成都地铁一期工程区间隧道施工方法的选择
隧道二衬台车实施方案
成都地铁四号线一期工程矿山法隧道二衬台车实施方案复核:矿山法隧道二衬台车实施方案一、工程概况及台车简介成都地铁4号线一期工程始于绕城高速西侧公平站,至于沙河站,共社16座车站,全为地下车站与区间。
公平站~文家站区间为第二个区间,设计起点里程为YDK14+207.000〔ZDK14+207.000〕,设计终点里程为YDK16+253.120(ZDK16+253.000),区间右线长度2046.12M,左线长度2042.83M 〔短链3.17〕M在本区间设置“八”字出入段线与文家车辆段线相连,其中公平站设置“八”字左出入段线,长1435.0m,文家站设置“八”字右出入段线,长880.0m。
本区间采用明挖,盾构和矿山法相结合的施工工法。
出入段线GPK1+071.905~GPK1+237.500段位于光华大道北侧下方,上跨盾构区间,于GPK1+170.385~GPK1+204.424段下穿绕城高速公路桥,平面曲线半径200m,采用矿山法施工。
本段隧道总长156.595m,盾构区间先于矿山法区间施工,矿山法隧道施工期间光华大道北侧路面需限行2吨以上的车辆,可通过对重车进行临时改道行驶疏散。
本段隧道埋深4.299-7.215m,地下水位平均标高514.5m,位于隧道拱顶以上,施工期间需进行降水施工。
1.2 台车概况1、台车长度确实定根据计算得最小半径圆曲线与6m直线弧弦距,考虑到台车净空尺寸放大5cm,现场采用6m长二衬台车能够满足设计及施工要求。
2、台车概况根据隧道设计衬砌断面和施工具体要求,以及根据我部混凝土的施工方法,制定台车具体方案附图。
台车采用电机驱动整体有轨行走,模板采用全液压操作,利用液压缸支〔收〕模板,机械丝杆机械固定。
台车基本技术参数模板最大长度 L=6000mm门架内净空高度 2180mm台车轨距 B=2900mm行走速度 6-8m/min爬坡能力 7‰电源3/1=380V/220V液压系统压力 Pmax=16MPa油缸技术参数:顶升油缸 D180*d100*S300边模油缸 D90*d50*S300平移油缸 D100*d55*S200二、台车主要结构台车由行走系统、门架系统、钢模板、加固系统、液压系统、电气控制系统、加固系统等部分组成。
城市轨道交通工程地铁区间隧道施工方法
城市轨道交通工程地铁区间隧道施工方法
L喷锚暗挖法
①初期支护承担全部基本荷载来设计,二次衬砌作为安全储备。
②初期支护必须从上向下施工,二次衬砌必须从下向上施工
③浅埋暗挖与新奥法相比更强调地层的预支护和预加固。
④隧道土方开挖原则:预支护、预加固一段,开挖一段;开挖一段,支护一段;支护一段,封闭成环一段。
⑤钢拱锚喷混凝土是最佳初期支护形式。
⑥监控量测,在实施工程中施工单位要有专门机构执行与管理,并由项目技术负责人统一掌握、统一领导。
经验证明拱顶下沉是控制稳定较资管的和可靠的判断依据,水平收敛和地表沉降有时也是重要的判断依据。
对于地铁隧道来讲,地表沉降测量显得尤为重要。
2、盾构法
①优点
②缺点:曲线半径过小时,施工较为困难;覆土太浅,施工难度很大; 地表沉降尚难完全控制。
③钢筋混凝土管片是盾构法隧道衬砌中最常用的管片类型。
管环由ABK 型管片组成,管片之间一般采用螺栓连接,错缝拼装。
轻轨交通高架桥梁结构
L高架桥墩台和基础:地质情况良好时,尽可能采用扩大基础;软土地基条件下,宜采用桩基础。
常用的桥墩形式:倒梯形桥墩、T形桥墩、双柱形桥墩、Y形桥墩。
其中T形桥墩是最常用的桥墩形式。
2、钢架桥的上部结构
多采用连续梁、连续刚构、系杆拱。
结构形式的选择:从城市景观和道路交通功能考虑,宜选用较大的桥梁跨
径从而给人以通透的舒适感,按桥梁经济跨径的要求,当桥跨结构的造价和下部(墩台、基础)造价接近相等时最为经济,从加快施工进度着眼,宜大量采用预制预应力混凝土梁。
洞门施工方案
洞门施工方案目录一、工程概况 0二、施工部署及劳动组织 02.1施工部署及工期计划 02.2劳动组织安排 (1)三、洞门施工综述 (1)3.1洞门结构及尺寸 (1)3.2工程量统计 (2)四、施工准备 (2)五、施工方法及工艺 (3)5.1洞门注浆堵水 (3)5.2搭建脚手架 (4)5.3管片拆除 (6)5.4防水施工 (7)5.5绑扎钢筋 (10)5.6模板安装 (12)六、技术保证措施 (14)七、施工质量措施 (14)八、施工安全保证措施 (15)8.1施工现场安全措施 (15)8.2供电及照明安全措施 (15)8.3洞门施工安全措施 (16)8.4事故发生的急救措施 (16)九、文明施工措施 (16)9.1文明施工措施 (17)9.2环境保护措施 (17)一、工程概况成都地铁十号线一期工程土建四标为华金区间风井至金花站检修库盾构区间,右线起止点里程YDK5+617.704~YDK7+151.363,区间全长1533.659m;左线起止点里程ZDK5+634.803~ZDK7+197.331,区间全长1562.501m。
正线穿越厂房、新苗村住宅区等建筑物群,平行绕城高速公路方向向西北方向,在YDK7+013~YDK7+100处斜穿绕城高速(K48+216.80~K48=317)到达金花站。
区间共投入两`台盾构机分别为中铁装备65#、66#。
区间设置两处联络通道,分别在YDK6+179.787和YDK6+665.206,其中YDK6+179.787处为联络通道兼废水泵房。
线间距9.3m~20.03m,结构最小覆土埋深9m,最大覆土埋深13m,盾构隧道主要位于密实砂卵石层。
工程共设盾构隧道洞门4座,分别在中间风井、金花站端头,每个端头两个洞门。
始发洞门采用700mm的统一宽度,到达洞门宽度根据实际排版情况而定,但不应小于400mm,盾构区间隧道洞门防水为一级,结构不允许渗水并结构表位无湿渍。
二、施工部署及劳动组织2.1施工部署及工期计划本工程洞门数量为4个,混凝土工程量约59m3。
地铁区间隧道工程施工流程
地铁区间隧道工程施工流程一、前期准备工作1. 方案设计:首先根据设计需求确定隧道的线路、断面、长度和深度等参数,制定隧道施工方案。
2. 资金筹措:确定隧道施工的预算和资金来源。
3. 施工人员组织:确定工程需要的管理人员和施工人员,建立施工团队。
4. 设备采购:购买隧道施工所需的设备、机械和工具。
5. 材料采购:采购隧道施工所需的各种建筑材料和人工。
6. 安全措施:制订隧道施工的安全管理计划,确保施工过程中人员和设备的安全。
二、隧道施工阶段1. 周边环境整理:在开始隧道开挖之前,需要对周边环境进行整理,清除障碍物,保证施工的顺利进行。
2. 掘进坡道施工:首先要进行坡道的掘进施工,为隧道掘进提供施工的通道。
3. 掘进施工:通过隧道掘进机,根据设计方案逐步进行掘进施工,控制掘进的速度和方向。
4. 衬砌施工:隧道掘进后,需要进行衬砌施工,以确保隧道的安全和稳定。
5. 隧道通风安装:隧道施工结束后,需要进行隧道通风系统的安装。
6. 隧道防水处理:隧道施工完成后,需要进行隧道的防水处理,确保隧道无渗漏。
7. 隧道照明设置:安装隧道的照明系统,保证地铁隧道的亮度。
8. 隧道消防设施安装:安装隧道的消防设施,确保隧道的火灾安全。
三、隧道验收和交付阶段1. 隧道验收:对隧道施工完成后进行验收,检查隧道的质量和设计要求是否符合。
2. 隧道试运行:进行隧道的试运行,检验隧道通风系统、照明系统、消防设施等是否正常运行。
3. 隧道交付:最后完成隧道的验收和试运行后,将隧道交付给地铁公司或相关单位使用。
以上就是地铁区间隧道施工流程的详细介绍,施工中需要注意安全措施,确保施工质量和进度。
希望对大家了解地铁隧道施工有所帮助。
简述隧道盾构法矿山法新奥法盖挖法的区别
简述隧道盾构法、矿山法、新奥法、盖挖法的区别盾构法施工是以盾构这种施工机械在地面以下暗挖隧道的一种施工方法。
盾构〔shield 〕是一个既可以支承地层压力又可以在地层中推进的活动钢筒结构。
钢筒的前端设置有支撑和开挖土体的装置,钢筒的中段安装有顶进所需的千斤顶;钢筒的尾部可以拼装预制或现浇隧道衬砌环。
盾构每推进一环距离,就在盾尾支护下拼装〔或现浇〕一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆,以预防隧道及地面下沉。
盾构推进的反力由衬砌环承担。
盾构施工前应先修建一竖井,在竖井内安装盾构,盾构开挖出的土体由竖井通道送出地面。
按盾构断面形状不同可将其分为:圆形、拱形、矩形、马蹄形4种。
圆形因其抵抗地层中的土压力和水压力较好,衬砌拼装简便,可采纳通用构件,易于更换,因而应用较为广泛;按开挖方法不同可将盾构分为:手工挖掘式、半机械挖掘式和机械挖掘式3种;按盾构前部构造不同可将盾构分为:敞胸式和闭胸式2种;按排解地下水与稳定开挖面的方法不同可将盾构分为:人工井点降水、泥水加压、土压平衡式,局部气压盾构,全气压盾构等。
盾构法的主要优点:除竖井施工外,施工作业均在地下进行,既不影响地面交通,又可减少对附近居民的噪声和振动影响;盾构推进、出土、拼装衬砌等主要工序循环进行,施T易于治理,施工人员也比较少;土方量少;穿越河道时不影响航运;施工不受风雨等气候条件的影响;在地质条件差、地下水位高的地方建设埋深较大的隧道,盾构法有较高的技术经济优越性。
新奥法是充分利用围岩的自承能力和开挖面的空间约束作用,采纳锚杆和喷射混凝土为主要支护手段,对围岩进行加固,约束围岩的松弛和变形,并通过对围岩和支护的量测、监控,指导地下工程的设计施工。
新奥法〔NATM〕是新奥地利隧道施工方法的简称, 在我国常把新奥法称为“锚喷构筑法〞。
采纳该方法修建地下隧道时,对地面干扰小,工程投资也相对较小,已经累积了比较成熟的施工经验,工程质量也可以得到较好的保证。
成都地铁区间工程的施工难点及对策
留核 心 土 环 形 开 挖 法 时 ,核 心 土 断面 应 大于 开挖 断 面 的
5 0 % 。
( C) 严 格控 制 循 环 进 尺 ,当临 近 既 有 建筑 物 时 不 宜 超过1 m:严 格控 制 台阶长 度 ,台阶 长度 宜控 制在3  ̄ 5 m范 围 ,必 要时应 作 临时仰拱 封底 。 ( d) 开 挖 后 及 时 进行 初 期 支 护或 临 时 支 护 ,工 序 要
3 . 2 盾构下穿 时的环 境保 护及地表沉 降控制
成都 地 铁盾 构 大部 分 处于 市 区交通 要 道地 段 ,在 不 同 地段 需 分 别下 穿建 筑 物基 础底 部 、 河流 、铁 路 和桥 梁 等 ,
3 工程难点与 防范对策
3 . 1 个别 暗挖隧道需下 穿营运中的铁路
≯ - -
( a) 施工技术人员认真控制盾构参数 :根据盾构穿
作 奄 址: 上 海 市 凯 龟 路 3 l 3 l 号 明 申 大 催 ( 2 o 0 0 3 o ) 。 : … 。曩 薯 ∞ 霉 鼍 羞 i
” ; 越及上覆地层情况 ,设定适当的掘进参数,并严格控制各
本工 程采 用 对于 矿 山法 隧道 施工 ,在施 工 中要 求施 工 单位 严格 遵 循 “ 管 超前 ,严注 浆 ,短 开挖 ,强支 护 ,快 封 闭 ,勤 量测 ” 的十八字 方针进 行施 工。
( a)施 工 单 位 按 先加 固及 护 顶 ,后 开 挖 原则 进 行 施 工 ,隧道 内用小 导管注 浆加 固前 方围岩和 预支 护。 ( b)采 用合 理 的开挖 方式 ,边开 挖 边 支 护 。在 采 用
江 新 文
盾构区间隧道偏差超限案例
案例一成都地铁1号线南延线华广区间盾构隧道偏差超限质量事故 成都地铁1号线南延线华阳站~广都北站右线(以下简称:华广区间右线)全长708.667m,采用盾构法施工。
该盾构机于3月7日从广都北站始发,3月13日项目部测量组对1~12环进行管片姿态测量,测量成果显示隧道高程最大偏差为19mm;3月19日项目部对1~56环管片姿态进行复测,发现17-56环(GDYK25+533.3~+593.3)均出现不同程度的超限,其中56环垂直偏差达到+2010mm、水平偏差+52mm,但盾构机测量导向系统56环处显示的盾构垂直偏差为盾首-29mm、盾尾-25mm,水平偏差盾首+41mm、盾尾+35mm,成型隧道实测偏差与盾构机测量导向系统显示偏差严重不符。
经过调查,确认是盾构机VMT系统(盾构机上使用的一种测量自动导向系统)中输入了错误的盾构推进计划线数据文件,致使盾构机按照错误的计划线推进,导致盾构隧道轴线偏差。
加之项目部未按照测量规定的频次(每20环人工复测一次)进行人工复核,致使偏差不断扩大而未能及时被发现。
造成直接经济损失273万余元,构成市政基础设施工程质量一般事故。
一、工程概况 成都地铁1号线南延线土建1标盾构区间,由科技园站~锦江站~华阳北站~华阳站~广都北站4个区间组成,线路沿天府大道西侧辅道敷设,设计总长6039m。
华阳站~广都北站盾构区间右线起点里程YDK24+901.7,终点里程YDK25+617.3,短链6.933m,全长708.667m。
二、事故经过 1.该盾构所用的数据文件形成的经过 2013年10月,项目部完成华广区间左右线设计轴线计算后,将计算结果报三级公司精测队进行复核,设计轴线计算结果正确,项目部收到经复核后的电子文件为“华广区间右线.DT2”,该文件保存在测量组共用工作U盘中。
三级公司复核后的书面材料于2014年2月23日返给项目部。
2013年11月,三级公司精测队队长郑某到工地对测量人员进行了VMT系统的使用培训。
地铁工程区间隧道施工方法
地铁工程区间隧道施工方法地铁工程区间隧道施工方法1正洞开挖1) 区间隧道标准断面开挖及支护区间洞身大部分处在粉质粘土层,局部有粉细砂层及粉土层,洞身位于承压水范围内。
隧道埋深15m左右,能避开一般管线,主要影响是K14+610与K14+534处两座电缆沟和行车大道,根据以上情况,施工时严格贯彻"管超前、严注浆、短开挖、强支护,早封闭、勤量测"的施工原则。
在超前小导管注浆的支护下,采用上下台阶法开挖,上部预留核心土人工开挖,人工用手推车将碴土弃至下台阶。
每循环进尺0.5~0.75m,每开挖一循环立即进行拱部初喷混凝土封闭厚(4cm) ,挂网架立格栅钢架复喷混凝土至设计厚度。
下半断面紧跟,形成3m~4m短台阶。
当土体自稳能力极差时,为避免掉拱,下半断面分两次开挖,先挖左(或右) 半部分,立即挂网架立格栅喷混凝土后再开挖另一半,下半断面循环进尺仍为0.5~0.75m。
下半断面出土配置0.25m3履带式挖掘机装土。
标准段超前支护采用φ32小导管,(φ32mm,L=3.5m,环向间距300mm,搭接长度1.5m) ,布设在拱部120?范围内,初喷混凝土厚25cm。
详见"区间隧道施工工序框图"、"区间隧道正洞施工步序图"、"区间隧道初期支护工序框图"、"区间隧道二次衬砌工序框图"。
区间隧道施工工序框图区间隧道正洞施工步序图区间隧道初期支护工序框图区间隧道二次衬砌工序框图2正线区间隧道人防段施工方法区间隧道左、右线防护段里程为K15+337.1~K15+347,总长度为9.9米,断面形状为马蹄形。
断面尺寸宽8.4米,高8.3米。
采用CD法分台阶施工,风镐、风铲配合人工开挖,每一分段台阶的进尺深度都比下一分段台阶的进尺深3~5m。
人工装碴、出碴,喷射混凝土,格栅钢架支护,完成开挖和初期支护后,逐步分段拆除临时支护,做防水层及进行模筑混凝土二衬的施工。
浅谈成都地铁1号线疏散平台
浅谈成都地铁1号线疏散平台摘要:本文介绍了成都地铁1号线区间疏散平台设置的情况,并分别介绍了不同区间设置疏散平台的形式及其优缺点。
关键词:成都地铁;区间;疏散平台;优缺点1疏散平台设置的必要性随着经济的迅速发展,各大中城市的交通状况逐渐拥挤。
地铁凭着它快捷、舒适等优点已经逐渐成为了解决这些城市交通问题的有效途径。
几乎所有城市的地铁车站、地铁列车内人员都非常密集。
如果在乘坐地铁列车时遇到恐怖袭击、输电系统故障、输电电缆故障、发生火灾等事故时,如何能迅速、有序的从区间隧道内组织乘客尽快疏散,消除或减少因疏散通道不通畅造成的伤亡?设置畅通的疏散通道成为了解决上述问题的关键。
成都地铁1号线吸取了国内外相关安全教训,在区间隧道侧壁上安装了通达车站的疏散平台,该平台安装高度与车站站台高度一致,一旦发生事故,可以立即开启车门组织旅客从疏散平台疏散到就近的车站。
2疏散平台形式及施工方法介绍成都地铁1号线分别采用了两种材质的疏散平台。
其中一种是混凝土疏散平台,另一种是水泥基复合材料疏散平台。
2.1混凝土疏散平台混凝土疏散平台由混凝土支墩上铺混凝土支板组成。
它主要应用于盾构区间一般段和明挖区间段。
支墩和支板为钢筋混凝土结构,支墩根部与道床混凝土浇筑成整体。
支墩是主要的承力构件。
承受板及上部传递来的荷载。
支墩和支板一般采用工厂预制,现场安装的施工方法,具体施工方法及工艺如下:2.1.1施工方法①支墩和支板制作。
除个别特殊位置外,支墩和支板尺寸都具有相同规格,适合工厂预制。
②支墩安装。
首先对支墩安装位置隧道底部和侧壁进行凿毛和清洗,保证安装面的清洁,以利于支墩安装牢固。
支墩安装后,按照支墩标示的位置对支墩打锚栓,以防止支墩侧向移动;对支墩与道床和隧道壁之间填充水泥砂浆。
③支板安装。
支墩安装完毕后,在支墩上铺一层20mm 厚的水泥砂浆。
铺完砂浆后,利用自制小型起吊机具将混凝土支板吊到安装位置,人工配合将支板安装到位。
混凝土支板之间留20mm施工空隙,用水泥砂浆填实。
成都地铁1号线一期工程开通(升仙湖站一世纪城站)
◇ 棒 桐林
Q 融 盒城 ( 化 > 圈 孵
空新 (车站 >南 火 离
( 海洋公园
旁壬
。夺圮 世 城
内地铁 设计领域 的空 白 .2 0 年和2 0 年分 别获得成都市 科技进 07 08 步二等奖和 四川省科技进 步三等奖 。
成都地铁1 号线i期工程 的主要技术创新
● 在天府广场实 行地上 、 下—体化设计与施工 地 ● 盾构隧道长距 离在富 水砂卵石地层中的掘进技术
成都地铁盾构 工程所处 的基 本地 质条件是 富水砂卵石地层 ,
地 下 水 位 高 、 卵 石 抗 压 强 度 高 ,其 间 还 夹 杂 饱 水 的 砂 、粉 砂 透 镜 体 .部 分 区段 盾 构 掘 进 还 遇 到 较 为 坚 硬 的 基 岩 .呈 现 “ 软 下 上 硬 ” 的局 面 。该 工 程 的修 建 是 一 个 世 界 性 的 技 术 难 题 。
挖 法 。城 区内 区间采 用盾构 法施 工 .城 外地 势开 阔 受建筑物 影 响
较 小 的 区 间 采 用 喷 锚 支 护 明 挖 施 工 。 最 大 站 间 距 1 8 , 最 小 4 7m
站 m。全线 盾构法 隧道 累计 长度 为
火车北站(
升湖 O 仙
文殊 院
人北6 民路
季帚
锦江 宾馆 华西 域
‘
◇ 体馆 雀 育
卿舅 桥
在成都地 铁 1 线一期 工程盾 构旋工过 程 中 .地铁公 司曾组 号 织相关的科研 、设 计 、监理和施 工单 位 .进行 洞内带压 换刀 、穿 越地面和地下 建 《 )筑物 、河 流 、火车股道等各 种类型的技术 构 攻关 .按期保 质地 完成 了全线 的盾构掘进任务 .没 有出现重大安 全和质量事故 。盾构顺利穿越火 车南站铁路股道 、机场立交桥 ,
地铁施工的主要施工方法
目前,国内外地铁施工方法主要有如下几种:一,地铁区间施工方法(一)明挖施工法通常在地面条件允许的情况下,地铁区间隧道宜采用明挖法,但对社会环境影响很大,仅适合在无人,无交通,管线较少之地应用,该方法现较少采用. 明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法.明挖法是各国地下铁道施工的首选方法,在地面交通和环境允许的地方通常采用明挖法施工.浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术.由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状土的保护,防止地表沉降,减少对既有建筑物的影响.明挖法的优点是施工技术简单,快速,经济,常被用为首选方案.但其缺点也是明显的,如阻断交通时间较长,噪声与震动等对环境的影响.(二)盖挖施工法埋深较浅,场地狭窄及地面交通不允许长期占道施工情况下采用盖挖法施工.依据主体结构施工顺序分为盖挖顺作法,盖挖逆作法,盖挖半逆作法.该法是在既有道路上先完成周边围护挡土结构及设置在挡土结构上代替原地表路面的纵横梁和路面板,在此遮盖下由上而下分层开挖基坑至设计标高,再依序由下而上施工结构物,最后覆土恢复为盖挖顺作法;反之先行构筑顶板并恢复交通,再由上而下施工结构物为盖挖逆作法.(三)暗挖施工法暗挖法是在特定条件下,不挖开地面,全部在地下进行开挖和修筑衬砌结构的隧道施工办法.暗挖法主要包括:钻爆法,盾构法,掘进机法,浅埋暗挖法,顶管法,新奥法等.其中尤以浅埋暗挖法和盾构法应用较为广泛,目前北京地区的隧道施工当中亦以该两种方法居多.1.钻爆法我国地域广大,地质类型多样,重庆,青岛等城市处于坚硬岩石地层中,广州地铁也有部分区段处于坚硬岩石地层中,这种地质条件下修建地铁通常采用钻爆法开挖,喷锚支护(与通常的山岭隧道相当).钻爆法施工的全过程可以概括为:钻爆,装运出碴,喷锚支护,灌注衬砌,再辅以通风,排水,供电等措施.在通过不良地质地段时,常采用注浆,钢架,管棚等一系列初期支护手段.根据隧道工程地质水文条件和断面尺寸,钻爆法隧道开挖可采用各种不同的开挖方法,例如:上导坑先拱后墙法,下导坑先墙后拱法,正台阶法,反台阶法,全断面开挖法,半断面开挖法,侧壁导坑法,CD 法,CRD法等.对于爆破,有光面爆破,预裂爆破等技术.对于隧道初期支护,有锚杆,喷混凝土,挂网,钢拱架,管棚等支护方法.及时的测量和信息反馈常用来监测施工安全并验证岩石支护措施是否合理.防水基本采用截,堵,排等几种方法,其中在喷射混凝土内表面张挂聚乙烯或聚氯乙烯板,然后再灌注二次混凝土衬砌被认为是一种效果良好的防渗漏措施.2.盾构法我国应用盾构法修建隧道始于20世纪50~60年代的上海.最初是用于修建城市地下排水隧道,采用的是比较老式的盾构机(如网格式,压气式,插板式等),80年代末,90年代初开始采用土压式,泥水式等现代盾构修筑地铁区间隧道.盾构法具有安全,可靠,快速,环保等优点,目前,该方法已经在我国的地铁建设中得到了迅速的发展.据不完全统计,我国各城市地铁采用的盾构机已有60多台,其中上海30台,广州20台,北京,南京,天津,深圳各4台,大多是土压平衡盾构机型.盾构法施工是以盾构这种施工机械在地面以下暗挖隧道的一种施工方法.盾构(shield )是一个既可以支承地层压力又可以在地层中推进的活动钢筒结构.钢筒的前端设置有支撑和开挖土体的装置,钢筒的中段安装有顶进所需的千斤顶;钢筒的尾部可以拼装预制或现浇隧道衬砌环.盾构每推进一环距离,就在盾尾支护下拼装(或现浇)一环衬砌,并向衬砌环外围的空隙中压注水泥砂浆,以防止隧道及地面下沉.盾构推进的反力由衬砌环承担.盾构施工前应先修建一竖井,在竖井内安装盾构,盾构开挖出的土体由竖井通道送出地面.盾构法施工工艺见下图所示.按盾构断面形状不同可将其分为:圆形,拱形,矩形,马蹄形4种.圆形因其抵抗地层中的土压力和水压力较好,衬砌拼装简便,可采用通用构件,易于更换,因而应用较为广泛;按开挖方式不同可将盾构分为:手工挖掘式,半机械挖掘式和机械挖掘式3种;按盾构前部构造不同可将盾构分为:敞胸式和闭胸式2种;按排除地下水与稳定开挖面的方式不同可将盾构分为:人工井点降水,泥水加压,土压平衡式,局部气压盾构,全气压盾构等.随着盾构法研究的深入,工程应用的增多,盾构法施工技术以及盾构机修造配套技术也得到了发展提高:上海地铁隧道基本全部采用盾构法修建,除区间单圆盾构外,目前正在使用双圆盾构一次施工两条平行的区间隧道,此外还试验采用了方形断面盾构修建地下通道;采用直径11.2m的泥水盾构建成了大连路越江道路隧道,这也是目前我国最大直径的盾构机.广州地铁采用具有土压平衡,气压平衡和半土压平衡模式的新型复合式盾构机成功应用于既有软土,又有坚硬岩石以及断裂破碎带的复杂地层的地铁区间隧道修筑,大大拓展了盾构法的应用范围.深圳,南京,北京,天津等城市虽然地质,水文条件各不相同,但采用盾构法修建区间隧道均取得了成功.除了上述几点外,我国盾构技术的进步还表现在以下4个方面:①掌握了盾构机的选型和配套技术,与外国合作设计生产盾构机,配套施工设备包括管片模具完全能够自行设计制造;②掌握了盾构隧道的设计和结构计算技术以及防水技术;③掌握了盾构掘进控制技术,如盾构掘进参数选择控制,碴土和压力管理,地表沉降控制,盾构机姿态和隧道轴线控制,管片防裂,同步注浆等,实现了信息化施工,可以确保盾构施工的安全,优质,高效和环保;④掌握了不同地质条件和复杂环境条件下的施工及相关的施工技术.我国盾构掘进速度最高已达到月进400m以上,平均进度一般为月进160~200m,最高平均进度可达月进240m.地表沉降可控制在+10~-30mm以内,可以在距既有建,构筑物不足1m的距离安全掘进隧道,既有建,构筑物的变形量可控制在2~5mm以下;隧道轴线误差可控制在30~50mm以内.盾构法的主要优点:除竖井施工外,施工作业均在地下进行,既不影响地面交通,又可减少对附近居民的噪声和振动影响;盾构推进,出土,拼装衬砌等主要工序循环进行,施T易于管理,施工人员也比较少;土方量少;穿越河道时不影响航运;施工不受风雨等气候条件的影响;在地质条件差,地下水位高的地方建设埋深较大的隧道,盾构法有较高的技术经济优越性.工程实例:北京地铁五号线即采用了盾构法施工地铁五号线是一条贯穿北京市中心的南北向地下交通大动脉.南起丰台区宋家庄,向北经蒲黄榆,祟文门,东单,东四,雍和宫止于昌平区太平庄北站,全长27.7 km.由于该路段地上大型建筑物密集,交通流量大,地下管网复杂,为减少对城市经济和市民生活的影响,经专家论证,决定在雍和宫至北新桥约700 m长的试验段率先采用盾构施工方法.该盾构为大直径土压平衡盾构机.3.掘进机法在埋深较浅,但场地狭窄和地面交通环境不允许爆破震动扰动,又不适合盾构法的松软破碎岩层情况下采用.该法主要采用臂式掘进机开挖,受地质条件影响大.4.浅埋暗挖法浅埋暗挖法又称矿山法,起源于1986年北京地铁复兴门折返线工程,是中国人自己创造的适合中国国情的一种隧道修建方法.该法是在借鉴新奥法的某些理论基础上,针对中国的具体工程条件开发出来的一整套完善的地铁隧道修建理论和操作方法.与新奥法的不同之处在于,它是适合于城市地区松散土介质围岩条件下,隧道埋深小于或等于隧道直径,以很小的地表沉降修筑隧道的技术方法.它的突出优势在于不影响城市交通,无污染,无噪声,而且适合于各种尺寸与断面形式的隧道洞室.顾名思义,浅埋暗挖法是一项边开挖边浇注的施工技术.其原理是:利用土层在开挖过程中短时间的自稳能力,采取适当的支护措施,使围岩或土层表面形成密贴型薄壁支护结构的不开槽施工方法,主要适用于粘性土层,砂层,砂卵层等地质.由于浅埋暗挖法省去了许多报批,拆迁,掘路等程序,现被施工单位普遍采纳.浅埋暗挖法的核心技术被概括为18字方针:管超前,严注浆,短开挖,强支护,快封闭,勤量测.其主要的技术特点为:动态设计,动态施工的信息化施工方法,建立了一整套变位,应力监测系统;强调小导管超前支护在稳定工作面中的作用;研究,创新了劈裂注浆方法加固地层;发展了复合式衬砌技术,并开创性地设计应用了钢筋网构拱架支护.由于该工法在有水条件的地层中可广泛运用,加之国内丰富的劳动力资源,在北京,广州,深圳,南京等地的地铁区间隧道修建中得到推广,已成功建成许多各具特点的地铁区间隧道,而且在大跨度车站的修筑中有相当的应用.此外,该方法也广泛应用于地下车库,过街人行道和城市道路隧道等工程的修筑.5.顶管法是直接在松软土层或富水松软地层中敷设中小型管道的一种施工方法.适用于富水松软地层等特殊地层和地表环境中中小型管道工程的施工.主要由顶进设备,工具管,中继环,工程管,吸泥设备等组成.6,新奥法新奥法是充分利用围岩的自承能力和开挖面的空间约束作用,采用锚杆和喷射混凝土为主要支护手段,对围岩进行加固,约束围岩的松弛和变形,并通过对围岩和支护的量测,监控,指导地下工程的设计施工.新奥法(NATM)是新奥地利隧道施工方法的简称, 在我国常把新奥法称为"锚喷构筑法".用该方法修建地下隧道时,对地面干扰小,工程投资也相对较小,已经积累了比较成熟的施工经验,工程质量也可以得到较好的保证.使用此方法进行施工时,对于岩石地层,可采用分步或全断面一次开挖,锚喷支护和锚喷支护复合衬砌,必要时可做二次衬砌;对于土质地层,一般需对地层进行加固后再开挖支护,衬砌,在有地下水的条件下必须降水后方可施工.新奥法广泛应用于山岭隧道,城市地铁,地下贮库,地下厂房,矿山巷道等地下工程.当前,世界范围内应用新奥法设计与施工城市地铁工程取得了相当大的发展.如智利的圣地亚哥新地铁线采用新奥法施工地铁车站,车站位于城市道路下7~9m, 开挖面积230m2,相当于17m(宽)×14m(高);我国自1987 年在北京地铁首次采用新奥法施工复兴门车站及折返线工程,车站跨度达26m.针对我国城市地下工程的特点和地质条件, 新奥法经过多年的完善与发展,又开发了"浅埋暗挖法"这一新方法,与明挖法,盾构法相比较,由于它可以避免明挖法对地表的干扰性,而又较盾构法具有对地层较强的适应性和高度灵活性,因此目前广泛应用于城市地铁区间隧道,车站,地下过街道,地下停车场等工程,如根据新奥法的基本原理,采用"群洞"方案修建的广州地铁二号线越秀公园站及南京地铁一期工程南京火车站站,断面复杂多变的折返线工程,联络线工程也多采用新奥法.在我国利用新奥法原理修建地铁已成为一种主要施工方法,尤其在施工场地受限制,地层条件复杂多变,地下工程结构形式复杂等情况下用新奥法施工尤为重要.7,沉管法沉管法是将隧道管段分段预制,分段两端设临时止水头部,然后浮运至隧道轴线处,沉放在预先挖好的地槽内,完成管段间的水下连接,移去临时止水头部,回填基槽保护沉管,铺设隧道内部设施,从而形成一个完整的水下通道. 沉管隧道对地基要求较低,特别适用于软土地基,河床或海岸较浅,易于水上疏浚设施进行基槽开外的工程特点.由于其埋深小,包括连接段在内的隧道线路总长较采用暗挖法和盾构法修建的隧道明显缩短.沉管断面形状可圆可方,选择灵活.基槽开挖,管段预制,浮运沉放和内部铺装等各工序可平行作业,彼此干扰相对较少,并且管段预制质量容易控制.基于上述的优点,在大江,大河等宽阔水域下构筑隧道,沉管法称为最经济的水下穿越方案.按照管身材料,沉管隧道可分为2类:钢壳沉管隧道(有可分为单层钢壳隧道和双层钢壳隧道)和钢筋馄凝土沉管隧道.钢壳沉管隧道在北美采用的较多,而钢筋混凝土沉管隧道则在欧亚采用较多.沉管隧道施工主要工序:管节预制→基槽开挖→管段浮运和沉放→对接作业→内部装饰.工程实例:广一州珠江隧道是我国第一条公路与地铁合用的越江隧道,公路隧道全长1 238.5 m.河中段隧道埋置在河床下.不影响水面通航,河中沉管段全长457 m.该沉管为多孔矩形钢筋混凝土结构,其中包括两个双车道机动车孔,一个地铁孔,一个电缆管廊.沉管断面为典型矩形断面,外形尺寸为33 mx7.956 m(宽x高),底板厚1.2 m,顶板厚1.0 m,两外侧墙分别为0.7 m和0.55 m,最长管节的混凝土量达12 000砰.管段的基底坐落在河床的风化花岗岩层上.开槽时采用了炸礁施工.基础处理采用灌砂法.(四)混合法可以根据地铁隧道的实际情况,在地铁隧道的施工过程中采用以上2种或2种以上的方法同时使用,称其为混合法.工程实例:北京地铁东四站位于朝阳门内大街与东四南大街交叉日上,处于繁华的市中心,有多路公交车经过.车站主体顺东四南大街,呈南北走向,东四南大街规划道路红线宽70 m,现状路宽为22 m,朝内大街已改造完,道路红线宽60 m,两方向客流均衡,交通十分繁忙;且远期六号线顺朝内大街,呈东西走向,在此站换乘.本车站两端为明挖段,结构形式为3层三跨框架结构;中间为暗挖段,结构形式为单层三拱两柱结构.车站总长度197 m,暗挖段长为96.80 m,明挖段长为100. 20m.二,地铁车站施工方法车站既是地铁工程亮点所在,更是一个难点问题.对于车站的施工方法而言,目前有明挖法,盖挖顺筑法,盖挖逆筑法,盖挖半逆筑法,明暗挖混合法,浅埋暗挖法.原则上优先采用明挖法,其次是盖挖法,盖挖法中应优选盖挖逆筑法,盖挖半逆筑法,最后则是浅埋暗挖法,因为该方法适用于交通要道,管线太多,不易开挖的繁华市区.(一)明挖施工法明挖法是目前我国地铁车站采用最多的一种修建方法,主要有放坡明挖和维护结构内的明挖(即基坑开挖)两种方法.明挖顺筑法技术上的进步主要反映在基坑的开挖方法和维护结构上,适应于不同的土层,基坑的维护结构主要有地下连续墙,人工挖孔桩,钻孔灌注桩,SMW工法桩,工字钢桩,加木背板和钢板桩围堰等.在基坑开挖方面,有代表性的是时空效应理论.上海地铁总结出在软弱地层中开挖,支撑和结构施工的一套方法.首先采用大口井进行基坑降水,以提高基地被动土的强度,然后,对基坑实施分段开挖,随挖随支撑,控制坑底暴露时间(或对底板地层进行预加固),适时地浇注底板结构.同时,对基坑,周边管线和建筑进行严密监测,发现问题及时采取措施.在基坑维护方面的主要施工技术有3种:①地下连续墙.该结构适合于饱水沙层,饱和淤泥土层等饱水软弱地层,既可以控制土压力,又可以有效地阻隔地下水,同时还可以作为车站结构的一部分.②人工挖孔桩和钻孔灌注桩.这两种施工方法均是采用排桩桩墙来挡土和防水,实现基坑的维护.其中,人工挖孔桩适合于地下水位较深或无水的地层,要求地层强度较高,其断面形式不受施工机具的限制,可以作成圆形和方形,而且其施工质量和强度要高于普通的钻孔灌注桩,但是,钻孔灌注桩具有较广的适用范围,二者不能替代.③SMW工法桩.该方法是在水泥土搅拌桩内插入H型钢或其它种类的劲性材料,以增强水泥土搅拌桩抗弯,抗剪能力.用这种方法作成的基坑支护结构同时具有较好的防水功能,在6~10m的基坑中具备较强的技术优势,与地下连续墙相比,具有施工速度快,占地少,无污染,防水效果好和造价低廉等优点.明挖法施工程序一般可以分为4大步:维护结构施工→内部土方开挖→工程结构施工→管线恢复及覆土,如图1.上海地铁M8线黄兴路地铁车站位于上海市控江路,靖宇路交叉口东侧的控江路中心线下.该车站为地下2层岛式车站,长166.6 m,标准段宽17.2 m,南,北端头井宽21.4 m.标准段为单柱双跨钢筋混凝土结构,端头井部分为双柱双跨结构,共有2个风井及3个出人口.车站主体采用地下连续墙作为基坑的维护结构,地下连续墙在标准段深26.8m.墙体厚0.6m.车站出人口,风井采用SMW桩作为基坑的维护结构.(二)盖挖施工法盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部工程在封闭的顶盖下进行施工.主体结构可以顺作,也可以逆作.在城市繁忙地带修建地铁车站时,往往占用道路,影响交通当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量要求时,可选用盖挖法.2.1盖挖顺作法盖挖顺作法是在地表作业完成挡土结构后,以定型的预制标准覆萧结构(包括纵,横梁和路面板)置于挡土结构上维持交通,往下反复进行开挖和加设横撑,直至设计标高.依序由下而上,施工主体结构和防水措施,回填土并恢复管线路或埋设新的管线路.最后,视需要拆除挡上结构外露部分并恢复道路.施工顺序如图2.在道路交通不能长期中断的情况下修建车站主体时,可考虑采用盖挖顺作法.工程实例:深圳地铁一期工程华强路站位于深圳市最繁华的深南中路与华强路交叉口西侧,深南中路行车道下.该地区市政道路密集,车流量大,最高车流量达3865辆/h.车站主体为单柱双层双跨结构,车站全长224.3 m,标准断面宽18.9 m,基坑深约18.9 m,西端盾构并处宽22.5 m,基坑深约18.7 m.南侧绿地内东西端各布置一个风道.主体结构施工工期为2年,其中围护结构及临时路面施工期为7个月.为保证深南中路在地铁站施工期间的正常行车,该路段主体结构施工采用盖挖顺作法施工方案.2.2盖挖逆作法盖挖逆筑法同样适用于地铁车站的修筑,与明挖法相比,其优势在于减少交通封堵时间,减轻施工对于环境的干扰,其区别在于主体结构的施工顺序上. 该方法的主要施工技术措施为:①支撑桩采用以H型钢为柱芯的钢管或钻孔灌注桩,满足了沉降的控制要求;②采用地下连续墙低注浆的方法,增强基底持力层的刚性,使地下连续墙与临时支撑柱共同承受上部荷载,以减小差异沉降;③逆作法开挖支撑施工工艺中,利用混凝土板对地下连续墙的变形起约束作用,在暗挖过程中采用一撑两用的合理方法,大大减少了工程量,加快了工程进度,控制了墙体位移.盖挖逆作法是先在地表面向下做基坑的维护结构和中间桩柱,和盖挖顺作法一样,基坑维护结构多采用地下连续墙或帷幕桩,中间支撑多利用主体结构本身的中间立柱以降低工程造价.随后即可开挖表层土体至主体结构顶板地面标高,利用未开挖的土体作为土模浇筑顶板.顶板可以作为一道强有力的横撑,以防止维护结构向基坑内变形,待回填土后将道路复原,恢复交通.以后的工作都是在顶板覆盖下进行,即自上而下逐层开挖并建造主体结构直至底板,如图3.如果开挖面积较大,覆土较浅,周围沿线建筑物过于靠近,为尽量防止因开挖基坑而引起临近建筑物的沉陷,或需及早恢复路面交通,但又缺乏定型覆盖结构,常采用盖挖逆作法施工.工程实例:南京地铁南北线一期工程的区间隧道在地质条件和周围环境允许的情况下,以造价,工期,安全为目标,经过分析,比较,选择了全线区间施工方法.其中,三山街站,位于秦淮河古河道部位,位于粉土,粉细砂,淤泥质粘土土层中.因为是第1个车站,又位于十字路口,因此采用地下连续墙作围护结构.除人口结构采用顺作法外,其余均为盖挖逆作法.2.3盖挖半逆作法盖挖半逆作法与逆作法的区别仅在于顶板完成及恢复路面后,向下挖土至设计标高后先浇筑底板,再依次向上逐层浇筑侧墙,楼板.在半逆作法施工中,一般都必须设置横撑并施加预应力,如图4.(三)暗挖施工法1.钻爆法我国地域广大,地质类型多样,像重庆,青岛等城市的坚硬岩石地层,广州地铁也有部分区段处在坚硬岩石地层中,修建地铁隧道通常采用钻爆法开挖,喷锚支护(与通常的山岭隧道相当).在建的重庆轻轨地下部分的区间和车站基本采用隧道形式,最大开挖断面积超过420m2,采用微震控制爆破,分步开挖,喷混凝土和锚杆支护,现浇混凝土衬砌,已成功建成了临江门车站隧道等.已建成的青岛地铁试验段轻纺医院站,开挖断面积已超过300m2,也是采用钻爆法施工,但没有二次衬砌;广州地铁1,2,3号线的某些区段,某些区间或车站下部的坚硬岩石地层也采用了微震控制爆破来辅助开挖.南京地铁一期TAl标段处于岩石地层中的3座隧道,均采用钻爆法施工.2.盾构法近年来,我国也在研究采用盾构法修建地铁车站的技术,主要集中在两种方法上,一是采用多圆断面盾构一次建成地铁车站,另一种是采用区间盾构修建地铁车站.它的优势在于可以充分,有效地利用盾构设备,提高地铁工程的建设质量,缩短建设周期,达到总体上降低工程造价的目的.3.浅埋(超浅埋)暗挖法浅埋暗挖法即松散地层的新奥法施工,新奥法是充分利用围岩的自承能力。
盾构区间隧道偏差超限案例(新、选)
案例一成都地铁1号线南延线华广区间盾构隧道偏差超限质量事故成都地铁1号线南延线华阳站~广都北站右线(以下简称:华广区间右线)全长708.667m,采用盾构法施工。
该盾构机于3月7日从广都北站始发,3月13日项目部测量组对1~12环进行管片姿态测量,测量成果显示隧道高程最大偏差为19mm;3月19日项目部对1~56环管片姿态进行复测,发现17-56环(GDYK25+533.3~+593.3)均出现不同程度的超限,其中56环垂直偏差达到+2010mm、水平偏差+52mm,但盾构机测量导向系统56环处显示的盾构垂直偏差为盾首-29mm、盾尾-25mm,水平偏差盾首+41mm、盾尾+35mm,成型隧道实测偏差与盾构机测量导向系统显示偏差严重不符。
经过调查,确认是盾构机VMT系统(盾构机上使用的一种测量自动导向系统)中输入了错误的盾构推进计划线数据文件,致使盾构机按照错误的计划线推进,导致盾构隧道轴线偏差。
加之项目部未按照测量规定的频次(每20环人工复测一次)进行人工复核,致使偏差不断扩大而未能及时被发现。
造成直接经济损失273万余元,构成市政基础设施工程质量一般事故。
一、工程概况成都地铁1号线南延线土建1标盾构区间,由科技园站~锦江站~华阳北站~华阳站~广都北站4个区间组成,线路沿天府大道西侧辅道敷设,设计总长6039m。
华阳站~广都北站盾构区间右线起点里程YDK24+901.7,终点里程YDK25+617.3,短链6.933m,全长708.667m。
二、事故经过1.该盾构所用的数据文件形成的经过2013年10月,项目部完成华广区间左右线设计轴线计算后,将计算结果报三级公司精测队进行复核,设计轴线计算结果正确,项目部收到经复核后的电子文件为“华广区间右线.DT2”,该文件保存在测量组共用工作U盘中。
三级公司复核后的书面材料于2014年2月23日返给项目部。
2013年11月,三级公司精测队队长郑某到工地对测量人员进行了VMT系统的使用培训。
最新-深究成都地铁一期工程区间隧道施工方法的选择 精
深究成都地铁一期工程区间隧道施工方法的选择摘要成都地铁一期工程沿线建筑物密集、交通繁忙、地下管线纵横,其区间隧道基本通过饱水的砂卵石、且含有少量大粒径漂石的地层中,其施工方法的选择对于加快工程进度、提高工程质量、降低造价至关重要、作者在对国内外盾构施工进行调研基础上,推荐采用加泥式土压早衡盾构机进行区间隧道施工。
关键词地铁区间隧道盾构机成都市地铁一期工程为规划地铁一号线的红花堰至世纪广场段,正线全长15.15,其中地下线长11.92,高架及过渡段长3.23。
计有车站13座,车辆段及综合基地1处,控制中心1座,主变电所1座。
1环境条件成都市地铁一期工程位于成都市中心南北主轴线和主要客运交通走廊内,沿线建筑物密集,商贸繁荣,交通十分紧张。
线路途经火车北站、骡马市、市体育中心、天府广场、省体育馆、火车南站、行政广场、世纪广场等交通枢纽和主要客流集散点以及待开发的城南市级副中心和高新技术产业开发区。
2地质情况成都市地铁一期工程沿线第四系地层广布,基岩埋藏较深,由北向南第四系地层厚度逐渐变薄.其厚度36.5-15,自上而下有下列各层2.1人工填筑层42.2第四系全新统冲积层4上部为可塑粘土或粉质粘土、粉土,厚0.6~4.1,北薄南厚。
下部为卵石土,湿~饱和,稍密密实,厚2~10。
卵石成份为岩浆岩质、变质岩质,呈圆形、亚圆形,多为微风化,少为中等风化。
卵石粒径一般为4-9,部分大于12,含少量粒径大于20的漂石。
2.3第四系上更新统冰水沉积、冲积层3+1当其上无全新统4覆盖时,一般具二元结构上部为可塑粘土、粉质粘土,厚0.8~6.4;下部为卵石土,饱和,—般中密—密实,少为稍密,厚7.0~15.,北段沙河附近厚度大于25,卵石呈圆形、亚圆形,岩浆岩质、变质岩质,多为微风化,少为中等风化,卵石粒径一般为5~8,部分大于15,由于冰水的携带作用,沉积了较多的大粒径砾石,据试验段地质详勘报告和全线地质咨询报告,现已发现最大粒径达到670,试验段卵石粒径分析表示漂石>200~22.3%,卵石20~20045.6%-74.6%,砾石2—203.1%-20.1%,砂粒2.4第四系中更新统冰水沉积、冲积层2+主要为卵石土,饱和,中密-密实。
成都地铁一期工程盾构施工成本分析与控制
成都地铁1号线一期工程盾构施工2标盾构施工成本分析与控制内容提要:在中国地铁隧道大都采用盾构法施工。
盾构施工成本在一定程度上制约了城市地下空间的开发和利用。
本文在分析了盾构法隧道成本构成的基础上,主要从降低盾构施工费用方面,结合成都地铁1号线一期工程盾构施工2标(人民北路站至天府广场站盾构区间)讲述如何控制盾构施工成本。
关键词:盾构施工成本分析控制1、引言在现代化城市建设中,地下空间的开发利用已成为一个重要的组成部分。
而盾构法隧道,由于其先进的施工工艺和不断完善的施工技术,使得其在城市地下空间的开发中也取得了巨大的成功,并被越来越多地应用于城市地铁、上下水道以及地下共同沟等隧道工程建设中,在我国的各大主要城市,如上海、北京、深圳、广州和南京等地,已建和在建的地铁隧道大都采用盾构法施工。
现在成都、西安、杭州等地也正在开始采用盾构法修建地铁隧道。
但是,一方面伴随着各主要城市为解决制约城市经济发展的交通瓶颈问题,对发展地下轨道交通有着较大的需求,另一方面,采用盾构法施工的隧道,从工程造价上来看是非常昂贵的。
这在一定程度上制约了城市地下空间的开发和利用。
因此,如何合理地控制盾构隧道的建设成本、降低工程造价,已成为当前地下空间开发必须认真研究的课题。
影响地下铁道造价的主要因素,降低建设费主要应从以下三方面入手:降低车辆等设备购置费、运营管理费,以及降低作为基础设施的土建工程的费用。
本文在分析了盾构法隧道成本构成的基础上,主要从降低盾构施工费用方面,结合成都地铁1号线一期工程盾构施工2标(人民北路站至天府广场站盾构区间)讲述如何控制盾构施工成本,2、盾构隧道的成本构成表1是对中、日两国盾构隧道建设成本的构成分析,从中我们可以看出各主要项目在整个隧道建设中所占的比例,并且,还可发现构成费用的主体主要有这几大项:管片衬砌、机器设备、废土运输处理及竖井建造的防护费用等。
针对成都地铁卵石含量高、高富水等困难条件,主要从盾构机的选型、刀具、渣土改良以及盾构机的掘进技术、盾构始发阶段的试验等方面来讲述如何控制盾构施工成本,以达到降低成本,提高效益之目的。
地铁区间隧道施工方法
地铁区间隧道施工方法1.前期准备工作:包括地质勘探、设计方案的确定、施工方案的编制等。
在地质勘探阶段,需要对隧道区间的土质、岩层、地下水位等进行详细调查,以确定隧道的稳定性和施工难度。
在设计方案确定后,需要编制施工方案,确定施工的具体步骤和工序。
2.隧道开挖:隧道开挖是隧道施工中的关键环节。
目前常用的隧道开挖方法有普通开挖法、顺斜开挖法、随机开挖法等。
具体的选择取决于隧道所处的地质条件和施工要求。
-普通开挖法:适用于开挖较短隧道或地质条件较好的场合。
其主要步骤包括地面预留开挖和地下现场开挖两个阶段。
地面预留开挖是为了保证隧道的稳定性和工作区的安全,可以采用爆破、挖掘机等方式进行开挖。
地下现场开挖则是通过隧道掘进机等设备进行开挖,同时还需进行支护工作,如喷射混凝土支护或安装预制隧道衬砌板等。
-顺斜开挖法:适用于隧道纵向倾斜较大的情况。
它通过调整隧道纵向倾斜角度,使开挖行进方向与最大地压方向保持一定的夹角,减小地压对顶板的影响,提高隧道的稳定性。
-随机开挖法:适用于地质条件复杂和地下水位较高的场合。
它通过隧道掘进机进行开挖,同时采用隧道支架、钢管液压支柱等设备进行支护,确保隧道工作面的稳定。
3.隧道支护:隧道开挖后需要进行支护工作,以确保隧道的稳定性和施工区域的安全。
常用的隧道支护方法有喷射混凝土支护、预制隧道衬砌板等。
-喷射混凝土支护:通过喷射混凝土形成隧道衬砌,以增加隧道的强度和稳定性。
喷射混凝土支护可以采用湿喷法或干喷法,具体选择取决于施工要求和地质条件。
-预制隧道衬砌板:通过预制隧道衬砌板进行隧道支护,提高施工效率。
预制隧道衬砌板可以采用钢筋混凝土或聚合物材料,具体选择取决于施工要求和地质条件。
4.后续工程施工:包括隧道通风、排水系统的建设,以及路基、道轨等其他工程的施工。
隧道通风和排水系统对隧道运行安全和乘客出行舒适性至关重要,需要进行细致的设计和施工。
在地铁区间隧道施工过程中,需要注意以下几个问题:1.安全管理:隧道施工是一个高风险的工程,施工单位必须严格按照相关规定和标准进行安全管理,提供必要的安全设备和培训,确保施工人员的安全。
成都轨道交通13号线一期工程龙泉车辆段出入线盾构区间右线贯通
成都轨道交通13号线一期工程龙泉车辆段出入线盾构区间右
线贯通
佚名
【期刊名称】《现代隧道技术》
【年(卷),期】2022(59)6
【摘要】12月7日,随着“新征程号”盾构机破壁而出,由中铁十局承建的成都轨
道交通13号线一期工程龙泉车辆段出入线盾构区间右线顺利贯通,标志着该工程取得重要进展。
成都轨道交通13号线一期工程全长29.04 km,共设21座地下车站。
成都轨道交通13号线建成通车后,将成为温江到天府国际机场的市域快线,不仅进
一步丰富完善成都地铁网布局,还将更加方便锦江三圣片区和龙泉片区居民出行,缓
解城市交通压力,为沿线地区带来发展机遇。
【总页数】1页(P96-96)
【正文语种】中文
【中图分类】U45
【相关文献】
1.宁波轨道交通3号线出入段线类矩形盾构隧道工程勘察实践与建议
2.砂卵石地层大直径盾构始发下穿管线群施工技术
——以成都轨道交通17号线温明区间盾构工程为例3.砂卵石地层大直径盾构始发下穿管线群施工技术——以成都轨道交通17号线温明区间盾构工程为例4.徐州轨道交通2号线一期工程奔腾大道站—二环北路站盾构区间双线贯通5.由电建成都
院参建的郑州地铁8号线一期工程土建施工01标首台盾构机顺利掘进贯通
因版权原因,仅展示原文概要,查看原文内容请购买。
城市地铁隧道常用施工方法
城市地铁隧道常用施工方法选择应根据工程的性质、规模、地质和水文条件、以及地面和地下障碍物、施丁设备、环保和工期要求等因素,经全面的技术经济比较后确定。
1、明挖法明挖法是指挖开地面,由上向下开挖土石方至设计标高后,自基底由下向上顺作施工,完成隧道主体结构,最后回填基坑或恢复地面的施工方法。
明挖法是各国地下铁道施工的首选方法,在地面交通和环境允许的地方通常采用明挖法施工。
浅埋地铁车站和区间隧道经常采用明挖法,明挖法施工属于深基坑工程技术。
由于地铁工程一般位于建筑物密集的城区,因此深基坑工程的主要技术难点在于对基坑周围原状十的保护,防止地表沉降,减少对既有建筑物的影响。
明挖法的优点是施工技术简单、快速、经济,常被作为首选方案。
但其缺点也是明显的,如阻断交通时间较长,噪声与震动等对环境的影响。
明挖法施工程序一般可以分为4大步:维护结构施工内部土方开挖工程结构施工管线恢复及覆土。
上海地铁M8线黄兴路地铁车站位于上海市控江路、靖宇路交叉口东侧的控江路中心线下。
该车站为地下2层岛式车站,长166.6m,标准段宽17.2m,南、北端头井宽21.4m.标准段为单柱双跨钢筋混凝土结构,端头井部分为双柱双跨结构,共有2个风井及3个出人口。
车站主体采用地下连续墙作为基坑的维护结构,地下连续墙在标准段深26.8m.墙体厚0.6m.车站出人口、风井采用SMW桩作为基坑的维护结构。
2、盖挖法盖挖法是由地面向下开挖至一定深度后,将顶部封闭,其余的下部工程在封闭的顶盖下进行施工。
主体结构可以顺作,也可以逆作。
在城市繁忙地带修建地铁车站时,往往占用道路,影响交通当地铁车站设在主干道上,而交通不能中断,且需要确保一定交通流量要求时,可选用盖挖法。
2.1盖挖顺作法盖挖顺作法是在地表作业完成挡土结构后,以定型的预制标准覆萧结构(包括纵、横梁和路面板)置于挡土结构上维持交通,往下反复进行开挖和加设横撑,直至设计标高。
依序由下而上,施工主体结构和防水措施,回填土并恢复管线路或埋设新的管线路。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要:施工方法对地铁车站和区间隧道结构型式的确定以及地铁土建工程造价有决定性影响。
施工方法的选择,受沿线工程地质和水文地质条件、周围环境条件、线路平面位置、隧道埋置深度等多种因素的制约,同时对施工期间的地面交通和城市居民的正常生活、施工工期、工程的难易程度等产生直接影响。
关键词:地铁车站区间隧道施工方法1.工程背景及地层条件成都地铁一号线北起动物园,南至华阳两江寺,线路总长26.7km,成都市地铁—期工程为地铁一号线的一部分,北起红花堰,南至规划的世纪广场,线路总长15.15km。
位于成都平原东部前缘,属岷江冲洪积、冰水沉积形成的扇状向东和东南微倾斜的宽阔平原。
基岩埋藏较深,工程建筑的持力层及围岩主要是第四系松散地层,但不同的地貌单元,岩性及岩土组合也有较大差异。
地铁线路通过地段上部为人工填筑层,可塑粘土或粉质粘土、粉土,下部为卵石土,卵石粒径大部分为4-9cm左右,部分大于12cm,并含有少量的漂石(粒径大于20cm),卵石含量占75%—85%(重量比),充填中砂、砾石,稍密~密实,其下为白垩系上统灌口组泥岩,泥岩面埋深14~30m,j暇基岩埋置深,南段基岩埋置较浅。
工程范围内地下水系为第四系孔隙潜水和基岩裂隙水两种类型。
孔隙潜水主要埋藏于砂卵石地层中,地下水位埋藏较浅,水量丰富,渗透系数K=10—20m/d,补给来源为大气降水和地表河流、沟渠。
基岩裂隙水主要赋存于泥岩风化裂隙带中,含水层厚20m左右,K=0.3~1.2m/d,裂隙水不发育,径流条件差,主要为孔隙潜水补给。
地铁—期工程范围的地震基本烈度为七度。
2 车站结构型式与施工方法综合比选地铁地下车站的施工方案及结构型式的选择主要应根据下述几个方面的综合比选确定。
(1)车站功能比较地下车站功能主要从车站使用效果和运营条件两方面来体现,而车站使用的效果比较又体现在客流组织及集散能力,设备用房布置,运营管理和地下空间利用等综合功能上面。
(2)施工难度比较主要从工程本身的施工难度、施工前期准备工作实施的难易程度、工期及施工安全等方面来评价。
具体体现在施工技术的成熟性、地面沉降的控制、房屋拆迁、管线改移及处理措施等。
(3)施工对环境的影响施工对环境的影响着重体现在对城市交通的影响、对城市居民生活的影响、对商业经济活动的影响以及环境污染等方面。
特别是在交通繁忙地段的地铁车站,如采用明挖法施工,其地面交通组织的成败是关系到施工方案能否成立的关键所在。
根据上述原则结合成都市地铁一期工程,沿线工程地质及水文地质条件、周围环境等情况,经综合分析比较在地下车站埋置较浅,且具备明挖施工条件的采用明挖法或盖挖法施工。
而沿线的地下车站所处地质地层一般均为杂填土,淤泥质土、粉细砂,而广泛分布的沙砾卵层则厚达5-30m,其顶面一般在地面以下3-10m,该层为成都市工程建筑的天然良好地基,而所有地铁车站基坑底也基本位于本层。
因此经技术经济综合分析比较,地铁一期工程地下车站的基坑围护结构主要采用人工挖孔桩,它是既经济,施工进度快,又是技术成熟的围护结构型式,也是在目前我国南方城市地下基坑支护常用的型式。
但在车站基坑较浅,地面环境开阔,地面和地下建(构)筑物少的地段,基坑围护结构可采用土钉墙或放坡喷锚支护型式。
由于火车南站地铁站位于铁路股道之下,只有考虑暗挖施工,构型式为双孔结构,在站台上将中隔墙开孔连通。
一期工程其余车站主体结构可根据车站使用功能等要求,布置成双层多跨,三层多跨等框架结构型式。
3. 区间隧道施工方法比选3.1明挖法明挖法一般可适用于各种不同的工程地质条件。
明挖法施工工艺简单、技术成熟、进度快、质量可靠、防水效果好、风险小。
明挖法施工,根据基坑开挖深度及场地条件可采用放坡开挖、土钉墙、排桩等围护结构型式。
在基坑开挖前先进行管井井点降水,使地下水位降至基坑底面以下不少于0.5m后方可进行围护结构和基坑开挖施工。
鉴于地铁一期工程区间隧道采用明挖施工段范围内的环境、地下管线、地质以及周边建(构)筑物等情况,推荐采用土钉墙作为主要的围护结构。
若位于立交桥地段,为确保施工期间桥梁结构的安全,采用排桩加内支撑的围护结构型式。
成都地区采用土钉墙作为基坑开挖的围护结构在技术上已比较成熟,它具有造价低、施工进度快、用料省的优点,当明挖法隧道埋置较浅时,工程造价低于暗挖法隧道。
因此,在交通疏解、地下管线、周围环境许可的条件下,区间隧道可尽量抬高轨面标高,使之置于较小的埋置深度,为明挖法施工创造条件,从而降低工程造价,加快工程进度。
成都市地铁一期工程线路一般位于主干道下或居民密集区域,交通繁忙、地下管线密集,增加了明挖法施工的困难。
因此,进行合理的交通疏解,减少对地面交通的干扰,减少地下管线的拆迁是关系到明挖拖工能否成功的关键。
一期工程中在两端出地面的过渡段和出入段线的过渡段以及小天竺至火车南站区段内个别区间,若条件允许拟采用明挖法施工。
3.2 矿山法地铁区间隧道采用矿山法施工是近年来为适应城市浅埋隧道的需要而发展起来的一种施工方法,也称浅埋暗挖法。
目前在我国地铁区间隧道建设中已广泛采用。
浅埋暗挖法施工,工艺简单、灵活,并可根据施工监控量测的信息反馈来验证或修改设计和施工工艺,以达到安全与经济的目的。
根据成都市地铁一期工程沿线工程地质及水文地质条件,采用矿山法施工时,若采用区间隧道置于基岩的深埋方案,将会大大减小施工的难度,降低隧道工程造价。
但是由于基岩埋置较深,区间隧道底面标高将会降至地面以下25~40m左右,相应的车站埋深加大,造成工程投资增加口,对乘客也不方便。
根据国内外地铁建设的经验,结合成都市地铁一期工程的具体情况,深埋方案不宜采用。
因此,当采用矿山法施工时,区间隧道基本位于饱水的砂卵石层中。
在这种无胶结、稳定性差的砂卵石层中施工,必须采取有效措施防止开挖过程中围岩坍塌并控制地面沉降,确保施工安全及减小对周围环境的影响。
在饱水的砂卵石地层中采用矿山法施工的前提条件是必须超前进行施工降水,根据大量的工程经验证明,成都地区在砂卵石地层中实施施工降水足可行的。
由于砂卵石层密实,降水引起该层的沉降值不大,但是降水会造成上覆土层的固结沉降,这对于置于上部回填土及粘性土上的大量地下管线和浅基础房屋会带来一定的危害。
因此施工前应对周围地下管线情况(建设年代、基础形式、材质、接头等)及房屋基础情况进行调查,并在施工全过程进行监控量测,及时反馈信息,以便采取相应的对策,确保建筑物及地下管线的安全。
由于砂卵石土层松散,无胶结,本身无自稳能力,因此开挖前必须在拱部采用管棚进行超前支护,控制围岩的变形,防止隧道上方围岩坍塌。
并通过管棚对地层进行注浆加固,使拱部砂卵石层得到胶结,形成注浆加固圈,以提高砂卵石层的自稳能力。
施工时原则上应少扰动围岩,宜采用管超前、短台阶、短进尺,环形开挖留核心土,及时施作初期支护,并修建仰拱尽快形成封闭结构,勤量测及时反馈信息。
双线隧道宜采用中隔板加设临时仰拱即CRD工法。
采用管棚、注浆等对地层进行预加固及在其初期支护背后进行回填注浆。
成都市顺城街人防工程人行通道所处的地质条件及周边环境类似地铁暗挖区间隧道。
因此,人行通道的建成,是地铁区间隧道采用矿山法施工的一次成功的尝试,为地铁工程提供了十分宝贵的经验,也提出了工程中须解决的技术问题。
人行通道施工时曾考虑了小导管超前注浆加固和长管棚超前注浆加固两种方案。
小导管施工简单、灵活,无须大的钻机设备,可加快施工进度,费用较低。
但根据多组小导管成孔试验结果证明,在这种密实的砂卵石地层中,用一般铁路隧道常用的凿岩机钻孔,成孔困难,由于卵石卡钻导致无法钻进,也无法插入钢管,故最终采用了潜孔锤冲击旋转跟管钻进成孔工艺,边钻进边跟管,形成旋转钻进,冲击跟管,岩芯管携出砂石之循环作业系统,采用大管套小管的长管棚方案,取得了成功。
但是在成都市地铁一期工程长达数公里的区间隧道中采用长管棚技术是不现实的,也是不经济的,只有采用小导管注浆方案。
因此,如何从设备工艺上解决小导管成孔技术是能否采用矿山法施工的关键及风险所在。
另外,施工期间大范围较长时间的降水对周围建筑物及地下管线的影响也要有充分的估计,为此必须做好调查和勘探工作,以便采取相应的必要措施,确保安全。
3.3 盾构法盾构法是暗挖隧道施工中一种先进的工法。
盾构法施工不仅施工进度快,而且无噪音,无振动公害,对地面交通及沿线建筑物、地下管线和居民生活等影响较少。
由于管片采用高精度厂制预制构件,机械化拼装,因而质量易于控制。
国内地铁工程建设经验表明,由于采用高精度管片及复合防水封垫,单层钢筋混凝土管片组成的隧道衬砌可取得良好的防水效果,不需要修筑内衬结构。
盾构法可适用于埋深较大,不宜采用明挖法施工的地段。
盾构技术的发展,尤其是泥水式、土压平衡式盾构的开发,使之在松散的含水砂层、砂夹卵石层、高水压地层等所有地层中进行开挖成为可能,所以当工程地质和水文地质条件以及周围环境情况等难以用矿山法和明挖法施工时,盾构法是较好的选择。
上海地铁及广州地铁盾构施工的区间隧道工程质量优良、对城市环境影响小,所取得的成就令人瞩目。
因此,地铁区间隧道采用盾构技术已成为发展的必然趋势。
根据掌握的工程地质及水文地质资料,若采用盾构法施工,较为适用的盾构型式是泥水盾构或土压平衡盾构。
泥水盾构对地层稳定性的控制较好,但工艺复杂且辅助设备多,尤其是需要泥水处理设备,占地面积大,费用较高。
土压平衡盾构可节省泥水处理设备费用,造价比泥水盾构低,对周围环境无污染。
通过大量的工程实践,土压平衡盾构已大大地显示出技术经济上的优越性,因而得到了快速的发展和推广,成为当前隧道施工的首选方案。
它可根据不同的施工条件和地质要求,采用不同的开挖面稳定装置和排土力式,设计成不同类型的土压平衡盾构,使其能适应从松欹粘性土至砂卵石土层范围内的各种土层,§瞅好地稳定开挖面地层,减小和防止地面变形,提高隧道施工质量。
成都地铁采用盾构法施工,其特殊的地质条件不在于饱水的砂卵石土层,而是地层中含有少量粒径大于20cm的漂石。
据成都市大量已建基础工程的初步统计资料,地层中大于20cm以上的卵石约占10%(体积比),且粒径—般不会超过60cm。
因此,成都市地铁选择的盾构机除应能适应饱水的砂卵石地层外,还应能处理少量的漂石。
据调研,目前世界上已有类似的工程实例及相应的盾构机设备,其中日本的成功实例最多。
据目前国内外调查及咨询,认为成都地铁采用盾构法施工技术上是可行的。
鉴于泥水盾构费用较高,施工占地面积大等问题,推荐采用加泥型土压平衡盾构。
它是在普通型土压平衡盾构的基础上加入添加剂(膨润土或高效发泡剂),通过刀盘开挖搅拌作用,使注入的添加剂与开挖下的泥土混合,而将泥土转变为具有流动性好和不透水性的泥土,及时充满泥土舱和螺旋输送机体内全部空间,随着盾构的不断推进而顺利地由螺旋输送机排十口排出;对于少量粒径大的漂石,可在刀盘面增添破碎漂石的刀具,使大的漂石经破碎后再通过带式螺旋输送器输送到皮带运输机中。