高中物理 第二章热力学第一定律

合集下载

第二章 热力学第一定律

第二章 热力学第一定律

T (B, ,T)
£K r Hm (T)
标准摩尔燃烧焓[变]的定义 在温度 T 物质 B 完全氧化( T)表示 叫标准摩尔燃烧焓 g H2O(l)的 T)计算
£K r Hm £K cHm £K r Hm B
-
)成相同温度下指定产物时的标准摩尔焓[变] 用
£K cHm
(B
指定产物 CO2 由
£K c Hm
物理化学学习指导
第二章 热力学第一定律
第二章 热力学第一定律
一. 基本概念及公式
1 热力学基本概念
(1)系统和环境 系统——热力学研究的对象(是大量分子 外的周围部分存在边界 环境——与系统通过物理界面(或假想的界面)相隔开并与系统密切相关的周围部分 根据系统与环境之间发生物质的质量与能量的传递情况 系统分为三类: 原子 离子等物质微粒组成的宏观集合体) 系统与系统之
H = Qp 适用于真实气体 理想气体 液体
T2 T1
∆H = ∫ nC p ,m dT
T1
T2
固体定压过程 理想气体任意 p
V
T 变化过程
∆U = ∫ nCV ,m dT = nC v ,m (T2 − T1 ) ∆H = ∫ nC p ,m dT = nC p ,m (T2 − T1 )
T1 T2
体积功 功有多种形式 通常涉及的是体积功 它是系统发生体积变化时的功 定义为
δW = − p su dV
式中 psu 为环境的压力
W = ∑ δW = − ∫ p su dV
V2 V1
对恒外压过程
psu = 常数
W = − p su (V2 − V1 ) W = − ∫ pdV
V1 V2
对可逆过程 因 p =psu

高中物理-热力学第一定律

高中物理-热力学第一定律

热力学第一定律热力学第一定律热力学第一定律内容是:研究对象内能的改变量,等于外界对它传递的热量与外界对它所做的功之和。

注:热量的传导与做功均需要注意正负性。

热力学第一定律公式热力学第一定律公式:△U=W+Q其中,△U——内能的变化量,单位焦耳(J),如果为负数,则说明研究对象内能减小。

Q——研究对象吸收的热量,单位焦耳(J),如果为负数,则说明研究对象向外释放热量。

在自然态下,Q传导具有方向性,即只能从高温物体向低温物体传递热量。

W——外界对研究对象做的功,单位焦耳(J),如果为负数,则说明研究对象对外界做功。

热力学第一定律理解误区之吸热内能一定增加?老师:并非如此。

如果对外做功,内能可能不变,甚至减小。

物体的内能是变大还是变小,取决于两个外在因素,其一是吸收(或放出)热量,另外一个是做功。

如果吸收了10J的热量,向外界做了20J的功,物体的内能不会增加,反而会减小(减小10J)。

热力学第一定律深入理解之温度与分子平均动能关系老师:分子平均动能Ek与热力学温度T是正比例关系,即分子平均动能Ek越大,热力学温度T就越大。

分子平均动能Ek是微观表现方式,而热力学温度T是宏观表现方式。

热力学第一定律深入理解之做功与气体体积关系老师:W与气体的体积相关,V减小,则是外界对气体做正功(压缩气体)。

反之,V增大,则是外界对气体做负功(气体膨胀向外界做功)。

热力学第一定律深入理解之能量守恒定律在热学的变形式老师:从热力学第一定律公式来看:△U=W+Q这与能量守恒定律是一致的。

能量守恒定律的内容是:能量既不会凭空产生,也不会凭空消失,只能从一个物体传递给另一个物体,而且能量的形式也可以互相转换。

在热学领域,物体内能改变同样遵守能量守恒定律。

物体内能的增加,要么是伴随着外界做功,要么是由外界热量传导引起的。

在物体A内能增加的同时,物体B因为向A做功能量减小,或者物体C把自身内能以热量形式向物体A传导,自身能量减小。

第二章__热力学第一定律(1.)

第二章__热力学第一定律(1.)

6、热力学平衡态 、 系统处于热力学平衡时, 系统处于热力学平衡时,系统与环境之 间没有任何物质和能量交换, 间没有任何物质和能量交换,系统中各个状 态性质均不随时间而变化。 态性质均不随时间而变化。 (1)热平衡; )热平衡; (2)力平衡; )力平衡; (3)化学平衡; )化学平衡; (4)相平衡; )相平衡;
10、热与功 、 能量交换的两种形式。 能量交换的两种形式。 不是系统的性质, 不是系统的性质, 不是状态函数。 不是状态函数。
(1)热:系统与环境间由于温度差引起 ) 的能量交换。 的能量交换。热是大量粒子以无序运动 传递的能量。 传递的能量。 符号:Q 单位:J 符号 单位 正负号规定: 正负号规定 系统从环境吸热 “+” 系统向环境放热 “-”
系统
封闭系统是热力学研究的基础,一般除特殊注 封闭系统是热力学研究的基础 一般除特殊注 明外均为封闭系统。 明外均为封闭系统。 绝对的孤立系统是不存在的理想情况, 绝对的孤立系统是不存在的理想情况,是人 为的抽象。 为的抽象。 (1) 封闭系统 环境 孤立系统 封闭系统+环境 环境→孤立系统 (2)绝热、恒容且无非体积功的封闭系统即 绝热、 绝热 为孤立系统。 为孤立系统。
T
∂V ∂T p
9、相变化过程、饱和蒸汽压及临界参量 相变化过程、 相变化过程
系统的稳定聚集态是气态、 系统的稳定聚集态是气态、液态或某 种晶态。 种晶态。 固体及液体共同点是压缩性很小, 固体及液体共同点是压缩性很小, 因此固态及液态统称为凝聚相 凝聚相; 因此固态及液态统称为凝聚相; 气体与液体的共同点是具有流动性, 气体与液体的共同点是具有流动性, 因此称为流体相 流体相。 因此称为流体相。
(3)气体的液化及临界参量 气体的液化及临界参量 气体液化可采取降温、加压, 气体液化可采取降温、加压,使物 降温 质的体积缩小。 质的体积缩小。 气体转化为液体的过程中的p-V-T变 变 气体转化为液体的过程中的 化关系是遵循一定规律的。 化关系是遵循一定规律的。

02热力学第一定律2

02热力学第一定律2

一粒粒取走砂粒

P终,V

可逆过程 , 外压和内压相差无穷 小,p环境 = p
P始,V

T
T
W p环境 dV
V1
V2
pdV
V1
V2
3、可逆过程的体积功:
可逆过程,外压和内压相差无穷小
W pdV
不同过程的体积功
一次 -18 72 二次 -24 48 三次 -26 44 (1)功与过程有 关。同样是膨 胀(压缩)过程, 它们的功各不 相同。
膨胀过程 W/kJ
压缩过程 W/kJ
(2)正、逆过程的功绝对值不相等。W正≠W逆 (3)膨胀次数越多,膨胀功越大。
可逆过程的体积功
P终 p


物理化学
第二章 热力学第一定律
第二章
2.1
2.2
热力学第一定律
热力学基本概念
热力学第一定律
2.3
2.4
恒容热、恒压热、焓
变温过程热的计算
第二章 热力学第一定律
2.5 可逆过程和可逆体积功的计算
2.6
2.7 2.8
相变热的计算
化学反应热的计算 气体的节流膨胀
2.1
热力学基本概念
一.系统[体系]和环境
系统(system) 在科学研究时必须先确定研究对象,把 研究的对象称为系统或体系。 环境(surroundings) 系统以外的与系统相联系的那部分物质 称为环境。 隔开系统与环境的界面可以是实际存在 的,也可以是想象的,实际上并不存在的。
根据系统与环境之间的关系,把系统分为三类:

第二章 热力学第一定律

第二章 热力学第一定律

闭口与稳流开口的能量方程
闭口 稳流开口
q = ∆u + w
q = ∆h + wt
等价
容积变化功w 技术功wt 轴功ws 推进功∆ 推进功∆(pv) 几种功的关系? 几种功的关系?
几种功的关系
1 2 wt = ∆cf + g∆z + ws 2
q = ∆h + wt = ∆u +∆( pv) + w t
1 2 2 Q = (U2 −U1) + ( p2V2 − pV1) + m(cf 2 − cf 2 ) + mg(z2 − z1) +Ws 1 2
焓(Enthalpy) 的引入 )
定义: 定义:h = u + pv H = U + pV
1、焓是状态量 、 2、一般焓只计算其变化量△h 、 3、对流动工质,焓代表能量(内能 推进功 、对流动工质, 代表能量 内能 推进功) 内能+推进功 对静止工质, 不代表能量 对静止工质,焓不代表能量 4、物理意义:开口系中随工质流动而携带 物理意义:开口系中随工质流动而携带 取决于热力状态的能量 能量。 的、取决于热力状态的能量。
可逆(准静态 过程闭口系能量方程 可逆 准静态)过程闭口系能量方程 准静态
可逆过程容 可逆过程容 积变化功: 积变化功: 闭口系统能 量方程: 量方程:
δw = pdv δq = du + δw
δq = du + pdv q = ∆ u + ∫ pdv
注意公式应用条件
例2 - 1 如图所示,闭口系内的一定量气体由状态1 如图所示 , 闭口系内的一定量气体由状态 1 经 1a2 变化至状态2 吸热70kJ, 同时对外做功25kJ,, 70kJ 25kJ 变化至状态 2 , 吸热 70kJ , 同时对外做功 25kJ ,, 试问: 工质若由1 变化到2 试问:(1)工质若由1经1b2变化到2时,吸热为 90kJ 则对外做功是多少? kJ, 90kJ , 则对外做功是多少 ? ( 2 ) 若外界对气体 做功30kJ, 迫使它从状态2 30kJ 返回到状态1 做功 30kJ , 迫使它从状态 2 经 2c1 返回到状态 1 , 则此返回过程是吸热过程还是放热过程? 则此返回过程是吸热过程还是放热过程?其值为 多少? 多少?

高中物理热力学第一定律

高中物理热力学第一定律

高中物理热力学第一定律
热力学是研究热、功、能量等方面的学科,其中第一定律是热力学的核心之一。

热力学第一定律概述了能量在系统内的守恒性,并将其表达为内能和做功的总和。

每个系统都包含内能和能量交换,也可以通过做功来增加或减少总能量。

第一定律表明,系统能量的变化等于它所接收的热量与所做的功之和。

简单来说,能量不能被创造或
破坏,只能从一种形式转化为另一种形式。

做功可以增加系统的内能,这意味着系统的温度会上升。

同样地,系统吸收热量也可
以增加其内能,这也会导致温度上升。

因此,根据热力学第一定律,系统内能的增加或减
少等于吸收或放出的热量与所做的功之和。

除了热力学第一定律外,还有一个概念是热力学第零定律。

第零定律表明,当两个系
统处于热平衡状态时,它们的温度相等。

这个概念在确定温度和温度计的精度等方面非常
有用。

在实际应用中,热力学第一定律的应用十分广泛。

例如,在热力学中,温度和压力是
热力学状态变量。

因此,计算内能的变化可以通过热过程和力学过程中的变化来计算。

此外,热力学第一定律也是环境保护和可持续发展的重要基础,因为它强调了能量的守恒性,并提供了减少能量损失、提高能源效率的方法。

总之,热力学第一定律是热力学研究的核心概念之一,它表明能量在系统内是守恒的,并且能被转化为其他形式。

了解和运用热力学第一定律在物理学和应用科学领域具有广泛
的实际意义。

物理化学第二章热力学第一定律主要公式及其适用条件

物理化学第二章热力学第一定律主要公式及其适用条件

第二章 热力学第一定律主要公式及使用条件1. 热力学第一定律的数学表示式W Q U +=∆或 'a m b δδδd δd U Q W Q p V W=+=-+ 规定系统吸热为正,放热为负。

系统得功为正,对环境作功为负。

式中 p amb 为环境的压力,W ’为非体积功。

上式适用于封闭体系的一切过程。

2.焓的定义式3. 焓变(1) )(pV U H ∆+∆=∆式中)(pV ∆为pV 乘积的增量,只有在恒压下)()(12V V p pV -=∆在数值上等于体积功。

(2) 2,m 1d p H nC T ∆=⎰ 此式适用于理想气体单纯pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固体物质压力变化不大的变温过程。

4.热力学能(又称内能)变 此式适用于理想气体单纯pVT 变化的一切过程。

5. 恒容热和恒压热V Q U =∆ (d 0,'0V W == p Q H =∆ (d 0,'0)p W ==6. 热容的定义式(1)定压热容和定容热容pVU H +=2,m 1d V U nC T ∆=⎰δ/d (/)p p p C Q T H T ==∂∂δ/d (/)V V V C Q T U T ==∂∂(2)摩尔定压热容和摩尔定容热容,m m /(/)p p p C C n H T ==∂∂,m m /(/)V V V C C n U T ==∂∂上式分别适用于无相变变化、无化学变化、非体积功为零的恒压和恒容过程。

(3)质量定压热容(比定压热容)式中m 和M 分别为物质的质量和摩尔质量。

(4) ,m ,m p V C C R -=此式只适用于理想气体。

(5)摩尔定压热容与温度的关系23,m p C a bT cT dT =+++式中a , b , c 及d 对指定气体皆为常数。

(6)平均摩尔定压热容21,m ,m 21d /()Tp p T C T T T C =-⎰7. 摩尔蒸发焓与温度的关系21vap m 2vap m 1vap ,m ()()d T p T H T H T C T ∆=∆+∆⎰ 或 v a p m v a p (/)p p H T C ∂∆∂=∆式中 vap ,m p C ∆ = ,m p C (g) —,m p C (l),上式适用于恒压蒸发过程。

高中物理复习 热力学第一定律

高中物理复习 热力学第一定律

1.改变内能的两种方式:做功与热传递.两者在改变系统内能方面是等效的.2.热力学第一定律:(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和.(2)表达式:ΔU=Q+W.二、能量守恒定律1.能量守恒定律:(1)内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.(2)意义:①各种形式的能可以相互转化.②各种互不相关的物理现象可以用能量守恒定律联系在一起.2.第一类永动机不可能制成(1)第一类永动机:不需要任何动力或燃料,却能不断地对外做功的机器.(2)第一类永动机不可能制成的原因:违背了能量守恒定律.(3)意义:正是历史上设计永动机的失败,才使后人的思考走上了正确的道路.三、热力学第一定律的理解1.符号法则:热力学第一定律的数学表达式也适用于物体对外做功、向外界散热和内能减少的情况,因此在使用ΔU =Q+W时,为了区别以上两种情况,在应用ΔU=Q+W进行计算时,它们的正、负号规定如下:(1)外界对系统做功,W>0,即W为正值;系统对外界做功,也就是外界对系统做负功,W<0,即W为负值;(2)外界对系统传递热量,也就是系统从外界吸收热量,Q>0,即Q为正值;外界从系统吸收热量,也就是系统向外界放出热量,Q<0,即Q为负值;(3)系统内能增加,ΔU>0,即ΔU为正值;系统内能减少,ΔU<0,即ΔU为负值.2.热力学第一定律的几种典型应用(1)若过程是绝热的,即Q=0,则W=ΔU,外界对物体做的功等于物体内能的增加量.(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量等于物体内能的增加量.(3)若过程中物体始、末内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做功等于物体放出的热量.3. 应用热力学第一定律解题的思路与步骤1.首先应明确研究对象是哪个物体或者是哪个热力学系统.2.分别列出物体(或系统)吸收或放出的热量;外界对物体(或系统)所做的功或物体(或系统)对外所做的功.3.根据热力学第一定律ΔU=Q+W列出方程进行求解.4.特别注意的就是物理量的正负号及其物理意义.四、能量守恒定律理解1.能量的存在形式及相互转化(1)各种运动形式都有对应的能:机械运动有机械能,分子的热运动有内能,还有诸如电磁能、化学能、原子能等.(2)各种形式的能,通过某种力做功可以相互转化.例如,利用电炉取暖或烧水,电能转化为内能;煤燃烧,化学能转化为内能;列车刹车后,轮子温度升高,机械能转化为内能.2.与某种运动形式对应的能是否守恒是有条件的.例如,物体的机械能守恒,必须是只有重力或系统内的弹力做功;而能量守恒定律是没有条件的,它是一切自然现象都遵守的基本规律.3.第一类永动机失败的原因分析如果没有外界热源供给热量,则有U2-U1=W,就是说,如果系统内能减少,即U2<U1,则W<0,系统对外做功是要以内能减少为代价的.若想源源不断地做功,就必须使系统不断回到初始状态,在无外界能量供给的情况下是不可能的.4.利用能量守恒定律解题的方法在应用能量守恒定律处理问题时,首先要弄清系统有多少种能量相互转化,分析哪种形式的能量增加了,哪种形式的能量减少了;或者弄清哪个物体的能量增加,哪个物体的能量减少,增加量等于减少量.1.改变内能的两种方式:做功与. 两者在改变系统内能方面是2.热力学第一定律:(1)内容:一个热力学系统的内能增量等于外界向它传递的与外界对它的和.(2)表达式:.二、能量守恒定律1.能量守恒定律:(1)内容:能量既不会凭空,也不会凭空,它只能从一种形式为另一种形式,或者从一个物体到别的物体,在转化或转移的过程中,能量的保持不变.(2)意义:①各种形式的能可以相互. ②各种互不相关的物理现象可以用定律联系在一起.2.第一类永动机不可能制成(1)第一类永动机:不需要任何动力或燃料,却能不断地的机器.(2)第一类永动机不可能制成的原因:违背了定律.(3)意义:正是历史上设计永动机的,才使后人的思考走上了正确的道路.三、热力学第一定律的理解1.符号法则:热力学第一定律的数学表达式也适用于物体对外做功、向外界散热和内能减少的情况,因此在使用ΔU =Q+W时,为了区别以上两种情况,在应用ΔU=Q+W进行计算时,它们的正、负号规定如下:(1)外界对系统做功,W>0,即W为值;系统对外界做功,也就是外界对系统做功,W<0,即W为负值;(2)外界对系统传递热量,也就是系统从外界热量,Q>0,即Q为正值;外界从系统吸收热量,也就是系统向外界热量,Q<0,即Q为负值;(3)系统内能,ΔU>0,即ΔU为正值;系统内能减少,ΔU<0,即ΔU为负值.2.热力学第一定律的几种典型应用(1)若过程是的,即Q=0,则W=ΔU,外界对物体做的功等于物体内能的增加量.(2)若过程中不做功,即W=0,则Q=ΔU,物体吸收的热量物体内能的增加量.(3)若过程中物体始、末内能不变,即ΔU=0,则W+Q=0或W=-Q,外界对物体做功物体放出的热量.3. 应用热力学第一定律解题的思路与步骤1.首先应明确研究对象是哪个物体或者是哪个热力学系统.2.分别列出物体(或系统)吸收或放出的热量;外界对物体(或系统)所做的功或物体(或系统)对外所做的功.3.根据热力学第一定律ΔU=Q+W列出方程进行求解.4.特别注意的就是物理量的正负号及其物理意义.四、能量守恒定律理解1.能量的存在形式及相互转化(1)各种运动形式都有对应的能:机械运动有机械能,分子的热运动有内能,还有诸如电磁能、化学能、原子能等.(2)各种形式的能,通过某种力做功可以相互转化.例如,利用电炉取暖或烧水,电能转化为内能;煤燃烧,化学能转化为内能;列车刹车后,轮子温度升高,机械能转化为内能.2.与某种运动形式对应的能是否守恒是有条件的.例如,物体的机械能守恒,必须是只有重力或系统内的弹力做功;而能量守恒定律是没有条件的,它是一切自然现象都遵守的基本规律.3.第一类永动机失败的原因分析如果没有外界热源供给热量,则有U2-U1=W,就是说,如果系统内能减少,即U2<U1,则W<0,系统对外做功是要以内能减少为代价的.若想源源不断地做功,就必须使系统不断回到初始状态,在无外界能量供给的情况下是不可能的.5.利用能量守恒定律解题的方法在应用能量守恒定律处理问题时,首先要弄清系统有多少种能量相互转化,分析哪种形式的能量增加了,哪种形式的能量减少了;或者弄清哪个物体的能量增加,哪个物体的能量减少,增加量等于减少量.1.做功和热传递在改变物体内能上是不等效的.( )2.热力学系统对外界做功时,W取负值,吸收热量时Q取正值.( )3.物体与外界不发生热交换,物体的内能也可能增加.( )4.各种能量之间可以转移或转化,但总量保持不变.( )5.运动的物体在阻力作用下会停下来,说明机械能凭空消失了.( )6.第一类永动机不能制成,是因为它违背了能的转化和守恒定律.( )1.(1)空气压缩机在一次压缩过程中,活塞对汽缸中的气体做功为2.0×105J,同时气体的内能增加了1.5×105J.试问:此压缩过程中,气体__________(填“吸收”或“放出”)的热量等于________J.(2)若一定质量的理想气体分别按如图所示的三种不同过程变化,其中表示等压变化的是__________(填“A”、“B”或“C”).该过程中气体的内能__________(填“增加”、“减少”或“不变”).2.一定质量的气体从外界吸收了4.2×105 J的热量,同时气体对外做了6×105 J的功,问:(1)物体的内能是增加还是减少?变化量是多少?(2)分子势能是增加还是减少?(3)分子的平均动能是增加还是减少?3.有一种所谓“全自动”机械手表如图10­3­2所示,既不需要上发条,也不用任何电源,却能不停地走下去.这是不是一种永动机?如果不是,维持表针走动的能量是从哪儿来的?4.(多)下列关于能量转化现象的说法中,正确的是( )A.用太阳灶烧水是光能转化为内能B.电灯发光是电能转化为光能C.核电站发电是电能转化为内能D.生石灰放入盛有凉水的烧杯里,水温升高是动能转化为内能E.风车发电是风的动能转化为电能5.(多)一定量的理想气体从状态a开始,经历三个过程ab、bc、ca回到原状态,其p­T图象如图所示.下列判断正确的是( )A.过程ab中气体一定吸热B.过程bc中气体既不吸热也不放热C.过程ca中外界对气体所做的功等于气体所放的热D.a、b和c三个状态中,状态a分子的平均动能最小E.b和c两个状态中,容器壁单位面积单位时间内受到气体分子撞击的次数不同6.断定第一类永动机不可能制成的依据是__________定律.1.做功和热传递在改变物体内能上是不等效的.(×)2.热力学系统对外界做功时,W 取负值,吸收热量时Q 取正值.(√) 3.物体与外界不发生热交换,物体的内能也可能增加.(√) 1.各种能量之间可以转移或转化,但总量保持不变.(√)2.运动的物体在阻力作用下会停下来,说明机械能凭空消失了.(×) 3.第一类永动机不能制成,是因为它违背了能的转化和守恒定律.(√)1.(1)空气压缩机在一次压缩过程中,活塞对汽缸中的气体做功为2.0×105J ,同时气体的内能增加了1.5×105J .试问:此压缩过程中,气体__________(填“吸收”或“放出”)的热量等于________J.(2)若一定质量的理想气体分别按如图所示的三种不同过程变化,其中表示等压变化的是__________(填“A ”、“B ”或“C ”).该过程中气体的内能__________(填“增加”、“减少”或“不变”).【导学号:11200089】【解析】 (1)由热力学第一定律W +Q =ΔU 得Q =ΔU -W =-5×104J ,说明气体放出热量5×104J.(2)由气态方程pV T=C (常量)易判断出C 过程是等压变化,该过程温度升高,理想气体的内能增加.【答案】 (1)放出 5×104(2)C 增加2.一定质量的气体从外界吸收了4.2×105 J 的热量,同时气体对外做了6×105J 的功,问: (1)物体的内能是增加还是减少?变化量是多少? (2)分子势能是增加还是减少?(3)分子的平均动能是增加还是减少?【导学号:11200090】【解析】 (1)气体从外界吸收的热量为Q =4.2×105J气体对外做功W =-6×105J由热力学第一定律ΔU =W +Q =(-6×105 J)+(4.2×105 J)=-1.8×105J ΔU 为负,说明气体的内能减少了所以,气体内能减少了1.8×105J.(2)因为气体对外做功,所以气体的体积膨胀,分子间的距离增大了,分子力做负功,气体分子势能增加了. (3)因为气体内能减少,同时气体分子势能增加,所以气体分子的平均动能一定减少了.【答案】 (1)减少 1.8×105J (2)增加 (3)减少有一种所谓“全自动”机械手表如图10­3­2所示,既不需要上发条,也不用任何电源,却能不停地走下去.这是不是一种永动机?如果不是,维持表针走动的能量是从哪儿来的?图10­3­2【提示】 这不是永动机.手表戴在手腕上,通过手臂的运动,机械手表获得能量,供手表指针走动.若将此手表长时间放置不动,它就会停下来.3.下列关于能量转化现象的说法中,正确的是( ) A .用太阳灶烧水是光能转化为内能 B .电灯发光是电能转化为光能 C .核电站发电是电能转化为内能D .生石灰放入盛有凉水的烧杯里,水温升高是动能转化为内能选项正确.【答案】ABE4.一定量的理想气体从状态a开始,经历三个过程ab、bc、ca回到原状态,其p­T图象如图10­3­3所示.下列判断正确的是( )图10­3­3A.过程ab中气体一定吸热B.过程bc中气体既不吸热也不放热C.过程ca中外界对气体所做的功等于气体所放的热D.a、b和c三个状态中,状态a分子的平均动能最小E.b和c两个状态中,容器壁单位面积单位时间内受到气体分子撞击的次数不同【解析】由p­T图象可知过程ab是等容变化,温度升高,内能增加,体积不变,由热力学第一定律可知过程ab一定吸热,选项A正确;过程bc温度不变,即内能不变,由于过程bc体积增大,所以气体对外做功,由热力学第一定律可知,气体一定吸收热量,选项B错误;过程ca压强不变,温度降低,内能减少,体积减小,外界对气体做功,由热力学第一定律可知,放出的热量一定大于外界对气体做的功,选项C错误;温度是分子平均动能的标志,由p­T图象可知,a状态气体温度最低,则平均动能最小,选项D正确;b、c两状态温度相等,分子平均动能相等,由于压强不相等,所以单位面积单位时间内受到气体分子撞击的次数不同,选项E正确.【答案】ADE5.断定第一类永动机不可能制成的依据是__________定律.【解析】能量守恒定律的确立,给予了第一类永动机不能制成的科学解释.【答案】能量守恒定律。

能量守恒定律 热力学第一定律

能量守恒定律 热力学第一定律

能量守恒定律热力学第一定律
能量守恒定律是热力学中的基本定律之一,也称为热力学第一定律。

它表明,在任何系统中,能量既不能被创造,也不能被毁灭,只能在不同形式之间转化。

换句话说,系统中的能量总量保持不变,即能量守恒。

这个定律适用于所有物理系统,包括热力学系统。

在热力学系统中,能量可以以多种形式存在,如热能、动能、势能、化学能等。

热力学第一定律表明,系统中的能量总量等于输入和输出的能量之和,即能量守恒。

因此,热力学第一定律可以用来描述热能的转移和转化。

例如,在一个封闭的容器中,当热源向其中输入热量时,其内部的能量总量增加,而当它向外界释放热量时,其内部的能量总量减少。

这个过程中,能量的总量始终保持不变。

总之,能量守恒定律是热力学中最基本的定律之一,它揭示了能量在物理系统中的本质和特性,具有重要的理论和实际意义。

- 1 -。

热力学第一定律

热力学第一定律

热力学第一定律热力学第一定律是热力学的基本原理之一,也被称为能量守恒定律。

它描述了能量的转化和守恒,对于揭示物质的能量变化和热力学性质具有重要的意义。

本文将深入探讨热力学第一定律的概念、原理和应用。

热力学第一定律的概念热力学第一定律是由英国物理学家焦耳在19世纪提出的。

它可以简洁地表述为能量守恒定律,即能量既不能被创造也不能被摧毁,只能在不同形式之间转化。

这意味着一个封闭系统中的能量总量是恒定的,能量既不能消失也不能产生。

当一个系统经历能量的转化时,其总能量保持不变,只是能量的形式和分布发生改变。

热力学第一定律的原理热力学第一定律的原理可以通过以下公式表示:ΔU = Q - W其中,ΔU表示系统内部能量的变化,Q表示系统吸收的热量,W表示系统对外做的功。

这个公式表明,系统内部能量的变化等于系统吸收的热量与系统对外做的功之间的差值。

当系统吸热时,ΔU为正,系统内部能量增加;当系统放热时,ΔU为负,系统内部能量减少;当系统对外做功时,ΔU 为负,系统内部能量减少;当系统由外界做功时,ΔU为正,系统内部能量增加。

热力学第一定律的应用热力学第一定律在工程和科学领域有着广泛的应用。

下面将介绍热力学第一定律的几个重要应用。

1. 热机效率计算热力学第一定律在热机效率计算中起着重要的作用。

热机的效率是指能够转化为有效功的热量与燃料能量之间的比例。

通过热力学第一定律的应用,我们可以计算出热机的效率,从而评估其性能。

2. 平衡热量计算在热平衡过程中,热力学第一定律可以用于计算平衡热量。

平衡热量是指系统从一个状态到另一个状态的过程中吸收或释放的热量。

通过应用热力学第一定律,我们可以计算系统在不同温度下的平衡热量,并进一步了解能量转化过程。

3. 定常流动计算在工程领域中,很多设备和系统都涉及流体的流动。

热力学第一定律可以用于定常流动过程的计算。

这种定常流动的例子包括空调系统、燃料电池、蒸汽涡轮等。

通过应用热力学第一定律,我们可以计算能量损失和效率,从而优化系统性能。

第二章 热力学第一定律2010-11-15

第二章  热力学第一定律2010-11-15

三、焦耳实验 1. 实验装置: 实验装置: 2. 实验过程: 实验过程: 3. 实验结果: 实验结果: 4. 实验结果推论: 实验结果推论: 5. 理想气体的热力学能和焓 理想气体的热力学能和焓: U = f (T) H = f (T)
四、理想气体恒温过程Q、W、△U、△H 的计算 理想气体恒温过程 、 、 五、盖斯定律 1.表述: 表述: 表述 2.应用:例题 应用: 应用
研究正在喷射气体的钢瓶中剩余气体的性质; 、研究正在喷射气体的钢瓶中剩余气体的性质; 注意:系统与环境之间总存在一个界面(实际的或假想的)。 注意:系统与环境之间总存在一个界面(实际的或假想的)。
2. 系统分类:⑴敞开系统;⑵封闭系统;⑶隔离系统 系统分类: 敞开系统; 封闭系统; 例: 二、系统性质 1.定义:由大量粒子构成的系统的一切宏观性质叫系统性质。 定义: 系统性质。 定义 由大量粒子构成的系统的一切宏观性质叫系统性质 例如:T,P,ρ,η,V,m,n, U, H, S…… 例如: 2. 分类: 分类:
硫酸溶于水的过程。 例1. 硫酸溶于水的过程。
若在烧杯中进行, < 。 若在烧杯中进行,Q<0。 若在保温瓶中进行(视为绝热过程) 若在保温瓶中进行(视为绝热过程) ,Q = 0。 。
00-7-23
6
例2.
途径a: 途径 : Q = 0; ; 途径b: 途径 : Q>0; > ; 注意:这里 注意:这里H2视为理想气体
五、过程与途径
1.定义:系统从某一状态(始态)变至另一状态(末态),称为过程。 定义:系统从某一状态(始态)变至另一状态(末态),称为过程。 定义 ),称为过程 实现这一过程的具体步骤称为途径 途径。 实现这一过程的具体步骤称为途径。 2.过程分类:⑴单纯 过程分类: 单纯PVT变化过程;⑵相变化过程;⑶化学反应过程 变化过程; 相变化过程; 过程分类 变化过程 各举一例: 各举一例: 3. 常见的热力学过程: 常见的热力学过程: 恒温过程; 恒温过程; 恒压过程; 恒压过程; 恒容过程; 恒容过程; 绝热过程; 绝热过程; 循环过程; 7-23

ppt热力学第一定律

ppt热力学第一定律

dH d(U pV ) dU pdV Vdp
系统由始态到末态旳焓变
H U ( pV )4. Q来自 U ,Qp H 两关系式旳意义
特定条件下,不同途径旳热已经分别与过 程旳热力学能变、焓变相等,故不同途径旳恒 容热相等,不同途径旳恒压热相等,而不再与 途径有关。
把特殊过程旳过程量和状态量联络起来。
状态函数旳特征可描述为:异途同归,值变 相等;周而复始,数值还原。
状态函数在数学上具有全微分旳性质。
(2) 广度量和强度量 用宏观可测性质来描述系统旳热力学状态,
故这些性质又称为热力学变量。可分为两类:
广度性质(extensive properties)又称为容量性 质,它旳数值与系统旳物质旳量成正比,如体积、 质量、熵等。这种性质有加和性。
系统始态为a压力为pa;末态为z压力为pz,
pz=1/5pa 。
可逆过程系统对环境做最大功(相反过 程环境对系统作最小功)。
3.理想气体恒温可逆过程
可逆过程,外压和内压相差无穷小
δWr
pdV ,Wr
V2 V1
pdV
理想气体恒温膨胀,则
Wr
nRT
V2 V1
dV V
nRTlnV2 V1
物理化学
第二章 热力学第一定律
The First Law of Thermodynamics
学习要求:
了解热力学基本概念、热力学能和焓旳定 义;掌握热力学第一定律旳文字表述及数 学表述。 了解热与功旳概念并掌握其正、负号旳要 求;掌握体积功计算,同步了解可逆过程 旳意义特点。 要点掌握利用热力学数据计算在单纯pVT 变化、相变化、化学变化过程中系统旳热 力学能变、焓变以及过程热和体积功。
( H p

物理化学第二章(第一定律)

物理化学第二章(第一定律)
统计热力学 系统的(微观)状态 系统的(宏观)性质
热力学
8
系统的性质具有如下特点: 1.系统的性质只决定于它现在所处的状态,而与其过
去的历史无关。 2. 系统的状态发生变化时,它的一系列性质也随之而改
变,改变多少,只决定于系统的开始状态和终了状态, 而与变化的途径无关。
热力学把具有这种特征的系统性质称为状态函数。
或不能使一个自然发生的过程完全复原。
第一类永动机 (能量不守衡)
热源 Q W
第二类永动机
2
根据大量的实验结果和自然现象,得出热力学第一、 二定律。
热力学定律的特点: (1) 大量分子系统
(2)不管物质的微观结构 (3)不管过程的机理
优点:结论绝对可靠, 如从热力学导出纯液体 饱和蒸汽压与温度的关系:
(3) 热分为: 显热(Sensible heat)系统做单纯的pVT变化(没有相 变化),如: 25C水75C水时,系统与环境交换的热量。 潜热(Latent heat)系统发生相变化时,如:
100C水100C水汽时,系统与环境交换的热量。
27
§2-2 热力学第一定律 The First Law of Thermodynamics
活塞
p1 dV
pe
汽缸
如果p1>pe(外压),气体膨胀dV,
则系统对环境做体积功为:dWe= pedV
21
(1) 自由膨胀(Free expansion) 为外压等于零的膨胀,即 pe=0,所以:
We,1 0
(2) 恒外压膨胀pe=const.
We,2
V2

pedV
-pe (V2
V1 )
第二章 热力学第一定律及其应用

高中物理:热力学第一定律可修改文字

高中物理:热力学第一定律可修改文字
况或做功情况。
例题2:一定量的气体膨胀对外做功100J,同时从外界吸收
了120J的热量,它的内能的变化可能( B )
A.减小20J
C.减小220J
B.增大20J
D.增大220J
2.如图,在汽缸内活塞左边封闭着一定量的空气,压强与大
气压相同。把汽缸和活塞固定,使汽缸内空气升高一定的温
度,空气吸收的热量为Q1。如果让活塞可以自由滑动(活塞
高中物理:热力学第一定律
改变内能的两种方式
做功
热传递
对内
对外
吸热
放热
(外界对物体
做功)
(物体对外界
做功)
(物体从外界
吸热)
(物体对外界
放热)
内能增加
内能减少
∆ =
一、热力学第一定律
1.表述:一个热力学系统的内能增量等于外界向它传
递的热量与外界对它所做的功的和。
ΔU= Q +W
2.意义:热力学第一定律反映了功、热量跟系统内能改
变之间的定量关系。
3.定律中各量的正、负号及含义
ΔU= Q +W
物理量 符号
意义
符号
意义
W
+
外界对物体做功
-
Q
+
物体吸收热量
-
物体放出热量
ΔU
+
-
内能减少
内能增加
物体对外界做功
例题1:一定量的气体,从外界吸收热量2.7×105J,内能增
加4.3×105J。在这一过程中,是气体对外做功,还是外界对
气体做功?做了多少功?

= +.
×

= +.

物理化学第2章热力学第一定律

物理化学第2章热力学第一定律

第二章热力学第一定律2.1 热力学的理论基础与方法1.热力学的理论基础热力学涉及由热所产生的力学作用的领域,是研究热、功及其相互转换关系的一门自然科学。

热力学的根据是三件事实:①不能制成永动机。

②不能使一个自然发生的过程完全复原。

③不能达到绝对零度。

热力学的理论基础是热力学第一、第二、第三定律。

这两个定律是人们生活实践、生产实践和科学实验的经验总结。

它们既不涉及物质的微观结构,也不能用数学加以推导和证明。

但它的正确性已被无数次的实验结果所证实。

而且从热力学严格地导出的结论都是非常精确和可靠的。

不过这都是指的在统计意义上的精确性和可靠性。

热力学第一定律是有关能量守恒的规律,即能量既不能创造,亦不能消灭,仅能由一种形式转化为另一种形式,它是定量研究各种形式能量(热、功—机械功、电功、表面功等)相互转化的理论基础。

热力学第二定律是有关热和功等能量形式相互转化的方向与限度的规律,进而推广到有关物质变化过程的方向与限度的普遍规律。

利用热力学第三定律来确定规定熵的数值,再结合其他热力学数据从而解决有关化学平衡的计算问题。

2.热力学的研究方法热力学方法是:从热力学第一和第二定律出发,通过总结、提高、归纳,引出或定义出热力学能U,焓H,熵S,亥姆霍茨函数A,吉布斯函数G;再加上可由实验直接测定的p,V,T等共八个最基本的热力学函数。

再应用演绎法,经过逻辑推理,导出一系列的热力学公式或结论。

进而用以解决物质的p,V,T变化、相变化和化学变化等过程的能量效应(功与热)及过程的方向与限度,即平衡问题。

这一方法也叫状态函数法。

热力学方法的特点是:(i)只研究物质变化过程中各宏观性质的关系,不考虑物质的微观结构;(ii)只研究物质变化过程的始态和终态,而不追究变化过程中的中间细节,也不研究变化过程的速率和完成过程所需要的时间。

因此,热力学方法属于宏观方法。

2.2 热力学的基本概念1.系统与环境系统:作为某热力学问题研究对象的部分;环境:与系统相关的周围部分;按系统与环境交换内容分为:(1)敞开系统(open system) :体系与环境间既有物质交换又有能量交换的体系。

热力学第一定律热量和功的关系

热力学第一定律热量和功的关系

热力学第一定律热量和功的关系热力学是研究热现象和与之相关的物理性质和过程的学科。

它的基本定律之一就是热力学第一定律,它描述了热量和功之间的关系。

本文将深入探讨热力学第一定律中热量和功之间的关系,以及相关的物理原理和数学公式。

1. 热力学第一定律简介热力学第一定律是热力学中的基本定律之一,也被称为能量守恒定律。

它表明在一个封闭系统内,系统的内能变化等于系统所吸收的热量与所做的功的代数和。

换句话说,这个定律说明了能量不能被创造或毁灭,只能从一种形式转化为另一种形式。

2. 热量的定义和计量热量是由于温度差引起的能量传递,是热力学研究的重要概念之一。

热量的单位是焦耳(J)或卡路里(cal),其中1焦耳等于4.18卡路里。

热量的计量通常使用热量计来进行,热量计利用物质在吸热或放热过程中温度的变化来测量热量的大小。

3. 功的定义和计量功是由于力对物体作用而引起的能量转化,也是热力学中的重要概念。

功的单位同样是焦耳(J)或卡路里(cal)。

计量功的方法有多种,常见的方法是通过力的大小和物体在力作用下移动的距离来计算。

功也可以是负值,负功表示物体对外界做功。

4. 热力学第一定律的数学表达式热力学第一定律可以用数学表达式来表示。

对于一个封闭系统,其内能变化ΔU等于系统所吸收的热量Q与所做的功W的和,即ΔU = Q - W。

其中ΔU表示内能变化,Q表示系统所吸收的热量,W表示系统所做的功。

5. 热量和功的正负关系根据热力学第一定律的表达式ΔU = Q - W,热量和功的正负关系决定着内能变化的正负。

当系统吸收热量时,Q为正,表示热量进入系统,此时内能增加。

而当系统释放热量时,Q为负,表示热量流出系统,此时内能减少。

同样地,当系统做功时,W为正,表示系统对外界做正功,内能减少;而当外界对系统做功时,W为负,表示系统对外界做负功,内能增加。

6. 热量和功的相互转化根据热力学第一定律的表达式ΔU = Q - W,热量和功可以互相转化。

热力学第一定律

热力学第一定律

热力学第一定律热力学第一定律,也被称为能量守恒定律,是热力学基本定律之一。

它阐述了能量在物理系统中的守恒原理,即能量不会被创造或消灭,只会在不同形式之间转换或传递。

该定律在许多领域都有广泛的应用,包括工程、物理、化学等。

1. 定律的表述热力学第一定律可从不同的角度进行表述,以下是几种常见的表述方式:1.1 内能变化根据热力学第一定律,一个封闭系统内能的变化等于系统所吸收的热量与系统所做的功的代数和。

数学表达式如下:ΔU = Q + W其中,ΔU表示系统内能的变化,Q表示系统吸收的热量,W表示系统所做的功。

1.2 能量守恒根据能量守恒定律,能量既不能被创造也不能被摧毁,只会在不同形式之间传递或转换。

能量的总量在一个封闭系统中保持不变。

2. 系统内能的变化系统内能的变化是热力学第一定律的核心内容之一。

系统内能的变化是由系统吸收或释放的热量以及系统所做的功决定的。

2.1 系统吸收的热量系统吸收的热量指的是系统从外界获得的热能。

当一个热源与系统接触时,能量会以热量的形式从热源传递到系统中。

系统吸收的热量可以引起系统内能的增加。

2.2 系统所做的功系统所做的功指的是系统对外界做的能量转移。

当系统对外界施加力并移动时,能量会以功的形式从系统传递到外界。

系统所做的功可以引起系统内能的减少。

3. 热力学第一定律的应用3.1 工程应用热力学第一定律在工程领域有着广泛的应用。

例如,在能源系统的设计与优化中,需要根据系统的能量转换过程,计算系统的内能变化和热功效率等参数,以提高能源利用效率。

3.2 物理学应用在物理学研究中,热力学第一定律通常用于分析热力学过程中的能量转化。

例如,在热力学循环中,通过计算各个环节的能量转换情况,可以确定工作物质的热效率,从而评估系统的性能。

3.3 化学反应在化学反应中,热力学第一定律对于研究反应的能量变化和平衡状态具有重要意义。

通过计算反应过程中释放或吸收的热量,可以确定反应的放热性或吸热性,并预测反应的发生与否。

第二章__热力学第一定律(2)

第二章__热力学第一定律(2)
QP n C p ,mdT nC p ,m T2 T1
T2 T1
适用条件:理想气体恒压pVT变化过程
H n C p ,m dT nC p ,m T2 T1
T2 T1
适用条件:理想气体单纯pVT变化的一切过程;或 真实气体恒压变温过程;或纯的液、固态物质恒压 或压力变化不大的变温过程。
3、热容的一般定义
热容是计算物质变温过程中热量传递的基础热数据,属于 物质的特性之一。 定义:没有相变化、化学变化,无非体积功过程,物质温度升
高一度所需吸收的热。
Q C dT
C (T1 T2 ) Q T1 T2
真热容 平均热容
Q CdT
T1
T2
Q C (T1 T2 )
实例: 正丁烷(液态)
4 2 C 7 . 9 0 . 330 T 1 . 0 10 T p ,m
/ J K 2 mol 1
§2.5 理想气体的热力学 1. 焦耳实验
纯物质单相系统 一定量 U=f ( n,T,V ) U=f ( T,V )
U U dU ( )V dT ( )T dV T V
3、热力学可逆过程
(1)定义: 能够通过过程的反方向变化
而使系统恢复到原来状态,同时环境也 恢复到原来状态的过程,即系统和环境 均没有热、功和物质的得失。 “能从原路返回的过程”
(2)特点:
a. 准静态过程;在整个过程中,系统内部无限 接近于平衡,或说整个过程是由无限多个准 静态组成。
b. 推动力与阻力的差值无限小;
(m)恒外压压缩
p1’=202.65kPa T1’=298K (n)恒外压膨胀 V1’=12.23dm3
p2=50.663kPa T2=298K V1=48.90dm3

第二章 热力学第一定律

第二章 热力学第一定律
第二章
热力学第一定律
化学热力学
定义:化学热力学是将“热力学”运用于化学 领域而产生的一门研究化学反应过程中能量变 化的科学。 热力学—简单地说“是研究能量相互转换规律 的科学”。
化学热力学研究的主要内容: ①化学反应能否发生,若发生,其
能量是如何变化的; 恒容热QV
封闭系统, 当非体积功等于零(w’=0)
dU Q W QV U QV
物理意义
dV 0
封闭系统, 当不作非体积功时, 等容过程吸收的热
等于系统热力学能的增量, 所以QV只与系统初末态有关.
2 恒压热Qp和焓(enthalpy)
封闭系统, w’=0
恒压过程
是热。
热和功
功(work)
系统与环境之间传递的除热以外的其他能量
都称为功,用符号W表示。
W的取号: 环境对系统作功,W>0 系统对环境作功,W<0 Q和W的单位都用能量单位 “J” 表示 Q和W都不是状态函数,其数值与变化途径有关。
体积功: 系统体积变化而与环境交换的功,也叫膨胀功. 非体积功: 如表面功, 电功 等.
摩尔热容与温度的关系 热容与温度的函数关系因物质、物态和温度区 间的不同而有不同的形式。
C p,m (T ) a bT cT 2
Cp,m (T ) a' b'T 1 c'T 2
式中 a, b, c, a' , b' , c' 是经验常数,由各种物质本 身的特性决定,可从热力学数据表中查找。
当温度从T1 T2
QV CV dT nCV ,m dT
T2 T2 T1 T1
Q p C p dT nC p ,m dT
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[b]状态函数的变化值ΔX 只取决于始、末状态,而与变化的
经历无关; ΔX = X2-X1
[c] 状态函数的微分dX为全微分 ;
2-例1
(2)广度量和强度量 广度量:性质与物质的数量成正比,如 V,U等;广度量具有加和性。 强度量:性质与物质的数量无关,如 T,p等; 强度量不具有加和性。
(3)平衡态 系统的温度、压力及各个相中各个组分的物质的量均不随 时间变化时的状态
经历无关; ΔX = X2-X1
[c] 状态函数的微分dX为全微分 ;
2-例1
2
例:试根据全微分判则,判断
dv

R p
dT

RT p2
dP
是全微分
解:
M R, p
N


RT p2
M

y
x


p

R p
T

R p2
N x
第二章 热力学第一定律
1.系统和环境
§2.1 热力学基本概念
系统: 研究的对象(也称为物系或体系) H2
环境:系统以外且与系统密切相关的物质及其所在空间。
注意 :[1]系统与环境是根据研究需要人为划分的。
[2]系统与环境间可以有实际界面,也可以是
Zn+HCl
想象的范围
系统
敞开系 系统与环境间既有能量交换又有物质交换; 统封闭系 系统与环境间只有能量交换而无物质交换 统隔离系统 系统与环境间既无能量交换也无物质交
※热力学定义的热,与通常所说的物体的“冷”或 “热”
能3.”热力学中能的(U“) 热系”统具内有部不的同一的切含能义量,也,也不称同为于内体能系。的单“位热为J
热力学能的定义式 ΔU=U2-U1 = W(Q=0)
规定: 系统内能增加 ΔU >0 系统内能减少 ΔU <0
11
性质: 状态函数
4、热力学第一定律(本质是能量守恒定律)
§2.2 热力学第一定律
1.功(W)
广义功 = 广义力×广义的位移
※单位:J
规定:环境对系统作功W>0
系统对环境作功W<0
※功
体积功W(膨胀功):
在一定的环境压力下,系统的体 积发生变化而与环境交换的能量。
非体积功W′(非膨胀功) 除了体积功以外的一切其它形式的功
※体积功W的计算 体积功的定义式
宏观过程 :

H2
H2
H2

绝热容器
Zn+HCl
Zn+HCl
Zn+HCl
反应物为系统 敞开系统
反应物和产物为系 统 封闭系统
反应物和产物为系统
1
隔离系统
2.状态和状态函数
(1 )状
系统所有性质的总体表现
态 状态函数由状态所决定的性质
状态函数的特点
[a]系统的状态一定,状态函数就有定值;
[b]状态函数的变化值ΔX 只取决于始、末状态,而与变化的
ΔH=H2- H1 =(U2+p2V2)-(U1+p1V1)
ΔH=ΔU+Δ(pV)
讨论:对于系统内只有凝聚态物质发生的PVT变化、相变化和
化学变化 Δ(PV)≈ 0
[3] 焓的性质
※焓H是状态函数, 焓的微变: dH=dU+pdV+Vdp
※焓具有能量的单位 J,KJ
ΔH=ΔU+Δ(pV)
※焓变包括 内能的变化 特定条件下的体积功 = ΔU+pΔV+VΔp 非体积功为零 恒压Δp=0 ΔH= ΔU+pΔV
※体积功W的计算
6
※体积功W的计算
气缸的内截面积为As, 活塞至气缸底部的长度为l,
气体的体积为:V=As×l
在环境压力为Pamb下活塞移动 了dl的距离,则:
体积功的定义式
P<Pamb,dV<0,δW>0,系统得到功
P>Pamb,dV>0,δW<0,系统对环境作功 P>Pamb=0时,δW=0
7
y



T

RT p2
p


R p2
M

y
x

N x
y
所以,dV是全微分。
3
2.状态和状态函数
(1 )状
系统所有性质的总体表现
态 状态函数由状态所决定的性质
状态函数的特点
[a]系统的状态一定,状态函数就有定值;
封闭系 统
从环境得功 w
U1(状态1)
ΔU=U2-U1
从环境吸热 Q
U2(状态1)
或:
适用条件:封闭系统
各量的符号: 系统内能增加 ΔU >0
系统内能减少 ΔU <0
环境对系统作功 W>0
系统对环境作功 W<0
系统吸热
Q>0
12
系统放热
Q<0
=0 <0 >0
<0
=0
<0 >0 =0
=0
>0
<0 >0 >0
系统处在平衡态,满足 热平衡
力平衡 相平衡 化学平衡
4
3.过程和途径
过程:系统从某一状态变化到另一状态的经历 途径:实现过程的具体步骤
按内部物质变化的 类型,过程分为
单纯pVT变化 相变化 化学变化
根据过程进行 的特定条件
恒温过程(T = T环境 = 定值) 恒压过程(p = p环境 = 定值) 恒容过程(V = 定值) 绝热过程(系统与环境间无热交换的
恒外压过程
※功的性质:不是状态函数
8
9
W1=0J W2=-2042.7J 功不是状态函数,与过程有关
10
2.热(Q) 由于系统与环境之间温度的不同,导致两者之间交换的能量 单位为J 规定:系统吸热, Q>0
系统放热, Q<0 性质:不是状态函数
注意:※ 微量热和功分别表示δQ、δW
※热和功必须通过环境的变化才能表现出来。
<0
>0
=0 =0 =0
13
§2.3 恒容热、恒压热、焓
1 . 恒 容 热 系统在恒容且非体积功为零的过程中与环境交换的热 Qv:
据热一律 :
若过程中恒容dV=0

非体积功为零δW′= 0
物理意义: dV=0,δW′= 0 时,过程的恒容热在量值上等于过程的热力学能变。 适用条件:封闭系统、恒容、非体积功为零
过程) 循环过程(系统从始态出发经一系列
步骤又回到始态的过程)
5
§2.2 热力学第一定律
1.功(W)
广义功 = 广义力×广义的位移
※单位:J
规定:环境对系统作功W>0
系统对环境作功W<0
※功
体积功W(膨胀功):
在一定的环境压力下,系统的体 积发生变化而与环境交换的能量。
非体积功W′(非膨胀功) 除了体积功以外的一切其它形式的功
2.恒压热Qp: 系统在恒压且非体积功为零的过程中与环境交换的热
据热一律 :
H称为焓
恒压 值
p1=p2=pamb= 定
非体积功为零 δWˊ= 0 或
令:
物理意义:恒压、非体积功为零的条件下,过程的恒压热在量值上等于其焓变。 适用条件:封闭系统、恒压、非体积功为零
14
3、焓 [1]焓的定义式
[2]焓变
相关文档
最新文档