流体力学实验指导书

合集下载

流体力学综合实验指导书

流体力学综合实验指导书

流体力学综合实验实验指导书 流体力学综合实验一、实验目的1〕能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图; 2〕能进行离心泵特性曲线测定实验,测出扬程、功率和效率与流量的关系曲线图;3〕学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解玻璃转子流量计、压力表、倒U 型差压计以及相关仪表的原理和操作;二、装置整体流程图:1-水箱;2-进口压力表;3-双金属温度计;4-灌泵漏斗;5-出口压力表;6-玻璃转子流量计;7-局部阻力管;8-电气操作箱;9-局部阻力管上的闸阀V1;10-光滑管;11-倒U 型差压计;12-均压环;13-粗糙管;14-管路选择球阀f1、f2、f3;15-出口流量调节闸阀V2图1 实验装置流程示意图离心泵特性测定实验一、根本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H 的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:f h gug p z H g u g p z ∑+++=+++2222222111ρρ 〔1-1〕由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有210(H H H ++=表值)〔1-2〕式中: 120z z H -=,表示泵出口和进口间的位差,m ;和ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2;p 1、p 2——分别为泵进、出口的真空度和表压,Pa ;H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。

流体力学实验指导书

流体力学实验指导书

《流体力学》实验指导书目录实验装置简介及实验安排…………………………………………………… 1-2 实验一:伯努利方程验证实验………………………………………………… 3-8 实验二:雷诺实验…………………………………………………………… 9-12实验装置简介及实验安排实验装置:流体力学综合实验台是一个多功能实验装置,用此实验台可进行伯努利方程(能量方程)验证实验、雷诺实验、沿程阻力测定实验、局部阻力测定实验、毕托管测速实验和文丘里流量计实验等多个流体力学实验。

实验装置如图1-1所示。

1—供水箱,水泵;2—实验桌;3—层流测针;4—恒压水箱;5—彩色墨水罐;6—差压板;7—沿程阻力实验管;8—局部阻力实验管;9—伯努利实验管;10—雷诺实验管;11—伯努利差压板;12—毕托管;13—计量水箱;14—回水管。

图1-1 多功能流体力学综合实验台针对轮机工程专业36学时或32学时的流体力学课程,我们开设两个实验,即伯努利方程验证实验和雷诺实验。

在雷诺实验中,学生可以借助该实验装置观察层流和湍流(紊流)特征以及它们之间的转换特征,掌握测定临界雷诺数Re 的方法。

在伯努利方程实验中,学生可以借助该实验装置验证总流的伯努利方程,观察流体流动过程中的能量守恒关系,同时可以掌握流速、流量和压强等要素的实验量测技能。

实验学时分配:实验一:伯努利方程验证实验 2学时实验二:雷诺实验 2学时实验分组:每个实验7-8人一组,每个自然班分成四组。

实验一:伯努利方程验证实验一、实验目的1.掌握伯努利方程式中各项的物理意义及它们之间的转换关系; 2.验证流体总流的能量方程;3.掌握流速、流量、压强等动水力学水力要素的实验量测技术; 4.学习使用测压管、总压管测水头的实验技能及绘制水头线的方法。

二、实验原理1.伯努利方程(能量方程)在伯努利实验管路中沿水流方向取n 个过流断面。

在动能修正系数α近似取为1的情况下,可以列出进口断面(1)至任一断面(i )的能量方程式(i = 2,3,……,n )i ,i i i h gv p z g v p z -+++=++1f 2211122γγ (1)式中,z 、γp 和gv 22分别为位置水头(位头)、压力水头(压头)和速度水头(动头),单位为m (水柱);i ,h -1f 为从过流断面1到断面n 的水头损失,单位也是m (水柱)。

流体力学实验指导书

流体力学实验指导书

篇一:流体力学实验指导书1流体力学(水力学)实验指导书黎强张永东编西南大学工程技术学院建筑系二零零八年九月流体力学综合实验台简介流体力学综合实验台为多用途实验装置,其结构示意图如图1所示。

图1 流体力学综合试验台结构示意图1.储水箱2.上、回水管3.电源插座4.恒压水箱5.墨盒6.实验管段组7.支架8.计量水箱9.回水管 10.实验桌利用这种实验台可进行下列实验:一、雷诺实验;二、能量方程实验;三、管路阻力实验;1.沿层阻力实验2.局部阻力实验;四、孔板流量计流量系数和文丘里流量系数的测定方法;五、皮托管测流速和流量的方法。

一、雷诺实验1.实验目的(1)观察流体在管道中的流动状态;(2)测定几种状态下的雷诺数;(3)了解流态与雷诺数的关系。

2.实验装置本实验的实验装置为:(1)流体力学综合实验台;(2)雷诺实验台。

在流体力学综合实验台中,雷诺实验涉及的部分有高位水箱、雷诺数实验管、阀门、伯努力方程实验管道、颜料水(蓝墨水)盒及其控制阀门、上水阀、出水阀,水泵和计量水箱等,秒表及温度计自备。

雷诺实验台部件种类同综合实验台雷诺实验部分。

3.实验前准备(1)、将实验台的各个阀门置于关闭状态。

开启水泵,全开上水阀门,把水箱注满水,再调节上水阀门,使水箱的水有少量溢流,并保持水位不变。

(2)、用温度计测量水温。

4.实验方法(1)、观察状态打开颜料水控制阀,使颜料水从注入针流出,颜料水和雷诺实验管中的水迅速混合成均匀的淡颜色水,此时雷诺实验管中的流动状态为紊流;随着出水阀门的不断的关小,颜料水与雷诺实验管中的水渗混程度逐渐减弱,直至颜料水与雷诺实验管中形成一条清晰的线流,此时雷诺实验管中的流动为层流。

(2)测定几种状态下的雷诺系数全开出水阀门,然后在逐渐关闭出水阀门,直至能开始保持雷诺实验管内的颜料水流动状态为层流状态。

按照从小流量到大流量的顺序进行实验,在每一个状态下测量体积流量和水温,并求出相应的雷诺数。

流体力学实验指导书.

流体力学实验指导书.

《流体力学》实验指导书郭广思王连琪沈阳理工大学2006年10月一伯努利方程综合性实验(一)实验目的伯努利方程是水力学三大基本方程之一,反映了水流在流动时,位能、压能、动能之间的关系。

1.了解总水头线和测压管水头线在局部阻力和沿程阻力处的变化规律;2.了解总水头线在不同管径段的下降坡度,即水力坡度J的变化规律;3.了解总水头线沿程下降和测压管水头线升降都有可能的原理;4.用实例流量计算流速水头去核对测压板上两线的正确性;不同管径流速水头的变化规律(二)设备简图本实验台由高位水箱、供水箱、水泵、测压板、有机玻璃管道、铁架、量筒等部件组成,可直观地演示水流在不同管径、不同高程的管路中流动时,上述三种能量之间的复杂变化关系。

(三)实验原理过水断面的能量由位能、压能、动能三部分组成。

水流在不同管径、不同高程的管路中流动时,三种能量不断地相互转化,在实验管道各断面设置测压管及测速管,即可演示出三种能量沿程变化的实际情况。

测压管中水位显示的是位能和压能之和,即伯努利方程中之前两项:gp Z ρ+,测速管中水位显示的是位能、压能和动能之和。

即伯努利方程中三项之和:gv g p Z 22++ρ。

将测压管中的水位连成一线,称为测压管水头线,反映势能沿程的变化;将测速管中的水位连成一线,称为总水头线,反映总能量沿程的变化,两线的距离即为流速水头g v 2/2。

本实验台在有机玻璃实验管道的关键部位处,设置测压管及测速管,适当的调节流量就可把总水头线和测压管水头线绘制于测压板上。

注:计算所的流速水头值是采用断面平均流速求得,而实测流速水头值是根据断面最大速度得出,显然实测值大于计算值,两者相差约为1.3倍。

(四)实验步骤1.开动水泵,将供水箱内之水箱至高位水箱;2.高位水箱开始溢流后,调节实验管道阀门,使测压管,测速管中水位和测压板上红、黄两线一致;3.实验过程中,始终保持微小溢流;4.如水位和红黄两线不符,有两种可能:一是连接橡皮管中有气泡,可不断用手挤捏橡皮管,使气泡排出;二是测速管测头上挂有杂物,可转动测头使水流将杂物冲掉。

《流体力学》实验指导书

《流体力学》实验指导书

实验(一)流体静力学综合性实验一、实验目的和要求掌握用测压管测量流体静压强的技能;通过测量静止液体点的静水压强,加深理解位臵水头、压强水头、及测管水头的基本概念;观察真空现象,加深对真空度的理解;验证不可压缩流体静力学基本方程;测量油的重度二、实验装臵本实验装臵如图1.1所示4.真空测压管5.U 型测压管6.通气阀7.加压打气球8.截止阀9.油柱10. 水柱11.减压放水阀说明: 1. 所有测压管液面标高均以标尺(测压管2)零度数为基准;2.仪器铭牌所注^B 、▽D 系测点B 、C 、D 标高;若同时取标尺零点作为静力学基本方程的基准,则^B 、▽C .▽D 亦为Z B 、Z C 、Z D3. 本仪器中所有阀门旋柄顺管轴线为开。

4. 测压管读数据时,视线与液面保持水平,读凹液面最低点对应的数据。

三、实验原理1在重力作用下不可压缩流体静力学基本方程pz +=constY或p =+y h式中:z —被测点在基准面以上的位置高度;1.测压管2.带标尺测压管3.连通管 I2367485D图1.1流体静力学综合性实验装臵图p—被测点的静水压强,用相对压强表示,以下同;po—水箱中液面的表面压强Y—液体容重;h—被测点的液体深度。

上式表明,在连通的同种静止液体中各点对于同一基准面的测压管水头相等。

利用液体的平衡规律,可测量和计算出连通的静止液体中任意一点的压强,这就是测压管测量静水压强的原理。

压强水头£和位置水头z之间的互相转换,决定了夜柱高和压差的对应关系:Ap二yKh Y对装有水油(图1.2及图1.3)U型侧管,在压差相同的情况下,利用互相连通的同种液体的等压面原理可得油的比重So有下列关系:Y h0=1—Y h+hw12图1.2图1.3据此可用仪器(不用另外尺)直接测得So。

四、实验方法与步骤1.搞清仪器组成及其用法。

包括:1)各阀门的开关;2)加压方法关闭所有阀门(包括截止阀),然后用打气球充气;3)减压方法开启筒底阀11放水4)检查仪器是否密封加压后检查测管1、2、5液面高程是否恒定。

《流体力学》实验指导书

《流体力学》实验指导书

实验二 雷 诺 数 实 验一、 实验目的1、 观察液体在不同流动状态时流体质点的运动规律2、 观察流体由层流变紊流及由紊流变层流的过度过程3、 测定液体在圆管中流动时的下临界雷诺数2c e R二、 实验原理及实验设备流体在管道中流动,由两种不同的流动状态,其阻力性质也不同。

雷诺数的物理意义,可表征为惯性力与粘滞力之比。

在实验过程中,保持水箱中的水位恒定,即水头H 不变。

如果管路中出口阀门开启较小,在管路中就有稳定的平均速度v ,微启红色水阀门,这是红色水与自来水同步在管路中沿轴线向前流动,红颜色水呈一条红色直线,其流体质点没有垂直于主流方向的横向运动,红色直线没有与周围的液体混杂,层次分明地在管路中流动。

此时,在流速较小而粘性较大和惯性力较小的情况下运动,为层流运动。

如果将出口阀门逐渐开大,管路中的红色直线出现脉动,流体质点还没有出现相互交换的现象,流体的流动呈临界状态。

如果将出口阀门继续开大,出现流体质点的横向脉动,使红色线完全扩散与自来水混合,此时流体的流动状态微紊流运动。

图1雷诺数实验台示意图1.水箱及潜水泵2.接水盒3. 上水管4. 接水管5.溢流管6. 溢流区7.溢流板8.水位隔板9. 整流栅实验管 10. 墨盒 11. 稳水箱 12. 输墨管 13. 墨针 14.实验管15.流量调节阀雷诺数表达式e v dR ν⋅=,根据连续方程:A=v Q ,Qv A=流量Q 用体积法测出,即在Δt 时间内流入计量水箱中流体的体积ΔV 。

tVQ ∆=42d A π=式中:A —管路的横截面积;d —实验管内径;V —流速;ν—水的粘度。

三、实验步骤1、准备工作:将水箱充满,将墨盒装上墨水。

启动水泵,水至经隔板溢流流出,将进水阀门关小,继续向水箱供水,并保持溢流,以保持水位高度H 不变。

2、缓慢开启阀门7,使玻璃管中水稳定流动,并开启红色阀门9,使红色水以微小流速在玻璃管内流动,呈层流状态。

3、开大出口阀门15,使红色水在玻璃管内的流动呈紊流状态,在逐渐关小出口阀门15,观察玻璃管中出口处的红色水刚刚出现脉动状态但还没有变为层流时,测定此时的流量。

流体力学实验指导书

流体力学实验指导书

《流体力学实验指导书》一、电液比例综合测试实验台简介该实验台是根据《液压气动传动》通用教材设计而成,集可编程控制器和数据转换卡、液压元件模块为一体,除可进行常规的液压基本控制回路实验外,还可进行液压,组合应用实验及液压技术课程设计,元件的性能测试。

实验台配置了完备的各种类型传感器,包括压力传感器、流量传感器、转速传感器、功率传感器、位移传感器等,以满足各项实验参数测试的需要。

实验台是采用快速拼装结构,实验人员可根据实验项目原理图,选用相应的液压元件快速组成液压实验回路,通过电磁换向阀动作的控制和相关液压阀的调节进行实验。

实验台计算机测试控制系统实现实验参数(压力、流量、转速、功率、位移等)的自动数据检测、自动处理计算和存储等,还能实现回路电磁阀的自动控制,提高了实验台操作的自动化和智能化水平。

实验台可以同时进行16路实验数据的采集和8个二位电磁阀的控制。

1、性能与特点1、实验台采用台式结构,便利于多名学生的安装、测试。

2、操作平台面积大,可集成多个子系统。

3、阀体固定安装在操作平台上,管路连接采用快速接头,在背面连接,保证正面整洁。

4、实验用管件采用金属线,耐压胶管,压力可达到31.5Mpa。

5、测试方法实用、可靠。

实验装置由实验台架、液压泵站、电气测控单元等几部分组成。

3、液压站原理操作面板分布图A1.仪表数显区, A2.比例放大器与检测区,A3.PLC控制区, A4.传感器接口与手动控制区,A5.基础实验行程控制区, A6.液压站控制区。

5、数显区:功率表--—--定量叶片泵的实时功率。

转速表--—--定量叶片泵的实时转速。

流量表——--流过流量传感器的实时流量。

图A1 数显区分布图1、功率数显表;2、转速数显表;3、流量数显表;6.液压站控制区主系统控制区——定、变量泵的启动与停止,液压系统的供压与卸荷,冷却与加热以及总停的控制。

实验时先确定总停按钮为开启状态,即顺时钟旋转一定角度,自动升起为开。

流体力学实验指导书(修改)

流体力学实验指导书(修改)

流体力学实验指导书主编李旭机电工程系实验一 静水压强实验一、实验目的1、通过实验加深对流体静力学基本方程h p p γ+=0的理解。

2、验证静止流体中不同点对于同一基准面的测压管水头为常数,即=+γpz 常数3、实测静水压强,掌握静水压强的测量方法。

4、巩固绝对压强、相对压强、真空度的概念,加深理解位置水头、压力水头以及测压管水头之间的关系。

5、已知一种液体重度测定另一种液体的重度。

二、实验原理图1所示是一种静水压强实验仪原理示意图:图1 静水压强实验原理图('a p p =)实验装置包括四个部分,从左到右依次是调压桶、测压管组、主水箱、增减压气筒。

主水箱液面上压强0p 通过调节增减压气筒改变,使其大于或小于大气压a p ,水箱上面通过连通管和测压管6相连。

在水箱不同液面深度选择测点1、2,分别和测压管组连接。

测压管组中2、3开口通向大气,测压管1、4、5通过一个四通接头和调压桶相接,通过上、下移动调压桶就可以改变调压筒中的压强,进而调节测压管1、4、5中的压强。

球阀1和2的开启可以使密闭水箱液面上压强和调压桶压强恢复到大气压强。

(注:图1中'a p p =,图2中'a p p <,)图2 静水压强实验原理图('a p p <)相对静止的液体只受重力的作用,处于平衡状态。

以p 表示液体静压强,γ表示液体重度,以z 表示压强测算点位置高度(即位置水头),流体静力学方程为=+γpz 常数上式说明1、在重力场中静止液体的压强p 与深度h 成线性分布,即10012002p p z p p z -∆-=-∆-2、同一水平面(水深相同)上的压强相等,即为等压面。

因此,水箱液面和测点1、2处的压强(绝对压强)分别为 00a p p h γ=+ ()30a p γ=+∆-∆11a p p h γ=+()31a p z γ=+∆-22a p p h γ=+()52a p z γ=+∆- 与以上各式相对应的相对压力(相对压强)分别为a p p p -='000h γ= ()03∆-∆=γ11a p p p '=-1h γ= ()31z γ=∆-22a p p p '=-2h γ= ()52z γ=∆-式中 a p —— 大气压力,Paγ—— 液体的重度,3m N0h —— 液面压力水头,m 0∆ —— 液面位置水头,m 3∆、5∆—— 1、2处测压管水头,m 1z 、 2z —— 1、2处位置水头,m 1h 、2h —— 1、2处压力水头,m3、静水中各点测压管水头均相等,即35∆=∆或 1212p p z z γγ''+=+或 1122z h z h +=+ 即测压管1、2的液位在同一平面上。

(课件)流体力学实验指导书

(课件)流体力学实验指导书
2.掌握管道沿程阻力系数的测定方法
3.了解阻力系数在不同流态、不同雷诺数下的变化 情况
实验仪器
雷诺实验涉及的水箱、雷诺试管、阀门、 伯努利(能量)方程实验管道、孔板流量 计试验管道、文丘里管、局部阻力试管、 皮托管和计量水箱等、并自备秒表和温度 计。
实验步骤
1.首先缓慢打开(顺时针方向)流量调节阀、溢流 阀、放水阀,再开启水泵给各水箱上水,使各水 箱处于溢流状态,以保证测量水位稳定。
(3)全部开启出口阀门与各管路阀门,微开入口阀门1。 (4)将测压计排气阀关闭。 2、进行实验 (1)打开电机,经进水阀门组件开启至最大流量,使3,4
测压管高度差达到最大值,则为第一个实验点,测读出并 记录测压及内液面的读数。 (2)逐渐关小进水阀门,读出10个测压点的高度,共测三 次。 (3)关闭电机,检查测出液面是否在同一水平面上,从而 检查实验过程中橡皮管内是否有气泡。
——液体动力粘度(Pa•S)
——液体运动粘度(㎡/s)
实验仪器
雷诺实验涉及的水箱、雷诺试管、阀门、伯努利 (能量)方程实验管道、孔板流量计试验管道、 文丘里管、局部阻力试管、皮托管和计量水箱等, 并自备秒表和温度计。
实验步骤
1.将试验台的各个阀门置于关闭状态,开启水泵,打开雷诺 水箱下面控制的阀门,使水箱注满水,保持水箱少量溢流, 如溢流过大,请调正桌面上的溢流阀门
实验步骤
1.测记实验有关常数。 2.打开电子调速器开关,使恒压水箱充水,排除实
验管道中的滞留气体。待水箱溢流后,检查泄水 阀全关时各测压管液面是否齐平,若不平,则需 排气调平。 3.打开泄水阀至最大开度,待流量稳定后,测记测 压管读数,同时用体积法或用电测法测记流量。 4.改变泄水阀开度3~4次,分别测记测压管读数及 流量。 5.实验完成后关闭泄水阀,检查测压管液面是否齐 平?否则,需重做。

流体力学实验指导书

流体力学实验指导书

流体力学实验指导书与报告实验一:压强测定实验一、压强测定试验 知识点:静力学的基本方程;绝对压强;相对压强;测压管;差压计。

1.实验目的与意义1)验证静力学的基本方程;2)学会使用测压管与差压计的量测技能;3)灵活应用静力学的基本知识进行实际工程量测。

2.实验要求与测试内容1)熟练并能准确进行测压管的读数;2)控制与测定液面的绝对压强或相对压强; 3)验证静力学基本方程; 4)由等压面原理分析压差值。

3.实验原理1)重力作用下不可压缩流体静力学基本方程: pz c γ+=2)静压强分布规律:0p p h γ=+式中:z ——被测点相对于基准面的位置高度;p ——被测点的静水压强,用相对压强表示,以下同;0p ——水箱中液面压强;γ——液体容重;h ——被测点在液体中的淹没深度。

3)等压面原理:对于连续的同种介质,流体处于静止状态时,水平面即等压面。

4.实验仪器与元件实验仪器: 测压管、U 型测压管、差压计仪器元件:打气球、通气阀、放水阀、截止阀、量杯 流体介质:水、油、气 实验装置如下图: 5.实验方法与步骤实验过程中基本操作步骤如下:1)熟悉实验装置各部分的功能与作用;2)打开通气阀,保持液面与大气相通。

观测比较水箱液面为大气压强时各测压管液面高度;3)液面增压。

关闭通气阀、放水阀、截止阀,用打气球给液面加压,读取各测压管液面高度,计算液面下a、b、c各点压强及液面压强p;4)液面减压。

关闭通气阀,打开截止阀,放水阀放出一定水量后,读取各测压管液面高度,计算液面下a、b、c各点压强及液面压强p。

6.实验成果实验测定与计算值如下内容:00p=,a、b、c各测压管与U型测压管液面标高∇、压强水头pγ、测压管水头pzγ+;00p>,a、b、c各测压管与U型测压管液面标高∇、压强水头pγ、测压管水头pzγ+;00p<,a、b、c各测压管与U型测压管液面标高∇、压强水头pγ、测压管水头pzγ+;填入表1中。

流体力学实验指导书_2

流体力学实验指导书_2

实验一 雷诺实验一、实验目的与要求1、了解流体的流动形态:观察实际的流线形状,判断其流动形态的类型;2、熟悉雷诺准数的测定和计算方法;3、确立“层流与湍流与Re 之间有一定关系”的概念。

二、基本原理流体在流动过程中有3种不同的流动形态,即层流、湍流和介于两者之间的过渡流。

雷诺用实验的方法研究流体流动时,发现影响流体流动类型的因素除了流速u 以外,还有管径d 、流体的密度ρ以及粘度μ,由这四个物理量组成的无因次数群μρdu =Re称之为雷诺数。

实验证明,流体在直管内流动时:当Re ≤2000时,流体的流动类型为层流。

当Re ≥4000时,流体的流动类型为湍流。

当2000<Re <4000,流体的流动类型可能是层流,也可能为湍流,将这一范围称之为不稳定的过渡区。

从雷诺数的定义式来看,对于同一管路d 为定值时,u 仅为流量的函数。

对于流体水来讲,ρ及μ仅为温度的函数。

因此确定了温度及流量即可计算出雷诺数Re 。

三、实验装置及流程实验装置如图所示,实验时水从玻璃水槽3流进玻璃管4(内径20mm ),槽内水由自来水供应,供水量由阀6控制,槽壁外有进水稳定槽7及溢流槽10,过量的水进溢流槽10排入图1-3 雷诺示范实验装置1-红墨水瓶 2.6.8.12-阀门 3-玻璃水槽 4-带喇叭口玻璃管(Φ20) 5-进水管 7-进水稳定槽 9-转子流量计 10-溢流槽 11-排水管下水道。

实验时打开阀门8,水即由玻璃槽进入玻璃管,经转子流量计9后,流进排水管排出,用阀8调节水量,流量由转子流量计9测得。

高位墨水瓶贮藏墨水之用,墨水由经墨水调节阀2流入玻璃管4。

四、实验数据记录表表1-2 雷诺实验数据记录表水温__________[℃] 水粘度_______________[10-3×Pa·S]水密度_____________[kg/m3] 管内径_______________[mm]五、讨论1、流量从小做到大,当刚开始湍流,测出雷诺数是多少?与理论值2000有否差距?请分析原因。

流体力学实验指导书

流体力学实验指导书

流体力学实验指导书XXXXXX大学机电工程学院建筑环境与设备实验室目录实验一雷诺数实验------------------------------------------------------------3实验二伯努利方程实验-----------------------------------------------------8实验三沿程水头损失与流速的关系实验-------------------------------11 实验四沿程阻力系数的测定----------------------------------------------13实验五局部阻力损失实验-------------------------------------------------15实验六阀门局部阻力系数的测定----------------------------------------17实验七文丘里流量计实验-------------------------------------------------19实验八孔板流量计实验----------------------------------------------------21实验九毕托管测速实验----------------------------------------------------23实验十离心泵综合实验----------------------------------------------------24实验一:雷 诺 数 实 验一、 实验目的1、 观察液体在不同流动状态时流体质点的运动规律;2、 观察流体由层流变紊流及由紊流变层流的过度过程;3、 测定液体在圆管中流动时的下临界雷诺数2c e R 。

二、 实验原理及实验设备流体在管道中流动,有两种不同的流动状态,其阻力性质也不同。

雷诺数的物理意义,可表征为惯性力与粘滞力之比。

流体力学实验指导书

流体力学实验指导书

实验一 雷诺实验一、实验目的1、增加对两种流态的感性认识.2、掌握测雷诺数的方法.二、实验原理实际流体在同一边界条件下流动时,由于速度不同,产生不同的流动形态-层流和紊流 当流速较小时,液体质点做有条不紊的线状运动,彼此互不混杂,称这种流动状态为层流. 当流速增加到某一定数值后,液体质点在沿管轴方向运动过程中,互相混掺,呈杂乱无章的运动称此流为紊流.运动的流体,受惯性力和粘滞力的作用,当惯性力占主导地位时,一般为紊流.当粘滞力占主导地位时,一般呈现层流.不同的流动类型,具有不同的阻力规律.在层流时水头损失∆P /γ与平均流速V 成正比,而在紊流时∆P /γ则于V n 成正比例,其中指数值n 在.1.75~2.0之间. 判别液体流动型态的准则是被称之为雷诺数的无因次数R еν/Re Vd =式中:Re ――雷诺数(无因次数) V ――液体断面平均速度(m /s ) d --管径 (m)ν――液体的运动粘度系数(㎡/s )当ν/Re Vd =≤2000时为层流, Re >2000为紊流。

由于ρμν/= 所以 μρ/Re Vd =.μ――液体的动力粘度系数,单位是Pa.•s,即(N•s /㎡)三、实验设备1、雷诺实验装置1套;2、量筒1个;3、温度计1支;4、秒表1块.四、实验步骤1、试验前的准备工作关闭泄水阀门D,打开进水阀C,并调节到整个试验过程中都有溢流水从溢流板溢流而过,以保证水箱中有稳定的水头.2、试验前的观察将阀门A微微开启,同时微开阀门B,使颜色水与清水同时从玻璃管中流过,调节到颜色水呈一条细线.此时即为层流状态,然后再将阀门A逐渐开大,直至颜色水纹线破碎,并将清水完全掺混,此时为紊流状态.3、由层流到紊流的测试<1>调节阀门A,使流动成为层流状态.注意颜色水纹线应达到清晰稳定.<2>逐渐地缓缓开启阀门A.同时注意玻璃管中段颜色水纹线的变化.当颜色水纹线开始破碎,分散成许多细线(偶尔出现集中的颜色水线)时,即表示已达到紊流状态,即上临界状态,此时立即停止开启阀门A的工作.<3>待水流稳定后,则可用量筒和秒表,应用体积法测定管内流量Q.<4>测定水的温度,以便查表确定水的运动粘性系数ν值.<5>将(2)至(4)步重复做三次4、由紊流到层流的测试<1>先将管中水流调节到紊流状态.<2>逐渐地缓缓关闭阀门A,同时注意玻璃管中段水流状态的变化,当开始出现一条颜色线时,即表示已达到层流状态或者说已达到了下临界状态,立即关掉阀门A的工作,并观察颜色水线是否连续稳定.<3>待颜色水纹线连续而稳定后,仍用体积法测算管中的流量Q.<4>测定水温.<5>将(2)至(4)步重复做三次五、实验注意事项1、调节阀门A时必须缓慢进行,并且在调节过程中阀门只允许往一个方向进行,中间不可逆转.2、为了避免玻璃管出口和入口对水流状态的影响,观察应以中段为准.3、在整个试验过程中要特别注意保持安静,以防环境对试验的干扰.六、实验报告1、对所测数据进行处理,求上临界雷诺数与下临界雷诺数所测数据如下:数据处理:分析误差产生原因:七、实验体会实验二 局部阻力损失测试实验一、实验目的1、 测定管路突然扩大局部阻力系数值,并与理论公式ξ=(D 2/d 2-1)2的计算值比较2、 通过本实验掌握一般局部阻力系数的测定。

水力学(流体力学)实验指导书

水力学(流体力学)实验指导书

水力学(流体力学)实验指导书水力学(流体力学)实验指导书编著:刘凡河北工程大学目录1、静水压强实验--------------------------------------------------------3-5页2 平面静水总压力实验-------------------------------------------- - 6-9页3、文丘里流量计实验------------------------------------------------10-12页4、雷诺实验------------------------------------------------------------12-14页5、管道沿程水头损失实验-----------------------------------------15-16页6、局部管道水头损失实验----------------------------------------17-19页7、流线演示实验-----------------------------------------------------20-21页8、伯努利实验---------------------------------------------------------20-21页9、涡流系列演示实验------------------------------------------------22-24页实验一静水压强实验一、实验目的1、加深对水静力学基本方程物理意义的理解,验证静止液体中,不同点对于同一基准面的测压管水头为常数(即z+p。

?C)?g2、学习利用U形管测量液体(油)的密度。

3、建立液体表面压强p0&gt;pa,p0&lt;pa的概念,并观察真空现象。

4、测定在静止液体内部A、B两点的压强值二、实验设备在一全透明有机玻璃箱内注入适量的水,并由一乳胶管将水箱与一可升降的调压筒相连。

流体力学实验指导书

流体力学实验指导书

数时,则有: Q=Q1+Q2+Q3 并联管路各管段阻力损失相等,于是: h1-3=h1=h2=h3 S1Q12=S2Q22=S2Q32 由公式 4、公式 5、公式 6 可得: 1 1 1 1 (5) (6) (4)
S = S1 + S 2 + S 3 1 1
Q1 : Q2 : Q3 = S1 : S 2 : S 3
u
p f
V 900d 2
(5)
可用 U 型管、倒置 U 型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪
表显示(本实验装置使用差压变送器进行测定压差) 。 ①当采用倒置 U 型管液柱压差计时
p f gR
(6)
式中:R-水柱高度,m。 ②当采用 U 型管液柱压差计时
p f 0 gR
局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。 ①当量长度法 流体流过某管件或阀门时造成的机械能损失看作与某一长度为 le 的同直径的管道所产生 的机械能损失相当,此折合的管道长度称为当量长度,用符号 le 表示。这样,就可以用直管阻 量长度合并在一起计算,则流体在管路中流动时的总机械能损失 力的公式来计算局部阻力损失,而且在管路计算时可将管路中的直管长度与管件、阀门的当
hf
p f


p1 p 2

即,
2dp

2

l u2 d 2
(1)
lu
f
(2)
式中:λ—直管阻力摩擦系数,无因次; d—直管内径,m;
p f hf
—流体流经 l 米直管的压力降,Pa;
—单位质量流体流经 l 米直管的机械能损失,J/kg;
ρ—流体密度,kg/m3; l—直管长度,m; u—流体在管内流动的平均流速,m/s。 滞流(层流)时,

流体力学实验指导书(2012.9.16)

流体力学实验指导书(2012.9.16)

实验一 能量转换实验一、实验目的1、熟悉流体在流动过程中各种能量和水头的概念及其转换关系,加深对伯努利方程的理解;2、观察流体流速随管径变化的规律。

二、实验原理1、总水头的分析:总水头为测压管水头与流速水头之和,任意两截面间的能量方程为21,2111222222--++=++f H gv g p Z g v g p Z ρρ 。

图一所示实验装置中,从实验可以观测到B 截面的总水头低于A 截面的总水头,这符合伯努利方程。

2、A 、B 截面间压强水头的分析:由于A 、B 两截面处于同一水平位置,B 截面面积比A 截面面积大。

所以B 截面处的流速比A 截面处小。

设流体从A 截面流到B 截面的水头损失为B A f H -,,在A 、B 两截面间列伯努利方程。

B A f BB B A A A H gv g p Z g v g p Z -+++=++,2222ρρ B A Z Z =B A f BA AB H gv g v g p g p ---=-,2222ρρ 即A 、B 两截面处的压强水头之差,决定于ggBA2222νν-和B A f H -,。

当ggBA2222νν-大于B A f H -,时,压强水头的增值为正,反之,压强水头的增值为负。

3、C 、D 截面间压强水头的分析:出口阀全开时,由于C 、D 截面积相等,所以C 、D 两截面处的流速相等,即流速水头相等;设流体从C 截面流到D 截面的水头损失为D C f H -, ,在C 、D 两截面间列伯努利方程。

D C f DD D C C C H gv g p Z g v g p Z -+++=++,2222ρρgv g v DC 2222=D C f D C CD H Z Z gp g p ---=-,ρρ 即C 、D 两截面压强水头之差,决定于)(D C Z Z -和D C f H -,。

当)(D C Z Z -大于D C f H -,时,压强水头的增值为正,反之,压强水头的增值为负。

流体力学_水力学_实验指导书

流体力学_水力学_实验指导书

壹、静水压强实验一、实验目的1、加深对水静力学基本方程物理意义的理解,验证静止液体中,不同点对于同一基准面的测压管水头为常数(即C gpz =+ρ)。

2、学习利用U 形管测量液体密度。

3、建立液体表面压强a p p >0,a p p <0的概念,并观察真空现象。

4、测定在静止液体内部A、B 两点的压强值。

二、实验原理在重力作用下,水静力学基本方程为:C gpz =+ρ 它表明:当质量力仅为重力时,静止液体内部任意点对同一基准面的z 与gpρ两项之和为常数。

重力作用下,液体中任何一点静止水压强gh p p ρ+=0,0p 为液体表面压强。

a p p >0为正压;a p p <0为负压,负压可用真空压强v p 或真空高度v h 表示:abs a v p p p −= gp h vv ρ=重力作用下,静止均质液体中的等压面是水平面。

利用互相连通的同一种液体的等到压面原理,可求出待求液体的密度。

三、实验设备在一全透明密封有机玻璃箱内注入适量的水,并由一乳胶管将水箱与一可升降的调压筒相连。

水箱顶部装有排气孔1k ,可与大气相通,用以控制容器内液体表面压强。

若在U 形管压差计所装液体为油,水油ρρ<,通过升降调压筒可调节水箱内液体的表面压强,如图1-1所示。

图 1—1四、实验步骤1、熟悉仪器,测记有关常数。

2、将调压筒旋转到适当高度,打开排气阀1k ,使之与水箱内的液面与大气相通,此时液面压强a p p =0。

待水面稳定后,观察各U 形压差计的液面位置,以验证等压面原理。

3、关闭排气阀1k ,将调压阀升至某一高度。

此时水箱内的液面压强a p p >0。

观察各测压管的液面高度变化并测记液面标高。

4、继续提高调压筒,再做两次。

5、打开排气阀1k ,使之与大气相通,待液面稳定后再关闭1k (此时不要移动调压筒)。

6、将调压筒降至某一高度。

此时a p p <0。

观察各测压管的液面高度变化,并测记标高,重复两次。

流体力学实验指导书

流体力学实验指导书

实验一流动演示实验(一)雷诺实验一、实验目的1、观察流体在管内流动的不同流态。

2、层流和湍流的判别。

二、实验原理流体流动有两种不同流态,即层流和湍流。

流体作层流流动时,其流体质点作平行于管轴的直线运动,喘流时流体质点在沿管轴流动的同时还做着杂乱无章的随机运动。

雷诺数是判断流动型态的特征数。

若流体在圆管内流动,雷诺数可用下式表示Re =μρ⋅⋅ud式中:d ——管内径,m;u ——流速, m∕s,ρ——流体密度, k g∕m³,μ——流体黏度,Pa•s。

一般,Re < 2000时,流动型态为层流;Re > 4000时,流动为喘流。

在两者之间时,有时为层流,有时为喘流,流动型态与环境有关。

对于一定温度下的流体,在特定的圆管内流动时,雷诺数仅与流速有关。

本实验通过改变水在管内的流速,观察流体在管内流动型态的变化。

三、实验装置实验装置见图1-1。

图中4为高位槽,实验时水由此高位槽进入玻璃管5。

槽内设有溢流槽3,用以维持平稳、恒定的液面。

实验时打开流量控制阀7,水即由高位槽进入观察用的玻璃管5中,着色水由高位玻璃瓶1经阀9调节流量,通过针形孔进入玻璃管5中心处。

调节阀门7和阀门9,改变流体流速,可以在玻璃管5内观察到不同的流动形态。

流量很小,流体处于层流时,着色水的流动呈一条直线;随着水流量的逐渐加大,着色水由直线开始抖动,继而着色水被扰动成波状前进;随着水流量的继续加大,着色细线变为螺旋前进,再增大流量则出现断裂、旋涡、混合,最后完全与水流主体混在一起,整个水都染上了颜色。

四、实验内容和主要实验步骤1、打开进水阀,向高位槽4送水,使高位槽内的水成溢流状态,以保持高位槽内液位恒定。

2、关闭水流量控制阀7,打开着色水流量控制阀9,观擦着色此时在玻璃管中的状态。

当着色水流出5cm左右后,缓慢打开水流量控制阀7,使水流量尽可能的小,观察层流时流速分布曲线的性状及层流时着色水的流动情况。

3、待玻璃管内的层流流动稳定后,缓慢调节流量控制阀7, 逐渐增大水的流量,观察着色水的流动有何变化,并测定流量,计算不同流动型态时的雷诺数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《流体力学》实验指导书郭广思王连琪沈阳理工大学2006年10月一伯努利方程综合性实验(一)实验目的伯努利方程是水力学三大基本方程之一,反映了水流在流动时,位能、压能、动能之间的关系。

1.了解总水头线和测压管水头线在局部阻力和沿程阻力处的变化规律;2.了解总水头线在不同管径段的下降坡度,即水力坡度J的变化规律;3.了解总水头线沿程下降和测压管水头线升降都有可能的原理;4.用实例流量计算流速水头去核对测压板上两线的正确性;不同管径流速水头的变化规律(二)设备简图本实验台由高位水箱、供水箱、水泵、测压板、有机玻璃管道、铁架、量筒等部件组成,可直观地演示水流在不同管径、不同高程的管路中流动时,上述三种能量之间的复杂变化关系。

(三)实验原理过水断面的能量由位能、压能、动能三部分组成。

水流在不同管径、不同高程的管路中流动时,三种能量不断地相互转化,在实验管道各断面设置测压管及测速管,即可演示出三种能量沿程变化的实际情况。

测压管中水位显示的是位能和压能之和,即伯努利方程中之前两项:gp Z ρ+,测速管中水位显示的是位能、压能和动能之和。

即伯努利方程中三项之和:gv g p Z 22++ρ。

将测压管中的水位连成一线,称为测压管水头线,反映势能沿程的变化;将测速管中的水位连成一线,称为总水头线,反映总能量沿程的变化,两线的距离即为流速水头g v 2/2。

本实验台在有机玻璃实验管道的关键部位处,设置测压管及测速管,适当的调节流量就可把总水头线和测压管水头线绘制于测压板上。

注:计算所的流速水头值是采用断面平均流速求得,而实测流速水头值是根据断面最大速度得出,显然实测值大于计算值,两者相差约为1.3倍。

(四)实验步骤1.开动水泵,将供水箱内之水箱至高位水箱;2.高位水箱开始溢流后,调节实验管道阀门,使测压管,测速管中水位和测压板上红、黄两线一致;3.实验过程中,始终保持微小溢流;4.如水位和红黄两线不符,有两种可能:一是连接橡皮管中有气泡,可不断用手挤捏橡皮管,使气泡排出;二是测速管测头上挂有杂物,可转动测头使水流将杂物冲掉。

(五)报告要求实验报告是实验后要完成的一份书面材料。

实验报告的内容一般包括实验名称、班级、实验人姓名、实验时间、实验目的、实验步骤、实验数据记录及处理、结论与讨论等多项内容。

实验报告一律用流体力学实验报告用纸书写。

(六)讨论题1. 什么是速度水头,位置水头,压力水头?速度水头、测压管水头和总水头什么关系?2. 总水头线和测压管水头线在局部阻力和沿程阻力处有怎样的变化?为什么?二 局部阻力综合性实验(一)文丘里流量计实验 1.实验目的(1).测定文丘里流量计的流量系数。

(2).验证伯努利方程的正确性。

2.设备简图3.实验原理在文丘里流量计入口I~I 断面,在其喉部收缩段处取Ⅱ~Ⅱ断面,由于流量计系数水平放置,则可列出上述两断面的伯努利方程如下,(不计水头损失):gva g p Z g v a g p Z 222222221111++=++ρρ (1)其中: 21Z Z = 根据连续性方程得:Q A v A v ==2211 (2)令: 121==a a解(1)(2)两式可得计算流量的公式如下:g p p g A AA Q ρ2121222)(1-⋅⋅-=或 g p p g d dd Q ρπ21412222)(14-⋅⋅-=式中gp p ρ21-为两断面测压管水头差,亦即测压计内的液面高差△h 。

令 g d d d k 2)(1441222⋅-=π (1)上式可写成h k Q ∆⋅= (2)因此,测出测压计水位高差△h 后,即可求出计算流量Q 。

由于实际上所取的两个断面之间存在着水头损失,所以实际流量Q 0一般要略小于计算流量Q 。

实际流量Q 0用体积法测定。

tQ ∆∇=0 (3)∇为t ∆时间内,水由管道流入计量箱内的体积。

如令 QQ 0=μ (4)则μ是一小于1的数,称为流量系数。

本实验的目的就是用实验的方法确定流量系数μ的具体数值。

4.实验步骤(1)准备工作:① 记录仪器常数d 1,d 2并计算出k 值。

② 检查测压计液面是否水平(此时Q=0),如果不在同一个水平面上,必须将橡胶管内空气排尽,使两测压管的液面处于水平状态,方能进行实验。

③阀门1、2为实验阀门。

可先调至较小开度。

④文丘里流量计收缩断面(测点2),经常处于负压状态,实验前应将连接胶管灌满水,才能进行实验,否则往里进气。

2.进行实验:①开泵,此时1、2测压管内应出现较小高差。

②缓慢开启阀门1,使压差调到最大(如2号测压管中液位降得太低可关小阀门2,使液位抬高。

如测压计中液位太高,可用压气球加压,压低液位)。

注意事项:如出现测压管冒水现象,不必惊慌,可把阀门2全开、或停泵重做。

5.报告要求实验报告是实验后要完成的一份书面材料。

实验报告的内容一般包括实验名称、班级、实验人姓名、实验时间、实验目的、实验步骤、实验数据记录及处理、结论与讨论等多项内容。

实验报告一律用流体力学实验报告用纸书写。

6.讨论题影响流量系数的因素是什么?(二)局部阻力系数的测定1.实验目的(1)测定阀门不同开启度时(全开、30º、45º三种)的阻力系数。

(2)掌握局部水头损失的测定方法。

2.设备简图3.实验原理在本实验中伯努利方程式可表示如下:W h gv g P Z g v g P Z +++=++2222222111ρρ其中: 21Z Z =21v v =对测点1、2两断面列伯努利方程式,可求得阀门的局部水头损失及 )(221L L + 长度上的沿程水头损失,以h w1表示:1211h gp p h w ∆=-=ρ (1)对测点3、4两断面列伯努利方程式,可求得阀门的局部水头损失及(L 1+L 2)长度上的沿程水头损失,以h w2表示,则:2432h gp p h w ∆=-=ρ (2) ()()122- 即为阀门的水头损失h w :122w w w h h h -=所以,阻力系数:gv h h h h 2/)()(222143---=ξ4.实验步骤(1)开泵。

调节进水阀门,使测压管1、2、3、4种出现压差,如管中液位太高,可用压气球打压,使液位降低,以增加量测范围。

(2)先闭进水阀门,测压管中水位应一平,如不平,说明连接胶管中有气泡,应赶净后再进行实验。

(3)用流量计量侧流量。

注意事项:如出现测压管冒水现象,不必惊慌,可把出水阀门全关或停泵重做。

5.报告要求实验报告是实验后要完成的一份书面材料。

实验报告的内容一般包括实验名称、班级、实验人姓名、实验时间、实验目的、实验步骤、实验数据记录及处理、结论与讨论等多项内容。

实验报告一律用流体力学实验报告用纸书写。

6.讨论题什么叫局部阻力,影响因素是什么?三 流体沿程阻力实验(一)实验目的1.测定不同雷诺数Re 时的沿程阻力系数λ 2.掌握沿程阻力系数的测定方法(二)设备简图(三)实验原理在本实验中伯努利方程式可表示如下:f h gv g P Z g v g P Z +++=++2222222111ρρ其中: 21Z Z =21v v =对Ⅰ、Ⅱ两断面列伯努利方程,可求得L 长度上的沿程水头损失h gp g p h f ∆=-=ρρ21 根据达西公式: gv d L h f 22⋅=λ用流量计测得流量,(仔细阅读流量计使用方法),并计算出断面平均流速,即可求得沿程阻力系数λ22Lv gdh f =λ(四)实验步骤1.开泵,调节进水阀门,使测压管中出现 高差。

2.关闭进水阀门,测压管中水位应一平,如仍有高差,说明连接管中有气泡,应赶净。

3.用流量计测流量。

(五)报告要求实验报告是实验后要完成的一份书面材料。

实验报告的内容一般包括实验名称、班级、实验人姓名、实验时间、实验目的、实验步骤、实验数据记录及处理、结论与讨论等多项内容。

实验报告一律用流体力学实验报告用纸书写。

(六)讨论题什么叫沿程阻力,影响因素是什么?四雷诺实验(一)概述1883年英国科学家雷诺(Osbome Reynolds)在他著名的雷诺试验中揭示了流体流动存在两种性质不同的型态——层流和紊流。

这两种流态不仅流体质点的运动轨迹不同,其水流内部结构也有着本质的差异。

雷诺通过大量实验得出判断层流和紊流的标准——临界雷诺数。

(二)设备简图(三)实验目的及意义1.了解流体流动的两种流态,并观察其临界状态及转变过程。

2.测定上临界雷诺数Re:(四)实验步骤水箱上水,并保持微小溢流,打亮灯箱,小开出水阀门和颜色水(可用红墨水)阀门,使颜色水成一条细线,此时为层流状态。

逐渐开大出水阀门至颜色水线开始微微颤动,此时为临界状态,量测流量、水温,查表得运动粘性系数,即可求出上临界雷诺数:νυD =Re 式中d 为实验玻璃管内径,上临界雷诺数是一个不稳定的数值,>1200,甚至更大。

因此Re 就没有实际意义。

3.测定下临界雷诺数Re在上述实验基础上,将出水阀门继续开大,使颜色水完全混乱,达到紊流状态。

在逐渐关小出水阀门,使颜色水恢复成细纹,说明水流又由紊流变成层流,量测流量、水温。

计算下临界雷诺数:νυD =Re 根据大量实验资料,下临界雷诺数是一个相当稳定的数值,约为2300,因此在工程上都采用下临界雷诺数作为判别流动型态的标准。

一般实验设备由于进水口、边界条件等不尽完善,很难达到这个标准,当Re 超过1000时,就进入紊流状态。

(五)报告要求实验报告是实验后要完成的一份书面材料。

实验报告的内容一般包括实验名称、班级、实验人姓名、实验时间、实验目的、实验步骤、实验数据记录及处理、结论与讨论等多项内容。

实验报告一律用流体力学实验报告用纸书写。

(六)讨论题雷诺数的作用是什么?如何判断管内流动是层流还是湍流?流体沿平板流动如何让判断?。

相关文档
最新文档