23课时四边形与平行四边形作业
小学数学 《平行四边形》习题4
《平行四边形》习题
1、填空。
(1)把一个平行四边形转化成一个长方形,它的面积与原来的平行四边形()。
这个长方形的长与平形四边形的底(),宽与平行四边形的高()。
平行四边形的面积等于(),用字母表示是()。
(2)等底等高的平行四边形面积都()。
一个平行四边形的周长为46厘米,一边的长为14厘米,另外三边的长分是()、()、()。
(3)平行四边形的高是5厘米,底是高的2倍,它的面积是()平方厘米。
(4)把一个平行四边形沿其中一条高剪开,平移后可以拼成一个(),长方形的长就是平行四边形的(),长方形的宽就是平行四边形的()。
(5)等底等高的平行四边形面积都()。
一个平行四边形的周长为46厘米,一边的长为14厘米,另外三边的长分是()、()、()。
(6)平行四边形的高是5厘米,底是高的2倍,它的面积是()平方厘米。
2、选择题。
(1)平行四边形的底扩大6倍,高缩小3倍,它的面积()。
①不变②扩大6倍③缩小3倍④扩大2倍
(2)用木条钉成的长方形拉成一个平行四边形,它的高和面积()。
①不变②都比原来大③都比原来小④只有高变小
(3)平行四边形同一底上可以画()条高。
①无数②1 ③2 ④5
3、应用题。
(1)一块平行四边形钢板,底8.5m,高6m,它的面积是多少?如果每平方米的钢板重38千克,这块钢板重多少千克?
(2)有一块平行四边形草地,底长25m,高是底的一半。
如果每平方米的草可供3只羊吃一天,这块草地可供多少只羊吃一天?。
2021年中考数学复习 第5章 四边形
第五章四边形第一节多边形(建议用时:40分钟)考点1多边形的性质1.一个多边形的边数由原来的3增加到n(n>3,且n为正整数),则它的外角和( D )A.增加(n-2)×180°B.减小(n-2)×180°C.增加(n-1)×180°D.没有改变2.[2020广东]若一个多边形的内角和是540°,则该多边形的边数为( B )A.4B.5C.6D.73.如图,已知∠1,∠2,∠3是五边形ABCDE的三个外角,边CD,AE的延长线交于点F,如果∠1+∠2+∠3=225°,那么∠DFE的度数是45°.考点2正多边形的性质4.[2020承德二模]把边长相等的正五边形ABCDE和正方形ABFG,按照如图所示的方式放置,连接AD,则∠DAG= ( A ) A.18° B.20°C.28°D.30°5.[2020 邢台二模]如图,有n个全等的正五边形按如下方式拼接,使相邻的两个正五边形有一个公共顶点,所夹的锐角为24°,拼接一圈后,中间形成一个正多边形,则n的值为( B )A.5B.6C.8D.106.[2020石家庄新华区一模]连接正八边形的三个顶点,得到如图所示的图形,则下列说法错误的是( D )A.四边形AFGH与四边形CFED的面积相等B.连接BF,则BF平分∠AFC和∠ABCC.整个图形是轴对称图形,但不是中心对称图形D.△ACF是等边三角形7.[2020江苏扬州]如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度b=3 cm,则螺帽边长a=√3cm.8.[2020江苏连云港]如图,正六边形A1A2A3A4A5A6内部有一个正五边形B1B2B3B4B5,且A3A4∥B3B4,直线l经过B2,B3,则直线l与A1A2的夹角α=48°.9.如图,在正八边形中,四边形BCFG的面积为2a cm2,则正八边形的面积为4a cm2(用含a的代数式表示).10.[2020湖南株洲]一蜘蛛网如图所示,若多边形 ABCDEFGHI为正九边形,其中心为点O,点M,N分别在射线OA,OC上,则∠MON=80°.11.[2020福建]如图所示的六边形花环是用六个全等的直角三角形拼成的,则∠ABC等于30度.12.若将n个边长为1的正m边形进行拼接,相邻的两个正m边形有一条公共边,围成一圈后中间恰好形成一个正n边形.(1)当m=8时,围成的图形如图所示,则该图形外轮廓的周长为20;(2)当n=3时,围成的图形的外轮廓的周长是27;(3)当m=5时,得到的正n边形的周长是10.13.[2019 唐山丰南区二模]关于n边形,甲、乙、丙三位同学有以下三种说法:甲:五边形的内角和为520°.乙:正六边形每个内角为130°.丙:七边形共有14条对角线.(1)判断三种说法是否正确,并对其中你认为不对的说法用计算进行说明;(2)若n边形的对角线共有35条,求该n边形的内角和.解:(1)甲、乙的说法不正确,丙的说法正确.正五边形的内角和为 180×(5-2)=540°.正六边形外角和为 360°,每个外角为 360÷6=60°,故每个内角为 180°-60°=120°.=35,(2)由题意知n(n−3)2解得n=10或n=-7(不合题意,舍去),180°×(10-2)=1 440°,故该n边形的内角和为1 440°.第二节平行四边形基础分点练(建议用时:45分钟)考点1平行四边形的判定1.下列条件中,不能判定四边形ABCD为平行四边形的是( C )A.AB平行且等于CDB.∠A=∠C,∠B=∠DC.AB=AD,BC=CDD.AB=CD,AD=BC2.[2019广西河池]如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE的延长线上,连接CF.添加一个条件,使四边形ADFC为平行四边形,则这个条件可以是( B )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF3.如图,四边形ABCD的对角线AC,BD相交于点O,BO=DO,点E,F分别在AO,CO上,且BE∥DF,AE=CF.求证:四边形ABCD为平行四边形.证明:∵BE∥DF,∴∠BEO=∠DFO,又BO=DO,∠BOE=∠DOF,∴△BEO≌△DFO,∴EO=FO.∵AE=CF,∴AE+EO=CF+FO,即AO=CO.又BO=DO,∴四边形ABCD为平行四边形.考点2平行四边形的性质4.在▱ABCD中,若∠A=2∠B,则∠D的度数为( C )A.30°B.45°C.60°D.120°5.[2019 石家庄十八县联考]证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:AO=CO,BO=DO.以下是排乱的证明过程:①∴∠ABO=∠CDO,∠BAC=∠DCA.②∵四边形ABCD是平行四边形.③∴AB∥CD,AB=DC.④∴△AOB≌△COD.⑤∴OA=OC,OB=OD.正确的顺序应是( C ) A.②①③④⑤ B.②③⑤①④C.②③①④⑤D.③②①④⑤6.[2020浙江温州]如图,在△ABC中,∠A=40°,AB=AC,点D在AC边上,以CB,CD为边作▱BCDE,则∠E的度数为( D )A.40°B.50°C.60°D.70°7.小宇利用尺规在▱ABCD内作出点E,又在BC边上作出点F,作图痕迹如图所示,若EF=2,则AB,CD之间的距离为( C )A.2B.3C.4D.58.[2019海南]如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为( C ) A.12 B.15 C.18 D.219.[2019保定定州二模]如图,已知点M为▱ABCD的边AB的中点,线段CM交BD于点E,S△BEM=1,则图中阴影部分的面积为( C )A.2B.3C.4D.510.[2020陕西]如图,在▱ABCD 中,AB=5,BC=8.E 是边BC 的中点,F 是▱ABCD 内一点,且∠BFC=90°.连接AF 并延长,交CD 于点G.若EF ∥AB,则DG 的长为( D )A.52B.32C.3D.211.[2020山东潍坊]如图,点E 是▱ABCD 的边AD 上的一点,且DE AE =12,连接BE 并延长交CD 的延长线于点F,若DE=3,DF=4,则▱ABCD 的周长为( C )A.21B.28C.34D.4212.[2020广西河池]如图,在▱ABCD 中,CE 平分∠BCD,交AB 于点E,连接DE,EA=3,EB=5,ED=4,则CE 的长是( C )A.5√2B.6√2C.4√5D.5√513.[2020贵州黔东南州]以▱ABCD 对角线的交点O 为原点,平行于BC 边的直线为x 轴,建立如图所示的平面直角坐标系.若A 点坐标为(-2,1),则C 点坐标为 (2,-1) .14.[2019广西梧州]如图,▱ABCD 中,∠ADC=119°,BE ⊥DC 于点E,DF ⊥BC 于点F,BE 与DF 交于点H,则∠BHF= 61 度.15.[2020浙江金华]如图,平移图形M,与图形N 可以拼成一个平行四边形,则图中α的度数是 30 °.综合提升练(建议用时:25分钟)1.[2019广东广州]如图,▱ABCD 中,AB=2,AD=4,对角线AC,BD 相交于点O,且E,F,G,H 分别是AO,BO,CO,DO 的中点,则下列说法正确的是( B )A.EH=HGB.四边形EFGH 是平行四边形C.AC ⊥BDD.△ABO的面积是△EFO的面积的2倍2.[2020重庆A卷]如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为点E,F,AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.(1)解:∵AE⊥BD,∴∠AEO=90°.∵∠AOE=50°,∴∠EAO=40°.又∵AC平分∠DAE,∴∠OAD=∠EAO=40°.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ACB=∠OAD=40°.(2)证明:∵四边形ABCD是平行四边形,∴AO=CO.∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°.在△AEO和△CFO中,{∠AEO=∠CFO,∠EOA=∠FOC, AO=CO,∴△AEO≌△CFO,∴AE=CF.3.如图,在四边形ABCD中,AD∥CB,E为BD的中点,延长CD到点F,使DF=CD.(1)求证:AE=CE;(2)求证:四边形ABDF为平行四边形;(3)若CD=1,AF=2,∠BEC=2∠F,求四边形ABDF的面积.(1)证明:∵AD∥CB,∴∠DAC=∠BCA.∵E为BD的中点,∴DE=BE,在△ADE和△CBE中,{∠DAC=∠BCA,∠AED=∠CEB, DE=BE,∴△ADE≌△CBE,∴AE=CE.(2)证明:由(1)得,AE=CE,BE=DE,∴四边形ABCD是平行四边形,∴AB∥CD,AB=CD.又∵DF=CD,∴AB=DF,∴四边形ABDF为平行四边形.(3)∵四边形ABDF为平行四边形,∴∠F=∠DBA,BD=AF=2.又∵∠BEC=2∠F,∠BEC=∠DBA+∠BAC,∴∠DBA=∠BAC,∴AE=BE=DE,∴∠BAD=90°.∵AB=CD=1,∴AD=√BD2-AB2=√3,∴四边形ABDF的面积为AB×AD=√3.新角度[2020江苏扬州]如图,在▱ABCD中,∠B=60°,AB=10,BC=8,点E为边AB上的一个动点,连接ED并延长DF=1DE,以EC,EF为邻边构造▱EFGC,连接EG,则EG的最小值为9√3.4第三节矩形、菱形、正方形课时一:矩形的性质与判定基础分点练(建议用时:30分钟)考点1矩形的判定1.[2020湖北十堰]已知平行四边形ABCD,有下列条件:①AB=BC;②AC=BD;③AC⊥BD;④AC平分∠BAD.其中能说明平行四边形ABCD是矩形的是( B )A.①B.②C.③D.④2.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.证明:∵∠BAD=∠CAE,∴∠BAD-∠BAC=∠CAE-∠BAC,即∠CAD=∠BAE.又∵AB=AC,AD=AE,∴△BAE≌△CAD,∴∠ABE=∠ACD,BE=CD.又∵DE=CB,∴四边形BCDE是平行四边形,∴BE∥CD.∵AB=AC,∴∠ABC=∠ACB,∴∠EBC=∠DCB.∵BE∥CD,∴∠EBC+∠DCB=180°,∴∠EBC=∠DCB=90°,∴四边形BCDE是矩形.考点2与矩形性质有关的证明与计算3.[2020湖南怀化]如图,在矩形ABCD中,AC,BD相交于点O,若△AOD的面积为2,则矩形ABCD的面积为( C )A.4B.6C.8D.104.[2020 江苏连云港]如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处,若∠DBC=24°,则∠A'EB等于( C )A.66°B.60°C.57°D.48°5.[2019广东广州]如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为( A )A.4√5B.4√3C.10D.86.[2020贵州黔东南州]如图,矩形ABCD中,AB=2,E为CD的中点,连接AE,BD交于点P,过点P作PQ⊥BC于点Q,则PQ=4.37.[2020山东菏泽]如图,矩形ABCD中,AB=5,AD=12,点P在对角线BD上,且BP=BA,连接AP并延长,交DC的延长线于点Q,连接BQ,则BQ的长为3√17.8.[2020 湖南长沙]如图,在矩形ABCD中,E为DC边上一点,把△ADE沿AE翻折,使点D恰好落在BC边上的点F处.(1)求证:△ABF∽△FCE.(2)若AB=2√3,AD=4,求EC的长.(3)若AE-DE=2EC,记∠BAF=α,∠FAE=β.求tan α+tanβ的值.(1)证明:∵∠AFE=∠D=90°,∴∠AFB+∠EFC=90°.∵四边形ABCD为矩形,∴∠B=∠C=90°,∴∠AFB+∠BAF=90°,∴∠EFC=∠BAF,∴△ABF∽△FCE.(2)由翻折的性质可得AF=AD=4,在Rt△ABF中,由勾股定理得,BF=√42-(2√3)2=2,∴FC=BC-BF=4-2=2.由(1)知△ABF ∽△FCE,∴AB FC =BFCE ,即2√32=2CE ,∴CE=2√33. (3)设EC=1,DE=x,则AE=x+2,AB=x+1,FE=x, ∴BC=AD=√AE 2-DE 2=√(x +2)2-x 2=2√x +1,FC=√FE 2-CE 2=√x 2-1,∴BF=BC-FC=2√x +1-√x 2-1.由(1)知△ABF ∽△FCE,∴AB FC =BFCE ,∴AB·CE=FC·BF, 即x+1=√x 2-1×(2√x +1-√x 2-1), 得x+1=2(x+1)√x −1-x 2+1, 整理,得x 2=4(x-1),解得x 1=x 2=2, ∴AB=3,BF=√3,AF=2√3, ∴tan α+tan β=BF AB +EF AF =√33+2√3=2√33.内蒙古呼和浩特]如图,把某矩形纸片ABCD 沿EF,GH 折叠(点E,H 在AD 边上,点F,G 在BC 边和点C 落在AD 边上同一点P 处,A 点的对称点为A',D 点的对称点为D',若∠FPG=90°,S △A'EP =8,S △D′PH =2,则矩形ABCD 的长为( D )A.6√5+10B.6√10+5√2C.3√5+10D.3√10+5√22.新角度[2020江西]如图,矩形纸片ABCD 中,AD=8 cm,AB=4 cm,折叠纸片使折痕经过点B,交AD 边于点E,点A 落在点A'处,展平后得到折痕BE,同时得到线段BA',EA',不再添加其他线段.当图中存在30°角时,AE 的长为 43 √3,4√3或(8-4√3) cm.课时二:菱形的判定与性质基础分点练(建议用时:40分钟)考点1 菱形的判定1.[2020浙江嘉兴]如图,平行四边形ABCD 的对角线AC,BD 相交于点O,请添加一个条件: AD=DC(答案不唯一) ,使平行四边形ABCD 是菱形.2.[2020广西玉林]如图,将两张对边平行且等宽的纸条交叉叠放在一起,则重合部分构成的四边形ABCD 是 菱形(填“是”或“不是”).3.[2020 山东滨州]如图,过▱ABCD对角线AC与BD的交点E作两条互相垂直的直线,分别交边AB,BC,CD,DA 于点P,M,Q,N.(1)求证:△PBE≌△QDE;(2)顺次连接点P,M,Q,N,求证:四边形PMQN是菱形.(1)证明:∵四边形ABCD是平行四边形,且对角线AC与BD的交点为E,∴AB∥CD,BE=DE,∴∠PBE=∠QDE,∠BPE=∠DQE,∴△PBE≌△QDE.(2)证明:如图.由(1)可得PE=QE,同理可得ME=NE,∴四边形PMQN是平行四边形.又∵PQ⊥MN,∴▱PMQN是菱形.考点2与菱形的性质有关的计算4.[2020黑龙江绥化]如图,四边形ABCD是菱形,E,F分别是BC,CD两边上的点,不能保证△ABE和△ADF一定全等的条件是( C )A.∠BAF=∠DAEB.EC=FCC.AE=AFD.BE=DF5.[2020湖北黄冈]若菱形的周长为16,高为2,则菱形两邻角的度数之比为( B )A.4∶1B.5∶1C.6∶1D.7∶16.[2020黑龙江龙东地区]如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥AB于点H,连接OH,若OA=6,S菱形ABCD=48,则OH的长为( A ) A.4 B.8 C.√13 D.67.[2020四川乐山]如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD 于点E,连接OA.则四边形AOED的周长为( B )A.9+2√3B.9+√3C.7+2√3D.88.[2020辽宁抚顺]如图,四边形ABCD 是菱形,对角线AC,BD 相交于点O,AC=8,BD=6,点E 是CD 上一点,连接OE,若OE=CE,则OE 的长是( B ) A.2B.52C.3D.49.[2020四川南充]如图,面积为S 的菱形ABCD 中,点O 为对角线的交点,点E 是线段BC 的中点,过点E 分别作EF ⊥BD 于点F,EG ⊥AC 于点G,则四边形EFOG 的面积为( B )A.14SB.18SC.112S D.116S10.[2020广东]如图,在菱形ABCD 中,∠A=30°,取大于12AB 的长为半径,分别以点A,B 为圆心作弧相交于两点,过此两点的直线交AD 边于点E(作图痕迹如图所示),连接BE,BD.则∠EBD 的度数为 45° .11.[2020陕西]如图,在菱形ABCD 中,AB=6,∠B=60°,点E 在边AD 上,且AE=2.若直线l 经过点E,将该菱形的面积平分,并与菱形的另一边交于点F,则线段EF 的长为 2√7 .12.[2020北京]如图,菱形ABCD 的对角线AC,BD 相交于点O,E 是AD 的中点,点F,G 在AB 上,EF ⊥AB,OG ∥EF.(1)求证:四边形OEFG 是矩形; (2)若AD=10,EF=4,求OE 和BG 的长.(1)证明:∵四边形ABCD 为菱形,∴点O 为BD 的中点. 又∵点E 为AD 的中点,∴OE 为△ABD 的中位线, ∴OE ∥FG.又∵OG∥EF,∴四边形OEFG为平行四边形.又∵EF⊥AB,∴四边形OEFG为矩形.AD=5.(2)∵点E为AD的中点,AD=10,∴AE=12又∵∠EFA=90°,EF=4,∴AF=√AE2-EF2=√52-42=3.AB=5.∵四边形ABCD为菱形,∴AB=AD=10,∴OE=12∵四边形OEFG为矩形,∴FG=OE=5,∴BG=AB-AF-FG=10-3-5=2.动态型[2020浙江绍兴]如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B 停止,延长EO交CD于点F,则四边形AECF形状的变化依次为( B )A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形课时三:正方形的性质和判定基础分点练(建议用时:40分钟)考点1正方形的判定1.[2020石家庄新华区一模]如图,已知线段AB,按下列步骤作图:分别以点A,B为圆心、大于1AB的长为半径画2弧,两弧相交于点M,N,作直线MN,交AB于点O,连接MA,MB,NA,NB,若四边形MANB是正方形,则需要添加的条件是( A )A.AO=MOB.MA∥NBC.MA=NBD.AB平分∠MAN2.[2020山东滨州]下列命题是假命题的是( D )A.对角线互相垂直且相等的平行四边形是正方形B.对角线互相垂直的矩形是正方形C.对角线相等的菱形是正方形D.对角线互相垂直且平分的四边形是正方形3.[2020山东威海]如图,在▱ABCD中,BD⊥AD,AB=10,AD=6,O为BD的中点,E为边AB上一点,连接EO并延长交CD于点F,连接DE,BF.下列结论不成立的是( D )A.四边形DEBF为平行四边形B.若AE=3.6,则四边形DEBF为矩形C.若AE=5,则四边形DEBF为菱形D.若AE=4.8,则四边形DEBF为正方形考点2正方形的性质4.[2020浙江湖州]四边形具有不稳定性,对于四条边长确定的四边形,当内角度数发生变化时,其形状也会随之改变.如图,改变正方形ABCD的内角,正方形ABCD变为菱形ABC'D'.若∠D'AB=30°,则菱形ABC'D'的面积与正方形ABCD的面积之比是( B )A.1B.12C.√22D.√325.[2019内蒙古鄂尔多斯]如图,以AB为边在正方形ABCD外部作等边三角形ABE,连接DE,则∠BED的度数为( C )A.15°B.35°C.45°D.55°6.[2020邢台二模]如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN= ( A )A.3√2B.3√22C.3D.67.[2020湖北恩施州]如图,正方形ABCD的边长为4,点E在AB上且BE=1,F为对角线AC上一动点,则△BFE 周长的最小值为( B )A.5B.6C.7D.88.[2020浙江湖州]七巧板是我国祖先的一项卓越创造,流行于世界各地.由边长为2的正方形木板可以制作一副中国七巧板或一副日本七巧板,如图(1)所示.分别用这两副七巧板试拼如图(2)中的平行四边形或矩形,则这两个图形中,中国七巧板和日本七巧板能拼成的个数分别是( D )图(1)图(2)A.1和1B.1和2C.2和1D.2和29.[2020河南]如图,在边长为2√2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.10.[2020甘肃天水]如图,在边长为6的正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,将△ADF绕点A顺时针旋转90°得到△ABG.若DF=3,则BE的长为2.11.[2020张家口桥东区一模]如图,将边长分别为a,b的两个正方形放在一起.a(a+b);(1)图中阴影部分的三角形的面积为12(2)△ABC的面积为1b2.2(用含a,b的代数式表示)12.[2020四川自贡]如图,在正方形ABCD中,点E在BC边的延长线上,点F在CD边的延长线上,且CE=DF,连接AE,BF交于点M.求证:AE=BF.证明:∵四边形ABCD 为正方形, ∴AB=BC=CD,∠ABE=∠BCF=90°.又∵CE=DF,∴CE+BC=DF+CD,即BE=CF.在△ABE 和△BCF 中,{BE =CF,∠ABE =∠BCF,AB =BC,∴△ABE ≌△BCF,∴AE=BF.13.[2020浙江杭州]如图,在正方形ABCD 中,点E 在BC 边上,连接AE,∠DAE 的平分线与CD 边交于点G,与BC 的延长线交于点F.设CEEB =λ(λ>0).(1)若AB=2,λ=1,求线段CF 的长. (2)连接EG,若EG ⊥AF, ①求证:点G 为CD 边的中点. ②求λ的值.(1)解:因为在正方形ABCD 中,AD ∥BC,所以∠DAF=∠F.因为AG 平分∠DAE,所以∠DAF=∠EAF,所以∠EAF=∠F,所以EA=EF. 因为λ=1,BC=AB=2,所以BE=EC=1. 在Rt △ABE 中,由勾股定理,得EA=√5, 所以CF=EF-EC=EA-EC=√5-1.(2)①证明:由(1)可知EA=EF,又因为EG ⊥AF, 所以AG=GF.又因为∠AGD=∠FGC,∠DAG=∠F, 所以△DAG ≌△CFG.所以DG=CG, 所以点G 为CD 边的中点.②不妨设CD=2,则AD=2,CG=1.由①得CF=AD=2. 易证△FGC ∽△GEC,所以EC CG =CG CF =12, 所以EC=12,所以BE=32,所以λ=CE EB =13.综合提升练(建议用时:30分钟)1.[2020湖南常德]如图(1),已知四边形ABCD 是正方形,将△DAE,△DCF 分别沿DE,DF 向内折叠得到图(2),此时DA 与DC 重合(点A,C 都落在点G 处),若GF=4,EG=6,则DG 的长为 12 .2.[2020山东青岛]如图,在正方形ABCD中,对角线AC与BD交于点O,点E在CD的延长线上,连接AE,点F是.AE的中点,连接OF交AD于点G,连接DF.若DE=2,OF=3,则点A到DF的距离为4√553.[2020湖北咸宁]如图,四边形ABCD是边长为2的正方形,点E是边BC上一动点(不与点B,C重合),∠AEF=90°,且EF交正方形外角的平分线CF于点F,交CD于点G,连接AF,有下列结论:①△ABE∽△ECG;②AE=EF;③∠DAF=∠CFE;④△CEF的面积的最大值为1.其中正确结论的序号是①②③.(把正确结论的序号都填上)4.[2020唐山路南区二模]如图,在边长为2的正方形ABCD中,动点F,E以相同的速度分别从点D,C同时出发向点C,B运动(任何一个点到达终点时,两点都停止运动).连接AE,BF,AE与BF交于点P,过点P分别作PM∥CD 交BC于点M,PN∥BC交CD于点N,连接MN,在运动过程中,(1)AE和BF的数量关系为AE=BF;(2)MN长度的最小值为√5-1.5.[2020湖南株洲]如图所示,△BEF的顶点E在正方形ABCD对角线AC的延长线上,AE与BF交于点G,连接AF,CF,满足△ABF≌△CBE.(1)求证:∠EBF=90°;(2)若正方形ABCD的边长为1,CE=2,求tan∠AFC的值.(1)证明:∵△ABF≌△CBE,∴∠ABF=∠CBE.∵∠ABF+∠CBF=90°,∴∠CBF+∠CBE=90°,∴∠EBF=90°.(2)∵△ABF ≌△CBE,∴∠AFB=∠CEB. 又∵∠FGA=∠EGB,∴∠FAC=∠EBF=90°. ∵正方形的边长为1,CE=2,∴AC=√2,AF=CE=2, ∴tan ∠AFC=AC AF =√22.6.[2020四川南充]如图,边长为1的正方形ABCD 中,点K 在AD 上,连接BK,分别过点A,C 作BK 的垂线,垂足分别为点M,N,点O 是正方形ABCD 的中心,连接OM,ON.(1)求证:AM=BN.(2)请判定△OMN 的形状,并说明理由.(3)设AK=x,若点K 在线段AD 上运动(不包括端点),△OMN 的面积为y,求y 关于x 的函数解析式(写出此时x 的范围);若点K 在射线AD 上运动,且△OMN 的面积为110,请直接写出AK 长. (1)证明:∵AM ⊥BM,CN ⊥BN,∴∠AMB=∠BNC=90°. 又∵∠ABC=90°,∴∠MAB+∠MBA=∠CBN+∠MBA=90°, ∴∠MAB=∠CBN.又AB=BC,∴△AMB ≌△BNC,∴AM=BN. (2)△OMN 是等腰直角三角形.理由:连接OB,如图.∵O 为正方形的中心,∴∠OAB=∠OBC,OA=OB,∴∠MAB-∠OAB=∠NBC-∠OBC,即∠MAO=∠OBN.又∵AM=BN,∴△AMO ≌△BNO, ∴OM=ON,∠AOM=∠BON.易知∠AOB=∠AON+∠BON=90°, ∴∠MON=∠AON+∠AOM=90°, ∴△OMN 是等腰直角三角形.(3)在Rt △ABK 中,BK=√AK 2+AB 2=√x 2+1. 易知BK·AM=AB·AK,则BN=AM=AB·AK BK=√x 2+1.∵∠AKM=∠BKA,∠AMK=∠BAK=90°,∴△AKM ∽△BKA,∴AK BK =KMAK,∴KM=AK 2BK=2√x 2+1,∴MN=BK-BN-KM=√x 2+1-√x 2+1-2√x 2+1=√x 2+1,∴S △OMN =12×(√22MN)2=14MN 2=(1-x)24x 2+4,即y=x 2-2x+14x 2+4(0<x<1).若点K 在射线AD 上运动,S △OMN =110,则AK 长为13或3.湖北孝感]如图(1),四个全等的直角三角形围成一个大正方形,中间是个小正方形,这个图形是我,人们称它为“赵爽弦图”.在此图形中连接四条线段得到如图(2)所示的图形,记阴影部分的面积为S 1,空白部分的面积为S 2,大正方形的边长为m,小正方形的边长为n,若S 1=S 2,则nm 的值为 √3-12.图(1) 图(2)参考答案第一节 多边形1.D 因多边形的外角和等于360°,与边数无关,故选D.2.B 设该多边形的边数是n,由多边形的内角和公式,得180°×(n-2)=540°,解得n=5.故选B.3.45° ∵多边形的外角和为360°,∴∠DEF+∠EDF=360°-225°=135°.∵∠DEF+∠EDF+∠DFE=180°,∴∠DFE=180°-135°=45°.4.A 正五边形的每一个内角为(5-2)×180°5=108°,即∠AED=∠EAB=108°.又EA=ED,∴∠EAD=180°−108°2=36°,∴∠DAB=∠EAB-∠EAD =72°.在正方形ABFG 中,∠GAB=90°,故∠DAG=∠GAB-∠DAB =18°.故选A. 5.B 正五边形每一个内角的度数为(5-2)×180°5=108°,所以中间形成的正多边形的每一个内角的度数为360°-24°-108°-108°=120°.易得120°n=(n-2)×180°,解得n=6.故选B.6.D 易知该图形关于直线BF 对称,四边形AFGH 与四边形CFED 关于直线BF 对称,故S 四边形AFGH =S 四边形CFED ,BF 平分∠AFC和∠ABC.因△ACF 不是中心对称图形,故整个图形不是中心对称图形.设该正八边形的中心为点O,连接OA,OC,则∠AFC=12∠AOC=12×360°4=45°,故△ACF 不是等边三角形.7.√3 如图,作螺帽的外接圆,连接AB,AC,则AC 是其直径,易知∠BAC=30°,∠ABC=90°,∴BC=√33AB=√3 cm.8.48 如图,由正五边形内角和为(5-2)×180°=540°,可知∠1=108°.又A 3A 4∥B 3B 4,∴∠2=∠1=108°,∴∠3=72°.在四边形A 2A 3MN 中,∠3+∠4+∠A 2+∠A 3=360°,∠A 2=∠A 3=120°,∴α=∠4=48°.9.4a 如图,连接HE,AD,分别交BG 于点M,N,正八边形每个内角的度数为(8-2)×180°8=135°.易得∠DAH=∠CBG=90°,∴∠BAN=∠ABN=45°,∴AN=BN,AB=√2AN=√2BN.设AN=BN=x,则AB=BC=AH=HG=√2x,MG=x,∴S 四边形BCFG =BC×BG=√2x·(2x+√2x)=2(√2+1)x 2=2a,∴S 四边形ABGH =12(AH+BG)×AN=12(√2x+2x+√2x)·x=(√2+1)x 2=a,故正八边形的面积为a×2+2a=4a(cm 2).10.80 正九边形的中心角度数为360°÷9=40°,即∠AOB=40°,∴∠MON=2∠AOB=2×40°=80°. 11.30 如图,∵六边形花环是用六个全等的直角三角形拼成的,∴六边形ABMNEF 是正六边形,∴∠ABM=(6-2)×180°6=120°.又∠CBM=90°,∴∠ABC=120°-90°=30°.12.20 27 10 (1)每个正八边形的周长为8,故题中图形外轮廓的周长为(8-3)×4=20.(2)设正m 边形的一个内角的度数为α,依据题意,得2α+60°=360°,解得α=150°,∴m=360°÷(180°-150°)=12,∴当n=3时,围成的图形的外轮廓的周长是(12-3)×3=27.(3)正五边形一个内角的度数为180°-360°÷5=108°,∴得到的正n 边形的一个内角的度数为360°-108°-108°=144°,一个外角的度数为180°-144°=36°,∴n=360°÷36°=10,∴得到的正n 边形的周长是10. 13.略第二节 平行四边形 基础分点练 1.C2.B 在△ABC 中,D,E 分别是AB,BC 的中点,∴DE 是△ABC 的中位线,∴DE ∥AC.当∠B=∠BCF 时,AD ∥CF.根据平行四边形的定义可知此时四边形ADFC 是平行四边形.故选B.3.略4.C ∵四边形ABCD 为平行四边形,∴AD ∥BC,∠B=∠D,∴∠A+∠B=180°.∵∠A=2∠B,∴2∠B+∠B=180°,∴∠B=60°,∴∠D=60°.故选C. 5.C ∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=DC,∴∠ABO=∠CDO,∠BAC=∠DCA,∴△AOB ≌△COD,∴OA=OC,OB=OD.故正确的顺序为②③①④⑤,故选C.6.D ∵AB=AC,∠A=40°,∴∠C=∠ABC=70°.又∵四边形BCDE 为平行四边形,∴∠E=∠C=70°.故选D.7.C 如图,过点E 作EM ⊥BA 交BA 的延长线于点M,延长ME 交CD 于点N.∵四边形ABCD 是平行四边形,∴AB ∥CD,∴EN ⊥CD.由尺规作图的痕迹可知,BE,CE 分别平分∠ABC,∠BCD,EF ⊥BC, ∴EM=EF=2, EN=EF=2,∴MN=4,即AB,CD 之间的距离为4.故选C.8.C ∵四边形ABCD 是平行四边形,∴∠D=∠B=60°,CD=AB=3.由折叠的性质可知AE=AD,DC=CE,又D,C,E 三点共线,∴△ADE 是等边三角形.又∵DE=DC+CE=6,∴△ADE 的周长为6×3=18.9.C ∵四边形ABCD 是平行四边形,∴AB ∥CD,AB=CD.易得△BEM ∽△DEC,∴BE DE =EM EC =BM CD =12, ∴S △DEM =2S △EBM =2,S △EBC =2S △EBM =2,∴S 阴影=2+2=4,故选C.10.D 如图,延长EF 交AD 于点H,则AB ∥EH ∥CD,∴四边形ABEH 和四边形CDHE 都是平行四边形,∴EH=AB=5,AH=BE,HD=EC.∵∠BFC=90°,E 是边BC 的中点,BC=8,∴EF=BE=EC=12×8=4, ∴AH=HD,FH=EH-EF=5-4=1.易得FH 是△ADG 的中位线,∴DG=2FH=2.11.C ∵四边形ABCD 是平行四边形,∴AB ∥CF,AB=CD,∴△ABE ∽△DFE,∴AB DF =AEDE =2,又∵DE=3,DF=4, ∴AE=6,AB=8,∴AD=AE+DE=6+3=9,∴▱ABCD 的周长为(8+9)×2=34.故选C. 12.C ∵CE 平分∠BCD,∴∠BCE=∠DCE.∵四边形ABCD 是平行四边形,∴AB=CD,AD=BC,AB ∥CD,∴∠BEC=∠DCE,∠CDE=∠AED,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5.又∵EA=3,ED=4,∴EA 2+ED 2=AD 2,∴∠AED=90°,∴∠CDE=90°.又CD=AB=3+5=8,∴CE=√DE 2+DC 2= √42+82=4√5.故选C.13.(2,-1) ∵▱ABCD 对角线的交点O 为坐标原点,∴点A 与点C 关于原点O 中心对称.又点A 的坐标为(-2,1),∴点C 的坐标为(2,-1).14.61 ∵四边形ABCD 是平行四边形,∴AD ∥BC,DC ∥AB.∵∠ADC=119°,DF ⊥BC, ∴∠ADF=∠DFC=90°, ∠EDH=29°.∵BE ⊥DC,∴∠DEH=90°,∴∠BHF=∠DHE=90°-29°= 61°. 15.30 如图,由题意可知α+∠BCD=180°.过点B 作BF ∥CD,则BF ∥AE,∴∠ABF=180°-∠A=110°, ∴∠CBF=140°- ∠ABF=30°,∴∠BCD=180°-∠CBF=150°,∴α=180°-∠BCD=30°.综合提升练1.B ∵四边形ABCD 是平行四边形,∴BC ∥AD,AB ∥CD.∵E,F,G,H 分别是AO,BO,CO,DO 的中点,∴EH ∥AD,EH=12AD,EF ∥AB,EF=12AB,FG ∥BC,FG=12BC,GH ∥CD,GH=12CD,∴EH ∥FG,EF ∥HG,∴四边形EFGH 是平行四边形,故B 中的说法正确.∵AB=2,AD=4,∴EH=2,HG=1,故A 中的说法错误.∵AB ≠AD,∴平行四边形ABCD 不是菱形,故AC 与BD 不垂直,故C 中的说法错误.由EF ∥AB,得△OEF ∽△OAB,∴S △ABO S △EFO=(ABEF )2=4.故D 中的说法错误.2.略3.略 全国视野创新练9√3 设CD 与EG 交于点O.∵四边形EFGC 是平行四边形,∴EF=CG,EF ∥CG,∴△DOE ∽△COG,∴OE OG =DECG .又∵DF=14DE,∴DE CG =45,即OE OG =45,∴OE EG =49,即EG=94OE,∴当OE 最小时,EG 也最小.当OE ⊥AB 时,OE 取最小值.如图,过点C 作CH ⊥AB 于点H.在Rt △BCH 中,BC=8,∠B=60°,∴CH=sin B×BC=4√3,∴OE 的最小值为4√3,∴EG 的最小值为94×4√3=9√3.第三节 矩形、菱形、正方形 课时一:矩形的性质与判定基础分点练1.B AB=BC,邻边相等的平行四边形是菱形;AC=BD,对角线相等的平行四边形是矩形;AC ⊥BD,对角线互相垂直的平行四边形是菱形;由AC 平分∠BAD,可推得平行四边形ABCD 是菱形.故选B.2.略3.C 由四边形ABCD 是矩形,对角线AC,BD 相交于点O,得OA=OB=OC=OD,故S △AOB =S △COB =S △COD =S △AOD =2,所以矩形ABCD 的面积为4S △AOD =8,故选C.4.C 由折叠可得∠ABE=∠A'BE,∠BA'E=∠A=90°.∵∠DBC=24°,∴∠ABA'=90°-24°=66°,∴∠A'BE=33°, ∴∠A'EB=90°-33°=57°.5.A 如图,连接AE,设AC,EF 交于点O,∵四边形ABCD 是矩形,∴AD ∥BC,∴∠DAC=∠ACB.∵直线EF 垂直平分AC,∴OA=OC,AE=EC,又∵∠AOF=∠COE,∴△AOF ≌△COE,∴AE=CE=AF=5,∴BC=BE+EC=8.在Rt △ABE 中,AB=√AE 2-BE 2=√52-32=4.在Rt △ABC 中,AC=√AB 2+BC 2=√42+82=4√5,故选A.6.43 根据矩形的性质得到AB ∥CD,AB=CD.∵点E 为CD 的中点,∴DE=12CD=12AB.易得△ABP ∽△EDP,则PB PD =ABDE =2,∴PB BD =23.易得△BPQ ∽△BDC,则PQ CD =BP BD =23,∴PQ=23CD=43. 7.3√17 在矩形ABCD 中,AB=5,AD=12,∠BAD=90°,根据勾股定理,可得BD=13.∵BP=BA=5,∴PD=BD-BP=8,∠BAP=∠BPA=∠DPQ.∵AB ∥CD,∴∠BAP=∠DQP,∴∠DPQ=∠DQP,∴DQ=DP=8,∴CQ=DQ-CD=DQ-AB=8-5=3.在Rt △BCQ 中,BC=AD=12,CQ=3,根据勾股定理,得BQ=3√17.8.略全国视野创新练1.D ∵四边形ABCD 是矩形,∴AB=CD,AD=BC.设AB=CD=x,由折叠的性质可知,PA'=AB=x,PD'=CD=x.易证△A'EP ∽△D'PH,∴A'P 2∶D'H 2=8∶2,∴A'P ∶D'H=2∶1,∴D'H=12x.∵S △D'PH =12D'P·D'H=12·x·12x=2,∴x=2√2(负值已舍去),∴D'P=A'P=2√2,DH=D'H=√2,∴A'E=2D'P=4√2,∴PE=√(4√2)2+(2√2)2=2√10,PH=√(2√2)2+(√2)2=√10,∴AD=4√2+2√10+√10+√2=3√10+5√2. 2.43√3,4√3或(8-4√3) ①如图(1),当∠ABE=30°时,在Rt △ABE 中,AB=4,tan ∠ABE=AE AB ,∴AE=AB·tan ∠ABE=4×tan 30°=43√3.②如图(2),当∠AEB=30°时,在Rt △ABE中,tan ∠AEB=AB AE ,∴√33=4AE,∴AE=4√3.③如图(3),当∠ABA'=30°时,∠DEA'=30°,由折叠的性质可知,AE=A'E, A'B=AB=4,过点A'作FG ⊥BC 于点G,交AD 于点F,则FG=AB=4.∵AB ∥FG,∴∠BA'G=∠ABA'=30°, ∴BG=12A'B=2.∵tan ∠BA'G=BG A'G =√33,∴A'G=2√3,∴A'F=FG-A'G=4-2√3.在Rt △A'EF 中,sin ∠FEA'=A'F A'E =12,∴AE=A'E=8-4√3.综上所述,AE 的长为43√3,4√3或(8-4√3)cm.图(1) 图(2)图(3)课时二:菱形的判定与性质基础分点练 1.AD=DC(答案不唯一)2.是 如图,∵AB ∥CD,AD ∥BC,∴四边形ABCD 是平行四边形.过点A 作AE ⊥BC 于点E,AF ⊥DC 于点F,∵两张纸条等宽,∴AE=AF,又S ▱ABCD =BC·AE=DC·AF,∴BC=DC,∴四边形ABCD 是菱形.3.略4.C 由四边形ABCD 是菱形,得AB=AD,∠B=∠D.选项A 中,由∠BAF=∠DAE,得∠BAE=∠DAF,故△ABE ≌△ADF.选项B 中,由EC=FC,得BE=DF,∴△ABE ≌△ADF.选项C 中,添加条件AE=AF,不能保证△ABE 和△ADF 一定全等.选项D 中,由BE=DF,易得△ABE ≌△ADF.故选C.5.B 如图,∵菱形ABCD 的周长为16,高为2,∴AB=4,AH=2.在Rt △ABH 中,sin B=AH AB =24=12,∴∠B=30°. ∵AB ∥CD,∴∠C=150°,∴∠C ∶∠B=5∶1.6.A ∵四边形ABCD 是菱形,OA=6,∴AC=2OA=12,OB=OD.又DH ⊥AB,∴OH=12BD.∵S 菱形ABCD =48,∴12AC·BD=48,∴BD=8,∴OH=4. 7.B ∵四边形ABCD 是菱形,O 是对角线BD 的中点,∴AO ⊥BD,AD=AB=4,AB ∥DC.又∵∠BAD=120°, ∴∠CDB=∠ABD=∠ADB=30°,∴AO=12AD=2,∴DO=√AD 2-AO 2=2√3.又OE ⊥CD,∴OE=12OD=√3, DE=√32OD=3, ∴四边形AOED 的周长为AO+OE+DE+AD=2+√3+3+4=9+√3.8.B ∵四边形ABCD 是菱形,∴OC=12AC=4,OD=12BD=3,∠COD=90°.在Rt △OCD 中,根据勾股定理可知,CD=√OD 2+OC 2=5.∵∠EOC=∠ECO,∠EOC+∠EOD=90°,∠ECO+∠EDO=90°,∴∠EOD=∠EDO,∴DE=OE.又OE=CE,∴DE=OE=CE,∴OE=12CD=52.9.B 方法一:如图(1),连接OE.∵四边形ABCD 是菱形,∴AC ⊥BD,AO=OC,BO=DO, ∴S △BOC =S △AOB =S △AOD = S △DOC = 14S.由点E 是BC 的中点,EF ⊥BD,EG ⊥AC,∠BOC=90°,易知点F 是BO 的中点,点G 是CO 的中点, S △BOE = S △COE =12S △BOC ,∴S △OEF =12S △BOE ,S △OEG =12S △COE ,∴S 四边形EFOG = S △OEF +S △OEG =12S △BOE +12S △COE =12S △BOC =18S,故选B.图(1) 图(2)方法二:如图(2),连接FG.∵四边形ABCD 是菱形,∴AC ⊥BD,AO=OC,BO=DO,∴S △BOC =S △AOB =S △AOD =S △DOC =14S.由点E 是BC 的中点,EF ⊥BD,EG ⊥AC,∠BOC=90°,易知点F 是BO 的中点,点G 是CO 的中点,∴FG 是△OBC 的中位线,∴FG ∥BC,FG=12BC,∴△OFG ∽△OBC,∴S △OFG =14S △OBC =116S.易知S △OFG =S △EFG =12S 四边形EFOG ,∴S 四边形EFOG =2S △OFG =18S.故选B.10.45° 设尺规作图所作直线与AB 交于点F,由尺规作图可知,EF 是线段AB 的垂直平分线,∴AE=BE,∴∠A=∠EBA=30°.由菱形的性质可知AB=AD,∴∠ABD=∠ADB=75°,∴∠EBD=∠ABD-∠EBA=75°-30°=45°. 11.2√7 在线段BC 上取点F,使CF=AE=2,如图,则EF 平分菱形ABCD 的面积,理由:∵四边形ABCD 为菱形,∴AD ∥BC,AD=BC=AB=6,∴DE=BF=6-2=4.过点A 作AG ⊥BC 于点G,过点E 作EH ⊥BC 于点H,则四边形AGHE 是矩形,∴AG=EH,GH=AE=2.∵S 梯形ABFE =12(AE+BF)·AG,S 梯形EFCD =12(CF+DE)·EH,∴S 梯形ABFE =S 梯形EFCD ,即EF 平分菱形ABCD 的面积.∵在Rt △ABG 中,AG=ABsin B=6×√32=3√3,BG=ABcos B=6×12=3, ∴EH=AG=3√3, CH=BC-BG-GH=1,∴FH=CF-CH=1,∴在Rt △EFH 中,EF=√FH 2+EH 2=√12+(3√3)2=2√7.12.略全国视野创新练B 连接AC,由对角线互相平分的四边形为平行四边形可知,点E 在运动过程中,四边形AECF 始终为平行四边形.特殊地,当EF ⊥AC 时,四边形AECF 为菱形,当点E 与点B 重合时,四边形AECF 是矩形.故四边形AECF 的形状依次为平行四边形→菱形→平行四边形→矩形.故选B.课时三:正方形的性质和判定基础分点练1.A 由作图痕迹可知MA=MB=NA=NB,∴四边形MANB 是菱形,故可添加条件AB=MN 或AO=MO.2.D 对角线互相垂直且平分的四边形是菱形,不是正方形.故选D.3.D ∵点O 为BD 的中点,∴OB=OD.∵四边形ABCD 为平行四边形,∴DC ∥AB,∴∠FDO=∠EBO,∠DFO=∠OEB,∴△FDO ≌△EBO,∴OE=OF,∴四边形DEBF 为平行四边形,故选项A 中的结论成立.对于选项B,当AE=3.6时,∵AB=10,AD=6,∴AE AD =35,AD AB =35,∴AE AD =AD AB ,又∵∠DAE=∠BAD, ∴△DAE ∽△BAD,∴∠AED=∠ADB=90°,∴∠DEB=90°,∴▱DEBF 为矩形.故选项B 中的结论成立.对于选项C,当AE=5时,∵AB=10,∴BE=5,又∵∠ADB=90°,∴DE=12AB=5,∴DE=BE,∴▱DEBF 为菱形.故选项C 中的结论成立.对于选项D,当AE=4.8时,∠DEB ≠90°,∴四边形DEBF 不是正方形.故选D.4.B 根据题意可知菱形ABC'D'的AB 边上的高等于AB 的一半,所以菱形ABC'D'的面积为12AB 2,正方形ABCD 的面积为AB 2,故菱形ABC'D'的面积与正方形ABCD 的面积之比是12.故选B.5.C ∵四边形ABCD 是正方形,∴AB=AD,∠BAD=90°.∵△ABE 是等边三角形,∴AB=AE,∠BAE=∠AEB=60°, ∴AD=AE.在△ADE 中,AD=AE,∠DAE=∠BAD+∠BAE=90°+60°=150°,∴∠AED=12(180°-150°)=15°,∴∠BED=∠AEB-∠AED=60°-15°=45°.故选C.6.A 连接BD,在等腰直角三角形ABD 中,BD=√2AB=6√2.根据点M,N 分别是DQ,BQ 的中点可得,MN 是△BDQ 的中位线,所以MN=12BD=3√2.故选A.。
专题9.3 平行四边形(第2课时)(备作业)八年级数学下册同步备课系列(苏科版)
第9章中心对称图形——平行四边形9.3 平行四边形(第2课时)一、单选题(共6小题)1.如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件()A.AB=DC B.∠1=∠2C.AB=AD D.∠D=∠B【答案】D【分析】根据等腰梯形的定义判断A;根据平行线的性质可以判断B;根据平行四边形的判定可判断C;根据平行线的性质和三角形的内角和定理求出∠BAC=∠DCA,推出AB∥CD即可.【解答】解:A、符合条件AD∥BC,AB=DC,可能是等腰梯形,故A选项错误;B、根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故B选项错误;C、根据AB=AD和AD∥BC不能推出平行四边形,故C选项错误;D、∵AD∥BC,∴∠1=∠2,∵∠B=∠D,∴∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD是平行四边形,故D选项正确.故选:D.【知识点】等腰梯形的性质、三角形内角和定理、平行四边形的判定、平行线的判定与性质2.如图,在▱ABCD中,DE平分∠ADC,AD=6,BE=2,则▱ABCD的周长是()A.60B.30C.20D.16【答案】C【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD的周长.【解答】解:∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC﹣BE=6﹣2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故选:C.【知识点】平行四边形的性质3.如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.6【答案】D【分析】根据三角形三边关系:任意两边之和大于第三边,任意两边之差小于第三边,可得出AB的取值范围,进而得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=AC=3,OB=BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.【知识点】平行四边形的性质、三角形三边关系4.如图,平行四边形ABCD的对角线相交于点O,AC=4,BD=7,△DBC的周长比△ABC的周长()A.短3B.短6C.长3D.长6【答案】C【分析】根据平行四边形的对边相等可以转化为求两条对角线的差即可得到正确的选项.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵AC=4,BD=7,∴△DBC的周长﹣△ABC的周长=BD+CD+BC﹣(AB+BC+AC)=BD﹣AC=7﹣4=3,∴△DBC的周长比△ABC的周长长3,故选:C.【知识点】平行四边形的性质5.如图,在▱ABCD中,点E在BC上,且CD=CE,连接DE,过点A作AF⊥DE,垂足为F,若∠DAF=48°,则∠C的度数为()A.84°B.96°C.98°D.106°【答案】B【分析】首先根据AF⊥DE,∠DAF=48°得到∠ADE=90°﹣∠DAF=90°﹣48°=42°,然后利用四边形ABCD是平行四边形得到∠CED=∠ADF=42°,再根据CD=CE,得到∠CDE=∠DEC=42°,从而利用三角形的内角和定理求得∠C=180°﹣∠DEC﹣∠EDC=180°﹣42°﹣42°=96°即可.【解答】解:∵AF⊥DE,∠DAF=48°,∴∠ADE=90°﹣∠DAF=90°﹣48°=42°,∵四边形ABCD是平行四边形,∴∠CED=∠ADF=42°,∵CD=CE,∴∠CDE=∠DEC=42°,∴∠C=180°﹣∠DEC﹣∠EDC=180°﹣42°﹣42°=96°,故选:B.【知识点】平行四边形的性质6.如图,在平行四边形ABCD中,AD=2AB,作CE⊥AB于点E,点F是AD的中点,连接CF,EF.关于下列四个结论:①∠BCF=∠DCF;②∠FEC=∠FCE;③∠AEF=∠CFD;④S△CEF=S△BCE,则所有正确结论的序号是()A.①②③④B.①②③C.②③④D.③④【答案】B【分析】由平行四边形的性质结合等腰三角形的判定与性质可得∠DFC=∠BCF,DFC=∠DCF,可证明①;取EC的中点G,连接FG,则FG为梯形AECD的中位线,再证明FG⊥CE,可证明②;根据平行线的性质可得∠AEC=∠DCE=90°,进而可证明③;而无法证明④.【解答】解:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,AB=CD,∴∠DFC=∠BCF,∵点F是AD的中点,∴AD=2DF,∵AD=2AB,∴AD=2CD,∴DF=CD,∴∠DFC=∠DCF,∴∠BCF=∠DCF,故①正确;取EC的中点G,连接FG,则FG为梯形AECD的中位线,∴FG∥AB,∵CE⊥AB,∴FG⊥CE,∴EF=CF,∴∠FEC=∠FCE,故②正确;∵CE⊥AB,AB∥CD,∴CE⊥CD,∴∠AEC=∠DCE=90°,即∠AEF+∠FEC=∠DCF+∠FCE=90°,∴∠AEF=∠DCF,∵∠DCF=∠CFD,∴∠AEF=∠CFD,故③正确;根据现有条件无法证明S△CEF=S△BCE,故错误④.故选:B.【知识点】全等三角形的判定与性质、直角三角形斜边上的中线、平行四边形的性质二、填空题(共6小题)7.在▱ABCD中,若∠A+∠C=342°,则∠B=度.【答案】9【分析】根据平行四边形的性质进行解答即可.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=342°,∴∠A=171°,∴∠B=180°﹣171°=9°,故答案为:9.【知识点】平行四边形的性质8.如图,▱ABCD的一个外角∠CBE是70°,则∠D的大小是.【答案】110°【分析】利用已知可先求出∠CBA=110°,根据平行四边形的性质知,平行四边形的对角相等,则∠D可求解.【解答】解:∵∠CBE=70°,∴∠CBA=110°,在平行四边形中,∴∠D=∠CBA=110°,故答案为:110°.【知识点】平行四边形的性质9.如图,已知▱ABCD的周长为18cm,BC=2AB,∠A=2∠B,则▱ABCD的面积为cm2.【分析】根据▱ABCD的周长为18cm,BC=2AB,∠A=2∠B,可求得AB和BC,在Rt△ABE中可求得AE,可求出四边形ABCD的面积.【解答】解:如图,过点A作AE⊥BC于点E,∵▱ABCD的周长为18cm,BC=2AB,∴2(AB+BC)=18,∴6AB=18,∴AB=3,∴BC=6,∵∠A+∠B=180°,∠A=2∠B,∴3∠B=180°,∴∠B=60°,∴AE=,∴▱ABCD的面积为:BC•AE=6×=9(cm2).故答案为:9.【知识点】平行四边形的性质10.在平行四边形ABCD中,∠A=30°,AD=2,BD=2,则平行四边形ABCD的面积等于.【分析】过D作DE⊥AB于E,解直角三角形得到AB=2,根据平行四边形的面积公式即可得到结论.【解答】解:过D作DE⊥AB于E,在Rt△ADE中,∵∠A=30°,AD=2,∴DE=AD=,AE=AD=3,在Rt△BDE中,∵BD=2,∴BE===2,如图1,∴AB=4,∴平行四边形ABCD的面积=AB•DE=4,如图2,AB=2,∴平行四边形ABCD的面积=AB•DE=2,如图3,过B作BE⊥AD于E,在Rt△ABE中,设AE=x,则DE=2﹣x,∵∠A=30°,BE=x,在Rt△BDE中,∵BD=4,∴42=(x)2+(2﹣x)2,∴x=,x=2(不合题意舍去),∴BE=1,∴平行四边形ABCD的面积=AD•BE=1×2=2,如图4,当AD⊥BD时,平行四边形ABCD的面积=AD•BD=4,故答案为:2或4.【知识点】三角形的面积、平行四边形的性质11.如图所示,在平行四边形ABCD中,AB=3,BC=4,∠B=60°,E是BC的中点,EF⊥AB于点F,则△DEF的面积为平方单位.【分析】根据平行四边形对边平行可得AB∥CD,再利用两直线平行,内错角相等可得∠B=∠ECG,根据线段中点的定义可得BE=CE,然后利用“角边角”证明△BEF和△CEG全等,根据全等三角形对应边相等可得BF=CG,再解直角三角形求出EF、BF,求出DG,然后利用三角形的面积公式列式计算即可得解.【解答】解:在平行四边形ABCD中,AB∥CD,∴∠B=∠ECG,∵E为BC的中点,∴BE=CE=BC=×4=2,在△BEF和△CEG中,,∴△BEF≌△CEG(ASA),∴BF=CG,∵∠B=60°,∴∠FEB=30°,∴BF=BE=1,EF=,∵平行四边形ABCD的对边CD=AB=3,∴DG=CD+CG=3+1=4,∵EF⊥AB,AB∥CD,∴DG⊥FG,∴S△DEF=EF•DG=××4=2.故答案为:2.【知识点】勾股定理、平行四边形的性质12.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点P,且AB=PC,∠PBC=2∠PCB,则∠A=°.【答案】60【分析】作△PBC关于BC的对称图形△DBC,再根据角平分线定义可得BD∥AC,延长BD到点E,使BE =AC,可得四边形ABEC是平行四边形,设∠PCB=α,可得∠DCE=∠CDE=3α,进而证明△CDE是等边三角形,可得结论.【解答】解:如图,作△PBC关于BC的对称图形△DBC,∴∠DBC=∠PBC,∠PCB=∠DCB,CD=CP,∵CP是∠ACB的平分线,∴∠BCA=2∠PCB,∵∠PBC=2∠PCB,∴∠DBC=∠BCA,∴BD∥AC,延长BD到点E,使BE=AC,∴四边形ABEC是平行四边形,设∠PCB=α,∴∠BCD=∠ACP=α,∴∠PBC=∠DBC=∠BCA=2α,∴∠ACD=3α,∠ABD=6α,∵四边形ABEC是平行四边形,∴∠ACE=∠ABE=6α,∴∠DCE=3α,∵∠CDE=∠DBC+∠DCB=3α,∴∠DCE=∠CDE,∴CE=ED,∵AB=CE,AB=PC,∴CE=CP,∴CE=ED,∵CD=CP,∴CE=ED=CD,∴△CDE是等边三角形,∴∠E=60°,∴∠A=∠E=60°.故答案为:60°.【知识点】轴对称的性质、角平分线的性质、平行四边形的判定与性质三、解答题(共6小题)13.如图,在▱ABCD中,对角线AC、BD相交于点O,且AC=6,BD=10,AB=4.(1)求∠BAC的度数:(2)求▱ABCD的面积.【分析】(1)首先利用平行四边形的性质求得对角线的一半的长,然后利用勾股定理的逆定理判定直角即可;(2)利用底×高求得面积即可.【解答】解:(1)∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵AC=6,BD=10,∴AO=3,BO=5,∵AB=4,∴AB2+AO2=OB2,∴∠BAC=90°;(2)▱ABCD的面积=AB×AC=4×6=24.【知识点】平行四边形的性质14.如图,▱ABCD的对角线相交于点O,过O的直线分别交AD、BC于点M、N,求证:OM=ON.【分析】根据平行四边形的对角线互相平分可得OA=OC,再根据平行四边形的对边平行可得AD∥BC,利用两直线平行,内错角相等可得∠MAO=∠NCO,然后利用“角边角”证明△AMO和△CNO全等,根据全等三角形对应边相等即可得证.【解答】证明:平行四边形ABCD中,OA=OC,AD∥BC,∴∠MAO=∠NCO,在△AMO和△CNO中,,∴△AMO≌△CNO(ASA),∴OM=ON.【知识点】全等三角形的判定与性质、平行四边形的性质15.如图,在平行四边形ABCD中,点E,F为对角线AC上的两点,且AE=CF,连接DE,BF.(1)写出图中所有的全等三角形;(2)求证:DE∥BF.【分析】(1)由平行四边形的性质得出AB=CD,AD=CB,AB∥CD,AD∥CB,证出内错角相等∠BAF=∠DCE,∠DAE=∠BCF,由SSS证明△ABC≌△CDA;由SAS证明△ABF≌△CDE;由SAS证明△ADE≌△CBF;(2)由△ABF≌△△CDE,得出对应角相等∠AFB=∠CED,即可证出DE∥BF.【解答】(1)解:△ABC≌△CDA,△ABF≌△△CDE,△ADE≌△CBF;理由如下:∵四边形ABCD是平行四边形,∴AB=CD,AD=CB,AB∥CD,AD∥CB,∴∠BAF=∠DCE,∠DAE=∠BCF,在△ABC和△CDA中,,∴△ABC≌△CDA(SSS);∵AE=CF,∴AF=CE,在△ABF和△CDE中,,∴△ABF≌△CDE(SAS);在△ADE和△CBF中,,∴△ADE≌△CBF(SAS).(2)证明:∵△ABF≌△△CDE,∴∠AFB=∠CED,∴DE∥BF.【知识点】平行线的判定、平行四边形的性质、全等三角形的判定与性质16.如图,已知▱ABCD的对角线AC、BD相交于点O,AD=12,BD=10,AC=26.(1)求△ADO的周长;(2)求证:△ADO是直角三角形.【分析】(1)根据平行四边形的对角线互相平分确定AO和DO的长,然后求得周长即可;(2)利用勾股定理的逆定理判定直角三角形即可.【解答】解:(1)∵四边形ABCD是平行四边形,∴对角线AC与BD相互平分,∴OA=OC=AC,OB=OD=BD,∵AC=26,BD=10,∴OA=13,OD=5,∵AD=12,∴△AOD的周长=5+12+13=30;(2)由(1)知OA=13,OD=5,AD=12,∵52+122=132 ,∴在△AOD中,AD2+DO2=AO2 ,∴△AOD是直角三角形.【知识点】平行四边形的性质、勾股定理的逆定理17.如图,四边形ABCD为平行四边形,E为BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:△ABE≌△FCE;(2)过点D作DG⊥AE于点G,H为DG的中点.判断CH与DG的位置关系,并说明理由.【分析】(1)根据平行四边形的性质,利用ASA即可证明.(2)结论:CH⊥DG.利用三角形中位线定理,证明CH∥AF即可解决问题.【解答】解:(1)∵四边形ABCD为平行四边形,∴AB∥CD,AB=CD,∴∠B=∠ECF∵E为BC的中点,∴BE=CE,在△ABE和△FCE中,∴△ABE≌△FCE.(2)结论:CH⊥DG.理由如下:∵△ABE≌△FCE,∴AB=CF,∵AB=CD,∴DC=CF,∵H为DG的中点,∴CH∥FG∵DG⊥AE,∴CH⊥DG.【知识点】平行四边形的性质、全等三角形的判定与性质18.如图,在平行四边形ABCD中,AC是对角线,且AB=AC,CF是∠ACB的角平分线交AB于点F,在AD上取一点E,使AB=AE,连接BE交CF于点P.(1)求证:BP=CP;(2)若BC=4,∠ABC=45°,求平行四边形ABCD的面积.【分析】(1)设AP与BC交于H,根据平行线的性质得到∠AEB=∠CBE,根据等腰三角形的性质得到∠ABE=∠AEB,推出BE平分∠ABC,求得AP平分∠BAC,根据线段垂直配电箱的性质即可得到结论;(2)根据线段垂直平分线的性质和平行四边形的面积公式即可得到结论.【解答】解:(1)设AP与BC交于H,∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=BC=2,∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.【知识点】三角形的面积、平行四边形的性质。
平行四边形性质和判定综合习题精选(答案详细)
第十九章平行四边形性质和判定综合习题精选一.解答题(共30小题)1.(2011•资阳)如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.(2011•昭通)如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.(2011•徐州)如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.(2011•铜仁地区)已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.(2011•泸州)如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.(2010•恩施州)如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.7.(2009•永州)如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.(2009•来宾)在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.(2006•黄冈)如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.(2006•巴中)已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.(2002•三明)如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.(2010•厦门)如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.(2010•滨州)如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.(2008•佛山)如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.(2007•黑龙江)在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.(2005•贵阳)在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.三角形的中位线练习题姓名1.连结三角形___________的线段叫做三角形的中位线.2.三角形的中位线______于第三边,并且等于_______.3.一个三角形的中位线有_________条.4.如图△ABC中,D、E分别是AB、AC的中点,则线段CD是△ABC的___,线段DE是△ABC_______5、如图,D、E、F分别是△ABC各边的中点(1)如果EF=4cm,那么BC=__cm如果AB=10cm,那么DF=___cm(2)中线AD与中位线EF的关系是___6.如图1所示,EF是△ABC的中位线,若BC=8cm,则EF=_______cm.(1) (2) (3) (4)7.三角形的三边长分别是3cm,5cm,6cm,则连结三边中点所围成的三角形的周长是_________cm.8.在Rt△ABC中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______.9.若三角形的三条中位线长分别为2cm,3cm,4cm,则原三角形的周长为()A.4.5cm B.18cm C.9cm D.36cm10.如图2所示,A,B两点分别位于一个池塘的两端,小聪想用绳子测量A,B间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A,B的点C,找到AC,BC的中点D,E,并且测出DE 的长为10m,则A,B间的距离为()A.15m B.25m C.30m D.20mA 、20081B 、20091C 、220081D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( )A .线段EF 的长逐渐增大B .线段EF 的长逐渐减少C .线段EF 的长不变D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF •的周长是( )A .10B .20C .30D .4014.如图所示,□ ABCD 的对角线AC ,BD 相交于点O ,AE=EB ,求证:OE ∥BC .15.如图所示,在△ABC 中,点D 在BC 上且CD=CA ,CF 平分∠ACB ,AE=EB ,求证:EF=12BD .16.如图所示,已知在□ABCD 中,E ,F 分别是AD ,BC 的中点,求证:MN ∥BC .17.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.18.已知:△ABC 的中线BD 、CE 交于点O ,F 、G 分别是OB 、OC 的中点.求证:四边形DEFG 是平行四边形.C19.已知:如图,E 为□ABCD 中DC 边的延长线上的一点,且CE =DC ,连结AE分别交BC 、BD 于点F 、G ,连结AC 交BD 于O ,连结OF .求证:AB =2OF .1、 已知在四边形ABCD 中,AB=CD ,E 、F 、G 分别是BD 、AC 、BC 的中点,H 是EF 的中点.求证:EF ⊥GH.3、如图所示,△ABC 中,AB >AC ,AD 平分∠BAC ,CD ⊥AD ,点E 是BC 的中点。
中考数学总复习《45多边形与平行四边形》试题训练及解析.doc
第五节多边形与平行四边形基础训练1.(2017苏州中考)如图,在正五边形ABCDE中,连接BE,贝iJZABE的度数为(B)A.30°B.36°C.54°D.72°“(第1题图)2.(湘西屮考)下列说法错误的是(D)A.对角线互相平分的四边形是平行四边形2两组对边分别相等的四边形是平行四边形C 一组对边平行冃相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形3・(2015石家屮四十三屮模拟)如图,在口ABCD屮,延长AB到点E,使BE = AB,连接DE交BC于点F,则下列结论不一定成立的是(D)A. ZE=ZCDF B・ EF=DFC. AD = 2BFD. BE=2CF4.(2017 丽水中考)如图,在口ABCD 中,连接AC, ZABC= ZCAD=45° , AB =2,则BC的长是(C)A.y[2B. 2C. 2^2 D・ 45.(荷泽中考)在口ABCD中,AB = 3, BC=4,当口ABCD的面积最大时,下列结论正确的有(B)①AC = 5;②ZA+ZC=180° ;③AC丄BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④6・(孝感中考)在口ABCD中,AD = 8, AE平分ZBAD交BC于点E” DF平分ZADC 交BC于点F,且EF=2,则AB的长为(D)儿 3 B. 5C 2或3 〃・3或57.平行四边形ABCD与等边AAEF如图放置,如果ZB = 45° ,那么ZBAE 的大小是(A)A.75°B.70°C.65°D.60°8.(北京中考)如图是由射线AB, BC, CD, DE, EA组成的平面图形,则Z1 + Z2+Z3+Z4+Z5= 360°9・(江西中考)如图所示,在oABCD中,ZC = 40° ,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则ZBEF的度数为§0。
平行四边形的认识习题(通用)
平行四边形的认识单元复习题班级 姓名 座号 一、填空题1、 □ABCD 中,∠A :∠B =2:3,则∠C =_______,∠D =________。
2、 平行四边形的周长为56cm ,两邻边之比为3:5,则这两邻边的长分别为____________。
3、 四边形ABCD 为菱形,∠A=60°, 对角线BD 长度为10cm , 则此菱形的周长cm .4、 矩形的两条对角线的一个交角为60 o,两条对角线的和为8cm ,则这个矩形的一条较短边为 cm 。
5、 一个菱形的对角线长度分别为6和12,则菱形的面积是____________。
6、 等腰梯形ABCD 中,AD ∥BC ,∠A=120°,两底分别是15cm 和49cm ,则等腰梯形的腰长为______.7、 已知正方形的一条对角线长为8cm ,则其面积是____cm 28、 用一块面积为450cm 2的等腰梯形彩纸做风筝,为了牢固起见,用竹条做梯形的对角线,对角线恰好互相垂直,那么至少需要竹条 cm .9、 如图,P 为□ABCD 的CD 上的一点,S □ABCD =20cm 2,则S △APB =___________ cm 2。
10、如图,□ABCD 中,O 是对角线交点,AB=13cm,BC=5cm,那么△AOB 周长比△BOC的周长多__________cm.11、如图,E 在正方形ABCD 边BC 的延长线上,且CE=AC ,AE 与CD 交于点F ,则∠AFC= 。
12、如图,菱形ABCD 的对角线的长分别是20和17,P 是对角线AC 上任意一点(点P 不与A 、C 重合),且PE∥BC 交AB 于E ,PF∥AD 交AD 于F ,则阴影部分的面积是___A BCD PAB CD O第9题 第10题 第11题 第12题 二、选择题13、在下列性质中,平行四边形不一定具有的性质是( )A 、 邻角互补B 、 对角相等C 、 对角互补D 、 内角和为360°14、下列性质矩形不一定具有的是( )A 、 对角线相等B 、四个内角都相等C 、对角线互相平分D 、对角线互相垂直15、正方形具有而菱形不一定具有的性质是( )A 、四条边都相等B 、对角线相等C 、对角线互相垂直平分D 、对角线平分每一组对角16、某平行四边形的对角线长为x 、y,一边长为12,则x 与y 的值可能是( ) A 、8和14 B 、 10和14 C 、 18和20 D 、 10和34 17、矩形两条对角线的夹角为60°,一条较短边长为5,则其对角线的长为( )A 、5B 、10C 、15D 、7.5 18、下列图形中既是轴对称图形,又是中心对称图形的是( )A 、平行四边形B 、等边三角形C 、矩形D 、直角三角形 19、四边形ABCD 中,∠A ︰∠B ︰∠C ︰∠D=2︰2︰1︰3,则这个四边形是( )A 、梯形B 、等腰梯形C 、直角梯形D 、任意四边形 20、若等腰梯形的三边长分别是3、4、11,则这个等腰梯形的周长为( )A 、21B 、22C 、21或22D 、29 三、解答题21、19. (8分)如图,已知□ABCD 中,对角线AC 、BD 相交于点O ,若AC =18㎝,BD =20㎝,AB =14㎝,求△COD 的周长。
人教版八年级数学下册优秀作业课件(RJ) 第十八章 平行四边形 第2课时 平行四边形的判定2
6.(7分)(陕西中考改编)如图,在四边形ABCD中,AD∥BC,∠B=∠C,E是 边BC上的一点,且DE=DC.求证:四边形ABED是平行四边形.
证明:∵DE=DC,∴∠DEC=∠C=∠B,∴AB∥DE.又∵AD∥BC,∴四边 形ABED是平行四边形
7.(8分)如图,四边形ABCD和四边形AEFD都是平行四边形,求证:四边形 BEFC是平行四边形.
9.(威海中考)如图,E是▱ABCD的边AD延长线上的一点,连接BE,CE,BD, BE交CD于点F,添加以下条件,不能判定四边形BCED为平行四边形的是( C )
A.∠ABD=∠DCE B.DF=CF C.∠AEB=∠BCD D.∠AEC=∠CBD
二、填空题(共6分) 10.如图,在▱ABCD中,∠BAD=120°,连接BD,作AE∥BD交CD的延长线 于点E,过点E作EF⊥BC交BC的延长线于点F,且CF=1,则AB的长是__1__.
12.(14分)(教材P50习题18.1T4变式)如图,在▱ABCD中,点E,F分别在边AB, CD上,且AE=CF,AF,DE相交于点G,BF,CE相交于点H,求证:四边形 EHFG是平行四边形.
证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD.又∵AE=CF,∴ 四边形AECF是平行四边形,DF=BE,∴GF∥EH,四边形BFDE是平行四边形, ∴GE∥FH,∴四边形EHFG是平行四边形
4.(4分)如图,四边形ABCD的对角线AC,BD相交于点O,下列条件不能判定 四边形ABCD是平行四边形的是( D )
A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.OA=OC,OB=OD D.AB∥DC,AD=BC
5.(4分)(黑龙江中考)如图,在四边形ABCD中,AD=BC,在不添加任何辅助 线的情况下,请你添加一个条件:__A__D_∥__B__C_(_答__案__不__唯__一__) _,使四边形ABCD是 平行四边形.
苏教版数学二年级上册《平行四边形的初步认识》说课稿
苏教版数学二年级上册《平行四边形的初步认识》说课稿一. 教材分析《平行四边形的初步认识》是苏教版数学二年级上册第五单元的第一课时。
本节课的主要内容是让学生初步认识平行四边形,了解平行四边形的特点,以及会区分生活中的一些平行四边形。
教材通过生动的图片和生活中的实例,激发学生的学习兴趣,让学生感受到数学与生活的紧密联系。
二. 学情分析二年级的学生已经学习了平面图形的基本知识,对图形的认知有一定的基础。
但是,对于平行四边形这一概念,学生可能较为陌生。
因此,在教学过程中,我将以生动的生活实例和直观的图形展示,帮助学生理解和掌握平行四边形的特点。
三. 说教学目标1.知识与技能:让学生了解平行四边形的定义,学会识别生活中的平行四边形,能运用直尺和三角板画出平行四边形。
2.过程与方法:通过观察、操作、交流等活动,培养学生的空间观念,提高学生的动手能力和语言表达能力。
3.情感态度与价值观:让学生体验数学与生活的紧密联系,激发学生学习数学的兴趣,培养学生的合作意识。
四. 说教学重难点1.重点:让学生掌握平行四边形的定义,会识别生活中的平行四边形。
2.难点:让学生理解平行四边形的特征,能运用直尺和三角板画出平行四边形。
五. 说教学方法与手段1.教学方法:采用情境教学法、观察教学法、操作教学法和合作学习法。
2.教学手段:利用多媒体课件、实物模型、直尺、三角板等教具,以及小组讨论的方式,进行教学。
六. 说教学过程1.导入新课:通过展示生活中的一些平行四边形图片,引导学生发现并提出问题:“这些图形有什么共同的特点?”从而引出平行四边形的概念。
2.探究新知:让学生观察、操作、交流,探讨平行四边形的特征。
首先,让学生用直尺和三角板尝试画出平行四边形;然后,让学生观察、描述平行四边形的特点;最后,引导学生总结出平行四边形的定义。
3.巩固练习:设计一些练习题,让学生运用所学知识,识别和画出生活中的平行四边形。
4.课堂小结:让学生回顾本节课所学内容,总结平行四边形的特点和画法。
平行四边形陪练:五年级数学教案二家庭作业
平行四边形陪练:五年级数学教案二家庭作业在五年级数学教材中,其中一部分内容就是关于平行四边形的学习。
而平行四边形在现实生活中并不是普遍,孩子们可能很难完全理解这个概念。
为了帮助孩子更好地理解和掌握平行四边形,老师给孩子布置了家庭作业,让家长和孩子一起完成练习。
家庭作业主要内容为练习题和思考题。
其中,练习题主要是让孩子做一些简单的计算题,如图形边长、面积、周长等,而思考题主要通过图形、实例、解题方法等方式来引导孩子思考,激发他们自身的求知欲望,加深他们对平行四边形的理解。
为了帮助孩子更好地完成家庭作业,家长们可以采取以下措施:家长应该根据孩子的实际情况,合理安排他们的家庭作业,并提前预习教材,以便更好地指导孩子完成任务。
特别是在家长看过教材后,可以将其中的重点、难点、易错点等与孩子详细讲解,帮助孩子理解和掌握。
家长可以通过举例、画图等方式,对孩子进行具体的解释和展示,让孩子更易于理解。
例如,可以通过画图来帮助孩子较为直观地观察、比较、分析图形的形状、大小等属性,并通过不同的图形进行对比、类比,让孩子加深理解。
家长可以通过游戏、竞赛等形式,调动孩子们的学习兴趣,增强他们的学习动力。
例如,可以通过游戏的方式考察孩子们对平行四边形的理解,或者和孩子一起比赛解决练习题,以此来激发孩子的学习兴趣和自信心。
家长应该时刻关注孩子完成家庭作业的状态,不仅要督促孩子在规定的时间内完成任务,还要对孩子的作业进行检查和纠正,及时帮助孩子发现和解决问题,确保孩子在学习中不断进步。
平行四边形的学习是五年级数学中的重要内容,通过家庭作业的形式来加深孩子对平行四边形的理解和掌握是很必要的。
在家长和孩子共同努力的情况下,相信孩子们会在学习中收获满满,成为更加优秀的数学者。
专题23 平行四边形-2023年中考数学一轮复习热点题型与方法精准突破(原卷版)
专题23 平行四边形【考查题型】【知识要点】知识点一平行四边形平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
平行四边形的表示:用符号“▱”表示,平行四边形ABCD记作“▱ABCD”,读作“平行四边形ABCD”。
平行四边形的性质:1)对边平行且相等;2)对角相等、邻角互补;3)对角线互相平分;4)平行四边形是中心对称图形,但不是轴对称图形,平行四边形的对角线的交点是平行四边形的对称中心。
平行四边形的判定定理:1)边:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③一组对边平行且相等的四边形是平行四边形.2)角:④两组对角分别相等的四边形是平行四边形;⑤任意两组邻角分别互补的四边形是平行四边形.3)边与角:⑥一组对边平行,一组对角相等的四边形是平行四边形;4)对角线:⑦对角线互相平分的四边形是平行四边形.平行四边形的面积公式:面积=底×高平行线的性质:1)平行线间的距离都相等;2)两条平行线间的任何平行线段都相等;3)等底等高的平行四边形面积相等。
考查题型一添加一个条件成为平行四边形典例1.(2022·四川达州·统考中考真题)如图,在中,点D,E分别是,边的中点,点F在的延长线上.添加一个条件,使得四边形为平行四边形,则这个条件可以是()A.B.C.D.变式1-1.(2021·黑龙江牡丹江·统考中考真题)如图,在四边形ABCD中,,请添加一个条件,使四边形ABCD成为平行四边形,你所添加的条件为___________ (写一个即可).变式1-2.(2020·黑龙江牡丹江·中考真题)如图,在四边形中,连接,.请你添加一个条件______________,使.(填一种情况即可)变式1-3.(2021·湖南岳阳·统考中考真题)如图,在四边形中,,,垂足分别为点,.(1)请你只添加一个条件(不另加辅助线),使得四边形为平行四边形,你添加的条件是________;(2)添加了条件后,证明四边形为平行四边形.考查题型二平行四边形的证明典例2.(2022·辽宁鞍山·统考中考真题)如图,在四边形中,与交于点,,,垂足分别为点,,且,.求证:四边形是平行四边形.变式2-1.(2022·广西河池·统考中考真题)如图,点A,F,C,D在同一直线上,AB=DE,AF=CD,BC=EF.(1)求证:∠ACB=∠DFE;(2)连接BF,CE,直接判断四边形BFEC的形状.变式2-2.(2022·北京·统考中考真题)如图,在中,交于点,点在上,.(1)求证:四边形是平行四边形;(2)若求证:四边形是菱形.变式2-3.(2022·广西贺州·统考中考真题)如图,在平行四边形ABCD中,点E,F分别在AD,BC上,且,连接AF,CE,AC,EF,且AC与EF相交于点O.(1)求证:四边形AFCE是平行四边形;(2)若AC平分,,求四边形AFCE的面积.变式2-4.(2022·江西·统考中考真题)图1是某长征主题公园的雕塑,将其抽象成如图2所示的示意图,已知,A,D,H,G四点在同一直线上,测得.(结果保留小数点后一位)(1)求证:四边形为平行四边形;(2)求雕塑的高(即点G到的距离).(参考数据:)变式2-5.(2021·湖北鄂州·统考中考真题)如图,在中,点、分别在边、上,且.(1)探究四边形的形状,并说明理由;(2)连接,分别交、于点、,连接交于点.若,,求的长.变式2-6.(2021·山东聊城·统考中考真题)如图,在四边形ABCD中,AC与BD相交于点O,且AO=CO,点E在BD上,满足∠EAO=∠DCO.(1)求证:四边形AECD是平行四边形;(2)若AB=BC,CD=5,AC=8,求四边形AECD的面积.考查题型三利用平行线的性质求解典例3.(2022·广东·统考中考真题)如图,在中,一定正确的是()A.B.C.D.变式3-1.(2022·福建·统考中考真题)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是()A.96B.C.192D.变式3-2.(2022·四川乐山·统考中考真题)如图,在平行四边形ABCD中,过点D作DE⊥AB,垂足为E,过点B作BF⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF的长为()A.4B.3C.D.2变式3-3.(2022·湖南湘潭·统考中考真题)在中(如图),连接,已知,,则()A.B.C.D.变式3-4.(2022·内蒙古通辽·统考中考真题)如图,点是内一点,与轴平行,与轴平行,,,,若反比例函数的图像经过,两点,则的值是()A.B.C.D.变式3-5.(2022·黑龙江·统考中考真题)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD 的顶点B在反比例函数的图象上,顶点A在反比例函数的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.D.变式3-6.(2022·四川宜宾·统考中考真题)如图,在中,,是上的点,∥交于点,∥交于点,那么四边形的周长是()A.5B.10C.15D.20变式3-7.(2021·天津·统考中考真题)如图,的顶点A,B,C的坐标分别是,则顶点D的坐标是()A.B.C.D.变式3-8.(2021·贵州黔东南·统考中考真题)如图,抛物线与轴只有一个公共点A(1,0),与轴交于点B(0,2),虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线,则图中两个阴影部分的面积和为()A.1B.2C.3D.4变式3-9.(2021·湖北荆门·统考中考真题)如图,将一副三角板在平行四边形ABCD中作如下摆放,设,那么()A.B.C.D.变式3-10.(2022·安徽·统考中考真题)如图,平行四边形OABC的顶点O是坐标原点,A在x轴的正半轴上,B,C在第一象限,反比例函数的图象经过点C,的图象经过点B.若,则________.变式3-11.(2022·江苏连云港·统考中考真题)如图,在中,.利用尺规在、上分别截取、,使;分别以、为圆心,大于的长为半径作弧,两弧在内交于点;作射线交于点.若,则的长为_________.变式3-12.(2022·贵州毕节·统考中考真题)如图,在中,,点P为边上任意一点,连接,以,为邻边作平行四边形,连接,则长度的最小值为_________.变式3-13.(2022·黑龙江牡丹江·统考中考真题)如图,在平面直角坐标系中,点,,将平行四边形OABC绕点O旋转90°后,点B的对应点坐标是______.变式3-14.(2022·辽宁·统考中考真题)如图,直线y=2x+4与x轴交于点A,与y轴交于点B,点D为OB 的中点,▱OCDE的顶点C在x轴上,顶点E在直线AB上,则▱OCDE的面积为_______.考查题型四利用平行线的性质证明典例4.(2022·广西桂林·统考中考真题)如图,在平行四边形ABCD中,点E和点F是对角线BD上的两点,且BF=DE.(1)求证:BE=DF;(2)求证:ABE≌CDF.变式4-1.(2022·广西梧州·统考中考真题)如图,在中,E,G,H,F分别是上的点,且.求证:.变式4-2.(2022·湖南永州·统考中考真题)如图,是平行四边形的对角线,平分,交于点.(1)请用尺规作的角平分线,交于点(要求保留作图痕迹,不写作法,在确认答案后,请用黑色笔将作图痕迹再填涂一次);(2)根据图形猜想四边形为平行四边形,请将下面的证明过程补充完整.证明:∵四边形是平行四边形,∴∵______(两直线平行,内错角相等)又∵平分,平分,∴,∴∴______(______)(填推理的依据)又∵四边形是平行四边形∴∴四边形为平行四边形(______)(填推理的依据).变式4-3.(2022·内蒙古·中考真题)如图,在平行四边形中,点O是的中点,连接并延长交的延长线于点E,连接,.(1)求证:四边形是平行四边形;(2)若,判断四边形的形状,并说明理由.变式4-4.(2021·四川广元·统考中考真题)如图,在平行四边形中,E为边的中点,连接,若的延长线和的延长线相交于点F.(1)求证:;(2)连接和相交于点为G,若的面积为2,求平行四边形的面积.考查题型五利用平行线的性质与判定求解典例5.(2022·内蒙古赤峰·统考中考真题)如图,剪两张对边平行的纸条,随意交叉叠放在一起,重合部分构成一个四边形,其中一张纸条在转动过程中,下列结论一定成立的是()A.四边形周长不变B.C.四边形面积不变D.变式5-1.(2022·内蒙古包头·中考真题)如图,在边长为1的小正方形组成的网格中,A,B,C,D四个点均在格点上,与相交于点E,连接,则与的周长比为()A.1:4B.4:1C.1:2D.2:1变式5-2.(2021·黑龙江·统考中考真题)如图,平行四边形的对角线、相交于点E,点O为的中点,连接并延长,交的延长线于点D,交于点G,连接、,若平行四边形的面积为48,则的面积为()A.5.5B.5C.4D.3变式5-3.(2021·江西·中考真题)如图,将沿对角线翻折,点落在点处,交于点,若,,,,则的周长为______.变式5-4.(2022·四川内江·统考中考真题)如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC 上的动点,EF∥BC,则AF+CE的最小值是_____.变式5-5.(2021·山西·统考中考真题)综合与实践,问题情境:数学活动课上,老师出示了一个问题:如图①,在中,,垂足为,为的中点,连接,,试猜想与的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将沿着(为的中点)所在直线折叠,如图②,点的对应点为,连接并延长交于点,请判断与的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将沿过点的直线折叠,如图③,点A 的对应点为,使于点,折痕交于点,连接,交于点.该小组提出一个问题:若此的面积为20,边长,,求图中阴影部分(四边形)的面积.请你思考此问题,直接写出结果.知识点二 三角形中位线三角形中位线概念:连接三角形两边中点的线段叫做三角形中位线。
《19.2平行四边形》作业设计方案-初中数学沪科版12八年级下册
《平行四边形》作业设计方案(第一课时)一、作业目标本作业设计旨在通过练习和实践,让学生熟练掌握平行四边形的定义、性质及基本判别方法。
通过实际运用,提高学生的逻辑思维能力和空间想象能力,加深对平行四边形知识的理解。
二、作业内容本课作业主要包括以下内容:1. 概念复习:回顾平行四边形的定义,理解其对边相等、对角相等的特性。
2. 性质理解:掌握平行四边形中内角与外角的关系,了解其与矩形的联系与区别。
3. 基础练习:完成一系列平行四边形相关的填空题和选择题,如判别平行四边形的方法、求证平行四边形的性质等。
4. 实践应用:通过绘制平行四边形,理解其在实际生活中的运用,如建筑设计、道路规划等。
5. 拓展提升:设计一些稍具难度的题目,如平行四边形的面积计算、与其它几何图形的综合运用等。
三、作业要求本课作业的具体要求如下:1. 所有题目必须独立完成,严禁抄袭他人答案或使用工具替代思考。
2. 对于概念复习部分,要求学生准确记忆并能够流利表述平行四边形的定义及性质。
3. 基础练习部分,要求学生熟练掌握判别平行四边形的方法,并能够灵活运用所学知识进行求证。
4. 实践应用部分,学生需自行绘制平行四边形,并尝试解释其在生活中的实际应用。
5. 拓展提升部分,学生可尝试多种方法解决问题,鼓励创新思维和探索精神。
四、作业评价本课作业的评价标准如下:1. 概念复习部分:是否准确记忆并能够流利表述平行四边形的定义及性质。
2. 基础练习部分:解题思路是否清晰,计算过程是否正确,答案是否准确。
3. 实践应用部分:绘图是否规范,是否能准确解释平行四边形在生活中的应用。
4. 拓展提升部分:解题方法是否多样,是否有创新思维和探索精神。
五、作业反馈本课作业完成后,教师将进行批改和反馈:1. 对学生的答案进行详细批改,指出错误并给出正确答案。
2. 对学生的解题思路和过程进行评价,鼓励优秀表现的学生。
3. 根据学生的作业情况,调整后续的教学计划和教学方法。
《22.1平行四边形的性质》作业设计方案-初中数学冀教版12八年级下册
《平行四边形的性质》作业设计方案(第一课时)一、作业目标本作业旨在通过学生对平行四边形性质的学习和练习,巩固其对于平行四边形概念的理解,掌握平行四边形的性质,并能灵活运用这些性质解决实际问题。
二、作业内容1. 基础练习练习识别平行四边形的基本图形特征,如对边平行且相等。
让学生尝试画出一个标准的平行四边形,并标出其所有性质相关的线(如对角线)。
2. 理论学习阅读并理解平行四边形的定义、性质及其证明方法。
掌握平行四边形与矩形、菱形等特殊四边形的关系及其性质。
3. 实践应用完成一组关于平行四边形性质的填空题和选择题,加深对性质的理解。
解答几道涉及平行四边形性质的实际应用题,如利用平行四边形的性质求解角度或边长。
4. 拓展延伸探索平行四边形在不同几何图形中的应用,如与其他图形的组合、切割等。
尝试证明一些与平行四边形相关的几何命题,如对角线互相平分的性质等。
三、作业要求1. 所有题目必须独立完成,不得抄袭他人作业。
2. 基础练习部分要求准确无误地画出图形,并标明所有必要的标记。
3. 理论学习部分要求理解并能够用自己的话解释平行四边形的性质及其与其他图形的联系。
4. 实践应用部分要求能够灵活运用所学知识解决实际问题,并附上详细的解题步骤。
5. 拓展延伸部分鼓励创新思考,可以尝试提出自己的问题或命题,并附上证明过程。
四、作业评价1. 基础练习部分评价标准为图形的准确性和标记的完整性。
2. 理论学习部分评价学生对定义和性质的掌握程度及理解深度。
3. 实践应用部分评价学生运用所学知识解决问题的能力及解题步骤的清晰度。
4. 拓展延伸部分评价学生的创新思维及命题证明的准确性。
五、作业反馈1. 教师将对作业进行批改,并给出详细的评语和分数。
2. 对于普遍存在的问题,将在课堂上进行讲解和纠正。
3. 对于优秀的学生和作业,将在课堂上进行表扬和展示。
4. 学生可根据作业反馈调整学习策略,以更好地掌握平行四边形的性质。
作业设计方案(第二课时)一、作业目标本作业旨在巩固学生在初中数学课程中关于平行四边形性质的理解,通过实际操作和问题解决,提高学生的空间想象能力和逻辑推理能力,为后续学习打下坚实的基础。
冀教版小学数学二年级下学期第五单元《四边形的认识》单元知识点汇总与教案
第五单元总结智慧小锦囊四边形的认识认识长方形 长方形有4条边和4个角,对边相等,4个角都是直角 认识正方形正方形的4条边相等,4个角都是直角认识平行四边形 1.平行四边形两组对边分别相等 2.平行四边形是四边形的一种,具有不稳定性易错集锦易错点1:四边形认识错误。
误区点拨:(1)四边形的认识,有时对于边是曲线或凹进去的多边形认识错误。
(2)由四条线段围成的封闭图形就是四边形。
边一定是直的,围成的图形是封闭的,只要符合这两点,即使图形有的边凹进去,也是四边形。
易错点2:在长方形中剪去一个最大的正方形,正方形的边长的确定。
误区点拨:(1)在长方形中剪去一个最大的正方形,把长方形的长当成正方形的边长。
(2)在长方形中剪去一个最大的正方形,要保证最大,正方形的边长必须最大,同时又要满足四条边都相等,所以要用长方形的宽作为正方形的边长。
第五单元四边形的认识教材分析:本单元内容是在学生初步认识了长方形和正方形和三角形的基础上学习的。
教材选择了许多与学生生活息息相关的题材作为素材,注重学生已有的生活经验,将视野从课堂拓宽到生活的空间,引导他们去观察生活,从现实世界中发现有关空间与图形的问题。
根据学生的年龄特点及认知规律,教材对四边形的概念没有下严格的定义,因此让学生感知四边形的特征是目标之一,更重要的是要在学生掌握四边形特征的基础上发展学生的空间观念。
主要单元内容包括探索长方形、正方形的特征,初步认识四边形和平行四边形,用七巧板拼图。
教学目标1.经历探索长方形、正方形特征的过程,能用自己的语言描述长方形、正方形的特征。
2.初步认识四边形,能辨认平行四边形,能在方格纸上画长方形、正方形和平行四边形。
3.了解七巧板,能用七巧板拼图。
在拼图和图案设计的过程中感受图形的美妙,感受我国人民的智慧、激发学生的民族自豪感。
4.在猜测、验证、交流等数学活动中获得良好的情感体验,激发探索和创新的欲望,培养初步的空间观念。
教学重点:长方形、正方形特征。
苏教版数学二年级上册第二章平行四边形初步认识同步练习题
苏教版数学二年级上册第二章平行四边形初步认识同步练习题苏教版数学二年级上册第二章平行四边形的初步认识同步练习题姓名:________ 班级:________ 成绩:________ 小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、选择题(共15题;共30分)1.(2分)等底等高的两个平行四边形的面积()。
A.相等B.有可能不同C.一定不同D.无法确定 2.(2分)平行四边形的特点不包括()。
A.有四条边B.有四个角C.四条边都相等D.两组对边分别平行 3.(2分)从平行四边形的一条边上的一点到对边可以引()垂线。
A.一条B.两条C.无数条 4.(2分)把一个长方形沿着对角拉成平行四边形时,面积与原来相比()A.不变B.变大C.变小 5.(2分)把一个平行四边形活动框架拉成一个长方形,那么现在长方形与原来平行四边形相比()。
A.周长不变、面积不变B.周长变了、面积不变C.周长不变、面积变了D.周长变了、面积变了 6.(2分)下面图形中与其他图形不是同类的是()。
A.B.C.7.(2分)下列图片中,没有图形()A.三角形B.圆C.正方形 8.(2分)教室黑板的表面是()。
A.圆形B.长方形C.三角形 9.(2分)在下列图形中,是平面上曲线图形的是()A.三角形B.正方形C.长方形D.圆 10.(2分)下列选项中,()不是平面图形。
A.B.C.11.(2分)一个四边形的四条边分别是8厘米、6厘米、10厘米、6厘米.这个四边形,可能是()A.长方形B.平行四边形C.梯形D.正方形 12.(2分)下列图形中不同类的是()。
A.B.C.13.(2分)用一定不能画出()。
A.B.14.(2分)用一定不能画出()。
A.B.C.15.(2分)右图中有()个平行四边形。
A.4B.6C.8D.9 二、填空题(共5题;共14分)16.(1分)平行四边形具有_______变形的特性。
17.(1分)小聪和小明都用两根长6厘米和两根长4厘米的小棒摆了一个平行四边形,他们摆的图形的_______一定相等。
浙教版数学八年级下册第四章《平行四边形》复习总结:知识点与练习
教师:学生:时间:_ 2016 _年_ _月日段第__ 次课
ABCD中,延长
随堂练习三:
.若平行四边形的两邻边的长分别为
17在ABCD中,AB比AD大2,∠DAB的角平分线AE交CD于E,∠ABC的角平分线BF交CD于F,若平行四边形ABCD的周长为24,求CE、FD、EF的长
19已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF 是平行四边形.
20、如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形吗?说明理由.
21.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?
22.如图,△ABC为等边三角形,D、F分别是BC、AB上的点,且CD=BF,以AD•为边作等边△ADE.(1)求证:△ACD≌△CBF;
(2)当D在线段BC上何处时,四边形CDEF为平行四边形,且∠DEF=30°?•证明你的结论.
23已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是平行四边形.。
八年级平行四边形(二)
【答案】B
4、如图,在平行四边形ABCD中,AB= AC,若平行四边形ABCD的周长为38 ,△ABC的周长比平行四边形ABCD的周长少l0 ,求平行四边形ABCD的一组邻边的长.
【提示】△ABC的周长: =28
平行四边形ABCD的周长:
【答案】
5、如图,平行四边形ABCD中,BE平分∠ABC且交边AD于点E,如果AB=6 ,BC=l0 ,试求:
题型二:证明线段互相平分
例1、已知:如图.平行四边形ABCD中,E、F分别是AB、CD的中点,G、H分别在AD、BC上,AG =CH.求证:EF与GH互相平分.
【提示】根据本题要证得结论可以分析出本题只要证明四边形GFHE是平行四边形即可.连结GF、FH、HE、EG
例2、如图,平行四边形ABCD的对角线AC和BD交于O,E、F分别为OB、OD的中点,过O任作一直线分别交AB、CD于G、H.求证:GF∥EH.
【注意】边:对边平行,对边相等;角:对角相等,邻角互补;对角线:对角线互相平分。
知识点3:平行四边形的判定
根据定义来判定:两组对边分别平行的四边形叫做平行四边形,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形。
1.平行四边形判定定理l:如果一个四边形的两组对边分别相等,那么这个四边形是平行四边形.
【提示】AD EF BC.
1、专题精讲
题型一:证明线段相等
例1、己知:如图,在平行四边形ABCD中,AC、BD交于点O,EF过点O,分别交CB,AD的延长线于点E、F,求证:AE=CF.
【提示】易证△DOF≌△BOE,DF=BE,AF CE,证得四边形AECF为平行四边形.(△DOF≌△BOE及已知条件,根据对角线互相平分的四边形是平行四边形,证得四边形AECF为平行四边形.)
中考数学 第一部分 考点研究 第五章 四边形 课时23 平行四边形与多边形练习 新人教版(2021
江西省2017年中考数学第一部分考点研究第五章四边形课时23 平行四边形与多边形练习新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(江西省2017年中考数学第一部分考点研究第五章四边形课时23 平行四边形与多边形练习新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为江西省2017年中考数学第一部分考点研究第五章四边形课时23 平行四边形与多边形练习新人教版的全部内容。
第五章四边形课时23 平行四边形与多边形(建议时间:60分钟分值:87分)评分标准:选择题和填空题每小题3分.基础过关1。
(2016北京)内角和为540°的多边形是()2。
(2016株洲)已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E是BC的中点,以下说法错误的是( )A. OE=错误!DC B。
OA=OCC. ∠BOE=∠OBAD. ∠OBE=∠OCE第3题图3。
(2016丽水)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为( )A。
13 B。
17 C。
20 D. 264。
一个多边形对角线的数目是边数的2倍,这样的多边形的边数是()A。
6 B。
7 C. 8 D。
95。
(2016绵阳)如图,平行四边形ABCD的周长是26 cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3 cm,则AE的长度为( )A. 3 cm B。
4 cm C。
5 cm D。
8 cm第5题图第6题图6。
如图,已知▱ABCD中,AE⊥BC,AF⊥DC,BC∶CD=3∶2,AB=EC,则∠EAF=( )A. 50° B。
人教版八年级数学下《第十八章平行四边形》课时作业(含答案)
人教版八年级数学下《第十八章平行四边形》课时作业(含答案)第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角特征01基础题知识点1平行四边形的概念1.如图,在▱ABCD中,EF∥BC,则图中平行四边形有3个.第1题图第2题图2.如图,AB∥EG,EF∥BC,AC∥FG,图中有3个平行四边形,它们分别是▱ABCE,▱ABGC,▱AFBC.知识点2平行四边形的边、角特征3.(教材P43T1的变式)在▱ABCD中,AD=3 cm,AB=2 cm,则▱ABCD的周长等于(A) A.10 cm B.6 cmC.5 cm D.4 cm4.(2016·衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是(A)A.45°B.55°C.65°D.75°5.在▱ABCD中,两邻边的差为4 cm,周长为32 cm,则两邻边长分别为10__cm,6__cm.6.(1)在▱ABCD 中,若∠A∶∠B=5∶4,则∠C=100°;(2)已知▱ABCD 的周长为28 cm,若AB∶BC=3∶4,则AB=6__cm,BC=8__cm.7.如图,在▱ABCD中,CM⊥AD于点M,CN⊥AB于点N,若∠B=45°,求∠MCN的大小.解:∵四边形ABCD是平行四边形,∴AB∥CD,∠B=∠D.∵∠B=45°,∴∠BCD=135°,∠D=45°.∵CM⊥AD,CN⊥AB,∴∠BNC=∠DMC=90°.∴∠BCN=∠DCM=45°.∴∠MCN=∠BCD-∠BCN-∠DCM=45°.8.如图,已知四边形ABCD是平行四边形,点E,B,D,F在同一直线上,且BE=DF.求证:AE=CF.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD. ∴∠ABD =∠CDB. ∴∠ABE =∠CDF.在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF(SAS ). ∴AE =CF.知识点3 平行线间的距离9.如图,a ∥b ,AB ∥CD ,CE ⊥b ,FG ⊥b ,点E ,G 为垂足,则下列说法不正确的是(D )A .AB =CD B .EC =GFC .A ,B 两点的距离就是线段AB 的长度D .a 与b 的距离就是线段CD 的长度第9题图 第10题图10.(2016·柳州)如图,若▱ABCD 的面积为20,BC =5,则边AD 与BC 间的距离为4.02 中档题11.在▱ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是(A)A .2∶5∶2∶5B .3∶4∶4∶5C .4∶4∶3∶2D .2∶3∶5∶612.如图,在▱ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是(B )A .7B .10C .11D .12第12题图 第13题图13.如图所示,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中△ABC 的面积(C )A .变大B .变小C .不变D .无法确定 14.(2017·鹤岗)在▱ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则▱ABCD 的周长是(C)A .22B .20C .22或20D .18 15.(2017·武汉)如图,在▱ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为30°.第15题图 第16题图16.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为25°.17.如图,在▱ABCD 中,点P 是对角线BD 上的一个动点(点P 与点B 、点D 不重合),过点P 作EF ∥BC ,GH ∥AB ,则图中面积始终相等的平行四边形有3 对. 18.(2016·温州)如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠DAE =∠F ,∠D =∠ECF. ∵E 是CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAE =∠F ,∠D =∠ECF ,DE =CE ,∴△ADE ≌△FCE(AAS ). (2)∵△ADE ≌△FCE , ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF =90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.03 综合题19.如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA.(1)求∠APB 的度数;(2)如果AD =5 cm ,AP =8 cm ,求△APB 的周长. 解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥CB ,AB ∥CD ,AD =BC ,AB =DC. ∴∠DAB +∠CBA =180°.又∵AP 和BP 分别平分∠DAB 和∠CBA , ∴∠PAB +∠PBA =12(∠DAB +∠CBA)=90°.∴∠APB =180°-(∠PAB +∠PBA)=90°. (2)∵AP 平分∠DAB ,AB ∥CD , ∴∠DAP =∠PAB =∠DPA. ∴AD =DP =5 cm .同理:PC =BC =AD =5 cm . ∴AB =DC =DP +PC =10 cm .在Rt △APB 中,AB =10 cm ,AP =8 cm , ∴BP =102-82=6(cm ).∴△APB 的周长为6+8+10=24(cm ).第2课时 平行四边形的对角线性质01 基础题知识点1 平行四边形的对角线互相平分1.如图,在▱ABCD 中,O 是对角线AC ,BD 的交点,下列结论错误的是(C )A .AB ∥CD B .AB =CDC .AC =BD D .OA =OC第1题图 第2题图2.(教材P 44T 1的变式)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD =8,BD =12,AC =6,则△OBC 的周长为(B)A .13B .17C .20D .263.如图,在▱ABCD 中,已知∠ODA =90°,AC =10 cm ,BD =6 cm ,则AD 的长为(A )A .4 cmB .5 cmC .6 cmD .8 cm第3题图 第4题图4.如图,▱ABCD 的周长为16 cm ,AC ,BD 相交于点O ,EO ⊥BD 交AD 于点E ,则△ABE 的周长为(C)A .4 cmB .6 cmC .8 cmD .10 cm5.如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC ,BD 相交于点O.若AC =6,则线段AO 的长度等于3.6.在▱ABCD 中,AB =3,BC =5,对角线AC ,BD 相交于点O ,则OA 的取值范围是1<OA <4.7.如图所示,在▱ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 在对角线AC 上,且AM =CN ,求证:BM ∥DN.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD. ∵AM =CN ,∴OM =ON.在△BOM 和△DON 中,⎩⎨⎧OB =OD ,∠BOM =∠DON ,OM =ON ,∴△BOM ≌△DON(SAS ).∴∠OBM=∠ODN.∴BM∥DN.知识点2平行四边形的面积8.如图,在▱ABCD中,O是对角线AC,BD的交点,若△AOD的面积是5,则▱ABCD的面积是(C) A.10 B.15C.20 D.25第8题图第9题图9.如图,在▱ABCD中,对角线AC,BD交于点O,若DO=1.5 cm,AB=5 cm,BC=4 cm,则▱ABCD的面积为12cm2.02中档题10.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线的和是(C) A.18 B.28C.36 D.46第10题图第11题图11.如图,▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,则▱ABCD的面积为(B) A.60 cm2B.30 cm2C.20 cm2D.16 cm212.(2017·眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE =1.5,则四边形EFCD的周长为(C)A.14 B.13 C.12 D.10第12题图第13题图13.如图,若▱ABCD的周长为22 cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3 cm,则AD =4__cm,AB=7__cm.14.如图,在▱ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′15.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=25,且AO∶BO=2∶3.(1)求AC 的长;(2)求▱ABCD 的面积.解:(1)∵AO ∶BO =2∶3, ∴设AO =2x ,BO =3x (x >0).∵AC ⊥AB ,AB =25, ∴(2x)2+(25)2=(3x)2. 解得x =2. ∴AO =4.∵四边形ABCD 是平行四边形, ∴AC =2AO =8. (2)∵S △ABC =12AB·AC=12×25×8 =85,∴S ▱ABCD =2S △ABC =2×85=16 5.16.(2016·本溪)如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB ,CD 分别相交于点E ,F ,连接EC.(1)求证:OE =OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求▱ABCD 的周长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,DC ∥AB. ∴∠FDO =∠EBO.在△DFO 和△BEO 中,⎩⎨⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO(ASA ). ∴OE =OF.(2)∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC ,OA =OC. ∵EF ⊥AC ,∴AE =CE. ∵△BEC 的周长是10,∴BC +BE +CE =BC +BE +AE =BC +AB =10. ∴C ▱ABCD =2(BC +AB)=20.03综合题17.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以P A,PC为边作▱P AQC,则对角线PQ长度的最小值为(D)A.6B.8C.2 2D.4 218.1.2平行四边形的判定第1课时平行四边形的判定01基础题知识点1两组对边分别相等的四边形是平行四边形1.如图,AB=CD=EF,且△ACE≌△BDF,则图中平行四边形的个数为(C)A.1B.2C.3D.42.若四边形ABCD的边AB=CD,BC=DA,则这个四边形是平行四边形,理由是两组对边分别相等的四边形是平行四边形.知识点2两组对角分别相等的四边形是平行四边形3.下面给出四边形ABCD中,∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD为平行四边形的是(B)A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶34.一个四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的是(D)A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.108°,72°,108°知识点3对角线互相平分的四边形是平行四边形5.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件BO=DO(答案不唯一)(只添一个即可),使四边形ABCD是平行四边形.6.已知:如图,在四边形ABCD中,AB∥CD,对角线AC,BD相交于点O,且AO=CO.求证:四边形ABCD 是平行四边形.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO.又∵AO=CO,∴△ABO≌△CDO(AAS).∴BO=DO.∴四边形ABCD是平行四边形.7.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是OB ,OD 的中点,求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵点E ,F 分别是OB ,OD 的中点, ∴OE =12OB ,OF =12OD.∴OE =OF.又∵OA =OC ,∴四边形AECF 是平行四边形.知识点4 一组对边平行且相等的四边形是平行四边形8.如图所示,四边形ABCD 和AEFD 都是平行四边形,则四边形BCFE 是平行四边形,理由:一组对边平行且相等的四边形是平行四边形.9.(2016·新疆)如图,在四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF.求证:四边形ABCD 是平行四边形.证明:∵AE ⊥AD ,CF ⊥BC , ∴∠EAD =∠FCB =90°.∵AD ∥BC ,∴∠ADE =∠CBF.在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,∠EAD =∠FCB ,AE =CF ,∴△AED ≌△CFB(AAS ). ∴AD =BC. 又∵AD ∥BC ,∴四边形ABCD 是平行四边形.02 中档题10.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC ,BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(A )A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形11.(2016·衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或-2.12.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC上,且AF=CE.求证:四边形BEDF是平行四边形.证明:连接BD交AC于O,∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AO=CO,BO=DO.∵AF=CE,∴AF-AO=CE-CO,即OF=OE.又∵OB=OD,∴四边形BEDF是平行四边形.13.(2017·南京)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∴OE=OF.14.(2016·张家界)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.解:四边形ABFC 是平行四边形. 证明:∵AB ∥CD ,∴∠BAE =∠CFE.∵E 是BC 的中点,∴BE =CE. 在△ABE 和△FCE 中,⎩⎨⎧∠BAE =∠CFE ,∠AEB =∠FEC ,BE =CE ,∴△ABE ≌△FCE(AAS).∴AB =CF .又∵AB ∥CF ,∴四边形ABFC 是平行四边形.03 综合题15.如图所示,在四边形ABCD 中,AD ∥BC ,AD =24 cm ,BC =30 cm ,点P 从点A 向点D 以1 cm /s 的速度运动,到点D 即停止.点Q 从点C 向点B 以2 cm /s 的速度运动,到点B 即停止.直线PQ 将四边形ABCD 截成两个四边形,分别为四边形ABQP 和四边形PQCD ,则当P ,Q 两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?解:设当P ,Q 两点同时出发t s 后,四边形ABQP 或四边形PQCD 是平行四边形. 根据题意,得AP =t cm ,PD =(24-t)cm ,CQ =2t cm ,BQ =(30-2t)cm (0≤t ≤15). ①若四边形ABQP 是平行四边形, ∵AD ∥BC ,∴还需满足AP =BQ. ∴t =30-2t.解得t =10.∴10 s 后四边形ABQP 是平行四边形; ②若四边形PQCD 是平行四边形, ∵AD ∥BC ,∴还需满足PD =CQ.∴24-t =2t.解得t =8.∴8 s 后四边形PQCD 是平行四边形.综上所述:当P ,Q 两点同时出发8秒或10秒后,所截得两个四边形中其中一个四边形为平行四边形.第2课时三角形的中位线01基础题知识点三角形的中位线1.如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4C.6 D.82.如图,在△ABC中,点D,E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(C) A.8 B.10C.12 D.14第2题图第3题图3.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为(C) A.50°B.60°C.70°D.80°4.(2016·梧州)如图,在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(B)A.5 B.7C.9 D.11第4题图第5题图5.如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD=20 m,则A,B之间的距离是40m.6.(2017·怀化)如图,在▱ABCD中,对角线AC,BD 相交于点O,点E是AB的中点,OE=5 cm,则AD的长为10cm.第6题图第7题图7.如图,CD是△ABC的中线,点E,F分别是AC,DC的中点,EF=1,则BD=2.8.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8 cm,E,F分别为边AC,AB的中点.(1)求∠A的度数;(2)求EF的长.解:(1)∵∠C=90°,∴∠A+∠B=90°.∴∠A=90°-∠B=90°-60°=30°.(2)在Rt △ABC 中,∠A =30°,AB =8 cm , ∴BC =12AB =4 cm .∵E ,F 分别是AC ,AB 的中点, ∴EF 是△ABC 的中位线. ∴EF =12BC =2 cm .9.如图,在△ABC 中,D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.证明:∵D ,E ,F 分别为AB ,BC ,CA 的中点, ∴DF ,DE 为△ABC 的中位线. ∴DF ∥BC ,DE ∥AC.∴四边形DECF 是平行四边形.02 中档题10.如图,点D ,E ,F 分别为△ABC 各边中点,下列说法正确的是(C )A .DE =DFB .EF =12ABC .S △ABD =S △ACD D .AD 平分∠BAC11.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是(C )A .15米B .20米C .25米D .30米第11题图 第12题图12.(2016·陕西)如图,在△ABC 中,∠B =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为(B)A .7B .8C .9D .1013.如图,▱ABCD 的对角线AC ,BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是9.第13题图 第14题图14.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =18°,则∠PFE 的度数是18°.15.如图,四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,顺次连接E ,F ,G ,H ,得到的四边形EFGH 叫中点四边形.求证:四边形EFGH 是平行四边形.证明:连接BD.∵E ,H 分别是AB ,AD 的中点, ∴EH 是△ABD 的中位线. ∴EH =12BD ,EH ∥BD.同理FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴四边形EFGH 是平行四边形.16.如图,在▱ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上,∴OE ∥CF.∴四边形OCFE 是平行四边形.03 综合题17.如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,求线段DH 的长.解:∵AE 为△ABC 的角平分线, ∴∠FAH =∠CAH. ∵CH ⊥AE ,∴∠AHF =∠AHC =90°. 在△AHF 和△AHC 中,⎩⎨⎧∠FAH =∠CAH ,AH =AH ,∠AHF =∠AHC ,∴△AHF ≌△AHC(ASA ). ∴AF =AC ,HF =HC. ∵AC =3,AB =5,∴AF =AC =3,BF =AB -AF =5-3=2. ∵AD 为△ABC 的中线, ∴DH 是△BCF 的中位线. ∴DH =12BF =1.小专题(三) 平行四边形的证明思路类型1 若已知条件出现在四边形的边上,则考虑:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形1.如图,在▱ABCD 中,点E 在AB 的延长线上,且EC ∥BD.求证:四边形BECD 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,即BE ∥DC. 又∵EC ∥BD ,∴四边形BECD 是平行四边形.2.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE =DF.求证:(1)BE =CF ;(2)四边形BECF 是平行四边形. 证明:(1)∵BE ⊥AD ,CF ⊥AD , ∴∠AEB =∠DFC =90°. ∵AB ∥CD ,∴∠A =∠D . 在△AEB 和△DFC 中,⎩⎨⎧∠AEB =∠DFC ,AE =DF ,∠A =∠D ,∴△AEB ≌△DFC (ASA). ∴BE =CF .(2)∵BE ⊥AD ,CF ⊥AD , ∴BE ∥CF . 又∵BE =CF ,∴四边形BECF 是平行四边形.3.如图,在▱ABCD 中,分别以AD ,BC 为边向内作等边△ADE 和等边△BCF ,连接BE ,DF.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°.∴BF =DE ,CF =AE ,∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE ,即∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形.4.(2016·钦州)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF =DE ,连接BF.求证:(1)BF =DC ;(2)四边形ABFD 是平行四边形.证明:(1)∵DE 是△ABC 的中位线, ∴CE =BE.在△DEC 和△FEB 中,⎩⎨⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB(SAS ). ∴BF =DC.(2)∵DE 是△ABC 的中位线, ∴DE ∥AB ,且DE =12AB.又∵EF =DE , ∴DE =12DF.∴DF =AB. 又∵DF ∥AB ,∴四边形ABFD 是平行四边形.5.如图,已知D ,E ,F 分别在△ABC 的边BC ,AB ,AC 上,且DE ∥AF ,DE =AF ,将FD 延长到点G ,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.解:ED与AG互相平分.理由:连接EG,AD.∵DE∥AF,DE=AF,∴四边形AEDF是平行四边形.∴AE∥DF,AE=DF.又∵FG=2DF,∴DG=DF.∴AE=DG.又∵AE∥DG,∴四边形AEGD是平行四边形.∴ED与AG互相平分.类型2若已知条件出现在四边形的角上,则考虑利用“两组对角分别相等的四边形是平行四边形”6.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.类型3若已知条件出现在对角线上,则考虑利用“对角线互相平分的四边形是平行四边形”7.如图,▱ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH.求证:四边形EGFH 是平行四边形.证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC.∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证得OG =OH.∴四边形EGFH 是平行四边形.周周练(18.1)(时间:45分钟 满分:100分)一、选择题(每小题 4分,共32分)1.下面的性质中,平行四边形不一定具有的是(A )A .对角互补B .邻角互补C .对角相等D .对边相等2.平行四边形的周长为24 cm ,相邻两边的差为2 cm ,则平行四边形的各边长为(B )A .4 cm ,8 cm ,4 cm ,8 cmB .5 cm ,7 cm ,5 cm ,7 cmC .5.5 cm ,6.5 cm ,5.5 cm ,6.5 cmD .3 cm ,9 cm ,3 cm ,9 cm3.下列说法错误的是(D)A .对角线互相平分的四边形是平行四边形B .两组对边分别相等的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等,另一组对边平行的四边形是平行四边形 4.(2017·丽水)如图,在▱ABCD 中,连接AC ,∠B =∠CAD =45°,AB =2,则BC 的长是(C)A. 2B .2C .2 2D .4第4题图 第5题图5.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,E 是BC 的中点,以下说法错误的是(D)A .OE =12DCB .OA =OCC .∠BOE =∠OBAD .∠OBE =∠OCE6.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为(D )A .6B .12C .20D .247.在▱ABCD 中,AD =8,AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,且EF =2,则AB 的长为(D)A .3B .5C .2或3D .3或58.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是(B )A.②③B.②⑤C.①③④D.④⑤二、填空题(每小题4分,共24分)9.如图所示,在▱ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有4个平行四边形.第9题图第10题图10.(2016·江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.11.(2016·河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是110°.12.在▱ABCD中,AB,BC,CD的长度分别为2x+1,3x,x+4,则▱ABCD的周长是32.13.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件答案不唯一,如:AB=CD(写一个即可),使四边形ABCD是平行四边形.第13题图第14题图14.(2017·河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是8.三、解答题(共44分)15.(10分)(2017·山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.证明:证法一:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE=DF,∴AB+BE=CD+DF,即AE=CF.∵AB∥CD,∴AE∥CF.∴∠E=∠F.又∵∠AOE=∠COF,∴△AOE≌△COF(AAS).∴OE=OF.证法二:连接AF,CE.∵四边形ABCD是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF. ∵AB ∥CD ,∴AE ∥CF.∴四边形AECF 是平行四边形.∴OE =OF.16.(10分)(2016·黄冈)如图,在▱ABCD 中,E ,F 分别是边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H.求证:AG =CH.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC.∴∠HCF =∠GAE.又∵E ,F 分别是边AD ,BC 的中点, ∴AE =FC ,DE =BF.又∵DE ∥BF ,∴四边形BFDE 是平行四边形. ∴∠BED =∠BFD.∴∠AEG =∠CFH. 在△AGE 和△CHF 中,⎩⎨⎧∠GAE =∠HCF ,AE =CF ,∠AEG =∠CFH ,∴△AGE ≌△CHF(ASA ).∴AG =CH.17.(12分)已知:如图,在四边形ABCD 中,AB =CD ,E ,F ,G 分别是AD ,BC ,BD 的中点,GH 平分∠EGF 交EF 于点H.(1)猜想:GH 与EF 间的关系是GH 垂直平分EF ; (2)证明你的猜想.证明:∵E ,G 分别是AD ,BD 的中点, ∴EG =12AB.∵F ,G 分别是BC ,BD 的中点, ∴GF =12CD.∵AB =CD , ∴EG =GF.又∵GH 平分∠EGF , ∴GH 垂直平分EF.18.(12分)如图1,在▱ABCD 中,∠ABC ,∠ADC 的平分线分别交AD ,BC 于点E ,F.(1)求证:四边形EBFD 是平行四边形; (2)小明在完成(1)的证明后继续进行了探索.连接AF ,CE ,分别交BE ,FD 于点G ,H ,得到四边形EGFH.此时,他猜想四边形EGFH 是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE ∥DF ,要证明四边形EGFH 是平行四边形,只需证GF ∥EH .由(1)可证ED =BF ,则AE =FC ,又由AE ∥CF , 故四边形AFCE 是平行四边形,从而可证得四边 形EGFH 是平行四边形.图2证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠ABC =∠ADC ,AD =BC. ∵BE 平分∠ABC ,∴∠ABE =∠EBC =12∠ABC.∵DF 平分∠ADC ,∴∠ADF =∠CDF =12∠ADC.∴∠EBC =∠ADF.∵AD ∥BC ,∴∠AEB =∠EBC. ∴∠AEB =∠ADF. ∴EB ∥DF. 又∵ED ∥BF ,∴四边形EBFD 是平行四边形.18.2特殊的平行四边形18.2.1矩形第1课时矩形的性质01基础题知识点1矩形的性质1.下列性质中,矩形具有但平行四边形不一定具有的是(C)A.对边相等B.对角相等C.对角线相等D.对边平行2.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D)A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD第2题图第3题图3.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是(C) A.8 B.6 C.4 D.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为(B) A.30°B.60°C.90°D.120°第4题图第5题图5.(2017·怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是(A)A.3 cm B.6 cmC.10 cm D.12 cm6.如果矩形的一边长为6,一条对角线的长为10,那么这个矩形的另一边长是8.7.如图,已知矩形的对角线AC与BD相交于点O,若AO=1,则BD=2.第7题图第8题图8.(2016·昆明)如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是24.9.(2016·岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF.求证:BF=CD.证明:∵四边形ABCD为矩形,∴∠B=∠C=90°.∴∠BFE+∠BEF=90°.∵EF ⊥DF ,∴∠DFE =90°.∴∠BFE +∠CFD =90°. ∴∠BEF =∠CFD .在△BEF 和△CFD 中,⎩⎨⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD (ASA).∴BF =CD .知识点2 直角三角形斜边上的中线等于斜边的一半10.如图,在Rt △ABC 中,∠C =90°,AB =10 cm ,D 为AB 的中点,则CD =5cm .第10题图 第11题图11.如图,在Rt △ABC 中,∠ACB =90°,D ,E ,F 分别是AB ,BC ,CA 的中点,若CD =5 cm ,则EF =5cm .12.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,如果ED =5 cm ,求HF 的长.解:由题意得:DE 是△ABC 的中位线, ∴DE =12AC .∵HF 是Rt △AHC 的斜边AC 的中线, ∴HF =12AC .∴HF =DE =5 cm.02 中档题 13.(2016·荆门)如图,在矩形ABCD 中(AD>AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是(B)A .△AFD ≌△DCEB .AF =12ADC .AB =AFD .BE =AD -DF第13题图 第14题图14.(2016·绵阳)如图,▱ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为(B)A .3 cmB .4 cmC .5 cmD .8 cm15.如图,已知在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE ∶∠BAE =3∶1,则∠EAC 的度数是(C )A .18°B .36°C .45°D .72°第15题图 第16题图16.(2016·宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB ,BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是(A )A .4.8B .5C .6D .7.2 17.(2017·广西四市同城)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF.(1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形ABCD 的面积.解:(1)证明:∵四边形ABCD 是矩形,∴OA =OC ,OB =OD ,AC =BD ,∠ABC =90°. ∵BE =DF ,∴OE =OF . 在△AOE 和△COF 中,⎩⎨⎧OA =OC ,∠AOE =∠COF ,OE =OF ,∴△AOE ≌△COF (SAS). ∴AE =CF .(2)∵OA =OC ,OB =OD ,AC =BD ,∴OA =OB . ∵∠AOB =∠COD =60°, ∴△AOB 是等边三角形.∴OA =AB =6.∴AC =2OA =12.在Rt △ABC 中,BC =AC 2-AB 2=63,∴S 矩形ABCD =AB ·BC =6×63=36 3.18.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,延长CB 到点E ,使BE =BC ,连接AE.求证:(1)四边形ADBE 是平行四边形;(2)若AB =4,OB =52,求四边形ADBE 的周长.证明:(1)∵四边形ABCD为矩形,∴AD∥BC,AD=BC.又∵BE=BC,且点C,B,E在一条直线上,∴AD∥BE,AD=BE.∴四边形ADBE是平行四边形.(2)∵四边形ABCD为矩形,∴∠BAD=90°,OB=OD.∴BD=2OB=5.在Rt△BAD中,AD=52-42=3.又∵四边形ADBE为平行四边形,∴BE=AD=3,AE=BD=5.03综合题19.如图,将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为.习题解析第2课时矩形的判定01基础题知识点1有一个角是直角的平行四边形是矩形1.下列说法正确的是(D)A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形2.如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形,求证:四边形ADBE 是矩形.解:∵AB=AC,AD是BC边上的中线,∴AD⊥BC.∴∠ADB=90°.又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形.3.(2016·内江)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.解:(1)证明:∵AF∥BC,∴∠AFC=∠FCB.又∵∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS).∴AF=DC.又∵AF=BD,∴BD=DC,即D是BC的中点.(2)四边形AFBD是矩形.证明:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADB=90°.∴四边形AFBD是矩形.知识点2对角线相等的平行四边形是矩形4.能判断四边形是矩形的条件是(C)A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直5.如图,四边形ABCD的对角线AC,BD相交于点O,AD∥BC,AC=BD.试添加一个条件答案不唯一,如:AB ∥CD ,使四边形ABCD 为矩形.6.如图,矩形ABCD 的对角线相交于点O ,点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,请问四边形EFGH 是矩形吗?请说明理由.解:四边形EFGH 是矩形. 理由:∵四边形ABCD 是矩形,∴AC =BD ,AO =CO ,BO =DO.∴AO =CO =BO =DO.∵点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点, ∴EO =FO =GO =HO.∴OE =OG ,OF =OH. ∴四边形EFGH 是平行四边形.又∵EO +GO =FO +HO ,即EG =FH ,∴四边形EFGH 是矩形.知识点3 有三个角是直角的四边形是矩形7.已知O 为四边形ABCD 对角线的交点,下列条件能使四边形ABCD 成为矩形的是(D )A .OA =OC ,OB =OD B .AC =BD C .AC ⊥BDD .∠ABC =∠BCD =∠CDA =90°8.已知:如图,在▱ABCD 中,AF ,BH ,CH ,DF 分别是∠BAD ,∠ABC ,∠BCD ,∠ADC 的平分线.求证:四边形EFGH 为矩形.证明:∵四边形ABCD 是平行四边形, ∴∠DAB +∠ADC =180°.∵AF ,DF 分别平分∠DAB ,∠ADC , ∴∠FAD =∠BAF =12∠DAB ,∠ADF =∠CDF =12∠ADC.∴∠FAD +∠ADF =90°.∴∠AFD =90°. 同理可得:∠BHC =∠HEF =90°. ∴四边形EFGH 是矩形. 02 中档题9.以下条件不能判定四边形ABCD 是矩形的是(D )A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BDD.AB=CD,AB∥CD,OA=OC,OB=OD10.(2016·菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C =180°;③AC⊥BD;④AC=BD,正确的有(B)A.①②③B.①②④C.②③④D.①③④11.如图,△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是(A)A.2 3 B.3 3C.4 D.4 3第11题图第12题图12.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD 的中点.若AC=8,BD=6,则四边形EFGH的面积为12.13.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.证明:(1)∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.又∵∠B=90°,∴四边形ABCF是矩形.(2)∵四边形ABCF是矩形,∴∠AFC=∠AFD=90°.∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.又∵∠EGA=∠CGF,∴∠DAF=∠EGA.∴EA=EG.14.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.证明:(1)∵在▱ABCD 中,AD =BC ,AB =CD ,AD ∥CB , ∴∠A =∠EBC.在△ABD 和△BEC 中,⎩⎨⎧AB =BE ,∠A =∠EBC ,AD =BC ,∴△ABD ≌△BEC(SAS ).(2)∵在▱ABCD 中,AB ∥ CD ,且AB =BE , BE ∥CD.∴四边形BECD 为平行四边形. ∴OB =12BC ,OE =12ED.∵∠BOD =2∠A =2∠EBC ,且∠BOD =∠EBC +∠BEO ,∴∠EBC =∠BEO.∴OB =OE.∴BC =ED. ∴四边形BECD 是矩形.03 综合题15.如图,在△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC.设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.视频讲解解:(1)证明:∵CF 平分∠ACD ,且MN ∥BD , ∴∠ACF =∠FCD =∠CFO. ∴OF =OC.同理可证:OC =OE. ∴OE =OF.(2)由(1),知∠OCF =∠OFC ,∠OCE =∠OEC , ∴∠OCF +∠OCE =∠OFC +∠OEC.∵(∠OCF +∠OCE)+(∠OFC +∠OEC)=180°, ∴∠ECF =∠OCF +∠OCE =90°. ∴EF =CE 2+CF 2=122+52=13. 又∵OE =OF , ∴OC =12EF =132.(3)当点O 移动到AC 中点时,四边形AECF 为矩形.理由:连接AE ,AF.当点O 移动到AC 中点时,OA =OC ,。
《18.1.1平行四边形的性质》作业设计方案-初中数学人教版12八年级下册
《平行四边形的性质》作业设计方案(第一课时)一、作业目标1. 加深学生对平行四边形概念的理解。
2. 掌握平行四边形的基本性质和定理。
3. 培养学生的空间想象能力和逻辑推理能力。
二、作业内容本节作业内容主要围绕平行四边形的性质展开,旨在让学生通过实际操作和理论学习相结合的方式,深入理解平行四边形的性质。
具体包括:1. 预习平行四边形的定义及基本性质,包括对边平行、对角相等等。
2. 要求学生绘制至少三个不同类型的平行四边形,并标注出其基本性质。
3. 理论学习:阅读教材中关于平行四边形性质的定理和证明,如对角线互相平分等。
4. 思考题:设计几道与平行四边形性质相关的思考题,如改变平行四边形的某个条件,其他性质会发生怎样的变化。
5. 实践应用:通过生活中的实例,如门窗设计、建筑结构等,让学生理解平行四边形在实际中的应用。
三、作业要求1. 学生需认真完成预习任务,并理解平行四边形的基本性质。
2. 绘图时需使用规范的作图工具,保证图形的准确性。
3. 理论学习部分需仔细阅读教材,理解并掌握相关定理及证明过程。
4. 思考题需认真思考并记录自己的答案,鼓励通过小组讨论等方式交流想法。
5. 实践应用部分需结合生活实际,寻找身边的平行四边形实例并进行分析。
四、作业评价1. 评价标准:根据学生的预习情况、图形绘制准确性、理论学习理解程度、思考题的答案质量以及实践应用的深度进行评价。
2. 评价方式:教师批阅与同学互评相结合,注重过程与结果的双重评价。
3. 反馈形式:通过作业本、课堂讲解、小组讨论等方式,及时向学生反馈评价结果。
五、作业反馈1. 教师需认真批阅每一份作业,记录学生的作业情况及存在的问题。
2. 在课堂上,教师需针对作业中普遍存在的问题进行讲解,帮助学生解决疑惑。
3. 鼓励学生之间进行作业交流和讨论,促进知识的共享和深入理解。
4. 对于表现优秀的学生,给予适当的表扬和鼓励,激发学生的学习积极性。
通过以上的作业设计方案,学生可以在完成作业的过程中,深入理解平行四边形的性质,并锻炼自己的空间想象能力和逻辑推理能力。
(完整版)平行四边形专项练习题
平行四边形专项练习题.选择题(共12小题)1 •在下列条件中,能够判定一个四边形是平行四边形的是( )A . —组对边平行,另一组对边相等B •—组对边相等,一组对角相等C. 一组对边平行,一条对角线平分另一条对角线D. —组对边相等,一条对角线平分另一条对角线2 •设四边形的内角和等于a ,五边形的外角和等于b ,则a 与b 的关系是( )A. a >bB . a=bC. a v bD . b=a+180°3 .如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两 张等腰直角二角形纸片的面积都为 S ,另两张直角三角形纸片的面积都为 S 2,中间一张 正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为(4 .在?ABCD 中,AB=3, BC=4,当?ABCD 的面积最大时,下列结论正确的有( )①AC=5;②/ A+Z C=180;③AC 丄BD;④AC=BD A .①②③B .①②④C.②③④D .①③④5 .如图,在?ABCD 中,AB=6, BC=8 Z C 的平分线交 AD 于E,交BA 的延长线于F ,则A . 2B . 3 C. 4 D . 66 .如图,在?ABCD 中,BF 平分Z ABC,交AD 于点F , CE 平分Z BCD ,交AD 于点E ,AB=6,EF=2,则BC 长为()C. 4S 2+S D .3S+4SA . 4S7 .如图,在?ABCD 中,AB=12, AD=8,Z ABC 的平分线交CD 于点F ,交AD 的延长线于 点E, CG± BE,垂足为G ,若EF=2贝懺段CG 的长为()A .寸B .亦 C. 2厢 D .屈8. 如图,在?ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,小于AD 的长为半径 画弧,分别交AB 、AD 于点E 、F ;再分别以点E 、F 为圆心,大于^EF 的长为半径画弧, 两弧交于点G ;作射线AG 交CD 于点H ,则下列结论中不能由条件推理得出的是 (9.如图,将?ABCD 沿对角线AC 折叠,使点B 落在B 处,若/仁/ 2=44°则/B 为( )A . 66°B . 104° C. 114° D. 12410. 如图,?ABCD 的对角线AC BD 相交于点O ,且AC+BD=16, CD=6,则厶ABO 的周长11. 四边形ABCD 中,对角线AC BD 相交于点O ,给出下列四个条件: ①AD // BC;②AD=BQ ③OA=OC ④OB=ODB . 10 C. 12 D .14B . AD=DHC. DH=BC D .CH=DHB . 14C . 20D . 22 A . 8 A . 10从中任选两个条件,能使四边形 ABCD 为平行四边形的选法有(二•填空题(共6小题)13. _______________________________ 如图,把平行四边形ABCD 折叠,使点C 与点A 重合,这时点D 落在D i ,折痕为EF, 若/ BAE=55,则/ D i AD= .14. 如图,在?ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分/ DAB 和/ CBA 若AD=5,AP=8,则厶APB 的周长是 _________ .15. 如图所示,四边形 ABCD 的对角线相交于点 0,若AB / CD ,请添加一个条件 (写一个即可),使四边形ABCD 是平行四边形.A . 3种B . 4种C . 5种D . 6种12•如图,点A , B 为定点,定直线 中点,对下列各值:I // AB , P 是I 上一动点,点 M , N 分别为PA, PB 的①线段MN 的长;②厶PAB 的周长; / APB 的大小.③厶PMN 的面积;④直线MN , AB 之间的距离;⑤C.①③④D.④⑤B •②⑤ A •②③DB16 •如图,①是一个三角形,分别连接这个三角形三边中点得到图②,再连接图②中间小三角形三边的中点得到图③,按这样的方法进行下去,第n个图形中共有三角形的个数为______________ .17•如图,在△ ABC中,/ ACB=90, M、N分别是AB、AC的中点,延长BC至点D,使CD=-BD,连接DM、DN、MN .若AB=6,贝U DN= __________ .D~C--------------------- 518. 如图,在厶ABC中,点D、E、F分别是边AB BC CA上的中点,且AB=6cm, AC=8cm 则四边形ADEF的周长等于 ______________ cm.三.解答题(共8小题)19. 如图,E是?ABCD的边CD的中点,延长AE交BC的延长线于点F.(1)求证:△ ADE^A FCE(2)若/ BAF=90,BC=5 EF=3 求CD的长.A D5 C F20. 如图,在?ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF(2)连接DE,若AD=2AB求证:DE丄AF.21 •已知:如图,在四边形ABCD中,AB// CD, E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.22•如图,四边形ABCD中,对角线AC, BD相交于点0,点E,F分别在0A, OC上(1)给出以下条件;①0B=0D,②/仁/2,③0E=0F请你从中选取两个条件证明△BEO^A DF0(2)在(1)条件中你所选条件的前提下,添加AE=CF求证:四边形ABCD是平行四边形.23•如图,点0是厶ABC内一点,连结0B 0C,并将AB、0B、0C AC的中点D、E、F、G依次连结,得到四边形DEFG(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,0M=3,/ 0BC和/ 0CB互余,求DG的长度.5 C24 .如图,?ABCD中,BD是它的一条对角线,过A、C两点作AE丄BD, CF丄BD,垂足分别为E、F,延长AE、CF分别交CD AB于M、N.(1) 求证:四边形CMAN是平行四边形.(2) 已知DE=4, FN=3,求BN 的长.25•如图,在?ABCD中,点E, F在对角线AC上,且AE=CF求证:(1)DE=BF(2)四边形DEBF是平行四边形.26.如图,等边△ ABC的边长是2, D、E分别为AB AC的中点,延长BC至点F,使CF=-BC,连接CD和EF.(1) 求证:DE=CF(2) 求EF的长.参考答案与解析一.选择题1.【分析】根据平行四边形的判定方法以及全等三角形的判定方法一一判断即可.解:A、错误.这个四边形有可能是等腰梯形.B、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.C、正确.可以利用三角形全等证明平行的一组对边相等.故是平行四边形.D、错误.不满足三角形全等的条件,无法证明相等的一组对边平行.故选C.2 .【分析】根据多边形的内角和定理与多边形外角的关系即可得出结论. 解:•••四边形的内角和等于a,•••a= (4-2) ?180° =360°•••五边形的外角和等于b,••• b=360°,••• a=b.故选B.3. 【分析】设等腰直角三角形的直角边为a,正方形边长为c,求出9 (用a、c表示), 得出S, S2, Q之间的关系,由此即可解决问题.解:设等腰直角三角形的直角边为a,正方形边长为c,贝卩S2令 (a+c) (a- c) 令'a2-%2,•S2=Si - — S3,•S s=2S - 2S2,•••平行四边形面积=2S+2S2+3=2S+2S2+2S I - 2S2=4S.故选A.4. 【分析】当?ABCD的面积最大时,四边形ABCD为矩形,得出/ A=Z B=Z C=Z D=90°, AC=BD根据勾股定理求出AC,即可得出结论.解:根据题意得:当?ABCD的面积最大时,四边形ABCD为矩形,A=Z B=Z C=Z D=9C°, AC=BD•AC= ' ! 4 =5 ,①正确,②正确,④正确;③不正确;故选:B.5 •【分析】由平行四边形的性质和角平分线得出/ F=Z FCB证出BF=BC=8同理:DE=CD=6 求出AF=BF- AB=2, AE=AD- DE=g即可得出结果.解:•••四边形ABCD是平行四边形,••• AB// CD, AD=BC=8 CD=AB=6•••/ F=Z DCF,v CF平分/ BCD,•••/ FCB=z DCF,•••/ F=Z FCB••• BF=BC=8同理:DE=CD=6••• AF=BF- AB=2, AE=AD- DE=2AE+AF=4;故选:C.6.【分析】由平行四边形的性质和角平分线得出/ ABF=Z AFB得出AF=AB=6同理可证DE=DC=6再由EF的长,即可求出BC的长.解:v四边形ABCD是平行四边形,. AD/ BC DC=AB=6 AD=BC•••/ AFB=/ FBCv BF 平分/ ABC,./ ABF=/ FBC则/ ABF=/ AFB. AF=AB=6同理可证:DE=DC=6v EF=AF+DE- AD=2即6+6- AD=2解得:AD=10;故选:B.7 •【分析】先由平行四边形的性质和角平分线的定义,判断出/ CBE2 CFB" ABEK E, 从而得到CF=BC=8 AE=AB=12再用平行线分线段成比例定理求出BE,然后用等腰三角形的三线合一求出BG,最后用勾股定理即可.解:•••/ ABC的平分线交CD于点F,•••/ ABEN CBE•••四边形ABCD是平行四边形,•••DC// AB,•••/ CBE=/ CFB=/ ABEK E,•CF=BC=AD=8 AE=AB=12••• AD=8,•DE=4,••• DC/ AB ,…_「,•丄一—…丨:_「,•EB=6,v CF=CB CGL BF,在Rt A BCG中,BC=8 BG=2,根据勾股定理得,CG=:1「二=2. ■,故选:C.8 .【分析】根据作图过程可得得AG平分/ DAB,再根据角平分线的性质和平行四边形的性质可证明/ DAH=Z DHA,进而得到AD=DH,解:根据作图的方法可得AG平分/ DAB,v AG 平分/ DAB,•/ DAH=Z BAH,v CD// AB ,•Z DHA=Z BAH,•Z DAH=Z DHA,••• AD=DH, ••• BC=DH 故选D.9 .【分析】由平行四边形的性质和折叠的性质得出/ ACD=Z BAC=/ B' AC由三角形的外角性质求出/ BAC=/ ACD=Z B' A C=/仁22°,再由三角形内角和定理求出/ B即可. 解:•••四边形ABCD是平行四边形,••• AB// CD,•••/ ACD=/ BAC,由折叠的性质得:/ BAC=Z B' AC•••/ BAC=/ ACD=Z B' A C=/仁22°,•••/ B=1800-/ 2-/ BAC=180 - 44° - 22°=114°° 故选:C.10. 【分析】直接利用平行四边形的性质得出AO=CQ BO=DO, DC=AB=6再利用已知求出AO+BO的长,进而得出答案.解:•••四边形ABCD是平行四边形,••• AO=CO BO=DO, DC=AB=6••• AC+BD=16 ,AO+BO=8,•••△ABO的周长是:14.故选:B.11. 【分析】根据题目所给条件,利用平行四边形的判定方法分别进行分析即可.解:①②组合可根据一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;③④组合可根据对角线互相平分的四边形是平行四边形判定出四边形ABCD为平行四边形;①③可证明△ AD3A CBQ进而得到AD=CB可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;①④可证明△ ADO^A CBQ进而得到AD=CB可利用一组对边平行且相等的四边形是平行四边形判定出四边形ABCD为平行四边形;•••有4种可能使四边形ABCD为平行四边形.故选:B.12. 【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN」-AB, 从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.解:•••点A, B为定点,点M, N分别为PA, PB的中点,•MN是A PAB的中位线,•MN^-AB,即线段MN的长度不变,故①错误;PA PB的长度随点P的移动而变化,所以,△ PAB的周长会随点P的移动而变化,故②正确;••• MN的长度不变,点P到MN的距离等于I与AB的距离的一半,•△ PMN的面积不变,故③错误;直线MN , AB之间的距离不随点P的移动而变化,故④错误;/ APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.二.填空题13 .【分析】由平行四边形的性质和折叠的性质得出/ D i AE=Z BAD,得出/ D i AD=Z BAE=55 即可.解:•••四边形ABCD是平行四边形,•/ BAD=Z C,由折叠的性质得:/ D i AE=Z C,•Z D i AE=Z BAD,•Z D i AD=Z BAE=55;故答案为:55°.i4.【分析】根据平行四边形性质得出AD// CB, AB//CD,推出Z DA由Z CBA=i80,求出ZPAB F Z PBA=90 ,在厶APB中求出Z APB=90,由勾股定理求出BP,证出AD=DP=5BC=PC=5得出DC=10=AB即可求出答案.解:•••四边形ABCD是平行四边形,••• AD// CB, AB// CD,•••/ DAB+Z CBA=180,又••• AP和BP分别平分Z DAB和Z CBA•••Z PAB F Z PBA=- (Z DAB^Z CBA) =90°°在厶APB中,Z APB=180—(Z PAB F Z PBA) =90°;••• AP 平分Z DAB,•Z DAP=Z PAB••• AB// CD,•Z PAB=/ DPA•Z DAP=Z DPA•△ ADP是等腰三角形,•AD=DP=5同理:PC=CB=5即AB=DC=DPPC=10在Rt A APB 中,AB=10, AP=8,•BP=;Q「护=6 ,•△ APB 的周长=6+8+10=24;故答案为:24.15. 【分析】根据平行四边形的定义或判定定理即可解答.解:可以添加:AD// BC (答案不唯一).故答案是:AD // BC.16. 【分析】结合题意,总结可知,每个图中三角形个数比图形的编号的4倍少3个三角形,即可得出结果.解:第①是1个三角形,仁4X 1- 3;第②是5个三角形,5=4X 2 -3;第③是9个三角形,9=4X 3 -3;•第n个图形中共有三角形的个数是4n - 3;故答案为:4n - 3.17. 【分析】连接CM,根据三角形中位线定理得到NMh「CB, MN // BC,证明四边形DCMN 是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=-AB=3,等量代换即可. 解:连接CM,••• M、N分别是AB、AC的中点,••• NM—-CB, MN // BC,又CD丄BD,••• MN=CD,又MN // BC,•••四边形DCMN是平行四边形,••• DN=CM,vZ ACB=90, M 是AB 的中点,••• CMh「AB=3,••• DN=3,故答案为:3.18. 【分析】首先证明四边形ADEF是平行四边形,根据三角形中位线定理求出DE、EF 即可解决问题.解:v BD=AD, BE=EC••• DE=-AC=4cm DE/ AC,v CF=FA CE=BEEF=「AB=3cm, EF// AB,•••四边形ADEF是平行四边形,.四边形ADEF的周长=2 (DE+EF) =14cm.故答案为14.•解答题19. 【分析】(1)由平行四边形的性质得出AD// BC, AB// CD,证出/ DAE=Z F,Z D=Z ECF 由AAS证明△ ADE^A FCE即可;(2)由全等三角形的性质得出AE=EF=3由平行线的性质证出/ AED=Z BAF=90,由勾股定理求出DE,即可得出CD的长.(1)证明:•••四边形ABCD是平行四边形,••• AD// BC, AB// CD,•••/ DAE=Z F, / D=Z ECF••• E是?ABCD的边CD的中点,••• DE=CE在厶ADE和厶FCE中,f ZDAE=ZFZD=ZECF ,[DE=CE•••△ ADE^A FCE( AAS;(2)解::ADE^A FCE••• AE=EF=3••• AB// CD,•••/ AED=Z BAF=90 ,在?ABCD中 , AD=BC=5••• DE=l「rr= =4 ,••• CD=2DE=820. 【分析】(1)由在?ABCD中,E是BC的中点,利用ASA即可判定厶ABE^A FCE 继而证得结论;(2)由AD=2AB AB=FC=CD 可得AD=DF,又由△ ABE^A FCE 可得AE=EF 然后利用三线合一,证得结论.证明:(1)v四边形ABCD是平行四边形,••• AB// DF,•••/ ABE=/ FCE••• E为BC中点,••• BE=CE 在厶ABE与厶FCE中,r ZAEE=ZFCE乂BE=CE ,IZAEB=ZCEF•••△ABE^A FCE( ASA, ••• AB=FC(2 )T AD=2AB AB=FC=CD•AD=DF,•:△ ABE^A FCE•AE=EF• DE 丄AF.21. 【分析】利用平行线的性质得出/ BAE=/ CFE由AAS得出△ ABE^A FCE得出对应边相等AE=EF再利用平行四边形的判定得出即可.解:四边形ABFC是平行四边形;理由如下:••• AB// CD,•/ BAE=/ CFE••• E是BC的中点,•BE=CEf ZBAE=ZCFE在厶ABE和厶FCE中,. —.屮 ,[BE=CE•△ABE^A FCE( AAS;•AE=EF又••• BE=CE•四边形ABFC是平行四边形.22. 【分析】(1)选取①②,利用ASA判定△ BE3A DFO即可;(2)根据△ BEO^A DFO可得EO=FQ BO=DO,再根据等式的性质可得AO=CO根据两条对角线互相平分的四边形是平行四边形可得结论.证明:(1)选取①②,rzi=Z2•••在△ BEO和厶DFO 中EADO ,IZEOB=ZFOD•••△ BEC^A DFO (ASA ;(2)由(1)得:△ BEO^A DFO,••• EO=FO BO=DQ••• AE=CF••• AO=CQ•••四边形ABCD是平行四边形.23. [分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF// BCDG// BC且DG=-BC,从而得到DE=EF DG// EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出/ BOC=90 ,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可. 解:(1 ):D、G分别是AB、AC的中点,••• DG// BC, DG丄BC,••• E、F分别是OB OC的中点,••• EF// BC, EF丄BC,••• DG=EF DG// EF,•••四边形DEFG是平行四边形;(2)•••/ OBC和/OCB互余,•••/ OBC+Z OCB=90 ,•••/ BOC=90 ,••• M为EF的中点,OM=3 ,••• EF=2OM=6由(1)有四边形DEFG是平行四边形,••• DG=EF=624. [分析】(1)只要证明CM// AN , AM / CN即可.(2)先证明△ DEM^A BFN得BN=DM ,再在RT^DEM中,利用勾股定理即可解决问题.(1)证明:•••四边形ABCD是平行四边形,••• CD// AB,••• AM 丄BD, CN丄BD,••• AM // CN,••• CM / AN, AM // CN,•••四边形AMCN是平行四边形.(2四边形AMCN是平行四边形,•CM=AN,•••四边形ABCD是平行四边形,•CD=AB CD// AB,•DM=BN,Z MDE=Z NBF, 在厶MDE和厶NBF中,fZMDE=ZNBFZDEM二ZNFB二勺『,[DM二•△MDE^A NBF,•ME=NF=3,在Rt A DME 中,vZ DEM=9° , DE=4, ME=3,•DM= . [ :「丄,r =5 ,•BN=DM=5.£) _______ ___________ C25. 【分析】(1)根据全等三角形的判定方法,判断出△ ADE^A CBF,即可推得DE=BF (2)首先判断出DE// BF;然后根据一组对边平行且相等的四边形是平行四边形,推得四边形DEBF是平行四边形即可.证明:(1)v四边形ABCD是平行四边形,•AD// CB, AD=CB•Z DAE=Z BCF在厶ADE和厶CBF中,rAD=CBZ DAE=Z BCFI..AE=CF•••△ ADE^A CBF••• DE=BF(2)由(1),可得△ ADE^ACBF,•••/ ADE=Z CBF•••/ DEF=/ DAE F Z ADE, / BFEN BC+Z CBF,•••/ DEF=/ BFE••• DE// BF,又••• DE=BF•••四边形DEBF是平行四边形.26. 【分析】(1)直接利用三角形中位线定理得出DE•'丄BC,进而得出DE=FC(2)利用平行四边形的判定与性质得出DC=EF进而利用等边三角形的性质以及勾股定理得出EF的长.(1)证明::D、E分别为AB AC的中点,••• DE *△ ABC的中位线,••• DE•'丄BC,•••延长BC至点F,使CF=-BC,••• DE=FC(2)解::DE^FC,•••四边形DEFC是平行四边形,•••DC=EF••• D为AB的中点,等边△ ABC的边长是2 ,••• AD=BD=1, CD 丄AB , BC=2••• DC=EF= \。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第23课 四边形与平行四边形
主备:徐峰 审核:吴楼萍
1.如图所示,顺次连接矩形ABCD 各边中点,得到菱形EFGH ,这个由矩形和菱形所组成的图形( )
A .是轴对称图形但不是中心对称图形
B .是中心对称图形但不是轴对称图形
C .既是轴对称图形又是中心对称图形
D .没有对称性 2.在
ABCD 中,BC 边上的高为4,AB =5,AC =2
,则
ABCD 的周长等于 .
3.只用下列正多边形地砖中的一种,能够铺满地面的是( ) A.正十边形 B.正八边形 C.正六边形 D.正五边形
4.平行四边形ABCD 中,AB=3,BC=5,∠B 的平分线把长边分成两条线段之比是( )
A .3:2
B .3:1
C .4:2
D .4:1
5.如果平行四边形的一条边长是4,一条对角线长是10,那么它的另一条对角线的长m 的取值范围是( )
A .6<m <14
B .1<m <9
C .3<m <7
D .2<m <18 6.如图所示是重叠的两个直角三角形.将其中一个直三角形沿BC 方向
平移得到DEF △.如果8cm AB =,4cm BE =,3cm DH =,则图中阴影部分面积为 2
cm .
7.某多边形的内角和是其外角和的3倍,则此多边形的边数是 .
8.如图6,在ABCD 中,AB=6,AD=9,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点
F ,B
G ⊥AE ,垂足为G ,BG=24,则ΔCEF 的周长为
9.如图,在四边形ABCD 中,对角线AC ⊥BD ,垂足为O ,点E 、F 、G 、H 分别为边AD 、AB 、BC 、CD 的中点.若AC=8,BD=6,则四边形EFGH 的面积为 .
10.如图,在ABCD 中,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是 .(把所有正确结论的序号都填在横线上) ①∠DCF =∠BCD ;②EF =CF ;③S △BEC =2S △CEF ;④∠DFE =3∠AEF .
11.如图,已知BE ∥DF ,∠ADF=∠CBE ,AF=CE ,求证:四边形DEBF 是平行四边形.
A
D H
12.在□ABCD 中,10AB =,AD m =,60D ∠=°,以AB 为直径作O ⊙, (1)求圆心O 到CD 的距离(用含m 的代数式来表示); (2)当m 取何值时,CD 与O ⊙相切.
挑战自我:
已知,在△ABC 中,∠BAC=90°,∠ABC=45°,点D 为直线BC 上一动点(点D 不与点B ,C 重合).以AD 为边做正方形ADEF ,连接CF
(1)如图1,当点D 在线段BC 上时.求证CF+CD=BC ;
(2)如图2,当点D 在线段BC 的延长线上时,其他条件不变,请直接写出CF ,BC ,CD 三条线段之间的关系;
(3)如图3,当点D 在线段BC 的反向延长线上时,且点A ,F 分别在直线BC 的两侧,其他条件不变;
①请直接写出CF 、BC 、CD 三条线段之间的关系;
②若正方形ADEF 的边长为22,对角线AE ,DF 相交于点O ,连接OC .求OC 的长度.
A D
B
C O。