波;第二个电路是由差分放大器组成的三角波—正弦波变换电路。

差分放大器的特点:工作点稳定,输入阻抗高,抗干扰能力较强等。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波波形变换的原理是利用差分放大器的传输特性曲线的非线性。

通信电子电路实验指导书

通信电子电路实验指导书

实验一高频小信号调谐放大器实验一、实验目的1、掌握小信号调谐放大器的基本工作原理;2、掌握谐振放大器电压增益、通频带及选择性的定义、测试及计算;3、了解高频小信号放大器动态范围的测试方法;二、实验内容1、测量单调谐、双调谐小信号放大器的静态工作电2、测量单调谐、双调谐小信号放大器的增益3、测量单调谐、双调谐小信号放大器的通频带三、实验仪器1、信号源模块1块2、频率计模块1块3、2 号板1块4、双踪示波器1台5、万用表1块6、扫频仪(可选)1台四、实验原理(一)单调谐放大器小信号谐振放大器是通信机接收端的前端电路,主要用于高频小信号或微弱信号的线性放大。

其实验单元电路如图1-1所示。

该电路由晶体管Q1、选频回路T1二部分组成。

它不仅对高频小信号进行放大,而且还有一定的选频作用。

本实验中输入信号的频率f S=10.7MHz。

基极偏置电阻W3、R22、R4和射极电阻R5决定晶体管的静态工作点。

调节可变电阻W3改变基极偏置电阻将改变晶体管的静态工作点,从而可以改变放大器的增益。

表征高频小信号调谐放大器的主要性能指标有谐振频率f0,谐振电压放大倍数A v0,放大器的通频带BW及选择性(通常用矩形系数K r0.1来表示)等。

图1-1 单调谐小信号放大电路放大器各项性能指标及测量方法如下: 1、谐振频率放大器的调谐回路谐振时所对应的频率f 0称为放大器的谐振频率,对于图1-1所示电路(也是以下各项指标所对应电路),f 0的表达式为∑=LC f π210式中,L 为调谐回路电感线圈的电感量;∑C 为调谐回路的总电容,∑C 的表达式为ie oe C P C P C C 2221++=∑式中, C oe 为晶体管的输出电容;C ie 为晶体管的输入电容;P 1为初级线圈抽头系数;P 2为次级线圈抽头系数。

谐振频率f 0的测量方法是:用扫频仪作为测量仪器,测出电路的幅频特性曲线,调变压器T 的磁芯,使电压谐振曲线的峰值出现在规定的谐振频率点f 0。

通信(电子)电路上机实验指导书(第二版)1

通信(电子)电路上机实验指导书(第二版)1
L4 1 1.7uH 2 193p C3
R3 1 50
L5 2 551nh 1
Q1
1 L3 158n C2 1.6n C4 260p R2 50
Q2N2222 L1 1mh 2 C1 30u
0
V2 VOFF = 0 VAMPL = 2.5 FREQ = 10meg
0
0
C5 100p
C6 700p
C7 762p 2
Z equ
图 1-9 等效原理图 在 PSpice 中对图 1-8 三极管基极加入信号源, 设置频率 f = 10MHz , 对于 Vs 的选取值应使三极管工作于临界状态,通过仿真观察三极管集电极输出电流波 形,大致确定其 Vs ,这里选取 Vs = 2.5V 电源内阻 Z s = 50Ω ,对于电流取出 Ii 中的 基频成分 I [1] 则仿真后得到基极电压和电流波形为图 1-10、图 1-11 所示。
(VCC − Vces )
2 RP Rp
2
≥ 1.5W
2
(12 − 1) ≤
3
≈ 40Ω
在本实验中选取 Rp = 30Ω ,并联谐振电路如下图 1-4 所示。 IS
C
L
Rp
3
杭州电子科技大学通信工程学院
图 1-4 并联谐振电路 对于并联谐振回路有:
ωL =
Q=
1 ωC Rp
其中 ω = 10MHz
图 1-12 输入端匹配网络原理图 其中实现条件为:
2 Re < RL (1 + Qe1 ),
7
杭州电子科技大学通信工程学院
各个元件转换表达式为: R X C1 = − e − X C0 Qe1
X C2 = − RL XL =

通信电子线路实验指导书(8个实验)

通信电子线路实验指导书(8个实验)

目录第一章高频IV型实验系统介绍 (1)一、高频IV型实验系统概述 (1)二、实验箱箱体结构 (1)三、箱体各组成部分说明 (2)四、高频模块介绍及实验说明 (4)五、高频电路实验要求 (4)第二章高频电路实验部分 (6)实验一单调谐回路谐振放大器 (6)实验二高频功率放大器 (10)实验三正弦波振荡器 (15)实验四振幅调制器 (21)实验五变容二极管调频器与相位鉴频器实验 (26)实验六混频器实验 (35)实验七检波器实验 (40)实验八调频发射、接收系统实验 (46)第一章 高频IV 型实验系统介绍一、高频IV 型实验系统概述本系统由实验箱体和外接实验模块两部分组成,其中外接模块采用插拔式结构设计,便于功能的扩展。

箱体上带有一个最高频率1MHz 的低频信号源、最高频率10MHz 的高频信号源、语音与麦克风模块和电源引出端,可进行部分数字电路和模拟电路实验。

而插上选配的高频模块,则可进行相应的高频实验。

二、实验箱箱体结构箱体平面结构如图1所示,主要由以下几部分组成:● 扬声器● 高频信号源、低频信号源区 ● 电源输出区扬声器 麦克风电源输出低频信号源外接实验模块高频信号源模块电源座图1 GP-IV 实验箱平面布局图●外接实验模块区●实验模块电源座区三、箱体各组成部分说明1.电源输出区电源接通时,电源输出区电源指示灯亮2.扬声器和麦克风其输入输出为汉字标示3.直流电压输出区:系统的电源为220V交流输入,5路直流输出:±5V/2A,±12V/0.5A,-8V/0.5A。

在本区内设有这5组直流电压的输出接口,以方便使用。

4.高频信号源、低频信号源高低频信号源均采用DDS芯片输出正弦波、三角波、方波三种波形的信号,峰峰值最大可达6V,同时幅值、偏移可调。

1).操作:●频率设置键“MENU”:第一次按下此键,数码管第一位开始闪烁,即进入了“频率设置”状态,此时功能键“NEXT”、“ADD”有效;第二次按下此键,退出“频率设置”状态,功能键“NEXT”“ADD”无效。

《通信电子线路》实验指导书

《通信电子线路》实验指导书

《通信电⼦线路》实验指导书实验⼀、⾼频⼩信号放⼤器实验⼀、实验⽬的1、了解谐振回路的幅频特性分析——通频带与选择性。

2、了解信号源内阻及负载对谐振回路的影响,并掌握频带的展宽。

3、掌握放⼤器的动态范围及其测试⽅法。

⼆、主要实验仪器与设备1、⾼频电⼦线路综合实验箱(TKGP系列);2、扫频仪;3、⾼频信号发⽣器;4、双踪⽰波器。

三、实验原理1、⼩信号调谐放⼤器基本原理⾼频⼩信号放⼤器电路是构成⽆线电设备的主要电路,它的作⽤是⼤信道中的⾼频⼩信号。

为使放⼤信号不失真,放⼤器必须⼯作在线性范围内,例如⽆线电接收机中的⾼放电路,都是典型的⾼频窄带⼩信号放⼤电路。

窄带放⼤电路中,被放⼤信号的频带宽度⼩于或远⼩于它的中⼼频率。

如在调幅接收机的中放电路中,带宽为9KHz,中⼼频率为465KHz,相对带宽Δf/f0约为百分之⼏。

因此,⾼频⼩信号放⼤电路的基本类型是选频放⼤电路,选频放⼤电路以选频器作为线性放⼤器的负载,或作为放⼤器与负载之间的匹配器。

它主要由放⼤器与选频回路两部分构成。

⽤于放⼤的有源器件可以是半导体三极管,也可以是场效应管,电⼦管或者是集成运算放⼤器。

⽤于调谐的选频器件可以是LC谐振回路,也可以是晶体滤波器,陶瓷滤波器,LC集中滤波器,声表⾯波滤波器等。

本实验⽤三极管作为放⼤器件,LC 谐振回路作为选频器。

在分析时,主要⽤如下参数衡量电路的技术指标:中⼼频率、增益、噪声系数、灵敏度、通频带与选择性。

单调谐放⼤电路⼀般采⽤LC回路作为选频器的放⼤电路,它只有⼀个LC回路,调谐在⼀个频率上,并通过变压器耦合输出,图1-1为该电路原理图。

1f中⼼频率为f0+带宽为Δf=f2-f1图1-1、单调谐放⼤电路为了改善调谐电路的频率特性,通常采⽤双调谐放⼤电路,其电路如图1-2所⽰。

双调谐放⼤电路是由两个彼此耦合的单调谐放⼤回路所组成。

它们的谐振频率应调在同⼀个中⼼频率上。

两种常见的耦合回路是:1)两个单调谐回路通过互感M耦合,如图1-2(a)所⽰,称为互感耦合双调谐振回路;2)两个单调谐回路通过电容耦合,如图1-2(b)所⽰,称为电容耦合双调谐回路。

通信电子线路实验指导

通信电子线路实验指导

高频电子线路实验指导书孙思梅改编电子与通信实验中心2008年8月实验要求1. 实验之前必须充分预习,认真阅读实验指导书,掌握好实验所必需的有关原理和理论知识;2. 对实验中所用到的仪器使用之前必须了解其性能、使用方法和注意事项,并在实验时严格遵守;3. 动手实验之前应仔细检查电路,确保无误后方能接通电源;4. 由于高频电路的特点,要求每次实验时连线要尽可能地短且整齐,不要有多余的线;5. 调节可变电容或可变电阻时应使用无感起子;6. 需要改接连线时,应先关断电源,再改接线;7. 实验中应细心操作,仔细观察实验现象;8. 实验中如发现异常现象,应立即关断电源,并报告指导老师;9. 实验结束后,必须关断电源,整理好仪器、设备、工具和实验导线。

实验报告要求:1.写明实验名称;2.写出实验目的;3.绘制实验电路图;4.列出实验所需仪器的型号和数量;5.写出实验内容及步骤;6.分析试验数据;7.写出实验体会。

目录实验一单调谐回路谐振放大器(实验板G1) (1)实验二双调谐回路及通频带展宽实验(实验板G1) (4)实验三正弦波振荡器(实验板G1) (6)实验四低电平振幅调制器(利用乘法器)(实验板G3) (9)实验五丙类高频功率放大器(实验板G2F) (12)实验六高电平振幅调制器(实验板G2F) (17)实验七调幅波信号的解调(实验板G3) (19)实验八变容二极管调频振荡器(实验板G4) (22)实验九相位鉴频器(实验板G4) (24)实验十集成电路(压控振荡器)构成的频率调制器(实验板G5) (27)实验十一集成电路(锁相环)构成的频率解调器(实验板G5) (30)实验十二利用二极管函数电路实现波形转换(主机面板) (32)实验十三晶体管混频电路(实验板G7) (33)附录1:TPE—GP2型高频电路实验学习机 (36)附录2:XPD1252-BT3C RF宽带扫描仪 (37)附录3:SP-1500型频率计 (44)附录4:DA22B型超高频毫伏表 (47)附录5:F40型数字合成函数信号发生器 (50)实验一单调谐回路谐振放大器一、实验目的1.熟悉电子元器件和高频电路实验箱。

通信电子线路实验指导书

通信电子线路实验指导书

通信电子线路实验指导书GP-4A严国萍贺锋华中科技大学电子与信息工程系二○○三年十二月前言通信电子线路实验系统是配合通信电子线路(高频电子线路或非线性电子电路)课程的理论教学研制的一套实验系统。

通信电子线路实验系统由通信发射机和接收机两大部分组成。

每部分都由单独的单元模块组合。

既可根据课程内容、进度完成单元模块实验,又可进行调幅、调频两种收、发系统的实验。

实验内容既有分立器件又有集成器件,便于学生循序渐进的学习。

发射机系统由低频调制源振荡器电路、变容二极管调频电路、振幅调制电路、高频功率放大器五个模块组成。

可独立进行各部分功能模块实验,也可将各部分级连完成发射机整机调试和测试实验。

接收机系统由小信号调谐放大器、混频器、锁相频率合成器、本振源、中放、二次混频与鉴频,包络检波五个模块组成。

可独立进行各部分功能模块实验,也可将各部分级联完成接收机功能实验。

该实验装置还可进行通话实验,使学生了解实际的通信系统。

通过实验可使学生进一步消化理解理论课程内容,培养学生调测的实际动手能力,建立系统概念。

采用GP-4型实验设备做实验时,必备的仪器是20MHZ以上双踪示波器,万用表、频率计、毫伏表、高频信号发生器等,GP-4A型实验设备中带有高频信号发生器和频率计。

该实验设备经过多次修改,本指导书是针对GP-4型和GP-4A型机所写,设备和指导书仍有一些不完善甚至不妥之处,期望同学们及有关老师提出宝贵意见。

编者二OO三年十二月目录实验板模块分布图 (1)实验一高频小信号调谐放大器 (4)实验二高频功率放大器 (8)实验三正弦波振荡器 (12)实验四振幅调制器 (16)实验五调幅波信号的解调 (20)实验六混频器 (23)实验七变容二极管调频器 (29)实验八调频波解调实验 (33)实验九本振频率合成 (36)实验十调幅系统实验 (39)实验十一调频系统实验 (42)实验十二模拟通话实验 (45)GP-4型通信电子线路简易操作说明 (48)附录1 频率计和高频信号发生器 (54)附录2 BE3型频偏仪 (56)附录3 主要集成电路 (58)图10-1(a )调幅发射机实验组成原理框图J36(J.H.OUT)J30图10-1 (b )调幅接收机实验组成原理框图ZD.OUT图11-1 (a )调频发射机实验组成原理框图J36(J.H.OUT)J30图11-1 (b )调频接收机实验组成原理框图实验一高频小信号调谐放大器一、实验目的1.掌握谐振放大器电压增益、通频带、选择性的定义、测试及计算。

北邮通信电子电路实验指导书

北邮通信电子电路实验指导书

通信电子电路实验指导书电路实验中心2016年4月目录实验1 单调谐回路谐振放大器 (2)实验2 双调谐回路谐振放大器 (8)实验3 集成乘法器幅度调制电路 (15)实验4 振幅解调器(包络检波) (23)实验5 振幅解调器(同步检波) (28)附录高频信号发生器使用简介 (32)实验1 单调谐回路谐振放大器—、实验准备1.本实验时应具备的知识点(1)放大器静态工作点(2)LC并联谐振回路(3)单调谐放大器幅频特性2.本实验时所用到的仪器(1)①号实验板《小信号调谐放大器电路》板(2)⑤号实验板《元件库》板及库元件。

注意:元件库板与库元件一一对应,实验结束后,请对应放好,便于实验后检查。

(3)双踪示波器(模拟)(4)电源(5)高频信号发生器(6)万用表二、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐回路谐振放大器的基本工作原理;3. 熟悉放大器静态工作点的测量方法;4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;5.掌握测量放大器幅频特性的方法。

三、实验内容1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;2.用示波器测量单调谐放大器的幅频特性;3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

四、基本原理1.单调谐回路谐振放大器原理小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,R B1、R B2、R E用以保证晶体管工作于放大区域,从而放大器工作于甲类。

C E是R E的旁路电容,C B、C C是输入、输出耦合电容,L、C是谐振回路,R C是集电极(交流)电阻,它决定了回路Q值、带宽。

为了减轻晶体管集电极电阻对回路Q值的影响,采用了部分回路接入方式。

图1-1 单调谐回路放大器原理电路图1-2 实验电路图(此图为典型原理图,图中标号与所用电路标号不一致)42.单调谐回路谐振放大器实验电路单调谐回路谐振放大器实验电路如图1-2所示。

通信电子电路实验讲义(2012)完全版

通信电子电路实验讲义(2012)完全版

《通信电子电路实验》实验讲义2012修正高频电路实验代前言本实验讲义是为配合清华大学TPE—GP2型高频电路实验学习机专门编写的。

多年前,学校电子技术实验室购买了几十台TPE—GP2学习机供学生做高频实验,但是,始终没有与之配套的实验讲义。

结合我校实验室现有实验条件和实验教学时间的需要,特地编写《高频电子线路实验讲义09版》。

实验一高频小信号调谐放大器(实验版G1)、实验二高频谐振功率放大器(实验版G2)是一类、实验三LC振荡和石英晶体振荡(实验版G1)都是单独实验;实验四振幅调制与解调(实验版G3)、实验五变容二极管调频振荡器(G4)、实验六集成电路压控振荡器构成的频率调制与解调(实验版G5),都是含有调制解调内容,是复合实验。

这样的实验安排涵盖了高频电路教学的主要内容。

本学期(2012秋)新购入扫频仪,所以再次修订实验讲义。

在此,特别感谢06、07、08、09级电子信息科学与技术专业学生。

正是通过他们的使用,使本教材得到不断改进与完善。

TPE—GP2型高频电路实验学习机说明1.技术性能1.1电源:输入AC220V;输出DCV+5V、-5V、+12V、-12V,最大输出电流200mA1.2信号源:(函数信号发生器)输出波形:有方波、三角波、正弦波幅值:正弦波V P-P :0~14V(14V为峰—峰值,且正负对称)方波V P-P :0~24V(24V为峰—峰值,且正负对称)三角波V P-P :0~24V(24V为峰—峰值,且正负对称)频率范围:分四档2~20Hz、20~200Hz、200~2KHz、2K~20KHz1.3电路实验板:备有五块实验板,可完成11项高频电路实验。

2.使用方法1.1将标有220V的电源线插入市电插座,接通开关,电源指示灯亮。

1.2使用实验专用电导线进行连线。

1.3实验时先阅读实验指导书,然后按照实验电路接好连线,检查无误后再接通主电源。

特别注意:电源极性不可以接反。

附录:BT-3D型扫频仪使用说明1.300MHz扫频仪主要技术参数扫频范围:1~300MHz扫频频偏:全扫1~300MHz,中心频率为150MHz;窄扫中心频率~300MHz,扫频宽度1~40MHz连续可调点频(CW)1~300MHz范围内连续可调,输出正弦波扫频线性:不大于1:1.2输出电压:1~300MHz范围内0.5V±10%输出平坦度:1~300MHz范围内0dB衰减时全频段优于±0.25dB输出衰减器:粗衰减器10dB×7步进,电控,数字显示;细衰减器 1dB×9步进,电控,数字显示输出阻抗:75Ω频率标记:50MHz、10MHz/1MHz复合及外接,共三种;外接频标灵敏度小于300mV2.面板布置说明2.1 前面板部分,见图1前面板部分:①显示器:采用大屏幕显示器,显示待测网络的幅频特性曲线。

通信电子线路实验指导书

通信电子线路实验指导书

实验一 LC 与晶体振荡器实验一、实验目的1)、了解电容三点式振荡器和晶体振荡器的基本电路及其工作原理。

2)、比较静态工作点和动态工作点,了解工作点对振荡波形的影响。

3)、测量振荡器的反馈系数、波段复盖系数、频率稳定度等参数。

4)、比较LC 与晶体振荡器的频率稳定度。

二、实验预习要求实验前,预习教材:“电子线路非线性部分”第3章:正弦波振荡器;“高频电子线路”第四章:正弦波振荡器的有关章节。

三、实验原理说明三点式振荡器包括电感三点式振荡器(哈脱莱振荡器)和电容三点式振荡器(考毕兹振荡器),其交流等效电路如图1-1。

1、起振条件1)、相位平衡条件:X ce 和X be 必 需为同性质的电抗,X cb 必需为异性质的电抗,且它们之间满足下列关系:2)、幅度起振条件: 图1-1 三点式振荡器式中:q m ——晶体管的跨导,LCX X X X Xc o C L ce be 1 |||| )(=-=+-=ω,即)(Au1* 'ie L oe m q q q Fu q ++>F U——反馈系数,A U——放大器的增益,q ie——晶体管的输入电导,q oe——晶体管的输出电导,q'L——晶体管的等效负载电导,F U一般在0.1~0.5之间取值。

2、电容三点式振荡器1)、电容反馈三点式电路——考毕兹振荡器图1-2是基本的三点式电路,其缺点是晶体管的输入电容C i和输出电容Co对频率稳定度的影响较大,且频率不可调。

L1L1(a)考毕兹振荡器(b)交流等效电路图1-2 考毕兹振荡器2)、串联改进型电容反馈三点式电路——克拉泼振荡器电路如图1-3所示,其特点是在L支路中串入一个可调的小电容C3,并加大C1和C2的容量,振荡频率主要由C3和L决定。

C1和C2主要起电容分压反馈作用,从而大大减小了C i和C o对频率稳定度的影响,且使频率可调。

(a ) 克拉泼振荡器 (b ) 交流等效电路图1-3 克拉泼振荡器3)、并联改进型电容反馈三点式电路——西勒振荡器电路如图1-4所示,它是在串联改进型的基础上,在L 1两端并联一个小电容C 4,调节C 4可改变振荡频率。

北邮通信原理实验

北邮通信原理实验

北京邮电大学通信原理实验报告学院:电子工程学院班级:姓名:班内学号:实验二抑制载波双边带的产生一、实验目的1.了解抑制载波双边带(SC-DSB)调制器的基本原理。

2.测试SC-DSB 调制器的特性。

二、实验步骤1.将TIMS 系统中的音频振荡器(Audio Oscillator)、主振荡器(Master Signals)、缓冲放大器(Buffer Amplifiers)和乘法器(Multiplier)按下图连接。

图1 实验连接图方式一2.用频率计来调整音频振荡器,使其输出为1kHz 作为调制信号,并调整冲放大器的K1,使其输出到乘法器的电压振幅为1V。

3.调整缓冲放大器的K2,使主振荡器输至乘法器的电压为1V 作为载波号。

4.测量乘法器的输出电压,并绘制其波形。

如下图2所示。

图2 乘法器输出电压波形5.调整音频振荡器的输出,重复步骤4。

如下图3所示。

图3 调整后输出波形三、思考题1.如何能使示波器上能清楚地观察到载波信号的变化?答:可以通过观察输出信号的频谱来观察载波的变化,另一方面,调制信号和载波信号的频率要相差大一些,可通过调整音频震荡器来完成。

2.用频率计直接读SC—DSB 信号,将会读出什么值。

答:围绕一个中心频率来回摆动的值。

实验三振幅调制(Amplitude modulation)一、实验目的1.了解振幅调制器的基本工作原理。

2.了解调幅波调制系数的意义和求法。

二、实验步骤1.将Tims 系统中的音频振荡器(Audio Oscillator)、可变直流电压(Variable DC)、主振荡器(Master Signals)、加法器(Adder)和乘法器(Multiplier)按图1连接。

图1 振幅调制方法一2.音频振荡器输出为1kHz,主振荡器输出为100kHz,将乘法器输入耦合开关置DC 状态。

3.将可变直流器调节旋钮逆时针旋转至最小,此时输出为-2.5V,加法器输出为+2.5V。

北邮通电实验报告

北邮通电实验报告

北京邮电大学电子电路综合设计实验实验报告课题名称:函数信号发生器的设计与调测院系:通信工程班级:2012211119学号:姓名:班内序号:摘要:本实验要求实现生成合适幅度和频率的方波、三角波、正弦波。

方波三角波发生器由集成运放电路构成,包括比较器与RC积分器组成。

方波发生器的基本电路由带正反馈的比较器及RC组成的负反馈构成,三角波主要由积分电路产生。

三角波转换为正弦波,则是通过差分电路实现。

该电路振荡频率和幅度便于调节,输出方波幅度大小由稳压管的稳压值决定,方波经积分得到三角波,而正弦波发生电路中两个电位器实现正弦波幅度与电路的对称性调节,实现较理想的正弦波输出波形。

关键词:函数信号发生器、方波、三角波、正弦波设计任务要求:设计一个方波-三角波-正弦波信号发生器,供电电源为±12V。

信号输出频率能在1~10kHz范围内连续可调,无明显失真。

方波信号输出电压Uopp=12V(误差小于20%),上升下降沿小于10us。

三角波信号输出电压Uopp=8V(误差小于20%)。

正弦波信号输出电压Uopp≥1V,无明显失真。

设计思路及总体结构框图:原理框图:设计函数发生器实现方波、三角波和正弦波的输出,其可采用电路图有多种。

此次实验采用滞回比较器生成方波,RC积分器生成三角波,差分放大器生成正弦波。

利用电位器实现频率和正弦波幅度的调节。

由比较器与积分器组成的方波三角波发生器,比较器输出的方波信号经积分器生成三角波,再经由差分放大器生成正弦波信号。

其中方波三角波生成电路为基本电路,添加电位器调节其频率。

正弦波生成电路采用差分放大器,由于差分放大电路具有工作点稳定、输入阻抗高、抗干扰能力较强等优点,特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

系统的组成框图:分块电路和总体电路的设计:方波三角波信号发生电路:由于采用了运算放大器组成的积分电路,可得到比较理想的方波和三角波。

通信电子线路实验手册2012

通信电子线路实验手册2012

通信电子线路实验指导书陈红霞马中华编庄觉辉审集美大学信息工程学院2010年9 月目录实验一高频通用电子仪器的使用--------------------------------------------- 1 实验二调谐放大器--------------------------------------------------------- 2 实验三丙类高频功率放大电路---------------------------------------------- 5 实验四 LC电容反馈式三点式震荡器----------------------------------------- 11 实验五石英晶体振荡器---------------------------------------------------- 13 实验六振幅调制器-------------------------------------------------------- 14 实验七调制波信号的解调------------------------------------------------- 18 实验八变容二极管调频振荡器--------------------------------------------- 21 实验九相位鉴频器------------------------------------------------------- 23 实验十集成电路(压控振荡器)构成的频率调制器---------------------------- 25 实验十一集成电路(锁相环)构成的频率解调器------------------------------- 27 实验十二利用二极管函数电路实现波形转换----------------------------------- 39 附录一 F120型数字合成函数/任意波信号发生器/计数器 ---------------------- 30 附录二 LPS305直流电源供应器操作手册------------------------------------ 32 附录三 Agilent54621A/22A/24A示波器------------------------------------- 34 附录四 BT-3GⅢ型频率特性测试仪 38前言实验是学习电子技术的一个重要环节。

电子电路实验报告 北邮

电子电路实验报告 北邮

指数运算电路的设计与实现摘要:指数放大电路由对数放大器和反对数放大器及温度补偿电路构成。

首先进行主要单元电路的设计,在实际应用中,基于二极管PN节的指数伏安特性实现对数反对数运算,用三极管替代PN节以增加集电极电流动态运用范围。

同时引入运算放大器,利用其方向端的“虚地特性”把PN节上的电压电流关系转化为电路的输入输出电压关系。

由于晶体管的相关参数T U,ES I是温度函数,其运算精度受温度影响较大,故加上温度补偿电路。

关键词:对数放大电路,反对数放大电路,温度补偿电路,指数放大电路,调试一、设计任务要求:设计实现一个指数运算电路,要求电路的输入输出满足指数运算关系uu k i。

o1、基本要求(1)本实验要求K=2或K=3(2)电路的输入阻抗R≥100KΩ。

i(3)输入信号幅度为0~2V(4)设计该电路的电源电路(不要求实际搭建)2、提高要求(1)可以手动的选取不同的K 值,并用数码管显示K 值。

(2)在指数运算电路的基础上进一步实现乘法,除法,乘方,开方等电路(3)其他设计、解决与功能扩展方案。

二、设计思路及总体结构框图 1、设计思路:利用二极管的PN 结的指数型伏安特性,实现对数运算。

通过电阻与晶体管位置的互换实现反对数运算电路。

加入温度补偿电路,消除温度对三极管参数的影响。

同时由电路特性确定电路中的电阻值,使之满足i R ≥100k Ω 2、系统组成框图如图所示,指数运算电路由对数放大器,放对数放大器及温度补偿电路三部分构成。

基本数学推导: i o u k u ln '=i ou k u o Be Be u ln '==Bu e o uk i=ln两边取对数: Bu u k o i ln ln =k oi u Bu =调整相关参数使B=1 即k i o u u = 3、主要单元电路设计 (1)基本对数放大器由图可知,晶体管集电极电流为e I i U uTES c =又因为 i c =i R ,u U o -=所以 Rui=-e I U uT ES从而得出RI u U ES i T o U ln-=注意:在该电路中,i u >0且输出电压不能超过0.7V 以使晶体管处于放大导通状态;此外,I ES ,T U 都是温度的函数,其运算结果受温度影响很大,所以需用对管消除I ES 的影响;用温度补偿电路消除T U 的温度影响。

北邮通电实验报告

北邮通电实验报告

一、实验名称:北邮通电实验二、实验目的:1. 了解电路的基本组成和基本原理。

2. 掌握电路元件的正确使用方法。

3. 熟悉电路的搭建与调试过程。

4. 培养实验操作能力和分析问题的能力。

三、实验仪器与材料:1. 电源:直流稳压电源2. 电阻:1kΩ、10kΩ、100kΩ3. 电容:0.1μF、1μF4. 电流表:0-1A5. 电压表:0-20V6. 开关:单刀双掷7. 导线:红色、黑色、蓝色、黄色等8. 螺丝刀、剪刀等辅助工具四、实验原理:通电实验主要是通过搭建一个简单的电路,观察电路中电流和电压的变化情况,从而了解电路的基本组成和原理。

五、实验步骤:1. 搭建电路:1.1. 根据电路图,将电阻、电容、电流表、电压表等元件按照正确的连接方式连接起来。

1.2. 将开关置于断开状态。

1.3. 检查电路连接是否正确,确保没有短路或接触不良的情况。

2. 通电实验:2.1. 将开关置于闭合状态,给电路通电。

2.2. 观察电流表和电压表的示数,记录实验数据。

2.3. 逐渐调整电阻或电容的值,观察电流和电压的变化情况,记录实验数据。

3. 数据分析:3.1. 根据实验数据,分析电路中电流和电压的变化规律。

3.2. 计算电路的电阻、电容、电流和电压等参数。

3.3. 分析实验结果与理论值之间的差异,找出原因。

六、实验结果与分析:1. 电路组成:实验中搭建的电路主要由电源、电阻、电容、电流表、电压表等元件组成。

电路的基本原理是,当电路通电时,电流会流过电阻和电容,从而产生电压和电流。

2. 电流和电压变化规律:2.1. 当电阻或电容的值增大时,电路中的电流减小,电压增大。

2.2. 当电阻或电容的值减小时,电路中的电流增大,电压减小。

2.3. 电流和电压的变化与电阻和电容的值呈反比关系。

3. 实验结果与理论值之间的差异:3.1. 实验结果与理论值之间的差异主要来自于实验误差和电路元件的参数误差。

3.2. 为了减小误差,可以采用以下措施:1. 仔细检查电路连接,确保没有短路或接触不良的情况。

通信电子线路实验讲义

通信电子线路实验讲义

目录实验守则1实验箱使用注意事项21、高频小信号调谐放大器32、高频谐振功率放大器83、LC振荡器的研究164、串联型晶体振荡器研究205、模拟乘法器的应用(一)226、模拟乘法器的应用(二)297、模拟乘法器的应用(三)338、压控调频和解调369、锁相环应用研究41附录:高频C3电子实验箱总体简介49通信电子线路综合实验箱简介52实验守则一、实验前必须预习相关的实验内容,了解实验步骤,要求及仪器操作方法。

在实验课教师讲解后或经实验室老师同意后才能做实验。

二、实验中不得应用和本实验无关的仪器、设备和器材。

不要乱搬仪器设备、乱拧仪器设备的旋钮。

在做扩展实验内容时确要使用其他仪器等,应征得实验室老师的同意。

三、遵守实验室纪律,保持室内安静、整洁,按指定位置就坐。

四、在实验室内,要注意公共卫生。

不大声喧哗,不抽烟、不随地吐痰,不乱扔杂物纸屑等。

五、实验时必须注意安全,谨防人身事故和仪器仪表的损坏。

如实验中发生事故,应立即切断电源,报告指导教师进行处理;如仪器设备损坏应立即报告实验室备案。

六、实验完毕,应切断所用仪器设备的电源、将连接线和其他元件放回原处,打扫好实验台周边卫生,经指导教师同意后方可离开。

七、认真整理实验数据,理论联系实际,写好实验报告。

实验箱使用注意事项一、实验箱内所有地均连通,但做实验时测试仪器探头的地线应就近接地。

二、在进行信号连接时,应优先选择较短的信号连接线。

三、两只无感起子,窄口用于调磁心为细的中周,宽口用于调磁心为粗的中周和可调电容。

四、调中周磁心时,应将无感批垂直放置,旋转无感批时不应用力过猛。

五、更换实验板时,不要摇晃插拔电源线,应均匀用力操作,避免电源插座松动。

六、各实验单元直流供电开关(黄色),只在所在单元工作时才打开,以免各实验单元之间互相影响。

七、为避免频率计对示波器观察波形时产生干扰,应尽量避免两者同时挂在信号的输入(输出)端。

八、中周外壳接地。

实验连线过程中,要注意连线端口的线头或鳄鱼夹子不要与外壳相碰,以防短路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

通信电子电路实验指导书
电路实验中心
2016 年 4 月
目录
实验1单调谐回路谐振放大器 (2)
实验2双调谐回路谐振放大器 (8)
实验3集成乘法器幅度调制电路 (15)
实验4振幅解调器(包络检波) (23)
实验5振幅解调器(同步检波) (28)
附录高频信号发生器使用简介 (32)
实验1单调谐回路谐振放大器
—、实验准备
1.本实验时应具备的知识点
(1)放大器静态工作点
(2)LC并联谐振回路
(3)单调谐放大器幅频特性
2.本实验时所用到的仪器
(1)①号实验板《小信号调谐放大器电路》板
(2)⑤号实验板《元件库》板及库元件。

注意:元件库板与库元件一一对应,实验结束后,请对应放好,便于实验后
检查。

(3)双踪示波器(模拟)
(4)电源
(5)高频信号发生器
(6)万用表
二、实验目的
1.熟悉电子元器件和高频电子线路实验系统;
2.掌握单调谐回路谐振放大器的基本工作原理;
3. 熟悉放大器静态工作点的测量方法;
4.熟悉放大器静态工作点和集电极负载对单调谐放大器幅频特性(包括电压增益、通频带、Q值)的影响;
5.掌握测量放大器幅频特性的方法。

三、实验内容
1.用万用表测量晶体管各点(对地)电压VB、VE、VC,并计算放大器静态工作点;
2.用示波器测量单调谐放大器的幅频特性;
3.用示波器观察静态工作点对单调谐放大器幅频特性的影响;
4.用示波器观察集电极负载对单调谐放大器幅频特性的影响。

四、基本原理
1.单调谐回路谐振放大器原理
小信号谐振放大器是通信接收机的前端电路,主要用于高频小信号或微弱信号的线性
放大和选频。

单调谐回路谐振放大器原理电路如图1-1所示。

图中,R B1、R B2、R E 用以保证晶
体管工作于放大区域,从而放大器工作于甲类。

C E 是R E 的旁路电容,C B 、C C 是输入、输出耦
合电容,L 、C 是谐振回路,R C 是集电极(交流)电阻,它决定了回路Q 值、带宽。

为了减轻
晶体管集电极电阻对回路Q 值的影响,采用了部分回路接入方式。

Ec
Cc
Rc
L
OUT
Rb1
C
Cb
IN
Q
Rb2
Re
Ce
图1-1 单调谐回路放大器原理电路
3
通信电子电路实验指导书
1L 0 1 +1 2V1 1R 9
1C 0 2
1C 0 8
1K0 2
1W 0 1
1T 0 1
1R 3 1C 2
1C 0 4
1R 1
1R 6
1T P01
1C 0 6
1Q0 2 1
90 18
1P01
1R 1 0
1C 0 1
1Q0 1
90 18
输入
1R 2
1R 8
1K
1R 4
1C 0 3
1D0 1
L E D
1T P02 1
1C 0 7 1P02
输出
GND1
1
图 1-2 实验电路图 (此图为典型原理图,图中标号与所用电路标号不一致)
4。

相关文档
最新文档