流体力学数值模拟实验指导书

合集下载

流体力学实验指导书

流体力学实验指导书

《流体力学》实验指导书郭广思王连琪沈阳理工大学2006年10月一伯努利方程综合性实验(一)实验目的伯努利方程是水力学三大基本方程之一,反映了水流在流动时,位能、压能、动能之间的关系。

1.了解总水头线和测压管水头线在局部阻力和沿程阻力处的变化规律;2.了解总水头线在不同管径段的下降坡度,即水力坡度J的变化规律;3.了解总水头线沿程下降和测压管水头线升降都有可能的原理;4.用实例流量计算流速水头去核对测压板上两线的正确性;不同管径流速水头的变化规律(二)设备简图本实验台由高位水箱、供水箱、水泵、测压板、有机玻璃管道、铁架、量筒等部件组成,可直观地演示水流在不同管径、不同高程的管路中流动时,上述三种能量之间的复杂变化关系。

(三)实验原理过水断面的能量由位能、压能、动能三部分组成。

水流在不同管径、不同高程的管路中流动时,三种能量不断地相互转化,在实验管道各断面设置测压管及测速管,即可演示出三种能量沿程变化的实际情况。

测压管中水位显示的是位能和压能之和,即伯努利方程中之前两项:gp Z ρ+,测速管中水位显示的是位能、压能和动能之和。

即伯努利方程中三项之和:gv g p Z 22++ρ。

将测压管中的水位连成一线,称为测压管水头线,反映势能沿程的变化;将测速管中的水位连成一线,称为总水头线,反映总能量沿程的变化,两线的距离即为流速水头g v 2/2。

本实验台在有机玻璃实验管道的关键部位处,设置测压管及测速管,适当的调节流量就可把总水头线和测压管水头线绘制于测压板上。

注:计算所的流速水头值是采用断面平均流速求得,而实测流速水头值是根据断面最大速度得出,显然实测值大于计算值,两者相差约为1.3倍。

(四)实验步骤1.开动水泵,将供水箱内之水箱至高位水箱;2.高位水箱开始溢流后,调节实验管道阀门,使测压管,测速管中水位和测压板上红、黄两线一致;3.实验过程中,始终保持微小溢流;4.如水位和红黄两线不符,有两种可能:一是连接橡皮管中有气泡,可不断用手挤捏橡皮管,使气泡排出;二是测速管测头上挂有杂物,可转动测头使水流将杂物冲掉。

流体力学实验指导书

流体力学实验指导书

《流体力学》实验指导书目录实验装置简介及实验安排…………………………………………………… 1-2 实验一:伯努利方程验证实验………………………………………………… 3-8 实验二:雷诺实验…………………………………………………………… 9-12实验装置简介及实验安排实验装置:流体力学综合实验台是一个多功能实验装置,用此实验台可进行伯努利方程(能量方程)验证实验、雷诺实验、沿程阻力测定实验、局部阻力测定实验、毕托管测速实验和文丘里流量计实验等多个流体力学实验。

实验装置如图1-1所示。

1—供水箱,水泵;2—实验桌;3—层流测针;4—恒压水箱;5—彩色墨水罐;6—差压板;7—沿程阻力实验管;8—局部阻力实验管;9—伯努利实验管;10—雷诺实验管;11—伯努利差压板;12—毕托管;13—计量水箱;14—回水管。

图1-1 多功能流体力学综合实验台针对轮机工程专业36学时或32学时的流体力学课程,我们开设两个实验,即伯努利方程验证实验和雷诺实验。

在雷诺实验中,学生可以借助该实验装置观察层流和湍流(紊流)特征以及它们之间的转换特征,掌握测定临界雷诺数Re 的方法。

在伯努利方程实验中,学生可以借助该实验装置验证总流的伯努利方程,观察流体流动过程中的能量守恒关系,同时可以掌握流速、流量和压强等要素的实验量测技能。

实验学时分配:实验一:伯努利方程验证实验 2学时实验二:雷诺实验 2学时实验分组:每个实验7-8人一组,每个自然班分成四组。

实验一:伯努利方程验证实验一、实验目的1.掌握伯努利方程式中各项的物理意义及它们之间的转换关系; 2.验证流体总流的能量方程;3.掌握流速、流量、压强等动水力学水力要素的实验量测技术; 4.学习使用测压管、总压管测水头的实验技能及绘制水头线的方法。

二、实验原理1.伯努利方程(能量方程)在伯努利实验管路中沿水流方向取n 个过流断面。

在动能修正系数α近似取为1的情况下,可以列出进口断面(1)至任一断面(i )的能量方程式(i = 2,3,……,n )i ,i i i h gv p z g v p z -+++=++1f 2211122γγ (1)式中,z 、γp 和gv 22分别为位置水头(位头)、压力水头(压头)和速度水头(动头),单位为m (水柱);i ,h -1f 为从过流断面1到断面n 的水头损失,单位也是m (水柱)。

CFD数值模拟实验指导书

CFD数值模拟实验指导书
三 、求解控制方程的数值方法
(4) (5a) (5b) (5c) (6)
对于无法用解析方法求解的微分方程可以用数值方法求解, 所谓数值方法求解就是用近 似的数值解逼近微分方程的精确解。流动控制方程的精确解是流场计算域内流动参数(如速 度、压力、温度等)的连续分布,而数值解则是流场计算域内离散的点上的近似解对连续精 确解的逼近,换句话说,我们可以把连续的流场离散为一定数目的不连续的点,在这些离散 点上,守恒方程被近似满足,如果离散点之间的距离为无穷小,则近似解将无限趋近于精确 解,因此我们可以用近似解代替精确解。这就是流动微分方程数值求解的基本思想。 以数值方法求解流动微分方程,首先要把需要求解的流场的几何空间(或称为计算域) 离散为孤立的不连续的点,或者说用一定数量的点覆盖或代表要求解的连续的流场,然后将 流动控制方程的偏导数用离散点之间的有限变化来代替, 例如, 表示速度梯度的导数 ∂u / ∂x 用差商 Δu / Δx 来代替,其中 Δu 和 Δx 分别是 x 坐标方向的两个相邻的点的速度差和坐标 x 的增量。 可以想象, 如果控制微分方程中的所有导数或偏导数都被类似于差商的量代替的话, 偏微分方程将有可能变成一个线性方程,一个只包含离散点的坐标和待求函数值(如上述的 u)的线性方程。事实上,我们可以把流动控制方程组的每一个偏微分方程在每一个离散点 上转变为一个线性方程。假如我们用 100 个点离散一个计算域,那么对每个偏微分方程我们 将得到 100 个线性方程。至此,偏微分方程的求解已经转化为线性方程组的求解,如果得到 线性方程组的解,我们就得到了偏微分方程组的近似数值解。因此,我们也可以说,CFD 模 拟的过程本质上是在计算域上构建线性方程组并求解线性方程组的过程。 从上面的论述可以看出,数值方法求解流动微分方程至少包括三个步骤:首先,离散计 算域;其次,在离散后的计算域上离散控制方程;其三,求解离散得到的线性方程组。需要 补充的是,并不是所有的线性方程都需要求解,实际上有些特殊点上的流动变量值或其梯度 是已知的,这些特殊的点就是计算域边界上的点。通常为了限定微分方程的解,我们需要给

流体力学实验指导书(I)

流体力学实验指导书(I)

流体力学实验指导书(I) 实验设备简介 实验一 流体静压强测定试验 实验二 流体粘性效应显示实验 实验三 流体的相对平衡实验 实验四 烟风洞流谱显示实验 实验五 流体流动状态判别实验 实验六 伯努利能量守恒实验 实验七 毕托管测速实验 实验八 流体动量定律实验 实验九 直管沿程水头损失测定实验 实验十 机翼表面压强分布测定实验 实验十一 激光多普勒测速对比实验 实验十二 平面狭缝流动的流场显示(海雷肖试验) 实验十三 旋涡仪流谱显示实验 实验十四 圆柱绕流压力分布实验 实验十五 平板附面层实验 实验十六 大流量校验实验 流体力学设备简介 一. 风洞实验设备简介 1. 风洞实验的基本原理 风洞实验的依据是流动的相对性和相似性,相适性教科书以叙述,流动的相对性原就是: 当物体以一定的速度在空气中向前运动时,物体所受到的气动力与物体保持不动,空气以同样的速度反方向吹过物体时,物体所受到的气动力完全相同。

  正是从这些原理出发,人们设计了风洞,风洞实际上就是人们专门设计的一种管道,采用适当的动力装置在管道中人为的造成空气流动,用来进行各种类型的空气动力学实验。

 2. 风洞的分类  A:低速风洞:实验段中气流速度一般小于100m/s,有回流式 直流式两种。

  B:高亚音速风洞:气流的M数的范围是0.3〈M<0.8,从外观上看它与低速风洞没有很大区别,基本上是回流式,大多采用两级以上轴流式风扇. C:跨音速风洞:气流的M数范围为0.8<M<1.5,其显著特点是不是工作段必须是双层的,外层与大气隔绝,内外层间的压力可以调节,另外内层壁面上开有孔或槽,一方面消除模型在跨音速时所产生的激波反射现象,另一方面用来防止在低超音速时被模型壅塞而不能工作。

 D:超音速风洞:M数的范围在1.5<M<4.5,为节省动力,一般为暂冲式,采用下冲或抽吸的方法造成较高的压力比,结构见下图。

  1. 安定段; 2.整流段; 3.总压段; 4.收缩段; 5.拉瓦尔喷管; 6.工作段; 7.模型; 8. 第二喉道; 9.亚音速扩压段; 10.激波; 11.压力计; 12.调压阀 E.高超音速风洞:M数的范围在4.5<M<10,这类风洞需要高压气源和真空罐,由于气流在加速过程中膨胀的极为厉害,使试验段气流的静温极低,需要装有空气加热器,预先提高收缩段的气体温度,以防止空气液化。

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验(上机)指导书及实验报告格式

《流体力学》课程实验指导书袁守利编汽车工程学院2005年9月前言1.实验总体目标、任务与要求1)学生在学习了《流体力学》基本理论的基础上,通过伯努利方程实验、雷诺实验、阻力综合实验和动量方程实验,实现对基本理论的验证。

2)通过实验,使学生对水柱(水银柱)、U型压差计、毕托管、孔板流量计、文丘里流量计等流体力学常用的测压、测流量装置的结构、原理和使用有基本认识。

2.适用专业热能与动力工程3.先修课程《流体力学》相关章节。

4.实验项目与学时分配5. 实验改革与特色根据实验内容和现有实验条件,在实验过程中,采取学生自己动手和教师演示相结合的方法,力求达到较好的实验效果。

实验一阻力综合实验一、实验目的1.观察和测试流体稳定地在等直管道中流动及通过阀门时的能量损失情况;2.掌握管道沿程阻力系数和局部阻力系数的测定方法;3.熟悉流量的测量和测定文丘里及孔板流量计的流量系数;4.熟悉毕托管的使用。

二、实验条件阻力综合实验台三、实验原理1.实验装置:图一阻力综合实验台结构示意图1.水泵电机2.水泵3.循环储水箱4.计量水箱5.孔板及比托管实验管段进水阀6.阀门阻力实验管段进水阀7. D=14mm沿程阻力实验管段进水阀8.D=14mm沿程阻力实验管段9. 阀门阻力实验管段10.孔板流量计11. 比托管12. 测阻阀门13.测压管及测压管固定板14. D=14mm沿程阻力实验管段出水阀15阀门阻力实验管段出水阀16. 孔板及比托管实验管段出水阀17.文丘里实验管段出水阀18. D=10mm沿程阻力实验管段出水阀19.管支架20. D=10mm沿程阻力实验管段21. 文丘里流量计22排水阀门2.工作原理阻力综合实验台为多用途实验装置,利用这种实验台可进行下列实验:A 、阻力实验。

1). 两种不同直径管路的沿程阻力实验。

2).阀门局部阻力实验。

B 、孔板流量计流量系数和文丘里流量计流量系数的测定方法。

C 、皮托管测流速和流量的方法。

流体力学实验指导书

流体力学实验指导书

《流体力学》实验指导书适用专业:环境工程专业前言一、实验的意义和目的实验是流体力学课程的组成部分之一。

流体力学问题是错综复杂的,其复杂性在于其影响因素很多。

由于人们对流体运动规律认识的局限性,因此还有许多问题并非由理论分析就能解决,往往有赖于实验;在某些场合,实验已成为解决问题的主要途径。

通过流体力学实验教学其目的在于加强学生对流动现象的感性认识,验证所学理论,提高理论分析能力;培养基本实验进呢过,了解现代量测技术;培养严谨踏实的科学作风。

二、实验须知1、实验前必须预习。

预习时,应仔细阅读实验指导书及有关的教材资料,明确实验的目的、要求和有关的实验原理,了解操作步骤和有关的仪器设备,做到心中有数。

2. 严肃认真的进行实验。

到实验室后,必须保持安静,不得谈笑喧哗,不准碰动与本实验无关的设备。

实验时,应按实验书的要求,全神贯注地按步骤进行操作,并注意多观察流体运动现象,多思考分析问题,及时记录实验原始数据。

3. 保持良好的科学作风,实验时,应尊重原始数据,不得任意更改;实验后,应进行必要的检查和补充,经指导教师同意后,方可离开实验室;应及时整理实验数据,认真编写实验报告。

由于时间仓促,水平有限,书中的缺点和错误在所难免,恳切希望读者批评指正。

目录实验一、流体静压强实验实验二、平面静水总压力实验实验三、能量方程实验实验四、动量方程实验实验五、沿程水头损失实验实验六、局部水头损失实验实验一:静水压强实验实验学时:1课时 实验类型:验证实验要求:必修 一、实验目的1、验证静止液体中,C gpZ =+ρ。

2、建立液体表面压强a p p >0,a p p <0的概念,并观察真空现象。

二、实验仪器三、实验原理、方法和手段静水压强测定及静水压强基本方程gh p p ρ+=0………(1) C gpZ =+ρ………(2) Z -被测点在基准面以上的位置高度; p -被测点的静水压强;0p -水箱中液面的表面压强; h -被测点的淹没深度利用等压面与连通器原理。

流体力学实验指导书

流体力学实验指导书

《流体力学实验指导书》一、电液比例综合测试实验台简介该实验台是根据《液压气动传动》通用教材设计而成,集可编程控制器和数据转换卡、液压元件模块为一体,除可进行常规的液压基本控制回路实验外,还可进行液压,组合应用实验及液压技术课程设计,元件的性能测试。

实验台配置了完备的各种类型传感器,包括压力传感器、流量传感器、转速传感器、功率传感器、位移传感器等,以满足各项实验参数测试的需要。

实验台是采用快速拼装结构,实验人员可根据实验项目原理图,选用相应的液压元件快速组成液压实验回路,通过电磁换向阀动作的控制和相关液压阀的调节进行实验。

实验台计算机测试控制系统实现实验参数(压力、流量、转速、功率、位移等)的自动数据检测、自动处理计算和存储等,还能实现回路电磁阀的自动控制,提高了实验台操作的自动化和智能化水平。

实验台可以同时进行16路实验数据的采集和8个二位电磁阀的控制。

1、性能与特点1、实验台采用台式结构,便利于多名学生的安装、测试。

2、操作平台面积大,可集成多个子系统。

3、阀体固定安装在操作平台上,管路连接采用快速接头,在背面连接,保证正面整洁。

4、实验用管件采用金属线,耐压胶管,压力可达到31.5Mpa。

5、测试方法实用、可靠。

实验装置由实验台架、液压泵站、电气测控单元等几部分组成。

3、液压站原理操作面板分布图A1.仪表数显区, A2.比例放大器与检测区,A3.PLC控制区, A4.传感器接口与手动控制区,A5.基础实验行程控制区, A6.液压站控制区。

5、数显区:功率表--—--定量叶片泵的实时功率。

转速表--—--定量叶片泵的实时转速。

流量表——--流过流量传感器的实时流量。

图A1 数显区分布图1、功率数显表;2、转速数显表;3、流量数显表;6.液压站控制区主系统控制区——定、变量泵的启动与停止,液压系统的供压与卸荷,冷却与加热以及总停的控制。

实验时先确定总停按钮为开启状态,即顺时钟旋转一定角度,自动升起为开。

流体力学实验指导书(修改)

流体力学实验指导书(修改)

流体力学实验指导书主编李旭机电工程系实验一 静水压强实验一、实验目的1、通过实验加深对流体静力学基本方程h p p γ+=0的理解。

2、验证静止流体中不同点对于同一基准面的测压管水头为常数,即=+γpz 常数3、实测静水压强,掌握静水压强的测量方法。

4、巩固绝对压强、相对压强、真空度的概念,加深理解位置水头、压力水头以及测压管水头之间的关系。

5、已知一种液体重度测定另一种液体的重度。

二、实验原理图1所示是一种静水压强实验仪原理示意图:图1 静水压强实验原理图('a p p =)实验装置包括四个部分,从左到右依次是调压桶、测压管组、主水箱、增减压气筒。

主水箱液面上压强0p 通过调节增减压气筒改变,使其大于或小于大气压a p ,水箱上面通过连通管和测压管6相连。

在水箱不同液面深度选择测点1、2,分别和测压管组连接。

测压管组中2、3开口通向大气,测压管1、4、5通过一个四通接头和调压桶相接,通过上、下移动调压桶就可以改变调压筒中的压强,进而调节测压管1、4、5中的压强。

球阀1和2的开启可以使密闭水箱液面上压强和调压桶压强恢复到大气压强。

(注:图1中'a p p =,图2中'a p p <,)图2 静水压强实验原理图('a p p <)相对静止的液体只受重力的作用,处于平衡状态。

以p 表示液体静压强,γ表示液体重度,以z 表示压强测算点位置高度(即位置水头),流体静力学方程为=+γpz 常数上式说明1、在重力场中静止液体的压强p 与深度h 成线性分布,即10012002p p z p p z -∆-=-∆-2、同一水平面(水深相同)上的压强相等,即为等压面。

因此,水箱液面和测点1、2处的压强(绝对压强)分别为 00a p p h γ=+ ()30a p γ=+∆-∆11a p p h γ=+()31a p z γ=+∆-22a p p h γ=+()52a p z γ=+∆- 与以上各式相对应的相对压力(相对压强)分别为a p p p -='000h γ= ()03∆-∆=γ11a p p p '=-1h γ= ()31z γ=∆-22a p p p '=-2h γ= ()52z γ=∆-式中 a p —— 大气压力,Paγ—— 液体的重度,3m N0h —— 液面压力水头,m 0∆ —— 液面位置水头,m 3∆、5∆—— 1、2处测压管水头,m 1z 、 2z —— 1、2处位置水头,m 1h 、2h —— 1、2处压力水头,m3、静水中各点测压管水头均相等,即35∆=∆或 1212p p z z γγ''+=+或 1122z h z h +=+ 即测压管1、2的液位在同一平面上。

流体力学实验指导书( 建环专业)

流体力学实验指导书( 建环专业)

目录实验一静水压强实验•••••••••••••••••••••••••••••••••••••••••••1实验二伯努利方程式的验证•••••••••••••••••••••••••••••••••••••3实验三雷诺实验••••••••••••••••••••••••••••••••••••••••••••••6实验四管道沿程阻力实验••••••••••••••••••••••••••••••••••••••9实验五管道局部阻力系数的测定••••••••••••••••••••••••••••••••12实验一静水压强实验(一)实验目的1、测定静止液体中某点的静水压强,加深对静压公式p=p0+γh的理解;2、测定有色液体的重度,并通过实验加深理解位置水头,压强水头及测压管水头的基本概念,观察静水中任意两点测压管水头Z+p/γ=常数。

p=p0+γh式中:P——被测点的静水压强;P0——水箱中水面的表面压强;γ——液体重度;h——被测点在表面以下的竖直深度。

可知在静止的液体内部某一点的静水压强等于表面压强加上液体重度乘以该点在液面下的竖直深度。

(四)实验步骤1、打开密封水箱E顶上空气阀门a,此时水箱内水面上的压强p0=p a。

观察各测压连通管内液面是否平齐,如果不齐则检查各管内是否阻塞并加以勾通。

2、读取A点、B点的位置高度Z A、Z B。

3、关闭空气阀门a,转动手柄,抬高长方形小水箱F至一定高度,此时表面压力P0>P a,待水面稳定后读各测压管中水位标高▽=▽I(I=1、2、3、4、5),并记入表中。

4、在保持P0>P a的条件下,改变长方形小水箱F高度,重复进行2-3次。

5、打开空气阀门a,使水箱内的水面上升,然后关闭空气阀门a,下降长方形小水箱。

6、在P0<P a的条件下,改变水箱水位重复进行2-3次。

(五)对表中数据进行分析单位:mm实验二 伯努利方程式的验证(一)实验目的:1、观察流体(水)在管内作恒定流动时,位置水头(Z )、压强水头(rp )和速度水头(V 2/2g )三者沿程变化的规律,加深对能量方程的理解。

流体力学实验指导书_2

流体力学实验指导书_2

实验一 雷诺实验一、实验目的与要求1、了解流体的流动形态:观察实际的流线形状,判断其流动形态的类型;2、熟悉雷诺准数的测定和计算方法;3、确立“层流与湍流与Re 之间有一定关系”的概念。

二、基本原理流体在流动过程中有3种不同的流动形态,即层流、湍流和介于两者之间的过渡流。

雷诺用实验的方法研究流体流动时,发现影响流体流动类型的因素除了流速u 以外,还有管径d 、流体的密度ρ以及粘度μ,由这四个物理量组成的无因次数群μρdu =Re称之为雷诺数。

实验证明,流体在直管内流动时:当Re ≤2000时,流体的流动类型为层流。

当Re ≥4000时,流体的流动类型为湍流。

当2000<Re <4000,流体的流动类型可能是层流,也可能为湍流,将这一范围称之为不稳定的过渡区。

从雷诺数的定义式来看,对于同一管路d 为定值时,u 仅为流量的函数。

对于流体水来讲,ρ及μ仅为温度的函数。

因此确定了温度及流量即可计算出雷诺数Re 。

三、实验装置及流程实验装置如图所示,实验时水从玻璃水槽3流进玻璃管4(内径20mm ),槽内水由自来水供应,供水量由阀6控制,槽壁外有进水稳定槽7及溢流槽10,过量的水进溢流槽10排入图1-3 雷诺示范实验装置1-红墨水瓶 2.6.8.12-阀门 3-玻璃水槽 4-带喇叭口玻璃管(Φ20) 5-进水管 7-进水稳定槽 9-转子流量计 10-溢流槽 11-排水管下水道。

实验时打开阀门8,水即由玻璃槽进入玻璃管,经转子流量计9后,流进排水管排出,用阀8调节水量,流量由转子流量计9测得。

高位墨水瓶贮藏墨水之用,墨水由经墨水调节阀2流入玻璃管4。

四、实验数据记录表表1-2 雷诺实验数据记录表水温__________[℃] 水粘度_______________[10-3×Pa·S]水密度_____________[kg/m3] 管内径_______________[mm]五、讨论1、流量从小做到大,当刚开始湍流,测出雷诺数是多少?与理论值2000有否差距?请分析原因。

流体力学实验指导书讲解

流体力学实验指导书讲解

《流体力学》实验指导书1.实验报告需要包括以下几个方面的内容:1、实验名称、学生姓名、班号、学号、组别和实验日期;2、实验目的和要求;3、实验原理;4、实验仪器、设备(含设备的构造);5、实验步骤;6、注意事项;7、实验原始记录;8、实验结果的整理与分析。

数据的整理与分析包括:数据测量,数据分析及误差分析。

2.实验报告格式见附件1。

纸张A3,正反打印。

2实验报告内容参考资料见附件3.附件1二:实验操作部分湖北工业大学《流体力学》实验报告1:实验数据,表格及数据处理月日年学院:专业:2:实验操作过程(可用图表示)指导老师实验名称3:结论成绩学号组号班级姓名一:预习部分:实验目的1实验基本原理2: 四、实验步骤3:主要仪器设备(含必要的元器件,工具)一、实验目的及要求二、实验原理五、注意事项三、实验设六、实验成附件21.沿程水头损失1.1实验目的测量管流的沿程水头损失系数,绘制沿程水头损失系数与雷诺数的变化曲线,并与尼古拉兹曲线相比较。

1.2实验装置图1.1 沿程水头损失实验装置图1.1是本实验装置,它由水泵、实验管段、测压计组成。

流量的测量采用手工体积法,即将水接入量筒,用秒表记下接水时间,体积除以时间就得到流量。

现对各种装置介绍如下:1.供水器由离心泵、进水阀、分流阀组成。

离心式水泵将水输入实验管段。

分流阀的作用是控制水泵的出水压强,使之保持恒定。

如果水泵的压强较高,就必须开大分流阀,使实验段的流量、压强降低。

分流阀的开度如果合适,则测压管的液面保持合适的高度。

如果分流阀开度过小,实验段的压强就会很高,水柱就会冲出管口。

调试时,应时刻注意分流阀的开度,避免测压管的水柱冲出。

实验时,要合理调节分流阀和实验段的尾阀,才能得到合适的水流量。

2.实验管段为有机玻璃管道,管段的首、尾开设有测压管,用以测量管流的压差。

3.测压计:液柱式压差计由两支玻璃测压管1、2组成,其上部相接通,因而这种压差计实际上是π形管压差计。

流体力学实验指导书(DOC)

流体力学实验指导书(DOC)

流体力学实验指导书与报告(第二集)动量定律实验毕托管测速实验文丘里流量计实验局部阻力实验孔口与管嘴实验静压传递自动扬水演示实验中国矿业大学能源与动力实验中心学生实验守则一、学生进入实验室必须遵守实验室规章制度,遵守课堂纪律,衣着整洁,保持安静,不得迟到早退,严禁喧哗、吸烟、吃零食和随地吐痰。

如有违犯,指导教师有权停止基实验。

二、实验课前,要认真阅读教材,作好实验预习,根据不同科目要求写出预习报告,明确实验目的、要求和注意事项。

三、实验课上必须专心听讲,服从指导教师的安排和指导,遵守操作规程,认真操作,正确读数,不得草率敷衍,拼凑数据。

四、预习报告和实验报告必须独自完成,不得互相抄袭。

五、因故缺课的学生,可向指导教师申请一次补做机会,不补做的,该试验以零分计算,作为总成绩的一部分,累计三次者,该课实验以不及格论处,不能参加该门课程的考试。

六、在使用大型精密仪器设备前,必须接受技术培训,经考核合格后方可使用,使用中要严格遵守操作规程,并详细填写使用记录。

七、爱护仪器设备,不准动用与本实验无关的仪器设备。

要节约水、电、试剂药品、元器件、材料等。

如发生仪器、设备损坏要及时向指导教师报告,属责任事故的,应按有关文件规定赔偿。

八、注意实验安全,遵守安全规定,防止人身和仪器设备事故发生。

一旦发生事故,要立即向指导教师报告,采取正确的应急措施,防止事故扩大,保护人身安全和财产安全。

重大事故要同时保护好现场,迅速向有关部门报告,事故后尽快写出书面报告交上级有关部门,不得隐瞒事实真相。

九、试验完毕要做好整理工作,将试剂、药品、工具、材料及公用仪器等放回原处。

洗刷器皿,清扫试验场地,切断电源、气源、水源,经指导教师检查合格后方可离开。

十、各类实验室可根据自身特点,制定出切实可行的实验守则,报经系(院)主管领导同意后执行,并送实验室管理科备案。

1984年5月制定2014年4月再修订中国矿业大学能源与动力实验中心动量定律实验一、实验目的要求1.验证不可压缩流体定常流的动量方程;2. 通过对流速、流量、出射角度、动量与动量矩等因素相关性的分析研讨,进一步掌握流体力学的动量守恒定理;3. 了解活塞式动量实验仪原理、构造,进一步启发与培养创造性思维的能力。

流体力学实验指导书工程力学

流体力学实验指导书工程力学

前言流体力学实验是学习流体力学课程的一个重要环节。

当我们感到流体力学的理论、公式难于理解和掌握的时候,实验将帮助我们解决一个又一个难题。

学完这门课之后的若干年,可能对流体力学的理论、公式的记忆已很淡薄,但一些实验方法、测试技术仍然记忆犹新,由此可见实验对于课程学习的重要作用。

事实上,实验方法与理论研究和数值计算一样都是流体力学研究的基本方法。

实验不但能检验理论和计算是否正确,还可以发现新的流动现象,探索新的理论方法。

实验技能是每一个科学工作者和工程技术人员的基本素质。

流体力学实验室为开放型实验室,全天为学生开放,只需提前三天预约即可。

为了保证实验的教学质量。

要求学生做到以下几点。

1、实验之前必须预习实验指导书及有关理论,了解实验的目的,仪器设备、实验原理、实验方法、操作规程及数据处理等等。

上实验课时,接受指导教师检查。

预习不合格者,不能参加实验。

2、在实验室中,要专心致志,遵守纪律,接受教师的指导与管理。

3、实验小组要协调一致,既要取得准确的测量数据,又要使每个学生掌握实验中的各个测试环节。

4、当场计算实测数据,以便检查实验的正确性。

5、实验观测完毕,应将仪器设备恢复为启用前的状态,请教师检查后才能离开实验室。

6、在实验过程中,如遇仪器设备工作不正常,应立即报告教师,在教师指导下排除故障,不得擅自拆卸。

7、爱护仪器设备,细心操作,倘有损坏,应立即报告教师,按规定处理。

8、实验后的一周内,提出个人的实验报告送教师审批。

要求报告书写工整,图表清晰、结果正确;有不符合要求者,应与实验室联系重新补做。

流体力学实验室2012年春实验一雷诺实验(一)实验目的1、观察液体在层流和紊流状态时流体质点的运动规律。

2、观察流体由层流变为紊流及由紊流变为层流的过渡过程。

Re。

3、测定液体在圆管中流动时的下临界雷诺数cr(二)实验装置图2—1 雷诺实验仪1—装红颜色水的水箱2—软管(三)实验原理流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。

流体力学实验指导书

流体力学实验指导书

流体力学实验指导书2013 年 5 月前言流体力学实验是《流体力学》课程教学的重要环节。

通过实验,可以对课堂讲授的理论知识加以巩固和进一步的验证,加强理论和实践的结合,同时可以培养学生实际动手能力和分析问题、解决问题的能力,为今后的科学研究打下基础。

本实验指导书是根据教学大纲的要求,并结合实验室的具体设备编写的。

实验内容包括水静压强实验,不可压缩流体定常流动动量方程实验,雷诺实验,管路沿程阻力实验,管路局部阻力实验,毕托管测速实验,文丘里流量计实验。

这些实验可以使学生掌握流体力学的实验技术和测量技巧,为进行科学实验研究做准备。

由于编者水平有限和实验设备的限制,书中不足之处在所难免,敬请读者批评指正。

编者2013年4月目录实验1 水静压强实验 (1)实验2 不可压缩流体定常流动动量方程实验 (3)实验3 雷诺实验 (6)实验4 管路沿程阻力实验 (8)实验5 管路局部阻力实验 (12)实验6 毕托管测速实验 (15)实验7 文丘里流量计实验 (17)实验8 孔口与管嘴出流实验 (18)2图1.1 水静压强实验装置图实验1 水静压强实验一、实验目的1.加深理解流体静力学基本方程及等压面的概念。

2.理解封闭容器内静止液体表面压强及其液体内部某空间点的压强。

3.观察压强传递现象。

二、实验装置实验装置如图1.1所示。

三、实验原理对密封容器(即水箱)的液体表面加压时,设液体表面压强为P 0,则P 0>P a ,a p 为大气压强。

从U 形管中可以看到有压差产生,U 形管与密封水箱上部连通的一面,液面下降,而与大气相通的一面,液面上升。

密闭水箱内液体表面压强0p 为:h p p a γ+=03 式中γ——液体的重度;h ——U 形管中液面上升的高度。

当密闭水箱内压强P 0下降时,U 形管内的液面呈现相反的现象,即P 0<P a ,这时密闭水箱内液面压强0p 为:h p p a γ-=0式中 h ——U 形管中液面下降的高度。

流体力学的数值模拟教案

流体力学的数值模拟教案

流体力学的数值模拟教案流体力学的数值模拟教案一、教学目标1.让学生了解计算流体力学(CFD)的基本概念和原理。

2.掌握CFD的基本方法和常用软件。

3.培养学生的实验设计和分析能力,能够独立完成简单的CFD模拟实验。

4.培养学生的团队合作精神和创新意识。

二、教学内容1.CFD基本概念和原理2.CFD基本方法和常用软件介绍3.实验设计和分析方法4.CFD应用案例分析5.学生自主设计CFD模拟实验并分析结果三、教学步骤1.导入CFD的概念和原理,介绍计算流体力学的发展和应用领域。

2.讲解CFD的基本方法和常用软件,包括前处理、求解器和后处理等步骤,以及常用的CFD软件如ANSYS Fluent、CFX等。

3.通过案例分析,让学生了解CFD在工程中的应用,如流体机械内部流场分析、汽车空气动力学优化等。

4.讲解实验设计和分析方法,包括实验目的、实验装置、数据采集和处理等步骤。

5.学生分组进行CFD模拟实验,并分析实验结果。

教师进行指导,帮助学生解决遇到的问题。

6.总结CFD模拟实验的过程和结果,并对比实验和理论预测的结果,加深学生对CFD的理解和应用能力。

四、教学评估1.通过学生的表现和成果进行评价,包括CFD模拟实验的结果、数据分析的准确性和创新性等方面。

2.进行课堂讨论和互动,鼓励学生提出问题和建议,提高学生的学习积极性和参与度。

3.通过作业和测试题对学生的掌握情况进行评估,确保学生能够理解和掌握CFD的基本概念和原理。

五、教学反思1.对本次教学进行总结,包括教学内容的难易程度、学生的参与度、教学效果等方面。

2.对教学中出现的问题进行反思和改进,如教学方法、实验设备等方面的问题。

3.对未来的教学进行规划和展望,包括教学内容的更新、教学方法的改进等方面。

六、教学资源1.CFD基本概念和原理的相关资料和参考书籍。

2.CFD基本方法和常用软件的视频教程和案例分析。

3.CFD应用案例的相关资料和数据支持。

4.CFD模拟实验的软件和硬件设备支持。

流体力学数值模拟实验指导书

流体力学数值模拟实验指导书

流体力学数值模拟实验指导书建筑环境与设备工程教研室2008.3实验一、圆管内层流流动的数值模拟一、实验目的1、了解计算流体力学(CFD)的基本理论,包括:数值求解流体力学问题的基本过程、区域离散化、控制容积积分法的基本概念、对流-扩散方程的离散格式、SIMPLE算法的计算步骤、边界条件处理等。

2、掌握对特定的流动问题的完整数学描述,包括:流动问题的控制方程、单值性条件(初始条件及边界条件)。

3、掌握GAMBIT、FLUENT软件的图形用户界面(GUI)的基本架构及基本操作步骤。

4、学会用FLUENT分析圆管内层流流动现象,并结合所学理论知识分析解释相关数值模拟结果。

二、实验装置本实验均在计算机上完成,主要用到前处理网格生成软件GAMBIT和数值求解软件FLUENT。

GAMBIT界面如下图1:脚本窗口视窗命令窗口图1 GAMBIT软件的GUI界面FLUENT软件GUI界面如下图2:后处理相关面板FLUENT绘图界面FLUENT工作界面图2 FLUENT软件的GUI界面三、实验内容图3 圆管内层流流动考虑如上图3所示的通过横截面积一定的圆管的层流流动,管直径为D=0.2 m,管长为L=8 m,管子入口速度为V in=1 m/ s,此管入口处沿横截面速度分布均为1 m/ s,流动最终流入大气压力为1 atm 的大气环境中,流体密度为ρ=1 kg/ m3,动力粘度为µ= 2 x 10-3kg/(ms),基于管径的Re数为,分别在100X20、100X10、100X5的网格上,用FLUENT求解该问题,绘制管子中心线上的速度变化,出口处的速度分布。

四、实验步骤1、在前处理网格生成软件GAMBIT中,绘制100X5的网格,保存并输出网格,退出GAMBIT软件。

2、打开FLUENT软件,将生成的100X5的网格导入FLUENT中,根据实验内容规定的相关要求进行基本流体参数设置、求解格式的选取、收敛标准的设定等,并开始迭代求解。

流体力学(水力学)实验指导书200802-1

流体力学(水力学)实验指导书200802-1

二、实验原理
实际液体在有压管道中作恒定流动时,其能量方程如下:
z1
v2 p1 1v12 p z 2 2 2 2 hw g 2 g g 2g
它表明:液体在流动的过程中,液体的各种机械能(单位位能、单位压能和单位
6
流体力学实验指导&实验报告
动能)是可以相互转化的。但由于实际液体存在粘性,液体运动时为克服阻力而 要消耗一定的能量,也就是一部分机械能转化为热能而散逸,即水头损失。因而 机械能应沿程减少。 对于均匀流和渐变流断面,其压强分布符合静水压强分布规律:
1、测记有关常数; 2、安装平面板,调节平衡锤位置,使杠杆处于水平状态; 3、启动抽水机,使水箱充满水并保持溢流。此时; ,水流从管嘴射出,冲击 平板中心,标尺倾斜。加砝码并调节砝码位置,使杠杆处于水平状态,达到力矩 平衡。记录砝码质量和力臂 L1 。 4、用体积法测量流量 Q 用以计算 F理 ; 5、改变溢流板高度,使水头和流量变化,重复上述步骤; 6、将平面板更换为曲面板( 135 及 180 )又可实测和计算不同流 量的作用力; 7、关闭抽水机,将水箱中的水排空,砝码从杠杆上取下,实验结束。
事故时,应立即切断相应的电源、气源等,并听从指导教师的指导,要沉着冷静, 不要惊慌失措。 第七条 实验中,如发现仪器设备损坏,应及时报告,查明原因。凡属违反
操作规程导致设备损坏的,要追究责任,照章赔偿。 第八条 实验结束时,实验数据要指导教师审阅、签字,并整理好实验现场
后,方可离去。 第九条 学生要进入开放实验室做自行设计的实验时,应事先和有关实验室
二、实验原理
在重力作用下,水静力学基本方程为: z p C g
它表明: 当质量力仅为重力时, 静止液体内部任意点对同一基准面的 z 与 之和为常数。 重力作用下,液体中任何一点静止水压强

流体力学实验指导书与报告

流体力学实验指导书与报告

流体力学实验指导书与报告所在学院:地侧学院使用专业:安全工程2006.6实验一:压强、流速、流量测定实验一、压强测定试验 知识点:静力学的基本方程;绝对压强;相对压强;测压管;差压计。

1.实验目的与意义1)验证静力学的基本方程;2)学会使用测压管与差压计的量测技能;3)灵活应用静力学的基本知识进行实际工程量测。

2.实验要求与测试内容1)熟练并能准确进行测压管的读数;2)控制与测定液面的绝对压强或相对压强; 3)验证静力学基本方程; 4)由等压面原理分析压差值。

3.实验原理1)重力作用下不可压缩流体静力学基本方程: pz c γ+=2)静压强分布规律:0p p h γ=+式中:z ——被测点相对于基准面的位置高度;p ——被测点的静水压强,用相对压强表示,以下同;0p ——水箱中液面压强;γ——液体容重;h ——被测点在液体中的淹没深度。

3)等压面原理:对于连续的同种介质,流体处于静止状态时,水平面即等压面。

4.实验仪器与元件实验仪器: 测压管、U 型测压管、差压计仪器元件:打气球、通气阀、放水阀、截止阀、量杯 流体介质:水、油、气 实验装置如下图: 5.实验方法与步骤实验过程中基本操作步骤如下:1)熟悉实验装置各部分的功能与作用;2)打开通气阀,保持液面与大气相通。

观测比较水箱液面为大气压强时各测压管液面高度;3)液面增压。

关闭通气阀、放水阀、截止阀,用打气球给液面加压,读取各测压管液面高度,计算液面下a、b、c各点压强及液面压强p;4)液面减压。

关闭通气阀,打开截止阀,放水阀放出一定水量后,读取各测压管液面高度,计算液面下a、b、c各点压强及液面压强p。

6.实验成果实验测定与计算值如下内容:00p=,a、b、c各测压管与U型测压管液面标高∇、压强水头pγ、测压管水头pzγ+;00p>,a、b、c各测压管与U型测压管液面标高∇、压强水头pγ、测压管水头pzγ+;00p<,a、b、c各测压管与U型测压管液面标高∇、压强水头pγ、测压管水头pzγ+;填入表1中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

流体力学数值模拟
实验指导书
建筑环境与设备工程教研室
2008.3
实验一、圆管内层流流动的数值模拟
一、实验目的
1、了解计算流体力学(CFD)的基本理论,包括:数值求解流体力学问题的基本过程、区域离散化、控制容积积分法的基本概念、对流-扩散方程的离散格式、SIMPLE算法的计算步骤、边界条件处理等。

2、掌握对特定的流动问题的完整数学描述,包括:流动问题的控制方程、单值性条件(初始条件及边界条件)。

3、掌握GAMBIT、FLUENT软件的图形用户界面(GUI)的基本架构及基本操作步骤。

4、学会用FLUENT分析圆管内层流流动现象,并结合所学理论知识分析解释相关数值模拟结果。

二、实验装置
本实验均在计算机上完成,主要用到前处理网格生成软件GAMBIT和数值求解软件FLUENT。

GAMBIT界面如下图1:
脚本窗口
视窗
命令窗口
图1 GAMBIT软件的GUI界面FLUENT软件GUI界面如下图2:
后处理相关面板
FLUENT绘图界面
FLUENT工作界面
图2 FLUENT软件的GUI界面
三、实验内容
图3 圆管内层流流动
考虑如上图3所示的通过横截面积一定的圆管的层流流动,管直径
为D=0.2 m,管长为L=8 m,管子入口速度为V in=1 m/ s,此管入口处沿横截面速度分布均为1 m/ s,流动最终流入大气压力为1 atm 的大气环境中,流体密度为ρ=1 kg/ m3,动力粘度为µ= 2 x 10-3
kg/(ms),基于管径的Re数为
,分别在100X20、100X10、100X5的网格上,用FLUENT求解该问题,绘制管子中心线上的速度变化,出口处的速度分布。

四、实验步骤
1、在前处理网格生成软件GAMBIT中,绘制100X5的网格,保存并输出网格,退出GAMBIT软件。

2、打开FLUENT软件,将生成的100X5的网格导入FLUENT中,根据实验内容规定的相关要求进行基本流体参数设置、求解格式的选取、收敛标准的设定等,并开始迭代求解。

3、利用FLUENT内置的后处理面板按实验内容要求绘制管子中心线上的速度变化,出口处的速度分布,并保存绘图结果。

4、退出FLUENT,重新进入前处理网格生成软件GAMBIT中,分别绘制100X10、100X20网格,重复步骤2~3,并比较随着网格的加密对计算结果的影响。

实验二、空腔内驱动流问题数值模拟实验
一、实验目的
1、进一步了解计算流体力学(CFD)的基本理论,包括:数值求解流体力学问题的基本过程、区域离散化、控制容积积分法的基本概念、对流-扩散方程的离散格式、SIMPLE算法的计算步骤、边界条件处理等。

2、掌握对特定的流动问题的完整数学描述,包括:流动问题的控制方程、单值性条件(初始条件及边界条件)。

3、掌握GAMBIT、FLUENT软件的图形用户界面(GUI)的基本架构及基本操作步骤。

4、学会用FLUENT分析空腔内驱动流问题,并结合所学理论知识分析解释相关数值模拟结果。

二、实验装置
本实验均在计算机上完成,主要用到前处理网格生成软件GAMBIT和数值求解软件FLUENT。

GAMBIT及FLUENT软件界面于实验一中图1和图2所示。

三、实验内容
如下图1所示为一菱形空腔,空腔尺寸如下图1,长宽均为0.1m,空腔内为某一流体,流体物性值分别为密度为1kg/m3, 动力粘度为2.0×10-5kg/(m.s),空腔的上部为一移动盖板,盖板移动速度为
0.1m/s,由于粘性力的作用,空腔内流体会出现流动现象,请用CFD仿真软件FLUENT上机求解稳态情况下空腔内流体速度矢量分布图。

图1 空腔内流体的驱动流
四、实验步骤
1、在前处理网格生成软件GAMBIT中,绘制11X11网格,保存并输出网格,退出GAMBIT软件。

2、打开FLUENT软件,将生成的11X11的网格导入FLUENT中,根据实验内容规定的相关要求进行基本流体参数设置、求解格式的选取、收敛标准的设定等,并开始迭代求解。

3、利用FLUENT内置的后处理面板按实验内容要求绘制空腔内流体速度矢量分布图,并保存绘图结果。

4、利用surface菜单中的line工具定义x=0.075m线(网格的坐标原点定在空腔的左下角顶点),并绘制该线上的速度量分布。

相关文档
最新文档