近世代数与数论
近世代数的基础知识
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。
一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。
代数系统简介
代数发展简史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。
傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。
F. Cajori0、引言数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
在此简要介绍代数学的有关历史发展情况。
“代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为“还原”,这里指把负项移到方程另一端“还原”为正项;muqabalah 意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项.在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文译作“algebra”。
阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的“智慧馆”(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》.1859年,我国数学家李善兰首次把“algebra”译成“代数”。
《近世代数》课件
近世代数的重要性
近世代数是数学领域中的基础学科之 一,是学习其它数学分支的重要基础 。
它对于理解数学的抽象本质和掌握数 学的基本思想方法具有重要意义,有 助于培养学生的逻辑思维和抽象思维 能力。
课程大纲简介
本课程将介绍近世代数的基本概念和性质,包括集合、群、环、域等代数系统的 定义、性质和关系。
1.1 答案
对。因为$a^2$的定义是两个整数相乘,结果仍为整数。
第1章习题及解答
1.2 答案:(略)
1.3 答案:群的基本性质包括封闭性、结合律和存在单位元。
第2章习题及解答
2.1 判断题:若$a$是整数,则$a^3$也是整数。 2.2 选择题:下列哪个是环?
第2章习题及解答
要点一
2.3 简答题
编码理论中的应用
线性码
线性码是一类重要的纠错码,其生成矩阵和校验矩阵都是线性方程组的解。这 些矩阵的构造和性质都与代数理论紧密相关。
高斯-若尔当消元法
在编码理论中,经常使用高斯-若尔当消元法来求解线性方程组,这种方法在代 数中也有广泛的应用。
物理学中的应用
量子力学中的态空间
在量子力学中,态空间是一个复的向量空间,其基底对应于可观测物理量。这与代数学中的向量空间 概念非常相似。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个多项式,那么E在F上形成一个 子域。
如果E是F的一个子集,且E中的元素 都是方程f(x)=0的根,其中f(x)是F上 的一个不可约多项式,那么E在F上形 成一个有限子域。
有限域
有限域的性质
有限域中的元素个数一定是某个素数的幂。
理想与商环
理想的定义与性质
介绍理想的定义,包括左理想、右理想、双边理想等 ,并讨论理想的封闭性、运算性质等。
数学的三大核心领域
数学的三大核心领域之代数学范畴数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交*学科。
本章简要介绍数学三大核心领域中十几门主要分支学科的有关历史发展情况。
1、算术算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。
另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。
现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。
作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。
算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。
它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。
自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。
日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。
为了满足这些简单的量度需要,就要用到分数。
现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。
它后来被阿拉伯人采用,之后传到西欧。
15世纪,它被改造成现在的形式。
在印度算术的后面,明显地存在着我国古代的影响。
19世纪中叶,格拉斯曼第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。
后来,皮亚诺进一步完善了格拉斯曼的体系。
算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。
尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,因此我们几乎离不开它。
代数课程思想方法介绍
若想谈论尺规作图不能问题,要把含直观因素 的尺规作图概念进行公理化(数学模型),用 代数方法解决问题.
尺规作图是从已知一些初等几何图形,一些线 段,一些点,而求出一些初等几何图形,线段, 点等.
即,已知平面上的一些点,要求尺规作出另一些 点来.
取定某线段为单位长的坐标系,平面上的点可以 用 (a,b) R R 表示。这样,尺规作图问题是:已 知一些实数 1, a1, a2,...an ,要求用尺规作图作另一 些数 b1,b2 ,...bn.
说明1,2,...,n为根,(1),(2 ),...,(n )也为根 故(1),(2 ),...,(n )是1,2,...,n的一个排列.
K中具有性质*的所有双射成一个群,K的伽罗华群(p(x)的
伽罗华群),它是 S11 的子群。
定理
p(x) 0可根式求解 相应的伽罗华群是可解群。
伽罗华理论是伽罗华21岁时提出的,论文寄给当 时一流的数学家庞加莱,他没有看懂,丢在一边。 40~50年后,才被发现.创立了群的理论,创立 了近代的代数学.
则( 0; , )就是复数域, a bi | a,b ,i2 1
0 , : (a,b) (a bi)
再扩充下去:四元数,八元数
(6) 代数数,超越数
是某有理系数多项式p(x)的根的实数称为代数数。
不是任一个有理系数多项式的根的实数称为超越数。
有理数
代数数
实数
无理数
超越数
e,都是超越数,2 2,e是超越数
{an} {bn} {an bn},
{an} {bn} {anbn}, ( 0; , )就是实数域。
(5) 复数域
定义:含有实数域 和i的最小域 ,称为复数域,
数学史话线性代数发展史简介
数学史话线性代数发展史简介数学史话—线性代数发展史简介一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。
傅鹰数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。
F. Cajori从事数学研究,发现新的定理和技巧是一回事;而以一种能使其他人也能掌握的方式来阐述这些定理和技巧则又是一回事。
学习那些伟大的数学家们的思想,使今天的学生能够看到某些论题在过去是怎样被处理的。
V. Z.卡兹数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时是影响政治家和神学家的学说。
M(Kline一、了解数学史的重要意义数学是人类文明的一个重要组成部分,是一项非常重要的人类活动。
与其他文化一样,数学科学是几千年来人类智慧的结晶。
在学习数学时,我们基本是通过学习教材来认识这门学科的。
教材是将历史上的数学材料按照一定的逻辑结构和学习要求加以重组、取舍编撰而成,因此,数学教材往往舍去了许多数学概念和方法形成的实际背景、演化历程以及导致其演化的各种因素。
由于数学发展的实际情况与教材的编写体系有着许多不同,所以,对数学教材的学习,往往难以了解数学的全貌和数学思想产生的过程。
正因为如此,许多人往往把数学当成了枯燥的符号、无源的死水,学了很多却理解得很少。
数学和任何一门科学一样,有着自身发展的丰富历史,是积累性的科学。
数学的发展历史展示了人类追求理想和美好生活的力量,历史上数学家的成果、业绩和品德无不闪耀着人类思想的光辉,照亮着人类社会发展和进步的历程。
通过了解一些数学史,可以使我们了解数学科学发生、发展的规律,通过追溯数学概念、思想和方法的演变和发展过程,探究数学科学发展的规律和文化内涵,帮助我们认识数学科学与人类社会发展的互动关系以及数学概念和方法的重要意义。
二、代数学的历史发展情况数学发展到今天,已经成为科学世界中拥有一百多个主要分支学科的庞大的“共和国”。
近世代数 教案
近世代数教案教案标题:近世代数教学目标:1. 了解近世代数的概念和发展历程。
2. 掌握近世代数的基本概念和运算规则。
3. 能够应用近世代数解决实际问题。
教学内容:1. 近世代数的概念介绍a. 代数的发展历程b. 近世代数的定义和特点2. 近世代数的基本概念a. 群的定义和性质b. 环的定义和性质c. 域的定义和性质3. 近世代数的运算规则a. 群的运算规则b. 环的运算规则c. 域的运算规则4. 近世代数的应用a. 代数方程的解法b. 密码学中的应用c. 数论中的应用第一课时:1. 引入近世代数的概念和发展历程,激发学生对代数的兴趣。
2. 介绍近世代数的定义和特点,帮助学生理解其重要性和应用领域。
第二课时:1. 讲解群的定义和性质,引导学生理解群的基本概念。
2. 通过例题和练习,巩固学生对群的运算规则的理解。
第三课时:1. 介绍环的定义和性质,与学生讨论环的实际应用。
2. 给学生提供环的运算规则的例题和练习,帮助他们掌握环的运算规则。
第四课时:1. 讲解域的定义和性质,与学生分享域在密码学和数论中的应用。
2. 引导学生应用域的运算规则解决实际问题。
第五课时:1. 综合运用近世代数的概念和运算规则,讲解代数方程的解法。
2. 给学生提供代数方程的例题和练习,帮助他们熟练运用近世代数解决方程问题。
教学评估:1. 课堂练习:在每节课结束时进行小组或个人练习,检查学生对概念和运算规则的理解程度。
2. 作业:布置与课堂内容相关的作业,检验学生对近世代数的掌握情况。
3. 期末考试:设计综合性的考试题目,考察学生对近世代数的理解和应用能力。
1. 教科书:提供近世代数的相关知识和例题。
2. 计算工具:使用计算器或电脑软件辅助计算和验证结果。
3. 网络资源:引导学生查找近世代数的实际应用案例和相关研究资料。
教学延伸:1. 鼓励学生参与数学竞赛和研究项目,拓宽对近世代数的应用领域的认识。
2. 鼓励学生自主学习和探索,深入了解近世代数的发展和前沿研究。
数学的三大核心领域_GAOQS
数学的三大核心领域——代数学范畴数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
本章简要介绍数学三大核心领域中十几门主要分支学科的有关历史发展情况。
一、代数学范畴1、算术算术有两种含义,一种是从中国传下来的,相当于一般所说的“数学”,如《九章算术》等。
另一种是从欧洲数学翻译过来的,源自希腊语,有“计算技术”之意。
现在一般所说的“算术”,往往指自然数的四则运算;如果是在高等数学中,则有“数论”的含义。
作为现代小学课程内容的算术,主要讲的是自然数、正分数以及它们的四则运算,并通过由计数和度量而引起的一些最简单的应用题加以巩固。
算术是数学中最古老的一个分支,它的一些结论是在长达数千年的时间里,缓慢而逐渐地建立起来的。
它们反映了在许多世纪中积累起来,并不断凝固在人们意识中的经验。
自然数是在对于对象的有限集合进行计算的过程中,产生的抽象概念。
日常生活中要求人们不仅要计算单个的对象,还要计算各种量,例如长度、重量和时间。
为了满足这些简单的量度需要,就要用到分数。
现代初等算术运算方法的发展,起源于印度,时间可能在10世纪或11世纪。
它后来被阿拉伯人采用,之后传到西欧。
15世纪,它被改造成现在的形式。
在印度算术的后面,明显地存在着我国古代的影响。
19世纪中叶,格拉斯曼第一次成功地挑选出一个基本公理体系,来定义加法与乘法运算;而算术的其它命题,可以作为逻辑的结果,从这一体系中被推导出来。
后来,皮亚诺进一步完善了格拉斯曼的体系。
算术的基本概念和逻辑推论法则,以人类的实践活动为基础,深刻地反映了世界的客观规律性。
尽管它是高度抽象的,但由于它概括的原始材料是如此广泛,^_^---因此我们几乎离不开它。
近世代数发展简史
近世代数发展简史根据课程教学安排,通过查阅近世代数发展历史的相关资料,了解了相关的知识,并对近世代数的知识结构和发展脉络有了更清楚的认识和理解,以下是我将对近世代数及其发展历史的认识。
一、近世代数的定义代数学是以数、多项式、矩阵、变换和它们的运算,以及群、环、域、模等为研究对象的学科,而近世代数(又称抽象代数)是代数学研究的一个重要分支,主要研究群、环、域、模这四种抽象的代数结构,并深入研究了具有一定特性的群、环、域、模及其子结构、商结构、同态和同构、以及作为它们支柱的具体例子,它不仅在代数学中,而且在现代数学的理论与应用中都具有基本的重要性。
二、近世代数的发展代数学的起源较早,在挪威数学家阿贝尔(Abel,N.H.)证明五次以上方程不能用根式求解的进程中就孕育着群的概念;1830年,年仅19岁的伽罗瓦(Galois,E.)彻底解决了代数方程的根式求解问题,从而引进数域的扩张、置换群、可解群等概念;后来,凯莱(Cayley,A.)在1854年的文章中给出有限抽象群;戴德金(Dedekind,J.W.R.)于1858年在代数数域中又引入有限交换群和有限群;克莱因(Klein,C.F.)于1872年建立了埃尔朗根纲领,这些都是抽象群产生的主要源泉。
然而抽象群的公理系统直到1882年凯莱与韦伯(Weber,H.)在Math.Annalen的同一期分别给出有限群的公理定义,1893年韦伯又给出无限抽象群的定义。
由于李(Lie,M.S.)对连续群和弗罗贝尼乌斯(Frobenius,F.G.)对群表示的系统研究,对群论发展产生了深刻的影响。
同时,李在研究偏微分方程组解的分类时引入李代数的概念,然而,它的发展却是19世纪末和20世纪初,由基灵(Killing,W.K.J.)、外尔(Weyl,(C.H.)H.)和嘉当(Cartan)等人的卓越工作才建立了系统理论。
域这个名词虽是戴德金较早引入的,但域的公理系统却是迪克森(Dickson,L.E.)与亨廷顿(Huntington,E.V.)于19世纪初才独立给出。
近世代数教学大纲近世代数课程是高等学校数学专业的必修课程
近世代数教学大纲近世代数课程是高等学校数学专业的必修课程《近世代数》教学大纲《近世代数》课程是高等学校数学专业的必修课程,是大学数学的重要基础课程之一。
它是现代数学的一个重要分支,其主要研究对象不是代数机构中的元素特性,而是各种代数结构本身和不同代数结构之间的相互联系。
《近世代数》已成为进入现代数学的阶梯和基础,不仅在知识方面,而且在思想方法上对于学习和研究近代数学都起着明显而有力的作用,它的理论结果也已经应用到诸多相关的科学领域,如计算机科学、理论物理、理论化学等。
设置本课程的目的:向学生介绍近世代数的最基本的概念、理论和方法,介绍现代数学的基础知识,培养学生的抽象思维能力和逻辑推理能力。
从而满足学生对代数学进一步学习和研究的要求,满足其他数学领域及数学应用对代数的基本要求。
学习本课程的要求:学生应了解近世代数的基本的概念和理论,掌握代数学研究代数结构的一般方法,注意培养抽象思维能力和逻辑推理能力,能为以后的代数学习或其他数学领域的学习打下良好的代数学基础。
先修课程要求:集合论初步,线性代数,高等代数本课程学时:54学时选用教材:刘绍学、章璞编著,近世代数导引,高等教育出版社(2011)教学手段:课堂讲授为主,讨论、课外辅导为辅考核方法:考试注:1、注意章节之间的相互联系,每章内容在全教材中所处的地位及作用。
2、在概念的讲授中,应注意由特殊到一般,由具体到抽象。
教学的初始阶段,宜慢不宜快。
3、不拘泥于教材,同时编写课程讲义。
4、时刻把握学生的接受能力。
5、教材中打“*”的内容根据实际情况选择讲解。
主要教学内容与重难点:第一章集合与运算一、学习目的通过本章的学习,能够熟练掌握近世代数中常见的一些基本概念和符号,初步了解近世代数课程研究的对象和一般的研究方法。
二、课程内容§1.1 集合§1.2 运算映射的定义,单射,满射,双射(一一映射);变换的定义,单射变换,满射变换,双射变换。
近世代数引论PPT课件
详细描述
域是一个非空集合,其中定义了两种运算:加法和乘法 ,满足一定的性质。在域中,加法和乘法都是可逆的, 即每个元素都有唯一的加法逆元和乘法逆元。此外,域 中的乘法满足结合律,且每个元素都有乘法单位元。
子域与扩域
环论在几何学中的应用
环论也是近世代数的一个重要分支,它在几何学中也有着广泛的应用。例如,在代数几 何中,环论被用于描述多项式环的结构;在解析几何中,环论也被用于描述函数的性质。
数论中的应用
域论在数论中的应用
域论是近世代数中一个重要的分支,它在数论中有着广泛的应用。例如,在代数数论中,域论被用于描述代数数 的性质;在数论中,域论也被用于研究整数的性质和结构。
分式域与函数域
总结词
分式域和函数域是两种特殊的域,它们在数学和物理 中有广泛的应用。分式域是由其整环的分式组成的域 ,而函数域则是基于函数的定义域和值域形成的域。
详细描述
分式域是由一个整环的分式组成的域。整环是一个只含 有限除数的环,也就是说,如果一个元素在整环中不能 被其他元素整除,则该元素被称为不可约元素。分式环 是由整环中所有分式组成的集合,它构成一个域。函数 域是基于函数的定义域和值域形成的域。具体来说,给 定一个函数f和一个集合D,函数域是由集合D中所有可 能的函数值组成的集合,它也构成一个域。
交叉学科的研究
近世代数与其他学科的交叉研究也是未来的一个重要方向,如 代数几何、代数数论、计算机科学等学科的交叉研究,可以促
进近世代数的发展和应用。
THANKS
感谢观看
环论
环的定义和性质
要点一
总结词
环是具有加法和乘法两种运算的代数系统,满足一定的性 质。
(完整版)近世代数教学大纲
《近世代数》教学大纲课程名称:近世代数英文名称:Abstract Algebra课程编号:0641008 学分:3 学时:54先修课程:高等代数、初等数论替代课程:无适用对象:数学与应用数学专业(4年制普通本科)(一)课程目的要求本课程的目的是引导学生掌握近世代数的基本概念和基本理论,从而达到对近世代数的语言与理论有所了解的目的,帮助学生为进一步的学习和研究打好代数学方面的知识基础.主要是群、环、域的基本概念以及基本理论。
在学习本课程中,要求学生掌握近世代数的基本概念、基本理论和方法,提高数学修养与技巧,以便能深入理解中学代数的内容和方法,为进一步学习其它学科创造条件。
(二)课程简介近世代数是数学与应用数学专业必修课程,是现代数学的一个重要分支,是研究多种代数结构的一门学科。
它的内容对中学代数教学有指导意义,它的思想方法已经渗透到数学的多个分支,它的结果已应用到众多学科领域,现在本课程已作为师范院校数学专业学生的必修课。
本课程的学习分为三个部分,第一部分学习近世代数的预备知识,包括集合、映射、代数运算及等价关系等基本概念。
第二部分学习群的基本理论,主要包括群的定义和基本性质, 子群和商群理论, 群同态和同构定理, 置换群的基本理论,有限群的Lagrange定理。
第三部分学习环论的基础内容, 主要包括环, 子环, 商环的定义和基本性质, 环同态和同构定理, 素理想与极大理想,环上的多项式环的构造,扩域和有限域。
(三)教学方式教学方式是以教师讲授为主,注重知识点之间的比较,运用类比方法;根据课堂教学情况,适当补充一些例题,以帮助学生课后巩固所学知识;适时给出思考题,培养学生的独立思考能力;对一章进行总结时,适当配备一些典型习题讲解, 以帮助学生理解和掌握抽象的概念和性质定理。
(四)教材和主要教学参考书教材:《近世代数》(第二版),朱平天,李伯洪,邹园编,科学出版社, 2009年出版主要教学参考书:1.张禾瑞编:《近世代数基础》,人民教育出版社, 1984年版。
近世代数1
近世代数近世代数是数学中的一个重要分支,它主要研究代数结构及其应用。
近世代数产生于19世纪中叶,一开始被视为是整数理论的一部分,但随着研究的深入,近世代数逐渐发展成为一门独立的数学分支。
在这篇文章中,我们将对近世代数的概念、发展以及主要结论进行探讨。
一、近世代数的概念近世代数是指从巴格-瓦列理公式出发,发展起来的一种代数学,它主要研究代数结构的一般理论。
在近世代数中,我们主要研究群、环和域这三种代数结构,这三种代数结构都可以看作一组数以及对这些数进行运算的一种集合。
群:群是一种代数结构,它包含了一组有限或无限个元素以及一种二元运算。
这种运算满足结合律、单位元素存在和逆元素存在的条件,这里的逆元素指的是一个元素与之相乘可以得到单位元素。
环:环是一种代数结构,它包含了一组有限或无限个元素以及两种二元运算。
这两种运算被称作加法和乘法,加法满足结合律、交换律、单位元素存在以及逆元素存在的条件,乘法满足结合律和分配律。
域:域是一种代数结构,它包含了一组有限或无限个元素以及两种二元运算。
这两种运算被称作加法和乘法,加法满足结合律、交换律、单位元素存在以及逆元素存在的条件,乘法满足结合律、交换律、单位元素存在以及逆元素存在的条件。
此外,对于任意的非零元素,都有其乘法逆元素存在。
二、近世代数的发展1、伽罗华理论伽罗华理论是19世纪中期出现的一种代数理论,该理论最初的研究对象是方程的根式解。
伽罗华理论的主要思想是利用群论的方法研究方程的根的性质。
2、李群和黎曼猜想20世纪初,李群的概念被引入到了数学中。
李群是一种具有光滑结构和群结构的数学对象,它将代数和几何联系起来,是现代微分几何和物理学中不可或缺的数学工具之一。
黎曼猜想是数论中的一个著名猜想,它关于大约150年前被提出,至今尚未证明。
其主要内容是,对于任意正整数n,大于1的所有素数p都满足:p的虚部等于n的平方根。
3、格罗滕迪克定理格罗滕迪克定理是当代近世代数的一个重要定理,该定理表明,任何有限群都可以表示为一些简单有限群的直积。
近世代数
中文名称
近世代数
理论构成
全部现代数学有重要的影响
概述抽象代数发源自历史抽象代数1843年近世代数
图书详细信息
目录版权信息内容简介印刷时间:2009-2-1
理论构成
抽象代数学对于全部现代数学和一些其它科学领域都有重要的影响。抽象代数学随着数学中各分支理论的发展和应用需要而得到不断的发展。经过伯克霍夫、冯.诺伊曼、坎托罗维奇和斯通等人在1933-1938年所做的工作,格论确定了在代数学的地位。而自20世纪40年代中叶起,作为线性代数的推广的模论得到进一步的发展并产生深刻的影响。泛代数、同调代数、范畴等新领域也被建立和发展起来。抽象代数在上一个世纪已经有了良好的开端,伽罗瓦在方程求根中就蕴蓄了群的概念。后来凯利对群作了抽象定义(Cayley,1821~1895)。他在1849年的一项工作里提出抽象群的概念,可惜没有引起反响。"过早的抽象落到了聋子的耳朵里"。直到1878年,凯利又写了抽象群的四篇文章才引起注意。1874年,挪威数学家索甫斯·李(Sophus Lie, 1842~1899)在研究微分方程时,发现某些微分方程解对一些连续变换群是不变的,一下子接触到连续群。1882年,英国的冯·戴克(von Dyck,1856~1934)把群论的三个主要来源-方程式论,数论和无限变换群-纳入统一的概念之中,并提出"生成元"概念。20世纪初给出了群的抽象公理系统。
1927-1935年,诺特研究非交换代数与「非交换算术」。她把表示理论、理想理论及模理论统一在所谓"超复系"即代数的基础上。后又引进交叉积的概念并用决定有限维枷罗瓦扩张的布饶尔群。最后导致代数的主定理的证明,代数数域上的中心可除代数是循环代数。
诺特的思想
近世代数教学课件
的元素,就说a不属于A,记作 a A ;
例如,设A是一切偶数所成的集合,那么4∈A,
而 3. A
17
一个集合可能只含有有限多个元素,这样的 集合叫做有限集合. 如,学校的全体学生的集 合;一本书里面的所有汉字的集合等等这些 都是有限集合.
如果一个集合是由无限多个元素组成的, 就叫做无限集合. 如,全体自然数的集合;全 体实数的集合.
设A,B是两个集合,令 A B {x | x A但x B} 也就是说,A B 是由一切属于A但不属于B 的元素所
组成的,称为A与B 的差.
注意:并没有要求B是A的子集. 例如,Q C Ø
积运算:
2
主要参考书
1.B.L.瓦德瓦尔登著:代数学Ⅰ、Ⅱ 卷,科学出版社,1964年版 2.N.贾柯勃逊著:抽象代数1、2、3卷, 科学出版社,1987年出版 3. <<近世代数基础>>,张禾瑞 ,高等 教育出版,1978年修订本。 4.刘绍学著:近世代数基础,高等教育 出版社,1999年出版
3
5.石生明著:近世代数初步、高等教育出版 社,2002年出版 6.《近世代数》,吴品山,人民教育出版社, 1979。 7.《抽象代数学》,谢邦杰,上海科学技术出 版社, 1982。 8.《抽象代数基础》,刘云英,北京师范大学 出版 社,1990年。
描述法:
如果一个集A是由一切具有某一性质的元 素所组成的,那么就用记号
A {x | x具有某一性质
来表示.
19
A {x | 1 x 1, x R } 表示一切大于-1且小于1
的实数的所组成的集合. 常用的数集: 全体整数的集合,表示为Z 全体有理数的集合,表示为Q 全体实数的集合,表示为R
大学数学系学什么
大学数学系学什么
大学数学系学习的课程有很多,其主要课程有:数学分析、高等代数、高等数学、解析几何、微分几何、高等几何、常微分方程、偏微分方程、
概率论与数理统计、复变函数论、实变函数论、抽象代数、近世代数、数论、泛函分析、拓扑学、模糊数学。
此外,师范类院校的数学系还要额外
学习数学教育学。
补充资料:
大学数学系旨在培养数学与应用数学的高素质拔尖人才,培养现代数
学顶峰的攀登者,培养在我国现代化建设中担当大任的数学和应用数学领
军人物。
在课程设置上,尤其在一、二年级,强调正规扎实的数学基础训练,为学生将来成才和多方向的发展奠定坚实宽广的根基。
同时引导学生
深入到数学最重要的分支,接触现代数学思想和框架,拓宽知识领域,激
发求知和探索兴趣。
在积极向上,宽松自由的环境中,培养学生高度的创
新意识和能力,达到专与博、严与活的高度和谐统一。
代数发展史
代数发展史一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。
数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。
数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的‚共和国‛。
大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟通形与数且涉及极限运算的部分,属于分析学的范围。
这三大类数学构成了整个数学的本体与核心。
在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。
在此简要介绍代数学的有关历史发展情况。
‚代数‛(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔·花拉子米(al-Khowārizmī,约780-850)一本著作的名称,书名的阿拉伯文是‘ilm al-jabr wa’l muqabalah,直译应为《还原与对消的科学》.al-jabr 意为‚还原‛,这里指把负项移到方程另一端‚还原‛为正项;muqabalah 意即‚对消‛或‚化简‛,指方程两端可以消去相同的项或合并同类项.在翻译中把‚a l-jabr‛译为拉丁文‚aljebra‛,拉丁文‚aljebra‛一词后来被许多国家采用,英文译作‚algebra‛。
阿布·贾法尔·穆罕默德·伊本·穆萨·阿尔—花拉子米的传记材料,很少流传下来.一般认为他生于花拉子模[Khwarizm,位于阿姆河下游,今乌兹别克境内的希瓦城(Хива)附近],故以花拉子米为姓.另一说他生于巴格达附近的库特鲁伯利(Qut-rubbullī).祖先是花拉子模人.花拉子米是拜火教徒的后裔,早年在家乡接受初等教育,后到中亚细亚古城默夫(Мерв)继续深造,并到过阿富汗、印度等地游学,不久成为远近闻名的科学家.东部地区的总督马蒙(al-Ma’mūn,公元786—833年)曾在默夫召见过花拉子米.公元813年,马蒙成为阿拔斯王朝的哈利发后,聘请花拉子米到首都巴格达工作.公元830年,马蒙在巴格达创办了著名的‚智慧馆‛(Bayt al-Hikmah,是自公元前3世纪亚历山大博物馆之后最重要的学术机关),花拉子米是智慧馆学术工作的主要领导人之一.马蒙去世后,花拉子米在后继的哈利发统治下仍留在巴格达工作,直至去世.花拉子米生活和工作的时期,是阿拉伯帝国的政治局势日渐安定、经济发展、文化生活繁荣昌盛的时期.花拉子米科学研究的范围十分广泛,包括数学、天文学、历史学和地理学等领域.他撰写了许多重要的科学著作.在数学方面,花拉子米编著了两部传世之作:《代数学》和《印度的计算术》. 1859年,我国数学家李善兰首次把‚algebra‛译成‚代数‛。