几类常见递推数列的解法

合集下载

常见递推数列通项的求法七种

常见递推数列通项的求法七种

常见递推数列通项的求法类型1、 ()n g a a n n +=+1型解题思路:利用累差迭加法,将)1(1-=--n g a a n n ,--1n a 2-n a =)2(-n g ,…,-2a 1a =)1(g ,各式相加,正负抵消,即得n a . 例1、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a . 解:原递推式可化为:1111+-+=+n na a n n则,211112-+=a a 312123-+=a a413134-+=a a ,……,nn a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.例2.在数列{}n a 中,01=a 且121-+=+n a a n n ,求通项na .解:依题意得,01=a ,()32112,,3,112312-=--=-=-=--n n a a a a a a n n ,把以上各式相加,得()()()21232113231-=-+-=-+++=n n n n a n【评注】由递推关系得,若()n g 是一常数,即第一种类型,直接可得是一等差数列;若n n a a -+1非常数,而是关于n 的一个解析式,可以肯定数列n a 不是等差数列,将递推式中的n 分别用2,3,4,,2,1 --n n 代入得1-n 个等式相加,目的是为了能使左边相互抵消得n a ,而右边往往可以转化为一个或几个特殊数列的和。

例3、已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式。

解:由132a a nn 1n +⋅+=+得132a a nn 1n +⋅=-+则112232n 1n 1n n na )a a ()a a ()a a ()a a (a +-+-++-+-=---3)1n ()3333(23)132()132()132()132(122n 1n 122n 1n +-+++++=++⋅++⋅+++⋅++⋅=----所以1n 32n 31332a nnn-+=++--⋅=评注:本题解题的关键是把递推关系式132a a n n 1n +⋅+=+转化为132a a nn 1n +⋅=-+,进而求出112232n 1n 1n n a )a a ()a a ()a a ()a a (+-+-++-+---- ,即得数列}a {n 的通项公式。

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法递推数列是指数列中的每一项都由前一项通过其中一种规律得出。

求递推数列的通项公式是数学中的重要问题,可以通过多种方法实现。

下面将介绍最常用的几种方法。

1.等差数列通项公式等差数列是指数列中的每一项与前一项之差都相等的数列。

设等差数列的第一项为a1,公差为d,则第n项为an=a1+(n-1)d。

这是等差数列的通项公式。

2.等比数列通项公式等比数列是指数列中的每一项与前一项之比都相等的数列。

设等比数列的第一项为a1,公比为r,则第n项为an=a1*r^(n-1)。

这是等比数列的通项公式。

3.斐波那契数列通项公式斐波那契数列是指数列中的每一项都是前两项之和。

设斐波那契数列的第一项为a1,第二项为a2,则第n项为an=a(n-1)+a(n-2)。

但通常情况下,我们将斐波那契数列的第一项设为0,第二项设为1,此时的通项公式为an=F(n-1),其中F(n-1)表示第n-1个斐波那契数。

4.龙贝尔数列通项公式龙贝尔数列是指数列中的每一项都是前一项与当前项索引之和。

设龙贝尔数列的第一项为a1,则第n项为an=a(n-1)+n。

这是龙贝尔数列的通项公式。

5.通项公式的递推法有些数列并没有明确的通项公式,但可以通过递推法求得通项公式。

递推法的核心思想是找到数列中的其中一种规律,通过前面的项得出后面的项。

这种方法比较灵活,可以适用于各种类型的数列。

总结起来,以上是求递推数列通项公式的几种常见方法。

在实际中,我们可以观察数列的规律,推测出通项公式,然后通过数学推导证明其正确性。

对于复杂的递推数列,我们可能需要运用更多的数学知识和技巧,如离散数学、线性代数等。

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法

九类常见递推数列求通项公式方法递推数列通项求解方法类型一:an1panq(p1)思路1(递推法):anpan1qp(pan2q)qpppan3qqq……pn1a1q(1pp2…pn2qqn1。

)a1pp11p思路2(构造法):设an1pan,即p1q得qp1,数列an是以a1为首项、p为公比的等比数列,则anqn1qana1pp11pqn1a1p,即p1p1q例1已知数列an满足an2an13且a11,求数列an的通项公式。

解:方法1(递推法):an2an132(2an23)3222an3333……2n13(122…22n23n13n1)1223。

2112方法2(构造法):设an12an,即3,数列an3是以a134n1n1n1为首项、2为公比的等比数列,则an3422,即an23。

类型二:an1an思路1(递推法):f(n)anan1f(n1)an2f(n2)f(n1)an3f(n3)f(n2)f(n1)…a1f(n)。

i1n1思路2(叠加法):anan1f(n1),依次类推有:an1an2f(n2)、n1an2an3f(n3)、…、a2a1f(1),将各式叠加并整理得ana1i1f(n),即n1ana1i1f(n)。

例2已知a11,anan1n,求an。

解:方法1(递推法):anan1nan2(n1)nan3(n2)(n1)nn……a1[23…(n2)(n1)n]i1nn(n1)2。

方法2(叠加法):anan1n,依次类推有:an1an2n1、an2an3n2、…、nnna2a12,将各式叠加并整理得ana1i2n,ana1i2ni1nn(n1)2。

类型三:an1f(n)an思路1(递推法):anf(n1)an1f(n1)f(n2)an2f(n1)f(n2)f(n3)an3…f(1)f(2)f(3)…f(n2)f(n1)a1。

anan1a2a1an1an2ana1思路2(叠乘法):f(n1),依次类推有:f(n2)、an2an3f(n3)、…、f(1),将各式叠乘并整理得f(1)f(2)f(3)…f(n2)f(n1),即anf(1)f(2)f(3)…f(n2)f(n1)a1。

几类常见递推数列的解题方法

几类常见递推数列的解题方法

类型一:累加法 形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n )或可裂项成差的分式形式.——可移项后叠加相消.类型二: 累积法 形如)(1n f a a n n =+.其中f (n ) =ppc mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 n n a a 1+=kn (k ≠0)或nn a a 1+= km n ( k ≠ 0, 0<m 且m ≠ 1).类型三:形如1+n n a a = 1++n n qa pa ,(pq ≠ 0).且0≠n a 的数列,——可通过倒数变形为基本数列问题.当p = -q 时,则有:p a a n n 1111=-+ 转化为等差数列; 当p ≠ -q 时,则有:p pa q a n n 111+-=+.同类型五转化为等比数列. 类型四:特征根法 形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数.当p =1时,为等差数列;当p ≠1时,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x⇒a 1+n + x = p (a n + p x q +), 令x =px q + ∴x =1-p q 时,有a 1+n + x = p (a n + x ), 从而转化为等比数列 {a n +1-p q } 求解. 类型五:形如a 1+n =pa n + f (n ),p ≠0且 p 为常数,f (n )为关于n 的函数.当p =1时,则 a 1+n =a n + f (n ) 即类型一.当p ≠1时,f (n )为关于n 的多项式或指数形式(a n)或指数和多项式的混合形式.⑴若f (n )为关于n 的多项式(f (n ) = kn + b 或kn 2+ bn + c ,k 、b 、c 为常数),——可用待定系数法转化为等比数列.⑵若f (n )为关于n 的指数形式(a n ).①当p 不等于底数a 时,可转化为等比数列;②当p 等于底数a 时,可转化为等差数列.。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法要求根据递推关系求解数列的通项公式,其实是要求找到一个能将数列的每一项都表示为n(项数)的函数的公式。

在数学中,有几种方法可以求解这类问题。

一、代数方法:对于一些简单的递推关系,可以尝试使用代数方法来求解数列的通项公式。

这种方法通过观察数列中的模式,尝试将递推关系转化为代数方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设通项公式为Fn=k1a^n+k2b^n,其中k1、k2为常数,a、b为待定数。

k1a^n+k2b^n=k1a^(n-1)+k2b^(n-1)+k1a^(n-2)+k2b^(n-2)整理得:k1a^2-k1a-k2=0。

解这个方程,可以得到a和b的值,然后将a和b的值代入通项公式中,即可求解斐波那契数列的通项公式。

二、特征根法:特征根法是求解一阶线性递推关系(如Fn=aFn-1+b)的通项公式的常用方法。

该方法的基本思想是,将递推关系转化为一个一阶线性常微分方程,然后解方程得到通项公式。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列满足的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1将递推关系转化为一阶线性常微分方程得到:y''-y'-y=0其中y=Fn。

解这个方程得到的特征根为α1=(1+√5)/2,α2=(1-√5)/2通项公式可以表示为:Fn=k1(α1)^n+k2(α2)^n其中k1、k2为常数。

利用初始条件F1=1,F2=1,可以求解出k1和k2的值,进而求解出斐波那契数列的通项公式。

三、母函数法:母函数法是一种求解递推关系的高效方法,尤其适用于求解求和问题。

该方法的基本思想是,将数列视为一个幂级数的系数列,通过构造母函数来解决递推关系。

例如,我们考虑求解斐波那契数列的通项公式。

斐波那契数列的递推关系为:Fn=Fn-1+Fn-2,其中F1=1,F2=1我们假设母函数为F(x)=F0+F1x+F2x^2+F3x^3+...F(x)=x(F(x)-F0)+x^2F(x)整理得:F(x)=F0+xF(x)+x^2F(x)移项得:F(x)=F0/(1-x-x^2)。

数列的十种典型递推式

数列的十种典型递推式

1 十大递推数列求通项:(1)等差数列:a n=a n-1+d例1:已知:数列{a n}中a1=1,a n=a n-1+3,(n≥2).求a n的通项公式. 答a n=3n-2.(2)等比数列: a n=a n-1q例2:已知:数列{a n}中a1=1,a n=2a n-1,(n≥2).求a n的通项公式. 答a n=12-n.(3)似等差数列: a n=a n-1+f(n) 用叠加法.例3:已知:数列{a n}中a1=1,a n=a n-1+3n+1,(n≥2).求a n的通项公式.答a n=265n3n2-+.(4)线性数列: a n=pa n-1+q 结构等比数列.例4:已知:数列{a n}中a1=3,a n=2a n-1-1,(n≥2).求a n的通项公式. 答a n=12+n.(5) 似等比数列: a n=a n-1f(n) 叠乘法.例5:已知:数列{a n}中a1=3,a n=na n-1,(n≥2).求a n的通项公式. 答a n=3n!.(6)三项递推: a n=pa n-1+qa n-2设a n+1-xa n =y(a n-xa n-1),结构一个或二个等比数列再经由过程等差数列或解方程组求出.例6:已知:数列{a n}中a1=1,a2=3,a n=3a n-1-2a n-2,(n≥3).求a n的通项公式. 答a n =2n-1.例7:已知:数列{a n }中a 1=1,a 2=3,a n =4a n-1-4a n-2,(n ≥3).求a n 的通项公式. 答a n =(n+1)2n-2.例8:已知:数列{a n }中a 1=1,a 2=4,a n =4a n-1-4a n-2,(n ≥3).求a n 的通项公式. 答a n =n2n-1.例9:已知:数列{a n }中a 1=2,a 2=3,a n =5a n-1-6a n-2,(n ≥3).求a n 的通项公式. 答a n =3×2n-1-3n-1.例10:已知:数列{a n }中a 1=a,a 2=b,a n =a n-1-a n-2,(n ≥3).求a n 的通项公式. 答周期为6.例11 (2006年通俗高级黉舍夏日招生测验数学(文史类)福建卷(新课程))(22)已知数列知足(I )证实:数列是等比数列;(II )求数列的通项公式;(Ⅲ)若数列知足证实是等差数列.(7)似线性数列:a n+1=pa n +f(n) , 变成111)(++++=n n n n n pn f p a p a ,即化为(3)型. 特殊地①1n n a pa bn c +=++型,还可以令1(1)()n n a x n y p a xn y +-+-=--,待定系数x,y,结构等比数列,要比通法简略.②1n n n a pa q b +=++型,还可以令11()n n n n a xq y p a xq y ++--=--,待定系数x,y,结构等比数列,要比通法简略.例12:已知:数列{a n }中a 1=5,a n =3a n-1+3n-1,(n ≥2).求a n 的通项公式.答213)21(+⋅+=n n n a (8)指数数列:a n+1=pa n k,取对数,化为(4)型. 例13:已知:数列{a n }中a 1=4,a n =3)1(4-n n a n-13,(n ≥2).求a n 的通项公式. 答a n =1322-⋅n n .道理:设cba r a s r a n n n +-=-+)(1,先待定s,r 的值,再取倒数.得:sb r a sc br ra n n +-+=-+)(11,令111++=-n n b r a ,化为:b n+1=ab n +c型,下略.求法:在上述道理中,称r 为cba mda a n n n ++=+1的特点根.特点根的求法除了按上述办法慢慢进行外,也可令cbx mdx x ++=,解关于x 的方程,得出方程的根x 1,x 2即为特点根r 1,r 2.至此法(ⅰ)令cba x a s x a n n n +-=-+)(111,再依据原式平分子的n a 的系数待定出s,既可求解.法(ⅱ)令n 1n x 1b a =-,得a n =1nx b 1+,将该式代入已知等式即得b n的递推关系.先求出b n ,再求a n . 注:该法更轻易用.例14(2006年奥林匹克比赛山东省赛区预选赛19题,即最后一题)已知:数列{a n }知足a n+1a n +3a n+1+a n +4=0,(n ≥2). (1)当a 1=-1时, 求a n 的通项公式.(2)当a 1=-2.03时,求a n 的最小值和最大值. (3)当a 2006是{a n }中的最小项时,求a 1的取值规模. 答(1)a n =-2+n1.(2)a 34最小为-5;a 35最大为-21.(3)20064013200540111-<<-a . 例15 在数列{a n }中,a 1=4,且a n+1=423++n n a a ,求a n .答:21112525-----+=n n n n n a .例16 已知曲线C :1xy =,过C 上一点(,)n n n A x y 作斜率12n n k x =-+为的直线交曲线C 于另一点111(,)n n n A x y +++,点列(1,2,3,)n A n =的横坐标组成数列{}n x ,个中1117x =. (Ⅰ)求n x 与1n x +的关系式; (Ⅱ)求证:1123n x ⎧⎫+⎨⎬-⎩⎭是等比数列;(Ⅲ)求证:23*123(1)(1)(1)(1) 1.(,1)n n x x x x n N n -+-+-++-<∈≥. 答案:(Ⅰ)121n nx x +=+,(Ⅱ)1111122323n n x x +⎧⎫⎧⎫+=-+⎨⎬⎨⎬--⎩⎭⎩⎭,(Ⅲ)由(Ⅱ)知121(2)3n n a =+--,∴(ⅰ)当n 为偶数时,11112111132(1)(1)111122223339n n nn n n n n n x x ------⋅-+-=+=+-+⋅-121323.22n n n --⋅<= ∴23123243331(1)(1)(1)(1)112222n n n nx x x x -+-+-++-<+++=-<. (ⅱ)当n 为奇数时,综上所述:23*123(1)(1)(1)(1) 1.(,1)n n x x x x n N n -+-+-++-<∈≥. (10)f(a n ,S n )=0 结构f(a n-1,S n-1)=0,两式相减. (11)两个数列的递推.若数列{a n },{b n }知足⎩⎨⎧+=+=----1n 21n 1n 1n 21n 1n b m a m b b k a k a (n ≥2).结构a n +xb n =y(a n-1+xb n-1)求解.例16 已知:数列{a n },{b n }知足⎩⎨⎧+=+=----1n 1n n1n 1n n 4b 3a b b 2a a (n ≥2)且a 1=2,b 1=3,求a n ,b n 的通项公式.答:)15(43b ,43541a n n n n -⋅=+⋅= .例17 已知:数列{a n },{b n }知足⎪⎩⎪⎨⎧+=+=----1n 1n n 1n 1n n b 32a 31b b 31a 32a (n ≥2)且a 1=10,b 1=8,求a n ,b n 的通项公式.答:a n =9+1n 31- ,b n =1n 319--.(12) 周期数列例18 已知:数列{a n }中a 1=a,a 2=b,a n =a n-1-a n-2,(n ≥3).求a n 的通项公式.答:a 1=a,a 2=b,a 3=b-a,a 4=-a,a 5=-b,a 6=a-b,a 7=a,a 8=b,故a n 是周期为6的数列.例19 已知:数列{a n }中a 1=a, a n =1a 33a 1n 1-n +--,(n ≥2).求a n 的通项公式.答:.a a ,1a 33-a -a ,1a 33a a ,a a 4321=-=+-==故a n 是周期为3的数列.注:特殊地,a 1=0时,常为考题. 例20 已知:数列{a n }中a 1=1, a n =3a 1a 31n 1-n +--,(n ≥2).求a n 的通项公式.答:a 1=1,1a ,32a ,32a ,1a ,23a ,32a 765432=+=--=-=-=-= . 故a n 是周期为6的数列.例21 已知:数列{a n }中a 1=a, a n =1a 1a 1n 1-n +--,(n ≥2).求a n 的通项公式. 答:a a ,a1a1a ,a 1a ,1a 1a a ,a a 54321=-+=-=+-==.故a n 是周期为4的数列.2 数列乞降中经常应用的拆裂项办法.(1)若a n 成等差数列,则)11(1111++-=n n n n a a d a a .)11(21121121+++++-=n n n n n n n a a a a d a a a .(2))(11b a ba b a --=+ (3)C n m =C 11++n m -C n m+1 n ×n != (n+1)!-n !mC n m =nC 11--n m , m(m-1)C n m =n(n-1)C 22--n m , n 2=2 C n 2+n, n 3=6 C n 3+6 C n 2+n,(4))n11n 1(4114n 4n 1)12n (122--<+-=-。

数列递推公式的九种方法

数列递推公式的九种方法

数列递推公式的九种方法1.等差数列递推公式:在等差数列中,相邻两项之间存在相同的差。

如果已知等差数列的首项为a1,公差为d,可以求得递推公式为an = a1 + (n-1)d,其中n为第n项。

2.等比数列递推公式:在等比数列中,相邻两项之间的比值相同。

如果已知等比数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。

3. 几何数列递推公式:几何数列是一种特殊的等比数列,其公比是常数项。

如果已知几何数列的首项为a1,公比为r,可以求得递推公式为an = a1 * r^(n-1),其中n为第n项。

4. 斐波那契数列递推公式:斐波那契数列是一种特殊的数列,每一项都是前两项的和。

斐波那契数列的递推公式为an = an-1 + an-2,其中n为第n项,a1和a2为前两项。

5. 回型数列递推公式:回型数列是一种特殊的数列,它的每一项都是由周围的四个数字决定的。

回型数列的递推公式为an = an-1 + 8 * (n-1),其中n为第n项,a1为第一项。

6. 斯特恩-布洛特数列递推公式:斯特恩-布洛特数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的约数个数决定的。

斯特恩-布洛特数列的递推公式为an = 2 * an-1 - an-2,其中n为第n项,a1和a2为前两项。

7. 阶乘数列递推公式:阶乘数列是一种特殊的数列,它的每一项都是前一项的阶乘。

阶乘数列的递推公式为an = n * (n-1) * ... * 3 * 2 * 1,其中n为第n项,a1为第一项。

8. 斯特林数列递推公式:斯特林数列是一种特殊的数列,它的每一项都是由前一项和当前项之积的和决定的。

斯特林数列的递推公式为an = an-1 * n + 1,其中n为第n项,a1为第一项。

9. 卡特兰数列递推公式:卡特兰数列是一种特殊的数列,它的每一项都是由前一项和当前项之和的乘积决定的。

卡特兰数列的递推公式为an = (4*n - 2) / (n + 1) * an-1,其中n为第n项,a1为第一项。

七种常见递推数列通项的方法--全方位无死角!!!

七种常见递推数列通项的方法--全方位无死角!!!

七种常见递推数列通项的方法--全方位无死角递推数列是数学中的一个重要概念,它描述了一个数列中每一项与前面相邻的一或多项之间的关系。

递推数列也常常出现在实际问题中,解决递推数列的关键就是找到数列中的通项公式。

本文将介绍七种常见递推数列通项的方法,帮助读者全面深入地理解和掌握这一概念。

第一种方法:递推关系法递推关系法是最常见的求递推数列通项的方法。

它通过观察数列中每一项与前面相邻的一或多项之间的关系,找到数列的递推关系式。

通过递推关系式,我们可以通过已知的一或多项来计算下一项的值,从而求得数列的通项公式。

例如,斐波那契数列就是一个常见的递推数列。

该数列的递推关系为:F(n)=F(n-1)+F(n-2),其中F(n)表示第n项的值,F(n-1)和F(n-2)分别表示第n-1项和第n-2项的值。

通过递推关系式,我们可以从已知的F(0)和F(1)计算出后续的项的值,从而得到斐波那契数列的通项公式。

第二种方法:差分法差分法是一种利用数列的差分性质求递推数列通项的方法。

差分法可以通过计算数列中相邻项之间的差值,并找到相邻项差值之间的递推关系,从而求出数列的通项公式。

例如,等差数列就是一种可以使用差分法求解的递推数列。

对于等差数列,其通项公式为:a(n)=a(1)+(n-1)d,其中a(n)表示第n项的值,a(1)表示第一项的值,d表示等差数列的公差。

通过对等差数列进行差分,我们可以发现相邻项之间的差值是一个常数d,从而得到等差数列的通项公式。

第三种方法:代数法代数法是一种利用代数的方法求递推数列通项的方法。

代数法可以通过将数列中的项表示成代数形式,构建代数方程,并通过解方程得到数列的通项公式。

例如,等比数列就是一种可以使用代数法求解的递推数列。

对于等比数列,其通项公式为:a(n)=a(1)*r^(n-1),其中a(n)表示第n项的值,a(1)表示第一项的值,r表示等比数列的公比。

通过将等比数列的项表示成代数形式,我们可以得到一个代数方程,并通过解方程得到等比数列的通项公式。

利用几类经典的递推关系式求通项公式

利用几类经典的递推关系式求通项公式

利用几类经典的递推关系式求通项公式经典的递推关系式是一种常见的数学问题,其中通项公式是递推关系式的一般解。

在数学中,几类经典的递推关系式包括等差数列、等比数列以及斐波那契数列。

一、等差数列等差数列是一种常见的数列,每一项与前一项之差保持不变。

等差数列的递推关系式如下:an = a1 + (n-1)d其中,an表示第n项,a1表示首项,d表示公差。

利用等差数列的递推关系式可以求得通项公式:an = a1 + (n-1)d二、等比数列等比数列是一种常见的数列,每一项与前一项之比保持不变。

等比数列的递推关系式如下:an = a1 * r^(n-1)其中,an表示第n项,a1表示首项,r表示公比。

利用等比数列的递推关系式可以求得通项公式:an = a1 * r^(n-1)三、斐波那契数列斐波那契数列是一种著名的数列,每一项是前两项之和。

斐波那契数列的递推关系式如下:fn = fn-1 + fn-2其中,fn表示第n项,f1和f2分别表示斐波那契数列的前两项。

利用斐波那契数列的递推关系式可以求得通项公式:fn = [(1+sqrt(5))^n - (1-sqrt(5))^n] / (2^n * sqrt(5))其中,sqrt(5)表示5的平方根。

四、其他递推关系式除了等差数列、等比数列和斐波那契数列,还有许多其他经典的递推关系式。

例如,阶乘数列是一种常见的递推关系式,每一项是前一项与当前项之积。

阶乘数列的递推关系式如下:an = an-1 * n其中,an表示第n项,n表示当前项。

利用阶乘数列的递推关系式可以求得通项公式:an = n!其中,n!表示n的阶乘。

总结起来,利用等差数列、等比数列、斐波那契数列以及其他经典递推关系式,可以推导出它们的通项公式。

这些递推关系式和通项公式在数学问题中具有广泛的应用,能够帮助我们快速计算数列中任意项的数值。

求数列递推表达式常用的八种方法

求数列递推表达式常用的八种方法

求数列递推表达式常用的八种方法1. 通项公式法(Explicit Formula Method)通项公式法是一种使用列中已知项的数值来构建一个递推表达式的方法。

根据数列的性质和规律,可以通过观察和找到一个数学模型来表示数列的通项公式。

该公式可以直接给出任意项的值,无需依赖于前面的项。

2. 递推关系法(Recurrence Relation Method)递推关系法是通过关系式来定义后一项与前面一项之间的关系。

可以根据已知项之间的关系来构建递推关系,从而求得数列的递推表达式。

递推关系可以是线性或非线性的,具体要根据数列的性质来确定。

3. 线性代数法(Linear Algebra Method)线性代数法是将数列看作一个向量,通过矩阵运算来求得数列的递推表达式。

可以利用矩阵的特征值和特征向量等性质来求解。

这种方法适用于一些特殊的线性数列,但对于非线性数列则不适用。

4. 拟合法(Curve Fitting Method)拟合法是通过数学函数来逼近数列的变化趋势,从而得到递推表达式。

可以选择不同的函数模型,如多项式、指数函数、对数函数等,并使用最小二乘法来拟合数列的数据点。

这种方法适用于不规律和随机的数列。

5. 差分法(Difference Method)差分法是通过数列中相邻项之间的差值来构建递推表达式。

可以通过一次差分、二次差分等方法来获得递推关系,进而求解数列的递推表达式。

这种方法适用于差分规律明显的数列。

6. 特殊性质法(Special Property Method)特殊性质法是根据数列的特殊性质来求解递推表达式。

可以利用数列的对称性、周期性、递增性、递减性等特点来构建递推关系。

该方法需要对数列的性质特别敏感,适用性较为有限。

7. 生成函数法(Generating Function Method)生成函数法是将数列看作一个形式幂级数,通过对生成函数进行操作来求解递推表达式。

可以利用生成函数的性质和运算法则来求得数列的递推关系,进而得到递推表达式。

几种由递推式求数列通项的方法介绍

几种由递推式求数列通项的方法介绍

几种由递推式求数列通项的方法介绍求数列通项通常可以通过递推式来实现,即通过之前的项推导出后一项。

下面介绍几种常见的方法:1.直接法:直接法是最基本的一种方法,即通过观察数列中的规律,找出递推式,然后根据递推式求解通项。

这种方法适用于简单的数列,如等差数列、等比数列等。

例如,求等差数列1, 3, 5, 7, ...的通项。

由观察可知,每一项与前一项的差值为2,即递推式为an = an-1 + 2、再根据首项a1 = 1,得到an = 2n-12.假设法:假设法是一种通过假设通项形式来求解递推式的方法。

通过猜测通项的形式,并将它代入递推式中,得到一个等式,再通过递推式和等式求解未知系数。

例如,求Fibonacci数列的通项。

观察Fibonacci数列的前几项0, 1, 1, 2, 3, 5, ...,可以猜测通项形式为an = A * φ^n + B * (1-φ)^n,其中A和B为待定系数,φ为黄金分割比。

将该通项代入Fibonacci数列的递推式an = an-1 + an-2,得到A = 1/√5,B = -1/√5、因此,Fibonacci数列的通项为an = (1/√5) * (φ^n - (1-φ)^n),其中φ约等于1.6183.代数法:代数法是通过代数运算来求解通项。

将数列的递推式变形为一个方程,再通过方程求解通项。

例如,求等比数列1, 2, 4, 8, ...的通项。

观察可知,每一项与前一项的比值为2,即递推式为an = 2 * an-1、变形方程为an = 2 * an-1,将an-1代入等式中得到an = 2^n。

因此,等比数列的通项为an =2^n。

4.积分法:积分法适用于一些特殊的数列,如等差递减数列、等比递减数列等。

通过对递推式进行积分,可以得到一个通项形式的积分表达式。

例如,求等差递减数列1, 4/3, 1, ...的通项。

观察可知,每一项与前一项的差值为-1/3,即递推式为an = an-1 - 1/3、对递推式进行积分得到通项的积分表达式∫an dn = ∫(-1/3) dn,即an = C - n/3,其中C为常数。

递推数列通项公式的十四种求法

递推数列通项公式的十四种求法

递推数列通项公式的十四种求法◆一、直接法根据数列的特征,使用作差法等直接写出通项公式。

例1. 根据下列数列的前几项,说出数列的通项公式:1、1.3.7.15.31………2、1,2,5,8,12………21213、2,1, , , , ………32534、1,-1,1,-1………5、1、0、1、0………◆二、公式法①利用等差数列或等比数列的定义求通项⎧S 1⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅n =1n ②若已知数列的前项和S n 与a n 的关系,求数列{a n }的通项a n 可用公式a n =⎧求解.S -S ⋅⋅⋅⋅⋅⋅⋅n ≥2n -1⎧n(注意:求完后一定要考虑合并通项)例2.①已知数列{a n }的前n 项和S n 满足S n =2a n +(-1) n , n ≥1.求数列{a n }的通项公式.②已知数列{a n }的前n 项和S n 满足S n=n 2+n -1,求数列{a n }的通项公式.③已知等比数列{a n }的首项a 1=1,公比0{b n }的通项公式。

③解析:由题意,b n +1=a n +2+a n +3,又{a n }是等比数列,公比为q ∴b n +1a n +2+a n +3==q ,故数列{b n }是等比数列,b 1=a 2+a 3=a 1q +a 1q 2=q (q +1) ,b n a n +1+a n +2∴b n =q (q +1) ⋅q n -1=q n (q +1)◆三、归纳猜想法如果给出了数列的前几项或能求出数列的前几项,我们可以根据前几项的规律,归纳猜想出数列的通项公式,然后再用数学归纳法证明之。

也可以猜想出规律,然后正面证明。

例3. (2002年北京春季高考)已知点的序列A n (x n , 0), n ∈N *,其中x 1=0,x 2=a (a >0) ,A 3是线段A 1A 2的中点,A 4是线段A 2A 3的中点,…,A n 是线段A n -2A n -1的中点,…(1)写出x n 与x n -1, x n -2之间的关系式(n ≥3)。

递推式求数列通项公式常见类型及解法

递推式求数列通项公式常见类型及解法

递推式求数列通项公式常见类型及解法递推数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列给 予解决,由于递推数列的多变性,这里介绍总结一些常见类型及解法。

一、公式法(涉及前n 项的和) 已知)(n f s n =⎩⎨⎧≥----=-----=⇒-)2()1(11n S S n S a n n n 注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。

例1.已知数列}a {n 前n 项和1322-+=n n S n ,求数列}a {n 的通项公式。

解:当n=1时,411==s a ,当2≥n 时,14]1)1(3)1(2[)132(221+=--+---+=-=-n n n n n s s a n n n ,15114a ≠=+⨯⎩⎨⎧≥+==∴)2(,14)1(,4n n n a n练习:已知数列}a {n 前n 项和12+=n n S ,求数列}a {n 的通项公式。

答案:⎩⎨⎧≥==-)2(,2)1(,31n n a n n 二、作商法(涉及前n 项的积)已知)(......321n f a a a a n =⨯⨯⨯⎪⎩⎪⎨⎧≥----=----=⇒)2()1()()1().1(n n f n f n f a n例2.已知数列}a {n 中的值试求时53232,2,11a a n a a a n a n +=⋅⋅⋅⋅⋅⋅⋅≥=。

解:当2≥n 时,由2321n a a a a n =⋅⋅⋅⋅⋅⋅⋅⋅,可得21321)1(-=⋅⋅⋅⋅⋅⋅⋅⋅-n a a a a n则22)1(-=n na n16614523222253=+=+∴a a三、累加法(涉及相邻两项的差)已知)(1n f a a n n =-+112211)......()()(a a a a a a a a n n n n n +-+-+-=⇒--- 例3.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

数列递推公式的九种方法

数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一. 一、作差求和法例1 在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2 设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0 ∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,n n a a n n 11-=- 逐项相乘得:na a n 11=,即n a =n 1. 三、换元法例3 已知数列{n a },其中913,3421==a a ,且当n ≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b )31()31(91)31(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。

数列的几种递推公式

数列的几种递推公式

数列的几种递推公式数列是指按照一定规律排列的一组数。

在数学中,数列可以通过递推公式来定义,并通过这些公式推导出数列中的每一项。

一、等差数列等差数列是指数列中的每一项与它前一项之差都相等的数列。

递推公式为:an = a1 + (n-1)d,其中an为第n项,a1为首项,d为公差。

等差数列常用的公式有:1. 前n项和公式:Sn = n/2 * (a1 + an) = n/2 * (2a1 + (n-1)d)2.等差数列的通项公式:an = a1 + (n-1)d二、等比数列等比数列是指数列中的每一项与它前一项之比都相等的数列。

递推公式为:an = a1 * r^(n-1),其中an为第n项,a1为首项,r为公比。

等比数列常用的公式有:1.前n项和公式(当,r,<1时):Sn=a1*(1-r^n)/(1-r)2.当,r,>=1时,等比数列的通项公式无法表示为简单的形式,但可以利用对数函数求出。

三、斐波那契数列斐波那契数列是指数列中的每一项都是前两项之和的数列。

递推公式为:an = an-1 + an-2,其中a1=1,a2=1或a1=0,a2=1、斐波那契数列的特点是前两项都是1,从第三项开始,每一项均等于它前面两个数之和。

斐波那契数列的递推公式不是一个通式,但可以通过递归方式计算任意项。

四、等差-等比混合数列等差-等比混合数列是指数列中的每一项既满足等差数列的递推公式,又满足等比数列的递推公式。

递推公式为:an = (a1 + (n-1)d) * r^(n-1),其中an为第n项,a1为首项,d为等差公差,r为等比公比。

等差-等比混合数列的前n项和公式比较复杂,一般通过将混合数列分解为等差数列和等比数列,再分别求和的方式计算。

五、三角数列三角数列是一种特殊的数列,其中每一项都是等差数列的前n项和。

递推公式为:an = n(n+1) / 2,其中an为第n项。

六、幂指数数列幂指数数列是一种特殊的数列,其中每一项都是常数a的指数幂的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几类递推数列通项公式的常见类型及解法江西省乐安县第二中学 李芳林 邮编 344300已知数列的递推关系式求数列的通项公式的方法大约分为两类:一类是根据前几项的特点归纳猜想出a n 的表达式,然后用数学归纳法证明;另一类是将已知递推关系,用代数法、迭代法、换元法,或是转化为基本数列(等差或等比)的方法求通项.第一类方法要求学生有一定的观察能力以及足够的结构经验,才能顺利完成,对学生要求高.第二类方法有一定的规律性,只需遵循其特有规律方可顺利求解.在教学中,我针对一些数列特有的规律总结了一些求递推数列的通项公式的解题方法.一、a a d n n +=+1型形如d a a n n +=+1(d 为常数)的递推数列求通项公式,将此类数列变形得a a d n n +-=1,再由等差数列的通项公式()a a n d n =+-11可求得a n .例1: 已知数列{}a n 中()a a a n N n n 1123==+∈+,,求n a 的通项公式.解: ∵a a n n +=+13 ∴a a n n +-=13∴ {}a n 是以a 12=为首项,3为公差的等差数列.∴()a n n n =+-=-21331为所求的通项公式. 二、)(1n f a a n n +=+型形如a 1+n =a n + f (n ), 其中f (n ) 为关于n 的多项式或指数形式(a n)或可裂项成差的分式形式.——可移项后叠加相消.例2:已知数列{a n },a 1=0,n ∈N +,a 1+n =a n +(2n -1),求通项公式a n . 解:∵a 1+n =a n +(2n -1)∴a 1+n =a n +(2n -1) ∴a 2-a 1 =1 、a 3-a 2=3 、…… a n -a 1-n =2n -3 ∴a n = a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a 1-n )=0+1+3+5+…+(2n -3)=21[1+(2n -3)]( n -1)=( n -1)2 n ∈N + 三、n n a q a ⋅=+1型形如n n a q a ⋅=+1(q 为常数)的递推数列求通项公式,将此类数列变形得q a a nn =+1,再由等比数列的通项公式11-⋅=n n q a a 可求得a n . 例3 : 已知数列{}a n 中满足a 1=1,n n a a 21=+,求n a 的通项公式.解:∵n n a a 21=+ ∴21=+nn a a ∴ {}a n 是以11=a 为首项,2为公比的等比数列. ∴12-=n n a 为所求的通项公式.四、n n a n f a ⋅=+)(1型形如n n a n f a ⋅=+)(1可转化为)(1n f a a n n =+.其中f (n ) =p pc mn b mn )()(++ (p ≠0,m ≠0,b –c = km ,k ∈Z )或 nn a a 1+=kn (k ≠0)或n n a a 1+= km n( k ≠ 0, 0<m 且m ≠ 1).例4:已知数列{a n }, a 1=1,a n >0,( n +1) a 1+n 2 -n a n 2+a 1+n a n =0,求a n . 解:∵( n +1) a 1+n 2 -n a n 2+a 1+n a n =0 ∴ [(n +1) a 1+n -na n ](a 1+n +a n )= 0∵ a n >0 ∴ a 1+n +a n >0 ∴ (n +1) a 1+n -na n =0∴11+=+n n a a n n ∴n n n n n n n a a a a a a a a a a n n n n n n n 11212312111232211=⨯⨯⨯--⨯--⨯-=⨯⨯⨯⨯⨯=-----五、a 1+n = f (a n ) 型形如a 1+n = f (a n ),其中f (a n )是关于a n 的函数.-—需逐层迭代、细心寻找其中规律. 例5:已知数列{a n },a 1=1, n ∈N +,a 1+n = 2a n +3 n ,求通项公式a n . 解: ∵a 1+n = 2 a n +3 n∴ a n =2 a 1-n +3 n -1 =2(2 a 2-n +3 n -2)+3 n -1 = 22(2 a 3-n +3 n -3)+2·3 n -2+3 n -1 =……=2 n -2(2 a 1+3 )+2 n -3·3 2+2 n -4·3 3+2 n-5·3 4+…+22·3 n-3+2·3 n -2+3 n-1 =2 n -1+2 n -2·3 +2 n -3·3 2+2 n-4·3 3+…+22·3 n -3+2·3 n -2+3 n -1六、a 1+n =pa n + q 型形如a 1+n =pa n + q ,pq ≠0 ,p 、q 为常数. 当p =1时,为等差数列;当p ≠1时,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x⇒a 1+n + x = p (a n +p x q +), 令x =p x q + ∴x =1-p q时,有a 1+n + x = p (a n + x ), 从而转化为等比数列 {a n +1-p q} 求解. 例6:已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n = 1、2、3、…,求通项a n .解:∵ a n =21a 1-n + 1 ⇒ a n -2 =21(a 1-n -2) 又∵a 1-2 = -1≠0 ∴数列{ a n -2}首项为-1,公比为21的等比数列. ∴ a n -2 = -11)21(-⨯n 即 a n = 2 -2n -1 n ∈N + 七、a 1+n =pa n + f (n )型形如a 1+n =pa n + f (n ),p ≠0且 p 为常数,f (n )为关于n 的函数. 当p =1时,则 a 1+n =a n + f (n ) 即类型二.当p ≠1时,f (n )为关于n 的多项式或指数形式(a n).⑴若f (n )为关于n 的多项式(f (n ) = kn + b 或kn 2+ bn + c ,k 、b 、c 为常数),——可用待定系数法转化为等比数列.例7:已知数列{ a n }满足a 1=1,a 1+n = 2a n +n 2,n ∈N +求a n . 解:令a 1+n + x [a (n +1)2+ b (n +1) + c ] = 2(a n + an 2+ bn + c )即 a 1+n = 2 a n + (2a –ax )n 2+ (2b -2ax – bx )n +2c –ax –bx – cx 比较系数得:⎪⎩⎪⎨⎧=---=--=-0202212cx bx ax c bx ax b ax a ⇒ ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+=-=-=x bx ax c x ax b x a 22221 ⇒ 令x = 1,得:⎪⎩⎪⎨⎧===321c b a ∴ a 1+n + (n +1)2+2(n +1) + 3 = 2(a n + n 2+2n + 3) ∵ a 1+1+2×1+3 = 7令b n = a n + n 2+2n + 3 则 b 1+n = 2b n b 1= 7 ∴数列{ b n }为首项为7,公比为2的等比数列∴ b n = 7× 21-n 即 a n + n 2+2n + 3 = 7× 21-n∴ a n = 7× 21-n -( n 2+2n + 3 ) n ∈N +⑵若f (n )为关于n 的指数形式(a n). ①当p 不等于底数a 时,可转化为等比数列; ②当p 等于底数a 时,可转化为等差数列. 例8:若a 1=1,a n = 2 a 1-n + 31-n ,(n = 2、3、4…) ,求数列{a n }的通项a n .解: ∵ a n = 2 a 1-n + 31-n ∴ 令a n + x ×3n= 2(a 1-n +x ×31-n ) 得 a n = 2 a 1-n -x ×31-n令-x ×3n= 3n⇒x = -1 ∴ a n -3n= 2(a 1-n -31-n ) 又 ∵ a 1-3 = - 2∴数列{nn a 3-}是首项为-2,公比为2的等比数列. ∴nn a 3-=-2·21-n 即a n = 3n -2nn ∈N +例9:数列{ a n }中,a 1=5且a n =3a 1-n + 3n-1 (n = 2、3、4…) 试求通项a n .解: a n =3a 1-n + 3n-1 ⇒ a n+-=--)21(3211n a 3n ⇒132132111+-=---n n n n a a ⇒{n n a 321-}是公差为1的等差数列. ⇒n n a 321-=3211-a +(1-n ) = 3215-+(1-n ) = n +21 ⇒a n = (213)21+⨯+n n n ∈N +八、a 2+n = p a 1+n + q a n 型解法一(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++其中s ,t 满足⎩⎨⎧-==+qst pt s解法二(特征根法):对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程。

若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组);当21x x =时,数列{}n a 的通项为11)(-+=n n x Bn A a ,其中A ,B 由βα==21,a a 决定(即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组)。

例10: 已知数列{a n }中a 1= 1, a 2= 2且n n n a a a 212+=++ ,+∈N n ; 求{a n }的通项. 解:令a 2+n +x a 1+n = (1+x ) a 1+n + 2 a n ⇒ a 2+n +x a 1+n = (1+x )( a 1+n + x+12a n )令x =x+12⇒x 2+ x – 2 = 0 ⇒x = 1或 -2当x = 1时,a 2+n + a 1+n =2(a 1+n + a n ) 从而a 2+ a 1= 1 + 2 = 3 ∴数列{ a 1+n + a n }是首项为3且公比为2的等比数列. ∴ a 1+n + a n = 312-⨯n …… …… ①当x = - 2时, a 2+n - 2a 1+n = - (a 1+n -2a n ) , 而 a 2- 2a 1= 0 ∴ a 1+n - 2a n = 0 …… …… ② 由①、②得:a n = 21-n , +∈N n九、1+n n a a = 1++n n qa pa 型形如1+n n a a = 1++n n qa pa ,(p q ≠ 0).且0≠n a 的数列,——可通过倒数变形为基本数列问题. 当p = -q 时,则有:p a a n n 1111=-+ 转化为等差数列; 当p ≠ -q 时,则有:ppa q a n n 111+-=+.同类型六转化为等比数列. 例11:若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n .解: ∵ 221+=+n n n a a a又,011>=a ∴0>n a ,∴nn a a 12111+=+ ∴21111=-+n n a a ∵111=a∴数列{ a n }是首项为1,公差为21的等差数列. ∴n a 1=1+()121-n ∴a n =12+n n ∈N + 类型十 、hra qpa a n n n ++=+1解法:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa a n n n ++=+1(其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,),那么,可作特征方程hrx qpx x ++=,当特征方程有且仅有一根0x 时,则01n a x ⎧⎫⎨⎬-⎩⎭是等差数列;当特征方程有两个相异的根1x 、2x 时,则12n n a x a x ⎧⎫-⎨⎬-⎩⎭是等比数列。

相关文档
最新文档