行列式的几种计算方法
行列式的几种计算方法
行列式的几种计算方法
空格
行列式是线性代数的基本概念,它具有重要的应用价值。
它的计算方法也有很多,下面主要介绍几种行列式计算的方法。
一、展开式法
把行列式的每一行的元素乘以其所在的代数余子式的值,再将所有的积相加,得到的结果就是行列式的值。
这种方法理论上可以计算任何n阶的行列式,但当n阶较大时,展开比较繁琐,耗时也较长。
二、余子式法
计算第i行列式的方法是:取行列式的第i行,取其余行,去掉第i列,再找出这些行的代数余子式,再将每一行所对应的代数余子式乘以该行第i位置上的元素,再将所有的乘积之和,得到的结果就是行列式的值。
三、乘法法
若用行列式的乘法法来计算三阶行列式,则将行列式的三行分别乘以它们的代数余子式,将结果相加。
其中要用到符号乘,只要熟悉符号乘的规则,就可以简单地进行计算。
四、分块法
分块法是将行列式分解成几个临时的小行列式,再用余子式或展开式算出小行列式的值,再将小行列式的值按一定的规则组合起来,就得到原行列式的值了。
分块法优点是计算过程不复杂,缺点是分解成的小行列式的值计算比较复杂。
五、行变换法
用行变换法计算行列式的方法是:先将行列式的几行或几列进行线性变换,使行列式某一行或某一列为0,再将变换后的行列式化简为方阵或三角阵,再求解,之后再换回原行列式,则可以得出原行列式的值。
以上就是常用的几种行列式计算方法,不同的方法各有优劣,使用者可根据具体情况选择合适的方法用于行列式计算。
行列式的计算方法总结
行列式的计算方法总结行列式是数学中一类特殊的数值,它可以用于解决各种数学问题,如线性方程组的解、二次行列式的特征根以及三角形的面积等。
它的计算方法也颇为多样,各种行列式的计算方法可以归纳总结如下:第一种是规则式子求行列式的方法,即规则式子求行列式的值。
这种方法包括常见的拆分积式法,它可以用来计算简单行列式,其解算步骤如下:把行列式的第一行和其他所有行有序的放在一起,按列乘以每列的分量,然后把乘积相加,即可求出行列式的值。
另一种常用的计算行列式的方法是运用行列式的转置法则,这也是一种简单的计算行列式的方法,它的解算步骤如下:先把行列式的行和列都交换一下,然后把交换后的新行列式进行上面第一种规则式子求行列式的求值,便可求出行列式的值。
此外,还有多元函数求行列式的方法,以及行列式求导、求偏导数的方法。
多元函数求行列式的方法就是将行列式用多元函数的形式表示出来,然后用函数定义求和解决之。
行列式求导、求偏导数的方法就是将行列式的变量替换为一个新的变量,然后进行积分,并求出偏导数,最终得到行列式的值。
最后一种常用的计算行列式的方法是拆解行列式的方法,这是一种比较复杂的行列式计算方法。
它的解算步骤如下:先把行列式拆解成几个子行列式,然后逐步把子行列式拆解为更小的子行列式,最终得到一个最小子行列式,将其值替换到初始行列式中计算,即可求出该行列式的值。
以上是行列式的计算方法总结,由于行列式的类型众多,其计算方法也多如牛毛,仅有上述几种计算方法是不够的,若想解决复杂的行列式计算,还需要运用其他更加复杂的计算方法,如克莱姆法、罗宾逊法、孟加拉法等。
此外,计算行列式还需要掌握矩阵运算的基础知识,运用高等数学知识,才能解决复杂的行列式计算问题。
总之,行列式的计算是一件非常有技巧性的事情,找到合适的计算方法,解决行列式计算的难题,有助于提高数学的解题能力。
行列式的几种计算方法
行列式的几种计算方法行列式是线性代数中一个重要的概念,它在矩阵运算中起着至关重要的作用。
在实际应用中,我们经常会遇到需要计算行列式的情况,因此掌握行列式的计算方法对于线性代数的学习和应用都是非常重要的。
本文将介绍行列式的几种常用的计算方法,希望能够对读者有所帮助。
1. 二阶行列式的计算方法我们来看二阶行列式的计算方法。
对于一个二阶行列式,其表示形式为:D = |a b||c d|a、b、c、d为任意实数。
二阶行列式的计算方法非常简单,只需用左上角的元素乘以右下角的元素,再减去左下角的元素乘以右上角的元素即可,即:这就是二阶行列式的计算方法。
通过这个公式,我们可以很容易地计算出任意给定二阶行列式的值。
同样地,a、b、c、d、e、f、g、h、i为任意实数。
三阶行列式的计算方法稍微复杂一些,但也是很容易理解的。
我们通过第一行的元素a、b、c与其余两行的元素d、e、f 和g、h、i构成的二阶行列式来计算出一个值,即a(ei - fh) - b(di - fg) + c(dh - eg)。
这样,我们就得到了原三阶行列式的值。
这个计算方法的核心就是利用代数余子式来计算三阶行列式的值。
代数余子式是指把一个元素及其所在的行和列去掉后所剩下的元素构成的二阶行列式的值。
通过不断地利用代数余子式,我们就可以顺利地计算出任意给定三阶行列式的值。
除了二阶行列式和三阶行列式之外,我们还可以通过递归的方法来计算其他阶行列式的值。
递归的思想在计算机科学中非常常见,它可以大大简化复杂问题的求解过程。
在计算行列式的情况下,递归的思想同样适用。
具体来说,我们可以通过下述公式来递归地计算n阶行列式的值:D = a1* A11 + a2* A12 + ... + an* A1na1、a2、... an为第一行的元素,A11、A12、... A1n为以a1、a2、... an为第一行元素的n-1阶行列式。
通过不断地利用代数余子式,我们就可以层层递归地计算出任意给定阶数的行列式的值。
行列式的几种计算方法
行列式的几种计算方法行列式是线性代数中的重要概念,通常用于计算矩阵的逆、解线性方程组等问题。
本文将介绍行列式的几种计算方法,帮助读者更好地理解和应用这一概念。
二阶行列式就是二阶矩阵的行列式,计算公式为:$$\begin{vmatrix}a_{11} & a_{12}\\a_{21} & a_{22}\end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}$$其中,$a_{11}$、$a_{12}$、$a_{21}$、$a_{22}$ 分别表示矩阵的四个元素。
计算二阶行列式时,可以直接套用上面的公式进行计算。
$$ \begin{vmatrix} a_{11} & a_{12} & a_{13}\\ a_{21} & a_{22} & a_{23}\\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} +a_{13}a_{21}a_{32} - a_{31}a_{22}a_{13} - a_{32}a_{23}a_{11} - a_{33}a_{21}a_{12} $$其中,$a_{11}$、$a_{12}$、$a_{13}$、$a_{21}$、$a_{22}$、$a_{23}$、$a_{31}$、$a_{32}$、$a_{33}$ 分别表示矩阵的九个元素。
计算三阶行列式时,可以采用如下方法:(1)按照第一行、第一列、第二列的顺序计算,得到三个二阶行列式;(2)按照上述公式计算三个二阶行列式对应的乘积和。
3. 拉普拉斯展开法拉普拉斯展开法是一种通用的行列式计算方法。
它的基本思想是,将行列式按照一行或一列进行展开,转化为若干个小的行列式之和。
具体步骤如下:(1)选择一行或一列作为基准行(列);(2)对于基准行(列)中的每个元素,求它所在子矩阵的行列式,乘以对应的余子式(代数余子式);(3)将所有乘积相加。
行列式计算技巧
行列式计算技巧行列式计算技巧行列式是线性代数中的重要概念,它是由矩阵中的元素组成的一种数值。
行列式的计算是线性代数中的基本操作,也是求解线性方程组、矩阵的逆等问题的重要工具。
行列式的计算方法有很多种,以下将介绍几种行列式计算的技巧。
1. 按行(列)展开法按行(列)展开法是行列式计算中的基本方法之一。
该方法的原理是利用行列式的定义式,将行列式按其中一行(列)展开成若干个代数余子式与它们对应的代数余子式所组成的和式,从而得到行列式的值。
这种方法通常适用于行列式的规模比较小的情况。
2. 范德蒙德行列式范德蒙德行列式是一种特殊的行列式形式,它在概率论、数值计算等领域中有广泛的应用。
范德蒙德行列式的定义式是一个$n\times n$的行列式,其中第$i$行第$j$列的元素为$x_i^{j-1}$。
范德蒙德行列式的值是一个关于$x_1,x_2,\cdots,x_n$的多项式,其系数和指数分别与行列式中的代数余子式有关。
3. 对角行列式对角行列式是一种特殊的行列式形式,它的所有非零元素都在对角线上,其余元素都为零。
对角行列式的值等于对角线上元素的积。
对角行列式在计算矩阵的特征值和特征向量等问题中有广泛的应用。
4. 分块矩阵行列式分块矩阵行列式是一种将大型矩阵拆分成若干小矩阵的行列式形式,通过计算每个小矩阵的行列式以及它们的代数余子式之间的运算,最终得到整个大矩阵的行列式值。
这种方法通常适用于行列式的规模比较大、结构比较复杂的情况。
以上是几种行列式计算的技巧,每种方法都有其适用范围和注意事项。
在实际应用中,需要根据具体问题选择合适的计算方法,以提高计算效率和准确度。
行列式的几种计算方法7篇
行列式的几种计算方法7篇第1篇示例:行列式是线性代数中的一个重要概念,它是一个方阵中的一个数值,可以帮助我们判断矩阵的性质,计算行列式的值是线性代数中的基础技能之一。
下面我们将介绍几种行列式的计算方法以及其应用。
一、直接展开法计算行列式最基本的方法就是直接展开法。
以3阶行列式为例,一个3阶方阵的行列式可以表示为:\[\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix}\]通过公式展开,可以得到:\[\begin{aligned}\begin{vmatrix}a &b &c \\d &e &f \\g & h & i\end{vmatrix} & = aei + bfg + cdh - ceg - bdi - afh \\& = a(ei - fh) - b(di - fg) + c(dh - eg)\end{aligned}\]这样就可以直接计算出行列式的值。
但是这种方法比较繁琐,不适用于高阶行列式的计算。
二、拉普拉斯展开法\[\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn} \\\end{vmatrix}\]以第一行为例,可以按照以下公式展开:\[ \text{det}(A) = a_{11}C_{11} + a_{12}C_{12} + \cdots +a_{1n}C_{1n} \]C_{ij}表示元素a_{ij}的代数余子式,通过递归计算代数余子式,最终可以得到行列式的值。
行列式的计算方法和技巧大总结
行列式的计算方法和技巧大总结行列式是线性代数中的一个重要概念,用于表示线性方程组的性质和解的情况。
在计算行列式时,有许多方法和技巧可以帮助我们简化计算过程。
以下是行列式计算方法和技巧的大总结。
1. 二阶矩阵行列式:对于一个2x2的矩阵A,行列式的计算方法是ad-bc,其中a、b、c和d分别为矩阵A的元素。
2. 三阶矩阵行列式:对于一个3x3的矩阵A,行列式的计算方法是a(ei-fh) - b(di-fg) + c(dh-eg),其中a、b、c、d、e、f、g和h分别为矩阵A的元素。
3.行变换法:行变换是一种常用的简化计算行列式的方法。
行变换可以通过交换行、倍乘行和行加减法三种操作来实现。
当进行行变换时,行列式的值保持不变。
4.行列式的性质:行列式有以下性质:a)交换行,行列式的值相反;b)两行交换位置,行列式的值相反;c)同行相等,行列式的值为0;d)其中一行乘以一个数k,行列式的值变为原来的k倍;e)两行相加(减),行列式的值保持不变。
5.定义展开法:行列式的定义展开法可以通过选取任意一行或一列对行列式进行展开。
展开定理是一种递归的方法,它将一个复杂的行列式分解成若干个简单的行列式,从而简化计算过程。
6.三角矩阵行列式:对于一个上(下)三角矩阵,它的行列式等于对角线上的元素相乘。
这是因为在上(下)三角矩阵中,除了对角线上的元素外,其他元素都为0,因此它们的乘积为0。
7.克拉默法则:克拉默法则适用于解线性方程组时的行列式计算。
克拉默法则使用行列式来计算方程组的解。
具体来说,对于n个方程n个未知数的线性方程组,如果系数矩阵的行列式不为零,那么该方程组有唯一解,可以通过求解该方程组的克拉默行列式来得到方程组的解。
8.外积法则:在向量代数中,我们可以使用外积法则计算向量的叉乘。
对于两个三维向量a和b,它们的叉乘可以表示为a×b,它的模就是行列式的值。
具体计算方法是:ijka1a2a3b1b2b3其中,i、j和k是单位向量,a1、a2、a3和b1、b2、b3分别为向量a和向量b的坐标。
计算行列式的方法
计算行列式的方法行列式是线性代数中的一个重要概念,它在矩阵理论和线性方程组的求解中起着至关重要的作用。
在实际应用中,我们经常需要计算行列式的值,因此掌握计算行列式的方法对于理解线性代数和解决实际问题至关重要。
本文将介绍几种常用的计算行列式的方法,希望能够帮助读者更好地理解和运用行列式的概念。
首先,我们来介绍行列式的定义。
对于一个n阶方阵A,其行列式记作|A|,它是一个数值,可以通过一定的方法来计算。
行列式的计算方法有很多种,其中最常用的包括代数余子式法、拉普拉斯展开法和特征值法。
下面我们将分别介绍这三种方法的具体步骤。
首先是代数余子式法。
对于一个n阶方阵A,其行列式的计算公式为:|A| = a11A11 + a12A12 + ... + a1nA1n。
其中a11, a12, ..., a1n为矩阵A的元素,A11, A12, ...,A1n为对应元素的代数余子式。
代数余子式的计算方法是,对于矩阵A的每个元素aij,去掉第i行和第j列后得到的n-1阶子矩阵的行列式记作Mij,那么元素aij的代数余子式Aij就等于(-1)^(i+j)Mij。
最后,将每个元素的代数余子式与对应的元素相乘,再相加起来,就得到了行列式的值。
其次是拉普拉斯展开法。
这种方法适用于任意阶的方阵,其计算步骤是,选择矩阵A的任意一行(或一列),将该行(或列)的每个元素与其对应的代数余子式相乘,再按照正负号交替相加,最终得到行列式的值。
这种方法的优点是可以通过逐步简化矩阵来减少计算量,但是在高阶矩阵上计算比较复杂。
最后是特征值法。
对于一个n阶方阵A,如果能够求出其n个特征值λ1, λ2, ..., λn,那么矩阵A的行列式就等于其特征值的乘积,即|A| = λ1 λ2 ... λn。
这种方法的优点是可以通过特征值分解来简化矩阵的计算,适用于特征值已知的情况。
除了以上介绍的三种方法外,还有其他一些计算行列式的方法,如三角化法、对角化法等。
行列式的运算法则举例
行列式的运算法则举例行列式是线性代数中的重要概念,它具有多种运算法则。
下面将列举10个行列式的运算法则,并进行详细解释。
1. 行列式转置法则:行列式的转置等于行列式本身。
即,若A为一个n阶行列式,则A^T = A。
2. 行列式交换法则:行列式中交换两行(或两列)的位置,行列式的值不变。
即,若A为一个n阶行列式,将第i行与第j行交换,则A' = A,其中A'为交换后的行列式。
3. 行列式倍乘法则:行列式的某一行(或某一列)的元素乘以k,行列式的值也乘以k。
即,若A为一个n阶行列式,将第i行的所有元素都乘以k,则A' = kA,其中A'为变换后的行列式。
4. 行列式加法法则:行列式中的某一行(或某一列)的元素与另一行(或另一列)的元素相加,行列式的值不变。
即,若A为一个n 阶行列式,将第i行的所有元素都加上第j行的对应元素,则A' = A,其中A'为变换后的行列式。
5. 行列式相等法则:行列式具有相等的性质,即两个行列式的对应元素都相等,则它们的值也相等。
即,若A、B为两个n阶行列式,且A(ij) = B(ij),其中A(ij)表示A的第i行第j列元素,B(ij)表示B的第i行第j列元素,则A = B。
6. 行列式乘法法则:两个行列式的乘积等于它们对应元素的乘积的和。
即,若A、B为两个n阶行列式,则它们的乘积C为:C(ij) = Σ(A(ik) * B(kj))其中,Σ表示求和符号,k的范围为1到n。
7. 行列式分解法则:对于n阶行列式,可以通过对其中一行(或一列)进行展开,将行列式分解为n个n-1阶行列式的乘积之和。
即,若A为一个n阶行列式,展开第i行,则有:A = Σ((-1)^(i+j) * A(ij) * Mij)其中,Mij为A(ij)的代数余子式,(-1)^(i+j)表示(-1)的i+j次方。
8. 行列式的性质法则:行列式具有一些特殊的性质,如行列式的任意两行(或任意两列)互换,行列式的值取相反数;行列式的某一行(或某一列)中的元素全为0,行列式的值为0;行列式的某一行(或某一列)中的元素成比例,行列式的值为0等。
谈谈行列式的计算方法
谈谈行列式的计算方法行列式是线性代数中的一个重要概念,常用于解线性方程组、计算逆矩阵以及求多项式的根等问题。
本文将详细介绍行列式的计算方法。
一、行列式的定义与性质:行列式是一个数,可以用于判断矩阵是否可逆、求解线性方程组的唯一解以及计算矩阵的逆等问题。
设A为一个n阶方阵,其行列式记作,A,或det(A)。
1.一阶行列式:对于一个1×1的矩阵[a],其行列式定义为,a,=a。
2.二阶行列式:对于一个2×2的矩阵[a b; c d],其行列式定义为,A,=ad-bc。
3.三阶行列式:对于一个3×3的矩阵[a₁b₁c₁;a₂b₂c₂;a₃b₃c₃],其行列式定义为,A,=a₁b₂c₃+b₁c₂a₃+c₁a₂b₃-c₁b₂a₃-a₁c₂b₃-b₁a₂c₃。
性质:-行列式与其转置矩阵行列式相同:,A,=,A^T。
-交换矩阵的两行(列)行列式改变符号,交换三行(列)行列式不变。
-一行(列)中有等于零的元素,行列式等于零。
二、行列式的计算方法:1.根据定义计算:根据行列式的定义,可以直接按照计算规则进行计算,但随着阶数的增加,计算量会呈指数级增长,因此不适用于高阶行列式的计算。
2.代数余子式法(拉普拉斯展开):利用代数余子式法可以将计算一个行列式的问题转化为计算多个较小行列式的和的问题。
对于一个n阶矩阵A,定义它的第i行第j列元素为aᵢⱼ,那么对于任意一个aᵢⱼ,可以定义它的代数余子式M(i,j)为将行i和列j从A中删去后的(n-1)阶行列式,即A的余子矩阵的行列式。
代数余子式M(i,j)用(-1)^(i+j)乘以A的代数余子式C(i,j)得到。
通过拉普拉斯展开定理,行列式等于它的任意一行(列)元素与其对应的代数余子式乘积的和,即:A,=a₁ⱼM(1,j)+a₂ⱼM(2,j)+...+aⱼⱼM(n,j)(其中j为任意列号)3.三角行列式法:对于三角矩阵(上三角或下三角),行列式等于对角线上元素的乘积,即a₁₁a₂₂...aⱼⱼ。
行列式计算方法
行列式计算方法1、 定义法:适用于0比较多的行列式.2、 按行(列)展开 ─ 降阶.适用于某行(列)0较多的行列式.3、 利用7条基本性质,化为三角形行列式4、 其他方法1)、析因子法例:计算221123122323152319x D x -=-解:由行列式定义知D 为x 的4次多项式.又,当1x =±时,1,2行相同,有0D =, 1x ∴=±为D 的根.当2x =±时,3,4行相同,有0D =, 2x ∴=±为D 的根.故D 有4个一次因式,1,1,2,2x x x x +-+-设 (1)(1)(2)(2),D a x x x x =+-+-令0x =,则112312231223152319D ==-, 即:1(1)2(2)12.a ⋅⋅-⋅⋅-=- 3.a ∴=-3(1)(1)(2)(2)D x x x x ∴=-+-+-2)、 ①、 可转为箭形行列式的行列式:箭形行列式:01211122000,0,1,2,3.0n n i nna b b b c a D c a a i n c a +=≠=箭形行列式解法:把所有的第1i +列(1,2)i n =的iic a -倍加到第1列,得: 11201()ni in n i ib c D a a a a a +==-∑某些行列式(关于对角线对称的行列式)可转为箭形行列式计算,例如12111111)1111na a a a +++ 12)n a x x xa xb xxxa方法:第2至第n 行分别减去第1行,转为箭形行列式,自己练习. ②、 么型的行列式:112232111231,0, 1,2,3.n i n n n n na b a ba D a i nb a bc c c c a ----=≠=解法:第1列的11b a -加于第2列;第2列的22b a -加于第3列;……;第1n -列的11n n b a ---加于第n 列,即可变为三角形行列式。
行列式的计算方法
x12 +1 x2 x1 Dn = xn x1
x1x2
x1xn
x22 +1 x2 xn xn x2 xn2 +1
解
行列式第1 行列式第1列有共同元素 x1 ,第2列有共同元素
1 0 0 0 x1 x12 + 1 x 2 x1 x n x1 x2 x1 x 2 x22 + 1 xn x2 xn x1 x n x2 xn xn2 + 1
1 0
0 0
0 0
0 0
0 2
0 0 1999 0 0 0 2000 0 0 0
利用n阶行列式的定义, 解 利用n阶行列式的定义,可直接计算其值 D=2000 2000! D=2000!
方法2 方法2
化三角形法
化三角形法是将原行列式化为上( 化三角形法是将原行列式化为上(下)三角形行列式或 对角形行列式计算的一种方法。 对角形行列式计算的一种方法。这是计算行列式的基本方法 之一。 之一。 例2 计算行列式
x y z x
x ax + by ay + bz
z x y
再把第1个行列式按第3列展开, 再把第1个行列式按第3列展开,第2个行列式按第2列展开.最终得 个行列式按第2列展开.
D= ( a 3 + b 3 ) y z
方法4 方法4
降阶法
利用行列式按行按列展开定理将高阶行列式转化为 降阶法. 较低阶行列式求解的方法叫做降阶法 降阶法 它可以分为直接降阶法和递推降阶法 直接降阶法用于只需经少量几次降阶就可求得行列 直接降阶法 式值的情况。 递推降阶法用于需经多次降阶才能求解,并且较低 递推降阶法 阶行列式与原行列式有相同结构的情况。
1
2
行列式的计算方法
行列式的计算方法1 引言行列式的计算是《线性代数》和《高等代数》的一个重要内容.同时也是工程应用中具有很高价值的数学工具,本文针对几种常见的类型给出了计算行列式的几种典型的方法.2 一般行列式的计算方法2.1 三角化法利用行列式的性质把原来的行列式化为上(下)三角行列式,那么,上(下)三角行列式的值就是对角线各项的积.例 1 计算行列式12311212332125113311231 ------=n n n n n nn n n n D对这个行列式的计算可以用三角化方法将第1行乘以(-1)加到第2,3,n 行,得0001002000200010001231 ---=n n n n D再将其第1,2,1, -n n 列通过相邻两列互换依次调为第n ,,2,1 列,则得102001321)1(2)1(--=-n n D n n=)!1()1(2)1(---n n n2.2 加边法有时为了便于计算行列式,特意把行列式加边升阶进行计算,这种方法称之为升阶法.它的一般方法是:nn n n n n n n n a a a a a a a a a a a a a a a a D 321333323122322211131211==nnn n n n na a ab a a a b a a a b 212222121121110001(n b b b ,,21任意数)例如下面的例题: 例2 计算行列式nn a a a a D ++++=11111111111111111111321现将行列式n D 加边升阶,得na a a D +++=111011101110111121第1行乘以(-1)加到第1,3,2+n 行,得na a a D10001001001111121----=第2列乘以11a 加到第1列,第3列乘以21a 加到第1列,依次下去直到第1+n 列乘以n a 1加到第1列,得)11(00011111121211∑∑==+=+=ni in nni ia a a a a a a a D2.3 降阶法利用按一行(列)展开定理或Laplace 展开定理将n 阶行列式降为阶较小且容易计算的行列式来计算行列式的方法称为降阶法. 例 3 计算nD 222232222222221=解 首先我们应考虑D 能不能化为上(下)三角形式,若将第一行乘以(-2)加到第n ,3,2 行,数字反而复杂了,要使行列式出现更多的“0”,将D 的第一行乘以(-1)加到第第n ,3,2 行,得2001010100012221-=n D这样仍然不是上(下)三角行列式,我们注意到,第二行除了第一项是1,后面的项全是0,这样我们按第二行展开,降阶得到:201222)1(21--=+n D)!2(2--=n2.4 对于所谓二条线的行列式,可直接展开降阶,再利用三角或次三角行列式的结果直接计算. 例4 计算行列式nnn n n a b b a b a b a D 112211--=解 按第1列展开,得11221111221)1(--+---+=n n n n nn n n b a b ab b a b a b a a Dn n n b b b a a a 21121)1(+-+=2.5 递推法通过降阶等途径,建立所求n 阶行列式n D 和比它低阶的但是结构相同的行列式之间的关系,并求得n D 的方法叫递推法.当n D 与1-n D 是同型的行列式,可考虑用递推法.例 5 计算n 级行列式 2112000002100012100012------=n D 对于形如这样的三角或次三角行列式,按第1行(列)或第n 行(列)展开得到两项的递推关系式,再利用变形递推的技巧求解.解 按第1行展开,得210120000012000011)1)(1(2211-------+=+-n n D D212---=n n D D 直接递推不易得到结果,变形得1221121232211=---=-==-=-=------D D D D D D D D n n n n n n于是 1)1(2)1(21121+=-+=-+==+=+=--n n n D D D D n n n例6 计算n 2级行列式nnn n n n nnn d c d c d c b a b a b a D 111111112----=对于形如这样的所谓两条线行列式,可直接展开得到递推公式. 解 按第1行展开,得)1(1111111121111111112nn n n n nn n n n n nn c d c d c b a b a b d c d c b a b a a D ----+-----+=1111111111111111---------=n n n n nn n n n n nn d c d c b a b a c b d c d c b a b a d a)1(2)(--=n n n n n D c b d a)1(22)(--=n n n n n n D c b d a D)2(21111))((-------=n n n n n n n n n D c b d a c b d a)())((11111111c b d a c b d a c b d a n n n n n n n n ---=----2.6 连加法 例 7 计算mx x x x m x x x x m x D n n n n ---=212121这种行列式的特点是:各行元素之和都相等.先把第2列到第n 列元素同时加到第1列,并提出公因式,得mx x x m x x x m x D n n n ni i n ---=∑=2221111)(然后将第1行乘以(-1)加到第n ,3,2行,得mm x x m x D n ni i n ---=∑=001)(21)()(11m x m ni i n --=∑=-2.7 乘积法根据拉普拉斯定理,所得行列式乘法运算规则如下:nnn nnn n n nn n n c c c c b b b b a a a a 111111111111=⋅ (其中tj ni it ij b a c ∑==1)两个行列式的乘积可以像矩阵的乘法一样来计算,假若两个行列式的阶数不同,只要把它们的阶数化为相同就可以应用上面的公式了.这种方法的关键是寻找有特殊结构的已知行列式去乘原行列式,从而简化原行列式的计算,这也是较为常用的方法.例 8 计算行列式 ab c db a dc cd a bd c b aD =解 取行列式 1111111111111111------=H显然 0≠H ,由行列式的乘法规则:=DH ⋅ab c d ba d c c d a bd c b a 1111111111111111------ H d c b a d c b a d c b a d c b a d c b a ))()()()((+---+--++--++++=等式两边消去,H 得=D ))()()()((d c b a d c b a d c b a d c b a d c b a +---+--++--++++2.8 对称法这是解决具有对称关系的数学问题的常用方法. 例 9 计算n 阶行列式βαβααββααββα++++=1010001000 n D解 按第1行展开,得21)(---+=n n n D D D αββα即 )(211----=-n n n n D D D D αβα由此递推,即得 nn n D D βα=--1因为n D 中αβ与对称,又有 nn n D D αβ=--1当 βα≠ 时,从上两式中消去1-n D ,得 11n n n D αβαβ++-=-当 βα= 时,1-+=n nn D D ββ)(21--++=n n n D ββββ 222-+=n n D ββ11)1(D n n n-+-=ββ )()1(1βαββ++-=-n n nnn β)1(+= 2.9 数学归纳法当n D 与1-n D 是同型的行列式,可考虑用数学归纳法. 例 10 计算n 级行列式ααααcos 2100cos 210001cos 210001cos =n D解 当2=n 时,ααcos 211cos 2=D αα2cos 1cos 22=-=结论成立,假设对级数小于n 的行列式结论成立,则n D 按第n 行展开,得21cos 2---=n n n D D D α由假设αααααααsin )1sin(cos )1cos(])1cos[()2cos(2-+-=--=-=-n n n n D n代入前一式,得]sin )1sin(cos )1[cos()1cos(cos 2αααααα-+---=n n n D nαααααn n n cos sin )1sin(cos )1cos(=---=故对一切自然数n ,结论成立.2.10 拆项法这是计算行列式常用的方法.一般地,当行列式的一列(行)或一列(行)以上的元素能有规律地表示为两项或多项和的形式,就可以考虑用拆为和的方法来进行计算.例 11 在平面上,以点),(),(),(233332332232222221311211x x x x M x x x x M x x x x M ------,,为顶点的三角形面积D S =,其中11121323233322222321212131x x x x x x x x x x x x D ------= )1()1()1()1()1()1(11121323222121332211------=x x x x x x x x x x x x )1()1()1()1()1()1()1()1()1(21323222121332211332211------+--+--+--=x x x x x x x x x x x x x x x x x x解 第1行拆为)1()1()1(11111121111)1)(1)(1(21332211321321232221321321------+----=x x x x x x x x x x x x x x x x x x x x x D32112132332121))()()(1)(1)(1(21x x x x x x x x x x x x +-------=232221321111x x x x x x )]1)(1)(1([))()((21321321121323----⋅---=x x x x x x x x x x x x 3 分块矩阵行列式的计算方法我们学习了矩阵的分块,知道一个矩阵⎥⎦⎤⎢⎣⎡B A 00通过分块若能转化成对角矩阵或上(下)三角矩阵⎥⎦⎤⎢⎣⎡B C A 0,那么行列式B A B C A B A ⋅==000,其中B A ,分别是r s ,阶可逆矩阵,C 是s r ⨯阶矩阵,0是n s ⨯阶矩阵.可以看出,这样可以把r s +阶行列式的计算问题通过矩阵分块转化为较低阶的s 阶和r 阶行列式计算问题,下面先根据上面的途径给出计算公式.设矩阵 ⎥⎦⎤⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=B C D A b b c c b b c c d d a a d d a a G rr r rsr r s sr s ss s r s 1111111111111111其中B A ,分别是s 阶和r 阶的可逆矩阵,C 是s r ⨯阶矩阵,D 是r s ⨯阶矩阵,则有下面公式成立. C DB A B BCD A G 1--⋅==或C DA B A BCD A G 1--⋅==下面推导公式,事实上,当0≠A 时,有⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---D BCA D A B C D A E CA E 1100 ⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡---B C C DB A B C D A E DB E 0011 上面两式两边同取行列式即可得出上面的公式.例 12 计算 8710650143102101=D这道题的常规解法是将其化为上三角行列式进行计算,若用前面介绍的公式则可以直接得出结果.令 ⎥⎦⎤⎢⎣⎡=1001A ,⎥⎦⎤⎢⎣⎡=8765B , ⎥⎦⎤⎢⎣⎡=1001C , ⎥⎦⎤⎢⎣⎡=4321D 则 ⎥⎦⎤⎢⎣⎡=1001'A ,由公式(1) 知原行列式D CA B A BCD A 1--⋅==⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=43211001100187651001 ⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡⋅=432187651 4444==0这个题还有个特点,那就是C A =,如果我们把公式变形,即D CA B A BCD A 1--⋅=D ACA AB D CA B A 11)(---=-=当C A =时,D ACA AB 1--CD AB D CAA AB -=-=-1,所以当C A =时,我们有CD AB BCD A -=,这样例题就可以直接写出答案了.参考文献:[1] 北京大学数学系,高等代数[M] (第三版).北京:高等教育出版社,2003,9.[2] 张禾瑞,高等代数[M] (第四版).北京:高等教育出版社,1997.[3] 丘维生,高等代数[M].北京:高等教育出版社,1996,12.[4] 杨子胥,高等代数[M].山东:山东科学技术出版社,2001,9.[5] 王萼芳,高等代数题解[M].北京:北京大学出版社,1983,10.[6] Gelfand I M, Kapranov M M and Celvinskij A V. Discriminaants, redultants,and multidimensional determinants[M].Mathematics: Theory&Applications,Birkhauser Verlag,1994.[7] 徐仲,陆全等.高等代数导教·导学·导考.西安::西北工业大学出版社,2004.[8] 陈黎钦.福建:福建商业高等专科学校学报,2007年2月第1期.11。
关于行列式的计算方法
关于行列式的计算方法行列式是线性代数中非常重要的一个概念,它在矩阵和线性方程组的求解中都有广泛的应用。
本文将介绍关于行列式的定义、计算方法及其性质,以及一些常用的行列式计算技巧。
一、行列式的定义行列式是一个方阵(只有行数和列数相等的矩阵才有行列式)所具有的一个确定的数值。
对于一个n阶的方阵,其行列式记作det(A),其中A 表示矩阵。
行列式的计算方法主要有三种:代数余子式法、按行(列)展开法和逆序数法。
二、代数余子式法对于一个n阶方阵A,它的第i行第j列元素的代数余子式表示为Mij,定义为:将A的第i行和第j列元素划去,然后找出剩余元素所形成的n-1阶方阵的行列式。
即:Mij = det(Aij)其中Aij表示由第i行和第j列元素删去后所得到的(n-1)阶方阵。
根据代数余子式的定义,行列式的计算可以通过以下公式进行求解:det(A) = a11M11 - a12M12 + a13M13 - ... + (-1)^(i+j)aijMij + ...其中a11,a12,a13,...是第一行元素,M11,M12,M13,...是它们对应的代数余子式。
三、按行(列)展开法按行(列)展开法是行列式计算中最常用的一种方法。
对于一个n阶方阵A,选择其中任意一行或者一列,然后按照一定规律展开计算。
以按第一行展开为例,按照以下规律进行展开:det(A) = a11C11 + a12C12 + a13C13 + ... + a1nC1n其中Cij表示第一行第j列元素aij的余子式,定义为:将A的第一行和第j列元素划去,然后找出剩余元素所形成的(n-1)阶方阵的行列式。
将Cij的计算公式中的行列式再按行(列)展开,可以得到更小阶的余子式,直到降阶为2阶方阵时,余子式的计算直接是两个元素之差。
四、逆序数法逆序数法是行列式计算中的另一种方法。
对于一个n阶方阵A,按照以下步骤进行计算:1.首先,将方阵A展开至最小的单位(1阶方阵)。
计算行列式常用的7种方法
计算行列式常用的7种方法行列式是线性代数中的重要概念,用于描述线性方程组的性质和解的情况。
在计算行列式时,有多种方法可供选择,下面将介绍行列式的常用计算方法。
1.代数余子式展开法代数余子式展开法是计算行列式的最常用方法之一、对于n阶行列式,可以选择其中的任意一行或一列展开。
选择一行展开时,可以使用代数余子式,即将每一元素乘以其代数余子式后再求和。
例如,对于3阶行列式\(\begin{bmatrix}a & b & c\\ d & e & f\\ g & h &i\end{bmatrix}\)选择第一行展开,计算行列式的值为\(aA_{11} - bA_{12} +cA_{13}\),其中\(A_{ij}\)表示第i行第j列元素的代数余子式。
类似地,可以选择列展开,使用代数余子式计算行列式的值。
2.初等变换法初等变换法是计算行列式的另一种常用方法。
通过一系列的行变换或列变换,将行列式转化为三角形矩阵或对角矩阵。
对于三角形矩阵,行列式的值即为对角线上元素的乘积;对于对角矩阵,行列式的值即为对角线上元素的乘积。
初等变换包括行交换、行缩放和行加减,可以有效地简化行列式的计算过程。
3.拉普拉斯展开法拉普拉斯展开法是计算行列式的一种常用方法,适用于任意阶的行列式。
选择其中的一行或一列展开,将行列式拆解为一系列子行列式的乘积。
每个子行列式的阶数比原行列式小1,可以继续进行递归的计算。
拉普拉斯展开法可以使用代数余子式进行计算,也可以利用构造矩阵的方式计算。
4.三对角矩阵法三对角矩阵法适用于计算特殊形式的行列式,即矩阵中除了对角线和相邻对角线上的元素外,其他元素都为0的情况。
计算三对角矩阵的行列式可以通过逐步化简为二阶或一阶行列式进行计算。
这种方法可以加速计算过程,特别适用于较大阶数的行列式。
5.特殊行列式法对于特殊形式的行列式,例如范德蒙行列式、希尔伯特行列式等,可以利用其特殊性质进行计算。
初数数学中的行列式公式详解
初数数学中的行列式公式详解行列式是初等数学中非常重要的概念之一,它在线性代数、线性方程组以及向量空间等领域具有广泛的应用。
本文将详细解析行列式的定义、性质和相关公式,帮助读者更好地理解和应用行列式。
一、行列式的定义行列式是一个方阵的标量量,它的值为一个数。
对于一个n阶方阵A=[a[i,j]],它的行列式记为|A|或det(A)。
行列式的计算需要按照一定的规则进行,下面将介绍常用的行列式计算方法。
二、行列式的计算方法1. 一阶行列式对于一个1×1的行列式,例如A=[a],它的值就是a。
2. 二阶行列式对于一个2×2的行列式,例如A=[a11,a12;a21,a22],它的值可以通过交叉相乘再相减的方法进行计算:|A|=a11·a22-a12·a21。
3. 三阶及以上的行列式对于三阶及以上的方阵,可以使用拉普拉斯展开或三角形法则进行计算。
拉普拉斯展开的思想是:把一个n阶行列式按照某一行(或列)的元素展开,然后递归地计算这些元素的(n-1)阶行列式,直到计算到二阶行列式为止。
三、行列式的性质行列式具有多种重要的性质,下面将介绍几条常用的性质。
1. 行列互换性质行列式的值不变,当互换它的任意两行(或两列)时。
2. 行列式倍乘性质行列式中的一行(或一列)的每个元素都乘上同一个数k,行列式的值也同样乘以k。
3. 行列式的展开性质行列式可以按任意一行(或一列)展开,得到的结果相同。
4. 行列式的转置性质一个方阵与其转置阵的行列式相等。
5. 行列式的相似性质相似矩阵的行列式相等。
四、常见的行列式公式1. 三阶行列式的展开式对于一个三阶行列式A=[a[i,j]],可以使用拉普拉斯展开进行计算:|A|=a11·a22·a33+a12·a23·a31+a13·a21·a32-a13·a22·a31-a12·a21·a33-a11·a23·a32。
行列式的计算
行列式的计算是学习高等代数的基石,它是求解线性方程组,求逆矩阵及求矩阵特征值的基础,但行列式的计算方法很多,综合性较强,在行列式计算中需要我们多观察总结,便于能熟练的计算行列式的值。
目前我们常用的计算行列式的方法有对角线法则,化为三角形行列式,拆分法,降阶法,升阶法,待定系数法和数学归纳法,乘积法,加边法。
1.对角线法则此法则适用于计算低阶行列式的值(如2阶,3阶行列式的值),即主对角线的元素的乘积减去辅或次对角线上的元素的乘积,其主要思想是根据2阶,3阶行列式的定义计算行列式的值。
2.化为三角行行列式利用行列式的性质,把行列式化为上(下)三角形行列式,再利用上(下)三角形行列式的结论,可得到相应行列式的值上(下)三角形行列式及其值(1)上三角形行列式为D=|■(■(a_11&a_12@0_ &a_22 )&■(a_13&…&a_1n@a_23&…&a_2n )@■(0_ &0_ @⋮&⋮@0_&0_ )&■(a_33&…&a_3n@⋮&⋮&⋮@0_ &…&a_nn ))|D=|■(■(a_11&a_12@0_&a_22 )&■(a_13&…&a_1n@a_23&…&a_2n )@■(0_ &0_ @⋮&⋮@0_&0_ )&■(a_33&…&a_3n@⋮&⋮&⋮@0_ &…&a_nn ))|=|■(■(a_11&0&0@a_21&a_22&0@a_31&a_32&a_33 )&■(⋯&0@⋯&0@⋯&0)@■(⋮&⋮&⋮@a_n1&a_n2&a_n3 )&■(⋮&⋮@⋯&a_nn ))| = a_11 a_12⋯a_nn即上(下)三角形行列式的值等于主对角线上的元素的乘积。
行列式计算方法
行列式计算方法首先,我们来介绍行列式的定义。
行列式是一个数学对象,它是一个关于矩阵的函数,可以用来判断矩阵是否可逆、求解方程组的解等。
对于一个n阶矩阵A,其行列式记作|A|或det(A),定义为一个数,它是由矩阵A的元素所确定的。
行列式的计算方法可以分为多种,包括拉普拉斯展开法、三角形法、性质法等。
下面我们将逐一介绍这些方法。
首先是拉普拉斯展开法。
对于一个n阶矩阵A,其行列式的计算可以通过对任意一行(或一列)的元素进行展开来实现。
具体来说,我们可以选择其中一行(或一列)的元素,以该行(或列)的元素为基础,按照"+ +"的规律,将矩阵A中除去该行(或列)的元素构成的n-1阶矩阵的行列式与该行(或列)的元素相乘,然后将所有这些乘积相加,即可得到矩阵A的行列式的值。
这种方法在计算过程中需要多次进行n-1阶矩阵的行列式计算,比较繁琐,但在理论上是可行的。
其次是三角形法。
对于一个n阶矩阵A,我们可以通过初等变换将其化为上(下)三角矩阵,然后利用上(下)三角矩阵的行列式的性质来计算整个矩阵A的行列式的值。
这种方法的优点在于可以通过初等变换将矩阵化简为三角形矩阵,从而简化计算过程,但在实际操作中需要注意初等变换的过程,以及上(下)三角矩阵的行列式的计算。
最后是性质法。
行列式有一系列重要的性质,例如行列式与其转置矩阵的关系、两行(列)互换行列式变号等。
利用这些性质,我们可以将矩阵A化简为对角矩阵,然后直接计算对角矩阵的行列式,从而得到整个矩阵A的行列式的值。
这种方法在实际操作中比较灵活,可以根据具体矩阵的性质进行化简,但需要熟练掌握行列式的性质。
总的来说,行列式的计算方法有多种,每种方法都有其适用的场景和特点。
在实际应用中,我们可以根据具体的矩阵和计算要求选择合适的方法进行计算,以便更高效地求得行列式的值。
希望本文介绍的行列式计算方法能够对读者有所帮助,让大家更好地理解和运用行列式的相关知识。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
行列式的几种计算方法
行列式是线性代数中非常重要的概念,它可以帮助我们理解矩阵的性质和求解线性方程组。
行列式的计算方法有多种,下面将详细介绍几种常用的计算方法。
一、按定义式计算行列式:
按照定义式计算行列式是最基本的一种方法。
对于一个n阶矩阵A,其行列式记作det(A),可以按照以下公式进行计算:
det(A) = Σ(−1)^σ(π_1,π_2,…,π_n)a_{1π_1}a_{2π_2}⋯a_{nπ_n}
σ(π_1,π_2,…,π_n)是排列(π_1,π_2,…,π_n)的符号,a_{iπ_i}表示矩阵A的第i行第π_i列的元素,Σ表示对所有可能的排列进行求和。
按照定义式计算行列式需要对所有可能的排列进行求和,计算量较大,对于较大阶的矩阵来说并不实用。
我们通常会采用其他方法来计算行列式。
计算行列式时,我们可以利用其性质来简化计算过程。
行列式有一些基本的性质,如行列式中某一行(列)所有元素都乘以一个数k,行列式的值也要乘以k;行列式中某一行(列)元素乘以某个数加到另一行(列)上去后,行列式的值不变等。
利用这些性质,我们可以通过变换行列式中的元素或行列式本身,从而简化计算过程。
对于一个3阶矩阵A,我们可以利用做行列变换将其变换为上三角矩阵,这样计算其行列式就会变得非常简单。
具体地,我们可以通过交换行或列,将矩阵A变换为上三角矩阵,然后利用上三角矩阵的行列式的性质求解行列式的值。
三、按矩阵的余子式和代数余子式计算行列式:
对于一个n阶矩阵A,其(i,j)位置的余子式M_{ij}定义为将A的第i行第j列划去后,剩下的元素按原来的次序组成的(n-1)阶行列式。
即
M_{ij} = (-1)^{i+j} \cdot \det(A_{ij})
其中A_{ij}是将矩阵A的第i行第j列元素划掉后得到的(n-1)阶子式矩阵。
矩阵的代数余子式A_{ij}定义为A_{ij} = (-1)^{i+j} \cdot M_{ij}。
利用矩阵的代数余子式和余子式的概念,我们可以利用递归的方法来计算行列式的值,从而简化计算过程。
四、按特征值和特征向量计算行列式:
矩阵的特征值和特征向量是矩阵最重要的性质之一,也可以用来计算行列式。
对于一个n阶矩阵A,它的特征值和特征向量满足以下关系:det(A-λI)=0。
其中det(A-λI)是矩阵A-λI的行列式,λ是矩阵A的特征值,I是n阶单位矩阵。
这个行列式方程可以通过求解矩阵A-λI的特征值来得到。
通过求解特征值和特征向量,我们可以得到矩阵A的行列式值。
这种方法通常适用于对称矩阵和实对称矩阵。